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A describing function study of saturated
quantization and its application to the stability
analysis of Multi-Bit Sigma Delta modulators

Pieter Rombouts, Maarten De Bock, Jeroen De Maeyer and Ludo Weyten

Abstract—Just as their single-bit counterparts, multi-bit sigma
delta modulators exhibit nonlinear behavior due to the presence
of the quantizer in the loop. In the multi-bit case this is
caused by the fact that any quantizer has a limited output
range and hence gives an implicit saturation effect. Due to
this, any multi-bit modulator is prone to modulator overloading.
Unfortunately, until now, designers had to rely on extensive time-
domain simulations to predict the overloading level, because there
is no adequate analytical theory to model this effect.

In this work, we have developed such an analytical theory
based on multiple input describing function analysis. This way,
we obtained expressions for the signal gain, the noise gain and
the variance of the quantization noise. Here, both the case of
DC as well as sinusoidal signals was considered. These results
were used for the stability analysis of multi-bit Sigma Delta
modulators, which allows to predict the overloading level. Code
implementing the proposed expressions is available for download
at http://cas1.elis.ugent.be/cas/en/download/

I. INTRODUCTION

Sigma delta modulators are widely used for A/D-conversion
and D/A-conversion. Such a modulator consists of a feedback
loop with a linear filter, a quantizer and a feedback DAC. Orig-
inally most Sigma Delta modulators used a 2-level (single-bit)
quantizer. As such the resulting system is heavily non-linear
and difficult to analyze exactly. In particular the prediction of
the stability is tricky and mathematically sophisticated [1]–
[9]. It turns out that all single-bit sigma delta modulators
become unstable when the magnitude of the input signal is
to large. This phenomenon is called modulator overloading
and the signal for which this occurs is called the overloading
level. For the case of single-bit sigma delta modulation quite
a lot of literature is devoted to stability analysis and attempts
to predict the overloading level. A quite solid attempt in this
field is the describing function theory of [4].

In the case of multi-bit modulators the analysis is considered
to be much simpler, because it is commonly believed that
multi-bit quantization can accurately be modeled by a linear
gain and additive (white) quantization noise. This way, most
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Fig. 1. (a) Block diagram of a MB Σ∆ modulator with (b) the input-output
behavior of its nonlinear quantizers.

literature on the stability of multi-bit sigma delta modulation
focused on the robustness against parasitic effects [10]–[13].
However in practice, any quantizer has only a limited input
(and output) range. As a result, any quantizer saturates. This
way, every practical multi-bit modulator is non-linear as well
and will also have a limited overloading level [14]. Moreover
this overloading level will be smaller for more aggressive
modulators. Surprisingly, very little literature about this effect
in multi-bit modulators has been published. One notable
exception is [15], [16, p. 104] that provides an iron-clad lower
bound on the overloading level. Apparently independently,
this bound was re-invented in [17], [18]. However the bound
is not very tight and still lengthy time-domain simulations
are needed to estimate the actual overloading level. In this
work, we will apply the multiple-input describing function
theory [19] to a saturating quantizer to obtain a more accurate
analytical prediction of the quantizer behavior. Although the
theory is still an approximation, we will see that it predicts the
modulator behavior (including overloading level) considerably
more accurate than [15]–[18], which were the only available
analytical expression prior to this work. This way, the resulting
expressions can be used within automated synthesis tools such
as [20], [21].

The rest of this paper is structured as follows: in section II,
we will review multi-bit sigma delta modulation. In section III,
we will lift the multi-bit quantizer out of the sigma delta
modulation loop and we will apply the describing function
theory to the multi-bit quantizer alone. We will make a dis-
tinction between the case of DC and sinusoidal input signals.
In section IV we will plug the multi-bit quantizer back into the
sigma delta modulation loop and use the results of section III
to analyze the multi-bit sigma delta modulator as a whole. In
section V we will compare the proposed approach with prior
art. Finally, we will present conclusions in section VI.
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Fig. 2. Dual-input describing functions of a saturating quantizer.

II. MULTI-BIT SIGMA DELTA MODULATION

Fig. 1(a) shows a standard Multi-bit Sigma Delta modulator.
It consists of a linear filter and a nonlinear quantization block.
The input-output relationship1 d = fQ(x) is show in Fig. 1(b).
Mathematically this can be written as:

fQ(x) = −1 +

n∑
i=1

∆ u(x− ∆

2
− i∆), (1)

where ∆ denotes the quantization step and n the number of
discontinuities in the quantization function. With this defi-
nition of n, the number of quantization levels nlev equals
n+1. In a practical unit-element DAC implementation n would
correspond to the number of unit-elements. The function u(x)
is the standard step function:

u(x) = 0 ∀ x < 0

1 else

Since the quantizer of Fig. 1(b) is normalized to have a gain
of 1 and a full scale input range of [−1 : 1], this implies that:

∆ =
2

n
(2)

Eq. (1) is cast in such a form that the odd symmetry of fQ(x)
is hidden. To overcome this we can use the alternative notation:

fQ(x) = u(x)

n
2−1∑
j=0

∆u(x− ∆

2
j∆)

−u(−x)

n
2−1∑
j=0

∆u(−x− ∆

2
j∆). (3)

This equation is only valid in the case where n is even (a
so-called “mid-thread” quantizer). The equation for the case
where n is odd (a so-called “mid-rise” quantizer) is similar.
Without loss of generality we are going to restrict us here to
the case where n is even.

III. DUAL-INPUT DESCRIBING FUNCTION ANALYSIS OF A
SATURATING QUANTIZER

It is clear that the quantization function fQ(x) of Fig. 1(b)
is a hard nonlinear block. Such systems can be analyzed by
a describing function analysis. In this analysis it is assumed
that the input x(t) of the non-linear function consists of
several orthogonal components. In our analysis we will assume
that there are 2 components: a signal component xS(t) and
a Gaussian noise component xN (t). In principle the noise

1Here the convention is used that lowercase letters are used for an explicit
time-domain representation of a signal, while uppercase letters are used for a
more abstract (potentially Z-domain or frequency domain) representation.

spectrum can be anything, as long as it is orthogonal to the
signal component. Thus we have:

X = XS +XN (4)

Then we will associate a best-fit linear gain (KN and KS

respectively) to each of these components (XN and XS

respectively). Obviously in this linearization process we make
a linearization error QQ. This linearization error is defined as:

qQ = fQ(x)− (KSxS +KNXN ) (5)

Now the best-fit gains are determined in such a way that the
variance σ2

Q of the linearization error is minimized. Or:

σ2
Q = E{(KnxN +KSxS − fQ(xN + xS))2} (6)

δ(σ2
Q)

δKN
= 0⇒ KN =

E{xNfQ(xN + xS)}
σ2
N

(7)

δ(σ2
Q)

δKS
= 0⇒ KS =

E{xSfQ(xN + xS)}
σ2
S

(8)

Here, E{ · } stands for the expectation operation and σ2
N and

σ2
S correspond to the noise and signal variance respectively.

A. DC signal

A first important case to consider is the case of a DC-signal.
Here xS = xDC . Then Eq. (7) can easily be evaluated using
Eq. (1):

KN =
1

σ2
N

∫ ∞
−∞

xNfQ(xN + xDC)p(xN )dxN

=
∆√

2πσN

n∑
i=1

e
−(

(−1− ∆
2

+i∆−xDC )2

2σ2
N

)
(9)

Here p(xN ) is the Gaussian probability density function (pdf)
of the noise. Also Eq. (8) can be evaluated:

KS =
1

xDC

∫ ∞
−∞

fQ(xN + xDC)p(xN )dxN

=
∆

2xDC

n∑
i=1

erf

(
1 + ∆

2 + xDC − i∆√
2σN

)
(10)

Here erf( · ) is the error function. Finally the variance σ2
Q of

the linearization error can be evaluated as well:

σ2
Q = E(fQ(xN + xDC))2 −K2

Nσ
2
N −K2

Sx
2
DC (11)

This can be cast in closed form as:

σ2
Q =

∆2

2

n
2−1∑
j=0

(2j + 1)

(
2− erf

(
−xDC + ∆

2 + j∆
√

2σN

))
+

∆2

2

n
2−1∑
j=0

(2j + 1)

(
erf

(
−xDC − ∆

2 − j∆√
2σN

))
−K2

Nσ
2
N −K2

Sx
2
DC (12)

It is important to realize that the best fit gains KN , KS

and the variance σ2
Q of the linearization error [Eqs. (9), (10)

and (12)] all depend both on the magnitude of the quantizer
input signal XDC and on the variance σ2

N of the quantizer
input noise. To illustrate this, some results for the case of
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Fig. 3. (a) Best fit gains KS and KN and (b) the RMS value σQ of the
linearization error vs. the magnitude of the DC signal for the case of a 9-level
quantizer (n = 8) with a Gaussian noise RMS value σN = ∆√

12
.

n = 8 (a 9-level quantizer) are shown in Fig. 3. Here the input
noise component xN is arbitrarily assigned an RMS value σN
equal to ∆√

12
. The results are plotted vs. the magnitude of the

DC signal XDC . The top figure shows the linearized gains KN

and KS . It is clear that both gains are not equal. Moreover,
as expected for a nonlinear block, both gains are signal
dependent. In the quantizer’s valid input range (the interval
[-1:1]) both gains exhibit a ripple around the nominal gain
of 1. Outside the valid input range the noise gain KN rapidly
drops. Fig. 3(b) shows the RMS value of the linearization error.
According to Bennett’s widely used approximation [22], this
value should be equal to ∆√

12
, which is also indicated in the

figure. It is clear that the actual value ripples around Bennett’s
approximation.

The results for the case where the RMS value of the
Gaussian input noise is doubled compared to Fig. 3 (i.e.
σN = 2∆√

12
) are shown in Fig. 4. It is clear that the traditional

approximations (i.e. the gains are equal to 1 and the RMS
value is equal to Bennett’s expression) are a much better
approximation, which is due to the increased dithering effect.
However outside the valid input range, again the noise gain
KN rapidly drops.

B. Sinusoidal signal

The second important case is the case of a sinusoidal signal,
where xs(t) consists of a sine wave. In this case Eq. (7)
becomes:

KN =
1

σ2
N

∫ ∞
−∞

∫ ∞
−∞

xNfQ(xN + xS)p(xN )q(xS)dxSdxN ,

(13)

quantizer DC input signal

K
n 

an
d 

K
s

calculated KN

Scalculated K

quantizer DC input signal

K
n 

an
d 

K
s

calculated KN

Scalculated K

Bennett's
expression

σ Q

quantizer DC input signal

Fig. 4. (a) Best fit gains KS and KN with (b) a close in view and (c) the
RMS value σQ of the linearization error vs. the magnitude of the DC signal
for the case of a 9-level quantizer (n = 8) with a Gaussian noise RMS value
σN = 2∆√

12
.

where q(xS) corresponds to the pdf of a sine wave with
amplitude A:

q(xS) =
1

π
√
A2 − x2

S

∀ xS with A2 > x2
S

= 0 else (14)

Filling this in into Eq. (13) and combining with Eq. (1):

KN =

n∑
i=1

∫ A

−A

σe−
(xS+1+ ∆

2
−i∆)2

2σ2

π
√

2π
√
a2 − xS2

dxS (15)

We were unable to find an analytical solution of the above
integrals, but it is easy to obtain an efficient numerical eval-
uation e.g. by the transformation in the appendix. This way,
KN can be evaluated for any given n and σN . Hence, we can
say that KN,sin(σN , n) is a known function:

KN = KN,sin(σN , n). (16)

We can also evaluate Eq. (8) for the case of a sinusoidal signal:

KS =
2

A2

∫ ∞
−∞

∫ ∞
−∞

xSfQ(xN + xS)p(xN )q(xS)dxSdxN
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Fig. 5. (a) Best fit gains KS and KN and (b) the RMS value σQ of the
linearization error vs. the amplitude of the sinusoidal signal for the case of a
9-level quantizer (n = 8) with a Gaussian noise RMS value σN = ∆√

12
.

=

n∑
i=1

∫ A

−A

(
erf

(
(xS+1+ ∆

2 −i∆)√
2σN

)
+ 1

)
xSdxS

A2π
√
A2 − xS2

(17)

Again we were unable to find an analytical solution of the
above integrals, but also here it is easy to obtain an efficient
numerical evaluation (see e.g. the appendix). This way, KS

can be evaluated for any given n and σN and we can say that
KS,sin(σN , n) is a known function:

KS = KS,sin(σN , n). (18)

Finally we evaluate the variance σ2
Q of the linearization error

for the sinusoidal signal case as follows:

σ2
Q =

∫ ∞
−∞

∫ ∞
−∞

(fQ(xN + xS))2p(xn)q(xs)dxndxs

−K2
Nσ

2
N −K2

S

A2

2
(19)

This can be rewritten as:

σ2
Q =

∆2

n
2−1∑
j=0

(2j + 1)

∫ A

−A

(
erf
(

(xs−∆/2−j∆)√
2σN

)
+ 1
)

2π
√
A2 − xs2

dxs

+∆2

n
2−1∑
j=0

(2j + 1)

∫ A

−A

(
erf
(

(−xs−∆/2−j∆)√
2σN

)
+ 1
)

2π
√
A2 − xs2

dxs

−K2
Nσ

2
N −K2

S

A2

2
(20)

Again we had to evaluate the integrals numerically, but it turns
out that this can be done efficiently.

Just as for the DC-case, the best fit gains KN , KS and
the variance σ2

Q of the linearization error all depend both on
the amplitude of the quantizer input signal AX and on the
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Fig. 6. (a) Best fit gains KS and KN with (b) a close in view and (c) the
RMS value σQ of the linearization error vs. the magnitude of the DC signal
for the case of a 9-level quantizer (n = 8) with a Gaussian noise RMS value
σN = 2∆√

12
.

variance σ2
N of the quantizer input noise. The results for the

same situation as Fig. 3 (i.e. n = 8 and σN = ∆√
12

) are
shown in Fig. 5. The top figure shows the linearized gains KN

and KS . Here qualitatively the results are very similar to the
case of a DC signal: i.e. both gains are not equal and signal
dependent. In the quantizer’s valid input range (the interval
[-1:1]) both gains exhibit a ripple around the nominal gain
of 1. Outside the valid input range the noise gain KN drops,
but not as rapidly as in the case of a DC input signal. Fig. 5(b)
shows the RMS value of the linearization error. Also here,
the actual value ripples around Bennett’s approximation in the
quantizer’s valid input range. However, here the linearization
error rapidly increases for overloading amplitudes, unlike the
case of a DC-signal where the σQ goes to zero for large
signals.

The results for the case where the RMS value of the Gaus-
sian noise is doubled compared to Fig. 5 (i.e. σN = 2∆√

12
) are

shown in Fig. 6. It is clear that the traditional approximations
(i.e. the gains are equal to 1 and the RMS value is equal to
Bennett’s expression) are a much better approximation, which
is due to the increased dithering effect. However outside the
valid input range, again the noise gain KN drops and the
magnitude of the linearization error σQ rapidly increases.
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Fig. 7. Equivalent describing function model of a MB Σ∆ modulator:
(a) system diagram corresponding to the signal component and (b) system
diagram corresponding to the noise component.

IV. APPLICATION TO A MULTI-BIT SIGMA DELTA
MODULATOR

As illustrated in Figs. 3–6, the best-fit gains KN and KS

of the quantizer are signal dependent. As a result, if such a
quantizer is embedded inside a feedback loop, the linearized
loop gain (and hence also the closed-loop poles) will be signal
dependent. This way, there will be signal values for which the
loop becomes unstable [14]. We will now quantify this effect.

In the theory elaborated in the previous section we did
not yet make an approximation. This is due to the definition
of the linearization error qQ of Eq. (5) which conceals the
nonlinearity. But it still is present since qQ is a nonlinear
function of the noise and the signal. To apply the above
theory to a multi-bit Sigma Delta modulator we will now make
two approximations. The first approximation is that qQ is a
noisy signal with a Gaussian pdf (the second approximation
will come later). This approximation allows to draw the
equivalent describing function model of Fig. 7. Here, the
actual system is separated into two separated systems each
dealing with one component (either the signal component or
the noise component). In the system corresponding to the noise
component, the noise is caused by the linearization error QQ,
which we assumed to have a Gaussian pdf. As a result it
will give rise to signals with a Gaussian pdf in the loop. In
particular the signal XN will have a Gaussian pdf as well and
hence will exhibit the noise gain KN .

To set up the equivalence with the conventional Multi-bit
modulator of Fig. 1, we have:

D = DS +DN (21)
X = XS +XN (22)
QQ = D −KNXN −KSXS (23)

Note that both systems are not completely decoupled because
KN depends on the magnitude of XS and KS depends on the
variance of XN . From the figure we readily obtain that:

D =
H(z)KS

1 +H(z)KS︸ ︷︷ ︸
STF (KS)

Vin +
1

1 +H(z)KN︸ ︷︷ ︸
NTF (KN )

QQ (24)

X =
H(z)

1 +H(z)KS
Vin −

H(z)

1 +H(z)KN
QQ (25)

QQ = D −KNXN −KSXS (26)

A. DC-input signal

Let us now further elaborate this for the case where Vin is
a DC-input signal:

Vin = C (27)

// initialization of the iterative procedure with the values
// of the case where no saturation occurs
KN ← 1 ; KS ← 1 ; σQ ← 2

n
√

(12)
;

// the actual iterative procedure
while (NOT accurate enough)

XDC ← C
KS

; // according to Eq. (29)
σ2
N ← evaluate Eq. (31);
KN,new← evaluate Eq. (9);
KS,new ← evaluate Eq. (10);
KN ← KN,new; KS ← KS,new;
σQ,new ← evaluate Eq. (12);
σQ ← σQ,new;

Fig. 8. Iterative algorithm to find KN , KS , σQ, σN and XDC for a DC
input signal.

If we assume that the loop gain is infinite for DC (i.e. the loop
filter contains at least one integration), then the DC-component
in the output signal must be equal to DS = C. In this way:

XN =
−H(z)

1 +H(z)KN
QQ (28)

XS =
C

KS
= XDC (29)

QQ = D −KNXN −KSXDC (30)

Here the variance σ2
Q of QQ is defined by Eq. (12) and KN

and KS are defined by Eqs. (9) and (10), which all depend on
the variance σ2

N of the noise signal XN . In principle Eq. (28)
can be used to evaluate σ2

N . To simplify this, we will make
our second approximation: i.e. we will make the common
assumption that the spectrum of the linearization error QQ
is white. This way, we obtain the following relationship:

σ2
N =

σ2
Q

fs/2

∫ fs
2

0

∣∣∣∣∣ −H(e
j2π f

fS )

1 +H(e
j2π f

fS )KN

∣∣∣∣∣ df, (31)

where fs stands for the sampling frequency.
Now we have 5 equations, i.e. Eqs. (9), (10), (12), (29)

and (31) that fully define the 5 unknown quantities i.e.: KN ,
KS , σQ, σN and XDC as a function of the known loop filter
H and the modulator DC input signal C. We did not manage to
find an analytical solution, but an iterative algorithm to obtain
a numerical solution is quite straightforward and is illustrated
in Fig. 8.

This procedure was applied to a typical 3rd-order modulator
designed according to [23], [24] with h∞ = 4, for the case
of n = 8 (a 9-level quantizer). The results are shown in
Fig. 9, where KN , KS , σQ and σN are shown vs. the overall
modulator input level C. In addition to the calculated values,
also the experimental results are shown. Here, for each value
of the modulator input signal C an extensive time domain
simulation was performed to determine the corresponding
quantizer’s input sequence x as well as the output sequence d.
Then the experimental value of XDC can be estimated as the
average of the x-sequence and KS as the ratio of XDC and
the average of the d-sequence DS . Then we obtain the noise
sequence xN by removing the DC-component from the x-
sequence. By calculating the variance of the xN -sequence, we
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σN in front of the quantizer and (c) the RMS value σQ of the linearization
error.

obtain the experimental value of σN . Finally, the experimental
value of the noise gain KN is determined by minimizing the
variance of the sequence d − KNxN with respect to KN .
We simply implemented this by sweeping KN and selecting
the value which corresponds to the minimum. The variance
of the corresponding (d − KNxN )-sequence provides the
experimental value of σQ. For the experimental plot C was
swept with a sweeping step of 0.01. For each value of C,
32 simulation runs of 219 clock cycles were averaged. Each
simulation run was launched with a randomly dithered initial
state of the modulator state variables. The total time to execute
the matlab script to generate the experimental plot was 1hour
16minutes on 1 core of an Intel Core2 Q9400 CPU (2.66GHz),
whereas the theoretical plot took less than 1 second.

From the plot we observe the well known fact that the
modulator is stable and has well defined quantizer gains and
noise levels for sufficiently small input signals. Moreover the
commonly accepted white noise expression turns out to be
very accurate for small input signals. For larger input signals
the modulator becomes unstable. Moreover the transition (both
according to the theory as well as according to the experiment)
is very steep. It is also clear that the theory matches the
experiment reasonably well, although the prediction of the

modulator h ∞

5th order
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5th order
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3rd order
experiment

3rd order
theory

4th order
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4th order
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Fig. 10. Describing function prediction of the DC overloading level (marked
with “×”) as well as the simulated value (marked with “o”) vs. h∞ results
for maximally flat modulators of order 3,4 and 5 for the case of a 9-level
quantizer (n = 8).

overloading level is somewhat pessimistic in this case.
Fig. 10 shows the describing function prediction of the

DC overloading level for maximally flat modulators designed
according to [23], [24] vs. h∞. The cases of 3rd-order, 4th-
order and 5th-order modulators are considered. Also the corre-
sponding experimental plots based on time domain simulation
are shown. Here, a modulator was considered to be stable for
a given input level if the state variables remain bounded in
each of the 32 simulation runs of 219 clock cycles. For this
case the CPU time on the same machine was 1hr42min. From
the figure it is clear that, the theory matches the experiment
very well for the case of the 3rd-order modulators. For the 4th-
and 5th-order modulators the theory matches the experiment
qualitatively, but the quantitative matching is somewhat less
good. Additionally, it is observed that the correspondence
between the theory and the experiment becomes less good
for more aggressive modulators (with higher h∞).

B. Sinusoidal input signal

Let us now consider the case where Vin is a sinusoidal
signal with amplitude Ain. Obviously, the signal compo-
nent in the output signal is also sinusoidal and given by
Ds = STF (Ks)Vin. For the elaboration of the theory we will
assume that the output signal level is known. In many cases,
this is readily fulfilled because, we are usually interested in
signals in the signal band, where the loop gain is so large that
in practice the signal transfer function is very close to unity2.
This way, we will assume that DS = Vin and hence:

XN =
−H(z)

1 +H(z)KN
QQ (32)

XS =
Ds

KS
=
Vin
KS

(33)

QQ = D −KNXN −KSXS (34)

Here the variance σ2
Q of QQ is defined by Eq. (20) and KN

and KS are defined by Eqs. (15) and (17), which all depend

2If the signal transfer function is not close to unity, the corresponding
input level has to be corrected by a factor 1/STF (Ks), where Ks is the
corresponding describing function gain.
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// initialization of the iterative procedure with the values
// of the case where no saturation occurs
KN ← 1 ; KS ← 1 ; σQ ← 2

n
√

(12)
;

// the actual iterative procedure
while (NOT accurate enough)

AX ← Ain
KS

; // according to Eq. (33)
σ2
N ← evaluate Eq. (31);
KN,new← evaluate Eq. (15);
KS,new ← evaluate Eq. (17);
KN ← KN,new; KS ← KS,new;
σQ,new ← evaluate Eq. (20);
σQ ← σQ,new;

Fig. 11. Iterative algorithm to find KN , KS , σQ, σN and AX for a
sinusoidal input signal.

modulator h ∞

5th order
experiment 5th order

theory

3rd order
experiment

3rd order
theory

4th order
experiment

4th order
theory

S
in

us
oi

da
l O

ve
rlo

ad
in

g
 le

ve
l

Fig. 12. Describing function prediction of the sinusoidal overloading level
(marked with “×”) as well as the simulated value (marked with “o”) vs. h∞
results for maximally flat modulators of order 3,4 and 5.

on the variance σ2
N of the noise signal XN . Now the rest of

the analysis is very similar to the case of a DC input signal.
To simplify the evaluation of σ2

N , we will again make the
approximation that the spectrum of the linearization error QQ
is white. This way, we obtain again Eq. (31).

Now we have 5 equations, i.e. Eqs. (15), (17), (20), (33)
and (31) that fully define the 5 unknown quantities i.e.: KN ,
KS , σQ, σN and XS as a function of the known loop filter
H and the modulator input signal amplitude Ain. To find
the solution, we had to resort again to an iterative algorithm
(illustrated in Fig. 11) to obtain a numerical solution.

To verify the theory, the same experiments as for the DC-
case were performed. Some of the corresponding results are
shown in Fig. 12, where the describing function prediction of
the overloading level as well as the corresponding experimen-
tal plots based on time domain simulation are shown. Unfor-
tunately, the correspondence of the theory and the simulation
experiment is only very moderate. Moreover, it was found
that the experimental results depend on the input frequency,
especially if the input frequency is low compared to the
clock frequency. This phenomenon is not predicted by the
theory. The plot in the figure is for a relatively low input
frequency around fS/84 (i.e. a typical sigma delta modulator
input frequency). When the plot is done for even lower

input frequencies (say fS/1000), the experimental overloading
levels completely collapse to the same values as for the DC
case. This effect as well as the relatively poor matching
between our theory and the experiment, can be explained by
the fact that we have made one additional approximation in
the case of sinusoidal signals compared to the DC case: i.e.
we have implicitly assumed that a sinusoid can be modeled
by a random signal with the same pdf as the sinusoidal
signal [Eq. (14)]. This way, correlation between successive
samples is neglected and the describing function prediction
becomes independent of the input frequency. However in
an actual sinusoidal signal, successive signal values are of
course heavily correlated: e.g. near the top of a relatively low-
frequency sinusoid (as in a Sigma Delta modulator), there are
many successive occurrences of high input values. As a result
the describing function result for a sinusoidal input signal is
optimistic, and the actual overloading level is much closer to
the overloading level for a DC input signal. Therefore, for a
practical prediction of the overloading level we advise to use
the describing function result for the DC-case.

V. COMPARISON WITH PRIOR ART

Before this work, the only analytical prediction of the
overloading level of a multi-bit sigma delta modulator was
based on Kenney and Carley’s work [15] which is quantified
in the lower bound on the overloading level of [16, p. 104].
When using our notation convention this lower bound can be
written as:

OL ≥ 1− ∆

2
(||NTF ||1 − 2) (35)

Note that this bound does not make a distinction between
the type of signal (sinusoid vs. DC or whatever). Also, this
expression is not an estimation but instead a lower bound.

This bound is shown in Fig. 13 for the case of n = 8,
together with the results of Figs. 10 and 12, which are now
re-arranged per modulator order. For the reasons explained
above, the describing function results for the sinusoidal case
are omitted and only the describing function predictions for
the DC-case are shown.

When comparing Kenney and Carley’s bound [Eq. (35)]
with the describing function result, it is clear that the de-
scribing function prediction is considerably more accurate.
Moreover in practice only modulators that work, i.e. with
a sufficiently large overloading level (say above -6dB) are
useful. Therefore it makes sense to limit the comparison
to these modulators. In this case, the describing function
prediction matches the experiment within 0.7 dB for 3rd order,
within 0.9 dB for 4th order and within 1.5 dB for 5th order
modulators. In comparison, in the same situation, Kenney and
Carley’s bound [Eq. (35)] has an error of 7.3 dB for 3rd order,
6.5 dB for 4th order and 6.1 dB for 5th order modulators.

Fig. 14 shows the comparison of the describing function
result and Eq. (35) for the case of the lowest quantizer resolu-
tion where this theory still makes sense, i.e. 3 quantizer levels
(n = 2). For the sinusoidal experiment, again a frequency
of about fS/84 was used. Surprisingly, for some of the 4th
and 5th order modulators, the experimental overloading level
for sinusoidal input signals is lower than that for a DC input
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Fig. 13. Modulator overloading level vs. h∞ results for maximally flat modu-
lators with a 9-level quantizer (n = 8): describing function prediction (marked
with “×”) and experimental value (marked with “◦”) for the sinusoidal
case, describing function prediction (marked with “+”)and experimental value
(marked with “�”) for the DC case and Kenney and Carley’s bound [15], [16]
(marked with “/”).

signal. This is counter-intuitive and not predicted by the theory
(note that unity STF’s were used in the experiment). Again, the
experimental curve for sinusoidal input signals was found to
be dependent on the input frequency and converges toward that
for a DC input signal, when the input frequency is decreased.

From the figure, it is clear that Eq. (35), does not at all
manage to give an adequate prediction of the overloading
level in this case and estimates a zero overloading level for
modulators that, in simulation, have an overloading level well
above -6dB. If we restrict ourself again to modulators with
an overloading level of at least -6 dB, our describing function

prediction is within 0.5 dB for 3rd order, within 1.7 dB for
4th order and within 2.2 dB for 5th order modulators.

Fig. 15 shows the case of a higher quantizer resolution (17
quantizer levels, n = 16). Now, all considered modulators
have an overloading level that is larger than -6dB. In this
case, Kenney and Carley’s bound is considerably closer to the
experimental curve than in the lower-resolution cases (within
2.2 dB for 3rd and 4th order, within 3.3 dB for the 5th order
case). Also the accuracy of the describing function estimation
for a DC signal is improved compared to lower resolutions
and is now within 0.2 dB for the 3rd and 4th order case and
within 1.0 dB for the 5th order case.

VI. CONCLUSION

Every multi-bit quantizer has a finite input voltage range
and hence is actually a saturating quantizer. When such a
multi-bit quantizer is used inside a sigma delta loop, this
saturation is the cause of its finite overloading level. To analyze
this phenomenon quantitatively, we have applied dual-input
describing function theory to such a multi-bit quantizer (with
saturation). We have obtained analytical expressions for the
case of DC signals and nearly analytical (easy to evaluate)
expressions for the case of sinusoidal signals. Next, we have
shown how these describing function results can be used to
analyze multi-bit Sigma Delta modulators and to predict their
overloading level. The results of the theory were compared to
the results of time domain simulations. For the case of DC-
signals, it was found that the matching between theory and
experiment was quite good. For the case of sinusoidal signals
the quantitative matching was less good. This is attributed
to the fact that the theory does not take correlation between
successive signal values into account. This way, for practical
overloading level predictions it seems advisable to use the
describing function results for the DC case. Here, the proposed
approach is considerably more accurate than the prior art [15],
[16].

APPENDIX

The numerical evaluation of Eqs. (15), (17) and (20)
(through an approximation as a finite sum) is awkward due
to the singularity at the edges of the integrandum caused by
the factor 1√

A2−xS2 . To get rid of this we use the following
substitution:

xS = A sin(θ)

This will map the integrandum xS ∈ [−A;A] on θ ∈ [−π2 ; π2 ].
The singular factor will be removed because:

dxS√
A2 − xS2

= Adθ ∀xS ∈ [−A;A]

This way, the integrals in Eq. (15) are transformed into:

∫ A

−A

σe−
(xS+1+ ∆

2
−i∆)2

2σ2

π
√

2π
√
A2 − xS2

dxS =

∫ π
2

−π
2

σe−
(A sin(θ)+1+ ∆

2
−i∆)2

2σ2

π
√

2π
dθ
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Fig. 14. Modulator overloading level vs. h∞ results for maximally flat modu-
lators with a 3-level quantizer (n = 2): describing function prediction (marked
with “×”) and experimental value (marked with “◦”) for the sinusoidal
case, describing function prediction (marked with “+”)and experimental value
(marked with “�”) for the DC case and Kenney and Carley’s bound [15], [16]
(marked with “/”).

and those in Eq. (17) into:

∫ A

−A

(
erf

(
(xS+1+ ∆

2 −i∆)√
2σN

)
+ 1

)
xSdxS

A2π
√
A2 − xS2

=

∫ π
2

−π
2

(
erf

(
(A sin(θ)+1+ ∆

2 −i∆)√
2σN

)
+ 1

)
sin(θ)dθ

Aπ
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Fig. 15. Modulator overloading level vs. h∞ results for maximally flat
modulators with a 17-level quantizer (n = 4): describing function pre-
diction (marked with “×”) and experimental value (marked with “◦”) for
the sinusoidal case, describing function prediction (marked with “+”)and
experimental value (marked with “�”) for the DC case and Kenney and
Carley’s bound [15], [16] (marked with “/”).

and finally those in Eq. (20) into:

∫ A

−A

(
erf
(

(xs−∆/2−j∆)√
2σN

)
+ 1
)

2π
√
A2 − xs2

dxs =

∫ π
2

−π
2

(
erf
(

(A sin(θ)−∆/2−j∆)√
2σN

)
+ 1
)

2π
dθ

All these integrals can efficiently be evaluated by discretiz-
ing the integrandum in a few 100 data points.
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