33 research outputs found

    A comparative study of WPD and EMD for shaft fault diagnosis

    Get PDF
    Fault diagnosis of incipient crack failure in rotating shafts allows the detection and identification of performance degradation as early as possible in industrial plants, such as downtime and potential injury to personnel. The present work studies the performance and effectiveness of crack fault detection by means of applying wavelet packet decomposition (WPD) and empirical mode decomposition (EMD) on fault diagnosis of rotating shafts using multiscale entropy (MSE). After WPD and EMD, the most sensitive reconstruction vectors and intrinsic mode functions (IMFs) are selected using Shannon entropy. Then, these feature vectors are fed into support vector machine (SVM) for fault classification, where the entropy features represent the complexity of vibration signals with different scales. Experimental results have demonstrated that WPD combined with MSE can achieve an accuracy of 97.3% for crack fault detection in rotating shafts, whilst EMD combined with MSE has shown a higher detection rate of 98.5%

    Acoustic Condition Monitoring & Fault Diagnostics for Industrial Systems

    Get PDF
    Condition monitoring and fault diagnostics for industrial systems is required for cost reduction, maintenance scheduling, and reducing system failures. Catastrophic failure usually causes significant damage and may cause injury or fatality, making early and accurate fault diagnostics of paramount importance. Existing diagnostics can be improved by augmenting or replacing with acoustic measurements, which have proven advantages over more traditional vibration measurements including, earlier detection of emerging faults, increased diagnostic accuracy, remote sensors and easier setup and operation. However, industry adoption of acoustics remains in relative infancy due to vested confidence and reliance on existing measurement and, perceived difficulties with noise contamination and diagnostic accuracy. Researched acoustic monitoring examples typically employ specialist surface-mount transducers, signal amplification, and complex feature extraction and machine learning algorithms, focusing on noise rejection and fault classification. Usually, techniques are fine-tuned to maximise diagnostic performance for the given problem. The majority investigate mechanical fault modes, particularly Roller Element Bearings (REBs), owing to the mechanical impacts producing detectable acoustic waves. The first contribution of this project is a suitability study into the use of low-cost consumer-grade acoustic sensors for fault diagnostics of six different REB health conditions, comparing against vibration measurements. Experimental results demonstrate superior acoustic performance throughout but particularly at lower rotational speed and axial load. Additionally, inaccuracies caused by dynamic operational parameters (speed in this case), are minimised by novel multi-Support Vector Machine training. The project then expands on existing work to encompass diagnostics for a previously unreported electrical fault mode present on a Brush-Less Direct Current motor drive system. Commonly studied electrical faults, such as a broken rotor bar or squirrel cage, result from mechanical component damage artificially seeded and not spontaneous. Here, electrical fault modes are differentiated as faults caused by issues with the power supply, control system or software (not requiring mechanical damage or triggering intervention). An example studied here is a transient current instability, generated by non-linear interaction of the motor electrical parameters, parasitic components and digital controller realisation. Experimental trials successfully demonstrate real-time feature extraction and further validate consumer-grade sensors for industrial system diagnostics. Moreover, this marks the first known diagnosis of an electrically-seeded fault mode as defined in this work. Finally, approaching an industry-ready diagnostic system, the newly released PYNQ-Z2 Field Programmable Gate Array is used to implement the first known instance of multiple feature extraction algorithms that operate concurrently in continuous real-time. A proposed deep-learning algorithm can analyse the features to determine the optimum feature extraction combination for ongoing continuous monitoring. The proposed black-box, all-in-one solution, is capable of accurate unsupervised diagnostics on almost any application, maintaining excellent diagnostic performance. This marks a major leap forward from fine-tuned feature extraction performed offline for artificially seeded mechanical defects to multiple real-time feature extraction demonstrated on a spontaneous electrical fault mode with a versatile and adaptable system that is low-cost, readily available, with simple setup and operation. The presented concept represents an industry-ready all-in-one acoustic diagnostic solution, that is hoped to increase adoption of acoustic methods, greatly improving diagnostics and minimising catastrophic failures

    Multimodal forecasting methodology applied to industrial process monitoring

    Get PDF
    IEEE Industrial process modelling represents a key factor to allow the future generation of industrial manufacturing plants. In this regard, accurate models of critical signals need to be designed in order to forecast process deviations. In this work a novel multimodal forecasting methodology based on adaptive dynamics packaging and codification of the process operation is proposed. First, a target signal is decomposed by means of the Empirical Mode Decomposition in order to identify the characteristics intrinsic mode functions. Second, such dynamics are packaged depending on their significance and modelling complexity. Third, the operating condition of the considered process, reflected by available auxiliary signals, is codified by means of a Self-Organizing Map and presented to the modelling structure. The forecasting structure is supported by a set of ensemble ANFIS based models, each one focused on a different set of signal dynamics. The performance and effectiveness of the proposed method is validated experimentally with industrial data from a copper rod manufacturing plant and performance comparison with classical approaches. The proposed method improves performance and generalization versus classical single model approaches.Peer ReviewedPostprint (author's final draft

    Nonparametric time series modelling for industrial prognostics and health management.

    No full text
    International audiencePrognostics and health management (PHM) methods aim at detecting the degradation, diagnosing the faults and predicting the time at which a system or a component will no longer perform its desired function. PHM is based on access to a model of a system or a component using one or combination of physical or data driven models. In physical based models one has to gather a lot of knowledge about the desired system, and then build analytical model of the system function of the degradation mechanism that is used as a reference during system operation. On the other hand data-driven models are based on the exploitation of symptoms or indicators of degradations using statistical or Artifcial Intelligence (AI) methods on the monitored system once it is operational and learn the normal behaviour. Trend extraction is one of the methods used to extract important information contained in the sensory signals, which can be used for data driven models. However, extraction of such information from collected data in a practical working environment is always a great challenge as sensory signals are usually multidimensional and obscured by noise. Also, the extracted trends should represent the nominal behaviour of the system as well as should represent the health status evolution. This paper presents a method for nonparametric trend modelling from multidimensional sensory data so as to use such trends in machinery health prognostics. The goal of this work is to develop a method that can extract features representing the nominal behaviour of the monitored component and from these features extract smooth trends to represent the critical component's health evolution over the time. The proposed method starts by multidimensional feature extraction from machinery sensory signals. Then, unsupervised feature selection on the features domain is applied without making any assumptions concerning the number of the extracted features. The selected features can be used to represent the nominal behaviour of the system and hence detect any deviation. Then, empirical mode decomposition algorithm (EMD) is applied on the projected features with the purpose of following the evolution of data in a compact representation over time. Finally, ridge regression is applied to the extracted trend for modelling and can be used later for remaining useful life prediction. The method is demonstrated on accelerated degradation dataset of bearings acquired from PRONOSTIA experimental platform and another dataset downloaded form NASA repository where it is shown to be able to extract signal trends

    Friction, Vibration and Dynamic Properties of Transmission System under Wear Progression

    Get PDF
    This reprint focuses on wear and fatigue analysis, the dynamic properties of coating surfaces in transmission systems, and non-destructive condition monitoring for the health management of transmission systems. Transmission systems play a vital role in various types of industrial structure, including wind turbines, vehicles, mining and material-handling equipment, offshore vessels, and aircrafts. Surface wear is an inevitable phenomenon during the service life of transmission systems (such as on gearboxes, bearings, and shafts), and wear propagation can reduce the durability of the contact coating surface. As a result, the performance of the transmission system can degrade significantly, which can cause sudden shutdown of the whole system and lead to unexpected economic loss and accidents. Therefore, to ensure adequate health management of the transmission system, it is necessary to investigate the friction, vibration, and dynamic properties of its contact coating surface and monitor its operating conditions

    Development of new fault detection methods for rotating machines (roller bearings)

    Get PDF
    Abstract Early fault diagnosis of roller bearings is extremely important for rotating machines, especially for high speed, automatic and precise machines. Many research efforts have been focused on fault diagnosis and detection of roller bearings, since they constitute one the most important elements of rotating machinery. In this study a combination method is proposed for early damage detection of roller bearing. Wavelet packet transform (WPT) is applied to the collected data for denoising and the resulting clean data are break-down into some elementary components called Intrinsic mode functions (IMFs) using Ensemble empirical mode decomposition (EEMD) method. The normalized energy of three first IMFs are used as input for Support vector machine (SVM) to recognize whether signals are sorting out from healthy or faulty bearings. Then, since there is no robust guide to determine amplitude of added noise in EEMD technique, a new Performance improved EEMD (PIEEMD) is proposed to determine the appropriate value of added noise. A novel feature extraction method is also proposed for detecting small size defect using Teager-Kaiser energy operator (TKEO). TKEO is applied to IMFs obtained to create new feature vectors as input data for one-class SVM. The results of applying the method to acceleration signals collected from an experimental bearing test rig demonstrated that the method can be successfully used for early damage detection of roller bearings. Most of the diagnostic methods that have been developed up to now can be applied for the case stationary working conditions only (constant speed and load). However, bearings often work at time-varying conditions such as wind turbine supporting bearings, mining excavator bearings, vehicles, robots and all processes with run-up and run-down transients. Damage identification for bearings working under non-stationary operating conditions, especially for early/small defects, requires the use of appropriate techniques, which are generally different from those used for the case of stationary conditions, in order to extract fault-sensitive features which are at the same time insensitive to operational condition variations. Some methods have been proposed for damage detection of bearings working under time-varying speed conditions. However, their application might increase the instrumentation cost because of providing a phase reference signal. Furthermore, some methods such as order tracking methods still can be applied when the speed variation is limited. In this study, a novel combined method based on cointegration is proposed for the development of fault features which are sensitive to the presence of defects while in the same time they are insensitive to changes in the operational conditions. It does not require any additional measurements and can identify defects even for considerable speed variations. The signals acquired during run-up condition are decomposed into IMFs using the performance improved EEMD method. Then, the cointegration method is applied to the intrinsic mode functions to extract stationary residuals. The feature vectors are created by applying the Teager-Kaiser energy operator to the obtained stationary residuals. Finally, the feature vectors of the healthy bearing signals are utilized to construct a separating hyperplane using one-class support vector machine. Eventually the proposed method was applied to vibration signals measured on an experimental bearing test rig. The results verified that the method can successfully distinguish between healthy and faulty bearings even if the shaft speed changes dramatically

    Fault diagnosis of motorized spindle via modified empirical wavelet transform-kernel PCA and optimized support vector machine

    Get PDF
    The fault diagnosis of motorized spindle contributes to the improvement of the reliability of computer numerical control machine tools. Presently, numerous mechanical fault diagnosis technologies suffer from the drawbacks of mode mixing, non-adaptive analysis, and low efficiency. Therefore, adopting an effective signal processing method for fault diagnosis of motorized spindle is essential. A method based on modified empirical wavelet transform (EWT) and kernel principal component analysis (Kernel PCA) is proposed. A new method, which determines the proper number of the Fourier spectrum segments, is applied when using EWT. To improve computational efficiency, Kernel PCA is adopted to reduce dimension. The support vector machine optimized by genetic algorithm is introduced to accomplish fault identification. The performance of the proposed method is validated through single and compound fault experiments. Results show that the recognition rate using the proposed method reached 98.8095 % and 98.4375 % in terms of single and compound fault diagnoses, respectively. Moreover, compared with empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), local mean decomposition (LMD) and EWT, the proposed method can save much computing time. The proposed method can be generalized to other mechanical fault diagnoses as well

    Failure Prognosis of Wind Turbine Components

    Get PDF
    Wind energy is playing an increasingly significant role in the World\u27s energy supply mix. In North America, many utility-scale wind turbines are approaching, or are beyond the half-way point of their originally anticipated lifespan. Accurate estimation of the times to failure of major turbine components can provide wind farm owners insight into how to optimize the life and value of their farm assets. This dissertation deals with fault detection and failure prognosis of critical wind turbine sub-assemblies, including generators, blades, and bearings based on data-driven approaches. The main aim of the data-driven methods is to utilize measurement data from the system and forecast the Remaining Useful Life (RUL) of faulty components accurately and efficiently. The main contributions of this dissertation are in the application of ALTA lifetime analysis to help illustrate a possible relationship between varying loads and generators reliability, a wavelet-based Probability Density Function (PDF) to effectively detecting incipient wind turbine blade failure, an adaptive Bayesian algorithm for modeling the uncertainty inherent in the bearings RUL prediction horizon, and a Hidden Markov Model (HMM) for characterizing the bearing damage progression based on varying operating states to mimic a real condition in which wind turbines operate and to recognize that the damage progression is a function of the stress applied to each component using data from historical failures across three different Canadian wind farms
    corecore