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Abstract—Fault diagnosis of incipient crack failure in rotating
shafts allows the detection and identification of performance
degradation as early as possible in industrial plants, such as
downtime and potential injury to personnel. The present work
studies the performance and effectiveness of crack fault detection
by means of applying wavelet packet decomposition (WPD)
and empirical mode decomposition (EMD) on fault diagnosis
of rotating shafts using multiscale entropy (MSE). After WPD
and EMD, the most sensitive reconstruction vectors and intrinsic
mode functions (IMFs) are selected using Shannon entropy. Then,
these feature vectors are fed into support vector machine (SVM)
for fault classification, where the entropy features represent the
complexity of vibration signals with different scales. Experimen-
tal results have demonstrated that WPD combined with MSE
can achieve an accuracy of 97.3% for crack fault detection in
rotating shafts, whilst EMD combined with MSE has shown a
higher detection rate of 98.5%.

Index Terms—Shaft fault diagnosis, Wavelet packets decom-
position, Empirical mode decomposition, Multi-scale entropy,
Support vector machine.

I. INTRODUCTION

In industrial plants, crack fault is one of commonly failures
which is defined as any unintentional discontinuities in the
shaft material. Consequences of shaft failure can lead to enor-
mous costs in downtime, damage to equipment and potential
injury to personnel. Consequently, real-time monitoring and
diagnosis of rotating shafts is essential to detect and prevent
performance deterioration in rotating shafts, which enables
to increase the confidence of safety and reliability of the
process system. For this purpose, continuing efforts have been
dedicated to reducing magnitude and redundant information in
original signals by using signal processing approaches. Fast
Fourier transform and short time Fourier transform are two
classical approaches for signal decomposition; however their
performances are limited by the finite window size which is
not suitable to analyze non-stationary and non-linear vibration
signals. Instead, wavelet transform and empirical mode decom-
position (EMD) have shown their effectiveness in providing
high resolution in both time and frequency domain, which
have been successfully applied in the field of fault diagnosis
of shafts, such as continuous wavelet transform coefficients
were used in works [1]–[5]. Apart from that, wavelet packets
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decomposition (WPD) benefits from effectively decomposing
frequency bands into detail and approximate coefficients with
multi-levels [6], which has been applied in [7], [8]. The advent
of EMD, proposed by Huang and Wu, provides a powerful
self-adaptive signal processing method for analyzing non-
stationary and non-linear signals by decomposing the signals
into a set of intrinsic mode functions (IMFs) [9]–[11], which
are determined by the signal itself rather than the pre-defined
kernels compared with wavelet analysis. Generally, after signal
decomposition, desired coefficient vectors and IMFs can be
further selected to characterize fault symptoms hidden in ma-
chine’s signals measured from different conditions of rotating
shafts.

Entropy analysis has been successfully applied in the field
of fault diagnosis in the recent decade, the concept of which
takes into account the probability of measuring state infor-
mation with respect to underlying probability distribution. In
mechanical systems, the occurrence of failures in rotating
components changes their energy distributions and frequency
characteristics, which results in increasing harmonic frequency
components. Hence, entropy methods can be used in the
step of feature extraction to discriminate fault information in
various conditions of rotating shafts as appropriate indicators.
As an example, Shannon entropy and sample entropy have
been successfully applied in the field of fault diagnosis of ro-
tating components [12]–[15]. Nevertheless, monitoring signals
measured from rotating machinery usually contain multiple
intrinsic oscillatory modes produced by interaction or coupling
effects between rotating components, which may lead to
more non-linear and non-stationary signals. Consequently, to
overcome this limitation, multiscale entropy (MSE), proposed
by Costa et al. [16], was developed to analyze the time series
from multiple scales through the coarse-grain process based on
the concept of sample entropy. It is needed to point out that
although MSE has been applied in diagnosing components in
rotating machinery [17], [18]. However, there is still a need
to further study the performance of multiple-scale analysis by
combining WPD and EMD with MSE techniques respectively
in crack fault diagnosis of rotating shafts.

In an attempt to detect and identify crack fault in rotating
shafts, this paper investigates and compares the effectiveness
of WPD and EMD methods using MSE respectively. In this
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study, original vibration signals are first decomposed using
WPD and EMD. After that, the most sensitive reconstruction
vectors and IMFs are selected using Shannon entropy criteria.
Afterwards, MSE was then adopted to characterize fault symp-
toms and establish feature vectors, which are then fed into
support vector machine (SVM) for fault classification, where
the entropy features represent the complexity of vibration
signals with different scales. The main contributions in this
paper are concluded as follows:

• The effectiveness of WPD and EMD based MSE ap-
proaches were studied respectively for crack fault diag-
nosis of rotating shafts.

• Useful vectors containing dominant fault information
can be effectively selected with the criteria of Shannon
entropy. The most high accuracies were obtained using
decomposed vectors in accordance with the order of
vectors whose entropy values are greater.

• Experimental results have shown that, the number of
wavelet vectors that achieved accuracies over 80% is
larger than that of IMFs generated from EMD, whilst
the later achieved highest detection rate.

The rest of this paper is organized as follows: Section II
presents the proposed diagnostic methods using WPD and
EMD based on MSE and SVM. Experimental validation and
results are given in Section III. Finally, conclusions are drawn
in Section IV.

II. PROPOSED METHOD

Aiming at the characteristics of vibration signals obtained
from rotating shafts, in this study, a hybrid method was
proposed to investigate and compare the effectiveness of WPD
and EMD based on MSE applied for crack fault diagnosis
of shaft in rotating machinery. Fig. 1 presents the procedure
for crack fault classification on the basis of this proposed
approach. WPD and EMD are first used to decompose original
signals and obtain a set of reconstruction vectors and IMFs.
Afterwards, the first m with the largest energy in those
decomposed vectors are separately selected using Shannon
entropy criteria. After that, MSE is applied to extract features
from multi-scale levels using selected vectors or IMFs. Feature
vectors are finally fed into SVM for fault classification.
The theories behind these techniques are briefly reviewed as
following:

A. Wavelet Package Decomposition

The essential function of WPD is the filtering operation
that allows the signal x(t) to be respectively separated to ap-
proximation and detail through low-pass and high-pass filters.
For each partitions, decomposition is repeated until the desired
resolution [6]. Let W (i, j) denote the coefficients of the signal
in each packet, i the decomposition level, and j the order of
the packet within the decomposition level. Consequently, each
decomposition vector W (i, j) has the following structure:

W (i, j) = {w(i, 0), w(i, 1), · · · , w(i,N − 1)} (1)

Fig. 1: Flow chart of the proposed approach.

where the number of packets within k- decomposition level is
N = 2i. Therefore, the reconstruction of the signal, denoted
as W (0, 0), which considers the totality of the packets within
a given decomposition level can be obtained. Such as the
W (0, 0) of the signal from level four can be obtained as
following:

W (0, 0) =

15∑
j=0

{w(4, j)} (2)

B. Empirical Mode Decomposition

The EMD method is one of the most powerful methods
proposed for analyzing non-stationary and non-linear signal,
which can be decomposed into a set of IMFs that are supposed
to satisfy the following two conditions [9]:

• in the whole data set, the number of extrema and the
number of zero-crossings must either equal or differ at
most by one.

• at any point, the mean value of the envelope defined
by local maxima and the envelope defined by the local
minima is zero.

Steps of decomposing signals using EMD are briefly intro-
duced as following:

Step 1: Identify all the local extrema from signal x(t), and
then separately connect all the local maxima and minima
to produce upper and lower envelope.
Step 2: The mean value of upper and lower envelope is
marked as m1, a new data series, h1, can be obtained by
subtracting m1 from the original signal x(t).

h1 = x(t)−m1, (3)



Step 3: Normally, if h1 does not satisfy the IMF condi-
tions, and then step 1 - 2 can be repeated until the first
IMF, c1, can be obtained.

c1 = h1(k−1) −m1(k−1), (4)

where k means after k iterations h1(k−1) satisfies IMF
conditions, and at this moment the first IMF component,
c1, can be acquired from xt.
Step 4: Residue r1 can be obtained by separating c1 from
x(t), that is

r1 = x(t)− c1, (5)

By repeating the above process until rn becomes a mono-
tonic function; therefore IMF can no more be extracted. After
n times iterations, summing up all IMFs and the final residue
rn, x(t) can be represented by

x(t) =

n∑
i=1

ci + rn, (6)

The IMFs ci(i = 1, 2, · · · , n) consist different frequency
bands from high to low. The frequency components contained
in each frequency band are different and they change with the
variation of the signal x(t), while rn represents the central
tendency of the signal x(t). A more detailed explanation about
EMD can be found in [9].

C. Shannon Entropy

Shannon entropy, denoted as Ei, is applied to select the
reconstruction vectors W (i, j) and IMFs with the first finite
largest values [20] after WPD and EMD decomposition, which
means they may contain more dominant fault information than
that with lower values. Ei of each vector and IMF can be
obtained by

Ei = −
M∑
i=1

pi log pi (7)

where M is the total number of vectors within j-th level
or IMFs obtained from original signals, {pi = Ei/E, i =
1, 2, · · · ,M} is the percent of the power energy in whole
vectors or IMFs, and E =

∑M
i=1Ei is the sum energy of Ei.

Given a time series, S with the length N, pi can be obtained
using Ei =

∑N
i=1 |Sk|2, i = 1, 2, · · · , N . Hence, the entropy

energy can be respectively obtained from reconstruction vec-
tors and IMFs. After that, a group of wavelet vectors and
IMFs with the first m largest values can be finally selected
and further applied in the step of feature extraction.

D. Multiscale Entropy

In fault feature extraction, MSE is adopted to represent
the complexity of time series in different scales through the
coarse-grain process [16]. For the sake of brevity, only major
steps of MSE algorithm are discussed as follows:

Step 1: Initialize the embedding dimension m and the

tolerance r = 0.15× SD, where m and r are the required
parameters to be used to compute MSE, and SD herein
means standard deviation of the original data.
Step 2: Segment original time series into several data sets
with length τ by using the mean values of the segmented
data, and then new series data sets yτj can be obtained.

yτj =
1

τ

jτ∑
i=(j−1)τ+1

xi, 1 6 j 6
N

τ
, (8)

where τ is also called the scale factor. Apparently, as τ
increases the length of the resulting coarse-grained time
series decreases. As a matter of fact, the coarse-grain
process is used to remove the high frequency or order
components by changing a sliding window of length τ
and averaging the data series within the window in a way
of non-overlap.
Step 3: Calculate sample entropy for new data sets yτj at
each scale through the coarse-grain process. Therefore,
the irregularity and complexity of time series in different
scales can be obtained.

E. Fault Classification

SVM classifier is adopted for fault classification in this
study. A supervisor mode is used for data training and testing
using LIBSVM Matlab Toolbox [21]. A grid search method is
applied to search best parameters, namely the cost parameter c
and the width parameter g in the training phrase. Herein, c and
g are respectively set between 2−10 to 210. In addition, after
the data training, a 5-fold cross-validation method is used for
the validation of the proposed shaft fault diagnosis approach.
In a k-fold cross-validation method, the data sets are divided
into k subsets, and the holdout method is repeated k times.
After that, the average error for all k trials can be obtained
to guarantee the reliable efficiency in fault classification using
SVM.

III. EXPERIMENTAL STUDY

In this section, the experimental test rig is first introduced,
and experimental results of the proposed comparative method
are then presented and discussed.

A. Experiment Setup

In this study, PT 500 machinery diagnostic system is applied
to collect vibration signals respectively generated from healthy
and cracked shafts [19], as shown in Fig. 2. This test rig allows
to closely simulate the characteristic behaviour of a shaft with
a crack using asymmetrical flange connection. Crack detection
in rotating shafts kit is composed of motor assembly, motor
control unit, shaft, flange, belt drive kit, computerised vibration
analyser. Tightening the flange connection with spacer sleeves
gives a connection that is either loose or secure, which can
very closely resembles the behaviour of a crack in the shaft.
Besides, vibration data was captured at a sampling frequency
of 8 kHz under 1500 r.p.m. The representative vibration signals
of two conditions of rotating shafts are presented in Fig. 3.



(a) PT 500 test rig (b) layout plan of test rig [19]

Fig. 2: PT 500 experimental test rig and corresponding layout plan.

(a) Vibration signal obtained from healthy condition. (b) Vibration signal obtained from faulty condition.

Fig. 3: Representative original vibration signals generated from two conditions of rotating shafts.

The experimental data set contains two conditions of ro-
tating shafts, namely healthy condition and 0.4mm crack
condition. For each condition, 190 data sets were used, and
therefore the total number of data set includes 380 data
sets samples, each of which is a section of vibration signal
containing 5000 sampling points. Hence, the entire data set
was split into two data sets, namely 190 data sets for training
and 190 data sets for testing respectively.

B. Experimental Results

Original signals were first decomposed using WPD
and EMD, after which wavelet decomposition vectors
and IMFs were obtained respectively. The mother wavelet
‘Daubechies 4’ and 3-th decomposition level were selected
for WPD analysis in this study. After WPD analysis, coef-
ficient vectors were then reconstructed to vectors with the
same length of original signals. After that, the most sensitive
reconstruction vectors and IMFs were selected using Shannon
entropy criteria, which are generally considered that they have
prominent fault information [20]. For this purpose, vectors
and IMFs with first 8 largest values of Shannon entropy were
finally selected and compared in this study, which is illustrated
in Fig. 4 (a) and (c). It can be seen that 1-th, 2-th, 4-th
reconstruction vectors and 2-th, 3-th, 4-th IMFs contain the
largest energy values, which means that they contain the most
discriminatory information with respect to fault symptoms

than that with lower values. Interestingly, by comparing Fig. 4
(a) and (b), and Fig. 4 (c) and (d), it is not hard to find that
the most high accuracies can be obtained using decomposed
vectors in accordance with the order of vectors whose Shannon
entropy values are greater. Furthermore, it can be seen from
Fig. 4 (b) and (d) that the first four decomposed vectors
generally achieved high classification accuracy as well as
Shannon entropy values.

In addition, MSE was performed to extract fault features
from selected vectors and IMFs in this study. As described
in Section II, three parameters, namely the tolerance r, the
embedding dimension m, and the scale factor τ were used in
the calculation of MSE. A small r leads to a poor conditional
probability, whilst a larger r results in losing too much system
information. In practice, the value of r = 0.15× SD can
achieve positive performance for the analysis of irregularity in
time series [16]. Furthermore, feature vectors were constructed
using MSE values with different scales in purpose of inves-
tigating the impact of scale number on the accuracy of fault
classification. Specifically speaking, one feature vector has τ
features composed of MSE energy values separately extracted
from scale 1 to τ . In practice, the number of τ approaching to
zero normally depends on the the length of sampling points in
one data set. In this study, the largest number of τ is set to 40
since the energy value of MSE scale is almost approaching



(a) Shannon entropy of each vector after WPD (b) Accuracy results using WPD, MSE and SVM

(c) Shannon entropy of each IMF after EMD (d) Accuracy results using EMD, MSE and SVM

Fig. 4: The first 8 energy of vectors and IMFs and corresponding classification accuracy using MSE with various scales.

to zero when τ is larger than 40. Finally, those feature
vectors were then fed into SVM respectively to perform fault
classification. Accuracy of the proposed approach resulting
from fault classification using selected reconstruction vectors
are presented in Fig. 4 (b) and (d). From this figure, it can
be found that there are three vectors achieved over 80%
accuracies, whilst only two IMFs achieved that comparatively.
Moreover, it is not hard to find that the higher classification
accuracy can be achieved when the increasing number of MSE
scales adopted to construct feature vectors. Table I presents
classification accuracy of each reconstruction vector and IMF
using two different numbers of MSE values with various
scales, namely τ = 20 and τ = 40 respectively. As can
be seen from this table, when τ is selected as the largest
number, namely 40, the classification accuracy can achieve
the best detection rate, which means more discriminatory
fault information were characterized in fault classification by
estimating complexity in signals; however, it is important to
note that this may meanwhile aggravate the calculation burden.

Additionally, 4-th reconstruction vector combined with
MSE can achieve an accuracy of 97.3% for crack fault
detection in rotating shafts, whilst 2-th IMF combined with
MSE has shown a higher detection rate of 98.5%. Apart from
that, it can be concluded that lower order of decomposed
vectors can hardly to identify crack fault in this study, the
reason of which is that, with a belt connected with a shaft,
the emerging crack failure in a shaft can increase the number
of high coupling frequency components and finally lead to
more non-linear and non-stationary characteristics in signals;
therefore, vectors with low-frequency may contain less useful
discriminatory information for crack fault diagnosis of rotating
shafts in this study.

IV. CONCLUSIONS

The paper presents a comparative study on effectiveness and
performance of WPD and EMD using MSE as feature indica-
tors for crack fault diagnosis of rotating shafts. Experimental
measurements were taken from a fault simulation machine



TABLE I: The classification accuracy using MSE with m = 2 and τ ranging from 1 to 20 and 40.
Signal

Processing Scale(τ ) Vector 1 Vector 2 Vector 3 Vector 4 Vector 5 Vector 6 Vector 7 Vector 8 Best Accuracy

WPD
1,2,· · · ,20 95.7% 93.6% 67.8% 96.3% 66.3% 61.5% 62.1% 59.4%

97.3%
1,2,· · · ,40 96.3% 95.2% 67.8% 97.3% 66.3% 61.0% 63.1.0% 58.4%

EMD

Scale(τ ) IMF 1 IMF 2 IMF 3 IMF 4 IMF 5 IMF 6 IMF 7 IMF 8

98.5%1,2,· · · ,20 56.8% 98.5% 91.5% 57.8% 50.5% 55.8% 50.5% 44.2%

1,2,· · · ,40 57.9% 98.5% 92.1% 65.2% 52.6% 56.3% 50.0% 46.8%

with two conditions of shafts, namely 0.4mm crack failure
and healthy condition. The ‘Daubechies 4’ wavelet kernel and
3-th decomposition level were selected, meanwhile the first
8 reconstruction vectors and IMFs were respectively chosen
for the comparative purpose. In this study, the criteria of
Shannon entropy was adopted to select desired decomposed
vectors with dominant fault information after WPD and EMD
decomposition. Experimental results have proved that positive
classification accuracies can be achieved by using selected
vectors whose entropy values are greater, which are the first 4
decomposed vectors obtained from multi-resolution analysis
(i.e., WPD and EMD). Moreover, it was found that WPD
has more useful vectors than that of EMD, the classification
accuracies of which can achieve more than 80%. In addition,
experimental results have demonstrated that WPD combined
with MSE can achieve an accuracy of 97.3% for crack fault
detection in rotating shafts, whilst EMD combined with MSE
has shown a higher detection rate of 98.5%.
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