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Abstract— Industrial process modelling represents a key factor 

to allow the future generation of industrial manufacturing plants. 
In this regard, accurate models of critical signals need to be 
designed in order to forecast process deviations. In this work a 
novel multimodal forecasting methodology based on adaptive 
dynamics packaging and codification of the process operation is 
proposed. First, a target signal is decomposed by means of the 
Empirical Mode Decomposition in order to identify the 
characteristics intrinsic mode functions. Second, such dynamics 
are packaged depending on their significance and modelling 
complexity. Third, the operating condition of the considered 
process, reflected by available auxiliary signals, is codified by 
means of a Self-Organizing Map and presented to the modelling 
structure. The forecasting structure is supported by a set of 
ensemble ANFIS based models, each one focused on a different set 
of signal dynamics. The performance and effectiveness of the 
proposed method is validated experimentally with industrial data 
from a copper rod manufacturing plant and performance 
comparison with classical approaches. The proposed method 
improves performance and generalization versus classical single 
model approaches.1 
 
Index Terms— Forecasting, Fuzzy neural networks, Industrial 
plants, Predictive models, Time series analysis. 

I.  INTRODUCTION 

Reliability and safety are becoming critical aspects in the 
modern industry. In this regard, the industrial sector has made 
a considerable effort to integrate process monitoring 
approaches during the last decade [1]. However, providing 
information regarding future condition of industrial process 
behavior is becoming critical in order to gain reaction time for 
the correction of undesired process deviations [2]. Thus, it is 
being required, in order to work towards the next generation of 
industrial monitoring approaches, the proposal of accurate 
forecasting models to be applied over critical process’ signals, 
and drive those models into a specific time horizon in order to 
obtain future behaviors [3]. 

The literature published to date shows that forecasting of 
industrial manufacturing processes, in terms of critical signals 
evolution for supervision purposes, is still a novel field for 
research, in which performing methodologies are expected [4]. 
Indeed, there are two main challenges related to industrial 
process forecasting. First, the consideration of suitable 
procedures to deal with highly non-linear signal behaviors, as 
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is the case of most industrial processes, where the correlation of 
the objective signal with the rest of process information quickly 
decreases within a short period of time [5]. Second, the 
assessment and exploitation of such auxiliary information 
related with the objective signal, which is required to enhance 
the forecasting performance avoiding computational 
complexity and model overfitting [6].  

For instance, Su et al., in [7], propose the use of an Adaptive 
Neuro Fuzzy Inference System (ANFIS), to predict the 
evolution of a non-linear time series. In such work, a non-linear 
input selection method based on an adaptive expectation 
method is implemented to select the best suitable inputs for the 
ANFIS model. However, the proposed input selection method 
based on single input evaluation over-adapts the set of inputs to 
the training data, resulting in a clear risk of generalization 
decreases. The ANFIS based models fuse the parametric 
adaptability of neural networks and the generalization 
capabilities of fuzzy logic [8]. Thus, ANFIS based forecasting 
offers a very reliable and robust condition predictor, since it can 
capture non-linear input relations quickly and accurately [9]. 
Indeed, ANFIS based modelling is one of the most used 
methods for industrial process modelling, but the risk to get 
trapped in a local minima during the convergence procedure 
must be considered. In this regard, Zamani et al., in [10], 
propose the use of an ANFIS modelling for complex non-linear 
time series forecasting. In such method, a single ANFIS model 
to forecast a complex non-periodic gas concentration signal is 
used. Indeed, the single-model approach corresponds to the 
easiest procedure used in literature to handle complex signal’s 
dynamics, since it corresponds to the use of the whole raw data 
inputs during the training of algorithm. However, in such 
approaches the modelling scheme is not able to learn the 
variability of the signal and the architecture undergoes a loss of 
performance leading the system to an over-fitted response.  

In order to deal with such problems, recent studies pointed 
out that splitting the target signal in order to be modelled in 
different modes is a suitable approach when dealing with non-
linear time series. Indeed, different multi-scale signal 
decomposition approaches are being proposed [11]. 
Hooshmand et al., in [12], proposes the combination of Wavelet 
Package Decomposition (WPD), and ANFIS, to perform an 
electric load forecasting. In such approach, WPD is used to 
extract high and low frequency modes of the signals. Then, a 
dedicated ANFIS model for each set of frequencies is 
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considered. The authors state that decomposing the signal 
outperforms classical single-model approaches. However, the 
main limitation of such multi-scale decomposition is that the 
configuration of the filters must be specified by the user, which 
requires a deep knowledge of the process responses.  

Alternatively, Empirical Mode Decomposition (EMD), 
offers an adaptive capability during the signal decomposition 
process, resulting in a collection of Intrinsic Mode Functions 
(IMF), and a residue. Wei, in [13], propose the combination of 
EMD and ANFIS modelling. The author states that the 
combination of EMD and ANFIS improves the resulting 
performance of a time series forecasting in signals with high 
variability, that is, multiple oscillation modes. However, as 
presented in [14], [15], the IMF are directly decomposed and 
modelled, that is, one forecasting model is required for each 
signal partitioning, which represents a high computational-
burden strategy and, moreover, the simplicity of modelling 
some of the IMF can lead the corresponding model and, then, 
the global forecasting performance, to an intense overfitting. 

In this work, a novel forecasting methodology for industrial 
process’ signal modelling is proposed. In this regard, 
contribution of this work lies on the validation of a multimodal 
forecasting approach, in which the outcome estimation is 
carried out from the combination of multiple model outcomes, 
that manage different signal dynamics while preserving 
generalization capabilities. Novelties of this work include, first, 
the signal decomposition of the target signal by EMD and the 
proposal of an adaptive dynamics packaging procedure in order 
to define the number of required models. Second, a non-linear 
mapping procedure of the available auxiliary signals in order to 
reduce the dimensionality of the ANFIS convergence problem. 
And, third, the combination of multiple model outputs to obtain 
the global forecasting outcome. Indeed, the main contribution 
of the proposed method consists on relating each one of the 
dynamics of the signal with its relative significance with the 
contribution of each dynamic to the modelling error. Therefore, 
it is proposed to forecast industrial time series considering a 
relation among three factors, the dynamics, their significance 
and their associated modelling error. Furthermore, the way 
auxiliary signals are combined represents a step forward of the 
classical optimization based input selection approaches. Note 
that this study highlights the necessity of analyzing signal 
dynamics in multimodal modelling forecasting approaches. The 
feasibility of the proposed method is validated over a real case 
study, a copper rod manufacturing process, and the results are 
compared with classical forecasting approaches. 

II. DEFINITION OF THE METHOD 
The proposed method is shown in Fig. 1. Two main 

procedures are considered to enhance the modeling 
performance: (i) the addition of an adaptive processing step that 
decompose, analyzes and packages signal’s dynamic modes, 
and (ii) the codification of the auxiliary information in regard 
with the process operating condition. Thus, a three-step 
multimodal forecasting method is proposed, in which different 
sets of IMF are packaged and modeled separately with 
dedicated ANFIS models, Step 1, process operating information 
is codified by means of SOM, Step 2. Finally, considering the 
superposition properties of the resulting IMF of the EMD 
analysis, the outputs of the models are combined to obtain the 
forecasting estimation, Step 3. 

A. Adaptive dynamics packaging 
Considering an objective signal decomposition in a set of 

IMF, the resulting accuracy of a single model for a joint subset 
of IMFs exhibit, in general, a non-linear decrease with the 
number of IMF considered, as illustrated in Fig. 2. Indeed, the 
increase of the modelling error is due to the limitation of an 
ANFIS model to define proper weighting matrices dealing with 
wideband signals and non-linear relations among inputs [11]. 

In this regard, the aim of the proposed method is the analysis 
of a coherent signal decomposition strategy by analyzing the 
significance of each IMF in order to package them in different 
sets for modelling performance enhancement. Indeed, such 
coherent packaging of the IMF represents the multimodal 
approach proposed to increase modelling performance while 
optimizing the number of required models, which allows a 
general modelling approach, instead of the use of a single model 
for every IMF that leads in a huge computational burden and in 
a lack of generalization. 

 

 
Fig. 2. Representation of the effect over the resulting accumulated error of 

the number of IMF considered for a single model. The critical performance 
point, Cpp, represents an allowable down limit in regard with the modelling 
performance. This curve is obtained by the successive evaluating of the IMFs 
extracted from multi-sinus signal of 11 frequencies in a classic 1-input 1-output 
ANFIS structure at a forecasting horizon of 10 samples.  
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Fig. 1. Block diagram of the design procedure of the proposed multimodal modelling method. The procedure is divided in three steps: (i) Adaptive dynamics 
packaging, (ii) Process condition codification, and (iii) Multimodal forecasting.  

Then, the problem turns into the identification of the 
optimum number of IMF that should form each package. As 
seen in the Fig. 2, it is expected a point in the number of 
considered IMF in which the accumulated error increases 
suddenly. This point is considered to be the Critical 
Performance Point, Cpp, and it is considered to define the end of 
an IMF package to be considered by a single model. Thus, the 
developed method proposes the identification of successive Cpp 
during the required packaging iterations till all IMF take part of 
one package to be modelled. Such Cpp is mathematically 
described by the proposal of an error threshold function, ETH. 
That is, the ETH defines the allowable model error curve in 
regard with the significance, in terms of relative energy 
contents of the considered IMF compared with the original 
signal, Rej, and the relative modelling error achieved by the 
combination of IMFs evaluated in an auxiliary model, Erj. 
Considering this, ETH is defined as a decreasing second order 
function, as shown in Eq. (1). 

ETH(𝑅𝑅𝑒𝑒𝑖𝑖 ,𝐸𝐸𝐸𝐸) ≤ 𝐴𝐴 · 𝑅𝑅𝑒𝑒𝑖𝑖2 + 𝐵𝐵 · 𝑅𝑅𝑒𝑒 + 𝐶𝐶 (1) 

The industrial applicability has been taken into consideration 
for the mathematical definition of the error function, where, 
generally, low frequency modes represent long-term process 
behaviors. Therefore, this function has been designed to be 
permissive in terms of error with low-significant modes, which 
in most cases correspond to the higher frequencies contents of 
the signal under analysis, and restrictive with the high-
significant modes, that usually represent the low frequencies 
and main trends of the signal. Note that the significance is 
quantified by the amount of energy that accumulates a certain 
IMF in regard with the original signal.  

Thus, taking into account a specific application, the 
parameters A, B and C, used to define the error threshold 
function, would be identified by means of interpolation, as it is 
shown in Fig. 3. Three points are needed to allow the regression, 
that are: (i) the maximum allowed error for the low-significant 
modes, LWMAX, (ii) the maximum allowed error for the high-
significant modes, HGMAX, and (iii) the smoothing factor, Sm, 
which fixes the decay of the curve. 

 

 
Fig. 3. Example of a resulting error threshold curve in regard with the 
accumulated energy, Re, of the IMF package. The curve is described by the 
interpolation of a second order function within the three points defined, LWMAX, 
Sm and HGMAX]. 

 

Thus, in order to carry out the IMF packaging procedure, the 
modelling errors must be estimated and, then, compared with 
the predefined error threshold curve. For this procedure, a 
simple model is proposed, that is, a classical time series 1-input 
ANFIS structure, using current value of the objective signal as 
an input of the model, and the predicted value as the output. 
This approach represents a trade-off between simplicity and 
performance analysis. Then, when the model error surpasses the 
corresponding threshold, the last intrinsic mode function is 
removed from the model, and the fist IMF package is closed. 
Then, the procedure starts again with a new model 
consideration, and the iterative addition of the rest of the IMF 
till the N packs are formed. The objective is to obtain N IMF 
packages of which dynamic combination is affordable by a 
simple ANFIS model. 

In order to carry out the IMF packaging procedure an 
iterative process is defined as follows: the EMD is applied to 
extract the k different IMF. Let Pkj (t) be the j-th package of 
IMF, where 𝑗𝑗𝑗𝑗[1. .𝑁𝑁] and contains IMFs from kij to kfj, then, 
1. In each iteration j, Pkj (t) is formed by Eq. (2). Note that in 

first iteration the method initializes by ki1 = kf1=1. 

𝑃𝑃𝑘𝑘𝑗𝑗(𝑡𝑡) =  � 𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘(𝑡𝑡)
𝑘𝑘𝑓𝑓𝑗𝑗

𝑘𝑘=𝑘𝑘𝑖𝑖𝑗𝑗
 (2) 

2. Pkj (t), is modelled by a 1 input ANFIS model in order to 
obtain the predicted output, 𝑦𝑦𝚥𝚥� (𝑡𝑡), at a time horizon p, Eq. 
(3). The model uses as inputs the current value of the 
signal, Pkj (t). 
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𝑦𝑦𝚥𝚥� (𝑡𝑡) = 𝐴𝐴𝑁𝑁𝐼𝐼𝐼𝐼𝐴𝐴 �𝑃𝑃𝑘𝑘𝑗𝑗(𝑡𝑡 − 𝑝𝑝)� (3) 

3. The model performance is evaluated and the prediction 
error, Er, is calculated by Eq. (4). 

𝐸𝐸𝑟𝑟 =
1
𝐿𝐿  �

�𝑦𝑦𝑗𝑗(𝑡𝑡) − 𝑦𝑦𝚥𝚥� (𝑡𝑡)�
�𝑦𝑦𝑗𝑗(𝑡𝑡)�

𝐿𝐿

𝑡𝑡=1 

 (4) 

4. The significance in terms of relative energy, Rej, of Pkj (t) 
versus the complete signal x(t) is obtained by Eq. (5). 

𝑅𝑅𝑒𝑒𝑗𝑗 =
∑�𝑃𝑃𝑘𝑘𝑗𝑗(𝑡𝑡)�
∑|𝑥𝑥(𝑡𝑡)| · 100 % (5) 

5. The error threshold function evaluated in regard with both 
calculated points, Re and Er.  
 

If the performance is under the allowable error defined in Eq. 
(1), another intrinsic mode function should be added to the 
model, kfj = kfj +1. Then, steps from 1 to 5 are repeated till the 
consideration of the k IMF. If the point is above the curve means 
that Pkj (t) should be closed with the IMF added in the previous 
iteration. Therefore, the number of IMF is decreased by kfj = kfj 
– 1; and the initial intrinsic mode function of the next package, 
Pkj+1(t), is prepared by kij+1 = kfj+1= kfj + 1. Then, j=j+1 and 
the algorithm returns to step 1. At the end of this procedure, all 
the IMF will be distributed in N packages. 

 

B. Process condition codification 
Generally, dealing with an industrial process, a set of 

auxiliary signals are complementary available with the target 
signal to be modelled, that all together define the process 
condition. These signals present a great potential to be 
informative enough to the modelling process However, the 
direct introduction of such signals in the model algorithm may 
cause an unnecessary growth of the number of model inputs, 
increasing model complexity and the amount of data required 
to achieve a proper convergence during the learning phase. This 
problem is critical dealing with ANFIS models, since modelling 
efforts are focused to adapt the membership functions to the 
input distributions [16]. For this reason, auxiliary inputs must 
be pre-processed to remove non-significant and redundant 
information. 

In this way, the feature reduction process has been typically 
implemented with linear techniques such as Principal 
Component Analysis (PCA) [17]. However, PCA technique has 
been discussed by many authors emphasizing its limitation 
dealing with large data sets, because it seeks for a global 
structure of the data [18]. The information contained in a D-
dimensional space mostly has a nonlinear structure. Concerning 
with this problems, manifold learning methods have been 
applied in the last years to preserve this information [19]. 
Among them, Self-Organizing Maps (SOM) is the most used, 
which is based on developing a neural network grid to preserve 
most of the original distances between feature vectors 
representations in the input space [20]. Such space is initially 
predefined as a regular D-dimensional grid [21] then, SOM 
adapts this grid to data distribution defined by the auxiliary 
signals. In Fig. 4, the topology preservation mapping is 
illustrated. Prior to the training, the grid is defined, Fig. 4a. 
During the training, Fig. 1b, the grid successively adapts itself 

in order to preserve as much as possible the topology described 
by the original data. Finally, the resulting grid is evaluated over 
a new data, Fig. 4c. Thus, for a new data point, the Euclidean 
distance, to each neurons in the D-space is calculated. The 
neuron with the shortest distance is considered to be the Best 
Matching Unit, BMU. All the coordinates of the point are 
mapped in the number of BMU, providing to the SOM the 
capability of data codification. Indeed, SOM can be seen as a 
neural network that non-linearly discretizes the input data space 
and codifies such partition into the BMU number. 

 

 
Fig. 4. SOM procedure to codify the input space. 

 

Then, from the proposed method point of view, the available 
auxiliary signals are presented to the trained SOM, and a 
corresponding BMU is obtained. As seen in Eq. (6), the BMU 
represents a discretized signal that summarizes process 
condition by the auxiliary signals. 

𝐵𝐵𝐼𝐼𝐵𝐵(𝑡𝑡) =  𝐴𝐴𝑆𝑆𝐼𝐼�𝐴𝐴𝐴𝐴𝑥𝑥1(𝑡𝑡), … ,𝐴𝐴𝐴𝐴𝑥𝑥𝑞𝑞(𝑡𝑡)� (6) 

C. Multimodal forecasting by Neuro Fuzzy Inference  
The resulting N ANFIS models are considered, that 

corresponds to the N packs of IMF found. For each ANFIS 
model, the proposed forecasting follows Eq. (7). The proposed 
structure for the N resulting models corresponds to a 3 input – 
1 output scheme. The considered inputs are: (i) the current value 
of the IMF package, Pk (t), (ii) a past value of the signal in order 
to have a reference of its tendency, Pk  (t-n1), and (iii) the 
codification of the auxiliary signals condition, BMU (t). The 
considered model output is the resulting signal at p, Pk (t+p). 

 

𝑃𝑃𝑘𝑘(𝑡𝑡 + 𝑝𝑝) = 𝐴𝐴𝑁𝑁𝐼𝐼𝐼𝐼𝐴𝐴( 𝑃𝑃𝑘𝑘(𝑡𝑡),𝑃𝑃𝑘𝑘(𝑡𝑡 − 𝑛𝑛1),𝐵𝐵𝐼𝐼𝐵𝐵(𝑡𝑡) )  (7) 
 

In order to compare the proposed method performance with 
classical approaches, a set of standard metrics have been 
considered. The Root Mean Squared Error (RMSE), reflects the 
standard deviation of the prediction error. The Mean Absolute 
Error (MAE), measures the average error. The Mean Absolute 
Percentage Error (MAPE), reflects the average deviation of each 
observation divided by the signal amplitude, it exhibits the 
percentage precision of the modelling. Such performance 
metrics are defined in Eq. (8) to (10), where L corresponds to the 
number of samples. 

 

𝑅𝑅𝐼𝐼𝐴𝐴𝐸𝐸 =  �
∑ �𝑦𝑦(𝑡𝑡) − 𝑦𝑦� (𝑡𝑡)�

2𝐿𝐿
𝑡𝑡=1

𝐿𝐿  (8) 

𝐼𝐼𝐴𝐴𝐸𝐸 =  
∑ |(𝑦𝑦 (𝑡𝑡) − 𝑦𝑦� (𝑡𝑡))|𝐿𝐿
𝑡𝑡=1

𝐿𝐿  (9) 

          𝐼𝐼𝐴𝐴𝑃𝑃𝐸𝐸 =
∑ �(𝑦𝑦 (𝑡𝑡) − 𝑦𝑦� (𝑡𝑡))

𝑦𝑦 (𝑡𝑡)
�𝐿𝐿

𝑡𝑡=1

𝐿𝐿 
· 100% 

(10) 
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III. COMPETENCY OF THE METHOD 
The proposed method is validated using industrial data 

collected from a Spanish metallurgy company, La Farga, 
specifically, from a high purity Copper Rod Manufacturing 
Process (CRMP). Such industrial system represents a 
challenging scenario for process forecasting due to the non-
stationary operating conditions and the non-linear relation 
among the process signals. 

A. Experimental plant definition 
The copper rod manufacturing process is presented in Fig. 5. 

CRMP process is divided in five main elements: (i) the shaft 
furnace, is a vertical natural gas fired furnace in charge of 
melting the input high purity copper cathodes. (ii) The holding 
furnace, acts as a lung for the copper melting process which aim 
is to provide a constant flow of copper to the rest of the process. 
(iii) The tundish is a ceramic valve that controls the melted 
copper flow to the rest of the process. (iv) The casting wheel is 
in charge of solidifying the melted copper by a heat extraction 
process. It uses a water-cooled steel band that encloses the 
casting cavity in which the molten copper solidifies to form a 
raw rod. Both casting wheel and the steel enclosure are 
refrigerated by means of a water cooling circuit. (v) The 
roughing mill, reduced the diameter of the raw copper rod to 
meet the specified diameter conditions fixed by the plant 
operators. Finally, copper rod is coiled and packed giving the 
final manufacturing product. 

 

 
Fig. 5. Diagram of the copper rod manufacturing process [22]. 

Indeed, the manufacturing process implies the 
transformation of the melted input copper in a solid copper rod. 
Such transformation is based on a controlled solidification 
process. Indeed, the solidification of the copper is a critical 
aspect within the manufacturing process, in which the heat must 
be properly extracted from the copper bar. The objective of this 
application is to forecast the tundish temperature, Ttu (t). This 
magnitude is critical in the CRMP since it is the last 
measurement of the melted copper before starting the 
solidification procedure. Non-expected variations of this 
temperature imply imperfections in the final product due to 
non-uniformities in the copper density. The modelling and 
forecasting of such temperature allows reducing the affectation 
of such deviations to the next manufacturing batch. Available 
information in regard with the considered part of the process is: 
the oxygen level, Otu (t), the weight of the melted copper, Wtu 
(t), and the ratio of air/gas of the burner, Rtu (t). All signals and 
their description are shown in Table 1.  

 

TABLE 1. PROCESS SIGNALS AND THEIR DESCRIPTION 
Avb. Description 
Ttu (t) Tundish temperature [ºC] 
Otu (t) Oxygen concentration in the melted copper [ppm] 

Wtu (t) Weight of the melted copper inside the tundish [kg] 
Rtu (t) Ratio of air vs gas from the burner of the tundish [%] 

 

All signals are acquired synchronously, and are 
automatically stored in a standard SQL database at a period of 
10 seconds, a sampling frequency, fs, of 0.1 Hz. The available 
data set correspond to 96 hours of consecutive plant operation. 
The target signal, the tundish temperature among this operating 
time is shown in shown in Fig. 6. In this regard, the first 48h are 
used for training purposes, while the remaining 48h are used for 
testing. The forecasting horizon, p, represents one of the most 
critical parameters to be defined. In this application the 
forecasting horizon is fixed by the application requirements of 
detecting deviations with high resolution within one 
manufactured element time. Therefore, p is related with the 
copper rod manufacturing time, that is 15 minutes, that is, p = 
90 samples. 

 

 
Fig. 6. Tundish temperature, Ttu (t), considered in the training set of 48 hours of 
process operation. 

B. Target Signal Decomposition and Packaging 
Considering the continuous operation requirements of the 

proposed method, the EMD is approached by means of the 
utilization of a time based buffer. The corresponding time 
window is selected in regard with the lowest dynamic modes 
contained in the objective signal, that is a temporal window of 
4.5 hours (1620 samples). Thus, the EMD is applied to Ttu (t)and 
a  total number of k = 9 IMF are obtained. An example of a 
resulting IMF decomposition is shown in Fig. 7. 

 

 
Fig. 7. Intrinsic mode functions extracted from the tundish’s temperature of the 
training set during a time window processing.  

Following the method, the IMF are successively evaluated 
over an error threshold curve to find the optimum number of N 
IMF packages. The ETH has been defined by fixing the low 
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significance error, LWMAX, at 20%, the smooth parameter, Sm , 
at 7.5%, and the high significance dynamics error, HGMAX, at 
5%, that results in A= 0.002, B= 0.35 and C= 20 following 
Eq. (1). 

The procedure to form the first package of IMFs, Pkj=1, starts 
by evaluating IMF1 in terms of relative energy and error, Eq. 
(4), versus ETH. As the threshold is not met, consecutive IMF 
are successively added to Pkj=1. The addition of IMF4 in Pkj=1, 
shows an error value over the admissible threshold. Thus, Pkj=1 
is formed by the three first IMF, from IMF1 to IMF3. Then, the 
second package, Pkj=2, starts with IMF4 and successively 
evaluates all modes till IMF9. Since the error threshold is not 
reach anymore, N=2 packages. This analysis is shown in Fig. 
8. The resulting packages, Pkj (t), are shown in Fig. 9. 

 

 
Fig. 8. Evaluation of the training set versus the ETH to find the number N of IMF 
packages. 

 
 
 
 
 
 
 
 

 

 
Fig. 9. Resulting IMF packages to be modelled. (a) Package j=1 containing the 
summation of IMFs from 1 to 3. (b) Package j=2 containing the summation of 
IMFs from 4 to 9. It should be noticed that a pack of IMFs is the direct 
combination off all the IMFs that form the package.  
 

C. Mapping of Auxiliary Signals 
Fig. 10(a) shows the input space formed by the auxiliary 

signals, and Fig. 10(b) the resulting 3-dimensional SOM grid. 
The SOM grid has been configured by a hexagonal distribution 
15x15, that is, a total of 225 units. The SOM has been initialized 
and trained by a batch algorithm and a total amount of 100 
epoch were performed. 

As it can be seen, the data distribution process presents a 
central area with high density of data which corresponds to the 

main operating condition. However, there is a dispersion in 
each axis around the center, which means deviations from the 
nominal values reflected in the auxiliary signals. 

The resulting set of BMU for the training data is shown in 
Fig. 11. As it can be seen, most of the data presents a BMU 
value from 50 to 120. This interval corresponds to the central 
cluster identified as the most common operating condition. 
Values under and over this interval are considered as the 
variations over the normal operating condition. Indeed, the 
training set exhibits a variation of the temperature around the 
22th-28th hour of operation that match with the behavior seen in 
Fig. 6, which confirms the relation between the tundish 
temperature and the process operating condition codified by 
means of the auxiliary signals. 

D. Ensemble ANFIS based forecasting 
In order to train the N = 2 models, the n1 value for the third 

input parameter must be selected. For this aim, the 
autocorrelation analysis is proposed [23]. In this regard, such 
analysis compares the correlation of a target signal with the 
same signal but with an iterative delay added. It is used to show 
periodicities and oscillation modes in the analysed signal [24]. 
As shown in Fig. 12, the resulting signal from Pk1 shows a 
smoother autocorrelation decrease indicating that the loss of 
performance is smoother in regard with the forecasting horizon. 

 

 

 
Fig. 10. a) SOM input data space of training set: x) Tundish’s Oxigen value in 
ppm, y) Tundish burner's ratio in % and z) Copper weight in the tundish in Kg. 
b) Neurons of the SOM grid after the training procedure. 
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Fig. 11. Resulting best matching units for the training set. 

 

Otherwise, the resulting signal from Pk2 exhibits a sudden 
drop of autocorrelation till sample 60th. This response is 
characteristic of high frequency modes, that are included in the 
Pk2. That is, such difference in the autocorrelation response 
between Pk1 and Pk2 relies on the predominant low and high 
frequency contents, respectively. The temporal values that 
show an autocorrelation value over 0.4 have been considered as 
proper n1 delays. A Genetic Algorithm (GA) [25], has been 
applied to find such delays for each package, using the 
forecasting performance of the ANFIS as cost function. The 
resulting delays are n1=11 for Pkj=1 and n1=5 for Pkj=2, that 
corresponds to a delay of 110 and 50 seconds respectively. 

 

 
Fig. 12. Autocorrelation analysis between the IMF packages (Pk1 and Pk2), and 
their successive delayed signals. 

 

Finally, in order to complete the ANFIS design, each input is 
normalized with the min-max scalling method [26], obtaining 
input signals in the range 0 to 1. The inputs are fuzzified by 
means of three generalized bell-shaped membership functions. 
The model is trained for 15 epochs by means of the classical 
hybrid learning algorithm, which is the combination of the 
least-squares method and the backpropagation gradient descent 
method. A k=4 k-fold cross validation method has been used in 
order to perform both training and validation test [27]. Such 
procedure has been configured with a window of 48h with an 
overlapping of 12 hours. The forecasting performance during 
the training can be seen in Fig. 13, and the corresponding 
validation in Fig.14(a). The performance’ metrics of the model 
are shown in Table 2. The results show that the proposed 
modelling structure fits significantly both training and 
validation data sets with a MAPE error lower than 10%. 
Therefore, this performance represents a competitive 
forecasting, it should be noted that most of the error is located 
at higher frequency components contained in the Pk2 (t). The 
low values shown by the RMSE implies significant 
generalization capabilities, that is, a smoothed response versus 
the outliers. Furthermore, the model exhibits low variations 
during the validation procedure reflected in low standard 
deviation achived after the cross validation procedure.  

E. Comparison with other methods 
The performance of the proposed method, M1, has been 

compared with three approaches found in the literature, a 
ANFIS with a genetic algorithm, M2. A dedicated ANFIS 
model for each IMF resulting of the EMD decomposition, M3, 
and finally, a Neural Network modelling method, M4. 

Therefore, M2 consists on a GA-ANFIS structure that uses an 
input selection method based on a GA in order to select the most 
suitable inputs. According to the literature, the cost function is 
usually based on the MAPE estimation of the model against the 
validation data set [28], [29]. In this study the GA has been 
configured to select the best inputs from [Ttu (t- n1 ), Ttu (t- n2 ), 
Rtu (t), Out (t) and Wtu (t)]. Note that the current value Ttu (t) is 
always introduced as an input of the model. The chromosomes 
of the GA are configured in regard with the kind of input. For 
the first two, the past values, the limits of the GA have been 
configured to vary between 1 and 90 samples, for the rest of 
signals, binary inputs are used in order to incorporate or discard 
the signal as an input of the model. After the application of the 
GA, the best selected inputs and the structure of the final model 
is defined in Eq. (11). 

𝑇𝑇𝑡𝑡𝑢𝑢� (𝑡𝑡 + 𝑝𝑝) = 𝐺𝐺𝐴𝐴𝑁𝑁𝐼𝐼𝐼𝐼𝐴𝐴(𝑇𝑇𝑡𝑡𝑢𝑢(𝑡𝑡 ),𝑇𝑇𝑡𝑡𝑢𝑢(𝑡𝑡 − 8),𝑅𝑅𝑡𝑡𝑢𝑢(𝑡𝑡 )) (11) 

In order to implement the M3, a multi-model approach, the 
tundish’s temperature is decomposed in IMF. A dedicated 
ANFIS model is generated for each IMF, which means a total 
number of 14 models [14], [15]. The model for each IMF uses 
as inputs the current value of the k-th IMF, IMFk (t), and the best 
delay found in the correlation of the target signal, IMFk (t-n1). 
Accordingly, the model is defined as in Eq. (12). 

𝑇𝑇𝑡𝑡𝑢𝑢� (𝑡𝑡 + 𝑝𝑝) = � 𝐴𝐴𝑁𝑁𝐼𝐼𝐼𝐼𝐴𝐴(𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘(𝑡𝑡 ), 𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘(𝑡𝑡 − 𝑛𝑛1))
𝑘𝑘

𝑘𝑘𝑖𝑖=1

 (12) 

Finally, to implement M4, a NN based model has been 
applied using both target signal and auxiliary signals as inputs 
[30], as shown in Eq. (13). The NN is trained by using the 
training data and the class information of each observation. In 
this regard, a multi-layer NN has been configured with two 
hidden layer, each one is composed of 10 hidden neurons. The 
neurons have been configured with a sigmoid activation 
function, which is usefool in order to smooth the network 
response.  

𝑇𝑇𝑡𝑡𝑢𝑢� (𝑡𝑡 + 𝑝𝑝) = 𝑁𝑁𝑁𝑁(𝑇𝑇𝑡𝑡𝐴𝐴 (𝑡𝑡),𝑆𝑆𝑡𝑡𝐴𝐴 (𝑡𝑡),𝑊𝑊𝑡𝑡𝐴𝐴 (𝑡𝑡),𝑅𝑅𝑡𝑡𝐴𝐴 (𝑡𝑡) ) (13) 

As a result, M2, exhibits the worst results for both training 
and validation datasets with a MAPE greater than 15% in both 
datasets. As expected, by means of a single model, it is difficult 
to forecast the behavior of such a non-linear time series. 
Furthermore, as the cost function is made in regard with the 
validation set, the model shows an overfitted response for the 
validation. This fact, causes the model to approximate better the 
validation set than the training set, that is, MAPE in validation 
is lower than in the training. In regard with M3, it performs 
slightly better during the training procedure. As it can be seen 
in the table, it only presents a MAPE of 8%. However, the 
model exhibits a loss of performance when dealing with the 
forecasting of the validation set, as can be appreciated in Fig. 
13(c). This means that the model suffers a lack of generalization 
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by predicting each IMF individually compared with the 
proposed method. M4 achieve a smooth response that is able to 
follow the target signal in its mean value, however, further 
resolution is missing in the extrema values. Even tough, it 
presents better performances than M2 by mixing together all the 
significant signals during the modelling. However, the 
performances are far away from the decomposition approaches. 
It should be noticed that in terms of error statistics, both M2 and 
M4 present a more stable response since they are concentrated 
on following the mean value of the signal, such fact is reflected 
in a low error deviation in the iterations. However, M3 presents 

a more unstable response due to an overfitting phenomenon 
during the training procedure in every fold evaluated. 

 

IV. CONCLUSIONS 
This work presents a forecasting methodology applied to a 
copper rod manufacturing process based on a novel multimodal 
approach. There are four important aspects in this new method. 
The first one is the consideration of empirical mode 
decomposition as adaptive non-stationary signal analysis. The 
proposed dynamics packaging allows to group together reduced 
sets of intrinsic mode functions avoiding loss of modelling 
performance.  

TABLE 2. PERFORMANCE OF THE STATISTICAL ERROR METRICS BY 4-FOLD CROSS VALIDATION. 
 M1 - Prop. Method M2 

GA ANFIS 
M3 

EMD ANFIS 
M4 
NN 

 Trn. Val. Trn. Val. Trn. Val. Trn. Val. 

 �̅�𝑥 �̅�𝑥 σ �̅�𝑥 �̅�𝑥 σ �̅�𝑥 �̅�𝑥 σ �̅�𝑥 �̅�𝑥 σ 
RMSE 0.055 0.076 0.005 0.106 0.129 0.011 0.052 0.097 0.006 0.104 0.128 0.011 

MAE 0.307 0.259 0.03 0.283 0.321 0.05 0.214 0.312 0.1 0.289 0.331 0.06 

MAPE 7.95% 9.32% 1.5% 26.25% 21.52% 2.36% 7.18% 17.75% 5.89% 13.40% 19.84 2.21% 

 

 

Fig. 13. – Example result of the he proposed method, M1, during the first fold iteration in the training procedure. 
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d)  
Fig. 14. – Example result of the fourth fold iteration during the validation procedure. Results of the forecasting models: (a) Output of the proposed method, M1. (b) 
Comparative of the M2 - GA-ANFIS.  (c) Comparative of the M3 - EMD-ANFIS a. (d) Comparative of the M4 – NN. 

 

The second, is the exploitation procedure of available 
auxiliary process signals. A self-organizing map codification is 
proposed to project the process operating condition in just one-
dimensional variable to be added to the forecasting model. It 
has been checked how the codification of the auxiliary signals 
helps to learn the different process behaviors and control 
actions improving with it the generalization capabilities of the 
modelling. Third, is the multimodal ANFIS structure, in which 
the resulting forecasting outcomes of the models are combined 
to obtain the final forecasted signal value. 

Industrial data from a copper rod manufacturing process has 
been considered, which represents a significant experimental 
scenario for validation, including a sets of 96-hours of operation 
for training and validation. Under these experimental 
conditions, the proposed methodology shows excellent 
performances, mainly, in terms of low modelling error and 
generalization capabilities. Additionally, a comparative 
analysis with state of the art methods has been carried out. The 
performance of the proposed method exhibits a decrease of 50% 
of mean absolute percentage error compared with single model 
approaches. 

It should be noted that the proposed methodology could be 
applied in multiple complex industrial processes. The 
potentiality of the adaptation and codification capabilities of the 
proposed method allows an extensive applicability. 
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