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Abstract 

Electric traction motors in automotive applications work in operational conditions characterized by 

variable load, rotational speed and other external conditions: this complicates the task of diagnosing 

bearing defects. The objective of the present work is the development of a diagnostic system for 

detecting the onset of degradation, isolating the degrading bearing, classifying the type of defect. The 

developed diagnostic system is based on an hierarchical structure of K-Nearest Neighbours 

classifiers. The selection of the features from the measured vibrational signals to be used in input by 

the bearing diagnostic system is done by a wrapper approach based on a Multi-Objective (MO) 

optimization that integrates a Binary Differential Evolution (BDE) algorithm with the K-Nearest 

Neighbour (KNN) classifiers. The developed approach is applied to an experimental dataset. The 

satisfactory diagnostic performances obtain show the capability of the method, independently from 

the bearings operational conditions. 
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1. INTRODUCTION  

According to both the IEEE large machine survey (Zhang et al., 2011) and the Norwegian offshore 

and petrochemical machines data, bearing-related defects are responsible of more than 40% of the 

failure in industrial machines (O'Donnell et al., 1983). Then, in industrial practice it is of great interest 

to promptly detect the bearing degradation onset, to identify which bearing is degrading, to correctly 

classify the cause of the bearing degradation (type of defects) and to assess the bearing degradation 

level. The most critical bearing degradation modes involve the bearing inner race, outer race and balls 

(Rao et al., 2012) (Schoen et al., 1995). At the earliest stage of bearing degradation, information on 

the bearing health state, and, eventually, on the type of degradation can be obtained by observing the 

machine vibrational behavior. Thus, a typical approach to fault diagnosis in bearings is based on the 

extraction of features from the raw vibrational signals (accelerations) and on the use of classification 

models, such as Support Vector Machine (SVM) (Gryllias & Antoniadis, 2012) (Zhu et al., 2014), 

Relevance Vector Machines (Di Maio et al., 2012a), K-Nearest Neighbors (KNN) (Jiang et al., 2013), 

Artificial Neural Networks (ANN) (Li & Ma, 1997), neuro-fuzzy techniques (Zio et al., 2009) (Pan 

et al., 2014) and multi-symptom-domain consensus diagnosis techniques (He et al., 2001): input to 

the classifiers are the selected features, whereas the outputs are the detection of the onset of bearing 

degradation, the isolation of which bearing is degrading, the classification of the degradation 

mechanism and the assessment of the bearing degradation level. 

Approaches to fault diagnosis in bearings have been developed considering the vibrational signals in 

the time domain, in the frequency domain and in both time and frequency domains. Time-domain 

approaches are based on the use of statistical indicators of the raw acceleration signals, such as mean, 

standard deviation, peak value, root mean square error, crest factor, kurtosis and skewness (Martin et 

al., 1995). Alternative time domain indicators have been developed (Tao et al., 2007) for dealing with 

incipient bearing faults, although the most critical shortcoming of all time-domain approaches is their 

inability to correctly diagnose bearing failures at the last stages of the degradation process, when the 

signal behaviors tend to be highly unpredictable and random (Ocak et al., 2007). In frequency-domain 



approaches, the principal frequencies of the vibrational signals and their amplitudes are identified 

(Chebil et al., 2009). Most of the proposed approaches to fault diagnosis for bearings in the frequency 

domain assume a priori knowledge of the principal frequencies associated to the bearings faults 

(Chebil et al., 2009). This setting is not realistic in automotive applications where the environmental 

and operational conditions modify the frequency spectra of the vibrational signals. Furthermore, real 

bearing spectra are characterized by a large number of frequency components, which can be difficult 

to be managed (Ocak et al., 2007). Time-frequency approaches, which combine time and frequency 

domain information, have been reported to provide the most satisfactory performances (Georgoulas 

et al., 2013). Several time-frequency features have been proposed in literature, such as Short Time 

Fourier Transforms (STFT) (Kaewkongka et al., 2003), Wigner-Ville Distribution (WVD) (Hui et 

al., 2006), Wavelet Transform (WT) (Loutas et al., 2012) (Abbasion et al., 2007), and Empirical 

Mode Decomposition (EMD) (Huang et al., 1998) (Ben Ali et al., 2015). For example, a multilevel 

classification approach for bearing diagnosis based on WT has been proposed in (Chebil et al., 2009). 

Conversely, EMD is suitable and attractive in dealing with highly non-linear, non-stationary signals 

but can be computationally expensive due to the non-smooth behaviour of vibration signals. This 

limitation can be partially overcome using EMD and the Hilbert Huang transforms for the extraction 

of a compact set of features (Georgoulas et al., 2013). 

A common characteristic of the frequency and time-frequency domain approaches is that they 

typically generate feature sets of very high dimensionality. Reducing the dimensionality of the feature 

set allows to remarkably reduce the computational burden. Furthermore, it has been shown that 

irrelevant and noisy features unnecessarily increase the complexity of the classification problem and 

can degrade modeling performance (Emmanouilidis et al., 1999). Thus, in this work, the development 

of classification algorithms for bearing diagnosis is accompanied by the application of feature 

extraction methods which map the n-dimensional data being classified onto an m-dimensional space, 

where m < n (Dash & Liu, 1997). Examples of feature extraction methods are Kernel Principal 

Component Analysis (KPCA) (Schölkopf et al., 1998), Kernel Fisher Discriminant Analysis (KFDA) 



(Mika et al., 1999) (Baudat & Anouar, 2000) or Semi-supervised Kernel Marginal Fisher Analysis 

(SKMFA) (Jiang, 2013), Linear Local Tangent Space Alignment (LLTSA) (Li, 2013), Self-

Organizing feature Map (SOM) (Kohonen, 1982). A special case of feature extraction is feature 

selection, whereby (𝑛 − 𝑚) irrelevant features are discarded. More specifically, the objective of 

feature selection is that of finding a subset of the original features such that the classification 

algorithm based on these features generates a classifier with the highest possible performance (Zio, 

2006). In general, feature selection methods can be classified into two categories: filter and wrapper 

methods (Kohavi & John, 1997). In filter methods, the feature selector algorithm is used as a filter to 

discard irrelevant and/or redundant features a priori of the construction of the classification algorithm. 

A numerical evaluation function is used to compare the feature subsets with respect to their 

classification performance (Dash & Liu, 1997). On the contrary, in wrapper methods the feature 

selector behaves as a wrapper around the specific learning algorithm used to construct the classifier. 

The feature subsets are compared using as criterium the classification performance achieved by the 

classification algorithm itself (Zio et al., 2008). 

This work is motivated by the interest of investigating the possibility of effectively performing in 

practice fault diagnostics of bearings installed on the powertrain of a Fully Electric Vehicle (FEV). 

The research is part of the European Union funded project Electrical power train Health Monitoring 

for Increased Safety of FEVs (HEMIS, www.hemis-eu.org) (Sedano et al., 2015), (Baraldi et al., 

2013), which aims at the development of a Prognostics and Health Monitoring System (PHMS) for 

the most critical components of FEVs. The difficulty of the fault diagnostics task is that automotive 

motors differ from other industrial motors since they work in operational conditions characterized by 

variable load, rotational speed and other external conditions which can cause major modifications of 

the vibrational signal behaviour. Electrical machines and drive systems are subject to many different 

types of faults which include: 1) stator faults such as stator winding open or short circuited; 2) rotor 

electrical faults such as rotor winding open or short circuited for wound rotor machines and broken 

bar(s) or cracked end-ring for squirrel-cage machines; 3) rotor mechanical faults such as bearing 

http://www.hemis-eu.org/


damage, eccentricity, bent shaft, and misalignment; and 4) failure of one or more power electronic 

components of the drive system (Bellini et al., 2008). (Bonnett & Yung, 2008) describes the 

distribution of induction motor faults and shows possible scenarios for after fault, detailing the repair-

replace decision process. The distribution of induction motor faults is listed in (Bellini et al., 2008) 

as bearing (69%), rotor bar (7%), stator windings (21%), and shaft/coupling (3%). Fault diagnostics 

of bearing installed on the powertrain of electric machines is an attracting research field. In (Tian et 

al., 2016), different features are extracted from spectral kurtosis and then combined to build a health 

index based on PCA and a semi-supervised KNN distance measure to detect incipient faults and 

diagnose the locations of the bearings faults. In (Abed et al., 2015), DWT is used to extract features 

from stator current and lateral vibrations current measurements. The obtained features are further 

reduced via the applications of orthogonal fuzzy neighbourhood discriminant analysis. Finally, a 

Recurrent Neural Networks (RNN) is used to detect and classify the presence of bearing faults. In 

(Geramifard et al., 2013), a semi-nonparametric approach based on a hidden Markov model classifier 

is introduced for fault detection and diagnosis of bearings in syncrounous motors. In (Zhang & Zhou, 

2013), a procedure based on Ensemble Empirical Mode Decomposition (EEMD) and SVM for multi-

fault diagnosis of bearings in induction motors is discussed. In (Dalvand et al., 2016) the kurtosis of 

instantaneous frequency of motor voltage is used for the identification of defective bearings. In (Jin 

et al., 2014), Trace Ratio Linear Discriminant Analysis (TRLDA) is used to deal with high 

dimensional non-Gaussian fault data for dimension reduction and fault classification of bearings in 

induction motors. Although the listed works have been reported to achieve satisfactory performance, 

the industrial applicability of these methods is limited by the fact that the features extrated to train 

the empirical model for the diagnosis are not independent from operational conditions: fault 

diagnostics is tacitily based on the hypothesis that the training patterns and the testing patterns are 

similar. As a result, if the diagnostic model is used in working conditions different from those 

considered to train the model, its performance may be unsatisfactory. To overcome this limitation, 

the main contribution of this work is the development of a novel feature selection approach to identify 



features independent from operational conditions. This is expected to allow developing a diagnostic 

system that can be used independently from the operational and environmental conditions that the 

FEV is experiencing. A further novelty of the work is that the feature selection problem is embedded 

into a multi-classification problem, where several classifiers developed for different scopes 

(detection, isolation, degradation mode classification and degradation level assessment) are 

integrated. The proposed diagnostic system is based on an hierarchical model of K-Nearest Neighbor 

(KNN) (Jiang, 2013) classifiers. A multi-objective (MO) Binary Differential Evolution (BDE) 

optimization algorithm has been used for the identification of the feature set to be used. The 

optimization aims at the identification of a feature set, which allows to obtain a high classification 

performance by using a low number of features extracted from a low number of vibrational signals. 

Notice that the use of a low number of features allows reducing the computational burden and memory 

demand of the diagnostic system, whereas the use of a limited number of vibration signals allows 

minimizing the cost of the installation of the measurement system. The proposed approach is verified 

with respect to the Western Reserve Case University Bearing dataset (CWRUBD). 

The paper is organized as follows: in Section 2 the hierarchical model for bearing degradation 

detection, isolation, diagnosis and degradation level assessment is proposed; in Section 3, a wrapper 

approach for optimal feature selection based on the use of a BDE-based MO optimization algorithm 

is discussed; the application to the Western Reserve Case University Bearing dataset is described in 

Section 4, whereas in Section 5 conclusions are drawn. 

 

2. THE HIERARCHICAL DIAGNOSTIC MODEL 

In this work, a motor system containing two bearings, one installed at the drive end (DE) and one at 

the Fan End (FE) of the powertrain, is considered. The main objective of the work is the development 

of a diagnostic system for the identification of: i) the onset of the degradation (fault detection), ii) 

which bearing is degrading (fault isolation), iii) the failure mode (failure mode identification) and iv) 

the degradation level (degradation level assessment). Fault detection (task i) is typically based on the 



quantification of inconsistencies between the actual and the expected behavior in nominal conditions 

and can be tackled resorting to anomaly detection techniques (Pichler et al., 2016) (Serdio et al., 

2014), Auto Associative Kernel Regression (AAKR) (Baraldi et al., 2014) or one-class classifier. 

These methods are typically based on the use of data collected from the component operation in 

nominal conditions, before the onset of the degradation and do not require the availability of data 

collected in abnormal conditions, after the onset of the degradation process. The task of fault isolation, 

failure mode identification and failure size assessment (task ii, iii and iv) are, then, typically tackled 

in cascade, as shown in Figure 1. 

 

Notice that the problem of fault isolation and failure mode identification requires the development of 

a classification model whose inputs are the measured signals and whose output is a label indicating 

the location and type of the fault and cannot be addressed by means of unsupervised techniques. With 

respect to the assessment of the degradation level, it can be tackled as a classification problem where 

the degradation level is discretized into a predefined set of levels. Finally, since data of abnormal 

conditions are available and will be exploited for the tasks of fault isolation, failure mode 

identification and degradation level assessment (level 2, 3 and 4 of Figure 1), the fault detection task 

(level 1) is also framed as a binary classification problem. To this aim, we have developed a 

hierarchical model based on a set of classifiers (Figure 2). The first classifier identifies the onset of 

the bearing degradation (stage 0, classifier 𝐶0), the second the location of the degradation, i.e. which 

bearing is degrading (stage 1, classifier 𝐶1), the third the degradation mode (stage 2, classifiers 𝐶2
𝑏, 

b=1, 2) and the last one the degradation intensity of the failure (stage 3, classifier  𝐶3
𝑏,𝑖

, b=1, 2, i =1, 

Nc with Nc indicating the number of possible bearing degradation modes). Notice that for each bearing 

a different classifier, 𝐶2
𝑏, 𝑏 = 1,2 of the degradation mode is developed, and for each bearing and 

each degradation mode a different classifier, 𝐶3
𝑏,𝑖

, of the intensity, b = 1,2 and 𝑖 = 1, … , 𝑁𝑑𝑚 is 

developed (Figure 2).  



All the classifiers are fed with information extracted from vibrational signals correlated to the 

degradation process of the bearings. In particular, in this work we consider the possibility of installing 

up to 𝑆 accelerometers in different locations of the motor housing and motor supporting base plate, 

and the possibility of extracting from each vibrational signal, 𝐾 features, including statistical 

indicators (Di Maio et al., 2012b), Discrete Wavelet Transform (DWT) (Baraldi et al., 2012) and 

Wavelet Packet Transform (WPT) (Chebil et al., 2009). These different types of features have been 

considered since they have been already used in bearing diagnostic problems and they have been 

shown to contain information correlated with the bearing degradation.  

 

3. THE FEATURE SELECTION PROBLEM 

Each classifier of the hierarchical structure can receive in input up to 𝑛 = 𝐾 ∙ 𝑆 features. In this work, 

the problem of selecting the most performing features for the classifiers is addressed considering only 

the classifiers at stages 2 and 3 of the hierarchical model (identification of the degradation mode and 

assessment of the degradation level, respectively). The input features used by classifiers 𝐶0 and 𝐶1 

for the detection of the onset of the degradation and the identification of which bearing is degrading 

will be identified in a second phase considering only the features identified for the classifiers at the 

second and third stages. This simplification of the problem is justified by the fact that the classifiers 

for the detection of the degradation (𝐶0) and the isolation of the degrading bearing (𝐶1) will be shown 

to achieve high performance using the same features selected for the fault diagnosis (stage 2). 

The overall objectives of the feature selection process are to identify a set of features which 

guarantees: 

I. high classification performance in each stage of the classification (diagnosis of the 

degradation mode, assessment of the degradation level); 

II. low cost for the development of the overall diagnostic system. The cost should take into 

account: the number of vibrational sensors required, the computational burden and memory 



demand for processing of the vibrational signals, the training of the classification algorithms 

and the storage of the training examples. 

With respect to I), notice that the selected features should be able to provide good classification 

performances independently from the operational conditions experienced from the automotive 

vehicle. In practice, the first objective that is considered is the minimization of the misclassification 

rates of the two classifiers 𝐶2
1 and 𝐶2

2 at stage 2 of the hierarchical model, dedicated to the 

identification of the degradation mode at the DE and FE bearings, respectively. With respect to a 

feature set represented by a n-dimensional vector 𝒙 ∈ {0,1}𝑛, where 𝑥(𝑘) = 1 denotes that feature k 

is selected whereas 𝑥(𝑘) = 0 that it is not selected, the objective function F1, i.e. the average 

misclassification rate at stage 2, is defined by:                                                                                                                                                                                                                                                                        

                                                                   𝐹1(𝒙) =
1

2
∑ 𝑅2

𝑏(𝒙) 2
𝑏=1                                                             (1)                                                                                                                       

where 𝑅2
𝑏(𝒙) is the misclassification rate of classifier 𝐶2

𝑏 on a set of test patterns. In order to verify 

the capability of the classifiers to provide good performances independently from the operational 

conditions, we propose the following “leave all but one” cross validation method inspired to the leave 

one out cross validation method (Polikar, 2007). Let 𝑙 be the number of possible operational condition 

that can be experienced by the bearing. We train 𝑙 different classifiers: the 𝑗𝑡ℎ, 𝑗 = 1, … , 𝑙, classifier 

is built using a training set containing patterns taken at operational condition 𝑗, and tested on patterns 

taken at operational condition different from 𝑗.  

Finally, 𝑅2
𝑏(𝒙) is computed as average of the misclassification rates 𝑅2

𝑏,𝑗
(𝒙) of  the 𝑗𝑡ℎ, 𝑗 = 1, . . , 𝑙 

classifier: 

𝑅2
𝑏(𝒙) =

1

𝒍
∑ 𝑅2

𝑏,𝑗(𝒙)𝒍
𝒋=𝟏        (2)   

 

Figure 3 shows the “leave all but one” cross validation procedure for 𝑙 = 4.  

 

The name “leave all but one” derives from the fact that when developing the 𝑗𝑡ℎ classifier, we leave 

from the training set all patterns which have been taken at operational condition different from 𝑗 but 



those taken at operational condition 𝑗. By so doing, the different classifiers are tested using patterns 

in operational conditions different from those considered to train the model. Notice that this procedure 

requires the availability of condition monitoring data collected in different, but stationary operating 

conditions. Thus, the selected features are not expected to provide satisfactory performances when 

the component works in variable operating conditions, which can lead to complex dynamics in the 

measured signals. In practical applications characaterized by continuously changing operating 

conditions, this drawback of the method can be overtaken by applying the fault diagnostic system 

only when the operating conditions are constant for a given period of time (e.g., the vehicle is used 

on an highway at constant speed). 

The second objective takes into account the performance of the classifiers 𝐶3
𝑏,𝑖

 for the assessment of 

the degradation level, with 𝑏 = 1,2, and 𝑖 = 1, … , 𝑁𝑑𝑚. With respect to a feature set represented by 

the n-dimensional vector 𝒚 ∈ {0,1}𝑛, where 𝑦(𝑘) = 1 indicates that feature k is selected as input of 

the classifier, whereas 𝑦(𝑘) = 0 is not selected, the average misclassification rate at stage 3, F2, is 

defined by: 

                                                           𝐹2(𝒚) =
𝟏

𝟐𝑁𝑑𝑚 
∑ ∑ 𝑅3

𝑏,𝑖(𝒚)
𝑁𝑑𝑚
𝑖=1

2
𝑏=1                                                  (3)                                                                                             

where  𝑅3
𝑏,𝑖(𝒚) is the misclassification rate of classifier 𝐶3

𝑏,𝑖
 obtained applying the same procedure 

followed in eq (2) to guarantee independence from the operational conditions. 

With respect to the objectives in II), we consider two different cost indicators: the net number of 

features employed by the overall hierarchical model, F3, and the number of accelerometers to be used, 

F4. For a given feature set  𝒛 = (𝒙, 𝒚), F3  is given by: 

                              𝐹3(𝒛) = ∑ 𝑥𝑘
𝑛
𝑘=1 + ∑ 𝑦𝑘

𝑛
𝑘=1 − ∑ 1{𝑥𝑘 =𝑦𝑘}       𝒛 = (𝒙, 𝒚) ∈ {0,1}2∙𝑛   𝑛

𝑘=1                  (4)                                                                                                                        

where n is the total number of features which can be extracted. 

The number of accelerometers to be used, F4, is given by:  

                                                                    𝐹4(𝒛) = ∑ 𝑅4,𝑠(𝒛)    𝑆−1
𝑠=0                                                       (5)                                                                                                                                                                                                                               



where 𝑆 − 1 is the total number of accelerometers which can be installed and 𝑅4,𝑠(𝒛) is equal to 1 if 

at least one feature extracted from the acceleration signal measured by accelerometer s is selected. 

According to the proposed wrapper approach (Figure 4), the search engine builds a candidate group 

of features set  𝒛 = (𝒙, 𝒚) whose performance is evaluated with respect to a fitness function 𝑭 that is 

defined as: 

                         𝑭 (𝒛) = [𝐹1(𝒙), 𝐹2(𝒚), 𝐹3(𝒛), 𝐹4(𝒛)]         𝒙, 𝒚 ∈ {0,1}𝑛   𝒛 = (𝒙, 𝒚) ∈ {0,1}2∙𝑛        (6)                        

Dealing with a MO optmization problem (in our specific case a MO minimization), we introduce the 

definition of Pareto Optimal Set 𝒫∗ = {𝒛 ∈ ℱ ∶  𝒛  is Pareto-optimal}, that is a set of optimal 

solutions among which we select the preferred solution 𝒛𝑜𝑝𝑡. A vector of decision variable  𝒛∗ ∈ ℱ is 

Pareto Optimal if it is non-dominated with respect to ℱ, i.e., it does not exist another solution 𝒛′ ∈ ℱ 

such that 𝑭(𝒛′)  dominates 𝑭( 𝒛∗): 

               ∀ 𝛼 ∈ {1, … ,4}, 𝐹𝛼(𝒛′) ≤ 𝐹𝛼( 𝒛∗), and ∃ �̃� ∈ {1, … ,4}, such that 𝐹�̃�(𝒛′) < 𝐹�̃�( 𝒛∗)           (7)          

                                                                   

3.1      Binary Differential Evolution for feature selection 

Performing an exhaustive search of the best solution among all the possible 22∙𝑛 solutions is typically 

impracticable unless 2 ∙ 𝑛 is very small (Dong & Kothari, 2003). For this reason, different 

combination of optimization heuristics such as Ant Colony (Al-ani, 2005), Genetic Algorithm (Sikora 

& Piramuthu, 2007), Particle Swarm Optimization (PSO) (Samanta & Nataraj, 2009) (Firpi & 

Goodman, 2005), Binary Genetic Algorithms (Zio et al., 2006), and Binary Differential Evolution 

BDE (He, 2009) (Kushaba et al., 2011) have been used within wrapper approaches for feature 

selection. In this work, we resort to a Binary Differential Evolution (BDE) algorithm to address the 

MO feature selection problem, since BDE has been shown to explore the decision space more 

efficiently than other multi-objective evolutionary algorithms (Tušar & Filipič, 2007) such as Non-

dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2002), Strength Pareto Evolutionary 

Algorithms (SPEA2) (Zitzler et al., 2001) and Indicator Based Evolutionary Algorithm (IBEA) 

(Zitzler & Künzli, 2004). 



In BDE, each candidate solution 𝒛𝑝,𝐺, called target vector, of the 𝐺𝑡ℎ population is encoded 

by a binary sequence (chromosome) of 2∙n bits (genes) for 2∙n decision variables, where each bit 

indicates whether a feature is present (1) or discarded (0) in the candidate solution 𝒛𝑝,𝐺. Each gene, 

𝑧𝑝,𝑘,𝐺, 𝑝 = 1: 𝑁𝑃, 𝑘 = 1: 2 ∙ 𝑛 of each chromosome of the G-th population  is conveniently mapped 

into a continuous variable �̃�𝑝,𝑘,𝐺. In practice, the interval [0,1] is partitioned into two equal 

subintervals [0,0.5) and [0.5,1], such that if  the gene   𝑧𝑝,𝑘,𝐺 = 0, �̃�𝑝,𝑘,𝐺  belongs to the first sub-

interval, whereas if 𝑧𝑝,𝑘,𝐺 = 1, �̃�𝑝,𝑘,𝐺  it belongs to the second interval. The mapping operator  

                                          �̃�𝑝,𝑘,𝐺  = {
0.5 ∗ 𝑟𝑎𝑛𝑑                 𝑖𝑓  𝑧𝑝,𝑘,𝐺  =  0

0.5 + 0.5 ∗ 𝑟𝑎𝑛𝑑      𝑖𝑓  𝑧𝑝,𝑘,𝐺 =  1  
                                       (8)                   

is used for this purpose, where rand is a random number in [0,1). 

1. Mutation 

For each vector �̃�𝑝,𝐺 in the population, a noisy vector �̃�𝑝 is generated randomly choosing three 

mutually different vector indices 𝑟1, 𝑟2, 𝑟3  ∈ {1, … , 𝑁𝑃}  with p ≠{ 𝑟1, 𝑟2, 𝑟3}  

                                                                 �̃�𝑝,𝐺   = �̃�𝑟1,𝐺 + 𝑆𝐹(�̃�𝑟2,𝐺 − �̃�𝑟3,𝐺)                                            (9) 

where the scaling factor 𝑆𝐹 ∈ (0,2] (Khushaba et al., 2011). 

A sigmoid function is applied to entry 𝜈𝑝,𝑘,𝐺 to ensure that the result generated by the mutation 

operator falls into the interval [0,1]:                              

                                                                         𝜈𝑝,𝑘,𝐺 =
1

1+𝑒
�̃�𝑝,𝑘,𝐺

                                              (10)         

An inverse operator is then used: 

                                                   𝑣𝑝,𝑘,𝐺 = {
0    𝑖𝑓  𝜈𝑝,𝑘,𝐺 ∈ [0 , 0.5)

1    𝑖𝑓  𝜈𝑝,𝑘,𝐺 ∈ [0.5  ,1 ]
                                                (11)                                        

2. Crossover 

In order to increase diversity of the perturbed parameter vectors, crossover can be introduced. This 

procedure is typically referred to as recombination. To this aim, the trial vector 𝒖𝑝,𝐺 =

(𝑢𝑝,1,𝐺 , … , 𝑢𝑝,𝑘,𝐺 , … , 𝑢𝑝,2∙𝑛 ,𝐺) is defined by:  



                              𝑢𝑝,𝑘,𝐺 = {
𝑧𝑝,𝑘,𝐺 𝑖𝑓 𝒰(0,1] ≤ 𝐶𝑅 𝑜𝑟 𝑘 = 𝑖𝑟𝑎𝑛𝑑(𝑁𝑃)

𝑣𝑝,𝑘,𝐺  𝑖𝑓  𝒰(0,1] > 𝐶𝑅 𝑎𝑛𝑑 𝑘 ≠ 𝑖𝑟𝑎𝑛𝑑(𝑁𝑃)
                                      (12) 

where 𝒰(0,1] is a uniform continuous random value [0,1], whereas irand(NP) is a discrete random 

number in the set {1,2, … , 𝑁𝑃} sampled from a uniform distribution . The crossover parameter 

CR ∈ [0,1] influences the probability that the noisy vector’s variables are selected for the mutation 

process (Wang et al., 2011). 

 

3. Selection 

In order to avoid stagnation of population in local minima due to the impoverishment of the 

population, selection strategies have been deeply investigated in literature (Mezura-Montes et al., 

2008) (Salman et al., 2007). According to the MODE-III selection technique (Wang et al., 2011), 

each trial vector generated at each iteration by mutation and crossover operations, 𝒖𝑝,𝐺, is compared 

only with its target vector 𝒛𝑝,𝐺 from which it inherits some variables: if 𝒖𝑝,𝐺 dominates 𝒛𝑝,𝐺, it takes 

its place in the population for the next generation, otherwise 𝒛𝑝,𝐺, survives (Wang et al., 2011). 

Notice, however, that, this approach suffers of a low level of elitism since each trial vector is 

compared only with its own target vector. 

In the present work, we have applied a different technique, called Non-Dominated Sorting Binary 

Differential Evolution (NSDBE), which combines the robust and effective BDE strategy with the fast 

non-dominated sorting and ranking selection scheme of NSGA-II (Deb, 2002). In practice, at the 

𝐺𝑡ℎgeneration the combined population of size 2NP comprising all 𝒖𝑝,𝐺 and 𝒛𝑝,𝐺 is ranked using a 

fast non-dominated sorting algorithm that identifies the ranked non-dominated solutions of the Pareto 

optimal set, Σ. Then, the first NP candidate solutions are selected according to the crowding distance 

(Deb, 2002).  

3.3. The classification algorithm  



The feature selection algorithm requires the availability of a classification algorithm characterized by 

1) few parameters to be tuned and 2) very fast computational times for the classification model 

training and executions. Among the possible choices of classification algorithms, we have considere 

Support Vector Machines (SVM), Artificial Neaural Networks (ANN), Decision Trees (DT) and K-

Nearest Neighbours (KNN) classifier. The SVM have been shown to produce satisfactory 

performances when applied to datasets characterized by many classes (Gryllias & Antoniadis, 2012), 

even if few labelled examples are available for the SVM training process. Unfortunately, SVMs 

require the tuning of the kernel, the kernel parameter optimization and the setting of an appropriate 

soft margin parameter and computational efforts in the training phase than other classification 

algorithms. ANN based classifiers allow dealing with nonlinear and multi-class classification 

problems, but they typically require a large amount of data for the ANN training  and are 

computationally time consuming in the training phase (Li & Ma, 1997). Decision Trees (DTs) based 

classifiers are simple to understand and to interpret and can handle multi-class classification problems 

(Parvin et al., 2015). However, DT learners can create over-complex trees that do not generalise the 

data well, i.e., they suffer from overfitting and can be unstable because small variations in the data 

might result in a completely different tree being generated. This problem is mitigated by training 

multiple trees in an ensemble learner which is computationally consuming both in the training phase 

and in the execution phase. The KNN algorithm is automatically non-linear and requires the setting 

the number �̃� of near neighbours to be considered for the classification and of the metric used to 

quantify the distance between patterns in the feature space. The KNN classification of a test pattern 

𝑜 is based on the computation of its distance with the T labelled patterns of a training set, 𝑇𝑟 =

{(𝑜𝑡 , 𝑐𝑡)}, 𝑡 = 1: 𝑇, 𝑐𝑡 ∈ {1, . . . , 𝐶𝑙}, with 𝑐𝑡 indicating the class of the t-th pattern and Cl the total 

number of classes. In practice, the KNN algorithm (Hellman, 1970): 



a) finds the �̃� closest training patterns to the test pattern, according to an opportune distance (e.g. 

Euclidean distance, Mahalanobis distance etc.), where �̃� is a user-defined nonnegative 

integer; 

b) assigns the test pattern 𝑜 to the class with most representatives among those of its �̃� 

neighbors.” 

Although KNN classification performance has been reported to be less satisfactory in some 

applications than that of SVM, ANN and DT classifiers, KNN classifiers have been employed in this 

work for their simplicity and low computational requirements (Compare et al., 2016). Furthermore, 

notice that, once the time consuming feature selection step has been performed using the KNN 

classifier, one  according to the available computational and memory resources, can potentially 

choose any other classifier for the development of the diagnostic system. 

 

4.   CASE STUDY: THE CASE WESTERN RESERVE UNIVERSITY BEARING DATASET 

The Case Western Reserve University bearing dataset contains the results of 72 experiments 

consisting in the measurement of 3 acceleration signals. The acceleration signals are measured using 

𝑆 = 3 accelerometers placed at the 12 o’clock position at the drive end and at the fan end of the motor 

housing and on the motor supporting base plate. Data are collected at frequencies of 12000 samples 

per second for time lengths of about 10 seconds. Two ball bearings are installed at the drive end and 

at the fan end of the motor, respectively. For both bearing, 𝑁𝑑𝑚 = 3 degradation mode are considered 

affecting the inner race, outer race and ball, respectively. For each failure mode, 12 experiments have 

been performed, considering all the possible combinations of 𝑁𝑑𝑙 = 3 different degradation levels 

(i.e., 𝑓 = 7, 14, 21, mils (mil inches) long defects) and 𝑗 = 4 different operation conditions 

represented by motor loads from 0 to 3 horsepowers. Bearings in normal conditions have also been 

tested at the 𝑙 =4 different loads. The vibration time series have been verified to be stationary by 

applying the Kwiatkowski, Phillips, Schmidt, and Shin’s test (KPSS test) (Kwiatkowski et al., 1992). 

4.1      Feature extraction  



Each vibration signal has been segmented using a fixed time window of approximately 1.4 seconds, 

overlapping of about 0.37 seconds. Each time window contains 214 acceleration measures from each 

sensor. Therefore, from each time series, we have extracted 10 different time windows, hereafter 

called records. From each record, we have extracted 𝐾 = 29 different features: these include 

statistical indicators (1 to 9) (Di Maio et al., 2012b), Discrete Wavelet Transform (DWT) using Haar 

basis (10 and 11) (Baraldi et al., 2012), DWT using Daubechies3 basis (12 to 15) and Wavelet Packet 

Transform (WPT) using Symlet6 basis (16 to 29) (Chebil et al., 2009), as listed in Appendix A. Since 

these features have been extracted from 𝑆 = 3 vibrational signals measured by 𝑆 = 3 different 

accelerometers, the total number of features extracted is 𝑛 = 87. Thus, the available data-set consists 

of 720 87-dimensional patterns (Table 1). Notice that for each pattern we know whether it 

corresponds to a motor with a degraded or healthy bearing and in the former case, the occurring 

degradation mode and the degradation level. Thus, the patterns are labelled with respect to all the 

classifiers of the hierarchical model. 

All the available 720 labelled data are partitioned into a set used for the feature selection task formed 

by 80% of the total number of patterns and obtained by randomly sampling 8 patterns among the 10 

at a given load in each row of Table 1, and a validation set formed by the remaining patterns, which 

will be used for validating the performance of the diagnostic model after the optimal features subset 

selection. 

 

4.2      Validation of the feature selection algorithm 

In this subsection, we compare the results obtained by the proposed feature selection algorithm with 

those obtained in literature considering the same dataset (Zhang et al., 2013) (Jiang et al., 2013) (Zhu 

et al., 2014) (Li et al., 2013). To this aim, in order to have the same test conditions used in the literature 

works, the feature selection task has been performed considering only the failure of the drive-end 

bearing and the vibrational signal registered at the drive-end of the motor housing. Furthermore, in 



accordance with the literature works, a direct, one-stage classification of the fault type and intensity 

has been performed. In practice, we have considered a 10 classes classification problem, where the 

classes correspond to the normal state and all the possible 9 combinations of the 3 failure types and 

3 failure intensities. The only objective of the feature selection is the minimization of the 

misclassification rate, i.e. the fraction of test patterns not assigned to the correct class. The best 

solution identified by the DE algorithm is reported in Table 2, the performance in terms of 

misclassification rates obtained by adopting a 50-fold cross-validation approach on validation data 

not used for the feature selection is 0.0059 with a standard deviation 0.0008. In other words, for 50 

times we have randomly chosen among the validation set, 75% of the patterns for the training set and 

25% for the test set, ensuring that at least 3 patterns of each class are present in the training set. Table 

3 compares the obtained results with those of other literature works. Notice that the performance 

obtained using the selected features is more satisfactory than those obtained in (Jiang et al., 2013) 

(KNN classifier), (Zhang et al., 2013) and are comparable to those obtained in (Zhu et al., 2014) and 

(Li et al., 2013) (SVM) which are based on a more refined classification model. It is, however, worth 

noting that our approach is the only one which is tackling the problem of independence from 

operational conditions, which complicates the classification problem since it reduces the amount of 

data available for training the classifier and the similarity between the training and test data. 

 

4.3 The overall hierarchical classification model 

According to Figure 2, the overall hierarchical model is formed by:  

1. one classifier for identifying the onset of the degradation, 𝐶0 

2. one classifier for identifying the location of the degradation, 𝐶1 

3. two classifiers for identifying the degradation mode, 𝐶2
𝑏 with 𝑏 = 1,2 indicating which 

bearing is degrading, where 𝑏 = 1 and 𝑏 = 2 refer to drive end and fan end bearing, 

respectively 



4. six classifiers for identifying the degradation level, 𝐶3
𝑏,𝑖

 with  𝑖 = 1,2,3 indicating the 

degradation mode (1 refers to inner race defects, 2 to balls defects and 3 to outer race defects) 

In order to obtain independence from the operational conditions, the training sets used to build the 

classifiers are always formed by patterns extracted from signals collected from a motor operating at 

a load different from that from which the patterns of the test sets have been obtained. The test is 

repeated considering classifiers trained with patterns collected from motor operating at different 

loads, until all the loads have been considered. The number of patterns used for the training and test 

of the different classifiers are summarized in Table 4. 

 

4.4      Feature selection results 

A MOBDE-based approach has been applied using the MO fitness functions  𝑭(𝒛)  in (7) as criteria 

for the selection of the relevant features. Each candidate solution 𝒛 is a binary string of 174 bits 

(genes), the first 87 genes represent the input features to the classifiers at stage 2, whereas genes from 

88 to 174 represent the input features to the classifiers at stage 3. The parameters CR, SF and NP of 

the BDE have been set to 0.30, 0.5 and 350, respectively. The choice of the value of 0.30 for the 

crossover parameter, CR, is motivated by the necessity of maintaining diversity in the population and 

it has been set according to the suggestions in (Gong et al., 2014), where it is shown that low CR 

values can lead to a gradual and successful exploration of a complex search space. The scale factor 

parameter, SF, has been set to 0.5 according to the suggestion of (Ali, 2005). Finally, a large 

population, formed by 350 chromosomes has been used in order to allow a deep exploration of the 

multidimensional search space (Mallipeddi & Suganthan, 2008). 

The performance of the MO optimization can be quantified in terms of the diversity of the solutions 

and the convergence to the Pareto optimal front (Deb et al., 2002). Since in a MO optimization 

problem, it is typically not possible to simultaneously improve the values of two or more objective 

functions without causing the deterioration of some other objectives (Azevedo & Arujo, 2011), 

diversity is a fundamental requirement in a MO evolutionary optimization. In practice, diversity in 



the population allows improving the coverage of the search space and exploring different evolutionary 

paths. An indicator of the diversity of a Pareto optimal set is the hyper-volume over the non-

dominated set, which has been defined as the Lebesgue-measure of the hyper-volume with respect to 

a lower reference bound (normally, the ideal worst values of each objective function) (Zitzler, 2003): 

when two Pareto fronts are compared, higher is the value of such indicator, better is the performance 

in terms of objective function evaluations and wider is the exploration of the search space. In our 

case, we set as upper reference point, the point (1,1,87,3) i.e., the feature set characterized by the 

worst possible performances i.e. all the patterns are misclassificated and 87 features extracted from 

𝑆 = 3 sensors are used. Figure 5 shows the Pareto fronts obtained after G=1500 generations applying 

the NSBDE and the MODE III selection strategies, and Table 5 reports the statistics of the 

corresponding hyper-volumes. 

 

Notice that NSBDE performs better than MODE III in terms of diversity and performance of the 

solutions. This has justified the application of the NSBDE strategy with a high number of generations 

in order to identify the optimal Pareto set. Figure 6 shows that the optimal Pareto set hyper-volume 

is increasing until generation 15500 and then it tends to remain constant. This indicates that the Pareto 

set becomes stable and no improvement of the solutions is expected to be found by further increasing 

the number of generations. 

 

In order to select the solution to be actually used for the development of the bearing diagnostic system, 

we have considered the following information provided by experts: 

a) the computational cost of memory pre-allocation depends on the number of slots to be used. 

A slot typically allows to use from one to eight features, thus the computational cost is the 

same if the number of features is between 1 and 8, and it increases when the number of features 

exceeds 9. Since solutions with more than 16 features have not been identified, the 

computational cost can be that of 1 or 2 slots. 



b) the monetary cost for sensors (i.e., measurement devices and data collection system) is 

directly proportional to the number of sensors to be installed. 

In order to select the best compromise solution  𝒛𝑜𝑝𝑡
∗ , we firstly normalize the four objective functions 

in a scale from 0 to 1, where 0 corresponds to the minimum value of the objective function in the 

Pareto optimal front and 1 to the maximum value. With respect to the objective function 3, in order 

to take into account the information provided by the expert,  we have assigned a normalized value of 

0 to all the solutions of the Pareto optimal set characterized by less than 9 features (all characterized 

by the same cost) and of 1 to all the solutions with more than 8 features (all characterized by the same 

cost). 

Then, we resort to the TOPSIS method (Technique for Order Preference by Similarity to an Ideal 

Solution) (Opricovic & Tzeng, 2004), which is a multiple criteria decision making method whose 

basic principle is that the chosen solution should have the shortest distance from the ideal solution 

and the farthest distance from the negative-ideal solution (Appendix B). Table 6 reports the features 

in the best compromise solution, 𝒛𝑜𝑝𝑡
∗ , whereas its performance is reported in Table 7. 

 

It can be observed that only one statistical indicator, the peak value, has been selected for both 

classifiers, whereas all the other features, except a minimum wavelet coefficient, are norms computed 

at different levels of the WPD. This result confirms the superiority of the WPD feature for diagnostics 

in bearings with respect to DWT, as already pointed out in (Chebil et al., 2009) where, however, the 

problem of the independence from operational conditions is not addressed and the possibility of 

building classifiers based on a mixture of DWT and WPD features is not considered. It is also 

interesting to notice that 6 features are extracted from the DE sensor and just 2 from the FE sensor. 

Thus, it seems that the drive-end features are more informative with respect to bearing degradation 

than the fan-end features. This is also confirmed by the analysis of the solution of the Pareto optimal 

front with features extracted from only one sensor (circles in Figure 7): in all these solutions the DE 

sensor is selected. Finally, according to the identified optimal compromise solution, the classifiers 



for the identification of the degradation mode require more features than those for the identification 

of the degradation level. This can be interpreted by observing that the task of the degradation mode 

classifiers is more complex since it has to consider a large set of patterns characterized by all the 

types of degradation modes, whereas the degradation level classifiers have to consider only a subset 

of those patterns, i.e. those characterized by a specific degradation mode (Figure 2) and thus a more 

limited training space. 

 

4.5  Classification results 

Once the feature selection task has been performed, the bearing diagnostic system has been developed 

using as input features for classifiers at stages 2 and 3 the features in Table 6 (first and second 

columns, respectively). With respect to the classifiers, 𝐶0 and 𝐶1, we have performed an exhaustive 

search among all the possible combinations of the 8 selected features for the classifiers at stage 2 and 

we have obtained the best performance using the feature sets in Tables 8 and 9, respectively. It is 

interesting to notice that one feature is sufficient for the bearing detection task. 

 

The overall performance of the hierarchical classification model has been verified on the data of the 

validation set, not previously used during the feature selection. The percentage of patterns for which 

the classification is correct in all the 4 stages of the diagnostic system is 79.78% in the case in which 

the training set is forced to contain only patterns collected from an operational condition (load) 

different from that of the test patterns (hereafter referred to as Case 1) and 97.61% in the case in 

which the training set contains patterns collected at any load (hereafter referred to as Case 2). Table 

10, second column, reports the performances of the single classifiers of the hierarchical structure in 

Case 1 and column 4 in Case 2. 

The less satisfactory performance is obtained by classifier C2
2,3

 which is devoted to the identification 

of the intensity of the FE bearing degradation due to outer raceway defects. It is interesting to notice 



that according to (CWRU), the Case Western Reserve University Bearing data referring to the outer 

raceway defects with an intensity level of 21 mils and at load 0 have been collected considering 

bearing with defects located at the 3 o’clock direction (directly in the load zone), whereas, for the 

other degradation levels, the defects are located at a 6 o’clock direction (orthogonal to the load zone). 

Thus, the misclassifications are due to the different ways in which the defects are induced, as it can 

be seen in Table 11 which reports the misclassifications of the patterns at the different intensity levels. 

Misclassifications of C2
2 are also due to the same cause. 

With respect to the analysis of the other misclassification causes, it is interesting to observe that the 

proposed feature selection approach is constraining all the classifiers of a given level of the 

hierarchical model to be based on the same set of features, i.e. the 2 classifiers (𝐶2
1 and 𝐶2

2) at level 2 

are all based on the features in Table 6, first column and all the 6 classifiers at level 3 (𝐶3
𝑏,𝑖, 𝑏 = 1,2 

and 𝑖 = 1,2,3) on the features, Table 6, second column. This choice allows obtaining, for each level 

of the hierarchical model, a set of features which provides a good compromise between the 

performance of the different classifiers of the level, but is not optimal for the single classifier. 

Considering, for example, classifier 𝐶2
1 which is devoted to the classification of the degradation mode 

for the drive-end bearing, its performance can be remarkably increased by considering a subset of the 

selected features which does not contain the features measured by the FE sensor. In particular, the 

misclassification rate of 𝐶2
1 reduces from 4.17 to 0.02 when only features 2A, 2B and 2E (Table 6) 

are used as input of the classifier. Thus, the fan-end features (2F and 2G in Table 6) have been selected 

by the MOBDE algorithm only for the information that they provide for the classification of defects 

at the fan-end bearing, but they cause a decrease in the performance of the drive-end bearing fault 

classifier. This can be graphically seen in Figures 8 and 9: the patterns representative of the different 

degradation modes are clearly separated when the drive-end features 2A, 2B and 2E are used (Figure 

8), whereas they become more confused when the fan-end feature 2G is taken into account (Figure 

9)  



 

5.   CONCLUSIONS 

In this work, we have developed a diagnostic approach for the identification and characterization of 

defeats in automotive bearings based on a hierarchical architecture of K-Nearest Neigbour classifiers. 

Different features extracted from acceleration signals in the time and frequency domains have been 

considered, and an optimal feature set has been identified by resorting to a wrapper approach based 

on the use of a binary differential evolution algorithm. Multiple objectives of the search have been 

the maximization of the diagnostic system performance, and the minimization of the cost associated 

to the development of the diagnostic system and the measurement of the acceleration signals. Since 

the external conditions experienced by automotive bearings remarkably influence the acceleration 

signal data and, thus, may cause unsatisfactory performance in application, a further requirement is 

the independence of the extracted features from the external conditions.  The developed method has 

been applied with success to the data of the Western Reserve Case University Bearing dataset which 

contains real vibrational data collected in experimental tests performed on degraded bearings.  

The practical deployment and validation of the proposed diagnostic approach for automotive bearings 

requires the design and execution of further tests reproducing bearing degradation in automotive 

vehicles under realistic external conditions. Further research work will be devoted to the application 

of the developed method to real data collected during FEV operation.  

This activity is being performed within the European Project HEMIS (www.hemis-eu.org), whose 

objective is the development of prognostics and health monitoring systems for the most critical 

components of Fully Electric Vehicles.  
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1. Mean value                                                                                                                                

 2. Kurtosis                                                                                                                                       

3. Skew value                                                                                                                                

4. Standard Deviation                                                                                                                     

5. Crest indicator                                                                                                                        

 6. Clearance indicator                                                                                                                        

7. Shape indicator                                                                                                                        

8. Impulse indicator                                                                                                                      

 9. Peak value                                                                                                                              

10. Minimum Haar Wavelet coefficient                                                                                        

11. Maximum Haar Wavelet coefficient                                                                                       

12. Norm  level A3 Daubechies Wavelet transform                                                                  

13. Norm  level D3 Daubechies Wavelet transform                                                                 

14. Norm  level D2 Daubechies Wavelet transform                                                                  

15. Norn  level D1 Daubechies Wavelet Transform                                                                   

16. Norm Node 1 Symlet6 Wavelet                                                                                                     

17. Norm Node 2 Symlet6  Wavelet                                                                                              

                           …                                                                                                                                        

28. Norm Node 13 Symlet6 Wavelet                                                                                                   

29. Norm Node 14 Symlet6 Wavelet 

 

 

Appendix B: the TOPSIS method for the selection of the best compromise solution 

The basic principle of this technique is that the chosen alternative should have the shortest distance 

from the ideal solution and the farthest distance from the negative-ideal solution. The TOPSIS method 

is described in (Opricovic & Tzeng, 2004): 

1. Compute for each solution in the Pareto optimal set the values �̃�𝑝,𝛼: 

                                     �̃�𝑝,𝛼 = 𝐹𝑝(𝑧𝑝)
𝐹𝑝(𝑧𝑝)

√∑ 𝐹𝛼(𝑧𝑠)2𝑃
𝑠=1

       𝑝 = 1: 𝑃, 𝛼 = 1: 4                          (13)                                                                               

2. Calculate the weighted values 𝜉𝑝,𝛼: 

                                           𝜉𝑝,𝛼 = �̃�𝑝,𝛼 ∙ 𝜔𝛼         𝑝 = 1: 𝑃, 𝛼 = 1: 4                                   (14) 

                                                                             ∑ 𝜔𝜁
4
𝜁=1 = 1                                                       (15) 

where 𝜔𝛼 indicates the relative importance of the i-th objective and is here taken equal to 0.25 

for all the objectives. 

3. Determine the ideal and negative-ideal solution: 

                                          𝐴∗ = {𝜉1
∗, 𝜉2

∗, 𝜉3
∗, 𝜉4

∗} = min
𝛼

( 𝜉𝑝,𝛼| 𝛼 = 1: 4)                                 (16) 



                                       𝐴− = {𝜉1
−, 𝜉2

−, 𝜉3
−, 𝜉4

−} = max
𝑝=1:𝑃

( 𝜉𝑝,𝛼| 𝛼 = 1: 4)                            (17) 

4. Compute the separation measures, according to the Euclidean distance. The separation of each 

candidate solution from the ideal solution is given by 

                                             𝐷𝑝
∗ = √∑ (𝜉𝑝,𝛼 − 𝜉𝛼

∗ )24
𝛼=1    𝑝 = 1: 𝑃                                          (18) 

Analogously, from the negative-ideal solution is given by         

                                             𝐷𝑝
− = √∑ (𝜉𝑝,𝛼 − 𝜉𝛼

−)24
𝛼=1    𝑝 = 1: 𝑃                                            (19)   

5. Calculate the relative closeness to the ideal solution. For each candidate solution 𝒛𝑝 the 

relative closeness with respect to 𝐴∗ is defined as 

                                                     𝐶𝑝
∗ =

𝐷𝑝
−

𝐷𝑝
∗ +𝐷𝑝

−    𝑝 = 1: 𝑃                                                      (20) 

6. Ranking the solutions in increasing order. 

 

 

 

 

 

 

 

 

 



 

Figure 1: Four level representation of fault detection, fault isolation, failure mode identification and degradation 

level assessment. 

 

 

 

 

Figure 2: The hierarchical model of the bearing diagnostic system. 



 

Figure 3: Leave all but one cross validation with 𝒍 = 𝟒. 

 

 

 

 

Figure 4: Wrapper approach for optimal feature subset selection based on BDE optimization algorithm.  

 

 

Degradation  i Failure intensity f Number of patterns 

(all loads) 

Number of patterns 

for each load 

Inner race (DE) 7 mils 40 10 

Inner race (DE) 14 mils 40 10 

Inner race (DE) 21 mils 40 10 

Balls (DE) 7 mils 40 10 



Balls (DE) 14 mils 40 10 

Balls (DE) 21 mils 40 10 

Outer race (DE) 7 mils 40 10 

Outer race (DE) 14 mils 40 10 

Outer race (DE) 21 mils 40 10 

Inner race (FE) 7 mils 40 10 

Inner race (FE) 14 mils 40 10 

Inner race (FE) 21 mils 40 10 

Balls (FE) 7 mils 40 10 

Balls (FE) 14 mils 40 10 

Balls (FE) 21 mils 40 10 

Outer race (FE) 7 mils 40 10 

Outer race (FE) 14 mils 40 10 

Outer race (FE) 21 mils 40 10 

 

Table 1: Type of degradation mode and intensity in all the available patterns. DE=Drive End bearing and 

FE=Fan End bearing 

 

Selected features 

Shape Indicator (DE) 

Peak Value (DE) 

Norm Node 5 Symlet6 wavelet  (DE) 

Norm Node 11 Symlet6 wavelet (DE) 

Norm Node 14 Symlet6 wavelet (DE) 

 

                                            Table 2: Selected features (DE= Drive End sensor) 

 

 

 

 

Work Number of 

features 

extracted 

Feature 

selection 

approach 

Number of 

features  

after 

reduction 

Number of 

classes 

considered 

Bearing 

considered 

Classifier Misclassification rate 

Zhang et al., 

2013 

21 Kernel Principal 

Component 

Analysis 

3 7 Drive End SVM 0.47% 

Jiang et al., 
2013 

16 Semi-supervised 
kernel Marginal 

Fisher Analysis 

5 10 Drive End SVM 
KNN 

0.00% 
1.50% 

Zhu et al., 
2014 

8 None 8 10 Drive End SVM 0.00% 

Li et al., 

2013 

14 Linear Local 

Tangent Space 

Alignment 

3 7 Drive End Littlewoods-

Paley SVM 

5.71% 

Ours 29 Wrapper search 5 10 Drive End KNN 0.01% 

 

Table 3: Comparison of our work with other literature works 



 

 No. of patterns in the training 

set 

No. of patterns in the test set 

𝑅2
𝑏,𝑗 144 432 

𝑅3
𝑏.𝑖.𝑗 48 144 

 

Table 4: Number of patterns in the training and test set. 

 

 

Selection 

strategy 

Hyper 

Volume 

Median 

Hyper 

Volume 

Mean value 

Hyper 

Volume 

standard 

deviation 

NSBDE 148.4094 148.4146 0.1913 

MODE III 64.2715 64.4124 1.3780 
 

Table 5: Statistics on the hyper-volume over the non-dominated set obtained by applying the NSDE and the 

MODE III selection strategies. 

 

 

Figure 5: Pareto optimal front, after 𝑮 = 𝟏𝟓𝟎𝟎 generations (stars NSBDE strategy, squares MODE III strategy). 



 

Figure 6: Hyper-volume values every 1500 generations. 

 

The NSBDE based Pareto optimal front consists of 𝑃 = 211 solutions,  𝒛∗ (Figure 6).  

 

Figure 7: Pareto optimal front after 19500 generations. 

 

 

Input features selected for the  classifiers 

of the degradation mode (𝑪𝟐
𝟏 and 𝑪𝟐

𝟐) 
Input features selected for the classifiers of the 

degradation level (𝑪𝟑
𝟏,𝟏

, 𝑪𝟑
𝟏,𝟐

, 𝑪𝟑
𝟏,𝟑, 𝑪𝟑

𝟐,𝟏, 𝑪𝟑
𝟐,𝟐, 𝑪𝟑

𝟐,𝟑
) 

2A = Peak Value (DE)  3A = Peak Value (DE) 

2B = Norm Node 5 Symlet6 wavelet  (DE) 3B = Minimum Haar wavelet coefficient (DE) 

2C = Norm Node 7 Symlet6 wavelet  (DE) 3C = Norm Node 5 Symlet6 wavelet  (DE) 



2D = Norm Node 12 Symlet6 wavelet  (DE) 3D = Norm Node 12 Symlet6 wavelet  (DE) 

2E = Norm Node 14 Symlet6 wavelet  (DE) 3E = Norm Node 11 Symlet6 wavelet  (FE) 

2F = Minimum Haar wavelet coefficient (FE)  

2G = Norm Node 11 Symlet6 wavelet  (FE)  

Table 6: Features in the optimal compromise solution 𝒛𝑜𝑝𝑡
∗ : the column on the left contains the features selected 

for the classifiers of the degradation mode (hereafter indicated by 2A, 2B,…, 2G), the column on the right that 

for the classifiers of the degradation level (hereafter indicated by 3A, 3B,…, 3E); DE refers to features extracted 

from the Drive End sensor, FE from the Fan End sensor. 

 

𝑭𝟏 𝑭𝟐 𝑭𝟑 𝑭𝟒 

0.0463 0.0495 8 2 
 

Table 7: Objective function values in the optimal solution 𝒛𝑜𝑝𝑡
∗ .  

 

Detection of the degradation  
Norm Node 7 Symlet6 wavelet  (DE) 

 

Table 8: Input feature of the bearing d the solution 𝒛𝑜𝑝𝑡
∗  for the detection of the degradation classifier (DE= 

Drive End sensor). 

 

 

Isolation of the degrading bearing 
Peak Value (DE) 

Minimum Haar wavelet coefficient (DE) 

Norm Node 12 Symlet6 wavelet  (DE) 

Minimum Haar wavelet coefficient (FE) 

 

Table 9: Features of the solution 𝒛𝑜𝑝𝑡
∗  for the degradation isolation of the degrading bearing classifier 

(DE= Drive End sensor, FE=Fan End sensor). 

 

 

Classifiers Misclassification rate 

Case 1 

Misclassification rate 

Case 2 

Standard deviation 

Case2 

 𝐶0  0.00% 0.00% ±0.00% 

 𝐶1  1.61% 0.22% ±0.01% 

 𝐶2
1 4.17% 1.11% ±3.33% 

 𝐶2
2 8.33% 4.44% ±5.07% 

  𝐶3
1,1 0.00% 0.00% ±0.00% 

  𝐶3
1,2 12.50% 0.00% ±0.00% 

 𝐶3
1,3 0.00% 0.00% ±0.00% 

 𝐶3
2,1 12.50% 0.00% ±0.00% 



 𝐶3
2,2 8.33% 2.67% ±6.24% 

 𝐶3
2,3 16.67% 6.67% ±8.21% 

 

Table 10: Misclassification rates of the KNN-classifiers for the solution 𝒛𝑜𝑝𝑡
∗ . 

True class of the test pattern 

(intensity of the degradation level) 

Misclassification rate 

7 0 

14 0 

21 0.50 

Mean 0.1667 
 

Table 11: Analysis of the misclassification rate of the 𝑪𝟑
𝟐,𝟑

 classifier.  

 

 

 

Figure 8: Representation of the patterns used to train classifier 𝑪𝟐
𝟏 in the space of the Peak Value (DE), Norm 

Node 5 Symlet6 (DE) and Norm Node 14 Symlet6 (DE) features. 

 



 

Figure 9: Representation of the patterns used to train classifier 𝑪𝟐
𝟏 in the space of Peak Value (DE), Norm Node 5 

Symlet6 (DE) and Norm Node 11 Symlet6 (FE). 

 


