173 research outputs found

    Performance metrics and routing in vehicular ad hoc networks

    Get PDF
    The aim of this thesis is to propose a method for enhancing the performance of Vehicular Ad hoc Networks (VANETs). The focus is on a routing protocol where performance metrics are used to inform the routing decisions made. The thesis begins by analysing routing protocols in a random mobility scenario with a wide range of node densities. A Cellular Automata algorithm is subsequently applied in order to create a mobility model of a highway, and wide range of density and transmission range are tested. Performance metrics are introduced to assist the prediction of likely route failure. The Good Link Availability (GLA) and Good Route Availability (GRA) metrics are proposed which can be used for a pre-emptive action that has the potential to give better performance. The implementation framework for this method using the AODV routing protocol is also discussed. The main outcomes of this research can be summarised as identifying and formulating methods for pre-emptive actions using a Cellular Automata with NS-2 to simulate VANETs, and the implementation method within the AODV routing protocol

    Road-based routing in vehicular ad hoc networks

    Get PDF
    Vehicular ad hoc networks (VANETs) can provide scalable and cost-effective solutions for applications such as traffic safety, dynamic route planning, and context-aware advertisement using short-range wireless communication. To function properly, these applications require efficient routing protocols. However, existing mobile ad hoc network routing and forwarding approaches have limited performance in VANETs. This dissertation shows that routing protocols which account for VANET-specific characteristics in their designs, such as high density and constrained mobility, can provide good performance for a large spectrum of applications. This work proposes a novel class of routing protocols as well as three forwarding optimizations for VANETs. The Road-Based using Vehicular Traffic (RBVT) routing is a novel class of routing protocols for VANETs. RBVT protocols leverage real-time vehicular traffic information to create stable road-based paths consisting of successions of road intersections that have, with high probability, network connectivity among them. Evaluations of RBVT protocols working in conjunction with geographical forwarding show delivery rate increases as much as 40% and delay decreases as much as 85% when compared with existing protocols. Three optimizations are proposed to increase forwarding performance. First, one- hop geographical forwarding is improved using a distributed receiver-based election of next hops, which leads to as much as 3 times higher delivery rates in highly congested networks. Second, theoretical analysis and simulation results demonstrate that the delay in highly congested networks can be reduced by half by switching from traditional FIFO with Taildrop queuing to LIFO with Frontdrop queuing. Third, nodes can determine suitable times to transmit data across RBVT paths or proactively replace routes before they break using analytical models that accurately predict the expected road-based path durations in VANETs

    Predicting Multimedia Traffic in Wireless Networks: A Performance Evaluation of Cognitive Techniques

    Get PDF
    Traffic engineering in networking is defined as the process that incorporates sophisticated methods in order to ensure optimization and high network performance. One of the most constructive tools employed by the traffic engineering concept is the traffic prediction. Having in mind the heterogeneous traffic patterns originated by various modern services and network platforms, the need of a robust, cognitive, and error-free prediction technique becomes even more pressing. This work focuses on the prediction concept as an autonomous, functional, and efficient process, where multiple cutting-edge methods are presented, modeled, and thoroughly assessed. To this purpose, real traffic traces have been captured, including multiple multimedia traffic flows, so as to comparatively assess widely used methods in terms of accuracy

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Situational Awareness Enhancement for Connected and Automated Vehicle Systems

    Get PDF
    Recent developments in the area of Connected and Automated Vehicles (CAVs) have boosted the interest in Intelligent Transportation Systems (ITSs). While ITS is intended to resolve and mitigate serious traffic issues such as passenger and pedestrian fatalities, accidents, and traffic congestion; these goals are only achievable by vehicles that are fully aware of their situation and surroundings in real-time. Therefore, connected and automated vehicle systems heavily rely on communication technologies to create a real-time map of their surrounding environment and extend their range of situational awareness. In this dissertation, we propose novel approaches to enhance situational awareness, its applications, and effective sharing of information among vehicles.;The communication technology for CAVs is known as vehicle-to-everything (V2x) communication, in which vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) have been targeted for the first round of deployment based on dedicated short-range communication (DSRC) devices for vehicles and road-side transportation infrastructures. Wireless communication among these entities creates self-organizing networks, known as Vehicular Ad-hoc Networks (VANETs). Due to the mobile, rapidly changing, and intrinsically error-prone nature of VANETs, traditional network architectures are generally unsatisfactory to address VANETs fundamental performance requirements. Therefore, we first investigate imperfections of the vehicular communication channel and propose a new modeling scheme for large-scale and small-scale components of the communication channel in dense vehicular networks. Subsequently, we introduce an innovative method for a joint modeling of the situational awareness and networking components of CAVs in a single framework. Based on these two models, we propose a novel network-aware broadcast protocol for fast broadcasting of information over multiple hops to extend the range of situational awareness. Afterward, motivated by the most common and injury-prone pedestrian crash scenarios, we extend our work by proposing an end-to-end Vehicle-to-Pedestrian (V2P) framework to provide situational awareness and hazard detection for vulnerable road users. Finally, as humans are the most spontaneous and influential entity for transportation systems, we design a learning-based driver behavior model and integrate it into our situational awareness component. Consequently, higher accuracy of situational awareness and overall system performance are achieved by exchange of more useful information

    Model checking techniques for runtime testing and QoS analysis

    Get PDF
    Los sistemas software y hardware se encuentran cada vez más presentes en nuestras vidas, en multitud de campos de aplicación y de cualquier tamaño. El análisis de estos sistemas es una tarea dura pero necesaria para garantizar que cumplan con sus requisitos. Estos requisitos pueden ser de varios tipos, como evitar comportamientos erróneos u ofrecer un rendimiento satisfactorio. Existen muchas técnicas y herramientas diseñadas para atacar este problema. Por lo general, se aplican distintas técnicas dependiendo del tipo de sistema, fase de desarrollo o tipo de análisis. El model checking es una de estas técnicas de análisis. Un model checker analiza el espacio de estados de un sistema para comprobar si el sistema cumple una propiedad dada. Sin embargo, según aumenta la complejidad del sistema a analizar, su espacio de estados crece rápidamente, hasta llegar a un punto en el que no es factible analizarlo. En esta tesis proponemos una solución integrada basada en model checking para analizar sistemas cuyo comportamiento pueda ser observado en forma de trazas de ejecución. Hemos llamado a esta solución OptySim. Nuestra solución permite acceder a sistemas externos de una forma uniforme, permitiendo realizar distintos tipos de análisis sobre diferentes tipos de sistemas de una forma más homogénea. OptySim trata con un conjunto de trazas de ejecución, que representan un subconjunto del espacio de estados completo del sistema. Para obtener dichas trazas el sistema se ejecuta repetidas veces, posiblemente variando parámetros del sistema de acuerdo a las instrucciones del usuario, generándose una traza por cada ejecución. El contenido de las trazas depende de cada sistema, y además puede variar dependiendo de las necesidades del análisis. Para ello se pueden aplicar una de las proyecciones que se han definido, y que transforman trazas completas en trazas abstractas con una menor, pero suficiente para los propósitos del análisis, cantidad de información. El análisis está guiado por uno o más objetivos establecidos por el usuario, tales como asertos o fórmulas de lógica temporal (LTL), y que le dan al análisis el significado pretendido por el usuario. Los objetivos pueden indicar tanto propiedades deseables del sistema, por ejemplo una meta de rendimiento, como propiedades que no deben ocurrir, por ejemplo una condición de error. OptySim se ha aplicado a varios casos de estudio en varias áreas y con distintos propósitos, para demostrar su utilidad. En primer lugar se ha integrado con el simulador de redes ns-2, para análisis de fiabilidad y rendimiento, optimización de parámetros, y validación y ajuste de modelos. Para el segundo grupo de casos de estudio, se ha integrado con una máquina virtual de Java para analizar programas escritos en dicho lenguaje de programación. En esta ocasión, todos los casos de estudio están enfocados a la depuración de programas

    PrioDeX: a Data Exchange middleware for efficient event prioritization in SDN-based IoT systems

    Get PDF
    International audienceReal-time event detection and targeted decision making for emerging mission-critical applications require systems that extract and process relevant data from IoT sources in smart spaces. Oftentimes, this data is heterogeneous in size, relevance, and urgency, which creates a challenge when considering that different groups of stakeholders (e.g., first responders, medical staff, government officials, etc) require such data to be delivered in a reliable and timely manner. Furthermore, in mission-critical settings, networks can become constrained due to lossy channels and failed components, which ultimately add to the complexity of the problem. In this paper, we propose PrioDeX, a cross-layer middleware system that enables timely and reliable delivery of mission-critical data from IoT sources to relevant consumers through the prioritization of messages. It integrates parameters at the application, network, and middleware layers into a data exchange service that accurately estimates end-to-end performance metrics through a queueing analytical model. PrioDeX proposes novel algorithms that utilize the results of this analysis to tune data exchange configurations (event priorities and dropping policies), which is necessary for satisfying situational awareness requirements and resource constraints. PrioDeX leverages Software-Defined Networking (SDN) methodologies to enforce these configurations in the IoT network infrastructure. We evaluate our approach using both simulated and prototype-based experiments in a smart building fire response scenario. Our application-aware prioritization algorithm improves the value of exchanged information by 36% when compared with no prioritization; the addition of our network-aware drop rate policies improves this performance by 42% over priorities only and by 94% over no prioritization

    Transparent metropolitan vehicular network - design and fast prototyping methodology

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201
    • …
    corecore