
Model checking techniques for runtime
testing and QoS analysis

Alberto Salmerón Moreno
Supervised by Pedro Merino Gómez

Department of Computer Science

University of Málaga

May 2014

AUTOR: Alberto Salmerón Moreno
EDITA: Publicaciones y Divulgación Científica. Universidad de Málaga

Esta obra está sujeta a una licencia Creative Commons:
Reconocimiento - No comercial - SinObraDerivada (cc-by-nc-nd):
Http://creativecommons.org/licences/by-nc-nd/3.0/es
Cualquier parte de esta obra se puede reproducir sin autorización
pero con el reconocimiento y atribución de los autores.
No se puede hacer uso comercial de la obra y no se puede alterar, transformar o hacer
obras derivadas.

Esta Tesis Doctoral está depositada en el Repositorio Institucional de la Universidad de
Málaga (RIUMA): riuma.uma.es

El Dr. Don Pedro Merino Gómez, Titular de Universidad del Área de Telemática de
la E.T.S. de Ingeniería de Telecomunicación de la Universidad de Málaga,

Certifica que Don Alberto Salmerón Moreno, Ingeniero en Informática, ha realizado
en el Departamento de Lenguajes y Ciencias de la Computación de la Universidad de
Málaga, bajo mi dirección, el trabajo de investigación correspondiente a su Tesis Doctoral
titulada:

Model checking techniques
for runtime testing and QoS analysis

Revisado el presente trabajo, estimo que puede ser presentado al tribunal que ha
de juzgarlo, y autorizamos la presentación de esta Tesis Doctoral en la Universidad de
Málaga.

Málaga, Mayo de 2014

Fdo.: Pedro Merino Gómez
Titular de Universidad

Área de Telemática

Acknowledgements

This thesis has been partially funded by Andalusian projects P07-TIC-03131
and P11-TIC-07659, Spanish projects TIN2012-35669, TIN 2008-05932,
8.06/5.47.3154-1 and IPT-2011-1034-370000, and ERDF from the European
Commission.

Agradecimientos

Quiero comenzar agradeciendo a Pedro, mi director, sin el cual no existiría
este volumen. Él me dio una oportunidad al acogerme en el 3.3.3, y siguió
confiando en mí para la realización de este trabajo. Gracias a él he conocido
los entresijos del mundo de la investigación, y he podido participar en
proyectos interesantes y también desafiantes.

También quiero agradecer a María del Mar su ayuda con los aspectos más
formales de este trabajo, en los que siempre que ha costado entrar, y a
Almudena y Damián por su colaboración en algunos de los trabajos aquí
presentados.

A todos los compañeros presentes y pasados del 3.3.3 (ahora A.1.3), porque
trabajar en tan buena compañía no es trabajar. Con ellos he pasado tantos
buenos momentos que darían para escribir otra tesis.

A todos los amigos con los que he vivido tantas experiencias a lo largo de
estos años, y que le dan perspectiva a la vida.

A mi familia por su apoyo, aunque no lo demuestre tanto como les gustaría.

Esta tesis no habría sido la misma sin las personas con las que he compartido
estos últimos años, dentro y fuera del trabajo.

A todos vosotros, gracias.

Contents

Contents i

List of Figures v

List of Tables vii

List of Listings ix

1 Introduction 1
1.1 Overview . 2
1.2 Contributions . 4
1.3 Organization . 4

I Preliminaries 7

2 State of the art 9
2.1 Model checking . 10

2.1.1 System modeling . 11
2.1.2 Property specification languages 11
2.1.3 Automata-based LTL model checking 13
2.1.4 Abstraction . 16
2.1.5 The Spin model checker . 19

2.2 Trace-based analysis . 23
2.2.1 Analysis of network simulations 24
2.2.2 Analysis of Java programs . 27

II The OptySim trace analysis framework 31

3 Analysis framework 33
3.1 Framework overview . 33

i

CONTENTS

3.1.1 Setup . 34
3.1.2 Code generation . 36
3.1.3 Analysis . 37
3.1.4 Results . 38

3.2 Protocol . 39
3.2.1 Negotiation . 40
3.2.2 Setup . 42
3.2.3 Execution . 43
3.2.4 Example . 44

3.3 Objectives . 44
3.3.1 State assertions . 47
3.3.2 LTL formulas and never claim automata 47
3.3.3 Parameter configuration validation 48
3.3.4 Inferring results from previous analyses 49

3.4 Implementation . 50
3.4.1 Promela template . 50
3.4.2 Data structures . 51
3.4.3 Exploration and analysis . 55
3.4.4 Protocol implementation . 57
3.4.5 Template instantiation . 60
3.4.6 System integration . 61

3.5 Summary . 61

4 Abstraction of execution traces 63
4.1 State space . 64

4.1.1 Parameter space . 65
4.1.2 External factors . 66

4.2 Trace projection . 68
4.2.1 Counter projection . 70
4.2.2 Hash projection . 71
4.2.3 Folded projections . 72

4.3 Preservation of results . 74
4.4 Operational semantics of executions exploration 76

III Applications 85

5 Analysis of ns-2 network simulations 87
5.1 The ns-2 network simulator . 87

5.1.1 Architecture . 88
5.1.2 State space and traces . 90

ii

CONTENTS

5.2 Extraction of ns-2 execution traces . 91
5.2.1 Overview of integration with ns-2 92
5.2.2 Generic C++ library . 93
5.2.3 ns-2 integration library . 96

5.3 Case study: video streaming over TCP on mobile environments 98
5.3.1 Network scenario . 98
5.3.2 Reliability analysis . 99
5.3.3 Performance analysis . 103

5.4 Case study: E-model extension . 109
5.4.1 E-model for VoIP QoE evaluation 109
5.4.2 On-the-fly E-model computation 114
5.4.3 Implementation in ns-2 . 115
5.4.4 Validation analysis . 118

6 Inverse modeling of network KPIs 121
6.1 Key performance indicators . 121
6.2 Inverse modeling methodology . 122

6.2.1 SymPA . 124
6.3 Case study: jitter model . 124

6.3.1 Field test scenario . 125
6.3.2 Replaying jitter traces in simulations 126
6.3.3 Inverse modeling . 126

6.4 Related work . 129

7 Analysis of Java execution traces 131
7.1 The Java programming language . 131

7.1.1 Java Platform Debugger Architecture 132
7.2 Extraction of Java execution traces . 133

7.2.1 Eclipse plug-in . 133
7.2.2 Runtime monitor . 136

7.3 Case studies . 137
7.3.1 Applications and requirements 137
7.3.2 Counter projection . 142
7.3.3 Hash projection . 142

7.4 Related work . 144
7.4.1 Comparison with JPF . 144

IV Final remarks 145

8 Conclusions and Future Work 147

iii

CONTENTS

8.1 Conclusions . 147
8.2 Future work . 149

V Appendices 151

Appendix A: Configuration files 153
A.1 XML Schema . 153
A.2 Legacy configuration . 158

A.2.1 ns-2 legacy configuration . 158
A.2.2 TJT legacy configuration . 159

Appendix B: Protocol definitions 161
B.1 Promela model . 161
B.2 Protocol buffer message definitions . 169

Appendix C: Improved E-model algorithm 173

Appendix D: Resumen en español 177
D.1 El marco de trabajo de análisis OptySim 178

D.1.1 Visión general del análisis . 178
D.1.2 Objetivos . 180

D.2 Proyección de trazas de ejecución . 181
D.3 Integración y casos de estudio: ns-2 182

D.3.1 Caso de estudio: vídeo sobre TCP 182
D.3.2 Caso de estudio: validación de E-model 183
D.3.3 Caso de estudio: modelado inverso de KPIs 183

D.4 Integración y casos de estudio: Java 185
D.5 Conclusiones . 186

References 189

iv

List of Figures

1.1 Overview of the OptySim analysis framework 3

2.1 Example LTL formulas . 14
2.2 Transformation of a Kripke structure into a Büchi automaton 15
2.3 Nested depth first search (NDFS) algorithm 17
2.4 Overview of the Spin tool workflow for checking LTL properties 20
2.5 Data structures used by Spin . 24
2.6 Overview of Verisim workflow . 25

3.1 Overview of the OptySim analysis framework 34
3.2 Main loop of Spin executing the Promela template 38
3.3 Communication protocol overview: main activities 41
3.4 Communication protocol overview: execution subactivities 43
3.5 Example scenario of the communication protocol 45
3.6 Overview of the Promela template contents 52
3.7 State stack . 54
3.8 Variables table . 54
3.9 Generating bindings from protocol buffer message definitions 59
3.10 Overview of the Promela instantiation process 60

4.1 Trace projection . 69
4.2 Trace projection with state counting 71
4.3 Trace projection with state hashing . 72
4.4 Example of the folded and limited folded hash projections of a trace . . 74
4.5 Selected verification-level rules from [64]. 78
4.6 Rules for depth-first exploration of trace-based state spaces (I). 79
4.7 Rules for depth-first exploration of trace-based state spaces (II). 80
4.8 Trace exploration example . 82

5.1 Event scheduling and handling example in ns-2 90
5.2 ns-2 trace: new state after each event vs. after a relevant event 91
5.3 Components of ns-2 integration . 92

v

LIST OF FIGURES

5.4 Main classes of liboptysim-cpp . 94
5.5 Partial sequence diagram of protocol implementation 96
5.6 Main classes of liboptysim-cpp-ns2 97
5.7 Overview of video download over TCP 99
5.8 State diagram of the video client . 101
5.9 Sample trace output for reliability objective violation 102
5.10 Influence of parameters in the experiments 108
5.11 Influence of the precision of variables 109
5.12 Comparison of adaptive vs. non-adaptive of video download throughput 110
5.13 4-state Markov model of bursty packet loss 112
5.14 Simplified state machine of the improved algorithm for burst modeling . 115
5.15 Class diagram of part of the E-model module 116
5.16 Class diagram of the new error models 118

6.1 Overview of methodology for inverse modeling of KPIs. 123
6.2 Jitter and bandwidth captured during one of the HSDPA field tests. . . . 125
6.3 Jitter from field test data vs simulation with replay 127
6.4 Simulation scenario for inverse modeling of jitter. 128
6.5 Comparison of different jitter models with a real jitter trace. 130

7.1 Overview of the Java Platform Debugger Architecture (JPDA) 132
7.2 Overview of the analysis framework 134
7.3 Screenshot of the TJT Eclipse plug-in 134

D.1 El marco de trabajo de análisis OptySim 179
D.2 Reconstrucción de trazas de ejecución en Spin 180
D.3 Metodologia para el modelado inverso de KPIs 184
D.4 Captura de pantalla del plug-in para Eclipse 185

vi

List of Tables

3.1 Summary of supported objectives. 46

5.1 Scenario parameters and their possible values for the case study 104
5.2 Results for the experiments using regular TCP 105
5.3 Parameter selection for some link configurations 107
5.4 Validation results for our E-model extension 120

6.1 Probability distributions for modeling jitter. 129

7.1 LTL formulas used as testing objectives 138
7.2 Test results using folded counter and hash projections 143
7.3 Results of tests using TJT and JPF-LTL 144

vii

LIST OF TABLES

viii

List of Listings

2.1 Never claim automata for the LTL formula �♦p 19
2.2 Example Promela specification . 21
2.3 Example Promela specification with embedded C code 23
2.4 Example TestNG unit test for a Fibonacci class 29
3.1 Promela template: global state . 53
3.2 Promela template: struct state for state stack 53
3.3 Promela template: initialization and exploration 56
3.4 Promela template: configuration generation 57
3.5 Promela template: trace reconstruction and analysis 58
5.1 ns-2 basic scheduling algorithm implementation 89
5.2 Part of video client implementation in ns-2 100
5.3 Clark’s algorithm for counting state transitions of bursty packet loss model113
7.1 FTP server: main loop . 139
7.2 FTP server: CWD command . 140
7.3 Elevator: elevator waiting for clients 141
A.1 XML Schema definition of configuration files 153
B.1 Promela model of communication protocol 161
B.2 Protocol buffers definitions for communication protocol 169
C.1 Improved state transition counting algorithm; packet reception event . . 174
C.2 Improved state transition counting algorithm; packet loss event 175

ix

LIST OF LISTINGS

x

Chapter 1

Introduction

Hardware and software systems are increasingly present and vital in our lives. From
traditional desktop computers to tiny mobile devices and huge mainframes, and from
simple user applications to controller systems and network stacks.

Developing reliable and efficient systems is a hard task which is fundamental for
many critical areas. Thus, systems have to be analyzed to check that they comply with
what is required of them. For some systems it is enough to check that no unexpected
behaviors are produced during normal operation. For others, it may require optimizing
the available system parameters to reach a satisfactory performance.

Many analysis techniques and tools have been proposed to deal with this problem.
Different types of systems and stages of the development process have been traditionally
the subject to different techniques. For instance, assessing the performance of a net-
worked system may be done analytically at first, then using network simulations during
development, and finally through measurement tools in the final deployment stage.

Model checking [45] is one such analysis technique, which has been successfully
been applied to both software and hardware systems. Model checkers are tools that
analyze the full state space of a system, i.e. all its possible behaviors, to check if a given
property is true. If an error is found, the model checker provides a counter-example, i.e.
a trace that shows a path from the start of the system to the place the error was found on,
which assists the developers in finding and fixing the error.

Although model checking has been traditionally associated with the analysis of
models of systems, it has also been applied to the analysis of real systems, such as C o
Java programs [31][48][74]. One of the most well known issues with model checking
is the state space explosion problem: the size of the state space to be explored grows
quickly with the complexity of the system, and may end up being too large to be covered
in practice. Several techniques have been proposed to address this problem, such as
abstraction or partial order reduction.

One of the most extended techniques for analyzing software systems during develop-
ment is testing [28]. Testing techniques can be broadly classified into white-boxing and

1

1. INTRODUCTION

black-boxing techniques. The former assume knowledge of the implementation of the
system and has access to its components, while the latter does not and is only aware of
the “output” of the system. Testing can also be done at several levels. For instance, in
unit testing [30][21] small parts of a system, such as a class or even just a function, are
tested in isolation. Higher levels test the integration of some of the components, or the
system as a whole.

These techniques have their strengths and weaknesses. While model checking is a
powerful technique that allows the definition of complex temporal requirements, the state
space explosion problem is a significant hurdle for its adoption in complex systems. In
many cases, instead of analyzing the complete state space, it may be useful to analyze a
subset, such as a studying a significant number of system executions.

Although their underlying concepts are the same, many tools are tailored specifically
for a type of system, or a type of analysis within a system. For instance, for analyzing the
correctness of a network protocol, a developer may use model checking and testing tools,
while the performance evaluation and optimization may be performed using a network
simulator. This approach has several drawbacks. On the one hand, the user must learn to
use several tools, with potentially different ways for expressing requirements. On the
other hand, several artifacts or models may be required for analyzing a single system.
These must be kept in sync, and even then there may be a mismatch between the level of
detail accepted by each which may devalue the usefulness of the analyses.

1.1 Overview
In this thesis, we propose an approach to use model checking to analyze external systems
whose behavior can be observed as execution traces, i.e. ordered sequences of states,
called OptySim. External systems are accessed in a uniform way, enabling the use of
a single tool for many types of systems. We show that this integration is also useful
for many purposes, from testing to performance optimization, through a series of case
studies in different areas.

Instead of analyzing the whole state space of a system, which may be impractical or
unavailable, we only deal with the subset given by a set of execution traces. A number of
executions are carried out, possibly by altering the values of a set of system parameters,
and a trace is generated for each of them. The content of these traces depend on the
system itself, and may be adapted depending on the needs of the analysis. We present
two projections that transform a full trace, i.e. one that contains the full state information
for each state, into an abstract trace containing fewer states and/or less information per
state.

The analysis is guided by one or more objectives provided by the user, which convey
the meaning of the analysis that the user wants to carry out. Objectives may we written in
different forms, such as simple state assertions or linear temporal logic (LTL) formulas.

2

Figure 1.1: Overview of the OptySim analysis framework

An objective may indicate a desired property of the system, e.g. a performance objective,
or a undesired property, e.g. an error condition.

In many types of analysis, it is enough to analyze a trace up until an objective has
been met, instead of reporting every property violation within a trace, as it is custom in
model checking. In our approach, execution traces are analyzed on-the-fly, i.e. while
the system is still running. This on-the-fly analysis allows us to stop executions early
when the analysis outcome for an execution trace is known, and can lead to significant
resource savings.

Figure 1.1 shows an overview of our analysis framework. Vertical boxes separate the
different steps of the analysis process, while horizontal lines delineate the responsibilities
of the user, the system being analyzed and the framework itself. In the first step, the
user provides the system, plus the objectives to check. If the system is parameterized,
the user can provide value ranges for them so that the system can be analyzed using
different parameter configurations. In the next step the analyzer is generated using this
information from the user. The third step contains the bulk of the analysis. Using a
custom protocol, the analyzer communicates with the system (or a front-end developed
for a particular type of system) to obtain execution traces and control other aspects of the
execution. Finally, a set of annotated traces is returned, declaring which objective was
met in each trace, if any.

3

1. INTRODUCTION

1.2 Contributions
The main contributions of this thesis, and the publications where they were presented,
can be summarized in the following points:

• A framework for analyzing execution traces using model checking [93][23]. This
framework is based on the Spin model checker and a Promela template which is
customized before each analysis. Among other capabilities, it includes support for
generating parameter configurations and trace backtracking.

• A protocol for interacting with an external system and extract execution traces
on-the-fly. This protocol allows the separation of the analyzer and the system under
analysis, and can be reused for other systems through an appropriate front-end.

• An extension for controlling the exploration of state spaces composed of indepen-
dent traces. The first available result is returned for each trace and the analysis
proceeds with the next one, reducing the state space to be analyzed.

• Two abstraction methods for reducing the information required in execution
traces [23][22]. These methods, called counter and hash projections, minimize the
amount of information per state. The hash projection also allows cycle detection.
The use of folding further reduces the number of states in a trace.

• Integration with the ns-2 network simulator, applied to correctness and performance
analysis [93][92], validation [105], and KPI modeling [55].

• An extension of Clark’s E-model algorithm for estimating VoIP call quality on-the-
fly [105].

• Integration with Java and Eclipse for testing Java programs [23][22]. Using the Java
debugging interface (JDI), execution traces can be extracted without modifying the
original Java program. The use of the hash projection allows using LTL formulas
that require cycle detection in tests.

1.3 Organization
The rest of thesis is organized into five parts.

Part I covers relevant state of the art for our work, from model checking, which is the
backbone of our approach, to other analysis tools that have similarities to ours.

Part II describes our OptySim framework for analyzing traces from external systems.
Chapter 3 starts with an overview of our framework, and then describes in more detail
two important pieces: the communication protocol between our analyzer and the external

4

system, and the objectives that can be used to guide the analysis. The chapter concludes
with a description of the implementation of the analyzer. Chapter 4 formalizes some of
the concepts introduced in the previous chapters, such as the state space to be analyzed,
and describes the trace projections supported by our framework.

Part III contains several applications of our framework to different fields and for
different purposes, divided into three chapters. Chapter 5 describes our integration with
the ns-2 network simulator and two case studies: video streaming over TCP and VoIP
QoE evaluation. Chapter 6 addresses the problem of modeling factors such as jitter
for performing realistic simulations. Finally, Chapter 7 describes our work towards
analyzing Java program execution traces for testing. These chapters also provide an
overview of the work required to integrate ns-2 and Java with our framework.

Part IV concludes the main body of this thesis, a points to future work.
Finally, Part V contains the appendices. Appendix A describes the format of the

configuration files for the analysis. Appendix B contains a Promela model of the
communication protocol and the complete definition of its messages. Appendix C shows
the complete E-model algorithm, referenced in Chapter 5. Appendix D contains a
summary of this thesis in Spanish.

5

1. INTRODUCTION

6

Part I

Preliminaries

7

Chapter 2

State of the art

The development of a system is a complex task that must be supported by appropriate
processes and tools to ensure a successful result. Systems usually have to conform to a
certain design, or operate within given performance objectives, requiring proper analysis
to correct errors or adjust exposed parameters.

In the context of software systems, there are many analysis tools that can be applied
at different stages of development and with different purposes. Some tools are oriented
to detecting errors early on during the design phase, while others are concerned with the
implementation of these designs. Another class of tools is oriented towards analyzing
and optimizing the performance of a system during deployment, studying the behavior
of a piece of software in its real setting. Different languages and situations also lend
themselves to different kinds of support from analysis tools. Having access to the source
of a software component can yield more insightful analyses, but in some circumstances
the only viable option is treating them as “black-boxes” with certain observable behavior.

Model checking is one such analysis technique. Model checking is a rigorous
approach for verifying system models against their specifications. Its foundations were
developed by Edmund Clark, Allen Emerson and Joseph Sifakis [41][104], which earned
them the ACM Turing Award in 2007 [42]. Model checking is widely used in the
hardware and software industries, in areas where ensuring the correctness of systems
with respect to their specifications is critical.

In this chapter we will review the foundations of model checking and algorithms for
checking linear temporal logic (LTL) formulas. We will also introduce the Spin model
checker, a popular LTL model checker which we use as part of our analysis framework.
In the second half of this chapter we will cover analysis tools for software systems,
paying special attention to those with similar applications to the ones considered in
Part III.

9

2. STATE OF THE ART

2.1 Model checking
Model checking is an automatic technique for verifying finite state concurrent sys-
tems [45]. Given a specification for a system, the model checker finds out whether the
system meets that specification. If a violation if found, the model checker provides a
counterexample, i.e. an execution trace which leads to the point where the violation was
found, to help uncover the source of the error. Model checkers work with formal models
of the systems to be analyzed, which in many cases can be automatically extracted. These
models should capture enough detail to be able to check the desired specification, while
abstracting away unimportant details.

Model checking has been applied to several areas, ranging from circuit design to
communication protocols. The Spin model checker [80], for instance, has been used
to check software on board a number of space missions, such as a multi-threaded plan
execution module [72] or a resource arbiter in the Mars Exploration Rovers [78]. It
has also been employed in the verification of the control algorithm of a flood control
barrier in the Netherlands [83], and in controller generation for dam management [61].
The Uppaal model checker [89] has been used to debug an audio/video communication
protocol [73], for instance. The PRISM model checker [88] has been used in a wide
array of fields such as security [99] and biology [76].

In addition to simple state assertions, it is common to use temporal logic with a
model checker tool to describe the expected behavior of a system. Temporal logic allows
the user to reason about the evolution of the system over time, without dealing with time
explicitly. For instance, the linear-time temporal logic (LTL) formula �♦p states that the
boolean proposition p should be true an infinite number of times along a single execution
path.

Simulation and testing are two popular techniques for analyzing hardware and soft-
ware systems. In the former, a model of the system is studied in a simulated and
controllable environment, while testing works with the real system. In both cases, the
general procedure involves providing a number of inputs, and comparing the outputs
with the expected results. In contrast, model checking explores the model exhaustively
to check if a given specification is true or not.

Given a finite state system and enough resources, a model checker always finishes
with a definite yes or no answer. However, a complex system may have a state space
which is too large to be explored and analyzed for practical purposes. This is known as
the state space explosion problem. There are several proposals that address this problem.
Partial order reduction is a technique that can be applied to concurrent models, where
exploring different orderings of concurrent transitions lead to a high number of states.
Some of these orderings concern independent actions, which produce the same outcome
no matter the particular ordering. Thus, only one such ordering has to be explored. Later
in this section we will describe abstraction techniques, which may also help with the
state space explosion problem.

10

2.1.1 System modeling
In order to analyze a system, a model checker needs a formal model of the system.
Different model checker tools accept different formalism as input, with different ab-
straction levels and features. For instance, Promela is the language that describes the
models accepted by the Spin model checker [80], and provides features such as processes,
communication channels and indeterminism. The CMU SMV [40] and NUSMV [38]
symbolic model checkers both use similar modeling languages, with modules that can be
composed synchronously or asynchronously, and indeterminism. In the language sup-
ported by the PRISM model checker [88], state transitions have an associated transition
probability, which enables richer forms of quantitative analysis.

Models can be constructed by hand, either from the system design or from its
implementation, or extracted automatically [81]. Promela supports embedding C code,
which eases the extraction of models from C source code. BLAST [31] can extract and
iteratively refine a model from C source code. Bandera [48] transforms Java programs
into Promela models with embedded C code, to be analyzed with Spin. On the other
hand, JPF [74] can analyze unmodified Java programs by running them in a custom
virtual machine.

These models can also be described with a formalism called Kripke structures [45].
A Kripke structure consists of states, transitions between states, and a labeling function
for states, where labels indicate the subset of properties which are true in each state.

Definition 2.1 (Kripke structure) Let AP be a set of atomic propositions. A Kripke
structure is a tuple M = 〈S,S0,R,L〉 where

• S is a finite set of states,

• S0 ⊆ S is the set of initial states,

• R⊆ S×S is a transition relation that must be total, i.e. for every state s ∈ S there
is a state s′ such that R(s,s′),

• L : S→ 2AP is a function that labels each state with the set of atomic propositions
that are true in that state.

2.1.2 Property specification languages
To describe the desired properties of a system, several formal languages have been
proposed. One of the most powerful choices is some form of temporal logic. These
logics allow reasoning about the evolution of a system over time, without mentioning time
explicitly. For instance, a formula might declare that a given system state is eventually
reached, or that it is repeated infinitely often in an execution. These properties are built

11

2. STATE OF THE ART

using temporal operators, such as always (�) or eventually (♦), combining them with
regular boolean operators such as and (∧) or not (¬).

Temporal logics can be classified into two broad groups according to how they
handle branching in the computational model being analyzed: branching-time logic and
linear-time logic. Computational tree logic (CTL) [43] and linear-time temporal logic
(LTL) [102] are two widely used logics of these groups, respectively, while CTL* is a
superset of both logics, combining both branching-time and linear-time semantics.

CTL*

CTL* formulas describe properties of computation trees. Given a Kripke structure and an
initial state, a tree is constructed by unwinding the structure into an infinite tree, starting
with the given state at the root.

CTL* formulas are composed of path quantifiers and temporal operators. There are
two path quantifiers, ∀ (“for all computational paths”) and ∃ (“for some computational
path”). On the other hand, there are five temporal operators, briefly explained below:

• next (© p). Property p holds in the next state of the path.

• always (� p). Property p must hold at every state on the path.

• eventually (♦ p). Property p must hold at some state on the path.

• until (pUq). It holds if property q holds at some state on the path, and every
preceding state holds p.

• release (pRq). It holds if property q holds at every state on the path up to and
including the state in which p holds. However, it is not required for p to hold
eventually.

There are two types of formulas in CTL*: state formulas and path formulas. The truth
value of state formulas is determined on each state, while path formulas are evaluated
along a specific path. Given a set of atomic propositions AP, the syntax rules for state
formulas are as follows:

• If p ∈ AP, then p is a state formula.

• If f and g are state formulas, then ¬ f , f ∧g and f ∨g are state formulas.

• If f is a path formula, then ∃ f and ∀ f are state formulas.

On the other hand, the syntax rules for path formulas are:

• If f is a state formula, then f is also a path formula.

12

• If f and g are path formulas, then ¬ f , f ∧g, f ∨g, X f ♦ f , � f , f U g and f R g
are path formulas.

CTL is a subset of CTL* in which temporal operators must be immediately preceded
by a path quantifier.

Linear-time Temporal Logic

Linear-time temporal logic or linear temporal logic (LTL) [102] can be defined as a
subset of CTL* where formulas are always of the form ∀ f , where f is a path formula
that only has atomic propositions as state subformulas. More precisely, given a set of
atomic propositions AP, the syntax rules for LTL path formulas are:

• If p ∈ AP, then p is also a path formula.

• If f and g are path formulas, then ¬ f , f ∧g, f ∨g, X f ♦ f , � f , f U g and f R g
are path formulas.

We assume that given a state σ and an atomic proposition p ∈ AP, σ |= p represents
the result of evaluating p on σ , that is, σ |= p holds iff σ satisfies p. In what follows,
given a (possibly infinite) trace t = σ0 −→ σ1 · · · , we denote with ti = σi −→ ·· · the suffix
of t starting at state σi. Consider p ∈ AP, and f and g two LTL formulas. We inductively
define |= over traces and LTL formulas as follows.

ti |= p ⇔ σi |= p
ti |= ¬p ⇔ σi 6|= p
ti |= p∨q ⇔ (ti |= p)∨ (ti |= q)
ti |=© f ⇔ ti+1 |= f
ti |=� f ⇔ (σi |= f)∧ (ti+1 |=� f)
ti |= ♦ f ⇔ ∃ j ≥ i.(t j |= f)
ti |= f U g ⇔ ∃ j ≥ i.((t j |= g)∧ (∀i≤ k < j.[tk |= f]))

Note that the operator implies “→" is usually omitted in these rules and transformed
into a combination of negation and disjunction. Figure 2.1 contains some example LTL
formulas using these operators, with computation traces which satisfy them.

2.1.3 Automata-based LTL model checking
The choice of property specification language dictates the model checking algorithms
that can be used. In particular, there are several model checking algorithms for properties
written with LTL [116][44][65]. In this section we will describe an efficient automata-
based approach, where the state space to be explored can be constructed and analyzed
on-the-fly.

13

2. STATE OF THE ART

Figure 2.1: Example LTL formulas

The problem of model checking of temporal formulas can be reduced to one of
reachability: given two automatas, one representing the system and another the negation
of temporal formula to verify, check if the product of both is non-empty [49]. If
the product is found to be non-empty, then the model checking algorithm returns a
counterexample. The automatas used in this solution are Büchi automatas.

Definition 2.2 (Büchi automaton) A Büchi automaton is a tuple A = 〈Σ,S,T,S0,F〉,
where:

• Σ is a finite alphabet,

• S is a finite set of states,

• T ⊆ S×Σ×S is a transition relation,

• S0 ⊆ S is a set of initial states,

• F ⊆ S is a set of accepting states.

A Büchi automaton is a finite automaton over infinite words. The language accepted
by a Büchi automaton consists of all the infinite words where an accepting state is visited
infinitely often.

Kripke structures, used to describe systems, can be translated into Büchi automata. A
Kripke structure M = 〈S,S0,R,L〉 where L : S→ 2AP, can be transformed into a Büchi
automaton A= 〈Σ,S∪{ι},T,{ι},S∪{ι}〉, where Σ = 2AP. The transition relation T is

14

Figure 2.2: Transformation of a Kripke structure into a Büchi automaton

built as follows. Given two states s, s′ ∈ S, (s,α,s′) ∈ T iff (s,s′) ∈ R and α = L(s′). In
addition, (ι ,α,s) ∈ T iff s ∈ S0 and α = L(s). The language accepted by this automaton,
L(S), represents the set of possible behaviors of the system. Figure 2.2 shows an Kripke
structure and its corresponding Büchi automaton, obtained following this transformation.
It is worth noting that every state in this automaton is accepting, represented as double
circles in the automaton.

An LTL formula representing a system specification can be transformed into an
equivalent Büchi automaton [65][116]. Given the corresponding automaton S, the
language accepted by such an automaton, L(S), would be the set of accepted system
behaviors.

The system A satisfies the specification S if

L(A)⊆ L(S), (2.1)

i.e. the set of possible behaviors of the system is a subset of the behaviors allowed by the
specification. Büchi automata are closed under intersection and complementation [34],
i.e. there is an automaton which accepts exactly the intersection of the languages of two
automata, and an automata that recognizes exactly the complement of the language of a
given automata, respectively. This allows rewriting (2.1) as

L(A)∩L(S) = /0, (2.2)

where L(S) is the complement of the language L(S). If the intersection is empty, the
system satisfies the specification. Otherwise, a counterexample can be provided.

This procedure is carried out in two steps: first the complement, and then the
intersection. However, instead of computing the complement of the Büchi automaton

15

2. STATE OF THE ART

resulting from translating an LTL formula, it is easier to translate the complement of
the formula itself. As for the intersection, given two automata A1 = 〈Σ,S1,T1,S01,F1〉
and A2 = 〈Σ,S2,T2,S02,F2〉, where F1 = S1, i.e. all states of A are accepting (like in
the translation from Kripke structures to Büchi automata), the intersection is defined as
follows:

A1∩A2 = 〈Σ,S1×S2,T ′,S01×S02,S1×F2〉, (2.3)

where (〈ri,q j〉,a,〈rm,qn〉) ∈ T ′ iff 〈ri,a,rm〉 ∈ T1 and 〈q j,a,qn〉 ∈ T2.
Checking for emptiness in a Büchi automaton is equivalent to checking for strongly

connected components reachable from an initial state with accepting states in them.
Given a automaton A= 〈Σ,S,T,S0,F〉, and a accepting run ρ , then ρ contains infinitely
many accepting states from F . Since S is finite, there is some suffix ρ ′ of ρ where every
state on it is repeated infinitely often. This means that every state in ρ ′ is reachable
from another state in ρ ′, and therefore the states of ρ ′ are part of a strongly connected
component. This component is reachable from an initial state, and contains an accepting
state from F .

The search for such strongly connected components can be performed using a dou-
ble depth first search (DDFS) algorithm [49], also called nested depth first search
(NDFS) [80]. Figure 2.3 shows the NDFS algorithm from [80]. This algorithm relies on
two global data structures: a state stack D and a set of visited states V. In both structures,
each state is stored with a boolean value, called “nested”. This value indicates whether
the state was explored during the normal search or a nested search. The first stage of the
depth first seach works as usual. When backtracking from an accepting state, however, a
nested search is started. The global variable “nested” is set to true to indicate that this is
a nested search, and “seed” is set to the accepting state. If “seed” is reached again from
this nested search, then a counterexample can be reported.

It is possible to use this search algorithm generating the states of the automaton A

only as needed. This technique is called “on-the-fly” model checking [49][59]. The
automata S for the LTL property is generated completely and used to guide the generation
of the intersection automata. Using this approach it is possible to avoid constructing
the entire state space of A in many cases, either because the intersection rules with S

prevents it, or because a counterexample is generated first.

2.1.4 Abstraction

One of most important techniques for dealing with the state explosion problem is abstrac-
tion. There are different abstraction techniques, but they share the goal of reducing the
model to be analyzed, while preserving (some of) the properties of the original model.
We will describe two abstraction techniques: the cone of influence and data abstraction.

16

Input: Automata A
Data: Stack D
Data: Statespace V
Data: State seed← nil
Data: Boolean nested← false
Procedure NDFS()

Add_Statespace(V, A.S0, nested)
Push_Stack(D, A.S0, nested)
Search()

Procedure Search()
(s, nested)← Top_Stack(D)
foreach (s,l,s’) ∈ T do

// Check if seed is reachable from itself
if s’ = seed or On_Stack(D, s’, false) then

Print_Stack(D)
Pop_Stack(D)
return

else if not In_Statespace(V, s’, nested) then
Add_Statespace(V, s’, nested)
Push_Stack(D, s’, nested)
Search()

end
end
if s ∈ A.F and nested = false then

seed← s // Reachable accepting state
nested← true
Push_Stack(D, s, nested)
Search() // Start nested search
Pop_Stack(D)
seed← nil
nested← false

end

Figure 2.3: Nested depth first search (NDFS) algorithm

17

2. STATE OF THE ART

The former focuses on reducing the size of the state transition graph, while the latter tries
to minimize the size of each state.

The cone of influence technique [45], also called slicing [80], tries to reduce the size
of the graph to be explored by identifying a subset of key variables, and discarding the
rest and their associated operations. The cone of influence C ⊆V is constructed starting
from a subset V ′ ⊆V of variables of the model, and iteratively selecting the variables that
influence the value of that subset. The result is the minimal subset C such that V ′ ⊆C,
which contains all these variables. All the statements that operate on variables outside
of C can be safely ignored. This transformation maintains the basic control flow of the
model, e.g. no cycles are added or removed.

Usually, the initial subset V ′ is composed of the variables present in a formula
to be checked. This reduces the model transitions to the bare essentials required for
checking the satisfaction of that formula. It is worth noting, however, that not all types
of correctness requirements can be checked on these reduced models, such as detecting
deadlocks.

On the other hand, data abstraction [45][80][63] aims to reduce the possible values of
the variables of the model, and thus the state space to be explored, such that meaningful
analysis can still be carried out. For instance, an integer variable can be abstracted to
only three values: negative, zero and positive. Usually, the control flow of models depend
on simple relationships between their variables, such as a fork that depends on whether a
variable is negative, zero or positive. By abstracting the values of these variables so that
the control flow is maintained, the state space that needs to be explored can be greatly
reduced.

Operations and formulas using these variables need to be adapted to use the new
abstracted values as well. For instance, an integer variable x can be abstracted by its sign
into two values, negative and non-negative, using a new boolean variable neg_x [80]. An
assignment such as x = 0 would be translated into neg_x = f alse and a condition such
as x > 5 into !neg_x. Other operations result in more complex transformations, such as
increasing x by one. If x is non-negative, then its value does not change. If x is negative,
there are two outcomes: the operation results in a non-negative number or x remains
negative. If the two alternatives are considered in the model via indeterminism, then
this abstraction is said to be an over-approximation [52], as the abstract model contains
more behaviors than the original model. It is also possible to construct an abstraction
by under-approximation, i.e. one whose behavior is strictly less than that of the original
model.

The assumptions that can be made on properties verified on the abstract model with
regards to the original one depends on the type of approximation. In the case of over-
approximation, if a property is verified on all possible traces of the abstract model, then
it is also verified in all traces of the original model. With under-approximation, if a
property violation is found, then it must also be present in the original model.

18

1 never { /* []<>p */
2 T0_init:
3 if
4 :: ((p)) -> goto accept_S9
5 :: (1) -> goto T0_init
6 fi;
7 accept_S9:
8 if
9 :: (1) -> goto T0_init
10 fi;
11 }

Listing 2.1: Never claim automata for the LTL formula �♦p

2.1.5 The Spin model checker
Spin [80] is a model checker that can be used to verify the correctness of concurrent
software systems modeled using the Promela specification language. The focus of the
tool is on the design and validation of computer protocols [79], although it has been
applied to other fields such as controller verification [83] and synthesis [61].

Spin can check the occurrence of a property over all possible executions of the system
specification. If a violation of the property is found, a counterexample is returned that
makes it possible to trace the cause of the violation. If the user so desires, the model
checking process can continue so more errors can be found in a single run.

There are several types of properties that can be checked with Spin, from simple state
assertions to formulas written in LTL [102], as described in Section 2.1.2. Spin translates
LTL formulas into never claim automata, which are a special type of Promela process
which are executed after each system step, used to check the behavior of the system. It
is also possible to write never claim automata by hand, to declare properties that would
be hard to specify otherwise. Listing 2.1 shows an example never claim, obtained using
Spin to translate the LTL formula �♦p.

Figure 2.4 shows an overview of the tool’s workflow for checking LTL properties.
The Spin tool is used both to translate an LTL formula into a never claim automaton, and
to generate the source code for the verifier given a Promela specification. This verifier
carries out the model checking process, and returns a counterexample if an error is found.

The Promela modeling language

Promela (Process Meta-Language) is the language accepted by Spin for describing
systems. It is not intended to be used as an implementation language, but rather as a
specification language to describe systems at a high level of abstraction. Promela is an
imperative-style language, with features such as processes, channels for inter-process
communication and indeterminism.

19

2. STATE OF THE ART

Figure 2.4: Overview of the Spin tool workflow for checking LTL properties

A Promela specification is composed of one or more process definitions (called
proctypes), message channels and variables. Each process contains a sequence of
statements, and can be started dynamically or at the beginning of the execution. The
language provides built-in inter-process communication in the form of message channels.
Channels can be either synchronous, i.e. rendezvous, or asynchronous, i.e. supported
by a buffer of arbitrary size. Variables can be declared with a global scope, or locally
withing a process declaration. Variables in the global scope are tracked by Spin and
stored in the so-called state vector during the search. The supported data types are: bool,
byte, short and int, as well as arrays of these elements and record structures. It is
worth nothing that Promela does not have a floating point data type. Variables can hold
symbolic variables using the special mtype type.

The control flow constructs include case selection (if) and repetition (do). These
constructs allow one or more options, with an optional guard that dictates their eligibility.
If no guard is active, the whole construct blocks. If several are at the same time, one
of them is chosen non-deterministically. However, Spin’s search algorithm will try to
explore all possible indeterministic choices.

To avoid certain interleaving of process executions, sequences can be grouped in
atomic blocks. These sequences are uninterruptable, and no other process can execute
statements between the first and last statements of the block. However, if one of the
sentences block, then the atomic sequence is broken and other processes may be executed.
The d_step block is similar to atomic but with stricter rules, such as treating blocking
statements as errors or resolving indeterminism in a deterministic way.

In order to provide some structuring mechanism similar to procedures, statements
can be grouped inside inline definitions. inlines are more similar to macros than
procedures: the text of the inline is substituted wherever it appears. inlines may have
parameters, but they do not provide a separate scope.

20

1 #define MAX 100
2
3 mtype = { stop };
4
5 chan data = [1] of {int};
6 chan control = [0] of {mtype};
7
8 active proctype producer () {
9 do
10 :: data!1
11 :: data !10
12 :: control?_ -> break
13 od
14 }
15
16 active proctype consumer () {
17 byte msg , sum;
18 do
19 :: data?msg -> sum = sum + msg
20 :: sum > MAX -> control!stop
21 od
22 }

Listing 2.2: Example Promela specification

Listing 2.2 shows a small Promela example with two processes: producer and
consumer. There are two channels used by these processes: data, an asynchronous
channel of size 1 used to send integer values from producer to consumer, and control,
a synchronous used to send control messages the other way around. producer may send
either a 1 or a 10 value to consumer. When the sum of values sent to producer reaches
a certain threshold, it may send an stop message back to instruct consumer to break
from the loop and terminate. However, as it is written, producer may never send that
message, as it always has the choice between that and accepting a new data message.

Embedded C code

One of the most powerful features of Promela is the ability to embed C code in the
specifications. C code can be used inside of processes and as part of expressions. C
variables can also be part of the global state and be used in temporal formulas. However,
Spin does not check in any way the contents of embedded C code fragments.

The primary purpose of embedded C code is supporting automatic model extraction
from C programs. However, it can be used to include external C code that may interact in
some way with manually constructed models. The special built-in struct now contains the
current values of the global variables, and can be read from or written to. For instance, in

21

2. STATE OF THE ART

this thesis we use embedded C code extensively to communicate with an external system,
and make some of its internal state part of Spin’s global state by modifying the contents
of now.

Arbitrary C statements can be embedded using a c_code block. The statements in the
block are executed atomically. c_code blocks can also be used to declare functions and
global variables, or include external header files. The c_expr statements may contain C
code that will be evaluated as an expression. If the body returns 0, the statement blocks,
which is useful when used as guard in a control flow construct. The code inside a c_expr
must be free from side effects, as Spin may have to evaluate it repeatedly. A c_decl
block can be used in the gobal scope to declare new C data types.

Although global variables can be declared inside a c_code block, they remain outside
Spin’s state vector. However, there are two statements that allow putting C variables
in the state vector. c_state statements can be used in the global scope to declare C
variables that are global, local to any process, or hidden from the state vector. With
the former, the variable is part of the state vector as any other regular Promela global
variable. c_track can be used to include any external C variable or part of memory as
part of the global state, and make it part of the state vector. This is useful for tracking C
variables declared in external C code.

Listing 2.3 shows a simple example using some of the statements for embedding
C code. First, a new struct type is declared using c_decl. This type is used in line 7
to declare a global variable called d. A C function is declared inside a c_code block
with global scope, starting at line 10, so that it can be used elsewhere in the Promela
specification. The global variable d is initialized inside a process local c_code block
in line 18. Note how both the d variable and the x variable, which was declared as a
regular Promela global variable, must be referenced using the now struct. Finally, the
do construct contains a guard written as a C expression using c_expr in line 21. This
expression calls the C function declared above, and must also use the now struct.

Search algorithm

Spin works by performing an exhaustive search of the model’s state space, using a double
depth-first search algorithm (see Section 2.1.3). First, the given LTL formula is translated
into a Büchi automaton [115], represented as a never claim automaton, which is used
to track the satisfaction of the formula. Then the synchronized product of the Promela
specification and the automaton is explored using a double depth-first search algorithm.
For each step of the system, a step of the never claim automaton is executed. Depending
on the original formula, this automaton may have accepting states. If an acceptance cycle
if found in the automaton during the search, or it finishes its execution, it means that a
violation of the formula has been found, and a counterexample can be reported. On the
other hand, if the automaton blocks because there are no executable instructions, it is not
possible to find a violation of the formula following the current execution branch.

22

1 c_decl {
2 typedef struct data {
3 int a, b;
4 } data;
5 }
6
7 c_state "data d" "Global"
8 int x;
9
10 c_code {
11 int eq(int a, int b) {
12 return a == b;
13 }
14 }
15
16 active proctype example () {
17 x = 10;
18 c_code { now.d.a = now.x; now.d.b = 100; };
19
20 do
21 :: c_expr { eq(now.d.x, now.d.y) } -> c_code{ now.d.x += 10; }
22 :: else -> break
23 od
24 }

Listing 2.3: Example Promela specification with embedded C code

States visited along the current branch are stored in a stack, while another data
structure, called hash or heap, stores every visited state to avoid exploring the same states
twice. Figure 2.5 shows an overview of these data structures during a search.

2.2 Trace-based analysis

Our work can be compared to those of other analysis tools that treat the system under
analysis as a black box, or which are concerned on analyzing traces generated during
the execution. System models can also be analyzed in this way, but these techniques
are specially useful for systems which are too large to analyze exhaustively, e.g. a real
program, or one whose inner specification is not known.

We provide a more formal definition of execution traces with regards to our framework
in Chapter 4, but it can be summed up and generalized as a sequence of discrete steps
which reveal part of the state of the system in certain points during its execution. This
information can be compiled from various sources, such as exposed system variables
or aggregated information from external probes. In many cases, the analysis is only

23

2. STATE OF THE ART

Figure 2.5: Data structures used by Spin

interested in a trace with “relevant” states, and “relevant” information per state. Some
systems may be able to provide traces with only this information, while others may
require some assistance before they can be consumed by the analyzer.

These tools are available for a wide range of systems and areas of application, from
testing to performance evaluation. In the rest of this section we present some notable
examples, whose approach is related to ours or whose area of application we have covered
in this thesis. To enable a more meaningful comparison, we will organize these tools
according to the applications presented in this thesis in Part III.

2.2.1 Analysis of network simulations
Communications networks and network software are two areas that have received signifi-
cant attention from analysis tools. There are many approaches concerned with analyzing
these systems during or after deployment, e.g. to check for performance issues on de-
ployed networks. However, during the early development phases it is common to resort
to simulation models in order to quickly iterate designs in a cost-effective manner.

There are a number of general-purpose network simulators, ranging from academic to
commercial tools. Two of the most widely used in the academic community are the ns-2
network simulator [11], which is the subject of the applications described in Chapter 5,
and its successor ns-3 [77]. Some of the tools which we will describe later take advantage
of the capabilities offered by these simulators to perform their analyses. Commercial
simulators such as OPNET [36] provide integrated tools for performance analysis.

Reliability analysis

Communication protocols have been widely studied from a reliability and correctness
standpoint. Model checkers such as Spin [80] have been traditionally associated with this
field [79], checking the correctness of protocol models. Other recent efforts have been

24

Figure 2.6: Overview of Verisim workflow

designed to deal with source code instead of models, such as CMC [95], Verisoft [68]
and Java PathFinder [117]. In this section we will discuss other approaches that work
with models for network simulators.

Verisim [32] is a tool that monitors ns-2 simulations and checks properties on the
generated traces. Verisim requires the designer to declare the low level events that must
be monitored, and the properties to be checked using MEDL (Meta Event Definition
Language), which is an extension of LTL with auxiliary variables. Events are defined over
the typical packet traces generated by ns-2. The result of the analysis is a metatrace that
contains the violations of the specified properties in a single simulation trace. Figure 2.6
shows an overview of this workflow. However, unlike OptySim, Verisim performs the
analysis off-line, after the whole trace has been generated. If simulations have to be
stopped manually, the prefix of the trace given to Verisim could miss portions relevant to
the properties being checked. In addition, Verisim does not provide support for generating
and analyzing a large number of traces based on a given parameter space, requiring more
manual interaction that our framework.

The Monitoring and Checking (MaC) module is at the core of the Verisim and, much
like our work, has been adapted to analyze others systems such as Java [85]. The Java
version introduces another language to specify the events that should be monitored,
PEDL (Primitive Event Definition Language). The use of PEDL and MEDL can lead to
a simpler definition of some complex properties.

Sobeih et al [111] extended the J-Sim network simulator [112] with a custom model
checker. Models in J-Sim are written in Java as a set of loosely coupled components. In-
stead of checking properties on a trace, the extension performs an exhaustive search over
the model’s state space. To enable this search, the designer has to provide information on
the composition of the global state of the model (to check the properties and backtrack to
a previous state) and the events that can be triggered. The model checker can perform
a best-first search if provided with an objective, which may lead to longer traces but in
less time. However, the only properties that can be checked over J-Sim models with this
model checker are state assertions.

25

2. STATE OF THE ART

Performance analysis

Parameterized simulations are common when evaluating a new protocol or tuning the
parameters of an existing one for a given scenario. This kind of analysis has been
supported by both commercial and academic tools. For instance, the OPNET Modeler1

network simulator allows the definition of parametric studios, where several parameters
will vary over a specified range. The statistics collected from each simulation can be
plotted to show the results as a function of parameter values.

ANSWER [26], a tool for performing large-scale parameterized simulations with
ns-2, presents a similar approach to our definition of parameterized analysis. An XML
configuration file is used to declare the parameters that have to be combined to generate
the set of different scenarios and its values, the metrics to be checked and other options.
The launcher module generates the set of scenarios, performs the corresponding simula-
tions in ns-2, and stores the output metrics in an organized way. A web application can
then be used to plot diagrams for a single metric among a series of selected simulation
scenarios.

Data collection and statistical analysis are facilitated by another tool [37]. This is
complementary to our approach, since for our ns-2 integration we rely on the model
designer to provide the relevant metrics. This framework also provides support for
gathering statistics by performing a series of independent runs of the same scenario, e.g.
until a confidence interval is reached, which our tool does not support.

In contrast with our approach, simulations are not checked against any requirement.
In addition, OptySim provides an efficient mechanism to stop unproductive simulations
on-the-fly. Combined with the exhaustive exploration of the parameter space, we can
reach a greater coverage with the same resources, while providing results relevant to the
user. Although the way in which ANSWER controls simulation campaigns increases the
confidence and credibility of simulation results, the lack of mechanisms to check the
correctness of the simulation model could leave design errors undiscovered.

Ye et. al [119] propose a simulator framework for the adaptive configuration of live
networks according to a performance objective. Network topology and traffic patterns are
monitorized and exported to a parameterized simulation setting using ns-2. Simulations
are carried out and optimized using a black-box approach, where only the configuration
parameters and performance metrics are known, employing a search algorithm to select
new parameter values to simulate. Our approach also uses metrics from the simulations
to control the process, but in an exhaustive manner. In addition, while Ye et. al use
functions as the objective, our use of temporal formulas enables the definition of more
complex objectives.

Automated simulations for analysis have also been used in [47] to evaluate the
perceptual quality of VoIP calls. The use of simulations allows the authors to create

1OPNET Modeler was provided under the OPNET University Program.

26

repeatable tests in a controlled environment with different parameters, as opposed to
regular call quality assessment, which relies on subjective tests and is more difficult to
set up. However, like [26] and [119], no further steps are taken in order to guide the
simulation process and reduce analysis time, as opposed to our approach.

There are also several works regarding the optimization of a protocol implementation,
such as FIBER [84] or AEOS [58]. FIBER implements iterative methods to support
auto-tuning of parameters at two different stages: installation and run-time invocation.
AEOS can be used to optimize software automatically at runtime, using methods like
search heuristics, and has been applied successfully to communication software problems
like collective communications in MPI.

2.2.2 Analysis of Java programs
Programming languages themselves are the target of many tools, from development
productivity tools to analyzers that help uncover errors in programs. Manual debugging,
either with the help of a debugger or by simpler means, has traditionally been one
of the most used techniques for discovering and fixing errors in programs. However,
increasingly automatic methods such as unit testing or model checking are desirable to
ensure that errors are discovered early and with minimal action from the developer.

Unit testing is a widely used technique for checking isolated parts of a program
against a series of requirements, in a repeatable fashion. There are also model checkers
aimed at analyzing real programs instead of models, targeting languages such as C or
Java. In order to be effective, these tools should be well integrated with the development
flow, and be usable by developers with little experience in their formal underpinnings.
In this section we present some approaches to analyzing Java programs in these two
categories.

Testing

Unit testing promotes writing self-contained, repeatable tests that check isolated parts of
a system. Each test stimulates a certain part of the system with a series of inputs, and then
compares the obtained and expected outputs. Software systems are usually composed
of several components (from functions to libraries) which depend on each other. In
order to test these components in isolation, it is often required to write mocks or stubs,
i.e. implementations of other components oriented towards providing a controllable
environment for the one being tested. Unit testing encourages testing components under
extreme circumstances, such as corner cases, incorrect inputs, or errors from other
components.

JUnit [21] is a popular unit testing framework for Java, originally developed by
Kent Beck and Erich Gamma. It is based on SUnit, a testing framework for Smalltalk
also developed by Beck, and has spawned multiple ports to other languages such as

27

2. STATE OF THE ART

C++ or Python. In JUnit, tests are written as class instance methods, and grouped in
test cases and test suites. Earlier versions of JUnit relied on subclassing TestCase and
naming conventions in order to define test methods, whiler newer versions rely on Java
annotations. The framework also provides a set of helper assertion methods, to compare
the expected and actual results.

TestNG [30] is another popular unit testing framework for Java, with similar func-
tionality to that of JUnit. However, it provides more control for setting up tests, as well
as better support for parameterized tests. Test methods may have parameters that can
be provided in runtime from a parameter sources such as XML files, or data provider
methods. The former are limited to a single parameter value per test, e.g. methods with
multiple parameters and values require declaring an exponential number of declarations,
one per combination. Data provider methods are more powerful, e.g. they allow using
arbitray Java as parameters, but task the user with creating parameter combinations, if
required.

Listing 2.4 shows part of a simple unit test for a fictional Fibonacci class, written
with TestNG. Before each test method is executed, a new instance of Fibonacci is
created as part of the test initialization. Expected exceptions within a test method can
be declared in the @Test annotation. If the testInvalidArg() method exists without
throwing a IllegalArgumentException, the test is marked as a failure. Finally, test-
WithParams() is a parameterized test, whose parameters are provided by the annotated
provider() method.

Model checking

The most notable tools for analyzing Java programs using some variant of full-state
model checking are Bandera [48] and Java Pathfinder [117]. Bandera is a tool based
on model extraction that requires the Java program to be transformed into a model
composed of pure Promela plus embedded C code. This model is optimized by applying
a data abstraction mechanism that provides an approximation of the execution traces. As
Bandera uses Spin as the model checker, it can check LTL on infinite traces and preserve
correction results according to the approximation of the traces. Compared with Bandera,
our Java integration only checks a set of traces. However the use of runtime monitoring
to avoid model transformation, and our abstraction methods guarantee the correctness of
the results.

Java Pathfinder [74][117] (JPF) is a model checker for Java programs which, in
contrast with OptySim, performs a complete exploration of a program. In addition,
thanks to its state matching mechanism, JPF does not revisit the same execution path
twice, while OptySim analyzes each trace in isolation without checking for potentially
repeated states between traces.

The JPF core only checks for “simple” defects such as deadlocks and unhandled
exceptions. However, JPF can be extended to check for more meaningful problems

28

1 public class FibonacciTest {
2 private Fibonacci fibonacci;
3
4 @BeforeMethod
5 public void initialization () {
6 fibonacci = new Fibonacci ();
7 }
8
9 @Test

10 public void test() {
11 Assert.assertEquals (0, fibonacci.fibonacci (0));
12 Assert.assertEquals (1, fibonacci.fibonacci (1));
13 Assert.assertEquals (13, fibonacci.fibonacci (7));
14 }
15
16 @Test(expectedExceptions = IllegalArgumentException.class)
17 public void testInvalidArg () {
18 fibonacci.fibonacci (-1);
19 }
20
21 @Test(dataProvider = "testWithParamsProvider")
22 public void testWithParams(int n, int expected) {
23 Assert.assertEquals(expected , fibonacci.fibonacci(n));
24 }
25
26 @DataProvider(name = "testWithParamsProvider")
27 public Object [][] provider () {
28 return new Object [][] {{0, 0},{1, 1},{2, 1},{3, 2},{4, 3}};
29 }
30 }

Listing 2.4: Example TestNG unit test for a Fibonacci class

through implementing listeners that monitor actions in the Java virtual machine (JVM).
One such extension for checking LTL formulas with JPF is under development [90].
However, the program elements that can be referenced in LTL formulas are currently
limited to method entry, e.g. �♦method() if method() should be called infinitely often,
while OptySim allows a richer set of propositions. In addition, the user must declare
explicitly whether the formula should be evaluated for infinite or finite traces.

The specification of LTL properties to analyze programming languages at runtime
has been proposed by other authors, which we discuss in the rest of this section. Probably,
the most complete overview of the approaches can be found in a paper by Bauer et.
al [27]. Bauer et. al consider the runtime verification of LTL and tLTL (timed LTL) with
a three-valued semantics (with truth values true, false, inconclusive) suitable to check
whether or not a partial observation of a running system meets a property. They generate

29

2. STATE OF THE ART

deterministic monitors to decide the satisfaction (or not satisfaction) of a property as early
as possible. They use these three-values as a way to adapt the semantics of LTL to the
evaluation of finite traces. The authors write that “the set of monitorable properties does
not only encompass the safety and cosafety properties but is strictly larger”. However, the
general case of liveness properties for infinite traces is not considered. Compared with
our work, they develop the foundations to create monitors to support the new semantics
of LTL for infinite traces, while our work relies on the already existing algorithms and
tools to check Büchi automata for infinite traces.

Java PathExplorer, developed by Havelund and Roşu [75], uses the rewriting-logic
based model checker Maude to check LTL on finite execution traces of Java programs.
The authors provide different semantics for LTL formulas in order to avoid cycle detection.
Java PathExplorer also supports the generation of a variant of Büchi automata for
finite traces developed by Giannakopoulou and Havelund [66]. We share with Java
PathExplorer the idea of using the model checker to process the stream of states produced
by Java. However, our use of Spin allows us to check infinite execution traces.

The tool Temporal Rover [57] can check temporal logic assertions against reactive
systems (with non-terminating loops) at runtime. The author considers that both finite
and infinite traces are possible. However, only finite traces are evaluated, and a default
fail value is returned for formulas like ♦p when p has not been satisfied at the end of the
trace and there is no evidence that the program has terminated. OptySim can provide a
conclusive verdict when inspecting the infinite trace.

Bodden [33] uses AspectJ to implement a method to evaluate LTL, inserting pieces of
Java code to be executed at points where the behavior specified by the formula is relevant
and must be evaluated. This method is useful to check only safety properties. d’Amorim
and Havelund [51] have developed the tool HAWK for the runtime verification of Java
programs, which allows the definition of temporal properties with the logic EAGLE. In
addition, the user must supply a method that must be called when the program terminates
in order to produce a finite trace. FiLM (Finite LTL runtime Monitor) [120] also gives
a specific semantics to LTL to check both safety and liveness in finite traces. However,
in the case of liveness, manual inspection is required when the tool reports a potential
liveness violation. All these tools for runtime monitoring of LTL are focused on finite
traces. The main difference with OptySim is the support of cycle detection due to the
way in which the states are abstracted and stored, and the use of Büchi automata.

30

Part II

The OptySim trace analysis framework

31

Chapter 3

Analysis framework

OptySim, our analysis framework, reuses the Spin model checker to analyze external
systems instead of Promela models. These systems are analyzed by executing them and
inspecting the resulting execution traces. These traces are sent to the model checker while
the executions are still in progress, enabling the on-the-fly analysis of traces. Several
traces are generated by exploring the parameter space within the established limits, and
taking into account some of the external factors. The traces are checked for one or
more objectives set by the user, that may be described using different formalisms. The
interpretation of these objectives is open and can be used for several purposes, such as
testing or optimization. These objectives also allow to stop the the executions as soon as
a verdict is available for its trace, potentially saving considerable analysis time.

This chapter expands this description of our framework, including what inputs
must the user supply, what outputs to expect, and how the analysis itself is performed.
Additional focus is put into how traces are transmitted from the system under test
and reconstructed in Spin using a generic communication protocol, and what kind of
properties can be used as objectives for the analysis.

3.1 Framework overview
Figure 3.1 shows an overview of the OptySim framework, divided into steps. The
following paragraphs walk through the framework at a high level, while individual steps
are described in more detail in the following subsections.

First, in the setup phase, the user must supply both the system under test (SUT) and a
configuration file describing the analysis to perform. This configuration file includes the
declaration of the parameter space to be explored, the variables of interest of the SUT
and the objectives to be checked on the generated traces.

In the second step, code generation, this configuration file and a framework template
are used to generate a Promela file that contains the analysis algorithm, communication

33

3. ANALYSIS FRAMEWORK

Figure 3.1: Overview of the OptySim analysis framework

routines and other required bits, tailored for this particular system and configuration.
This Promela instance is processed by Spin to generate intermediate C code, which is
then compiled into the executable analyzer.

The analysis happens in the next step, in which the executable analyzer explores part
of the space state of the system. This is done in two dimensions. First, the parameter
space is explored exhaustively according to the specification of the user. For each
complete parameter configuration generated, the SUT is executed with this configuration.
These executions generate execution traces, which are analyzed in isolation and on-the-fly
by the analyzer, one at a time. The communication between the analyzer and the SUT
happens through an established protocol. When an objective is met or violated in the
current trace (or the trace ends), the analyzer generates and checks another configuration.
This process continues iteratively until the state space is exhausted or the analyzer runs
out of resources.

The raw result of this analysis is a series of execution traces, annotated by the
analyzer according to the objectives. These annotated traces may be interpreted or used
in a number of ways, such as test results or optimum parameters for some performance
objective.

3.1.1 Setup
As the first step, the user must supply the system to be analyzed and the configuration to
be applied to the analysis process. OptySim supports many types of systems, as long as
they can produce an execution trace to be analyzed, either naturally or with additional

34

work from the user. For instance, network simulators such as ns-2 can be instructed to
capture and show packet traces, but tracing the internal state of network components may
require additional work.

The analysis configuration provides important information for carrying out the explo-
ration and analysis of the system, written as an XML file. It can contain a combination
of: parameter space declaration, analysis objectives, selected variables and additional
options. In the rest of this section we describe these configurable aspects. The complete
format of the XML configuration files is shown in Section A.1.

Parameter space

A single execution of the system produces a single execution trace. Many systems offer
a series of configurable parameters which affect their behavior, while others are affected
by external factors, both of which lead to different execution traces. In many types of
analyses it is important to explore as many different execution traces as possible, or
at least an relevant subset according to system parameters, external factors and user
objectives.

The user can declare a parameter space which, when explored, will produce several
parameter configurations for the system. For each system parameter, a combination
of discrete values and value ranges can be specified. During the analysis phase, the
analyzer will generate every possible combination of these values, producing a complete
parameter configuration which will be applied to a new execution of the system.

Some external factors may be controlled to some extent, specially in the case of
simulation models, and may appear as part of the parameter space. In other cases, the only
automatic way which may yield different external conditions are multiple independent
executions. For instance, randomness in a system may be controlled by a seed (an integer
number) established at the start of the execution. Thus, the seed itself may be part of the
parameter space, producing different random sequences in each execution.

Analysis objectives

The analysis step is guided by the objectives set by the user. The purpose of objectives is
twofold. On the one hand, they are the main way of obtaining results from the analysis.
On the other hand, they help reduce the state space that needs to be analyzed, either
directly or indirectly, and thus the time required for the analysis.

Objectives may represent desired requirements of the execution traces, e.g. a video
transmission between two peers is completed, or unwanted properties, e.g. the video
transmission takes more that a limited amount of time. This leads to a broad classification
of objectives into two groups, which we call accept and reject, respectively. When a
trace complies with an objective, the trace is annotated as accepted or rejected, based on
this classification of objectives.

35

3. ANALYSIS FRAMEWORK

These objectives may written using different formalisms of different complexity and
purpose. Simple objectives may be written as state asserts, i.e. a boolean condition tested
on each state independently. Complex objectives may be written using temporal logic,
describing the evolution of the system over time.

There are other objectives that are used exclusively to limit the state space to be
explored. For instance, certain combination of parameters can be excluded from being
executed, e.g. using a boolean condition over the values of the parameters.

The kind of properties supported as objectives are described in more detail in Sec-
tion 3.3 later in this chapter.

Selected variables

Our framework analyzes execution traces, which are sequence of system states, as
they evolve during the execution. Usually, the full trace is not required to perform the
analysis correctly. We abstract the original system trace in two dimensions, reducing
the information contained in each state and the number of states of each trace. This
abstraction is described in detail in Section 4.2, but is based around the idea of declaring
a subset of the system variables. This subset is usually composed of the variables that
appear in the declared objectives. The configuration file includes a section for declaring
this subset of system variables.

Options

Finally, there are additional options that further refine how the analysis is carried out,
or that are dependent on a particular type of system. These options are specified as
key-value pairs. For instance, for ns-2 analysis, the “filename” option should contain the
path to the main scenario file, and the packet trace for each simulation can be saved by
setting the “tracePackets” options to true.

3.1.2 Code generation
OptySim reuses the Spin model checker, which typically analyzes Promela specifications.
In our case, we want to analyze an execution trace from an external system. We use a
special Promela specification which translates execution traces into Spin states on-the-fly.
However, this Promela file requires an additional customization which depends on the
user objectives and the variables contained in the execution traces. Thus, our framework
offers a template which is then instantiated with the data given in the setup by the user.

This Promela template also includes a considerable amount of embedded C code,
including calls to functions defined in a separate helper library. Following the usual
workflow, we use Spin to generate C code from the instantiated Promela template, and
compile and link it with other required libraries using a C compiler. The result is an

36

executable which contains Spin’s analyzer algorithm and our own trace exploration and
reconstruction algorithm.

Some systems may require an additional instrumentation step, to generate the required
traces or customize their contents. The extent and complexity of this instrumentation
step depends on the type of system. For instance, in some cases it can be transparent
to the system. For the applications described in this thesis, we developed a series of
software modules that could be used in ns-2 simulations, and Java programs. Further
details of the Promela template, and these libraries and instrumentations can be found
later in this chapter, in Section 3.4.

3.1.3 Analysis
The analysis step is the main step in the framework. This is were the state space of the
system under test, in the form of execution traces, is explored to check the objectives set
by the user. As mentioned before, the parameter space declared by the user is exhaustively
explored, which leads to exploring a series of execution traces (one for each complete
parameter configuration generated).

The analyzer and the SUT use an established protocol to transmit the execution trace,
and to relay additional control commands. For instance, when the system is launched,
there is a negotiation and configuration phase were the SUT informs the analyzer of the
variables it can trace, and the analyzer selects the ones it is interested in. The SUT side
of the protocol is managed by a thin front-end, which mediates between the system and
the analyzer. The communication protocol is explained in more detail in Section 3.2.

In the analyzer side, the stream of states which conform a trace are incorporated into
the model on-the-fly. Typically, Spin analyzes a Promela specification. This specification
defines a finite graph that, when explored, results in all the possible executions. In our
case, however, the Promela specification does not contain the model specification to
create whole finite graph. Instead, the graph is constructed on-the-fly using the states
received from the SUT. The core of our Promela specification is a loop which, through
embedded C code, communicates with the front-end of the system to receive new system
states, and turns them into new Spin states.

Figure 3.2 depicts a simplified version of the analyzer algorithm, which results from
Spin executing the generated Promela file. Relevant parts of the Promela template are
shown later in this chapter, in Listings 3.1 to 3.5 from Section 3.4. The outer loop
generates all possible parameter configurations (see Listing 3.4), while the inner loop
reconstructs the execution trace generated for a parameter configuration. The nextState
function retrieves the following state from the execution trace, and updates the global
state to reflect this new state (see Listing 3.2). Since the Spin exploration algorithm may
backtrack at any given point, we also keep the current step in the trace in the global state,
and a system state stack outside of the global state (not shown in the algorithm). The
execution trace is stored in this stack during the analysis. If a new state is requested with

37

3. ANALYSIS FRAMEWORK

while !parameterSpaceExhausted do
parameters← generateParameterConfiguration()
newExecution(parameters)
step← 0
while !error and !finished do

nextState(step)
step← step + 1

end
end

Figure 3.2: Main loop of Spin executing the Promela template

a higher step than what is available in the stack, the analyzer must wait for a new state
from the SUT. If Spin backtracks, the first states that the analyzer will request will most
likely be already present in the stack (see Listing 3.5).

It is worth noting that this algorithm contains no logic for checking the objectives
themselves. Although the final implementation contains additional code for handling
and storing results, and some kinds of objectives have been implemented manually (e.g.
checking the validity of a parameter configuration), Spin handles temporal logic (and
related) objectives itself. The algorithm in Figure 3.2 shows how the execution graph
that Spin is to analyze is constructed on-the-fly from information from the SUT, instead
of being generated solely from a Promela specification. The Spin analysis algorithm, as
explained in Chapter 2, remains unchanged and useful in this context.

This on-the-fly process of reconstructing and analyzing a system trace with Spin
continues until an objective is verified or violated, or the trace ends (either naturally or
due to an error). Then, the analyzer generates another complete parameter configuration,
and analyzes the resulting execution trace. This process continues iteratively until the
state space is exhausted or the analyzer runs out of resources. However, the analyzer can
also terminate after the first time an objective is checked, which can be useful for certain
kinds of analysis.

3.1.4 Results

Raw results are local to each generated and analyzed execution trace. Each trace is
fully dumped and annotated with a result assigned to that particular trace. The possible
results mirror the types of properties that can be used, as explained in Sections 3.1.1
and 3.3. That is, for each type of objective, there is a result annotation which declares
that the given objective was met. There are also additional result annotations for other
purposes, such as an error in the system during the execution, or simply that the trace
was completely generated and inspected without meeting any objective.

38

The full list of possible annotation results is as follows:

• accepted. The objective that yielded the result was an accept one.

• rejected. Same as above, but when the objective is a reject one.

• finished. The execution trace was finite and the analyzer reached its end before
any result could be reached.

• error. There was an error during the execution of the system, before any result
could be reached.

However, these results should be interpreted by the user according to the intended
use. As explained before, OptySim can be used for a range of purposes, providing that
generating and analyzing a range of execution traces is useful.

For instance, a straightforward use would be system testing. An objective may
represent an error condition that the system should not reach. If a trace reached such
condition, it would be stopped and annotated as rejected. The information contained
in the trace, e.g. relevant variable values and the program counter, would be useful to
locate the cause of the error. The parameter space would be declared so as to get as much
coverage for the relevant portion of the system as possible.

Another use would be parameter optimization according to a some given objective.
The system under test exposes a series of parameters that can be tuned, e.g. in order to
attain a performance objective. In this situation, the parameter space would describe
the possible values of these system parameters. The final result would be one (or more)
complete parameter configurations that make the system reach the stated goal, i.e. a
system optimized according to the given objective. In some cases, such as simulation of
a real system influenced by external factors, the parameter space may also include these
factors. Here the results would be a set of parameter configurations, each associated with
some particular external conditions (as set in the simulation scenario). For instance, the
proper configuration of a network protocol in a mobile environment may depend on the
particular conditions of the environment in a particular moment, and the protocol should
adapt, i.e. apply the optimum configuration, for each situation.

The applications in Part III include different uses of the results, including testing,
performance optimization and modeling.

3.2 Protocol
This section describes the protocol used to communicate the analyzer and the system
under test. It is worth noting that this protocol is independent of the particular analysis
algorithm used, so it can be reused for other frameworks that perform analysis of execu-
tion traces. Supporting another type of system in OptySim is a matter of implementing

39

3. ANALYSIS FRAMEWORK

the protocol, e.g. as front-end for the system, and connecting it to the analyzer. The
protocol can be divided into three phases:

• Negotiation. The first phase deals with extensions to the analyzer, e.g. options
particular to some kinds of system. The SUT may declare a series of features
it supports, which may alter the way the analyzer works or prompt it to make a
choice among the offered features.

• Setup. Once both sides have agreed upon a series of features and options, the
analyzer can choose which variables and events will appear in the execution trace
(among those offered by the SUT), and may set the values of the system parameters
before the execution starts.

• Execution. This is the main phase of the protocol. The analyzer will command the
SUT to start its execution, which will lead to the generation and transmission of
the execution trace. Each state of the trace will be sent separately. At any moment,
the analyzer can command the SUT to stop, e.g. because a result has already been
found. In turn, the SUT can inform the analyzer of non-trace events such as errors
or system termination.

We defined a protocol that is useful for these phases and supports a certain amount of
extension, but is simple enough. The remainder of this section is devoted to describing
the protocol and its use. Appendix B includes a Promela model of the protocol and the
complete definition of the protocol messages, using Google Protocol Buffers [14].

Figures 3.3 and 3.4 show an overview of the two sides of the communication protocol,
as activity diagrams. Most message parameters have been omitted from these and
following diagrams for simplicity. The only parameters included are those relevant to the
evolution of the protocol. Also, these diagrams are deliberately devoid of any actions
beyond sending and receiving messages (with a single exception).

3.2.1 Negotiation
The first phase of the protocol is the negotiation phase. In this phase the system declares
a series of features, options or requirements, and the analyzer must decide whether it
supports them, and select among the given options if needed. This is done with two
messages: a FeaturesDeclaration sent from the system and a FeaturesNegotiation as a
response.

The first message carries a series of features that the system declares to the analyzer.
Each feature includes a name and may include one or more values. In addition, features
can be flagged as required and selection. The former indicates that the feature cannot
be ignored and must be explicitly supported by the analyzer, while the latter indicates
that the analyzer can select one of the values associated to the feature. It is worth noting

40

(a) Analyzer activity (b) System activity

Figure 3.3: Communication protocol overview: main activities

that selection does not implicitly include required. If the first flag is present, but not the
second, it is inferred that the selection does not affect the way in which the analyzer must
behave, even if it may result in a different behavior on the system side and even produce
different execution traces. The analyzer may choose randomly or, better, let the system
choose the default value.

The analyzer responds with a FeaturesNegotiation. This message includes, at least,
a response field indicating whether the analyzer supports the required features (Ok) or
not (Cancel). In the second case, the message exchange between both parts would end
there without further negotiation, as it is understood that the system cannot be analyzed
with the current analyzer, and the system would terminate. In the first case, the message
can also include a selected value for some of the features which were declared with the
selection flag.

The negotiation phase serves as a lightweight extension point. However, we have
defined a few generic features, which should be recognized by the analyzer and may be
used by any system:

• One-time negotiation. The negotiation phase can be skipped after the first time,
if the analyzer so chooses it.

41

3. ANALYSIS FRAMEWORK

• One-time variable setup. The variable declaration and selection can be skipped
after the first time, if the analyzer so chooses it.

• Skip variables declaration. The SUT will not send a VariablesDeclaration mes-
sage. In this case, the VariableSelection message should contain enough infor-
mation for the system to recognize the selected variables, e.g. by name. This is
usually desired if the number of traceable system variables is too high and/or the
analyzer already knows which variables it needs to trace without input from the
system.

• Reset support. The SUT supports the Reset command, which should decrease the
overhead when launching several executions in succession.

• On-demand reports. The SUT supports the Report command, which instructs it
to submit a report with the current state of the execution.

• System type. A single feature which stands in for a set of features which are
specific to a particular type of system, which the analyzer should support explicitly.

Some combinations of these features, such as one-time negotiation, one-time variable
setup and reset support are traits of systems whose front-ends are persistent, i.e. they
stand on-line and retain state information in between executions.

It is worth noting that supporting a feature does not mean that it will be taken
advantage of, unless it is marked as required. For instance, if a system supports reset, the
analyzer may still stop and start systems as if that feature had not been declared. Hence,
in such cases the system should support both cases.

3.2.2 Setup
In the next phase, the analyzer selects the variables it wants to appear on the trace and sets
the values of the system parameters. This phase is initiated by a VariablesDeclaration
message from the system, which declares the available variables for monitoring. For
each variable a numeric identifier is provided and, optionally, its name, type and whether
its value can be set as a parameter before the system starts. Some of these variables may
have a special significance depending on the type of system and the negotiated features.

The analyzer then selects the variables that are required for the trace from the set
of declared variables, sending a VariableSelection message. This message may also
assign new identifiers to the selected variables, to accommodate the expectations of the
analyzer. In the rest of the protocol variables will be referred by this identifier and never
by their names. Then, the analyzer prepares a ParameterSetup message with the values
for the system parameters. Upon receiving it, the system shall set these values before the
execution starts.

42

(a) Analyzer execution activity (b) System execution activity

Figure 3.4: Communication protocol overview: execution subactivities

Finally, the system acknowledges that the setup phase is completed and that it is ready
to execute by sending a Report with a Ready type field. However, if the system detects
an error in any of the responses sent by the analyzer, it may respond with a Report(Error)
and terminate.

3.2.3 Execution
The execution phase of the protocol is shown in the subactivities of Figure 3.4, which are
called at the end of the activities in Figure 3.3. In both sides the activities are partitioned
into two swim lanes, representing parallel action paths. Note that some error conditions
and commands have not been included in the figures for the sake of simplicity.

In the case of the system (Figure 3.4(b)), on the one hand it must send the relevant state
information to the analyzer, and on the other hand it must watch for incoming commands
from the analyzer. For the former, a Report message of type Measure is sent for each
relevant state, packing the values of the variables at that moment. This may continue
until the execution terminates normally, which shall be notified to the analyzer sending a
Report(Finished) message before terminating. At any time, a Command message may
be received from the analyzer, which should be handled as soon as possible. These
commands include Measure, which forces the analyzer to send a new Report(Measure)
with the current state, and Stop, which instructs the system to terminate its execution. In

43

3. ANALYSIS FRAMEWORK

this case, the analyzer is notified with a Report(Stopped) before the system terminates.
The analyzer activity is also split into two (Figure 3.4(a)), with one side devoted to

receiving Report messages from the system, and the other one to the analysis itself. Here
we have included an “Analysis” action, which contains the whole process of on-the-fly
analysis as carried out by Spin with the reconstructed trace. If the analysis reaches any
conclusion before the trace ends, the execution of the system is stopped by sending a
Command(Stop) message and waiting for the confirmation in a Report(Stopped) message.
Meanwhile, the analyzer may receive Report messages of several kinds. Several Measure
ones may be received with new trace states. Any trace state data is stored in a state stack
which is shared with the “Analysis” action. If a Report of type Finished or Error is
received, then the analyzer assumes that the system has terminated and that no more states
are going to be added to the reconstructed trace. Note that the analysis may continue
even after the system has stopped, as the execution trace may not have been completely
analyzed, or there may be branches that are still unexplored. The analyzer can terminate
this phase as soon as it exhausts the trace and branches.

3.2.4 Example
Figure 3.5 shows an example scenario of the communication protocol in use as a UML
sequence diagram, with two alternative outcomes. This diagram shows only one execu-
tion of the system. As with the activity diagrams in this section, most of the message
parameters have been omitted. The example also shows which messages correspond to
each of the three phases.

The negotiation and setup phases are carried out normally. In the execution phase,
the system under test starts sending a series of Report(Measure) messages, with the states
of the current execution trace. The first alternative shows how the analyzer would stop
the execution of the system, typically after an objective has been met in the current trace,
sending a Command(Stop) message. The SUT acknowledges this with a Report(Stopped)
message. In the second alternative, the SUT finishes its execution naturally and notifies
the analyzer of this event with a Report(Finished) message. The analyzer does not have
to respond to this message. In both cases, the system terminates after sending its last
message, and the analyzer may continue exploring another execution.

3.3 Objectives
Objectives may be written using several formalisms, as long as they can be translated
into a never claim automata for Spin (see Section 2.1.5). In our framework we have
added a couple of additional kinds of objectives to improve its usefulness. For instance,
we allow the definition of asserts that are checked independently of any specified never
claim automata. In addition, we have added a simple classification for the results, which

44

Figure 3.5: Example scenario of the communication protocol

make them easier to understand for the user. A summary of the supported objectives can
be found in Table 3.1.

Most objectives include either accept or reject as part of their names, so that the user
can decide whether a trace that verifies the objective should be tagged as accepted or
rejected. For assertions, if the condition is true in some state then the trace is tagged.
For never claim automata and related objectives, if a violation is found then the trace is
tagged. If several objectives are specified, the trace will be tagged according to the first
objective met and the analysis of that trace will be stopped. Note that if, for instance,
a trace does not satisfy an accept objective, it does not mean that is should be tagged
as rejected. However, we have found that it is often a good practice to set bounds for
the analysis of traces using tagged objectives. We will discuss other available search
optimizations in the next section.

We allow three main variations of these accept and reject objectives, summarized as
follows:

• accept, reject: a simple state condition (assertion) over the variables of the execu-
tion trace

45

3. ANALYSIS FRAMEWORK

Objective Parameter Summary

def Boolean formula
or constant

Define a formula or constant as a symbol to be
used in other objectives

accept
Boolean formula Stop & tag trace if a state checks the given asser-

tionreject
ltlAccept

LTL formula Stop & tag trace if the trace checks the given
formulaltlReject

neverAccept Never claim
automaton

Stop & tag trace if the given automaton reaches
an accepting stateneverReject

invalidConfig Boolean formula2 Skip execution if parameter configuration checks
the given formula

acceptSimilar
Boolean formula1 Skip execution & tag if trace with “similar” con-

figuration and same tag existsrejectSimilar

Table 3.1: Summary of supported objectives.

• ltlAccept, ltlReject: an LTL formula which uses the variables of the execution trace

• neverAccept, neverReject: a never claim automata to be used directly by Spin,
which uses the variables of the execution trace

Only one ltl* or never* objective may be used at the same time. However, we allow
the use of several simple accept and reject objectives in the same analysis. For instance,
the user may specify a desired evolution of the variables of a network model as an
ltlAccept objective, while setting a few assertions as reject objectives to check for bad
states and limit the state space, such as in the following example:

def : start := var = 1
def : maxTime := 1000

ltlAccept : ♦(start ∧ ♦(var = 2))
reject : (var < 0 ∨ var > 2)
reject : time > maxTime (3.1)

In Spin, LTL formulas are usually written using boolean propositions defined else-
where, such as start in the previous example, although variables can be used directly.

1Over the parameters of the current configuration and a previous one
2Over the parameters of the current configuration

46

This is the purpose of def , i.e. to define a boolean formula or a constant as a symbol that
can be used in other objectives. In this example, the first objective accepts traces where
the value of var will be 1, and then 2 at some point in the future. At the same time, traces
where var is not in the [0, 2] range or where time exceeds 1000 are tagged as rejected.

In the following subsections we expand the description of these objectives and give
some examples of each. Here we will use mathematical notation for the examples
(including symbols such as ♦ or ∧), but it is worth noting some conventions used when
writing these formulas in analysis specification files:

• boolean operators are written as in C, e.g. &&, ||,

• temporal operators are written as in Spin, e.g. [], <>,

• variable names are prefixed with a dollar sign, e.g. $var

3.3.1 State assertions
State assertions, defined using either accept or reject, are the simplest kind of objective.
A state assertion is a boolean formula over the variables of the execution trace, and is
checked after a new state is explored in the analysis algorithm. If the formula is true
given the current values of the variables, the analysis of that trace is stopped, the trace
is tagged with either accepted or rejected accordingly, and the analysis proceeds to the
next trace.

Some examples of simple state assertions include:

accept : playCount > 1000 (3.2)
reject : time > 100∨ rebufCount > 3 (3.3)

Objective 3.2 simply checks that a system variable, playcount, reaches a certain value,
while objective 3.3 requires either of two variables to reach certain limits. If these two
objectives were used at the same time, the trace would be stopped as soon as one of
them were true on a state of the execution trace, and tagged with accepted or rejected,
respectively.

3.3.2 LTL formulas and never claim automata
Complex objectives that deal with the evolution of variables along an execution trace
can be expressed usig LTL formulas or never claim automata. The syntax and semantics
of LTL formulas are discussed in Section 2.1.2. As per the model checking algorithm
used by Spin and discussed in the same section, LTL formulas are translated into Büchi
automata and then represented as never claim automata. It is easier to check the presence

47

3. ANALYSIS FRAMEWORK

of a behavior (only one counterexample must be found) than the absence of one (the
whole state space must be explored). Therefore, desired objectives written as LTL
formulas are usually negated before translating them into a never claim automata to find
violations.

Instead of providing a formula for translation, the user may provide a never claim
automaton directly, e.g. obtained using another translation algorithm different from the
one used by Spin.

At most one of these objectives is allowed at the same time, e.g. a single LTL formula
or a single never claim automaton.

We now provide some examples of LTL formulas used as objectives:

ltlAccept : ♦(var = 1∧♦(var = 2)) (3.4)

Objective 3.4 describes the evolution of the variable var: for the trace to be “accepted”,
var must be equals to 1 at some point, and then equals to 2 later in the trace. The formula
makes no assumptions on the value of var between these two points in the trace.

ltlReject : ♦�broken (3.5)

On the other hand, objective 3.5 will “reject” traces where broken is always true,
starting at some point of the execution trace. broken may be a boolean variable or a
symbol defined elsewhere, such as a boolean formula. This formula can only be checked
on infinite traces, where broken is infinitely repeated. Spin stuttering mechanism, which
transforms a finite trace into an infinite one by considering that the last state is repeated
forever, can be used to check this objective on finite traces, e.g. if broken is true on the
last state of the trace.

3.3.3 Parameter configuration validation
Valid parameter values can be defined as discrete values, ranges, or a combination of
both. However, specially in systems with a significant number of parameters, some
combinations of these parameters may not make sense, or are not interesting from the
point of view of the analysis. To reduce the number of parameter configurations that have
to be executed and analyzed, the user may provide additional objectives that validate
these configurations.

There is a single objective of this kind, called invalidConfig, which accepts a boolean
formula over the parameters of the system. Any number of invalidConfig objectives may
be used at the same time. These objectives are evaluated after a complete parameter
configuration is generated. If one of the is true, then the parameter configuration is tagged
as invalidConfig, and the system is not executed and analyzed with these parameters.

48

For instance, objective

invalidConfig : (p1 > 5)∧ (p2 <−10) (3.6)

would discard parameter configurations where the given formula is true.

3.3.4 Inferring results from previous analyses
In some circumstances, the result expected by executing the system with a given parame-
ter configuration can be inferred from the result obtained from other similar parameter
configurations. Identifying and acting upon these similar configurations may yield
significant analysis time gains, wherever possible.

In the OptySim implementation, parameter configurations and their corresponding
execution traces are explored sequentially, i.e. a new trace is generated and analyzed
only after the analyzer has finished with the previous one. The results obtained from
the analysis of previous traces can be applied to infer the result of the next trace, based
on the objectives being checked, the generated parameter configurations and the known
behavior of the model.

We provide acceptSimilar and rejectSimilar objectives to take advantage of this
optimization. These objectives take a boolean formula over the parameter values from the
current configuration and from another previous configurations. After a new parameter
configuration is generated, the formula is evaluated for each previous configuration
of with the same tag, i.e. accepted and rejected for acceptSimilar and rejectSimilar,
respectively. If the formula is true for any previous parameter configuration, then the
system is not executed with this parameter configuration, but it is tagged as if it had been
(with no execution trace attached to the parameter configuration).

Definition 3.1 (Result inferred from previous analyses) Given p= 〈p1, p2, ..., pn〉 the
values of the current parameter configuration. Assume that Q is the set of all previous
parameter configurations, and q = 〈q1,q2, ...,qn〉 ∈ Q the values of a previous param-
eter configuration. Let Tag = {accepted, rejected, ...} be the set of possible tags. Let
tag(q) : Tag be the tag given to the trace that resulted from executing the system using
q. Let obj : {acceptSimilar, rejectSimilar} be the objective, and eval(obj, p,q) : Boolean
the function that evaluates the formula associated with obj using p and q as the values
of the current and previous parameter configuration, respectively. Let tag(obj) : Tag be
the tag associated with the given objective, such that tag(acceptSimilar) = accepted and
tag(rejectSimilar) = rejected. If∨

q∈Q

((tag(obj) = tag(q)) ∧ eval(obj, p,q)) (3.7)

49

3. ANALYSIS FRAMEWORK

is true, then the system is not executed using the parameter configuration p, and the
(empty) trace is tagged with tag(obj).

Note that formula 3.7 can be evaluated in short circuit. That is, it is enough to find
one q ∈ Q for wich the formula is true.

For instance, given p = p1, p2, ..., pn, if there exists a previous accepted parameter
configuration with a smaller value for parameters p1 and p2, while the rest of the
parameters have the same values, the user may declare that the next trace should be
accepted as well without having to execute the model:

acceptSimilar : (p1 > q1) ∧ (p2 > q2) ∧ (
∧

2<i≤n

pi = qi) (3.8)

In the previous objective, p1 and p2 refer to the values of these parameters in the
current configuration, while q1 and q2 refer to the values from a previous configuration,
i.e. from a parameter configuration q ∈ Q. The last portion of the formula states that the
rest of the parameters in the configuration must be equals between the current and the
previous configuration. When writing the objectives in test specification files, $* can be
used as a short hand notation for this. Also, the variables of a previous configuration
would be written as usual, but without the dollar sign.

However, special care must be taken when using this exploration optimization. If the
relationship used for inferring results is not correct, the analysis will most likely provide
false results.

3.4 Implementation
This section deals with the implementation of OptySim with respect to the analyzer.
The starting point is an analysis specification file, provided by the user, and a Promela
template with associated C libraries, provided by the framework. In the first step, the
template is instantiated using the information provided by the user, and compiled into
an analyzer executable. This analyzer is responsible for controlling and communicating
with the system executions which yield the traces to be analyzed.

We will describe the main contents of the Promela template and how it is instantiated.
We will discuss how the analysis algorithm of Chapter 3.1.3 is realized in the template,
and what data structures are used.

3.4.1 Promela template
A template was necessary for our purposes as Promela state variables cannot be declared
dynamically. State variables are declared with a global scope, outside any proctype or

50

inline definition, but our framework must deal with systems which expose different
variables in the execution traces. Thus the declaration of these state variables must be
tailored for a specific system.

The Promela template contains the relevant algorithms and data structures, but with a
few placeholders that should be filled before it can be used. These placeholders include
the aforementioned state variables, and the never claim automaton and additional boolean
conditions, if any. These (and other relevant information) must be provided by the user
in an analysis specification file, as explained in Section 3.1.1. The instantiated Promela
template is ready to be processed by Spin into compilable C code.

We used the Apache Velocity template engine [12] to define and instantiate the
Promela template. Velocity is Java-based: it can be used programmatically as a Java
library, and Java objects can be passed to and used within the template. The Velocity
Template Language (VTL) is simple but powerful. Most notably, arbitrary Java methods
can be called on objects passed to the template. In VTL, variables are referenced
with a leading dollar sign (e.g. $message), fields and methods on objects are accessed
using the familiar dot operator (e.g. $message.Sender, $message.setResult(true))
and directives (such as conditions and loops) are preceded by a hash (e.g. #foreach(
$message in $messageList)).

Figure 3.6 shows an overview of the contents of the Promela template. The template
itself is divided into several files, and there is additional functionality provided in a
separate C library. The template contains the declaration of the system variables that
should be stored in Spin’s state vector, and additional data structures required for the
analysis and communicating with the system. It also provides placeholders for the
different objectives: a never claim automaton (either provided directly or translated from
another formalism), state assertion formulas, and checks on the generated parameter
configurations. Parameter configuration generation is handled taking advantage of Spin’s
search algorithm and indeterminism. The values and ranges of these parameters must be
instantiated on the template as well. The template is also responsible for launching a new
system execution and managing the communication with it, so that execution traces can
be reconstructed in Spin.

3.4.2 Data structures

The Promela template and related C libraries contain several data structures required to
hold the state of the system execution, support backtracking and handle the communica-
tion with the system. This section covers the most important of these data structures and
their use within the analyzer.

51

3. ANALYSIS FRAMEWORK

Figure 3.6: Overview of the Promela template contents

Data inside Spin’s state vector

Part of the data used by the analyzer is inside Spin’s state vector. As explained in
Section 2.1.5, these variables will be stored in the stack and in the heap, and will be
restored correctly in the event of backtracking. Most importantly, the states of the
execution trace must be stored here so they can be inspected by Spin’s analysis algorithm.

Listing 3.1 shows the part of the global state that is stored inside Spin’s state vector.
The first two variables shown, running and currentState are used to keep track of
the state of the system and its execution trace. running declares whether the system
is currently under execution or not. More precisely, it marks the end of an execution
trace (if it is finite and it has been reached). currentState contains the index of the
current state in the execution trace being analyzed. This variable is critical for supporting
backtracking, in conjunction with the state stack, which is discussed in later in this
section. Finally, system variables are declared using c_state as global variables. This
enables using types commonly found in systems but not supported in Promela, such
as floating point numbers. However, care must be taken when using such variables in
formulas due to the nature of their representation.

52

1 bool running = false;
2 int currentState = 0;
3
4 #foreach($parameter in $allVariablesList)
5 c_state "$parameter.CType $parameter.Name" "Global"
6 #end

Listing 3.1: Promela template: global state

1 struct state {
2 #foreach($parameter in $allVariablesList)
3 $parameter.CType $parameter.Name;
4 #end
5 };

Listing 3.2: Promela template: struct state for state stack

State stack

In the previous section, it was shown how the current state of the execution is stored in
global variables declared with c_state, to be kept inside Spin’s state vector. The values
of these variables are restored in the event of backtracking. Execution traces are linear
by definition, but never claim automata may induce branching in the analysis of a single
trace. As a depth-first search algorithm is used for state space exploration, this may lead
to backtracking while analyzing a trace. However, when advancing from a backtracked
point, the trace reconstruction algorithm should not accept new states from the execution,
but rather restore the already visited states (while they are available).

To support this, we introduce an external stack that contains all the already visited
states in the current execution trace. Each state is stored as a struct whose contents are
defined during the instantiation process, as shown in Listing 3.2. States are organized
into pages that can be allocated dynamically as needed. Figure 3.7 shows an overview of
this page-like structure for storing the stack of states.

Variables table

State data is spread across several places: Spin’s state vector holds the values of the
current state, and the state stack contains all states received at the moment. Some times it
is necessary to retrieve or update the values in a generic way. For instance, reports from
the system with state data may contain any subset of these variables. To support this, we
keep a table with relevant meta-data about the system variables, which is initialized once
using the configuration provided by the user.

Figure 3.8 shows the structure and contents of the variables table. In particular, for
each variable the table stores:

53

3. ANALYSIS FRAMEWORK

Figure 3.7: State stack

Figure 3.8: Variables table

• id. Numeric identifier assigned to the variable. This is the identifier that will be
used in the communications with system executions. This includes the following
messages: VariablesDeclaration (where the correspondence between ids and
names is established), VariableSelection, ParameterSetup, and Report(Measure).

• name. String with the name of the variable.

• type. An enum value with the type of the variable. This is used to automatically
select the appropriate function to operate on each variable.

• global. A pointer to the position in Spin’s state vector where the current value of
the variable is stored.

• stateOffset. An integer with the offset (in bytes) of the variable within the struct
state.

54

This data is used to handle the variables in a generic fashion where possible. For
instance, when receiving a new state from the system, the data must be pushed to the
back of the state stack. The type and stateOffset values tell the analyzer where and
how much data must be copied to the new struct state. Later, when the state is copied
from the stack to the global state, the global pointer indicates where each value should
be placed.

3.4.3 Exploration and analysis
This section explains how the exploration and analysis of the state space of the system
under test is carried out using the Promela template. Once the data structures have
been initialized, the main responsibilities of the analyzer are generating new parameter
configurations, and analyzing system execution traces using these configurations. This
process can be seen as two nested loops: one generating new configurations and another
receiving the states of the execution associated with that configuration.

Listing 3.3 shows the initial phases of the Promela template, which starts at the
special init process. After the initialization, the explore inline contains the bulk of the
analyzer. A new parameter configuration is generated in generateConfig (explained
later). If the configuration passes the checks imposed by the user, a new execution is
started and analyzed inside executeSystem. Required cleanup follows, whether the
system was executed or not. These steps are repeated until the parameter space is
exhausted.

Parameter configuration generation

The process of generating a new complete parameter configuration yields the “outer
loop” of the exploration and analysis. This loop is not coded explicitly, but rather it takes
advantage of Spin’s exhaustive exploration of indeterministic choices.

The code for configuration generation is shown in Listing 3.4. For each parameter
param, the template provides a generate_param inline. These inlines include a single
if with multiple indeterministic choices, one with each of the values specified by the
user. Ranges are converted automatically into individual values as well. Then, inline
generateConfig calls all these generate_x inlines in sequence. Spin’s depth-first
search will pick one of these choices and continue exploring, but it will later return to that
point to follow another path, until all of them are exhausted. Thus, the executeSystem
inline from Listing 3.3 will be called once for each complete parameter configuration.

Trace reconstruction and analysis

Once a new parameter configuration has been generated, the system can be executed
under this configuration, and the resulting execution trace can be analyzed. Listing 3.5

55

3. ANALYSIS FRAMEWORK

1 inline explore () {
2 generateConfig ();
3 cleanupPrevExecution ();
4 storeConfig ();
5
6 if
7 :: c_expr { checkConfig () } -> executeSystem ()
8 :: else -> skip
9 fi;
10
11 cleanupExecution ();
12 }
13
14 inline initialize () {
15 c_code {
16 os_init ();
17 os_launchServerSocket ();
18 initializeDatabase ();
19 initializeStateStack ();
20 initializeVariableTable ();
21 }
22 }
23
24 init {
25 initialize ();
26 explore ();
27 }

Listing 3.3: Promela template: initialization and exploration

shows part of this process. We omit the definitions of inlines setupNewExecution and
startExecution, which launch the system execution, perform the initial negotiation
and setup phases of the communication protocol (as described in Section 3.2), and reset
some analyzer variables.

The most important part of this process is contained in the analyzeExecution inline.
We have omitted some details from this inline, including checking assertions, and left
only the trace reconstruction core. This core is quite simple: a loop that will retrieve
the next state and update Spin’s global state accordingly, while there are more states
available. The nextState functions hides the origin of this state: it may be a new state
from the system execution trace, or it may be a state that has already been visited because
Spin backtracked during the analysis of the current trace. The currentState variable,
which is stored in the state vector, stores the index of the current state. When the analyzer
requests the state that follows the current one, it first checks whether it is contained in
the state stack. If not, the stack is updated first with a new state from the execution trace,
keeping the values of the variables that did not change. Then, the variables in the state

56

1 #foreach($parameter in $parameterList)
2 inline generate_${parameter.Name }() {
3 if
4 #foreach($value in $parameter.Values)
5 :: c_code { now.$parameter.Name =

$ValuesHelper.normalize($value , $parameter.Type); }
6 #end
7 fi
8 }
9 #end
10
11 inline generateConfig () {
12 #foreach($parameter in $parameterList)
13 generate_${parameter.Name }();
14 #end
15 skip
16 }

Listing 3.4: Promela template: configuration generation

vector are updated from the values of the corresponding state in the state stack.
Note that this only reconstructs the execution trace as a series of Spin states. The

analysis of temporal properties is performed over these states by the analyzer generated
by Spin, without further assistance from the template. However, to associate the proper
result with each execution trace, the Promela template must be aware that Spin may
truncate the analysis of an execution trace if a temporal property is checked. Thus, the
cleanupPrevExecution shown on Listing 3.3 is introduced to deal with this situation,
using global data stored outside of the state vector (not shown in these listings). This
inline will be executed after another complete configuration has been generated, which is
the first single point where it can be known whether the last trace was truncated.

3.4.4 Protocol implementation

The communication protocol between the analyzer and the system, described in Sec-
tion 3.2, has been implemented using Google Protocol Buffers [14]. Protocol buffers are
a mechanism for serializing structured data, typically for storage or exchange between
heterogeneous parties. This structured data is defined as one or more protocol buffer
messages in a .proto file. Each message contains a series of name-value pairs, and
messages may be nested. Protocol buffer messages can be encoded either as plain text or
in a efficient binary format.

Compared to plain XML, protocol buffers are simpler to use, and more efficient in
terms of message size and processing time [94]. The ASN.1 standard [8], another popular
choice for message exchange, features a definition language which is more expressive

57

3. ANALYSIS FRAMEWORK

1 c_code {
2 void nextState(int fd) {
3 now.currentState ++;
4 if (now.currentState > lastState) {
5 copyPrevState ();
6 readState(fd);
7 }
8 else {
9 // Backtracked
10 }
11 updateSpinStateFromStateStack ();
12 }
13 }
14
15 inline analyzeExecution () {
16 do
17 :: (running) -> c_code {
18 nextState(os_getProxydata ()->clientSocket);
19 };
20 :: (! running) -> break
21 od
22 }
23
24 inline executeSystem () {
25 setupNewExecution ();
26 startExecution ();
27 analyzeExecution ();
28 }

Listing 3.5: Promela template: trace reconstruction and analysis

than protocol buffers, and several encoding formats. However, the simplicity and ease of
use of protocol buffers were valued over advanced ASN.1 features.

The official distribution supports Java, C++ and Python, but not C, and thus is not
directly embeddable in our Promela template. For this purpose we used protobuf-c [29],
a project which provides C bindings for protocol buffers.

Given the original protocol buffer definition file (see Appendix B), protocol buffer
compilers generate bindings tailored for handling the messages. Each set of bindings is
targeted at a particular programming language, such as Java or C++, and is supported
by a library provided with the compiler. We developed additional helper classes and
functions on top of these generated bindings. Figure 3.9 shows an overview of this
process of generating bindings from the protocol message definitions.

Protocol buffer messages are not auto-delimited, thus requiring some sort of con-
vention to adequately parse messages sent over a stream. In our implementation we
always send a Header message of fixed length preceding each message. Header includes

58

Figure 3.9: Generating bindings from protocol buffer message definitions

meta-information of the following message, including size (in bytes) and type. This
simplifies the task of reading new messages whose length is unknown a priori.

To handle these headers in a transparent way, we developed additional C functions
on top of the ones generated by protobuf-c. These functions can be grouped into three
layers:

• os_sendHeader/os_readHeader. Send or read a single Header message. The
required information is passed directly as parameters, lifting the burden of building
or parsing the message.

• os_sendMesssageWithHeader/os_readMesssageWithHeader. Send or read a
message with the corresponding header. In the former, a new Header message is
sent with the meta-data passed in the parameters. In the latter, a Header message
is read first, and the meta-data returned as output parameters. The message is also
decoded using the decoder function passed as argument.

• os_sendXXXWithHeader/os_readXXXWithHeader. Functions for sending and
reading specific types of messages. These functions handle meta-data extraction
for the headers.

Although we could take advantage of multiple threads to read states from the system
execution trace in parallel with the analysis, our implementation is sequential. The
protocol allows implementations where state data is read on an “as needed” basis, given
a sufficiently large reception buffer.

59

3. ANALYSIS FRAMEWORK

Figure 3.10: Overview of the Promela instantiation process

The negotiation and setup phases are synchronized, where each side knows which
message (or messages) to expect and how to respond. During the execution, the analyzer
requests a new state after each “inner loop” step of the analyzer. If the following state is
not available in the state stack, a new Report message is read from the system execution.
In the event that the system execution ends or it encounters an error, the analyzer is not
required to respond in a timely manner to the Report message that announces this. If
the analyzer truncates a trace, a Command(Stop) message is sent during the cleanup
step. Any Report messages sent by the system meanwhile are ignored. In this case the
analyzer does wait for the system to send a Report(Stopped).

3.4.5 Template instantiation
The template instantiation process was implemented using the Velocity Java library and
JAXB [13]. We use the latter to parse configuration files written as XML files (see
Appendix A). Using JAXB we also generated a series Java classes from a XML Schema
definition that represent the elements of a configuration file. On top of that, we developed
a series of extensions for some of the elements, such as properties or ranges or values,
that provide additional methods that are particularly useful for the instantiation process.

The instantiation process is shown in Figure 3.10. The ConfigurationLoader class
loads the file provided by the user and produces a Configuration instance with its
contents. We implemented several subclasses of ConfigurationLoader for parsing
different types of configuration files, such as XmlConfigurationLoader for loading
XML files and LegacyNs2ConfigurationLoader for parsing an earlier version of the
configuration files which were attached to ns-2 OTcl scenario files.

The ContextCreator class is tasked with preparing a VelocityContext instance

60

with information from the Configuration. VelocityContext objects are used in Veloc-
ity to pass variables and other information to the template. For instance, the $allVari-
ablesList from Listings 3.1 and 3.2 is a Java List instance with variable meta-data
obtained in the previous step. As we experimented with several versions of the Promela
template, we also developed different subclasses for each.

Last, the VelocityContext instance and a reference to the Promela template file are
passed to a standard VelocityEngine instance, which then produces the final Promela
file. This Promela file is ready to be processed by Spin and compiled into the executable
analyzer.

3.4.6 System integration
The descriptions of the previous sections mostly concern the implementation of the
analyzer. However, the systems under analysis also require a front-end that handles
the communication with the analyzer and facilitates the extraction and abstraction of
execution traces. For our case studies, we implemented these front-ends as libraries that
integrate with the system. Some of these front-ends are not completely transparent to
the system, and thus require some additional effort in order to be used for a particular
scenario, e.g. by indicating manually the variables that will be part of the execution trace.

We developed libraries for use with ns-2 and Java systems. The former were built as
the combination of a generic C++ library plus an system specific library for ns-2. This
allows easier porting to other C++-based systems, such as ns-3. The generic C++ library,
and ns-2 integration library are described in Chapter 5. On the other hand, for Java
systems we implemented a front-end using the Java Debugger Interface (JDI), which is
transparent to the system. This integration also provides a plug-in for the Eclipse IDE,
and is described in Chapter 7.

3.5 Summary
This chapter has presented OptySim, our framework for analyzing systems whose behav-
ior can be observed as an execution trace. This allows the analysis of systems whose state
space is too big to be covered exhaustively, or which are presented as black boxes. The
analysis and supported objectives are flexible enough to be used for different purposes,
such as testing or performance optimization.

As part of this framework, we proposed a protocol for communicating the analyzer
and the system execution that can be adopted by other systems. The chapters in Part III
include the description of libraries that can be used as a starting point for this adoption.
Furthermore, this protocol may be adopted by other analyzers whose inputs can be
thought as execution traces.

61

3. ANALYSIS FRAMEWORK

62

Chapter 4

Abstraction of execution traces

In previous chapters we have talked about system states, execution traces and abstract
traces, but we have not discussed how properties are checked on these execution traces
or formalized our abstractions yet.

This thesis is focused on the analysis of heterogeneous systems whose observable
behavior can be described as a series of states, which we call a trace. Each state is
composed of one or more variables, whose values and evolution along a trace can be used
to check relevant objectives described as properties, such as LTL formulas. These traces
are generated by executing the system under different circumstances, such as setting
different values for system parameters. Usually, a large number of different execution
traces is generated from the same system by changing the available parameters, or just
by the influence of external factors.

Analyzing complete traces for complex systems may require significant resources,
and even more when analyzing a large set of traces. However, not all the information
contained in a complete trace is relevant to the objectives that a user may want to check.
We can reduce the overhead of the analysis and communication by abstracting the trace,
i.e. working with a reduced version of the trace which is still useful for the objectives
at hand. We developed two such abstractions, called counter and hash projections,
which differ in their computational complexity and on the kinds of properties that can be
checked with them.

In addition, we developed an exploration method for state spaces composed of
independent execution traces. When analyzing a trace, it is often useful to stop at the first
objective (either positive or negative) that was met. In OptySim, independent execution
traces are part of the same state space. Asking a model checker to find all property
violation will probably result in several violations reported for each trace. We tweak
the depth-first algorithm described in Chapter 2 so that exploration continues with the
following trace after an objective is met on a trace.

This chapter defines our view of execution traces, and presents our trace abstractions
for reducing the cost of analysis. We also show how these abstractions preserve the

63

4. ABSTRACTION OF EXECUTION TRACES

results of analysis, compared to the corresponding complete traces. Finally, we describe
how our modified exploration method for trace-based state spaces works.

4.1 State space
In this section we discuss our definitions of state space and execution traces, relative to a
system under analysis.

Let Sys be the system under analysis. This may represent different kinds of systems,
e.g. a computer program or a model of a real system, which can be described at a high
level in a similar way. Sys contains an enumerable set of observable features Var, which
we call variables. We assume that these variables have a known domain, e.g. booleans,
natural numbers, real numbers, and that these domains are either finite or discretized. A
state is a valuation of the variables of the system.

Definition 4.1 (State) Let Sys be a system with variables Var, Valv the finite set of
possible values of v ∈ Var, and Val =

⋃
v Valv the union of theses sets. A state σ is a

function σ : Var→ Val that associates each variable with its value. Let us denote with
State the finite set of possible states of a system Sys.

A system may be executed, causing its initial state to change during the execution.
This evolution of the system state may be discrete, e.g. the execution of an instruction in
a program, or discretized into observable steps, e.g. an environmental variable in a real
system measured every second. The evolution of the state of the system in discrete steps
for a given execution is what we call a trace. Even with a finite-state system, a trace may
be finite or infinite, e.g. if the trace contains an infinite loop.

Definition 4.2 (Trace) Let Sys be a system with states State. A trace t of Sys is a
sequence of states:

t = σ0 −→ σ1 −→ σ2 −→ . . . ∈ Trace (4.1)

with Trace being the set of all possible infinite sequences of elements from State, i.e. the
set of all possible traces.

The initial state of the system, σ0, is partially defined by a subset of Var called Param,
or parameters, whose values can be assigned before the system is executed. Different
initial states will usually lead to a different evolution. The evolution of the system during
an execution may also be determined by some external factors which cannot be controlled
(to a certain degree) in a “real” environment. External factors include random number
generators or interferences in a wireless network.

The influence of the parameters and the external factors in the execution of the
systems means that the execution of a system may produce a (possibly infinite) number
of different execution traces. This set, called Trace, constitutes the state space in which
we are interested regarding the analysis of a system.

64

Definition 4.3 (System) A system Sys is a tuple 〈Var,Param,State,Extern, Initial,Exec〉
where:

• Var is a finite set of variables of the system, with each variable v belonging to a
finite domain of possible values Valv

• Param⊆ Var is the subset of configurable parameters

• State is a set of functions σ : Var→ Val ∈ State that assign values to variables

• Extern are the external factors that affect the execution of the system

• Initial is the initial configuration of the system, including the initial values of Var

• Exec : σ ,Extern→ σ ′ is the function that represents the behavior of the system,
producing a new state σ ’ from a previous state σ and the influence of Extern.

4.1.1 Parameter space
The values assigned to the Param subset determines part of the initial state of a system
Sys, and thus the trace that will be generated as a consequence of its execution. To
generate a greater number of different traces, and thus achieve a greater coverage of
the state space of possible traces, we may declare a subset of the possible values of the
variables in Param, and execute the system for each of these values. Depending on the
system and on other external factors, different initial configurations may yield different
traces.

Definition 4.4 (Initial configuration) Let Param⊆ Var be the subset of parameters of
a system Sys. The initial configuration is a function σ0 : Param→ Val that assigns a
value to each parameter. The values given by a initial configuration are part of the initial
state of the system:

∀p ∈ Param,σ0(p) = σ
0(p) (4.2)

Constructing the parameter space

A set of initial configurations may be constructed by declaring the sets of possible values
for each of the parameters in Param, and generating all possible combinations. Different
parameters may have different data types with different value domains, some of them
discrete and some continuous. We focus on discrete and discretized value domains.

Definition 4.5 (Initial values for a parameter) For each parameter p ∈ Param, we de-
fine the set of initial values for p, Σ0 : Param→ 2Val, as a subset of all the possible values
for the variable:

∀p ∈ Param,Σ0(p)⊆ Valp (4.3)

65

4. ABSTRACTION OF EXECUTION TRACES

For convenience, the Σ0(p) sets can be declared as a sequence of individual values,
as a range of values, or any combination of the two. Ranges have an initial value, a final
value, and number of values to be generated in the range, equidistant. This last element
is required for continuous domains, but optional for discrete ones. In the latter, if it is
omitted, all possible values between the initial and final value will be included in the
range.

Definition 4.6 (Initial configuration from parameters initial values) Let Param⊆Var
be the subset of parameters of a system Sys. Let Σ0 be the function that assigns a set
of initial values for each of the parameters p ∈ Param. We define InitConfig as the set
of all initial configurations σ0 which is constructed with the product of the individual
Σ0(p) sets:

InitConfig = ∏
p∈Param

Σ
0(p) (4.4)

In addition, certain combination of parameter values may be prevented from being
included as part of σ0. Depending on the system or on analysis requirements, certain ini-
tial configurations are not required to considered or do not make sense. These restrictions
may be expressed as boolean conditions over the values of the parameters.

4.1.2 External factors

The behavior of a system may be influenced by external factors over which little or no
control can be exerted. In some circumstances, some of these external factors may be
emulated in a controlled environment, e.g. a mobile phone connected to an emulated
network. External factors may affect the generation of the state space in an uncontrollable
manner.

One of the most significant issues in model checking is the so-called state space
explosion problem. Many closed systems are already complex enough to yield a state
space that is too big to cover in practice, and the introduction of unforeseeable factors
is bound to make matters only worse. Thus, a compromise is usually made in order to
analyze a significant portion of the state space within reasonable resource limits. For
instance, for many uncontrollable external factors this could mean executing the system
with the same parameters more than once in order to capture different external effects in
each execution. Other external factors, such as thread scheduling, can be influenced to
behave in a different way.

Typical external factors include random number generators, task scheduling and
environmental factors. In the rest of this section we will review some of these, including
their effect in the system execution, and how they can be measured or influenced.

66

Random number generators

Certain systems may include random behaviors, either intrinsically or to simulate un-
predictable conditions. These behaviors are usually implemented using random number
generators.

Random number generators can be divided into two methods. “True” random num-
bers depend on some measurable physical phenomenon which is expected to be naturally
random, such as atmospheric or thermal noise. On the other hands, pseudo-random num-
ber generators can be obtained using special computational algorithms, which depend on
an initial value called seed. Given the same seed, the sequence of numbers generated by
such algorithms would be exactly the same.

In systems with a pseudo-random number, it may be useful to execute the system with
different seeds to try to generate different execution traces. For some types of analysis, it
may also be useful to include the seed in Param, so that the seed is associated with each
execution, allowing the repetition of any system execution.

Task scheduling

Some systems may be composed of several concurrent tasks, such as threads in a
computer program or networked applications in a network simulation. These tasks have
to be scheduled on one or several processing units, e.g. processor cores or simulator
executors, in order to be executed. The scheduling policy decides how these tasks are
given time slots for their execution, and may be deterministic or have a certain degree of
randomness. In some systems, these tasks will compete with other tasks that co-exist in
the same environment, while in others the scheduling of the system tasks is isolated.

Scheduling affects how the traces are generated, since the task that has been scheduled
for a given period time is the one generating new states during that time. Also, tasks
usually share some common data, and the order in which this data is accessed influences
future evolutions of the system.

In our work we assume interleaving semantics for concurrent tasks. That is, several
tasks may be scheduled concurrently, but only one is executed at any given time. The
effective result is an interleaving of the instructions of each concurrent task. Even with
this interleaving model, synchronization between tasks and shared data is a complex
concern.

The extension of the state space that can be generated by a system may be greatly
expanded by the effects of scheduling. Exploring every possible scheduling of a system
can be an unfeasible task for most real cases. Techniques such as partial order reduc-
tion [100][67][46] reduce the number of different schedulings that have to be considered
from a certain point of view. In the case of partial order reduction, the instructions of a
system that do not access shared data can be considered as if executed atomically, and
the scheduler does not interrupt them to schedule another task.

67

4. ABSTRACTION OF EXECUTION TRACES

There are several ways in which task scheduling can be influenced. Some operating
systems expose scheduling parameters which can be tweaked in a programmatic manner.
The influence of other tasks that are being executed concurrently in the same environment
can be limited by running the system on a separate environment. Finally, some systems
may be instrumented to introduce thread scheduling system calls, such as yield or
sleep, in key locations, with additional parameters for controlling them, which will
force different schedulings of the same tasks.

Environmental factors

Systems that are executed in a real environment may be subject to a whole range of
additional factors that impact their behavior in ways that may not be easily predicted.
For instance, an application in a mobile device can be affected by other applications in
the same device, battery levels, interferences in the wireless link with the base station,
occupation of the wireless link by other devices, etc.

The simplest way of partially capturing the influence of these environmental factors
is executing the system several times using the same initial parameter configuration.
Some of these environments may be partially emulated, e.g. with testing equipment. This
may require additional integration with the analysis framework in order to control these
environments in a useful way.

4.2 Trace projection
A trace t, as defined in Section 4.1, represents a possible execution of a given system
Sys. However, we do not usually require (or want) the full trace to be analyzed by Spin.
A projection of the trace is enough in most cases. For instance, when checking an LTL
formula, the part of a trace that is involved in its evaluation may be the only part needed.
A projection includes only part of the states of the full trace, and the contents of each
state may be partially reproduced as well. In any case, the generation of the full execution
trace itself is not affected by the projection.

We now describe how the projection of states is constructed and the correctness
relation between the evaluation results regarding the original traces, and the projected
ones on Spin. In what follows, we use the same LTL semantics as Spin, without the next
operator as usual. Note that in t |= f , t may be a prefix of a complete trace, i.e. it may not
be necessary to generate the whole trace in order to check the satisfaction of a property.

Definition 4.7 (Projection) Given a subset of variables V ⊆ Var, we define the projec-
tion of a state σ onto V as the function ρV (σ) : V → Val such that ∀v ∈V.ρV (σ)(v) =
σ(v). Now, given a trace t = σ0 −→ σ1 −→ σ2 −→ . . ., we define the projection of t onto
V ⊆ Var as

ρV (t) = ρV (σ0)−→ ρV (σ1)−→ ρV (σ2)−→ . . . (4.5)

68

Figure 4.1: Trace projection

Figure 4.1 shows the projection ρV of a trace. Observe that V divides each state σi
into two parts: the part concerning the variables of V in state i (Vi), and the rest (resti).
The projection simply takes the former part from each state and ignores the latter.

The effect of this projection is similar to that of the cone of influence technique [45]
or Spin’s selective data hiding [80]. However, while these techniques simplify the model
of the system to include only variables which are on the set V (or which influence them)
before executing it, we execute the system as is and then simplify (i.e. project) the
generated trace. However, we do not automatically include other variables not in V .

As a general result of this definition of projection, if all the variables required for
evaluating an LTL formula are present in the projection, the evaluation of the formula
is not affected. Let f be an LT L formula and let us denote the set of variables in f as
vars(f).

Proposition 4.1 Given a trace t, a temporal formula f and a subset of system variables
V ⊆ Var, if vars(f)⊆V then

t |= f ⇐⇒ ρV (t) |= f . (4.6)

In contrast to model checking, we do not check formulas on all the possible traces
that can be generated from a system, but rather on a subset of those traces. When using
LTL formulas as objectives, it may desirable to check if a formula is checked in all, some
or none of this subset of traces. Thus we extend |= for sets of traces and the ∀ and ∃
quantifier operators.

Definition 4.8 Given a temporal formula f , a set of traces T , and a trace projection
function ρ ,

T |= ∀ f ⇐⇒ ∀t ∈ T.t |= f
T |=6 ∃ f ⇐⇒ 6 ∃t ∈ T.t |= f
T |= ∃ f ⇐⇒ ∃t ∈ T.t |= f (4.7)

By Proposition 4.1, the previous definition can also be applied to set of traces when
using the ρV projection.

69

4. ABSTRACTION OF EXECUTION TRACES

Due to the elimination of most system variables in the projected states, it is very likely
that a projected trace ρV (t) contains many consecutive repeated states. This represents a
problem for the model checker since it can erroneously deduce that the original trace has
a cycle due to the double depth search (DDS) algorithm used by Spin to check properties.
Note that this does not contradict Proposition 4.1, since in this result we do not assume
any particular algorithm to evaluate the property on the projected trace. In the following
sections, we use relation |=s to distinguish between the LTL evaluation carried out by
Spin through the DDS algorithm, and the satisfaction relation |= defined above.

To correctly eliminate consecutive repeated states in traces, we propose two different
techniques that we discuss in the following subsections.

4.2.1 Counter projection

A simple solution is to add a new counter variable count to the set of visible variables V .
This counter is increased for every new state, thus removing the possibility that Spin
erroneously finds a non-existing cycle. Observe that this also precludes Spin from
detecting real cycles present in the system. This case will be discussed in the following
subsection.

We extend the notion of trace projection given in Definition 4.7 by adding the state
counter variable as follows:

Definition 4.9 (Counter projection) Given a subset of visible variables V ⊆ Var and a
fresh variable count 6∈ Var, we define the i-th counter projection of a state σ : V → Val
as ρ i

V (σ) : V ∪{count}→ Val as

ρ
i
V (σ)(v) =

{
ρV (σ)(v) if v ∈V
i if v = count

Variable count is called state counter of ρ i
V (σ).

Now, given a trace t = σ0 −→ σ1 −→ σ2 · · · we define the counter projection of t onto
V , ρc

V , by projecting each state σi with the i-th counter projection, that is,

ρ
c
V (t) = ρ

0
V (σ0)−→ ρ

1
V (σ1)−→ ρ

2
V (σ2) · · ·

It is worth noting that there is a slight difference in the notation of the counter
projection of a trace (ρc

V) and the counter projection of a state (ρ i
V). Notice that the

former includes a c superscript, while the latter includes the value of the counter itself as
a superscript. Figure 4.2 shows the projection of a trace with the addition of the state
counter.

70

Figure 4.2: Trace projection with state counting

4.2.2 Hash projection

In this section, we assume that system states have a canonical representation, which
makes it possible to safely check whether two states are equal. This is a problem that
may not be trivial depending on the system, e.g. for languages that make an intensive
use of dynamic memory [62]. However, in this section, the actual representation is not
relevant for the results obtained. We only need to assume that given two logically equal
system states σi and σ j, there exists a matching algorithm able to check that they are
equal.

We use a proper hash function h : State→ Int to represent each state in the projected
trace. It is worth noting that since not all of the system states σ have to be stored (we
only project the visible part ρV (σ)), we may assume that function h is very precise,
producing a minimum number of collisions. That is, h(σi) = h(σ j) =⇒ σi = σ j, with a
high degree of probability.

Collision probability of hash function. In our implementation of the hash projection
we used the MD5 hash function [6]. Here we present a brief study of the collision
probability of this function in a practical case. This function transforms the given input
(in this case a string representation of the system state) into a 128-bit digest. Thus, there
are 2128 (or about 3.3×1038) possible values of this function. We are interested in the
likelihood of a birthday attack [109], i.e. the probability of a collision between any two
states belonging to the same trace or, conversely, in the number of different states that
could be generated before a collision is found with a given probability. For instance, if
we assume that a collision probability of 10−12 is enough for our analysis, this number
is approximately 2.6× 1013. Given a state size of 64 bytes (a reasonable assumption,
e.g. given the experiments in Chapter 7), about 1.5×106 gigabytes of memory would be
required to store this number of states. This is well beyond what current computers store,
and therefore computationally unpractical. However, further refinements can be applied
to the hashing function if necessary, as studied for Spin in [118] and [82].

Now, we extend the notion of state projection given in Definition 4.7 by adding the
codification of the whole state (including the non-visible part) as follows:

71

4. ABSTRACTION OF EXECUTION TRACES

Figure 4.3: Trace projection with state hashing

Definition 4.10 (Hash projection) Given a subset of visible variables V ⊆ Var, and a
fresh variable hash 6∈ Var, we define the hash projection ρh

V (σ) of a state σ onto V using
the hash function h as ρh

V (σ) : V ∪{hash}→ Val as

ρ
h
V (σ)(v) =

{
ρV (σ)(v) if v ∈V
h(σ) if v = hash

Now, given a trace t = σ0 −→ σ1 −→ σ2 · · · we define the hash projection of t onto V ,
ρh

V , by projecting each state σi with the hash projection, that is,

ρ
h
V (t) = ρ

h
V (σ0)−→ ρ

h
V (σ1)−→ ρ

h
V (σ2) · · ·

Figure 4.3 shows the projection of a trace with the addition of the state hash. Only
projected states ρh

V (σ) are transferred to Spin. If the model checker detects that two
states ρh

V (σi) and ρh
V (σ j) are equal, then we can infer that the original states σi and σ j

are equal with a high degree of probability.

4.2.3 Folded projections
We propose an optimization to the previous projections to reduce the number of states of
the projected trace. To define it, we modify the transition relation −→ defined in 4.2 by
labeling transitions as follows.

Definition 4.11 (Labeled trace) Let Sys be a system with states State. A labeled trace
t of Sys is a sequence of states:

t = σ0
M1−→ σ1

M2−→ σ2
M3−→ σ3 . . . ∈ LTrace (4.8)

where each label Mi ⊆ Var is the set of variables which were modified in the transition
between states σi− 1 and σi, and LTrace being the set of all possible infinite labeled
traces.

72

Recall that both counter and hash projections of traces t (ρc
V (t) and ρh

V (t)) discard
all system variables except the ones in V , which are the only ones needed to check a
temporal formula f , (V = vars(f)), while the rest of the state is collapsed into a single
variable. However, Spin does not need to know about states in which none of the variables
in V change as they do not affect the evaluation of temporal formulas (discussed later
in Section 4.3). Thus, we propose removing these states from the final projection given
to Spin. We call these removed states folded states, and the process of removing them
folding.

Definition 4.12 (Folded projections) Given a labeled trace t = σ0
M1−→ σ1

M2−→ σ2 · · · ,
we define the folded counter projection of t onto V ⊆ Var as

φ
c
V (t) = ρ

0
V (σi0)−→ ρ

1
V (σi1)−→ ρ

2
V (σi2)−→ . . .

and the folded hash projection of t onto V ⊆ Var as

φ
h
V (t) = ρ

h
V (σi0)−→ ρ

h
V (σi1)−→ ρ

h
V (σi2)−→ . . .

such that:

1. i0 = 0,

2. for all k ≥ 0, ik < ik+1

3. for all k ≥ 1, Mik ∩V 6= /0.

4. if there exists j > 0 such that ∀k ≥ 0, ik 6= j, then M j∩V = /0

That is, the folded projection only contains those states where some visible variable
has just been modified.

However, this definition of folding is not enough to allow a precise cycle detection,
which was the main reason for introducing the hash projection. If an infinite cycle is
located in the folded states, Spin will not be informed of any new system state, and thus
Spin will not be aware that the system is going to loop endlessly in those states.

To avoid this, we define the limited folding of a hash projection. In this context,
limited means that the number of folded states between two non-folded states is never
greater than a given limit. After a specified number of folded system states, we project
the next system state, even if that state did not change any of the variables in V .

An implementation may choose to use a timer as a limit instead of a state counter,
which may be more practical and would not affect the results given below. This projection
may be further refined in the implementation with an adaptive limit, e.g. a limit which
decreases progressively.

73

4. ABSTRACTION OF EXECUTION TRACES

Figure 4.4: Example of the folded and limited folded hash projections of a trace

Definition 4.13 (Limited folded hash projection) Given a labeled trace t = σ0
M1−→

σ1
M2−→ σ2 · · · and a limit l > 0, we define the limited folded hash projection of t onto

V ⊆ Var as
φ

h
V,l(t) = ρ

h
V (σ j0)−→ ρ

h
V (σ j1)−→ ρ

h
V (σ j2)−→ . . .

such that:

1. j0 = 0,

2. for all k ≥ 0, jk < jk+1, and

3. for all k ≥ 1, either M jk ∩V 6= /0, or, the distance between jk and jk−1 is limit l,
that is jk− jk−1 = l,

4. if there exists j > 0 such that ∀k ≥ 0, jk 6= j, then M j∩V = /0.

Although we could define a limited folded counter projection in a similar fashion,
there would be no benefit in doing so since the counter prevents any kind of cycle from
being detected.

Figure 4.4 shows an example of a limited folded hash projection, with limit l = 1.
This limit ensures that only one state can be folded consecutively. In this figure, a bold
Mi label indicates that Mi∩V 6= /0, i.e. that transition modifies one or more variables in
V . In this example, the limit forces the projection of states σ4 and σ6, which should have
been folded, resulting in the projected states σi2 and σi3 .

4.3 Preservation of results
We now discuss how the results are preserved regarding the satisfaction of temporal
properties in the original traces and in the projected traces. Here we assume that the

74

algorithm for checking the satisfaction of a property uses the double depth search
algorithm as implemented by Spin (see Section 2.1.5).

First, we focus on the preservation of results using the counter and hash projections
as described in Definitions 4.9 and 4.10, respectively, which were introduced to deal with
cycles as required by the model checking algorithm implemented by Spin.

Proposition 4.2 Given a temporal formula f using only the eventually “♦” and until
“U” temporal operators, if vars(f)⊆V ⊆ Var then

t |= f ⇐⇒ ρ
c
V (t) |=s f .

Counter projection ρc
V does not permit Spin to detect cycles in the projected trace.

Thus, properties that do not require the detection of cycles (i.e. those that use only
operators eventually “♦” and until “U”) can be properly checked over this projection. In
contrast, since properties that use the always “�” temporal operator are checked by Spin
by searching for cycles, they cannot be analyzed over ρc

V (t).

Proposition 4.3 Given a temporal formula f and a set of variables V , if vars(f)⊆V ⊆
Var then

ρ
h
V (t) |=s f =⇒ t |= f

with the degree of probability allowed by h, and

t |= f =⇒ ρ
h
V (t) |=s f .

This theorem asserts that any temporal formula which is satisfied in the original trace
t, is also satisfied in the hash projection of the trace. The converse, while generally
true for practical purposes, is limited by the quality of the hash function h. In addition
to projecting the variables in f , as established in Proposition 4.1, the hash projection
includes a variable computed by h that identifies the global state and is used to detect
cycles in the trace.

Now, we show how the results are preserved with the folded projections described in
Section 4.2.3.

Proposition 4.4 Given a temporal formula f using the eventually “♦” and until “U”
temporal operators, and a set of variables V , if vars(f)⊆V ⊆ Var then

t |= f ⇐⇒ φ
c
V (t) |=s f .

This result is not affected by the folding in the projection, because i) the folded
states are not required to evaluate the boolean tests of the temporal formula, and ii) cycle
detection is not affected since it is not supported by the counter projection, as discussed
in Section 4.3.

75

4. ABSTRACTION OF EXECUTION TRACES

Proposition 4.5 Given a temporal formula f and a set of variables V , if vars(f)⊆V ⊆
Var then

φ
h
V,l(t) |=s f =⇒ t |= f

with the degree of probability allowed by h, and

t |= f =⇒ φ
h
V,l(t) |=s f .

Again, this result is not affected by the folding in the projection thanks to the limit,
which covers the detection of cycles in (otherwise) folded states. If there is a cycle in
an infinite sequence of states the transition labels of which are Mi∩V = /0, the limited
folding only removes a subset of the states. Since a cycle is by definition a finite sequence
of states, it is guaranteed that eventually two equal states will be projected, and thus the
cycle will be detected.

4.4 Operational semantics of executions exploration
In our trace-based approach we analyze execution traces, which are sequences of states.
Although an execution trace is lineal, when combined with a never claim process it
may result in a set of possible traces, all starting with the same prefix. If Spin finds
a property violation in this state space, it will also report the counterexample that led
to the error, i.e. a trace that combines both the execution trace from the system and
never claim transitions. If Spin is instructed to find more than one error, several different
counterexamples may be reported. However, it is often enough to report just the first
property violation as the general result for the trace.

Our state space to be analyzed in built by aggregating several independent execution
traces in a tree-like structure. The first nodes on the tree perform some setup tasks,
including the selection of system parameters. From that point on, independent execution
traces hang from different “root” nodes. If Spin is instructed to stop on the first error,
many execution traces can be left without exploring. If all errors are to be reported,
however, many property violations may be found within each trace. If we are only
interested in the first error of each trace, this approach does not work.

We propose that in these cases, where the state space is an aggregation of independent
execution traces with a common “setup” prefix, only the first property violation in each
trace is reported. After one is found in an execution trace, the analysis of the current
trace should stop and continue with the next. Given that execution traces are generated
and analyzed on-the-fly, stopping the analysis of one early can yield significant resource
savings, since the system itself can also be stopped earlier.

We extend the operation semantics for Promela described in [64] to formalize this
exploration mode. The semantics in [64] is geared towards abstract model checking,
including parameters τ and ϕ that define the evaluation of boolean expressions and effect

76

of instructions, respectively. In this section, we assume that values of these parameters
are τP and ϕP, i.e. the meaning implemented by Spin.

Let M be a Promela model, and Γ = {γ | γ : Pid→ State∪{⊥}} the set of model
configurations. Let Pid be the set of process identifiers, with n ∈ Pid the identifier of the
never claim process. A configuration γ ∈ Γ associates each process identifier j ∈ Pid
with its state γ(j) ∈ State. If j ∈ Pid does not represent a process instance in γ , then
γ(j) =⊥.

Our trace exploration semantics requires the depth-first search algorithm (see Sec-
tion 2.1.3) to be explicit. That is, we must enforce that the exploration continues with
the portion of the state space that corresponds to the next system execution trace when
a property violation is found in the current one. To this end, instead of working with
traces composed of states as in [64], each step in an exploration trace is defined as a
3-tuple containing the stack of states from the root and up to the current state, a list
of continuations (unexplored children for each state in the previous stack), and a set
of visited states. Let State∗ be the set of ordered sequences of states, and State∗∗ the
set of ordered sequences of State∗. Let Step = State∗×State∗∗×2State be the set of all
possible steps, and 〈[γ0, . . . ,γi], [c0, . . . ,ci],v〉 ∈ Step a step in a exploration trace. If γ j is
the j-th state of a step, then c j is the continuation list associated with that state. v is the
set of visited states.

Note that the initial contents of the second component of an exploration step, the list
of continuations, is a single list with the children of the root state. When a new state is
explored, its children are appended to this list in a new list. The order in which these
continuation lists are generated determines the exploration of the state space, i.e. the
same ordering should yield the same results.

In the following, we will represent lists using square brackets, e.g. [γ0, . . . ,γi−1,γi].
The empty list will be represented as [], while [γ |l] represents a list whose head is γ , and
the rest of elements is the (possibly empty) list l. Sets will be represented using curly
braces, e.g. {a,b}, and the empty set as {}.

To declare the state space that will be explored with our rules, we take advantage of
the verification-level rules defined in [64] and reproduced on Figure 4.5. These rules
define the transition relation 7−→ver, which in turn is defined in terms of the transition
relations 7−→sim and 7−→nev, which model the execution of the system and the never
claim process, respectively. Note that given a system configuration γ ∈ Γ, γ[σ/ j] denotes
the configuration that is equal to γ for all processes, except for process j, whose state has
been updated to σ . Also note that, given a configuration γ , γ[⊥ /n] represents the system
part without the never claim process.

Rule Discard-ver is triggered when the never claim cannot progress, which means
that the current trace cannot be identified by the never claim process and should be
discarded. On the other hand, End-ver deals with the termination of the system processes.
Rule Synch-ver defines the synchronized execution of the system processes and the

77

4. ABSTRACTION OF EXECUTION TRACES

Discard-ver
γ(n) 6=⊥, γ 67−→nev

γ
discard7−→ ver stop

End-ver
γ

end
67−→nev, γ[⊥ /n] end7−→sim stop

γ
end7−→ver stop

Synch-ver
γ[⊥ /n] inst7−→sim stop, inst ∈ ProcError∪{ies}

γ
synch_j7−→ ver γ ′′[γ ′(n).σe[j/_last]/n]

Claim-ver
γ

end7−→nev stop

γ
claim_v7−→ ver stop

Figure 4.5: Selected verification-level rules from [64].

never claim process. Finally, Claim-ver detects and labels never claim violations.
Missing from these rules is the detection of accepting cycles, which in [64] is defined
over the generated trace.

We now define some functions that will be used in our rules. The function next(γ),
used to explore the state space, is defined as follows:

next(γ) =


claim_v if γ

claim_v7−→ ver

[] if γ
end7−→ver or γ

discard7−→ ver

[γ ′|γ synch_j7−→ ver γ ′] else

(4.9)

This function returns either a list of states that can be reached from γ (in some order),
or the label claim_v if a claim violation is found by the never claim process (γ claim_v7−→ ver).
Note that this function can return an empty list when the system reaches its final state
(γ end7−→ver) or the never claim process does not recognize the current trace (γ discard7−→ ver).

Let accept(γ) be a function that returns whether configuration γ is labeled as an
accepting state. We overload this function for lists of states, to check whether the given
list is an accepting cycle, i.e. it starts and ends with the same state, and it contains and
accepting state:

accept([r0, . . . ,ri]) = (r0 = ri)∧∃0≤ j ≤ i.accept(r j). (4.10)

78

Expl-ver’
ci = [γ|c′i], γ 6∈ v, c = next(γ), c 6= claim_v

〈[γ0, . . . ,γi], [c0, . . . ,ci],v〉
expl7−→ver′

〈[γ0, . . . ,γi,γ], [c0, . . . ,c′i,c],v∪{γ}〉

Back1-ver’
ci = [γ|c′i], γ ∈ v, γ 6∈ [γ0, . . . ,γi]

〈[γ0, . . . ,γi], [c0, . . . ,ci],v〉
back7−→ver′ 〈[γ0, . . . ,γi], [c0, . . . ,c′i],v〉

Back2-ver’

ci = [γ|c′i], γ ∈ v, γ ∈ [γ0, . . . ,γi],

6 ∃0≤ j ≤ i.(γ j = γ ∧accept([γ j, . . . ,γi,γ j]))

〈[γ0, . . . ,γi], [c0, . . . ,ci],v〉
back7−→ver′ 〈[γ0, . . . ,γi], [c0, . . . ,c′i],v〉

Back3-ver’
ci = [], ¬setup(γi−1)∨ (setup(γi−1)∧ setup(γi))

〈[γ0, . . . ,γi−1,γi], [c0, . . . ,ci−1,ci],v〉
back7−→ver′

〈[γ0, . . . ,γi−1], [c0, . . . ,ci−1],v〉

Trace-end-ver’
ci = [], setup(γi−1), ¬setup(γi)

〈[γ0, . . . ,γi−1,γi], [c0, . . . ,ci−1,ci],v〉
trace_end7−→

[γ0,...,γi]

ver′

〈[γ0, . . . ,γi−1], [c0, . . . ,ci−1],v〉

Figure 4.6: Rules for depth-first exploration of trace-based state spaces (I).

Let setup(γ) be a function that returns whether γ is part of the setup prefix of the
state space. We overload this function for lists of states, to return the prefix of the given
list which belongs to the setup prefix:

setup([γ0, . . . ,γi]) = [γ0, . . . ,γp].∀0≤ j ≤ p.setup(γ j)∧¬setup(γp+1) (4.11)

Now we define the rules for our transition relation 7−→ver′ , which describe how our
depth-first trace-based exploration is performed. These rules are shown in Figures 4.6
and 4.7. Note that some of these rules add a label to the corresponding transition, with
the purpose of tracking the results of the exploration.

Informally, the purpose of these rules is as follows:

• Expl-ver’. Continue the exploration with a successor of the last state.

79

4. ABSTRACTION OF EXECUTION TRACES

Claim-ver’

ci = [γ|c′i], γ 6∈ v, next(γ) = claim_v,
[γ0, . . . ,γp] = setup([γ0, . . . ,γi−1,γi])

〈[γ0, . . . ,γi−1,γi], [c0, . . . ,ci−1,ci],v〉
claim_v7−→

[γ0,...,γi,γ]

ver′ 〈[γ0, . . . ,γp], [c0, . . . ,cp],v∪{γ}〉

Accept-ver’

ci = [γ|c′i], γ ∈ v, γ ∈ [γ0, . . . ,γi],

∃0≤ j ≤ i.γ j = γ ∧accept([γ j, . . . ,γi,γ j]),

[γ0, . . . ,γp] = setup([γ0, . . . ,γi−1,γi])

〈[γ0, . . . ,γi], [c0, . . . ,ci],v〉
accept7−→

[γ0,...,γi,γ]

ver′ 〈[γ0, . . . ,γp], [c0, . . . ,cp],v〉

End-ver’ 〈[γ0], [[]],v〉
end7−→ver′ stop

Figure 4.7: Rules for depth-first exploration of trace-based state spaces (II).

• Back*-ver’. Several rules control backtracking under different circumstances.
Backtracking is modeled one step at a time, checking the contents of the contin-
uations associated with the current state. When the next state to be explored has
already been visited, it is simply removed (rules Back1-ver’ and Back2-ver’),
and when the current continuation is empty, the next step moves back to the previ-
ous state (Back3-ver’). The first two rules deal with different cases. Back1-ver’
is applied if the next state has been visited, but is not on the current stack. On the
other hand, if the state has been visited before on the current stack, but it is not
part of an accepting cycle, rule Back2-ver’ is applied.

• Trace-end-ver’. A trace has been explored completely, and no property violation
has been found. The prefix of the trace (up until the first state that belongs
exclusively to the trace) is stored as part of the transition label.

• Claim-ver’. The never claim has reached its end state, thus recognizing a erro-
neous trace. The complete trace is stored as part of the transition label, and the
exploration backtracks to the first state that belongs to the setup prefix.

• Accept-ver’. The next state in the current continuation has been visited before
in the current stack, and exploring it again would lead to an accepting cycle.
The complete trace is stored as part of the transition label, and the exploration

80

backtracks to the first state that belongs to the setup prefix.

• End-ver’. The current step is at the first state, and there are not further continua-
tions available. The exploration stops here.

As mentioned above, the transitions that identify the result of a single execution trace
have an additional label indicating which trace produced the result. Once a complete
exploration trace has been generated, the individual trace results can be extracted as
follows:

• trace-end7−→
[γ0,...,γi]

ver′ : the trace whose prefix is [γ0, . . . ,γi] was completely explored with-
out finding any property violation.

•
accept7−→

[γ0,...,γi]

ver′ : the trace [γ0, . . . ,γi] was found to contain an acceptance cycle. Note
that the whole infinite trace was not generated, but rather a suffix of the trace that
is enough to detect the cycle.

• claim_v7−→
[γ0,...,γi]

ver′ : the trace [γ0, . . . ,γi] was found to end with a never claim violation.

We now show a complete example of the application of these rules to explore the
state space shown in Figure 4.8. Each node in the figure corresponds to a system
configuration γ ∈ Γ. This state space contains a setup prefix with three states a, b and
c, and four independent execution traces. Once combined with the never claim process,
these execution traces result in graphs beginning on states d, e, f and g. In the figure,
these graphs are shown unrolled as trees. We assume that the next(γ) function returns
the states in order, from left to right. Although the result is a single exploration trace,
formed using the 7−→ver′ transition relation, we will split it into several parts to discuss
each one separately.

The exploration of the first execution trace is as follows. The first the transitions are
expl7−→ver′ that delve deeper into the state space. When node h is reached, it has d as it only
child. Since that state has already been visited, a first back7−→ver′ transition removes it from
the corresponding continuation list (Back2). After that, since no states are left in the
continuation, the exploration backtracks to the previous state (Back3). Then state i is
visited, but the exploration backtracks again in the next step (Back2), since state i has no
continuations. The same happens with state j. Since node d has no more continuations
left, the exploration backtracks yet again, but this time from a state that does not belong
in the setup prefix to one that does, triggering a trace-end7−→ ver′ transition (Trace-end). This

81

4. ABSTRACTION OF EXECUTION TRACES

Figure 4.8: Trace exploration example

transition includes the prefix of the trace tree that was just explored completely, without
any conclusive result: [a,b,d].

〈[a], [[b,c]],{a}〉
Expl

expl7−→ver′ 〈[a,b], [[c], [d,e]],{a,b}〉
Expl

expl7−→ver′ 〈[a,b,d], [[c], [e], [h, i, j]],{a,b,d}〉
Expl

expl7−→ver′ 〈[a,b,d,h], [[c], [e], [i, j], [d]],{a,b,d,h}〉
Back2

back7−→ver′ 〈[a,b,d,h], [[c], [e], [i, j], []],{a,b,d,h}〉
Back3

back7−→ver′ 〈[a,b,d], [[c], [e], [i, j]],{a,b,d,h}〉
Expl

expl7−→ver′ 〈[a,b,d, i], [[c], [e], [j], []],{a,b,d,h, i}〉
Back3

back7−→ver′ 〈[a,b,d], [[c], [e], [j]],{a,b,d,h, i}〉
Expl

expl7−→ver′ 〈[a,b,d, j], [[c], [e], [], []],{a,b,d,h, i, j}〉
Back3

expl7−→ver′ 〈[a,b,d], [[c], [e], []],{a,b,d,h, i, j}〉

Trace-end
trace-end7−→

[a,b,d]

ver′ 〈[a,b], [[c], [e]],{a,b,d,h, i, j}〉

The exploration trace then continues with the next continues with the next execution
trace. After reaching state n and backtracking to k, rule Accept finds that the next
continuation (state e) would yield a cycle with an accepting state within (state k). The

82

corresponding
accept7−→ ver′ transition backtracks outside of the current trace (to state b), and

includes the trace with the accepting cycle as part of its label: [a,b,e,k,e].

. 〈[a,b], [[c], [e]],{a,b,d,h, i, j}〉
Expl

expl7−→ver′ 〈[a,b,e], [[c], [], [k]],{a,b,d,h, i, j,e}〉
Expl

expl7−→ver′ 〈[a,b,e,k], [[c], [], [], [n,e]],{a,b,d,h, i, j,e}〉
Expl

expl7−→ver′ 〈[a,b,e,k,n], [[c], [], [], [e], []],{a,b,d,h, i, j,e,n}〉
Back3

back7−→ver′ 〈[a,b,e,k], [[c], [], [], [e]],{a,b,d,h, i, j,e,n}〉

Accept
accept7−→

[a,b,e,k,e]
ver′ 〈[a,b], [[c], []],{a,b,d,h, i, j,e,n}〉

The exploration backtracks back to the root state a, and then to the next continuation:
state c. The third trace contains a never claim violation that is detected by rule Claim
from state f . From this state, function next returns claim_v for the first continuation l.
The transition includes the offending trace as part of its label: [a,c, f , l]. States m and p
are not visited.

. 〈[a,b], [[c], []],{a,b,d,h, i, j,e,n}〉
Back3

back7−→ver′ 〈[a], [[c]],{a,b,d,h, i, j,e,n}〉
Expl

expl7−→ver′ 〈[a,c], [[], [f ,g]],{a,b,d,h, i, j,e,n,c}〉
Expl

expl7−→ver′ 〈[a,c, f], [[], [g], [l]],{a,b,d,h, i, j,e,n,c, f}〉〉

Claim
clam_v7−→

[a,c, f ,l]

ver′ 〈[a,c], [[], [g]],{a,b,d,h, i, j,e,n,c, f , l}〉
The final execution trace contains a single state g without continuations. After that

state is visited, the next transition jumps out of the trace and is labeled accordingly as
explored without property violations.

. 〈[a,c], [[], [g]],{a,b,d,h, i, j,e,n,c, f , l}〉
Expl

expl7−→ver′ 〈[a,c,g], [[], [], []],{a,b,d,h, i, j,e,n,c, f , l,g}〉

Trace-end
trace-end7−→

[a,c,g]

ver′ 〈[a,c], [[], []],{a,b,d,h, i, j,e,n,c, f , l,g}〉
Back3

back7−→ver′ 〈[a], [[]],{a,b,d,h, i, j,e,n,c, f , l,g}〉
End

end7−→ver′ stop

After backtracking and reaching the root state again, the exploration ends as there
are no more continuations left to visit.

83

4. ABSTRACTION OF EXECUTION TRACES

84

Part III

Applications

85

Chapter 5

Analysis of ns-2 network simulations

The first application of OptySim concerns the analysis and optimization of communi-
cations network scenarios. As is custom in the networks community, we use a network
simulator as the system under test, which allows easier integration with our framework.
In particular, we use the well-known ns-2 network simulator [11].

A common application of network simulations during development is parameterized
analysis, e.g. for performance optimization. Automating the generation of parameter
configurations and the simulation itself is vital for large-scale, repeatable analysis. Fur-
thermore, the objective of the analysis can be taken advantage of for carrying out more
meaningful and directed studies.

In this chapter we first describe the architecture and function of ns-2, and discuss what
we consider an execution trace in the context of ns-2 network simulations. The execution
trace is extracted using a generic C++ library (which can be reused for integrating with
other systems) and a specific library that integrates with ns-2. These libraries provide an
implementation of the communication protocol, extraction of system states after each
relevant simulation step, and other required pieces.

We present two different network scenarios as case studies: video streaming over
TCP on a mobile environment, and objective VoIP call quality evaluation. In the first
scenario we focus on analyzing reliability requirements on the system models, and on
optimizing the performance of the streaming over a mobile link with predictable losses.
For the second scenario we developed an improved version of a existing quality of
experience (QoE) evaluation model [39]. Then, we set up a validation framework that
checks the results of new evaluation models against a reference model.

5.1 The ns-2 network simulator
The ns-2 network simulator [11] has been one of the most used network simulators in
academia over the past few years. At its core, ns-2 is a discrete event simulator, i.e.

87

5. ANALYSIS OF NS-2 NETWORK SIMULATIONS

events are queued and dispatched according to their trigger time. In this section we give
a brief tour of how ns-2 simulations are carried out, and what are the possible sources for
extracting execution traces.

5.1.1 Architecture

ns-2 is implemented in a mixture of C++ and OTcl code. C++ is mainly used in the
simulator core, network protocols and other elements that need to be efficient. OTcl is
used in places where speed can be traded for flexibility, e.g. for setting up simulation
scenarios. Most of the C++ class hierarchy can be accessed from OTcl code through
a “mirrored” class hierarchy, which enables writing OTcl code has access to the whole
simulator system.

The key elements of the architecture of ns-2 are nodes, links, agents, applications
and packets. Nodes are the basic element of a network topology. A node can be anything
from a computer to a mobile device or a router. Nodes are connected through links, which
are abstractions of real access technologies. Links are responsible for packet queuing,
delays and errors. Each node is usually composed of one or more agents and applications.
Agents are endpoints for network-layer packets. Typically, an agent represents a network
protocol or part of one, such as TCP or UDP. Applications sit on top of agents and may be
used as traffic generators and sinks. Packets are the basic unit of information exchanged
between these entities. As with real network packets, ns-2 packets may include agent- or
application-specific headers and data.

While the architecture of ns-2 is quite generic, existing modules do not use it in the
same way. For instance, packets do not usually carry application data, and even when
they do, many transport layer protocols do not forward the data to the corresponding
application. Instead, the application is just notified of how many bytes of data were
received.

As an event-driven simulator, the core of ns-2 is the scheduling algorithm. The tool
includes four scheduler implementations which differ in the underlying data structures,
but which should yield exactly the same scheduling. The scheduler runs iteratively,
selecting the next earliest event, executing it to completion and then returning to select
the next event. Only one event can be executed at a given time and the order of dispatch
of simultaneous is deterministic, i.e. events are dispatched according to their firing times
and events scheduled for the same time instant will be dispatched in the same order they
were scheduled. The basic scheduling algorithm is outlined in Listing 5.1.

Each event has a handler associated with it, i.e. the object responsible for attending
the event. For instance, if a packet is sent over a link, it will be scheduled some time in
the future (e.g. taking into account the time it would take to traverse the link) and the
destination node will be its handler. When this event is fired, the node will be handed the
event with the packet and process it accordingly. A timer, e.g. for queue management or

88

1 void Scheduler ::run() {
2 Event* e = 0;
3 // While there are more events
4 while (! halted && (e = dequeue ())) {
5 // Dispatch the next event
6 dispatch(e);
7 }
8 }
9

10 void Scheduler :: dispatch(Event* e) {
11 // Advance simulation time to that of the current event
12 clock_ = e->time_;
13 // Execute the event with the designated handler
14 e->handler_ ->handle(e);
15 }

Listing 5.1: ns-2 basic scheduling algorithm implementation

generating traffic, works in the same way by scheduling an event in the future. Event
handlers are run to completion and cannot be interrupted by the scheduler.

Figure 5.1 shows an example where several events are scheduled along the timeline.
The scheduler selects them in order and calls their handlers, which may schedule new
events in the future. In this example, the first event handled also schedules an event in the
future. Then the clock advances to the next available event and the process is repeated.

Regarding packet exchanges, it is worth noting that not all of them are scheduled in
this way. For instance, agents and applications typically forward packets directly within
the same node, without scheduling an event, calling the recv method on the receiver.
This means that these packets are delivered and processed instantly without delay in the
same simulated time instant. It may be the case that, once a packet as been received at a
node, it is processed by the whole protocol stack in this way in the same time instant. Is
is usually trivial, however, to delay a packet sent to an agent. If a packet is scheduled
with an agent set as its handler, the handle method will be eventually called, which
by default calls the method recv, assuming the given Event is a Packet. Thus, agents
usually need to implement only the recv method.

The event scheduling algorithm is deterministic. However, the may be probabilities
involved when deciding the time in the future in which to schedule an event. For instance,
a traffic generator may use a probability distribution to decide the time in which the
next packet will be sent. ns-2 provides a random number generator, which server as
the basis to implement random variables that provide several parameterized probability
distributions, including normal, exponential and Pareto.

89

5. ANALYSIS OF NS-2 NETWORK SIMULATIONS

Figure 5.1: Event scheduling and handling example in ns-2

5.1.2 State space and traces

Given a random seed, a ns-2 simulation produces a deterministic execution trace, i.e. a
fixed sequence of states. Once a simulation scenario is set up, the simulation itself is
carried out by the scheduler algorithm, and the corresponding events and handlers.

The complete definition of a trace depends on the definition of state. Each state is
composed of the global event list, the current simulation time and the state of every
network element in the scenario. The boundary between two states can be defined with
different levels of granularity. For instance, a new state could be produced by each
sentence executed in an event handler. However, the number of states generated in this
way could be too high to be practical for many purposes. Another possible definition of
state could be at the event level, i.e. a new state is produced after each event is processed
by an event handler. However, we argue that such a fine level is often not required by the
analysis, and that the programmer or the analysis software may decide where to set the
boundaries, e.g. by monitoring relevant events or variables. As we will discuss in the
following section, these are the same ideas behind our trace projections (see Chapter 4).
Figure 5.2 shows the evolution of states at these levels of granularity.

ns-2 supports two main procedures for collecting information from a running simula-
tion: variable tracing and packet tracing. The former enables the recording of changes
in variables of interest, while the latter may be used to monitor each packet that goes
through a queue or link.

Variable tracing is enabled by using special wrapper classes instead of the regular
data types, such as int or double, for the variables of interest. By overloading the
basic operators (e.g. + or ∗) these wrapper classes can notify a Tracer object when the
underlying value changes. This object may act on these changes in any useful way, such
as writing to a trace file or performing other actions.

90

Figure 5.2: ns-2 trace: new state after each event vs. after a relevant event

On the other hand, packet tracing is a transparent mechanism to record packet-related
events such as packet arrivals and departures, or packets dropped at queue or link. Packet
tracing is achieved through Trace objects, which is a subclass of Connector that can be
inserted between two objects.

In addition, many variables can be accessed from OTcl code without modifying
the C++ source code to perform additional monitoring. Using the C++/OTcl binding
mechanism C++ members can be accessed or modified from OTcl. Many parameters of
existing agents are already bound for convenience using this mechanism.

5.2 Extraction of ns-2 execution traces

In order to analyze a ns-2 simulation, a suitable execution trace must be provided. As
described in the previous section, ns-2 supports two main sources from which to extract
a view of a system execution. Perhaps, the most widely used source in the networks
community is tracing packets at the link level. However, in our case studies we are more
interested in the internal state of some of the network elements, whose updates can be
traced by ns-2, as well as in aggregated statistics.

As explained in Chapter 4, it is not usually feasible to analyze a full execution trace.
The previous section describes the elements that are present in a ns-2 simulation, which
can grow quickly with the complexity of a network scenario. In addition, the number of
events impacts directly the length of an execution trace. For our integration with ns-2 we
chose to apply a counter projection (see Section 4.2.1). We support using the simulation
time as the counter (instead of a fresh variable incremented by one per projected state)
since the time is also a strictly increasing variable between states, and is often included
in the projection.

In addition to identifying the elements of the trace, a front-end module must be
developed in order to communicate with the analyzer. This front-end should handle the
protocol described in Chapter 3, and help with extracting and projecting the trace.

91

5. ANALYSIS OF NS-2 NETWORK SIMULATIONS

Figure 5.3: Components of ns-2 integration

In this section we describe the software modules we developed in order to communi-
cate with the analyzer and provide a suitable abstract execution trace.

5.2.1 Overview of integration with ns-2

Figure 5.3 shows an overview of the components involved in the integration with ns-2.
On the bottom left corner there is the liboptysim-cpp library. This library was developed
in C++ to serve as a starting point for developing libraries tailored for specific systems
which supported this language. The most important capabilities offered by this library
are communicating with the analyzer through the protocol described in Chapter 3, and
keeping track of the current state of the system for applying the counter projection
described in Chapter 4.

In order to integrate with ns-2, some additional classes were provided in a separate
library: liboptysim-cpp-ns2. For instance, this library provides a Scheduler implemen-
tation that identifies simulation states as described in Section 5.1 and reports them to the
analyzer if appropriate.

The network scenarios to be executed and analyzed are written as regular ns-2
scenarios, but with access to certain features provided by this integration library. For
instance, measure reports may be triggered from the scenario, e.g. after a relevant event.
Although scenarios can be largely be executed without any modification, some changes
are still necessary. For instance, the scenario must be adapted to the way parameters are
provided from the analyzer.

In the remainder of this section, we will discuss these components with more detail.

92

5.2.2 Generic C++ library

The generic part of the integration with C++ systems is located in a library called
liboptysim-cpp. As shown in Figure 5.3, the main responsibilities of this class are:
handling protocol buffer messages, communicating with the analyzer and keeping track
of the state of the system. Finally, the “engine” is the core of the logic implemented in
the front-end library. Figure 5.4 shows the main classes of this library, grouping them
according to these responsibilities. The elements painted with a darker shade are part of
external libraries.

The implementation of the communication protocol (see Chapter 3) is distributed
across these components. Proxy classes receive and send the messages, while the mes-
sages themselves are encoded and decoded using the protocol buffers classes. Received
messages are handled in the engine component. This component is also responsible for
initiating a communication with the analyzer when appropriate, e.g. sending a Report
when the tracked variables of the system change.

The counter projection (see Chapter 4) is mainly handled in the state component.
This component tracks the variables of interest (as indicated by the analyzer during the
setup phase), and notifies the engine when one of them changes. The engine interprets
this as a state that should be part of the projected trace, and sends the corresponding
Report to the analyzer.

The rest of this section expands the description of each of these components, and
ends with an example of how the protocol is implemented through them.

Protocol Buffers

Protocol buffer messages are mostly handled by C++ classes generated automatically
from the definitions. There is one class per message type, which extend and use classes
from the C++ library for protocol buffers, libprotobuf. The full code generation process
is explained in Section 3.4.4.

In addition, the ProtobufHelper class provides additional functions for handling
the messages. In particular, it provides several static methods for reading and writing
messages with a corresponding Header message. In the protocol, every message must
be preceded by a Header message containing both the type and length in bytes of the
following message. This fixed length message helps identifying and delimiting the
messages sent through a stream.

Proxy

The Proxy class is the main entry point for communicating with the analyzer. It contains
methods for sending any of the required messages in the protocol, and may notify of
arriving messages to a registered ProxyListener. Some of the methods in Proxy are

93

5. ANALYSIS OF NS-2 NETWORK SIMULATIONS

Figure 5.4: Main classes of liboptysim-cpp

pure virtual, and are meant to be implemented by a subclass using a specific means of
communication. A subclass, ProxyStub, was developed for testing purposes.

Our main Proxy implementation is SpinProxy, which uses ACE sockets and re-
actors [107][108]. Messages are serialized and sent through the socket using Proto-
bufHelper. To receive messages, an event handler, SpinProxyHandler, is installed in
a global reactor provided by the library. The reactor pattern [106] is used to decouple
the event sources from their handlers. Received messages are decoded and relayed to a
registered ProxyListener, most likely an Engine instance.

State

A fundamental part of the library is providing an execution trace by tracking the individual
states of the system. Typically, only a subset of the system variables are made available to
the analyzer, a so-called abstract state (see Chapter 4). SessionState holds the current
values of this subset of variables. The values themselves (and additional meta-data) are
stored in SessionVariable instances. These classes are not intended to replace the reg-
ular variables in a C++ system, although they could be used this way. System integration
libraries should provide mechanisms to update the SessionVariable instances when the
system variables change. These changes are notified to the SessionState, which will
mark the state of the system as “dirty”. At the same time, a SessionVariableListener
registered within SessionState, usually an Engine instance, may be notified of the

94

changes. This enables the process of projecting an execution trace if the analyzer is only
interested in states where one of the relevant variables changes.

Engine

The Engine class and subclasses centralize a significant portion of the logic behind
the protocol, the state abstraction and system integration. There should be only one
Engine instance in the system. On one hand, this Engine instance is notified of incoming
messages and changes in system variables through the implemented ProxyListener
and SessionVariableListener interfaces, respectively. The default implementation
handles some of these events, e.g. when the parameter values are received from the
analyzer, the corresponding SessionVariable instances are updated with the provided
values. On the other hand, the Engine should decide when to send reports and handle
some commands. However, the base class does not provide any implementation for this,
but rather lets the subclasses provide a suitable logic.

For our case studies, it made sense to have some notion of “atomic step”: an extension
of system execution which is observed as a single unit by the library, and which is not
interrupted. For instance, in a ns-2 network simulation, an event dispatch and the
associated handling can be considered as a step. Several variable changes are collapsed
into a single state change, and command processing is deferred until the step is finished.
Thus, we provided a StepEngine which is prepared for these kinds of systems. Other
systems may require different implementations, e.g. an Engine subclass which reacts in
real time to commands and changes in the system.

The StepEngine class provides a single step() method which should be invoked
after each system step. Invoking this method is left to the integration libraries, like the
ns-2 one described in Section 5.2.3. The step() method first checks the commands sent
from the analyzer, which are stored in a queue during the system execution, and then the
state of the system state. If appropriate, it will trigger a measure report for the analyzer.

Example

Figure 5.5 shows a sequence diagram with an example of the implementation of the
communication protocol across several classes. This diagram is partial: it only shows the
second half of the setup phase, and the main loop of the execution phase. Furthermore,
some of the interactions have been simplified for the sake of illustration. For instance,
some of the behavior of the SpinProxy is really implemented in its parent class, Proxy,
or in a SpinProxyHandler instance.

SpinProxy is tasked with receiving and forwarding the messages received from the
analyzer. The VariableSelection message triggers a remapping of the variables tracked
in SessionState, while the ParameterSetup message is handled in the StepEngine by

95

5. ANALYSIS OF NS-2 NETWORK SIMULATIONS

Figure 5.5: Partial sequence diagram of protocol implementation

updating the current value the given parameters (here, updateVariable(id, value)
groups several different calls).

During the execution phase the StepEngine::step() method is called repeatedly,
once for each system step. Since the variables tracked have not changed during any of
these steps, no report is sent to the analyzer. At one point, one (or more) of these variables
is updated during one of the system steps. The SessionState is notified, which in turn
notifies the StepEngine. This time, during the next step(), a Report of type Measure
is built and sent to the analyzer. This loop will continue until either the system ends, or
the analyzer instructs the system to stop.

5.2.3 ns-2 integration library
We developed a specific library for ns-2 to bridge the gap between the generic C++ library
and the network simulator. Figure 5.6 shows the main classes of this library. Again, the
elements painted with a darker shade are external to our library.

First, the integration library provides the Ns2StepEngine class, a subclass of Ste-
pEngine. The only difference with the latter is that Ns2StepEngine sets the received

96

Figure 5.6: Main classes of liboptysim-cpp-ns2

parameters as global OTcl parameters in the simulation scenario. This mirrors a pattern
observed in many existing network scenarios for setting parameters, and reduces the
friction when using the integration library.

As described in Section 5.1, the scheduler is responsible for making the simulation
advance. Each event dispatch can be considered as generating a new state in the simula-
tion. Thus, it seems appropriate to call the step() method on the engine after handling
an event. For this we developed a extended the CalendarScheduler class (the default
scheduler implementation), altering the run() method to include this call. This would
be inserted right after line 6 in Figure 5.1.

The library also provides some functionality that can be used from the network
scenarios written in OTcl. These range from statistic functions to triggering measure
reports. In order to enable the latter, the CommandInterface class was developed, which
accepts several OTcl commands to perform these functions. A global instance of this
class is available in OTcl for every simulation. This class also provides static methods for
running OTcl commands in the interpreter provided by ns-2, should that be necessary.

ns-2 provides variable tracing in order to be notified when a variable changes (see
Section 5.1.2), which the integration library supports partially. TracedVar instances
can be traced using a SessionVariableTracer, which also associates each with a
SessionVariable<T>. SessionVariableTracer associates a TracedVar with a Ses-
sionVariableTracer, and registers itself as a tracer of the former. Whenever one of
these TracedVar instances changes its value, the corresponding SessionVariable<T>
is updated, possibly triggering a measure report after completing the current event.

Using the commands offered by CommandInterface, it is also possible to notify of
changes in variables of interest which are not traced. This may be useful for variables
that are not stored but rather computed on-the-fly as needed, e.g. network statistics.

97

5. ANALYSIS OF NS-2 NETWORK SIMULATIONS

5.3 Case study: video streaming over TCP on mobile
environments

The first case study for ns-2 involves streaming a video over TCP to a mobile phone [93].
We will also check the behavior of FreezeTCP [69], a TCP variant tailored for mobile
environments. We will use this case study for performance and reliability analysis.

5.3.1 Network scenario

Many efforts have been directed towards defining an appropriate set of protocols for
multimedia streaming in real time, such as RTP (Real-time Transport Protocol) [3].
Interestingly, one of the most popular video streaming websites, YouTube, uses plain
HTTP over TCP for transmitting the multimedia content to the clients, just like any other
web content. To deal with bandwidth limitations or variability, video playback does not
start immediately as it could lead to frequent video stalling when running out of video
frames to play. An initial playout buffer is employed to cache an initial portion of the
video, long enough to hopefully avoid stalling. The size of this buffer can be fixed, but is
usually adapted to the quality of the connection, so if the data connection is slow more
video will be buffered before starting the playback.

New radio access technologies such as HSDPA (High-Speed Download Packet
Access) [5] have given mobile phones enough bandwidth to consume video services
effectively. However, these devices pose additional problems that are not present in
regular wired networks. In addition to a smaller bandwidth capacity, wireless links are
more prone to errors and disconnections due to changing medium conditions or cell
handover, among others. These issues may affect upper transport layers such as TCP,
which were not designed for this environment. For instance, a short disconnection may be
misinterpreted by TCP as a sign of network congestion and thus activate anti-congestion
measures, which will degrade performance. This has led to some protocol variants
tailored for mobile environments [114].

FreezeTCP [69] is a variant of TCP which improves the response to predictable
connection drops. One of the key features of FreezeTCP is that it takes advantage of
existing TCP mechanisms, and only the client (the mobile device) has to be modified.
When the client detects an impending disconnection, it warns the server in advance in
order to “freeze” the connection state. When the connection is reestablished, the client
notifies the server and the connection is “unfrozen”, returning to the same state as when
the disconnection notification was sent, without polling or going through the “slow-start”
phase of TCP. For FreezeTCP to work some information must be shared between TCP
and the physical layer, so that disconnections can be predicted based on changes in
the physical link. The time in advance to notify a disconnection is an important factor.
If it is too soon, bandwidth may be unused for too long while it is “frozen”. On the

98

Figure 5.7: Overview of video download over TCP

other hand, if the server is warned too late, the notification may not reach its destination.
Furthermore, while FreezeTCP can cope with long or frequent disconnections, it is not
suitable for links with a high error rate.

Figure 5.7 shows a high level model of the scenario. The video server is a web server
and the client is a regular web client, using the HTTP protocol over TCP. The client has
a buffer where the video frames are stored. The playback process retrieves the video
frames from this buffer, after an initial playout buffer has been filled. To simplify the
model a constant frame size and rate is assumed.

The behavior of the client is shown on a state diagram in Figure 5.8. Initially, the
buffer is empty and the playback has not started yet. When the client receives the first
video frame it goes to the “buffering” state. Playback does not start until the playout
buffer reaches a certain threshold, which takes the client to the “playing” state. If the
client runs out of frames during playback, it must stop and go back to the “buffering”
state, until the playout buffer is filled again. If the video is completely buffered, playback
starts (if it was not playing already) and the video is said to be received, so the client
moves to another state. Finally, the last state is reached when the video is completely
played, which is guaranteed to happen eventually if the client reaches the “fully buffered
& playing” state.

5.3.2 Reliability analysis

We used OptySim to debug our implementation of the TCP video client and server.
We also tested and successfully fixed a couple of issues in the ns-2 implementation of
FreezeTCP [69] available from [9].

In our scenario, the TCP video client is a new application, while the server is a CBR
(constant bit rate) traffic generator. Listing 5.2 contains part of the video client code,
in particular the methods where its status is manipulated. recv() is called when a new
TCP packet arrives with video data, and nextFrame() is scheduled periodically when
the video is playing. The former fills the playout buffer, from which frames are read by
the latter.

99

5. ANALYSIS OF NS-2 NETWORK SIMULATIONS

1 void TcpVideoClientApp ::recv(int nbytes) {
2 bytes += nbytes;
3 buffered_bytes += nbytes;
4 if (bytes >= video_size) {
5 status = RECEIVED;
6 }
7 else if (status == STOPPED && buffered_bytes < buffer_size) {
8 status = BUFFERING;
9 }
10 else if (status == STOPPED || status == BUFFERING
11 && buffered_bytes >= buffer_size) {
12 status = PLAYING;
13 timer.sched(delay);
14 }
15 }
16
17 void TcpVideoClientApp :: nextFrame () {
18 if (buffered_bytes >= frame_size) {
19 buffered_bytes -= frame_size;
20 video_size_played += frame_size;
21 if (video_size_played < video_size) {
22 timer.resched(delay);
23 }
24 else {
25 status = FINISHED;
26 }
27 }
28 else if (buffered_bytes < frame_size && status == RECEIVED) {
29 buffered_bytes = 0;
30 status = FINISHED;
31 }
32 else {
33 status = STOPPED;
34 }
35 }

Listing 5.2: Part of video client implementation in ns-2

100

Figure 5.8: State diagram of the video client

One of the conditions that can be tested is whether the video client finishes success-
fully when it has already buffered the whole video. We can check that condition with a
set of automatically generated parameter configurations and the following objective:

ltlAccept : ♦ (received ∧ ♦finished)
def : received := status = 3
def : finished := status = 4 (5.1)

In order to execute this test, we must select the status variable to be part of the
projected trace (along with the time, which is selected by default) so that it can be used
in the LTL formula. This means that the projected trace will only contain this variable,
and that only the states in which status changes will be projected. This reduces both the
size of the state and length of the trace dramatically.

All simulations pass this test. We can strengthen it by adding more information about
the state in which the video client must be at the end, e.g., the playback buffer must be
empty:

ltlAccept : ♦ (received ∧ ♦reallyFinished)
def : reallyFinished := status = 4 ∧ bufferedBytes = 0 (5.2)

The projected trace must also contain the bufferedBytes variable for this test. This
time no simulations are returned tagged with accepted, meaning that none of them
satisfied this strengthened condition. If video playback finishes normally, it means that
the buffer must have enough frames to play it completely, so it may be that too much
data is sent to the client. This can be confirmed adding the following to the previous
objective:

101

5. ANALYSIS OF NS-2 NETWORK SIMULATIONS

[measures] -----------------------------
time status video_size video_size_played buffered_bytes
0.0000 0 1024000 0 0
0.3233 2 1024000 0 1064
0.8331 1 1024000 0 10640
22.0752 3 1024000 652288 372344
34.1665 4 1024000 1024000 40000
[REJECT] <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
Reject at 34.1665: now.status == 4 && now.buffered_bytes != 0
[finish] -------------------------------
Simulation running time=0.000076977s

Figure 5.9: Sample trace output for reliability objective violation

reject : status = 4 ∧ bufferedBytes > 0 (5.3)

This time, all simulations are marked as rejected because of this addition. Figure 5.9
shows part of the output generated by OptySim when analyzing one of these simulations.
It contains the values of the measured variables for each state, and the objective that
triggered the end of the analysis of this simulation. In this scenario, events are sent only
when the status of the client changes, which explains the relatively low number of states
which the trace is made of. In this trace, there are 40,000 bytes left in the buffer after the
client has played the entire video. This problem is caused by ns-2 incorrectly reporting
the TCP header (40 bytes) as part of the payload notified to the application layer. As a
workaround we can instruct the TCP server not to include the TCP headers in the packet
itself. However, the header of the SYN packet used to initiate the TCP connection is
reported as well, so in addition we must ignore the first packet received by the video
client. This condition should be added at the beginning of recv().

We prepared another set of scenarios for testing the FreezeTCP implementation avail-
able from [9]. One of the tests forces the client side of the protocol to freeze or unfreeze
at fixed times, trying several combinations of these commands. Using no additional
objectives, we discovered an issue with the handling of an “unfreeze” command before
the first “freeze” command, due to the fact that it did not have appropriate default values
for some state variables. We also observed that the throughput of some simulations did
not recover after unfreezing. Using another objective we checked whether the saved state
was restored properly after unfreezing. We discovered that the FreezeTCP model did not
handle two consecutive “freeze” commands correctly. This may be the case if the client
side sends more than one warning message to ensure that at least one of them reaches
the server side, as suggested in [69]. This problem can be solved by adding a variable

102

to hold the state (unfrozen or frozen) of the protocol, and reacting only to the first of a
series of “freeze” commands.

It is worth noting that some of the tests, including our second example, require the
simulation models to be instrumented in order to access some of their internal state. For
instance, we instrumented the FreezeTCP code in order to read the frozen state of the
protocol and be notified whenever a “freeze” or “unfreeze” message reaches the server
side. Other variables, such as the internal state of the generic TCP implementation, were
already available to us through the OTcl binding mechanism.

5.3.3 Performance analysis
We use the scenario described above to study the performance of the video playback in the
presence of connection drops, the influence of the playback buffer and the effectiveness
of the FreezeTCP variant. This scenario is similar to the one studied in [110], which also
uses ns-2 to simulate a set of configurations.

The scenario is composed of two nodes connected through a link which drops
periodically for a given amount of time, to simulate network disconnections. Each node
has a TCP agent with an application on top: an Application/Traffic/CBR instance and
an Application/TCPVideo/Client instance, respectively. The latter was developed in
C++ to simulate both the reception of video using TCP and the playback engine at the
client. The client has a playout buffer (a simple counter) in which all TCP segments
are placed upon arrival. This buffer is read 30 times per second to simulate the fetching
of each video frame by the playback engine at 30 fps. The client also makes its state
available through a traceable instance variable.

The parameters and their possible values are defined in Table 5.1. These parameters
are related to both the environment, e.g. the duration of uptime and downtime periods of
the link, and the elements of the protocol stack, e.g. segment size and maximum window
size for TCP. The combination of the different valuations of each parameter constitutes
the parameter space that we want to explore.

We are interested in those parameter configurations in which the video playback is
smooth and does not stop for rebuffering once started. In our tool we allow the definition
of more than one objective, stating if it is a desired objective (accept) or something that
should not happen (reject). Thus, for this experiment we would write the following two
objectives:

accept : status = 3
ltlReject : ♦ (playing ∧ ♦stopped)

def : playing := status = 1
def : stopped := status = 0 (5.4)

103

5. ANALYSIS OF NS-2 NETWORK SIMULATIONS

Variable Values

Link uptime 10 s
Link downtime 100 ms, 300 ms, 600 ms, 1 s
Link delay 100 ms, 125 ms, 150 ms
Link bandwidth 288 Kb, 320 Kb, 384 Kb
Max. TCP window 5 KB – 10 KB, 1 KB increments
TCP segment size 0.1 KB – 0.3 KB, 0.05 KB increments
Playout buffer length 1 s – 20 s, 1 s increments

Table 5.1: Scenario parameters and their possible values for the case study

The first objective declares that, in order to be considered successful, the status
variable of the video client should reach value 3, i.e., the “finished” state. The second
objective is an LTL formula used to reject those simulations where once the client reaches
the “playing” state it should not reach the “stopped” state in the future. Both playing and
stopped are defined in terms of the status variable.

In addition, we want to use the following search optimization objective. The sat-
isfiability of the previous objective depends on the size of the playout buffer, among
other variables. If a certain parameter configuration results in a simulation that meets
the objective, then increasing the size of the playout buffer while keeping the rest of
the parameters unchanged will have no negative effect on the objective. That is, these
simulations can be safely skipped, but they should be returned as part of the parameter
configurations that meet the objective. This can result in significant time savings if such
deductions can be described and are likely to happen in the scenario generation and
simulation process. This search optimization objective can be written as:

acceptSimilar : bufferLength > bufferLength′ ∧ (
∧

p6=bufferLength

p = p′) (5.5)

The purpose of this formula is to match the current parameter configuration with a
similar parameter configuration that has already been run and that meets the objectives.
If one of the previous parameter configurations that has been accepted has the same
values for all the variables except for a smaller buffer length, it will match the formula
and the current parameter configuration will be accepted without being actually run.

Once our objectives have been decided, it is clear that our projected trace only
requires the status variable, for both the accept and ltlReject objectives. The search
optimization operates over the parameters of the simulation, which are always stored for
each simulation. Therefore, bufferLength and the rest of the parameters do not have to be
explicitly selected.

104

Parameter configurations Counter projection
Objective Search opt. Generated Accepted Rejected Not exec. States S. size Time

21 600 – – – 3 630 310 92 B 1 h 28 m
X 21 600 565 21 035 – 328 175 92 B 39 m 20 s
X X 21 600 565 21 035 513 322 019 92 B 37 m 40 s
X X (Rev.) 21 600 565 21 035 19 955 188 490 92 B 7 m 34 s

Table 5.2: Results for the experiments using regular TCP

We performed four different experiments on an Intel Core i7 920 2.6GHz with 4GB
of RAM running Ubuntu Linux. We used Spin version 5.2.4 (running on a single core)
and ns-2 version 2.33. Table 5.2 shows some measures taken from each of the four
experiments. In each one we experimented with the use of the objectives and search
optimization from Formulas 5.4 and 5.5, shown in the first two columns. The fourth
experiment will be explained later in this section. The next four columns show data
about the number of parameter configurations that were generated (from the values in
Table 5.1), how many of them were tagged as accepted or rejected, and how many were
not even executed due to the search optimization, respectively. The rest of the columns
show the number of Spin states generated, the size of each state, and the total time of
analysis, respectively, using the counter projection.

These results show that there is a notable improvement in the experiment running time
when objectives are used. In addition to tagging the desired parameter configurations
according to the user intentions, setting objectives helps stopping simulations early and
thus reduces the space state that needs to be explored. In this case, when objectives are
used the state space is about 11 times smaller and the total analysis time is about half.
Using the described search optimization reduces the number of simulations that have
to be executed because their outcomes can be inferred. This can be seen in the sixth
column of the third row, where 513 simulations (of the total 21600) did not have to be
executed to check the satisfiability of the objective, which yields an additional 4% time
improvement. It is worth noting, however, that the results themselves (fourth and fifth
columns) do not change when using the search optimization, and that the number of
parameter configurations that are generated is always the same (third column).

The use of objectives and optimization significantly improves the total time spent on
the analysis. However, not all optimizations that can be applied have the same impact.
For instance, we can optimize this analysis further if we generate buffer length values
for the parameter configurations in reverse and apply the converse optimization: if a
simulation with a given buffer length is rejected, just decreasing the buffer will result in
an equally rejected simulation:

105

5. ANALYSIS OF NS-2 NETWORK SIMULATIONS

rejectSimilar : bufferLength < bufferLength′ ∧ (
∧

p6=bufferLength

p = p′) (5.6)

The results using this optimization are shown in the fourth row of Table 5.2. The
total time spent in the analysis is decreased dramatically: it is almost 5 times better than
the previous optimization, and over 11 times better compared with the initial case with
no objectives. This is due to having many more simulations that are rejected (21035)
rather than accepted (565), which gives greater opportunities for optimization if we
focus on discarding rejected simulations. By generating the buffer length values in
descending order, we allow this optimization to be effective by exploring the parameter
configurations in the right order.

Regarding the objective of our case study, Figure 5.10(a) shows the influence of the
parameters on the evaluation of the objective. The graph on the left plots the maximum
TCP window size against the playout buffer length for several values of TCP segment
size. As the window size increases video playback can start sooner, since the playout
buffer fills more quickly. The graph on the right shows the converse relationship, plotting
the TCP segment size against the playout buffer length. From that graph it can be
deduced that using larger segments means less video has to be buffered before playback
can start. It follows from the results that no parameter configuration with a playout buffer
of less than 10 seconds satisfies the objective. This is due to a combination of the video
length and the disconnections during the transmission, i.e. the sum of the duration of the
disconnections suffered during the video transmission is such that, combined with the
slow start phase of TCP, it is almost impossible to overcome this gap with less than 10
seconds of margin.

Now we analyze the influence of the FreezeTCP protocol in this scenario, which
should provide better performance in the presence of predictable network disconnections.
FreezeTCP depends on the ability of the mobile device to predict impending network
disconnections. We simulate the disconnection notifications that should come from
the physical layer and automatically assign them a given amount of time before the
disconnection happens. The time when the freeze warning must be sent is also a sensible
parameter of FreezeTCP, and as such it is included as a parameter to optimize it.

Figure 5.10(b) shows the influence of the freeze warning on the performance of this
experiment. Freeze warnings are measured in RTTs (round-trip times) and, according
to [69], ideally they should be sent one RTT before the disconnection. However, as can be
seen in the figure, this also depends on the duration of the link downtime periods. A lower
downtime means that the warning can be sent some time before the disconnection really
happens, putting less pressure on the prediction algorithm. The higher the downtime,
the less important it is to predict it precisely, as the duration of the disconnection is
considerably larger than the idle time wasted freezing the connection sooner. Comparing
this graph with the ones in Figure 5.10(a), it can be seen that the freeze mechanism

106

Link configuration TCP configuration
Bandwidth Delay Segment size Max. window

288 Kbps 150 ms 204 bytes 10 KB
320 Kbps 100 ms 204 bytes 8 KB
384 Kbps 125 ms 255 bytes 10 KB

Table 5.3: Parameter selection for some link configurations

allows the use of a smaller playout buffer, as the effect of the disconnections is partially
mitigated.

In addition, we prepared a series of scenarios to measure the influence of the precision
of variables in the analysis, i.e., how the number of values for a variable can affect
analysis time. We start with the FreezeTCP scenario, set fixed values from some of the
variables, try 10 values for the freeze warning variable and 4 to 20 values for the buffer
length variables. Figure 5.11(a) compares the number of simulations that are accepted
or rejected by the objectives against the number of simulations that are not run due to
the optimizations. Depending on the optimization used, only one of these two groups of
simulations was not run. Although the number of rejected simulations almost doubles the
number of accepted simulations, the difference in analysis time shown in Figure 5.11(b)
by using optimizations is not as dramatic as in Table 5.2, where the ratio between those
two sets is much bigger. Nevertheless, time of analysis is clearly improved by using
objectives and optimizations, and accepted parameter configurations are still found.

Optimization

Finally, we apply the results from the simulations performed to adapt the video transmis-
sion to changes in the link during the transmission. By analyzing these results we can
determine which parameters should be used in a particular scenario with known values
of link bandwidth and delay. However, it is likely that these parameters will change
during the course of the video download, which may cause our no-rebuffering objective
to fail because the initial selection of protocol parameters is not appropriate for the new
situation. To validate our approach, we prepared a scenario where the bandwidth and
delay of the link change after each disconnection, e.g. after moving to a new cell with
slightly different conditions. After each reconnection, the TCP entity on the server side
reconfigures itself to adapt to these changes, changing its TCP segment size and maxi-
mum window size values. We selected the combinations of parameters that perform the
best in each scenario, based on whether the objective was met and the time to complete
the video download, some of which are shown in Table 5.3. We assume fixed values for
the rest of the variables.

107

5. ANALYSIS OF NS-2 NETWORK SIMULATIONS

7500

8500

9500

10500

0 5 10 15 20

M
a
x

T
C

P
 w

in
d

o
w

 s
iz

e
 (

b
yt

e
s)

Buffer length (s)

TCP segment size = 170 bytes

TCP segment size = 238 bytes

TCP segment size = 306 bytes

150

190

230

270

310

0 5 10 15 20
T
C

P
 s

e
gm

e
n

t
si

ze
 (

b
yt

e
s)

Buffer length (s)

Max TCP window size = 7,5KB

Max TCP window size = 9,0KB

Max TCP window size = 10,0KB

(a) Influence of maximum TCP window size and TCP segment size in the first experiment

0

0,5

1

1,5

2

0 2 4 6 8 10

Fr
e
e
ze

 w
a
rn

in
g

(R
T
T
s)

Buffer length (s)

Downtime = 100ms

Downtime = 300ms

Downtime = 600ms

Downtime = 1000ms

(b) Influence of freeze warning in the second experiment

Figure 5.10: Influence of parameters in the experiments

108

0

500

1000

1500

2000

2500

3000

3500

4000

4 8 12 16 20

S
im

u
la

ti
o

n
s

Buffer length values

Rejected Rejected not run

Accepted Accepted not run

(a) Number of simulations accepted, re-
jected and not run

0

500

1000

1500

2000

2500

4 8 12 16 20

T
im

e
 (

s)

Buffer length values

None Objective

Obj. and opt. Reverse opt.

(b) Time spent on each analysis

Figure 5.11: Influence of the precision of variables

We compared the adaptive version of the FreezeTCP protocol with three non-adaptive
versions. The link configuration of the scenario changed after each disconnection, using
the parameters from Table 5.3. The adaptive version used the appropriate configuration
after each reconnection, while the non-adaptive versions were fixed on one of the
configurations from Table 5.3. To highlight the importance of using an appropriate
configuration, we used a higher downtime than usual of 3 seconds per disconnection.

The adaptive version met the objective we set and outperformed the other simulations,
which had to stop several times for rebuffering during playback. Figure 5.12 shows the
instantaneous throughput of the adaptive version as compared to the three non-adaptive
versions using fixed parameters, highlighting the playback interruptions that the latter
experienced.

5.4 Case study: E-model extension
The second case study deals with the evaluation of VoIP quality of experience (QoE) [105].
We developed an extension of the E-model [10][1], based on the improvements proposed
by Clark [39]. In this section, we perform a validation analysis of this new E-model.

5.4.1 E-model for VoIP QoE evaluation
The E-model [10][1] is a computational model for objectively estimating end-to-end
voice call quality in packet-switched networks. This model takes into account several
parameters that may affect the quality, such as delay or packet loss. The main result of the

109

5. ANALYSIS OF NS-2 NETWORK SIMULATIONS

0

50

100

150

200

250

300

0 50 100 150 200 250 300

T
h

ro
u

g
h

p
u

t
(K

B
p

s)

Time (s)

Adaptive

Non-adaptive (1)

Non-adaptive (2)

Non-adaptive (3)

Rebuffering (1)

Rebuffering (2)

Rebuffering (3)

Figure 5.12: Comparison of adaptive vs. non-adaptive of video download throughput

E-model is a rating, called the R factor, which can then be transformed to obtain a MOS
(mean opinion score) value. The MOS is a subjective quality score usually associated
with human evaluation, which the E-model tries to approximate objectively.

The formula for computing the R factor with the E-model is as follows:

R = Ro− Is− Id− Ie +A (5.7)

In this formula, Ro is the basic signal-to-noise ratio, Id represents the effects of
delay, Ie the effects of the codec and other “equipment”, Is represents other simultaneous
impairments, and A is the advantage factor, i.e. the allowance users make due to the
convenience of using a given technology (e.g. a cellphone). Assuming default values for
some of the parameters (per [10]), the formula can be simplified to:

R = 94− Id− Ie (5.8)

To obtain the MOS score from the R factor, the following formula from [10] (with a
correction from [35]) can be applied:

MOS =


1 R < 6.5
1+0.035R+7 ·10−6R(R−60)(100−R) R ∈ [6.5,100]
2.5 R > 100

(5.9)

110

Clark’s E Model

Clark’s E-model [39][2] takes into account some of the time varying impairments that
can affect the perceived quality of a call. In particular, “bursty” packet loss is identified
as a source of significant call quality degradation. Isolated packet losses during periods
without packet losses yield better quality perception, while a burst of lost packets is
perceived as being of worse quality, even if the average packet loss of the call is the same.

Another consideration of this model is that quality perception changes smoothly
during the call. The “instantaneous quality” of a single time instant of the call can be
computed, but the “perceived quality” that the user would report at that instant depends
on the recent history of the call. In addition, when the instantaneous call quality is
worse, i.e. during a burst, the perceived quality decays faster than it recovers when
the instantaneous quality is good. Instantaneous call quality can be computed from the
packet loss ratio, using a function that depends on the VoIP codec used [1][2].

For the purpose of modeling bursty packet loss and computing call quality, Clark
uses a 4-state call model, which can be separated into two groups: burst and gap. A
burst indicates a period of high packet loss, while a gap indicates a period of low packet
loss between bursts. More formally [10], a burst is the longest sequence that a) starts
with a lost packet, b) does not contain any occurrence of gmin or more packets received
consecutively, and c) ends with a packet loss. A gap is defined as a) the period between
the start of the session and the last received packet before the first lost packet, b) the
period between the end of the last burst and the end of the session, or c) the period
between two bursts. Thus, a lost packet within a gap must be preceded and succeeded
by at least gmin packets. gmin is the parameter that defines the minimum gap size, and is
typically set to 16.

Figure 5.13 shows Clark’s 4-state Markov model, composed of the product of call
state (burst or gap) by packet event (loss or reception). Transitions due to packet losses
are marked with a dotted line. The transitions on the figure are also labeled with the
probabilities pxy of transitioning from state x to state y.

These probabilities can be computed by counting state transitions in variables cxy.
The event-driven algorithm from [10] (in turn taken from [2]) shown in Listing 5.3
computes these counters. Note that some counters can be derived from other counters, so
they have not been included in the algorithm, e.g. c31 = c13 and c32 = c23. For the
sake of simplicity, we consider that discarded packets are lost packets. In this algorithm,
pkt counts the number of packets received since the last lost packet and lost counts the
number of lost packets in the current burst. packet_lost is a boolean variable which is
true when the event was triggered by a lost packet.

The average quality level Ie(av) of a call can be calculated as follows. Let I1 be the
quality level at the change from a burst with quality Ieb to a gap with quality Ieg. Let I2
be the quality level at the change from a gap with quality Ieg to a burst with quality Ieb.
Let b be duration in packets of the current or last burst, and g the duration in packets of

111

5. ANALYSIS OF NS-2 NETWORK SIMULATIONS

Figure 5.13: 4-state Markov model of bursty packet loss

the current or last gap. I1 and I2 are defined as follows:

I1 = Ieb− (Ieb− I2)e−b/t1 (5.10)

I2 = Ieg +(I1− Ieg)e−g/t2 (5.11)

Combining and integrating equations 5.10 and 5.11 to give a time average gives:

Ie(av) =
bIeb− t1(Ieb− I2)(1− e−b/t1)

b+g

+
gIeg + t2(I1− Ieg)(1− e−g/t2)

b+g

(5.12)

Clark also proposes a simple model for the delay impairment factor, Id . This model is
based on the observation that a delay below 175ms has little impact, while the perceived
quality decreases significantly from that point. Given an average of the delay over a
period of time, the Id factor in that period is computed as follows:

Id =

{
4∗delay delay < 175ms
4+(delay−175)/9 delay≥ 175ms

(5.13)

Clark’s E-model, or parts of it, have been used in some methodologies for evaluating
VoIP call quality, including Clark’s own VQmon tool1. In [91] the way of users reacting
different to bursts and gaps, and the effects of recency, are incorporated as part of a

1http://www.telchemy.com/vqmon.php

112

http://www.telchemy.com/vqmon.php

1 if (! packet_lost) {
2 pkt++;
3 }
4 else {
5 if (ptk >= gmin) { // Gap
6 if (lost == 1) {
7 // Isolated loss in a gap
8 c14++;
9 }

10 else {
11 // Coming from a burst
12 c13++;
13 }
14 lost = 1;
15 }
16 else { // Burst
17 lost ++;
18 if (pkt == 0) {
19 // Consecutive packet losses
20 c33++;
21 }
22 else {
23 // Loss after pkt packets
24 c23++;
25 c22 += ptk - 1;
26 }
27 }
28 pkt = 0;
29 }

Listing 5.3: Clark’s algorithm for counting state transitions of bursty packet loss model

methodology to evaluate VoIP calls over Internet backbone networks. The authors found
a trade-off between loss and delay: losses can be decreased with a larger playout buffer,
which leads to higher delays. Also, it was found that paths with low delay and low
delay variability lead to better MOS scores. Under-provisioning and heavy traffic were
identified as some of the possible causes of problems with the delay.

Carvalho et al [35] implemented this E-model and used it to evaluate the characteris-
tics of Internet backbones in Brazil. The experiments showed differences in the MOS
scores for upstream and downstream calls, attributed to the asymmetry of the connections.
Load experiments were also performed, resulting in significant QoE degradation between
as little as 5 and 10 simultaneous calls in one of the directions.

113

5. ANALYSIS OF NS-2 NETWORK SIMULATIONS

5.4.2 On-the-fly E-model computation

The algorithm given in [39] does not accurately count all transitions [35]. The first packet
of a burst is always incorrectly classified as an isolated loss in a gap. Counter c14 is
always incremented with the first packet loss in a gap, even if that packet loss is really
the first one in a gap (line 8 in Listing 5.3).

Also, this algorithm is not able to compute the MOS while the call is in progress.
Having an on-the-fly QoE evaluation would be useful in analyses using our OptySim
framework, as we have discussed in this and previous chapters. This would allow to stop
simulations early when using objectives relative to the QoE evaluation.

However, the algorithm discussed so far is not able to give a good enough account of
the call state while it is in progress. Gaps can only be detected after gmin packets are
received, so it is not possible to tell whether a series of packet receptions is part of an
ongoing burst or a new gap before receiving gmin packets. During these periods there
are two options: a) keep reporting the last known state but with updated (and possibly
wrong) counters, or b) report the last known state and the last precisely known counters.
If used on-the-fly, the algorithm in Figure 5.3 would report only known state transitions
(with one exception, as we have established), but the counters are only updated after a
packet loss. During long gap periods without isolated losses, this algorithm would not
update the call state and counters.

We have developed a new algorithm that solves these shortcomings. This algorithm
deals with uncertainty, i.e. instants where the current state of the call cannot be accurately
determined, by delaying transition counting until it can be resolved. At the same time,
counters are updated as soon as possible, giving better real time results than those that
the previous algorithm could give.

Figure 5.14 shows a simplified state machine of this new algorithm. Note this is not
the model of burst packet loss, which is still the same as in Figure 5.13. This algorithm
reacts to both packet reception (recv) and loss (lost) events. States with square corners
are certain states, while uncertain states are represented with rounded corners.

While in an uncertain state, counters are not updated and temporary counters are used.
Upon reaching a certain state, counters are updated accordingly from these temporary
counters. For instance, while in the “Gap recovery” state the call may return to the “Gap”
state or may go to the “Burst” state. In the first case, counters c14 and c41 should be
updated to reflect an isolated loss, together with counter c11. In the second case, counter
c13 should be incremented to account for the transition from gap to burst, and counters
c32 and c23 should be incremented to account for a short gap of received packets, which
will be added to c22.

Appendix C contains the complete algorithm for detecting and counting the transitions
between states. For instance, an isolated loss would be treated as follows. After a series
of received packets, a single lost event is triggered. The state is changed from GAP to
FIRST_LOSS, and the current time is saved in startUncert as the possible start of a burst.

114

Figure 5.14: Simplified state machine of the improved algorithm for burst modeling

The next packet is received, with recv making the transition to GAP_RECOVERY. Note that
we cannot tell if this is an isolated loss yet. Uncertainty is managed in this state using the
endUncert time mark and the pkt received packet counter. The latter is increased, but is
not added to any of the counters. After more than gmin packets have been received in a
row, recv changes the current state to GAP and updates all pending counters. It is at this
time that a more up to date value for the MOS score can be computed, since the model is
back in a certain state.

5.4.3 Implementation in ns-2

We have implemented three E-models in ns-2: a simple version based on the original
definition of the E-model, Clark’s improvements on the original (both discussed in
Section 5.4.1) and our own improvements on Clark’s version (Section 5.4.2).

These E-models were implemented on top of ns2Voip++ [25], an existing VoIP ex-
tension for ns-2. ns2Voip++ is provided as a patch for ns-2, mixed with ns2measure [37],
a framework for data collection and statistical analysis. The first step was to split the
patch to separate these two components, and then turn the ns2Voip++ patch into a ns-2
dynamic module. This module was modified to add our E-model classes. Since our
E-model implementations require changes to the ns2Voip++ module, it could not be
implemented as a separate module. In addition, new error models were developed to
create several types of error bursts, which were used while evaluating our model.

115

5. ANALYSIS OF NS-2 NETWORK SIMULATIONS

Figure 5.15: Class diagram of part of the E-model module

E-model implementation

The main classes of the module are shown in diagram 5.15. The main base class of our ex-
tension is Emodel, an abstract class that serves as the basis for different implementations
of the E-model. For instance, Emodel declares pure virtual doRecvFrame, doLostFrame,
doRecvPkt and doLostPkt methods, to be used as frame and packet event hooks, and the
pure virtual rfactor, which computes and returns the current value of the R factor. In
addition, as described in Section 5.4.1, at the end of a call, the time that has elapsed since
the last significant error burst affects the perception of the overall call quality. Subclasses
that support this adjustment can override the rfactorEndOfCall method to provide a
proper end-of-call value.

The module provides three different Emodel implementations. SimpleEmodel simply
takes into account the number of packets received and lost, ignoring bursts and gaps.
OriginalClarkEmodel implements the original algorithm as described in Section 5.4.1.
On the other hand, ImprovedClarkEmodel implements our improved algorithm as de-
scribed in Section 5.4.2.

116

The ns2Voip++ module was modified to add the required hooks to handle packet
events in the receiver. VoIP packet buffering and playback is handled by VoipDecoder
and its subclasses, which implement different algorithms for this task. For our module,
we only modified the VoipDecoderStatic class, adding the corresponding triggers to
notify the Emodel instance being used.

The simple delay model described in Section 5.4.1 was implemented in DelayModel.
The base Emodel class reports the instantaneous delay values to a instance of this class
so the delay impairment factor (Id) is always available to the E-model implementations
when they need it.

Computing Ie from PER

The equipment impairment factor (Ie) depends on the characteristics of the codec used.
Some codecs provide better inherent quality or are more resilient to errors than others.
ITU-T Rec G.108 [1] provides provisional values of Ie for codecs G.729-A and G.723.1
under conditions of packet loss. However, these values are provided only at some discrete
points from 0% to 16% packet loss. On the other hand, ETSI TS 101 329-5 [2] provides
a formula which, given the loss density of a period of time, yields very similar Ie values.
Unfortunately, the formula has been defined for codec G.732.1 but key parameters are
missing for G.729-A.

We decided to implement both methods of computing the Ie from the packet error
rate (PER) in the CodecModel classes. The base Emodel class can be configured so that
the method used can be set as a per-instance preference. When using the ITU-T Rec
G.108 table, intermediate values are interpolated from the given discrete points. For PER
values greater than 16%, Ie values are extrapolated.

Error models

We have included several new error models to test our E-model module, shown in
Figure 5.16. The abstract base class PerErrorModel provides some common function-
ality for the error models, such as computing the resulting PER. The first error model,
VoipErrorModel wraps another ErrorModel. ns2Voip++ includes key information for
the decoder in the first packet of a talkspurt, so we worked around this limitation by
preventing these packets from being lost with VoipErrorModel. BurstErrorModel is
a two-state error model with gap and burst state, of fixed length (measured in packets),
which are alternated. Each state relies on another ErrorModel to decide whether a packet
should be corrupted.

As mentioned in the previous section, when using the discrete points method an
extrapolation is required for PER values greater than 16%. Using random variables
it is possible to inadvertently create bursts with higher error rates. To avoid this, we
implemented LimitedBurstErrorModel, another error model which creates predictable

117

5. ANALYSIS OF NS-2 NETWORK SIMULATIONS

Figure 5.16: Class diagram of the new error models

bursts with the given PER by corrupting packets at regular intervals. The occurrence of
the bursts themselves is governed by a random variable.

5.4.4 Validation analysis

We set out to validate our E-model extension. In particular, as our extension is a
refinement of Clark’s, we were interested in its conformance to the results produced by
the latter extension.

Given the differences between the E-model extensions we did not expect the same
results by comparing the two E-models. Although both extensions are based on the
same principle and computations, ours reacts promptly to changes in the state of the
call, while the original performs a single average computation of all previous states.
Thus, our extension is more sensitive to the particular error patterns in a call (more
details can be found in [105]). However, both E-models still approximate a subjective
measure. Therefore, we argue that, in this case, we can establish conformance with a
given E-model implementation as obtaining similar MOS scores when analyzing the
same calls.

The validation scenario and objective are defined as follows. Given a series of N
independent, parallel VoIP calls, each one of them measured by two independent E-model
instances, namely Clark’s extension and our own extension, we define the validation
objective of a single simulation as follows. Informally, we require that the MOS scores
reported by at least M pairs of E-models are within R distance, measured in absolute

118

terms, for at least T seconds. Note that this is not a condition expressed in the E-model
literature, but rather one we imposed on our implementation. Formally, we define the
objective as:

ltlAccept : ♦(inside*∧ (inside* U timeUp))
def : timeUp := time− startOf >= T
def : inside* := ini(5)+ ini(4)+ ini(3)+ ini(2)+ ini(1)≥M

def : ini(i) :=

{
1 if in(mos[i][1][mean],mos[i][2][mean])
0 else

def : in(val,ref) := val≥ (ref−R))∧ (val≤ (ref+R)) (5.14)

inside* evaluates to true if the MOS scores of at least M E-model pairs are within
R distance, and is defined in terms of the measured MOS scores of each flow. These
scores are contained in separate variables, but for clarity we have represented them here
as the four-dimensional array mos, e.g. mos[i][2][mean] is the mean of E-model instance
number 2 of the i-th VoIP node. The definition of timeUp requires the use of a variable,
startOf, to mark the period in which inside* holds true, which cannot be done directly in
the LTL formula. Instead, we provide this variable manually from the model. The value
of this variable is computed in the model before each state is sent to the analyzer.

To perform the analysis for this objective, we declare a projection with the required
model variables. On the one hand, we need the simulation time, which is included by
default. On the other hand, we need the current value, average and standard deviation
for the MOS values obtained for each E-model instance, properly named to distinguish
to which VoIP flow and type they belong. Finally, the artificial variable startOf is also
included.

In contrast with the case study of Section 5.3, here we do not project states when the
relevant variables are updated, but rather at regular intervals. This is the time limit for
the folded projection mentioned in Section 4.2.3, and is generally useful when dealing
with continuous variables, such as the MOS and related statistics. Another possibility
would have been to discretize the values of these variables so that only changes above a
certain threshold are projected into the abstract trace.

To perform an exhaustive validation, we set a parameterized scenario with different
error models and codecs. The scenario includes five concurrent VoIP flows, with M = 3,
R = 0.1, and T = 30s. We measure the MOS scores of each E-model instance at regular
intervals. Given the objective declared in Equation 5.14 and the parameterized scenario,
OptySim analyzes each scenario instance in isolation, accepting or rejecting our E-model
in each one.

The previous validation objective defines “local” validation, i.e. the fitness of an
E-model implementation for a very specific scenario. We extend these validation results

119

5. ANALYSIS OF NS-2 NETWORK SIMULATIONS

Error Mode Codec VoIP frames/packet

Random 100 %
G.723.1 100 %

1 100 %
2 100 %

G.729A 100 %
1 100 %
2 100 %

Burst 89.6 %
G.723.1 88.3 %

1 90.9 %
2 85.6 %

G.729A 91 %
1 91.9 %
2 90 %

Limited 78.5 %
G.723.1 75.2 %

1 80 %
2 70.3 %

G.729A 81.8 %
1 86.5 %
2 77 %

Table 5.4: Validation results for our E-model extension

over a range of conceived scenarios to come up with “global” validation results, measured
as the percentage of validated scenarios. Since the scenario parameters induce some
natural groups, i.e. according to the error model used, we can also compile the validation
results in these groups.

After the tool has completed the analysis, we collect the local results to compute the
global results. A breakdown of these is shown in Table 5.4, grouped by error model,
codec and VoIP frames per packet. From these results we can conclude that our extension
is a perfect fit for the random case. However, when using bursty error models (“Burst”
and “Limited”), validation scores are weaker. This is due to the fact that our extension
takes each burst and gap into account separately, thus being more sensible to the particular
error patterns.

Another interesting result is that fitting two VoIP frames in each packet yields
noticeably worse results. Again, this can be attributed to our extension working with a
finer grain. A packet with two frames lost during a gap introduces a small burst with an
error rate of 1.0. This induces a small but noticeable degradation in the instantaneous
call quality estimation.

120

Chapter 6

Inverse modeling of network KPIs

Network simulations are a cost effective solution for the development and planning of
network deployments. They enable quicker, cheaper analysis and iteration than what
would be possible with field tests. However, field tests are still the only way to capture
real environmental conditions that are usually not taken into account in simulations.
Investing in more realistic network models would improve the quality of analysis yielded
by network simulations and reduce the dependency on field tests.

In the field of cellular network performance evaluation there are factors, such as
latency, jitter or dropped packets, which have significant influence in performance. These
factors, called key performance indicators (KPIs) [86], may be the result of several
environmental conditions. Obtaining self-contained models of these KPIs, with the same
characteristics observed in field tests, would enable more realistic and useful simulations.

In this chapter we show how OptySim can be applied to the inverse modeling of
network KPIs, i.e. obtain a model that fits the collected data about a KPI. In particular,
we tune a parameterized jitter model for mobile VoIP using data collected from field
tests. This data enables acquiring a deep understanding of mobility issues from the
application level point of view and obtaining realistic results regarding the quality of
service perceived by final users. For the data collection phase we used the SymPA [53]
profiling tool, while network simulations for the analysis phase are carried out using the
ns-2 network simulator.

6.1 Key performance indicators

Key performance indicators (or KPIs) are computed measures that are related to the
performance of a system [86]. The concept of key performance indicators is not exclusive
to communications networks and can be found in several other areas, such as economy,
and does not necessarily deal with technical details. Usually, KPIs are used as an
optimization target, e.g. for business or network planning. KPIs are computed from raw

121

6. INVERSE MODELING OF NETWORK KPIS

input data, such as counters and timers, or from other KPIs. There is no restriction on the
complexity of said computation, as long as it is not raw data.

3GPP has defined several KPIs for their radio access technologies, such as GSM and
UMTS [87]. These may be based on measures from different parts of the network, such
as the core network (either circuit- or packet-switched), the IP multimedia subsystem
(IMS) or the base stations. Other KPIs for these radio access technologies can be found
in the literature [86]. In the case study which can be found later in this chapter we will
work with a simple KPI: jitter. Jitter can be defined informally as the difference between
the expected and the actual packet arrival times.

In the first stages of performance evaluation, network simulations and other means
of off-line analysis are vital. In the field of cellular network performance evaluation,
numerous analytical models have been proposed for modeling some of the factors
that impact performance [98][50]. These models provide theoretical results based on
assumptions, usually with the objective of reducing associated computational costs.
However, sometimes these assumptions lead to models that are too simplistic or that
do not properly capture some particular circumstances. Approaches that produce more
realistic models are thus welcome [71], as they will improve the quality of the analysis
than can be performed without resorting to costly field tests.

Thus, our objective for this application of our framework is obtaining realistic KPI
models to be used in simulations, which match field test observations, and providing a
methodology for doing so.

6.2 Inverse modeling methodology

This section describes our methodology for the inverse modeling of KPIs for performing
more realistic simulations, using our objective-driven analysis framework.

The process starts with a parameterized KPI model that has to be configured appro-
priately to match the observations of the field tests. This model declares a parameter
space that has to be explored in order to find the best fitting configurations. The fitness
of a given configuration can be evaluated by comparing a series of simulations with real
traces from the field tests. However, the number of possible configurations may be too
large to be simulated exhaustively. Thus, we introduce OptySim with two purposes: au-
tomatically finding the best configurations by declaring a fitness objective, and reducing
analysis time by terminating unproductive simulations early.

For the field tests we use SymPA [53], a profiling tool for mobile phones. Using
SymPA we can extract relevant data and metrics regarding a KPI from field tests. For
modeling and simulating KPIs, we use the ns-2 network simulator. This methodology is
independent on the particular simulator (or profiling tool) used. However, we already
have the proper integration between ns-2 and our framework, as described in Section 5.2.

122

Figure 6.1: Overview of methodology for inverse modeling of KPIs.

Figure 6.1 shows an overview of the methodology. Given a parameterized KPI model,
the steps for tuning it to match the characteristics observed in field tests are as follows:

1. Field tests. Decide the environment which the KPI should model, e.g. a mobile
environment. Perform a series of field tests to capture real traffic traces of mobile
devices with a profiling tool, such as SymPA. Additional data can be captured from
other network endpoints if appropriate.

2. Collect KPI data. Gather the relevant characteristics of the KPI from the collected
traces. The particular characteristics that should be collected depend on the fitness
objective that will be used later in the methodology. However, it is usually a good
idea to gather general statistics, such as average and standard deviation.

3. Define ns-2 scenario. Build a ns-2 scenario with the same setup as the field tests.
using the parameterized KPI model in the appropriate place. For instance, a jitter
KPI model could be placed in the mobile link of a network scenario.

4. Declare parameter space. Identify the parameters of the KPI model and their
valid ranges. Declare them in the analysis configuration file (see Section 3.1.1).

123

6. INVERSE MODELING OF NETWORK KPIS

5. Declare fitness objective. Declare the fitness objective that the KPI model must
meet, with regards to the data gathered in step 2. This objective is also declared
in the analysis configuration file. The form of this objective (or objectives) is up
to the user, which can use any of the properties that OptySim understands, such
as LTL formulas or asserts. The case study in Section 6.3 includes an objective
written as an LTL formula, which can be reused for other purposes. This objective
checks that some simulation parameters stay within certain bounds for a given
period of time.

6. Analysis. The analysis is carried out normally, as described in Chapter 3. Spin
generates parameter configurations for the model, which are then simulated in ns-2.
In parallel, Spin evaluates the objective on the execution traces generated during
these simulations. Each simulation is tagged accordingly.

7. KPI optimization. Tuned parameters for the KPI model, i.e. the parameters that
satisfied the fitness objective, are returned as a result of the analysis. The model
can then be used to perform realistic simulations with regards to the KPI in the
circumstances recorded in the field tests.

6.2.1 SymPA

SymPA (Symbian Protocol Analyzer) [53][56] is a network monitoring tool targeted
at Symbian smartphones. Its key feature is the ability to capture IP traffic and radio
access technology measurements on commercial mobile devices. The correlation of the
collected data allows determining the source of connectivity problems, such as packet
losses or higher latency, and detecting strategic parameters in the mobile communication
optimization process. SymPA has recently been ported to Android smartphones, under
the name of TestelDroid [24].

SymPA has been used to carry out extensive field tests in real scenarios to characterize
the behavior of video streaming services over cellular networks [54]. The methodology
used was based on using off-the-shelf smartphones to obtain more realistic results which
are beyond the scope of the measurements provided by the internal probes used by mobile
operators to monitor the performance of the core network.

6.3 Case study: jitter model
Jitter is an important factor that impacts the performance of real time applications, such
as VoIP or video streaming, and as such obtaining a realistic jitter model for simulations
would be of great value. In this section we describe how we applied the methodology
described in the previous section to obtain a realistic jitter model. We also show a naive

124

Figure 6.2: Jitter and bandwidth captured during one of the HSDPA field tests.

approximation for jitter modeling, in which jitter traces from fields tests are replayed
during a simulation.

We use parameterized probability distributions to model the jitter observed in the
field traces. In particular, we try to tune these parameters to approximate the average
and standard deviation of the jitter. Different combinations of these parameters were
automatically generated and simulated in order to select the configurations that more
closely matched the measured jitter. Although we present the results for ns-2, the jitter
models obtained could be used in any network simulator that supports custom delay
models for links.

6.3.1 Field test scenario

The field test scenario consisted of a RTP (Real Time Protocol) traffic generator running
on a desktop computer using a mobile phone as a modem. At the other communication
endpoint there was a mobile device capturing the incoming RTP packet flow injected
at the source. Traffic capture was performed directly at the IP level in the mobile
device using SymPA [53]. The tests were performed using two different radio access
technologies: UMTS (Universal Mobile Telecommunications System) and HSDPA (High-
Speed Downlink Packet Access. A sample of the results obtained from the analysis of
traffic captures during field tests is shown in Figure 6.2.

125

6. INVERSE MODELING OF NETWORK KPIS

6.3.2 Replaying jitter traces in simulations

A simplified version of the field test scenario was modeled in ns-2, comprising of two
UDP nodes connected with a duplex link. One of the nodes had a constant bit rate
traffic generator acting as a RTP traffic generator, while the other end was a custom UDP
sink used to compute jitter and other statistics. The link between the two nodes is an
abstraction of the network path (both wired and wireless) between the desktop computer
and the mobile device. However, since we only measure both ends of the path, it is
adequate to model the measured characteristics of the connection. ns-2 provides a range
of error models to simulate packet loss in a link. Although these error models can also
delay some packets, the delay that is applied is always constant and thus a poor fit to
model jitter. Therefore, custom error models were developed in C++ to inject a variable
delay in the link.

Our first approximation towards using field test data for performing more realistic
simulations was to use the recorded traces to reproduce the same jitter and packet loss.
Thanks to the traces captured at the RTP sink, we had both the sequence numbers of the
received packets and the inter-arrival time of each pair of consecutive packets. From
the sequence numbers we were able to extract the loss bursts that could be provided as
input for ErrorModel/Trace, a ns-2 built-in error model class based on a special trace
file. Following the same principle, we developed the ErrorModel/JitterTrace class,
which applied an additional delay to recreate the inter arrival time read from the traces.
This error model was inserted after the packet queue associated with a link. Therefore,
another error model could still be hooked before the queue in order to simulate packet
errors and losses.

The field tests were recreated in the simulator using the trace data as input for the error
models, and the same configuration in the scenario. Figure 6.3 shows the jitter measured
from a GPRS test with 500 B packets, plotted against the jitter from the corresponding
simulation. The profile of both graphs is very similar, but not exactly the same. This can
be attributed to slight mismatches between the simulator’s exact scheduler and the real
traffic generator, which did not send packets at exactly the same interval, and differences
in the precision of the performed mathematical operations, among others. But above all,
this approach for using field test data is too rigid, depending on the parameters set for the
traffic source, which would not translate well to other scenarios.

6.3.3 Inverse modeling

To overcome the limitations of the simple jitter model introduced above, we developed a
parameterized jitter model which will be configured using the methodology described
in Section 6.2. For this task, we will also build a ns-2 scenario that mimics one of the
field tests, and we will take advantage of the data collected from the field tests, extracting
relevant statistics which we will use to tune our model.

126

0

20

40

0 1000 2000 3000 4000 5000 6000

Ji
tt

er
 (m

s)

seconds

Field Test

Simulation

Figure 6.3: Jitter from field test data vs simulation with replay

The jitter model, ErrorModel/Jitter, was implemented as a ns-2 error model in
C++. As with the previous ErrorModel/JitterTrace, instances of this class are meant
to be inserted after the link packet queue. This class uses an instance of RandomVariable
(already provided by the base ErrorModel class) to delay a packet a random amount
of time. ns-2 provides several implementations of RandomVariable, each modeling
a different probability distribution with their respective parameters. These are the
parameters which we are interested in tuning for obtaining a realistic jitter model, i.e.
the parameter space to be explored.

On the other hand, the target of the optimization objective is the generated jitter using
each model. More specifically, certain jitter statistics that can be collected from the
simulations will be compared against the same statistics gathered from the field tests. In
this case study, the execution trace to be analyzed will be composed of these statistics,
measured at different points in time during the simulation. To measure this statistics we
developed a custom UDP agent, Agent/UDP/My, to be placed at the sink node.

Figure 6.4 shows an overview of the ns-2 simulation scenario built for the inverse
methodology process. A regular error model is placed before the link queue, while the
jitter model is placed before, in order to delay the packets as they exit the queue. The
traffic source and the link have been configured with the same characteristics observed
in each field test scenario (UMTS or HSDPA). Additional Tcl code was added to poll
periodically the custom UDP agent at the sink and send the corresponding statistics to
the analyzer.

127

6. INVERSE MODELING OF NETWORK KPIS

Figure 6.4: Simulation scenario for inverse modeling of jitter.

The last step before running the analysis is setting the objective. For this case study,
we decided to use the average and standard deviation of the generated jitter. Informally,
we require that the generated jitter remains within one standard deviation (JSD) from
the average measured jitter (J), for at least 40 seconds (T). To reduce the influence of
the random seed, 5 RTP transmissions are launched in parallel on different links and the
objective is checked against the average jitter. This objective can be written as an LTL
formula, using a similar approach to the objective used in Section 5.4.4 for validating an
E-model implementation. More formally, we define this objective as:

ltlAccept : ♦(insideStdev∧ (insideStdev U timeUp))
def : timeUp := time− startOf >= T
def : insideStdev := inSd(avgJitter,J,JSD)

def : inSd(m,r,sd) := (m≥ (r− sd/2))∧ (m≤ (r+ sd/2)) (6.1)

The constants J and JSD, which represent the average and standard deviation of the
jitter, are collected from the real field tests, and are defined separately for each field test
scenario.

In order to perform the analysis efficiently, we apply a counter projection (see
Section 4.2.1) to the ns-2 trace. First, we select the time and avgJitter variables to be
present in the projected trace. The artificial variable startOf, which is computed every
time a state is sent, is also projected. We also fold the projection with a time limit (see
Section 4.2.3), to reduce the number of elements present in the projected trace. The
rationale for doing this folded projection is the same as in the E-model validation case
study of Section 5.4.

Finally, we perform the analysis with these scenarios, parameters and objective. The
returned parameter configurations yield probabilistic distributions that match the real

128

Distribution P.D.F. Scenario Parameters

Uniform 1
b−a for x ∈ [a,b]

UMTS a=0.001, b=0.029
HSDPA a=0.007, b=0.038

Exponential λe−λx UMTS λ=0.012626
HSDPA λ=0.013636

Normal 1√
2πσ2 e−

(x−µ)2

2σ2
UMTS µ=0.015, σ=0.01
HSDPA µ=0.0375, σ=0.01

Pareto α xα
m

xα+1 for x > xm
UMTS xm=0.001125, α=1.6
HSDPA xm=0.0179, α=1.776

Table 6.1: Probability distributions for modeling jitter.

jitter, as imposed by the objective. Table 6.1 shows the parameters obtained for some
combinations of scenarios and probability distributions. It is worth noting that there was
no single “best” configuration on most scenarios, but rather a set of configurations that
met the objective.

Figure 6.5 shows the four jitter distributions from Table 6.1 plotted against the
jitter measured from one of the field tests. From the results it can be deduced that the
characteristics of real jitter are best represented using a Pareto distribution.

6.4 Related work
There are different approaches in the literature for determining accurate jitter models. An
interesting estimation of delay jitter based on a discrete-time queuing system is provided
in [121]. The authors assume that jitter is due to multiplexing and buffering of voice
and video packets at IP level with bursty background traffic. These conditions limit
the applicability of the results obtained. For instance, new considerations should be
introduced for cellular environments.

Like in our approach, the authors of [97] use field test traces, but as the input to a
modified protocol stack to reproduce the loss and delay behavior in a test environment. In
contrast, we use the traces to reproduce the characteristics observed in a realistic manner,
not simply as a simple replay. Furthermore, they assume a network model based on the
queue theory to parameterize the behavior observed. In our work we apply a higher level
of abstraction because the model network is not established: instead, it is also abstracted
by the mathematical expression we use to model the KPI.

The most remarkable contribution of our methodology, in comparison with previous
work, is the abstraction capacity of the models obtained, which extends the applicability

129

6. INVERSE MODELING OF NETWORK KPIS

Figure 6.5: Comparison of different jitter models with a real jitter trace.

of the methodology to different scenarios without the need to introduce significant
modifications. Also, the flexibility given by our communication protocol allows applying
this methodology to other network simulators for which the protocol is imlpemented.

130

Chapter 7

Analysis of Java execution traces

Java is one of the most extended programming languages as of today. This language is
used across a wide range of applications, from server programming to mobile applications
for the Android operating system.

There are many developer productivity tools that have been developed for Java. These
tools range from profilers to debuggers, and are geared towards improving the correctness
and efficiency of Java programs. In Chapter 2 we have discussed some of these tools, in
particular unit testing tools such as JUnit and TestNG that enable automated testing of
programs according to a set of requirements, and model checkers such as JPF that can
explore programs exhaustively. In this chapter we discuss how we can apply OptySim
for testing Java programs, taking advantage of unique features such as checking LTL
formulas on possibly infinite traces. We called this integration TJT.

The Java Virtual Machine (JVM) is the piece of software responsible for executing
Java programs. Among its features, it provides a debugging interface which can be used
to monitor and control the program being executed. We take advantage of this interface
to extract the execution traces on-the-fly without modifying the original Java program.

7.1 The Java programming language
In order to analyze Java programs, the first step is defining what constitutes an exe-
cution trace and how to extract it. Java is a general-purpose, concurrent, class-based,
object-oriented language [70]. Java programs are normally compiled into bytecode (an
intermediate language), which is then interpreted by a Java virtual machine (JVM) in
order to be executed. Java programs follow the imperative paradigm, where instructions
are executed in sequence, each possibly changing the program state.

A Java program starts with a single execution thread, but it is possible to spawn more
threads that will execute part of the program in parallel. Threads can be supported by
one or more hardware processors, with or without time slicing. Each thread has its own

131

7. ANALYSIS OF JAVA EXECUTION TRACES

Figure 7.1: Overview of the Java Platform Debugger Architecture (JPDA)

call stack and program counter, but memory is shared among the threads contained in the
same process.

In our framework, we consider that an execution trace is a sequence of states. In the
case of the execution of a Java program, this sequence will be produced by the execution
of the individual instructions. This definition is straightforward in the case of single-
threaded programs, or multi-threaded programs running on a single processing unit. In
the case of multi-threaded programs running on multiple processing units, we consider
that an observer can only see the effect of one instruction at a time, even though the
instructions may affect each other in incorrectly synchronized programs. The execution
trace observed in this way should conform to the memory model as specified in the Java
Language Specification, Section 17.4 [70].

7.1.1 Java Platform Debugger Architecture
Java defines a series of interfaces for debugging purposes, which together form the Java
Platform Debugger Architecture (JPDA) [20]. Each interface is located at a different
layer: JVM TI defines the debugging services provided by a JVM, JDWP defines the
communication protocol between the debugger and debuggee processes, and JDI is a
high level Java API for developing remote debugger applications. Figure 7.1 shows an
overview of these components.

The Java VM Tool Interface (JVM TI) [4] is the lowest level debugging interface
offered in JPDA. It is intended to be used by tools that need access to the VM state,
such as debuggers and profilers. A client of JVM TI, called an agent, can be notified
of events of interest in the JVM, and also control and query the application through the
interface. Agents can be written in any native language that supports C language calling
conventions. A JVM implementation is not required to provide JVM TI. However, higher
level debugging interfaces may still be used by tools even if JVM TI is not available.

132

The next interface is the Java Debug Wire Protocol (JDWP) [19], which defines
the communication protocol between the debuggee process and the debugger. This
interface defines the messages that can be transferred between both parts. The transport
mechanism for this protocol is not defined as part of the protocol. The reference imple-
mentation provides two transport implementations: TCP socket and shared memory. The
back-end for the protocol can be implemented as a JVM TI agent, as in the reference
implementation. JDWP provides roughly the same information as JVM TI, but with
additional bandwidth-related functionality.

Lastly, the Java Debugger Interface (JDI) [18] is the highest-layer of JPDA. JDI is a
high-level Java API for developing debugging tools that access the state of another JVM,
usually remotely. This is the recommended interface for developing such tools, thanks to
an API that is easier to use than connecting through JDWP or JVM TI directly.

JDI offers an event-driven interface, where the user can subscribe to receive relevant
information. Supported events include: method entry and exit, modification of object
fields, exceptions, monitor handling, thread lifetime, and arbitrary breakpoints. Using
JDI, a tool can access the call stack and local variables of each thread, and query the
objects allocated in the heap.

7.2 Extraction of Java execution traces
We took advantage of the features offered by the JDI API to develop a front-end for
analyzing Java programs, which we called TJT [22][23]. In addition, we developed a
graphical user interface as a plug-in for the popular Eclipse IDE [15]. The integration
between our analyzer and Java was developed in parallel with our other applications.
This led to similar, albeit ultimately incompatible, protocol implementation and features.
Figure 7.2 shows an overview of this integration, split into the Eclipse plug-in and
the analysis. This follows the general framework outlined in Chapter 3, with a few
particularities.

7.2.1 Eclipse plug-in
The Eclipse plug-in is the main interface of the tool, and it assists the user in both writing
test specification files and in reviewing their results. The plug-in provides a form-based
editor for creating XML test specification files. Figure 7.3 shows an screenshot of the
plug-in, with the test specification file editor. These files include the basic information
described in Section 3.1.1, plus additional details such as breakpoints. This file is used to
generate the code for a custom analyzer from a Promela template.

The test specification file editor also helps the user select the content of the projected
states, by choosing from a list with all the variables present in the program to be analyzed.
The user can also set breakpoints at specific code locations, and use them in LTL formulas.

133

7. ANALYSIS OF JAVA EXECUTION TRACES

Figure 7.2: Overview of the analysis framework

Figure 7.3: Screenshot of the TJT Eclipse plug-in

134

Since TJT is oriented towards testing and offering a friendly user interface, we
decided to hide the classification of objectives from Section 3.3, and instead show the
user a classification closer to that of traditional testing and model checking tools. In these
cases, the user is typically only interested in traces that violate an objective, in order to
locate bugs in the source code. The available tags are:

• all. The formula must be checked on every trace for the test to pass. This represents
a desired behavior.

• none. The formula must not be checked in any of the traces for the test to pass.
This represents an undesired behavior.

• any. It is enough for one trace to check the formula for the test to pass. Whether
this represents a desired or undesired behavior is left to the user.

The fundamental difference with the regular OptySim tags is that these are assigned
to the whole analysis after it has been completed, e.g. if at least one execution trace is
found that does not met an all test, then the plug-in notifies the user that the test was not
passed. Nevertheless, all execution traces are analyzed as usual.

The formula parser supports a few helper functions that can be used to refer to
breakpoints and exceptions, among others:

• loc(location). Returns true if the program counter of the current state is located
in the given source code location. Locations are given as strings with the format
"<file>:<line>", where the first part is the file and the second a line within that
file.

• exc(exception). Returns true if the current state was produced by the exception
whose class name is given as an argument.

• streq(string, string). Returns true if the given strings are equal.

Once the analysis finishes, the results are presented in a separate view in Eclipse.
This view contains all the traces returned by the analyzer. For each trace, the projected
states are shown, i.e. the states of interest that were sent to the analyzer. Clicking on any
state opens the corresponding file and highlights the corresponding line of code in the
editor view. In addition, the values of the variables in that state are shown in a separate
view, helping the user locate the source of any objective violation.

135

7. ANALYSIS OF JAVA EXECUTION TRACES

7.2.2 Runtime monitor
The runtime monitor, which also acts as the front-end between the analyzer and the Java
programs being analyzed, has been implemented in Java using JDI. The communication
between the analyzer and the runtime monitor follows the general principles of the com-
munication protocol described in Chapter 3, although the implementation is different and
incompatible. The analyzer also includes additional state variables to hold information
which is specific to this integration, such as the current location of the program counter,
or the type of the last exception.

The runtime monitor is responsible for launching the Java program with the parame-
ters sent from the analyzer, monitor the execution of the program, and send the relevant
state updates back to the analyzer. The communication between the monitor and the
analyzer happens through a TCP socket. The messages themselves are encoded using
XDR [7], to ensure that the values sent over the socket are correctly represented on both
sides.

JDI offers an event-based API, where the debugger can subscribe to some events
of interest in the debuggee process. In this case, the runtime monitor subscribes to the
following events:

• Method entry and exit. Each time the program enters or exits a method, an event
is fired and captured by the runtime monitor. Classes from standard packages, e.g.
java.*, are excluded by default.

• Thread start and death. The runtime monitor is notified whenever a thread is
created and started, or a thread dies.

• Synchronization. Monitors are the most fundamental synchronization object in
Java. The runtime monitor is subscribed to four different events related to monitors:
a thread starts or finishes waiting on a monitor, a thread attempts to enter a monitor
that is already acquired by another thread, and a thread enters a monitor after
waiting for it to be released from another thread.

• Field modifications. The user can select certain instance fields that should be
watched. When one of these fields is modified, an event is triggered and the
monitor sends a new state to the analyzer.

• Breakpoints. When a thread reaches a specific location in the code, as set by the
user, the runtime monitor is modified.

• Exceptions. The runtime monitor is notified when an exception happens

After any of these events, all the threads in the target JVM are suspended. This
enables the runtime monitor to further inspect the program without any interference, if

136

required. For instance, in order to provide a hash of the current state of the JVM, as
required for the hash projection (see Section 4.2.2), the objects in the heap and the thread
stacks must be walked. This could not be done reliably while the program is still running.

This front-end for Java programs supports the two projections described in Chapter 4.
The user can use the counter projection or the hash projection, if cycle detection is
important for the test objectives.

7.3 Case studies

In this section we apply our tool to the testing of Java programs using requirements
expressed as LTL formulas. As case studies we have used both publicly available
open source programs and small custom examples. The former include three server
applications for the HTTP, FTP and NFS protocols. The latter two were also evaluated
in [60]. In addition, we developed two small examples: an implementation of a classical
concurrency problem involving an elevator, and a infinite program that handles lists.

As is custom when testing server applications, we have developed mock clients to
perform the tests in a controlled environment. These clients were implemented using
only the essential behavior required for each test. In these cases, the main program that
is executed is responsible for launching both the mock clients and the server.

We prepared a few tests for each case study and performed them using the hash
projection, and also the counter projection where possible. Finally, we included a small
comparison with JPF [74], a model checker for Java which was discussed in Chapter 2.
The remainder of this section is dedicated to describing the programs that where tested,
the tests performed on them, and the results of these analyses.

7.3.1 Applications and requirements

In this section we describe the Java applications that we have selected as case studies
and the testing requirements we used as tests. These requirements have been expressed
as LTL formulas, with the appropriate all, none or any tag. Table 7.1 contains these
formulas, grouped by application. Note that all formulas, with the exception of F4 and
F6, represent liveness properties, and, in the case of programs with infinite executions,
they can only be analyzed with runtime checkers that implement mechanisms like the
cycle detection that enables the hash projection (see [115]).

FTP server

The first application is an FTP server [113]. This server accepts the usual FTP commands,
such as CWD for changing the remote directory, or CDUP for navigating to the parent

137

7. ANALYSIS OF JAVA EXECUTION TRACES

Application Formula

FTP server

F1 all: �(loc(”FTPDaemon:285”) → ♦(incoming = null))
F2 all: �♦(streq(FTPDConnection.status,”CDUP”) →

♦(loc(”FTPDConnection:471”))
F3 all: �((req1→ ♦(resp1)) ∧ (req2→ ♦(resp2)))
F4 none: ♦(streq(FTPDConnection.status,”STOR”) ∧

¬FTPDConnection.authentified)
F5 none: ♦((incoming = 0)U (loc(”FTPDaemon:285”)))

Elevator
F6 none: ♦(loc(”Elevator:86”) ∧ ¬Elevator.isFree)
F7 all: ♦(loc(”Elevator:86”) ∧ Elevator.isFree)

NFS server
F8 any: ♦�(MountdHandler.err > 0)
F9 all: ♦(MountdHandler.err > 0 ∧ ♦ loc(”MountdHandler:95”))
F10 none: MountdHandler.err = 0 U loc(”MountdHandler:95”)

Web server
F11 any: �(♦(loc(”WebServerMain:63”) ∧ ♦exc(”WebServerException”)))
F12 all: �¬loc(”Client:41”)

Lists F13 all: �♦(numElements = 1)

Table 7.1: LTL formulas used as testing objectives

directory. The server settings are loaded from a file, which includes a list of users and
their respective home directories.

The core of the server is the loop shown in Listing 7.1. The server accepts client
connections iteratively and spawns a new thread, an instance of FTPConnection, to
handle each client. This class contains methods that perform the required actions for
each FTP command. For instance, part of the actions related to the CWD command are
shown in Listing 7.2, in the FTPConnection.CWD() method.

We used formulas F1, F2, F3, F4 and F5 from Table 7.1 as testing objectives. Formula
F2 was prepared to uncover an error that was purposefully introduced in the server code,
while the rest of the formulas were tested on the original code. We now describe briefly
the purpose of each of these tests:

• F1. After reaching line 285 of the FTPDaemon.java file (see Listing 7.1), the
incoming variable should be null at some point in the future. This test is to
ensure that incoming is properly cleared after each iteration of the server.

• F2. If a client tries to escape its home directory by performing repeated CDUP
commands, the server should end up throwing, but capturing, an exception, and
letting the client know that an error happened. The CDUP command is implemented
as CWD operation, shown in Listing 7.2. The FTPException provoked by an
erroneous CDUP command is captured and handled in line 471 of said listing.

• F3. A client may have two of its commands consecutively processed by the server,

138

273 // FTPDaemon.java
274 public void run() {
275 while(true)
276 try {
277 Socket incoming;
278 ServerSocket ssock1;
279 synchronized (this) {
280 if (ssock == null)
281 init();
282 ssock1 = ssock;
283 }
284 incoming = ssock1.accept ();
285 FTPDConnection conn = createConnection(incoming);
286 notifyListeners(conn , "");
287 conn.start();
288 }
289 catch(Exception e) {
290 e.printStackTrace ();
291 }
292 }

Listing 7.1: FTP server: main loop

while another client with a pending request is starved. This test deals with the
fairness in scheduling tasks. Multithreaded programs are prone to fairness issues:
some threads may take all available CPU time, leaving other starving. This test
checks whether this is a possible outcome under the default scheduling employed
by the JVM or under other schedulings that may be enforced in the execution. The
boolean propositions in the formula, such as req1, are defined in terms of auxiliary
boolean variables in the mock FTP clients. This is also in contrast with other tests
for this application, which deal with variables or locations in the FTP server itself.

• F4. No user should be able to perform a STOR command before being authenticated
first.

• F5. At some point, the variable incoming, which holds the socket just opened
for attending a new client, should be non-null until a new thread is spawned for
attending that client. This formula is similar to F1, but using the “until” temporal
operator (U).

Concurrency problem: elevator and clients

This application is a typical example in concurrency: a shared resource and several
clients which try to access it at the same time. In this case, the shared resource is an

139

7. ANALYSIS OF JAVA EXECUTION TRACES

461 // FTPDConnection.java
462 public String CWD(String dir) throws IOException {
463 try {
464 String newDir = makePath(dir);
465 VirtualObject obj = server.produceObject(newDir , user);
466 Reader annot = obj.getAnnotationReader ();
467 path = newDir;
468 return "250 CWD command successful.";
469 }
470 catch (FTPDException e) {
471 return "550: " + e.getMessage ();
472 }
473 }

Listing 7.2: FTP server: CWD command

elevator, and the only operation allowed is riding it from a floor to another one. While
clients can send requests at any time, only one client is allowed to ride the elevator at
a time. Listing 7.3 shows part of the code of the Elevator class, in which the elevator
first waits for a client request, and then moves to the floor where the client is located.

We tested this applications using the objectives set by formulas F6 and F7:

• F6. The elevator does not wait for clients when it is not free. That is, in no
execution (none) the elevator should not wait on the condition that is shared with
the clients, if there is one client that has requested to use the elevator. For the sake
of illustration, this test was performed on the original code, as well as on a version
with a bug purposefully introduced in the condition on line 84.

• F7. This formula is the opposite of formula F6, in the sense that it requires that all
executions conform to the correct condition.

NFS server

We also performed some tests on a NFS server implemented with Java [103]. In particular,
we tested some error conditions when mounting a remote file system, which is the
handled by class MountdHandler. Formulas F8, F9 and F10 test several aspects of this
functionality:

• F8. Clients cannot access incorrect or unauthorized directories. We use mock
clients that perform erroneous requests, and check the value of an error field of the
server.

• F9. This formula describes a testing requirement similar to F8, but using other
temporal operators and checking the program location where the error should be
detected.

140

82 protected void waitForClient () {
83 l.lock();
84 while (! isInterrupted () && isFree) {
85 try {
86 waitingForClient.await();
87 }
88 catch (InterruptedException e) {
89 }
90 }
91 int distance = Math.abs(currentFloor - requestedFloor);
92 while (distance != 0) {
93 Thread.sleep (150);
94 distance --;
95 }
96 waitingForArrival.signal ();
97 l.unlock ();
98 }

Listing 7.3: Elevator: elevator waiting for clients

• F10. In line with previous formulas, no other errors should happen before this one.

This server features an infinite loop where client requests are attended. In order
compare the use of our two execution trace projections, we prepared a modified version
of the server without this infinite behavior so it could be checked with the counter
projection.

Web server

Finally, we also studied the Jibble Web Server [96]. As usual, this server contains a main
loop which accepts client connections, spawning a new thread for each connection. In
order to compare the performance of both of our trace projections, we also prepared a
version with accepts a limited number of connections in order to provide a finite trace.

We used formulas F11 and F12 as testing objectives:

• F11. Launching the web server with an invalid root directory should not be allowed.
We check that the appropriate exception is thrown in this case.

• F12. The server should be able to start properly on any of the ports of a given
range. This range is specified in the test specification file. The formula checks that
mock client are able to connect successfully to the server on any of these ports
or, more precisely, that in all execution traces, clients are not unsuccessful when
connecting to the server.

141

7. ANALYSIS OF JAVA EXECUTION TRACES

7.3.2 Counter projection

In this section we describe the tests carried out using the folded counter projection (see
Section 4.2.1). It is worth noting that not all of the proposed tests can be carried out
using this projection. Formulas that would require cycle detection cannot be checked, as
per Proposition 4.2. However, some formulas can be checked on infinite traces generated
from finite ones using Spin’s stuttering mechanism, if the cycle created by repeating the
last state infinitely is the only one required by the corresponding never claim automata.
Most of the programs we are debugging are infinite, i.e. they are servers with an infinite
reactive loop, and thus cannot be checked with finite resources and this projection. In
some cases, as noted in the previous section, we modified these programs to produce
finite versions that could be checked with both projections, for comparison. The results
where the servers were modified in this way are marked.

The results are summarized on the left hand side of Table 7.2, averaged over a series
of test executions. The third column shows the number of projected Java states, while the
fourth column indicates the number of state transitions in Spin. The next two columns
show the size of a Spin state and the total time of analysis. The last column of the table
shows an approximation of the size of the Java states, before any projection. This number
only takes into account the size of objects allocated in the heap. Since the size of the
heap changes dynamically, we report the maximum value the we observed during the
execution of each program.

The size of states in Spin after the projection is influenced by several factors. First,
Spin has an overhead of 16 B for a Promela specification with a single process, and
a Büchi automata adds another 8 B. Then, a step integer variable is added to track
the Java state that is retrieved in each state (see Section 3.4.2). The variables used for
generating test inputs, if any, are added to the global state as well. Furthermore, the
counter projection requires an additional variable as described in Section 4.2.1. It is
worth noting that the variables being monitored are not part of the global state, but are
kept in a separate data structure, in order to support backtracking with minimal impact in
the size of Spin states.

TJT also has a deadlock detection algorithm. Although the purpose of formula F7 was
to detect the incorrect wait condition, it uncovered a deadlock in each execution of the
program detected by the monitoring module. Although deadlocks may be detected while
using any property, omitting the temporal formula is recommended when specifically
searching for them in order to prevent the trace being terminated early due to a specified
property.

7.3.3 Hash projection

We also evaluated the hash projection, using all the properties described in Section 7.3.1.
Thanks to its cycle detection capabilities, we could use it for more tests than the counter

142

Counter projection Hash projection
Application Formula States Trans. S. size Time States Trans. S. size Time J. size

FTP server

F1 - - - - 47 83 76 B 4.2 s

4.27 MB

F23 - - - - 150 187 76 B 14.9 s
F3 - - - - 2419 6211 76 B 34.7 s
F4 - - - - 59 265 76 B 17.6 s
F44 130 131 48 B 0.8 s 171 172 76 B 0.9 s
F5 - - - - 33 34 84 B 3.9 s
F54 19 20 48 B 0.8 s 23 24 76 B 5.5 s

Elevator
F6 31 219 40 B 28.7 s 31 204 68 B 34.7 s

0.74 MBF63 3 54 40 B 23.0 s 3 54 68 B 24.1 s
F73 3 51 40 B 29.0 s 3 51 68 B 33.7 s

NFS server
F84 15.3 94.3 40 B 5.1 s 17.6 99 68 B 10.8 s

4.08 MBF94 5 140 40 B 22.9 s 5 140 68 B 1 27.1 s
F10 4 14 40 B 4.6 s 4 14 68 B 5.2 s

Web server

F11 - - - - 211 231 92 B 202 s

6.71 MB
F114 165 175 64 B 8.6 s 258 270 92 B 13 s
F12 - - - - 135 146 96 B 214 s
F124 168 179 68 B 9.1 s 273 284 96 B 13.5 s

Lists F13 - - - - 6 33 68 B 0.7 s 0.14 MB

Table 7.2: Test results using folded counter and hash projections

projection. The right half of Table 7.2 shows these results. The table shows that,
compared with the counter projection, the hash projection is generally slower. This can
be attributed to the computation penalty associated with visiting the whole Java program
state and computing its hash. As these results suggest, the tests with more Java states are
the ones where the test time increases the most. Also, the difference between the size of
Spin states between the counter and the hash projections is constant: the hash projection
adds a variable to store the hash of each state, but removes the counter variable. Although
the size of the hash proper is 16 B, in our implementation it is stored as a 32 B character
array, which explains the total difference of 28 B.

In addition, we also tested a simple Java program that deals with lists in an infinite
loop, adding elements to the list first and then removing them. We checked that the list
ended up with exactly one element an infinite number of times, which is formalized in
formula F13.

3Formula tested over a program where errors were manually introduced.
4Formula tested over a finite version of the original infinite program.

143

7. ANALYSIS OF JAVA EXECUTION TRACES

TJT (Hash projection) JPF-LTL
Example Formula Transitions Time Transitions Time

Eventually2 ♦done() 8 0.6 s 10 0.6 s
AlwaysEventually1 �♦done() 68 2.2 s 8 0.5 s
DoubleEventuallySwitch1 ♦done()∨♦ f oo() 8 0.6 s 37 0.6 s

Table 7.3: Results of tests using TJT and JPF-LTL

7.4 Related work
For the integration of our OptySim analysis framework and Java, we have focused on
reliability analysis in general, and testing in particular. Section 2.2.2 described some
tools for Java which have a similar target, focusing on model checking and testing tools.

7.4.1 Comparison with JPF
As we explained in Section 2.2.2, JPF [74][117] is a model checker for Java programs. It
performs an exhaustive exploration of a Java program using a modified JVM. Although
JPF does not support LTL properties like OptySim, there is an ongoing effort to add
support for them via JPF extension mechanisms [90]. However, it does not currently
support as many propositions as OptySim. On the other hand, OptySim does not perform
an exhaustive analysis of the whole state space of a program, but instead studies a
significant set of execution traces.

Thus, even though both tools are based on model checking, they have different scopes.
However, in this section we provide a small comparison between the two tools, based on
examples provided with the JPF-LTL extension. In order to perform this comparison,
we used only the hash projection, as it supports the cycle detection required in all the
examples. The results are summarized in Table 7.3. In this table, the first two columns
show the name of the example and the LTL formula being used, “Transitions” shows the
number of state transitions traversed, and “Time” the total time required to check the
formula against the program. As noted in Section 2.2.2, the atomic propositions in these
formulas reference method entry, which both JPF-LTL and TJT support.

It is worth noting the disparity in time and space required for the analysis of the
second formula with TJT, compared to the other two. This program deals with random
number generators, and the property requires cycle detection. Although checking whether
or not a single trace violates the property is relatively quick, the first few traces generated
and analyzed by TJT did not violate the property. Thus, when a violating trace was
generated, the cost of the analysis had accumulated the analysis of the previous traces.

144

Part IV

Final remarks

145

Chapter 8

Conclusions and Future Work

In previous chapters we have outlined the problem we aimed to solve, namely the
definition of a single framework for analyzing execution traces using model checking.
We tried to show its usefulness through its application to different system and analysis
types. In this chapter we summarize our work and reflect on our contributions. Finally,
we show how this thesis could be extended in the future.

8.1 Conclusions

Many techniques and tools have been proposed for the analysis of hardware and software
systems. However, most of them are geared towards a specific type of system and/or
analysis, forcing users to learn different tools and formalisms. In this thesis we have
presented an approach that uses model checking to analyze external systems whose
behavior can be observed as execution traces. This single framework, called OptySim,
allows the user to apply the same kind of objective-driven analysis to different kinds of
systems.

Although it is based on model checking, our framework does not perform full state
space exploration of the external systems, but rather of a set of execution traces from
the system. However, we believe that this approach is useful for many situations, as our
case studies have shown. For instance, when used for testing OptySim cannot guarantee
the absence of errors in a system as a model checker could. On the other hand, it may
be able to analyze a significant portion of systems whose size make them too big to be
analyzed exhaustively.

OptySim separates the analyzer, implemented using the Spin model checker, from
the system being analyzed. Both components are connected using a communication
protocol which includes primitives to set up executions and receive the required execution
traces. This separation requires a front-end to be developed for each type of system to be
supported. We have implemented such front ends for Java programs and the ns-2 network

147

8. CONCLUSIONS AND FUTURE WORK

simulator. The latter has been implemented in C++, in a way that can be extended for
other C++-based systems.

This separation enables the evolution of both components independently. The an-
alyzer could be connected with more types of systems by developing an appropriate
front-end that is able to set-up executions and extract execution traces. Our communica-
tion protocol could also be reused by other tools that perform other kinds of analyses
over execution traces.

The analyzer has been implemented using a Promela template that is instantiated for
each particular analysis. For instance, the variables selected by the user as part of the
trace have to be included in the global state. This template is supported by additional C
functions and libraries that handle communication, state meta-data, and trace storage and
retrieval, among others. The latter is instrumental in supporting proper exploration of
the state space within a trace. Although traces are fixed sequences of states, a property
encoded as a never claim automata may require backtracking. Trace storage support
ensures that trace history is backtracked properly, while allowing the reception of new
states.

User-defined objectives serve as a guide for the analysis, while providing meaningful
results for the user. On the one hand, the results indicate which objective was met for
each trace, using tags. On the other hand, the analysis of a single trace can be terminated
early if the user chooses it, saving resources when a single answer per trace is enough.
This is thanks to our execution trace-based exploration semantics and the on-the-fly
reconstruction of execution traces.

Since our framework is based on Spin, it would be possible to add support for
more formalisms to describe objectives easily. For instance, Spin supports correctness
requirements expresses as timelines of events, that are then translated into never claim
automata.

We have applied OptySim to different types of analysis, in a series of case studies
described in Part III. First, we studied the performance of a video over TCP application in
ns-2, and used the results to build an optimized version of the application. The definition
of the parameter space and the objectives that guide the analysis allows us to explore a
great number of scenarios from which to extract performance results. We also tested the
correctness of the models used in this scenario.

Unfortunately, the integration with ns-2 is not completely transparent from the point
of view of the designer of the network scenarios. The extraction of the execution traces
may require some support from the user, e.g. additional internal probes may be needed
in order to extract relevant variables. This is in part due to the philosophy of ns-2, where
most analysis are performed over packet traces, and not all network elements have made
their internal state traceable.

We also prepared a validation scheme for E-model implementations. This scheme
was based on comparing several metrics computed from both the implementation being

148

validated and a reference implementation. A similar approach was used to tune KPI
models using data collected from field tests. We applied this approach to obtain jitter
models that replicated the characteristics observed in real conditions.

Our case studies analyzing Java programs where centered around testing. We used
several existing Java server applications, plus two synthetic examples, as case studies.
The Java integration supports both the counter and hash projections, and we compared
them in some of the tests. While the counter projection was clearly more efficient, the
hash projection enabled us to write tests which could not be expressed otherwise. The
integration with Java programs, in contrast with ns-2, is completely transparent thanks to
the use of the JDI API.

To summarize, we believe our approach has proven to be a valid alternative to other
analysis techniques. The ability to analyze external systems through their execution
traces is a useful solution for many kinds of analysis, and for systems that could not be
studied otherwise. Furthermore, the proposed communication protocol facilitates the
integration with many types of systems under a unified framework.

8.2 Future work
The approach presented in this thesis is open in many aspects. We believe that the
following lines of work are worth pursuing.

Integration with the ns-3 network simulator When this thesis was started, ns-2 was
the de facto standard network simulators among most academic papers. ns-3 [77] had
already begun development and had a promising architecture, but it was lacking the
breadth of modules available for ns-2. Nowadays, however, ns-3 has catch up with ns-2,
and newer technologies such as LTE are better supported in the former [101]. Since
the core of ns-3 is still implemented using C++, the integration library described in
Section 5.2 can be adapted for ns-3 by implementing a new Engine subclass with the
appropriate hooks. For instance, ns-3 provides a complete attribute system that can be
leveraged for both parameter configuration and trace extraction.

Integration with model-driven tools Model-driven Engineering is a popular choice
for developing software systems. In the field of protocol stacks and network software, it
has been supported by tools such as Telelogic SDL Suite [16] and Rational Rhapsody [17]
(both now owned by IBM). A natural continuation for our work with ns-2 would be to
integrate with these tools, offering analysis capabilities at the model level, e.g. setting up
parameter configurations and objectives using the artifacts present in the models. In the
case of Rational Rhapsody, the final C++ source code can be used as the integration point,
by leveraging the C++ integration library once more. However, the tool should perform a

149

8. CONCLUSIONS AND FUTURE WORK

translation between model and source code artifacts, so that the user does not have to dive
in the generated code to set up the analysis and review its results. This translation would
be similar to the one performed by the animation capabilities provided by Rhapsody: the
final source code is executed, but additional instrumentation is included to identify the
model artifacts that are being used.

Wider hash projection support The hash projection described in Chapter 4 has only
been implemented for the Java integration (see Chapter 7). The Java JDI API was be
used to walk the complete program state, i.e. both stack and heap memory, in order to
compile a hash for the projection. This is potentially harder to do in other non-managed
languages, such as the combination of C++ and OTcl employed by ns-2. However, having
the option of using this projection with more types of systems would expand the set of
possible objectives, thanks to the support for cycle detection.

Support more formalisms for objectives In Section 3.3 we describe the types of
objectives which OptySim supports, mainly state asserts, LTL formulas and never claim
automata.Although LTL formulas and never claim automata allow the definition of
complex objectives, they may not be easy to use and comprehend for users that are
experts on their own domain, but not model checking. It would be possible to add
support for more formalisms that are more amenable to users by providing a suitable
translation to one of the supported ones. For instance, network protocol designer could
write requirements as message sequence charts (MSCs) to be analyzed by OptySim.

150

Part V

Appendices

151

Appendix A: Configuration files

This chapter describes the files used to configure and perform the analysis of a sys-
tem. These files include information such as the definition of the parameter space, the
objectives and the variables that should be part of the projected trace.

The definition of these files has evolved with the thesis itself and its applications.
Here we show the latest version of the configuration files, defined as an XML Schema,
although legacy versions can still be found in some examples.

A.1 XML Schema
Listing A.1 contains the complete definition of the XML Schema for configuration files.
The only element defined in the schema is the root element, optysimconfig, which is of
type configuration, while the rest of the schema is defined using nested elements and
types. An overview of the schema and the most important elements is included below.

1 <?xml version="1.0" encoding="UTF -8"?>
2 <schema targetNamespace="http://www.lcc.uma.es/~ salmeron/optysim"

elementFormDefault="qualified"
xmlns="http://www.w3.org /2001/ XMLSchema"
xmlns:tns="http://www.lcc.uma.es/~ salmeron/optysim"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb" jaxb:version="2.0">

3
4 <!-- Root element -->
5
6 <element name="optysimconfig" type="tns:configuration"></element >
7
8 <complexType name="configuration">
9 <sequence >

10 <element name="properties" type="tns:properties" maxOccurs="1"
minOccurs="0" />

11 <element name="parameters" type="tns:parameters" maxOccurs="1"
minOccurs="0" />

12 <element name="variables" type="tns:variables" maxOccurs="1"
minOccurs="0" />

13 <element name="options" type="tns:options" maxOccurs="1"
minOccurs="0" />

153

A. APPENDIX A: CONFIGURATION FILES

14 </sequence >
15 </complexType >
16
17 <!-- Properties -->
18
19 <complexType name="properties">
20 <sequence >
21 <element name="ltl" type="tns:ltl" maxOccurs="unbounded"

minOccurs="0" />
22 <element name="similar" type="tns:similar"

maxOccurs="unbounded" minOccurs="0" />
23 <element name="never" type="tns:never" maxOccurs="unbounded"

minOccurs="0" />
24 <element name="other" type="tns:otherProperty"

maxOccurs="unbounded" minOccurs="0" />
25 <element name="define" type="string" maxOccurs="unbounded"

minOccurs="0" />
26 </sequence >
27 </complexType >
28
29 <complexType name="property">
30 <simpleContent >
31 <extension base="string">
32 <attribute name="name" type="string" use="required" />
33 <attribute name="type" type="string" />
34 </extension >
35 </simpleContent >
36 </complexType >
37
38 <simpleType name="propertySubtype">
39 <restriction base="string">
40 <enumeration value="accept" />
41 <enumeration value="reject" />
42 </restriction >
43 </simpleType >
44
45 <complexType name="ltl">
46 <complexContent >
47 <extension base="tns:property">
48 <attribute name="formula" type="string" use="required" />
49 <attribute name="subtype" type="tns:propertySubtype"

use="required" />
50 </extension >
51 </complexContent >
52 </complexType >
53
54 <complexType name="similar">
55 <complexContent >
56 <extension base="tns:property">

154

57 <attribute name="formula" type="string" use="required" />
58 <attribute name="subtype" type="tns:propertySubtype"

use="required" />
59 </extension >
60 </complexContent >
61 </complexType >
62
63 <complexType name="never">
64 <complexContent >
65 <extension base="tns:property">
66 <attribute name="subtype" type="tns:propertySubtype"

use="required" />
67 </extension >
68 </complexContent >
69 </complexType >
70
71 <complexType name="otherProperty">
72 <simpleContent >
73 <extension base="tns:property">
74 <attribute name="formula" type="string" />
75 </extension >
76 </simpleContent >
77 </complexType >
78
79 <!-- Parameters -->
80
81 <complexType name="parameters">
82 <sequence >
83 <element name="parameter" type="tns:parameter"

maxOccurs="unbounded" minOccurs="1" />
84 </sequence >
85 </complexType >
86
87 <complexType name="parameter">
88 <complexContent >
89 <extension base="tns:variable">
90 <sequence >
91 <element name="value" type="string" maxOccurs="unbounded"

minOccurs="0" />
92 <element name="range" type="tns:range"

maxOccurs="unbounded" minOccurs="0" />
93 </sequence >
94 </extension >
95 </complexContent >
96 </complexType >
97
98 <complexType name="range">
99 <sequence >
100 <element name="start" type="string" maxOccurs="1"

155

A. APPENDIX A: CONFIGURATION FILES

minOccurs="1" />
101 <element name="end" type="string" maxOccurs="1" minOccurs="1"

/>
102 <element name="stepSize" type="string" maxOccurs="1"

minOccurs="0" />
103 </sequence >
104 <attribute name="numValues" type="int" />
105 </complexType >
106
107 <!-- Variables -->
108
109 <complexType name="variables">
110 <sequence >
111 <element name="variable" type="tns:variable"

maxOccurs="unbounded" minOccurs="1" />
112 </sequence >
113 </complexType >
114
115 <complexType name="variable">
116 <attribute name="name" type="string" />
117 <attribute name="type" type="tns:varType" />
118 <attribute name="result" type="boolean" default="false" />
119 </complexType >
120
121 <simpleType name="varType">
122 <restriction base="string">
123 <enumeration value="char" />
124 <enumeration value="short" />
125 <enumeration value="int" />
126 <enumeration value="long" />
127 <enumeration value="float" />
128 <enumeration value="double" />
129 <enumeration value="time" />
130 <enumeration value="bw" />
131 <enumeration value="size" />
132 </restriction >
133 </simpleType >
134
135 <!-- Options -->
136
137 <complexType name="options">
138 <sequence >
139 <element name="option" type="tns:option" maxOccurs="unbounded"

minOccurs="0" />
140 </sequence >
141 </complexType >
142
143 <complexType name="option">
144 <simpleContent >

156

145 <extension base="string">
146 <attribute name="name" type="string" use="required" />
147 </extension >
148 </simpleContent >
149 </complexType >
150
151 </schema >

Listing A.1: XML Schema definition of configuration files

The main types of the schema are:

configuration The type of the root element of the document. It contains at most
one of the following nested elements: properties, parameters, variables and
options.

properties A sequence of one or more property elements, each representing a prop-
erty or objective. A property can be one of: ltl, similar, never, otherProperty,
define.

ltl An LTL formula written as a string, using the notation accepted by Spin, and a
accept or reject subtype.

similar A boolean formula using the current and previous values of the parameters,
and a accept or reject subtype. While current parameters are prefixed with a
dollar sign, previous values are not, e.g. $param1 == $param1. $* can be used
as a shorthand to indicate that parameters which have not been mentioned in the
formula should have the same value.

never The path to a file containing a never claim automata, using the notation accepted
by Spin.

otherProperty Another kind of property, where the type attribute further identifies its
kind. Current valid values of type are: invalid_config (a boolean condition to
discard configurations before they are executed), assert (simple asserts checked
after each step, for debugging purposes), accept, reject (like asserts, but produce
the corresponding result).

define A macro definition, e.g. used in a property, to be placed in the generated
Promela file.

parameters A sequence of one or more parameter elements, each representing a
parameters of the system and its possible values. The values of each parameter
are defined by the combination of one or more values (several discrete values) or
range (a range with start, end, and either step size or number of steps).

157

A. APPENDIX A: CONFIGURATION FILES

variables A sequence of one or more variable elements, each representing a variable
of interest in the system that should be present in the projection.

options A sequence of one or more option elements, which are key-value pairs
containing miscelaneous options, some of which may be particular to some systems
or template instantiations.

Supported options

The tools currently supports the following options:

filename The path to the main file of the system, used in its execution. This option may
represent an executable filename (for UML/C++ and ns-3) or a scenario description
filename (for ns-2).

printVars A boolean value. For ns-2 simulations, if true, print system variables after
each step.

tracePackets A boolean value. For ns-2 simulations, if true, also generate packet
trace files for each simulation.

A.2 Legacy configuration
Although the previous XML Schema is the new and preferred way of configuring analyses,
many examples still use older methods which are still supported. This section describes
two such methods briefly: configuration files for ns-2 scenarios and for TJT (i.e. Java).

A.2.1 ns-2 legacy configuration
Originally, configuration options for ns-2 scenarios were embedded as comments in
the scenario files. All of the following configuration declarations are comments, thus
prefixed with a hash symbol (#).

The configuration is split into several sections: config, measures, properties, defines,
options and model. Section names must be enclosed in brackets, e.g. [config]. The
purpose of each section as follows:

config System parameters for generating configurations. Each parameter must declare
its type, and include a type a series of values or a range, but not both.

measures The variables of interest of the ns-2 simulation that must be present in the
projection.

158

properties Objectives for the analysis. The accepted objectives are the usual, although
there are additional legacy aliases, e.g. optimum for accept, and bound for reject.

defines Definition of macros and constants, to be used in objectives.

options Additional options given to the analyzer. The original implementation did
not define any for ns-2, instead using command-line options given to the template
instantiator.

model The ns-2 scenario itself. No special declarations are expected in this section.

A.2.2 TJT legacy configuration
The configuration files for the Java integration are also defined by a XML Schema. This
schema is similar, although incompatible, with the one described in Section A.1. The
main top-level elements of this schema are:

class The name of the class which contains the main() method which starts the program.

property An LTL formula to be used as objective.

literal A list of macro and constant definitions to be used in objectives.

repeat The number of times each parameter configuration shoul be executed and ana-
lyzed.

update With this option the runtime monitor can notify the analyzer on method entry
and exit, as well as when a variable of interest is modified.

objective Whether the LTL formula should be interpreted as a all, any or none objective.

projection The trace projection to use: counter or hash.

variableList A list of instance fields which should be monitored and included in the
projected execution trace.

locationList A list of breakpoints that should trigger a new state in the execution trace.

argumentList A list of program parameters for generating configurations. Each param-
eter includes a range of valid values.

android Indicates that the program to be analyzed is an Android app, which requires
special handling.

159

A. APPENDIX A: CONFIGURATION FILES

160

Appendix B: Protocol definitions

This chapter contains a more complete definition of the communication protocol de-
scribed in Section 3.2.

B.1 Promela model
The activity diagrams shown in Figures 3.3 and 3.4 of Section 3.2 contained an overview
of the communication protocol. However, these diagrams excluded some details for
illustration purposes, such as error handling. In this section we present a Promela model
of the protocol.

Protocol messages have been simplified to include only a type and a parameter,
defined using the mtype declaration. Only the key parameters have been defined. For
instance, the type of a Report message is defined, but not the particular contents in the
case of a Report(Measure).

This Promela model defines four processes: analyzer (analyzerProc), system
(systemProc), and two processes for simulating errors in protocol implementation
(upstreamChannel and downstreamChannel). With the exception of the system pro-
cess, all processes are started at initialization. analyzerProc contains a outer do loop,
which models each time the analyzer executes the system using a new parameter com-
bination. The system process is started by the analyzer process at the start of each
iteration. This loop can terminate at any point, i.e. because the parameter space has
been exhausted. upstreamChannel and downstreamChannel forward messages to the
analyzer and system, respectively. In addition, they can change the type of the message
and/or its parameter, to simulate bad analyzer or system implementations.

1 // Messages
2 mtype = { FeaturesDeclaration , FeaturesNegotiation ,
3 VariablesDeclaration , VariableSelection , ParameterSetup ,
4 Report , Command ,
5 WrongMessage }
6
7 // Message parameters
8 mtype = { NoneAny ,
9 OneTimeNegotiation , OneTimeSetup , SkipVariablesDeclaration ,

161

B. APPENDIX B: PROTOCOL DEFINITIONS

10 OTN_OTS , OTN_SVD , OTN_OTS_SVD , OTS_SVD ,
11 Ok, Cancel ,
12 Start , Stop , Reset , CommandString ,
13 Ready , Started , Measure , Error , Stopped , Finished ,
14 WrongParameter }
15
16 // Global channels: { Message , Message parameter }
17 chan toAnalyzer = [1] of { mtype , mtype }
18 chan toSystem = [1] of { mtype , mtype }
19 chan analyzer = [2] of { mtype , mtype }
20 chan system = [2] of { mtype , mtype }
21 chan analyzerCtrl = [1] of { mtype , mtype }
22 chan systemCtrl = [1] of { mtype , mtype }
23
24 // Negotiation options
25 bool oneTimeNegotiation = false;
26 bool oneTimeSetup = false;
27 bool skipVariablesDeclaration = false;
28 bool negotiationDone = false;
29 bool setupDone = false;
30
31 // Forwards channel "toSystem" to channel "system"
32 active proctype upstreamChannel () {
33 mtype m, p;
34
35 end:
36 do
37 :: atomic { toSystem ?[m, p] && nfull(system) ->
38 toSystem?m, p;
39 if
40 :: system!m, p
41 :: system!m, WrongParameter
42 :: system!WrongMessage , WrongParameter
43 fi
44 }
45 od
46 }
47
48 // Forwards channel "toAnalyzer" to channel "analyzer"
49 active proctype downstreamChannel () {
50 mtype m, p;
51
52 end:
53 do
54 :: atomic { toAnalyzer ?[m, p] && nfull(analyzer) ->
55 toAnalyzer?m, p;
56 if
57 :: analyzer!m, p
58 :: analyzer!m, WrongParameter

162

59 :: analyzer!WrongMessage , WrongParameter
60 fi
61 }
62 od
63 }
64
65 // Remove all pending messages from all channels
66 inline emptyChannels () {
67 atomic {
68 do
69 :: nempty(toSystem) -> toSystem?_, _
70 :: nempty(system) -> system?_, _
71 :: nempty(systemCtrl) -> systemCtrl?_, _
72 :: nempty(toAnalyzer) -> toAnalyzer?_, _
73 :: nempty(analyzer) -> analyzer?_, _
74 :: nempty(analyzerCtrl) -> analyzerCtrl?_, _
75 :: timeout -> break
76 od
77 }
78 }
79
80 // Analyzer process
81 active proctype analyzerProc () {
82 mtype m, p;
83 bool systemFinished = false;
84
85 do
86 :: 1 -> break
87 :: 1 ->
88
89 progress:
90 run systemProc ();
91
92 // Negotiation phase /////////////////////////
93
94 if
95 :: oneTimeNegotiation && negotiationDone -> skip
96 :: else ->
97
98 if
99 :: analyzer?m, p ->

100 if
101 :: m == FeaturesDeclaration ->
102 if
103 :: p == OneTimeNegotiation ->
104 oneTimeNegotiation = true
105 :: p == OneTimeSetup ->
106 oneTimeSetup = true
107 :: p == SkipVariablesDeclaration ->

163

B. APPENDIX B: PROTOCOL DEFINITIONS

108 skipVariablesDeclaration = true
109 :: p == OTN_OTS ->
110 oneTimeNegotiation = true;
111 oneTimeSetup = true
112 :: p == OTN_SVD ->
113 oneTimeNegotiation = true;
114 skipVariablesDeclaration = true
115 :: p == OTN_OTS_SVD ->
116 oneTimeNegotiation = true;
117 oneTimeSetup = true;
118 skipVariablesDeclaration = true
119 :: p == OTS_SVD ->
120 oneTimeSetup = true;
121 skipVariablesDeclaration = true
122 :: else -> skip
123 fi
124 :: else ->
125 toSystem!FeaturesNegotiation , Cancel;
126 goto endAnalyzer
127 fi
128 :: timeout -> goto endAnalyzer
129 fi;
130
131 if
132 :: toSystem!FeaturesNegotiation , Ok
133 :: toSystem!FeaturesNegotiation , Cancel -> goto endAnalyzer
134 fi
135
136 fi;
137
138 // Setup phase ///////////////////////////////
139
140 if
141 :: oneTimeSetup && setupDone -> skip
142 :: else ->
143
144 if
145 :: skipVariablesDeclaration -> break
146 :: else ->
147
148 if
149 :: analyzer?m, p ->
150 if
151 :: m == VariablesDeclaration
152 :: else -> goto endAnalyzer
153 fi
154 :: timeout -> goto endAnalyzer
155 fi
156

164

157 fi;
158
159 toSystem!VariableSelection , NoneAny;
160
161 toSystem!ParameterSetup , NoneAny;
162
163 fi;
164
165 if
166 :: analyzer?m, p->
167 if
168 :: m == Report && p == Ready
169 :: else -> goto endAnalyzer
170 fi
171 :: timeout -> goto endAnalyzer
172 fi;
173
174 // Execution phase ///////////////////////////
175
176 toSystem!Command , Start;
177
178 if
179 :: analyzer?m, p ->
180 if
181 :: m == Report && p == Started
182 :: else -> goto endAnalyzer
183 fi
184 :: timeout -> goto endAnalyzer
185 fi;
186
187 systemFinished = false;
188
189 do
190 // Control message from the system
191 :: analyzerCtrl ?[m, p] ->
192 analyzerCtrl?m, p;
193 if
194 :: m == Report && (p == Finished || p == Error) ->
195 systemFinished = true
196 :: else -> goto endAnalyzer
197 fi
198 :: else ->
199 if
200 // Message from system
201 :: analyzer?m, p ->
202 if
203 :: m == Report && p == Measure
204 :: else -> goto endAnalyzer
205 fi

165

B. APPENDIX B: PROTOCOL DEFINITIONS

206 // Once system has finished , trace can be consumed at any point
207 :: systemFinished -> break
208 // Result reached
209 :: systemCtrl!Command , Stop ->
210 if
211 :: analyzer?m, p ->
212 if
213 :: m == Report && p == Stopped -> break
214 :: else -> goto endAnalyzer
215 fi
216 :: timeout -> goto endAnalyzer
217 fi
218 :: timeout -> goto endAnalyzer
219 fi
220 od;
221
222 nextAnalyzer:
223 emptyChannels ();
224
225 od;
226
227 endAnalyzer:
228 skip
229 }
230
231 // System process
232 proctype systemProc () {
233 mtype m, p;
234
235 // Negotiation phase /////////////////////////
236
237 if
238 :: oneTimeNegotiation -> skip
239 :: else ->
240
241 if
242 // Don 't declare new features after first negotiation
243 :: negotiationDone -> toAnalyzer!FeaturesDeclaration , NoneAny
244 :: else ->
245 if
246 :: toAnalyzer!FeaturesDeclaration , NoneAny
247 :: toAnalyzer!FeaturesDeclaration , OneTimeNegotiation
248 :: toAnalyzer!FeaturesDeclaration , OneTimeSetup
249 :: toAnalyzer!FeaturesDeclaration , SkipVariablesDeclaration
250 :: toAnalyzer!FeaturesDeclaration , OTN_OTS
251 :: toAnalyzer!FeaturesDeclaration , OTN_SVD
252 :: toAnalyzer!FeaturesDeclaration , OTN_OTS_SVD
253 :: toAnalyzer!FeaturesDeclaration , OTS_SVD
254 fi

166

255 fi;
256
257 if
258 :: system?m, p ->
259 if
260 :: m == FeaturesNegotiation && p == Ok
261 :: else -> goto endSystem
262 fi
263 :: timeout -> goto endSystem
264 fi;
265
266 negotiationDone = true
267
268 fi;
269
270 // Setup phase ///////////////////////////////
271
272 if
273 :: oneTimeSetup && setupDone -> skip
274 :: else ->
275
276 if
277 :: skipVariablesDeclaration -> skip
278 :: else -> toAnalyzer!VariablesDeclaration , NoneAny
279 fi;
280
281 if
282 :: system?m, p ->
283 if
284 :: m == VariableSelection
285 :: else -> toAnalyzer!Report , Error; goto endSystem
286 fi
287 :: timeout -> goto endSystem
288 fi;
289
290 if
291 :: system?m, p ->
292 if
293 :: m == ParameterSetup
294 :: else -> toAnalyzer!Report , Error; goto endSystem
295 fi
296 :: timeout -> goto endSystem
297 fi;
298
299 setupDone = true
300
301 fi;
302
303 toAnalyzer!Report , Ready;

167

B. APPENDIX B: PROTOCOL DEFINITIONS

304
305 // Execution phase ///////////////////////////////
306
307 if
308 :: system?m, p ->
309 if
310 :: m == Command && p == Start
311 :: else -> goto endSystem
312 fi
313 :: timeout -> goto endSystem
314 fi;
315
316 toAnalyzer!Report , Started;
317
318 do
319 // Message from analyzer , check before
320 :: systemCtrl ?[m, p] ->
321 systemCtrl?m, p;
322 if
323 :: m == Command && p == Stop ->
324 if
325 :: toAnalyzer!Report , Stopped
326 :: timeout
327 fi;
328 break
329 :: else -> skip
330 fi
331 :: else ->
332 if
333 // Full queue = message cannot be delivered => quit
334 :: full(analyzer) -> analyzerCtrl!Report , Error; break
335 :: nfull(analyzer) ->
336 if
337 // New Measure report
338 :: toAnalyzer!Report , Measure
339 // System finished
340 :: analyzerCtrl!Report , Finished -> break
341 fi
342 fi
343 od;
344
345 endSystem:
346 skip
347 }

Listing B.1: Promela model of communication protocol

168

B.2 Protocol buffer message definitions

The messages of the communication protocol between Spin and the system under analysis
has been defined using Google Protocol Buffers [14]. Each message is composed of
a series of fields, which can be either required, optional or repeated (i.e. can appear
any number of times). Fields can be of any of the basic types, such as integers and
floating point numbers of different sizes, or other messages. Each field is associated with
a numeric tag, used when serializing and deserializing messages to identify the fields.
As long as new required fields are not added, messsage definitions can be extended and
be decoded by peers that are not aware of these extensions.

Since that serialized protocol buffer messages are not self-delimited, and additional,
fixed-size message type Header was defined to include the length of the following
message, as well as its type. The latter was not strictly necessary due to the way the
protocol is defined, but was included nonetheless for debugging and future-proofing
purposes. This allows several messages to be sent over a stream, e.g. a TCP socket,
which can be separated and decoded easily by the receptor.

Listing B.2 contains the full definition of the protocol messages. The purpose of most
messages has already been explained in Section 3.2.

1 package optysim;
2
3 option java_package = "es.uma.lcc.salmeron.optysim ";
4 option java_outer_classname = "OptySimProto ";
5
6 // Accepted types of variables.
7 enum VariableType {
8 INT = 0;
9 LONG = 1;

10 FLOAT = 2;
11 DOUBLE = 3;
12 STRING = 4;
13 }
14
15 // Type of messages declared here , excluding Header. Values should

be updated
16 // when a new message is included , but not when one is deleted.
17 enum MessageType {
18 UNKNOWN = 0;
19 VARIABLE_VALUE = 1;
20 VARIABLE_SETUP = 2;
21 PARAMETER_SETUP = 3;
22 COMMAND = 4;
23 REPORT = 5;
24 VARIABLE_SELECTION = 6;
25 }
26

169

B. APPENDIX B: PROTOCOL DEFINITIONS

27 // Header preceding another message , which includes the type and
length of said

28 // following message. This message is always 4 byte long , to ensure
easy

29 // reception and decoding of messages in a stream.
30 message Header {
31 // We use fixed32 instead of MessageType to ensure fixed encoding

size
32 required fixed32 type = 1;
33 required fixed32 length = 2;
34 }
35
36 // A variable identifier and value.
37 message VariableValue {
38 required int32 id = 1;
39 optional VariableType type = 2;
40 optional int32 intValue = 3;
41 optional int64 longValue = 4;
42 optional float floatValue = 5;
43 optional double doubleValue = 6;
44 optional string stringValue = 7;
45 }
46
47 // Initial configuration of variables , i.e. measures vs. parameters ,

types.
48 message VariableSetup {
49 message VariableDeclaration {
50 required int32 id = 1;
51 optional string name = 2;
52 optional VariableType type = 3 [default = INT];
53 optional bool parameter = 4 [default = false];
54 }
55
56 repeated VariableDeclaration variable = 1;
57 }
58
59 // Initial values for parameters.
60 message ParameterSetup {
61 repeated VariableValue parameter = 1;
62 }
63
64 // Command sent from the analysis module to the SUT.
65 message Command {
66 enum CommandType {
67 START = 0; // Start the SUT
68 STOP = 1; // Stop the SUT
69 RESET = 2; // Reset the SUT , including parameters and other

settings
70 REPORT = 3; // Report the most recent values of the measures

170

71 OTHER = 4; // Another command , check string parameter
72 }
73
74 optional CommandType type = 1 [default = OTHER];
75 optional string command = 2;
76 }
77
78 // Report from the SUT to the analysis module.
79 message Report {
80 enum ReportType {
81 READY = 0; // The SUT is ready to be run
82 STARTED = 1; // The SUT has started
83 FINISHED = 2; // The SUT has finished normally
84 ERROR = 3; // The SUT has encountered an error
85 MEASURE = 4; // The SUT reports new values for some of the

measures
86 STOPPED = 5; // The SUT has stopped after receiving a STOP

command
87 RESET = 6; // The SUT has reset after receiving a RESET command
88 }
89
90 required ReportType type = 1;
91 optional string msg = 2;
92 repeated VariableValue measure = 3;
93 }
94
95 // A subset of selected variables , possibly with a remapping of

their ids.
96 message VariableSelection {
97 message SelectedVariable {
98 required int32 id = 1;
99 optional int32 newId = 2;
100 }
101
102 repeated SelectedVariable variable = 1;
103 }

Listing B.2: Protocol buffers definitions for communication protocol

171

B. APPENDIX B: PROTOCOL DEFINITIONS

172

Appendix C: Improved E-model
algorithm

Listings C.1 and C.2 show the improved state transition counting algorithm mentioned in
section 5.4.2. Listing C.1 shows the part of the algorithm that reacts to a packet reception,
while C.2 shows the reaction to a packet loss. In both cases, the time parameter is the
time in which the current packet was either received or lost.

173

C. APPENDIX C: IMPROVED E-MODEL ALGORITHM

1 recv (time) {
2 pkt++;
3 if (start == -1)
4 start = time;
5 endUncert = time;
6
7 if (state == GAP) {
8 lost = 0;
9 c11++;
10 stateRecv ++;
11 endCert = time;
12 }
13 else if (state == FIRST_LOSS) {
14 state = GAP_RECOVERY;
15 }
16 else if (state == GAP_RECOVERY) {
17 if (pkt == gmin) {
18 state = GAP;
19 lost = 0;
20 c11 += pkt - 1;
21 c41++;
22 c14++;
23 stateRecv += pkt;
24 stateLost ++;
25 endCert = time;
26 }
27 }
28 else if (state == BURST) {
29 state = BURST_RECOVERY;
30 startUncert = time;
31 }
32 else if (state == BURST_RECOVERY) {
33 if (pkt == gmin) {
34 state = GAP;
35 lost = 0;
36 c11 += pkt - 1;
37 c31++;
38 start = startUncert;
39 endCert = time;
40 }
41 }
42 }

Listing C.1: Improved state transition counting algorithm; packet reception event

174

1 lost (time) {
2 lost ++;
3 if (start == -1)
4 start = time;
5 endUncert = time;
6
7 if (state == GAP) {
8 state = FIRST_LOSS;
9 startUncert = time;

10 }
11 else if (state == FIRST_LOSS) {
12 state = BURST;
13 c13++;
14 c33++;
15 stateRecv = 0;
16 stateLost = 2;
17 start = startUncert;
18 endCert = time;
19 }
20 else if (state == GAP_RECOVERY) {
21 state = BURST;
22 c13++;
23 c32++;
24 c23++;
25 c22 += pkt - 1;
26 stateRecv = pkt;
27 stateLost = 2;
28 start = startUncert;
29 endCert = time;
30 }
31 else if (state == BURST) {
32 c33++;
33 stateLost ++;
34 endCert = time;
35 }
36 else if (state == BURST_RECOVERY) {
37 state = BURST;
38 c32++;
39 c23++;
40 c22 += pkt - 1;
41 stateRecv += pkt;
42 stateLost ++;
43 endCert = time;
44 }
45
46 pkt = 0;
47 }

Listing C.2: Improved state transition counting algorithm; packet loss event

175

C. APPENDIX C: IMPROVED E-MODEL ALGORITHM

176

Appendix D: Resumen en español

Los sistemas software y hardware se encuentran cada vez más presentes en nuestras
vidas, en multitud de campos de aplicación y de cualquier tamaño. El análisis de estos
sistemas es una tarea dura pero necesaria para garantizar que cumplan con sus requisitos.
Estos requisitos pueden ser de varios tipos, como evitar comportamientos erróneos u
ofrecer un rendimiento satisfactorio.

Existen muchas técnicas y herramientas diseñadas para atacar este problema. Por lo
general, se aplican distintas técnicas dependiendo del tipo de sistema, fase de desarrollo
o tipo de análisis. Por ejemplo, la estimación del rendimiento de un sistema de red se
podría hacer analíticamente durante el planteamiento, mediante simuladores de redes en
el desarrollo, y finalmente con herramientas de medición durante el despliegue.

El model checking [45] es una de estas técnicas de análisis, que ha sido aplicada con
éxito tanto en sistemas software como hardware. Las herramientas que usan esta técnica,
como Spin [80], son conocidas como model checkers. Un model checker analiza el
espacio de estados de un sistema, es decir, todos sus posibles caminos de ejecución, para
comprobar si el sistema cumple una propiedad dada. En caso negativo, el model checker
devuelve un camino de ejecución que conduce a un error a modo de contraejemplo.

El model checking se ha aplicado tradicionalmente a modelos de sistemas. Por
ejemplo, Spin analiza modelos escritos en el lenguaje de especificación Promela. No
obstante, el model checking también se ha aplicado a sistemas reales, como pueden ser
programas Java o C [74][31]. Sin embargo, los sistemas reales suelen revelar uno de los
problemas más conocidos del model checking: la explosión del espacio de estados. Según
aumenta la complejidad del sistema a analizar, su espacio de estados crece rápidamente,
hasta llegar a un punto en el que no es factible analizarlo. Existen técnicas dedicadas a
mitigar este problema, como las técnicas de abstracción, que buscan reducir el tamaño del
espacio de estados pero conservando la capacidad de analizar las propiedades deseadas.

Otra de las técnicas más extendidas para el análisis de software durante su desarrollo
es el testing [28]. Algunas técnicas de testing tratan el sistema como una “caja negra”,
observando sólo la respuesta del sistema a un estímulo de entrada, mientras que otras
pueden acceder al comportamiento interno del mismo.

Todas estas técnicas tienen sus ventajas e inconvenientes. Además, muchas de ellas
están orientadas a un tipo de sistema o análisis en concreto. Si un usuario quisiera realizar

177

D. APPENDIX D: RESUMEN EN ESPAÑOL

un análisis completo de un sistema necesitaría aprender a manejar varias de ellas, cada
una probablemente con formas diferentes de expresar los requisitos del sistema, o incluso
con diferentes modelos del sistema.

D.1 El marco de trabajo de análisis OptySim
En muchos casos, analizar el espacio de estados de un sistema al completo puede no
resultar práctico por su tamaño, y en otros directamente irrealizable por no encontrarse
disponible. En su lugar, OptySim trata con un conjunto de trazas de ejecución, que
representan un subconjunto del espacio de estados completo del sistema. Para obtener
dichas trazas el sistema se ejecuta repetidas veces, posiblemente variando parámetros
del sistema de acuerdo a las instrucciones del usuario, generándose una traza por cada
ejecución. El contenido de las trazas depende de cada sistema, y además puede variar
dependiendo de las necesidades del análisis. Para ello se pueden aplicar una de las
proyecciones que se han definido, y que transforman trazas completas en trazas abstractas
con una menor, pero suficiente para los propósitos del análisis, cantidad de información.

El análisis está guiado por uno o más objetivos establecidos por el usuario, y que le
dan al análisis el significado pretendido por el usuario. Es posible escribir objetivos de
diferentes formas, como simples asertos o fórmulas de lógica temporal lineal (LTL) [102].
Los objetivos pueden indicar tanto propiedades deseables del sistema, por ejemplo una
meta de rendimiento, como propiedades que no deben ocurrir, por ejemplo una condición
de error.

En muchos tipos de análisis se busca un sólo resultado por traza, en lugar de encontrar
todos aquellos puntos en los que algún objetivo se da (tal y como sería usual en el model
checking). En dicho caso, el análisis de la traza se detiene en cuanto se ha obtenido una
respuesta, y se continúa el análisis por la siguiente traza disponible. Dado que las trazas
se analizan a la vez que son generadas por el sistema, en lugar de una vez se ha obtenido
la traza al completo, esto puede conducir a ahorros significativos de tiempo y recursos
tanto en el análisis como en las ejecuciones en sí.

D.1.1 Visión general del análisis
La Figura D.1 muestra una visión general de los elementos y la operación de OptySim,
divididos en cuatro fases. En primer lugar, en la fase de preparación, el usuario debe
proporcionar tanto el sistema que se desea analizar, como una descripción del análisis
que se quiere realizar. Esta descripción incluye la declaración del espacio de parámetros
que se quiere explorar, las variables de interés del sistema, y los objetivos que se quieren
comprobar sobre las trazas de ejecución generadas.

En la segunda fase, generación de código, la descripción del análisis se procesa junto
con una plantilla para obtener una especificación Promela que contiene el algoritmo

178

Figura D.1: El marco de trabajo de análisis OptySim

de análisis y la capacidad de comunicarse remotamente con el sistema. Mediante esta
especificación y el model checker Spin se genera un programa ejecutable que contiene el
analizador.

El análisis en sí se realiza en el siguiente paso. Por un lado, se explora el espacio
de parámetros definido por el usuario. Por otro lado, cada combinación de parámetros
completa da lugar a una ejecución del sistema aplicando dichos parámetros, generando
una traza de ejecución para analizar. El lanzamiento del sistema, la configuración de los
parámetros y la transmisión de la traza durante la ejecución se realizan a través de un
protocolo de comunicación definido para la ocasión.

Las trazas de ejecución son transmitidas al analizador mientras el sistema se ejecuta.
El analizador implementado con Spin reconstruye estas trazas y las incorpora como si
fueran parte de la especificación Promela que está explorando. Para ello, el estado global
del analizador incluye las variables que componen cada estado de la traza de ejecución,
entre otras variables. La reconstrucción de la traza de ejecución se realiza en un bucle
interno del analizador. En este bucle se reciben nuevos estados de la traza de ejecución
(mediante el uso de código C empotrado en Promela), que son convertidos en nuevos
estados Spin actualizando las variables globales correspondientes (ver Figura D.2).

El protocolo de comunicación entre el analizador y el sistema está compuesto por
varias fases. En primer lugar el sistema declara sus características y puede requerir ciertas
capacidades al analizador. Si esta negociación es exitosa, a continuación se declaran
las variables disponibles, de las cuales el analizador selecciona un subconjunto, y se
proporcionan los parámetros de ejecución. Por último, el sistema se ejecuta y transmite

179

D. APPENDIX D: RESUMEN EN ESPAÑOL

Figura D.2: Reconstrucción de trazas de ejecución en Spin

de forma continua los estados relevantes de la traza de ejecución al analizador. Este
protocolo se ha definido mediante Protocol Buffers [14], y ha sido analizado con Spin.

Aunque las trazas de ejecución son lineales por naturaleza, la exploración que realice
Spin de ellas no tiene por que serlo si en el análisis se incluye un objetivo escrito como
fórmula LTL o similar. Spin traduce las fórmulas LTL a procesos Promela que se ejecutan
de forma sincronizada con el resto del sistema. Estos procesos, conocidos como never
claim, pueden contener indeterminismo, lo que provoca que la exploración de la traza
sea también indeterminista. Para tratar con este indeterminismo, los estados recibidos del
sistema se guardan en una pila de la que son extraídos bajo demanda. En el caso de que
se realice una vuelta atrás durante la exploración, se comenzará extrayendo los estados
almacenados de esta manera en lugar de recibir estados nuevos.

Por último, las trazas son devueltas al usuario, indicando qué objetivo ha cumplido
cada una.

D.1.2 Objetivos
Los objetivos dotan de sentido al análisis, y permiten reducir los recursos y el tiempo
requeridos. Los objetivos se pueden escribir usando distintos formalismos, siempre que
se puedan traducir a autómatas never claim aceptados por Spin, como es el caso de las
fórmulas LTL. Además, OptySim soporta la definición de asertos sobre estados, que son
comprobados sin usar el mecanismo correspondiente de Spin. Como limitación, sólo es
posible establecer un objetivo en forma de never claim a la vez.

Los objetivos se etiquetan además para distinguir si su significado es positivo o
negativo. Para ello contendrán accept o reject como parte del nombre, respectivamente.
Es conveniente mencionar que la interpretación que Spin hace de los objetivos no depende
de esta etiqueta. Cuando un objetivo se cumple en una traza, en analizador anota dicha
traza con la etiqueta correspondiente. Si se han definido varios objetivos, el primero en
cumplirse determinará la etiqueta que se le dará a la traza.

Es usual definir varios objetivos para limitar el análisis y podar las trazas improduc-
tivas lo antes posible. Las siguientes fórmulas sirven a modo de ejemplo, definiendo
una fórmula LTL como objetivo de tipo accept, y dos asertos etiquetados con reject que
definen condiciones indeseadas:

180

ltlAccept : ♦(var = 1 ∧ ♦(var = 2))
reject : (var < 0 ∨ var > 2)
reject : time > 1000 (D.1)

Por último, es posible añadir restricciones adicionales sobre las configuraciones
de parámetros que pueden ser generadas, y relaciones entre las configuraciones de
parámetros que permitan inferir resultados sin tener que llegar a ejecutar el sistema.

D.2 Proyección de trazas de ejecución
Para poder reducir el tamaño de las trazas de ejecución a analizar, y de los estados
que componen las trazas, se han definido varias proyecciones. Decimos que una traza
completa se proyecta, obteniendo una traza abstracta con menor cantidad de información.
Dicha traza debería ser, no obstante, suficiente para los propósitos de un análisis concreto.

En primer lugar, definimos una proyección básica ρV en la que el contenido de
cada estado se ve reducido, de manera que sólo se conservan un subconjunto V de
variables del sistema. Esta proyección se puede considerar similar a la técnica del
cono de influencia [45] y la ocultación selectiva de datos de Spin [80]. Si las variables
necesarias para evaluar una fórmula están contenidas en V , entonces esta proyección no
altera la evaluación de la fórmula.

Sin embargo, el algoritmo de búsqueda en profundidad doble usado por Spin puede
llevar a conclusiones erróneas si la traza abstracta contiene estados abstractos repetidos.
Estos pueden llevar a Spin a deducir la existencia de un ciclo que no está presente en la
traza original. Para solventar este problema definimos dos proyecciones adicionales.

La proyección contador, ρc
V , añade una variable fresca adicional denominada conta-

dor a los estados. Dicha variable se incrementa de forma monotónica para cada nuevo
estado. De esta forma se garantiza que Spin no encontrará ciclos espurios, a costa de
que realmente no encontrará ningún ciclo en la traza abstracta. Esta proyección es fácil
de aplicar y se puede emplear para aquellas fórmulas que no requieran de detección de
ciclos.

Dada una función hash h, la proyección hash, ρh
V , añade una variable fresca adi-

cional a cada estado. Dicha variable contendrá el resultado de aplicar la función h al
estado completo. Esta variable garantiza que dos estados iguales tendrán la misma re-
presentación abstracta, mientras que dos estados distintos no la tendrán, con el grado de
precisión permitido por la función h. Esta proyección es más costosa de implementar
computacionalmente, pero permite emplear fórmulas que requieran de detección de
ciclos.

Por último, definimos unas versiones refinadas de las dos proyecciones anteriores, en
las que se intenta reducir el número de estados en la traza abstracta. Las proyecciones

181

D. APPENDIX D: RESUMEN EN ESPAÑOL

contador y hash plegadas, φ c
V y φ h

V respectivamente, sólo proyectan en la traza abstracta
aquellos estados en los que se hayan modificado las variables presentes en V . Llamamos
plegados a los estados que no han sido proyectados. Como contrapartida, un bucle infinito
que ocurra dentro de los estados plegados no llegaría a ser detectado nunca y el análisis
no llegaría a terminar. Para ello, definimos la proyección hash plegada limitada, φ h

V,l ,
donde el número de estados plegados consecutivos está limitado a l. Al alcanzarse este
límite, todos los estados siguientes serán proyectados, hasta llegar a un estado que hubiera
sido proyectado de forma habitual, reestableciéndose este límite.

D.3 Integración y casos de estudio: ns-2

Para el primer grupo de casos de estudio, se ha integrado el simulador de redes ns-2 [11]
con OptySim. Los casos de estudio tratan con el análisis de fiabilidad, rendimiento y
optimización de un escenario de transmisión de vídeo sobre TCP, validación de modelos
de calidad de experiencia (QoE) para llamadas de voz sobre IP (VoIP), y ajuste de
modelos de indicadores clave de rendimiento (KPIs) basados en pruebas de campo para
su uso en simulaciones.

ns-2 es uno de los simuladores de redes más usados en el mundo académico en los
últimos años. Este simulador está implementado con una mezcla de C++ y OTcl. Su
núcleo consiste en un simulador de eventos discretos, donde los eventos son encolados
y atendidos de acuerdo a su tiempo de disparo. Para la extracción de trazas de ns-2,
consideramos que cada evento da lugar a un nuevo estado.

Se ha implementado un componente en C++ y OTcl para integrar ns-2 con OptySim.
Las principales responsabilidades de este componente son implementar el protocolo
de comunicación entre el simulador y el analizador, y extraer las trazas de ejecución
según la proyección elegida por el usuario. Este componente sólo soporta la proyección
contador descrita anteriormente. Dicho componente se ha implementado en dos partes:
una genérica en C++, y otra específica para ns-2. Esta separación permitirá integrar otros
sistemas que soporten C++ con menor esfuerzo.

D.3.1 Caso de estudio: vídeo sobre TCP

Para el primer caso de estudio se ha definido un escenario de transmisión de vídeo sobre
TCP hacia un teléfono móvil. Una incidencia habitual en este tipo de entornos móviles
son las desconexiones debidas al entorno, por ejemplo por mala recepción de la señal
móvil o por cambio entre celdas. El protocolo TCP no fue desarrollado con este tipo de
desconexiones en mente, y su reacción ante ellas no es adecuada. Por ello han surgido
varias alternativas que intentan paliar estas deficiencias. Es el caso de FreezeTCP [69],
una variante de TCP que mejora la reacción ante las desconexiones predecibles.

182

En primer lugar se realizó un análisis de fiabilidad tanto del cliente y servidor de
vídeos implementados para la ocasión, como de la implementación de FreezeTCP usada.
Los objetivos usados llevaron a descubrir un pequeño fallo en la implementación de este
último, así como otro en el módulo de TCP de ns-2.

A continuación se estudió el rendimiento de la reproducción de vídeo en presencia de
desconexiones, la influencia del buffer de reproducción y la efectividad de FreezeTCP en
diversas condiciones. En particular, los objetivos se centraban en evitar que el buffer de
reproducción se vaciase durante la transmisión. Gracias a este análisis se obtuvieron una
serie de configuraciones de parámetros que proporcionaban un rendimiento satisfactorio
de acuerdo a los objetivos. Por último, se construyó una versión del cliente que adaptaba
sus parámetros tras cada desconexión, en el caso de que las condiciones del entorno
hubieran cambiado, empleando las configuraciones obtenidas en el análisis anterior. Esta
versión mejoraba a aquellas que empleaban una configuración estática cuando ocurrían
cambios en las características del entorno móvil tras las reconexiones.

D.3.2 Caso de estudio: validación de E-model
El siguiente caso de estudio trata sobre la validación de modelos. Este caso de estudio se
centró en modelos de QoE diseñados para VoIP y, en particular, en el modelo conocido
como E-model [10][1]. Este modelo busca aproximar la valoración subjetiva de los
usuarios mediante el uso de datos de la transmisión como tiempos de retraso o tasas de
paquetes perdidos. Una extensión propuesta por Clark [39] mejora esta aproximación
cuando en la llamada se producen pérdidas en ráfaga.

Previamente al análisis, se desarrolló una nueva mejora sobre la versión de Clark,
cuya principal ventaja era la obtención de resultados de forma más inmediata que el
modelo original. Para comprobar que ambos modelos seguían produciendo resultados
comparables, se preparó un escenario de validación donde las mismas llamadas VoIP eran
analizadas por ambas versiones del E-model simultáneamente. El objetivo de validación
se definió en base a características estadísticas observables en los resultados producidos
por ambos. Se concluyó que ambos modelos producían resultados similares en presencia
de errores aleatorios, pero se separaban sensiblemente según el patrón de las ráfagas de
error, debido a la mayor sensibilidad de nuestra solución ante éstas.

D.3.3 Caso de estudio: modelado inverso de KPIs
El último caso de estudio con ns-2 trata sobre el modelado inverso de indicadores clave
de rendimiento (KPIs) a partir de pruebas de campo. El uso de simulaciones durante el
desarrollo y despliegue de sistemas en red es una forma conveniente y barata de estudiar
su comportamiento, frente al coste que suponen las pruebas de campo. No obstante, es
difícil capturar las características de los entornos reales en escenarios simulados. Los
KPIs son medidas de diversa índole que influyen en el rendimiento de un sistema. El

183

D. APPENDIX D: RESUMEN EN ESPAÑOL

Figura D.3: Metodologia para el modelado inverso de KPIs

uso en simulaciones de KPIs realistas basados en pruebas de campo permite mejorar su
fidelidad y efectividad.

Para ello se propone una metodología que hace uso de la herramienta de perfilado
para móviles SymPA [53] en combinación con OptySim para configurar modelos de KPIs
realistas, resumida en la Figura D.3. En un primer paso se realizan pruebas de campo,
extrayendo métricas relevantes para el KPI que se quiere modelar. A continuación se
prepara un escenario ns-2 que replica el escenario de las pruebas, donde se incluye un
modelo parametrizado para el KPI. Como objetivo para el análisis se propone la similitud
de ciertas estadísticas extraídas de las pruebas de campo con la salida generada por el
modelo del KPI. Como resultado, se obtendrán aquellas configuraciones de parámetros
del KPI que han cumplido dicho objetivo, y que representan de forma apropiada las
características del KPI observadas en las pruebas de campo.

Como caso de estudio se propone el modelado del jitter en llamadas VoIP. El jitter
se define como la diferencia entre el tiempo esperado de llegada de un paquete y el
tiempo real de llegada. El modelo propuesto de jitter se trata de un modelo de error
ns-2 colocado en el enlace que representa el medio inalámbrico, y que contiene una
distribución de probabilidad que determina el retraso aplicado a los paquetes en dicho
enlace. Como resultado se obtuvieron varias configuraciones de parámetros válidas,
según la distribución de probabilidad empleada.

184

Figura D.4: Captura de pantalla del plug-in para Eclipse

D.4 Integración y casos de estudio: Java
Para el segundo grupo de casos de estudio, se ha integrado OptySim con una máquina
virtual de Java (JVM) para analizar programas escritos en dicho lenguaje de programación.
En esta ocasión, todos los casos de estudio están enfocados a la depuración de programas.

La integración con la JVM para extraer trazas de ejecución se ha realizado a través
de la interfaz de depuración de Java (JDI). Gracias a esta interfaz es posible controlar
las ejecuciones y extraer trazas de forma transparente a los programas Java. Para esta
integración se ha implementado la proyección hash, lo que permite el uso de objetivos
que requieran de detección de ciclos en las trazas.

Además se ha desarrollado un plug-in para el entorno de desarrollo Eclipse, mostrado
en la Figura D.4. Este plug-in permite definir casos de prueba, incluyendo los objetivos a
comprobar y el espacio de parámetros a explorar, y ejecutar el análisis. Una vez concluido,
es posible inspeccionar las trazas devueltas desde Eclipse, para encontrar la causa de los
errores informados.

Como casos de estudio, se seleccionaron una serie de servidores implementados en
Java y de libre disposición: un servidor web, un servidor FTP y otro NFS. Además, se
desarrollaron otros ejemplos específicos para comprobar la utilidad de la integración.

Frente a un model checker específico para Java como JPF [74], nuestra integración
de OptySim ofrece una serie de ventajas e inconvenientes. Por un lado, no se realiza
una exploración exhaustiva de los programas, sino sólo de el subconjunto dado por las
trazas exploradas. Para programas de gran tamaño, no obstante, esta puede ser una forma

185

D. APPENDIX D: RESUMEN EN ESPAÑOL

de asegurar un análisis práctico. Por otro lado, OptySim permite definir propiedades
en las que se haga mención a variables del programa y puntos de ruptura, entre otros
elementos, mientras que la extensión para LTL de JPF [90] sólo permite emplear la
entrada a métodos.

D.5 Conclusiones

Las secciones anteriores han resumido el funcionamiento y los usos de OptySim, nuestro
enfoque para al análisis de trazas de ejecución mediante model checking. Los principales
objetivos cumplidos son el uso de un único marco de trabajo para estudiar distintos
tipos de sistema (como simulaciones ns-2 y programas Java), y también la realización de
distintos tipos de análisis (como rendimiento o fiabilidad).

Las principales contribuciones del trabajo realizado, y las publicaciones donde han
sido presentadas, se pueden resumir en:

• Un marco de trabajo para analizar trazas de ejecución usando model check-
ing [93][23]. Este marco está basado en el model checker Spin y una plantilla
Promela que se especializa antes de cada análisis. Entre sus características se
encuentran la generación de configuraciones de parámetros y el soporte de vuelta
atrás durante la exploración de trazas.

• Un protocolo para interactuar con un sistema externo y extraer trazas de ejecución.
Este protocolo permite la separación del analizador y el sistema analizado, y puede
ser reusado por otros sistemas mediante el desarrollo de una interfaz apropiada.

• Una extensión para controlar la exploración de espacios de estados compuestos por
trazas independientes. El primer resultado disponible para cada traza es devuelto y
el análisis procede con la siguiente, reduciendo el espacio de estados a analizar.

• Dos métodos de abstracción para reducir la información requerida en las trazas
de ejecución [23][22]. Estos métodos, llamados proyección contador y hash,
minimizan la cantidad de información necesaria por estado. La proyección hash
permite también la detección de ciclos. El uso de plegado reduce el número de
estados en cada traza.

• Integración con el simulador de redes ns-2, con aplicaciones en el análisis de
fiabilidad y rendimiento [93][92], validación [105], y modelado de KPIs [55].

• Una extensión del E-model de Clark para la estimación de la calidad de llamadas
VoIP con mayor inmediatez [105].

186

• Integración con Java y Eclipse para la depuración de programas Java [23][22].
Mediante el uso de la interfaz JDI, las trazas de ejecución pueden ser extraídas
sin modificar el programa original. El uso de la proyección hash permite el uso
de fórmulas LTL que requieran detección de ciclos en la definición de casos de
prueba.

Como trabajos futuros se propone la integración de OptySim con más simuladores de
redes, como el simulador de redes ns-3 [77], y herramientas de desarrollo dirigidas por
modelos, como Rational Rhapsody [17]. Dado que ambos sistemas están desarrollados
con C++, en ambos caso se puede aprovechar el trabajo realizado para la integración
con ns-2. También se contempla ampliar el soporte de la proyección hash, implementada
únicamente en la integración con Java.

187

D. APPENDIX D: RESUMEN EN ESPAÑOL

188

References

[1] ITU Recommendation G.108. Application of the E-model: A planning guide.
Technical report, ITU, 1999. 109, 111, 117, 183

[2] ETSI TS 101 329-5. TIPHON Release 3; Technology Compliance Specification;
Part 5: Quality of Service (QoS) measurement methodologies. Technical report,
ETSI, 2000. 111, 117

[3] RTP: A Transport Protocol for Real-Time Applications. RFC 3550 (Standard),
May 2003. 98

[4] JSR 163: Java™ Platform Profiling Architecture. https://www.jcp.org/en/
jsr/detail?id=163, September 2004. 132

[5] Technical Specification Group Radio Access Network; UE Radio Access capabili-
ties (Release 5). RFC 3550 (Standard), May 2006. 98

[6] The MD5 Message-Digest Algorithm. RFC 1321 (Standard), May 2006. 71

[7] XDR: External Data Representation Standard. RFC 4506 (Standard), May 2006.
136

[8] ITU Recommendation X.680. Abstract Syntax Notation One (ASN.1): Specifica-
tion of basic notation. Technical report, ITU-T, November 2008. 57

[9] Freeze-TCP (ns-2 and Linux implementations). July 2009. 99, 102

[10] ITU Recommendation G.107. The E-model: a computational model for use in
transmission planning. Technical report, ITU, 2009. 109, 110, 111, 183

[11] The Network Simulator - ns-2. August 2010. 24, 87, 182

[12] Apache Velocity. http://velocity.apache.org/, December 2013. 51

[13] JAXB Reference Implementation. https://jaxb.java.net, December 2013.
60

189

https://www.jcp.org/en/jsr/detail?id=163
https://www.jcp.org/en/jsr/detail?id=163
http://velocity.apache.org/
https://jaxb.java.net

REFERENCES

[14] Protocol Buffers: Google’s Data Interchange Format. https://code.google.
com/p/protobuf/, November 2013. 40, 57, 169, 180

[15] Eclipse - The Eclipse Foundation open source community website. http://www.
eclipse.org/, January 2014. 133

[16] IBM - Rational SDL Suite. http://www-01.ibm.com/software/awdtools/
sdlsuite/, March 2014. 149

[17] IBM - Software - Rational Rhapsody family. http://www-01.ibm.com/
software/awdtools/rhapsody/, March 2014. 149, 187

[18] Java™ Debug Interface. http://docs.oracle.com/javase/7/docs/jdk/api/
jpda/jdi/index.html, January 2014. 133

[19] Java™ Debug Wire Protocol. http://docs.oracle.com/javase/7/docs/
technotes/guides/jpda/jdwp-spec.html, January 2014. 133

[20] Java™ Platform Debugger Architecture (JPDA). http://docs.oracle.com/
javase/7/docs/technotes/guides/jpda/, January 2014. 132

[21] JUnit testing framework. http://www.junit.org, February 2014. 2, 27

[22] DAMIÁN ADALID, ALBERTO SALMERÓN, MARÍA DEL MAR GALLARDO, AND

PEDRO MERINO. Testing Temporal Logic on Infinite Java Traces. In Proceedings
of the 10th International Workshop on Modelling, Simulation, Verification and
Validation of Enterprise Information Systems (MSVVEIS 2012), 2012. 4, 133, 186,
187

[23] DAMIÁN ADALID, ALBERTO SALMERÓN, MARÍA DEL MAR GALLARDO, AND

PEDRO MERINO. Using SPIN for automated debugging of infinite executions of
Java programs. Journal of Systems and Software, 90:61 – 75, 2014. 4, 133, 186,
187

[24] A. ALVAREZ, A. DIAZ, P. MERINO, AND F.J. RIVAS. Field measurements of
mobile services with Android smartphones. In Consumer Communications and
Networking Conference (CCNC), 2012 IEEE, pages 105–109, 2012. 124

[25] MATTEO MARIA ANDREOZZI, DANIELE MIGLIORINI, GIOVANNI STEA, AND

CARLO VALLATI. Ns2Voip++, an enhanced module for VoIP simulations. In
Proceedings of the 3rd International ICST Conference on Simulation Tools and
Techniques, SIMUTools ’10, 2010. 115

190

https://code.google.com/p/protobuf/
https://code.google.com/p/protobuf/
http://www.eclipse.org/
http://www.eclipse.org/
http://www-01.ibm.com/software/awdtools/sdlsuite/
http://www-01.ibm.com/software/awdtools/sdlsuite/
http://www-01.ibm.com/software/awdtools/rhapsody/
http://www-01.ibm.com/software/awdtools/rhapsody/
http://docs.oracle.com/javase/7/docs/jdk/api/jpda/jdi/index.html
http://docs.oracle.com/javase/7/docs/jdk/api/jpda/jdi/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/jdwp-spec.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/jdwp-spec.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/
http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/
http://www.junit.org

REFERENCES

[26] MATTEO MARIA ANDREOZZI, GIOVANNI STEA, AND CARLO VALLATI. A
framework for large-scale simulations and output result analysis with ns-2. In
Simutools ’09: Proceedings of the 2nd International Conference on Simulation
Tools and Techniques, pages 1–7, ICST, Brussels, Belgium, Belgium, 2009. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering). 26, 27

[27] ANDREAS BAUER, MARTIN LEUCKER, AND CHRISTIAN SCHALLHART. Run-
time Verification for LTL and TLTL. ACM Trans. Softw. Eng. Methodol.,
20[4]:14:1–14:64, September 2011. 29

[28] BORIS BEIZER. Software testing techniques. Dreamtech Press, 2003. 1, 177

[29] DAVE BENSON. protobuf-c: C bindings for Google’s Protocol Buffers. https:
//code.google.com/p/protobuf-c/, December 2013. 58

[30] C. BEUST AND H. SULEIMAN. Next Generation Java Testing: TestNG and
Advanced Concepts. Addison-Wesley Professional, 2007. 2, 28

[31] DIRK BEYER, THOMAS A. HENZINGER, RANJIT JHALA, AND RUPAK MA-
JUMDAR. The Software Model Checker BLAST: Applications to Software Engi-
neering. International Journal on Software Tools for Technology Transfer (STTT),
9[5-6]:505–525, 2007. Invited to special issue of selected papers from FASE
2004/05. 1, 11, 177

[32] KARTHIKEYAN BHARGAVAN, CARL A. GUNTER, MOONJOO KIM, INSUP

LEE, DAVOR OBRADOVIC, OLEG SOKOLSKY, AND MAHESH VISWANATHAN.
Verisim: formal analysis of network simulations. Software Engineering, IEEE
Transactions on, 28[2]:129–145, Feb 2002. 25

[33] ERIC BODDEN. A lightweight LTL runtime verification tool for java. In Compan-
ion to the 19th annual ACM SIGPLAN conference on Object-oriented program-
ming systems, languages, and applications, OOPSLA ’04, pages 306–307, New
York, NY, USA, 2004. ACM. 30

[34] JULIUS R. BÜCHI. On a decision method in restricted second order arithmetic. In
ERNEST NAGEL, PATRICK SUPPES, AND ALFRED TARSKI, editors, Proceedings
of the 1960 International Congress on Logic, Methodology and Philosophy of
Science (LMPS’60), pages 1–11. Stanford University Press, June 1962. 15

[35] L. CARVALHO, E. MOTA, R. AGUIAR, A.F. LIMA, AND J.N. DE SOUZA.
An E-model implementation for speech quality evaluation in VoIP systems. In
Computers and Communications, 2005. ISCC 2005. Proceedings. 10th IEEE
Symposium on, pages 933–938, 2005. 110, 113, 114

191

https://code.google.com/p/protobuf-c/
https://code.google.com/p/protobuf-c/

REFERENCES

[36] XINJIE CHANG. Network simulations with OPNET. In WSC ’99: Proceedings of
the 31st conference on Winter simulation, pages 307–314, New York, NY, USA,
1999. ACM. 24

[37] CLAUDIO CICCONETTI, ENZO MINGOZZI, AND GIOVANNI STEA. An integrated
framework for enabling effective data collection and statistical analysis with ns-
2. In WNS2 ’06: Proceeding from the 2006 workshop on ns-2: the IP network
simulator, page 11, New York, NY, USA, 2006. ACM. 26, 115

[38] ALESSANDRO CIMATTI, EDMUND CLARKE, FAUSTO GIUNCHIGLIA, AND

MARCO ROVERI. NUSMV: a new symbolic model checker. International
Journal on Software Tools for Technology Transfer, 2[4]:410–425, 2000. 11

[39] A. D. CLARK. Modeling the Effects of Burst Packet Loss and Recency on
Subjective Voice Quality. In IPtel 2001 Workshop, 2001. 87, 109, 111, 114, 183

[40] E. CLARKE, K. MCMILLAN, S. CAMPOS, AND V. HARTONAS-GARMHAUSEN.
Symbolic model checking. In RAJEEV ALUR AND THOMASA. HENZINGER,
editors, Computer Aided Verification, 1102 of Lecture Notes in Computer Science,
pages 419–422. Springer Berlin Heidelberg, 1996. 11

[41] E. M. CLARKE, E. A. EMERSON, AND A. P. SISTLA. Automatic Verification
of Finite-state Concurrent Systems Using Temporal Logic Specifications. ACM
Trans. Program. Lang. Syst., 8[2]:244–263, April 1986. 9

[42] EDMUND M. CLARKE, E. ALLEN EMERSON, AND JOSEPH SIFAKIS. Model
Checking: Algorithmic Verification and Debugging. Commun. ACM, 52[11]:74–
84, November 2009. 9

[43] EDMUND M. CLARKE AND E.ALLEN EMERSON. Design and synthesis of
synchronization skeletons using branching time temporal logic. In DEXTER

KOZEN, editor, Logics of Programs, 131 of Lecture Notes in Computer Science,
pages 52–71. Springer Berlin Heidelberg, 1982. 12

[44] EDMUND M. CLARKE, ORNA GRUMBERG, AND KIYOHARU HAMAGUCHI.
Another look at ltl model checking. Formal Methods in System Design, 10[1]:47–
71, 1997. 13

[45] EDMUND M. CLARKE, ORNA GRUMBERG, AND DORON A. PELED. Model
Checking. MIT Press, Cambridge, MA, USA, 1999. 1, 10, 11, 18, 69, 177, 181

[46] E.M. CLARKE, O. GRUMBERG, M. MINEA, AND D. PELED. State space
reduction using partial order techniques. International Journal on Software Tools
for Technology Transfer, 2[3]:279–287, 1999. 67

192

REFERENCES

[47] ADRIAN E. CONWAY AND YALI ZHU. A simulation-based methodology and
tool for automating the modeling and analysis of voice-over-IP perceptual quality.
Performance Evaluation, 54[2]:129–147, 2003. Modelling Techniques and Tools
for Computer Performance Evaluation. 26

[48] J.C. CORBETT, M.B. DWYER, J. HATCLIFF, S. LAUBACH, C.S. PASAREANU,
ROBBY, AND HONGJUN ZHENG. Bandera: extracting finite-state models from
Java source code. In Software Engineering, 2000. Proceedings of the 2000
International Conference on, pages 439–448, 2000. 1, 11, 28

[49] C. COURCOUBETIS, M. VARDI, P. WOLPER, AND M. YANNAKAKIS. Memory
efficient algorithms for the verification of temporal properties. In EDMUND M.
CLARKE AND ROBERTP. KURSHAN, editors, Computer Aided Verification, 531
of Lecture Notes in Computer Science, pages 233–242. Springer Berlin Heidelberg,
1991. 14, 16

[50] H. DAHMOUNI, A. GIRARD, AND B. SANSO. Analytical jitter model for IP
network planning and design. In Communications and Networking, 2009. ComNet
2009. First International Conference on, pages 1–7, November 2009. 122

[51] MARCELO D’AMORIM AND KLAUS HAVELUND. Event-based runtime veri-
fication of java programs. SIGSOFT Softw. Eng. Notes, 30[4]:1–7, May 2005.
30

[52] MARÍA DEL MAR GALLARDO, PEDRO MERINO, AND ERNESTO PIMENTEL.
Comparing under and over-approximations of {LTL} properties for model check-
ing. Electronic Notes in Theoretical Computer Science, 76[0]:131 – 144, 2002.
{WFLP} 2002, 11th International Workshop on Functional and (Constraint) Logic
Programming, Selected Papers. 18

[53] ALMUDENA DÍAZ, PEDRO MERINO, AND F. JAVIER RIVAS. Mobile Application
Profiling for Connected Mobile Devices. Pervasive Computing, IEEE, 9[1]:54–61,
jan.-march 2010. 121, 122, 124, 125, 184

[54] ALMUDENA DÍAZ, PEDRO MERINO, AND F. JAVIER RIVAS. QoS analysis of
video streaming service in live cellular networks. Computer Communications,
33[3]:322–335, 2010. 124

[55] ALMUDENA DÍAZ, PEDRO MERINO, AND ALBERTO SALMERÓN. Obtaining
Models for Realistic Mobile Network Simulations using Real Traces. Communi-
cations Letters, IEEE, 15[7]:782–784, 2011. 4, 186

[56] ALMUDENA DÍAZ ZAYAS AND PEDRO MERINO GÓMEZ. SymPa: A Measure-
ment Tool for Evaluating the Performance of IP Services in Mobile Networks. In

193

REFERENCES

Proceedings of the 5th ACM Symposium on QoS and Security for Wireless and
Mobile Networks, Q2SWinet ’09, pages 103–106, New York, NY, USA, 2009.
ACM. 124

[57] DORON DRUSINSKY. The Temporal Rover and the ATG Rover. In Proceedings
of the 7th International SPIN Workshop on SPIN Model Checking and Software
Verification, pages 323–330, London, UK, UK, 2000. Springer-Verlag. 30

[58] AHMAD FARAJ, XIN YUAN, AND DAVID LOWENTHAL. STAR-MPI: self tuned
adaptive routines for MPI collective operations. In Proceedings of the 20th annual
international conference on Supercomputing, ICS ’06, pages 199–208, New York,
NY, USA, 2006. ACM. 27

[59] JEAN-CLAUDE FERNANDEZ, CLAUDE JARD, THIERRY JÉRON, AND CÉSAR

VIHO. Using on-the-fly verification techniques for the generation of test suites.
In RAJEEV ALUR AND THOMASA. HENZINGER, editors, Computer Aided Veri-
fication, 1102 of Lecture Notes in Computer Science, pages 348–359. Springer
Berlin Heidelberg, 1996. 16

[60] CHEN FU, ANA MILANOVA, BARBARA GERSHON RYDER, AND DAVID G.
WONNACOTT. Robustness Testing of Java Server Applications. IEEE Transactions
on Software Engineering, 31[4]:292–311, April 2005. 137

[61] M. M. GALLARDO, P. MERINO, L. PANIZO, AND A. LINARES. A practical
use of model checking for synthesis: generating a dam controller for flood man-
agement. Software: Practice and Experience, 41[11]:1329–1347, 2011. 10,
19

[62] M. M. GALLARDO, P. MERINO, AND D. SANÁN. Model Checking Dynamic
Memory Allocation in Operating Systems. Journal of Automated Reasoning,
42[2]:229–264, 2009. 71

[63] MARÍA DEL MAR GALLARDO, JESÚS MARTÍNEZ, PEDRO MERINO, AND

ERNESTO PIMENTEL. aSPIN: a tool for abstract model checking. Software Tools
for Technology Transfer, 5[2-3]:165–184, October 2004. 18

[64] MARÍA DEL MAR GALLARDO, PEDRO MERINO, AND ERNESTO PIMENTEL. A
generalized semantics of PROMELA FOR ABSTRACT MODEL CHECKING. Form.
Asp. Comput., 16[3]:166–193, 2004. v, 76, 77, 78

[65] ROB GERTH, DORON PELED, MOSHE Y. VARDI, AND PIERRE WOLPER. Simple
on-the-fly automatic verification of linear temporal logic. In Proceedings of the
Fifteenth IFIP WG6.1 International Symposium on Protocol Specification, Testing

194

REFERENCES

and Verification XV, pages 3–18, London, UK, UK, 1996. Chapman & Hall, Ltd.
13, 15

[66] DIMITRA GIANNAKOPOULOU AND KLAUS HAVELUND. Automata-Based Veri-
fication of Temporal Properties on Running Programs. In Proceedings of the 16th
IEEE International Conference on Automated Software Engineering, ASE ’01,
pages 412–, Washington, DC, USA, 2001. IEEE Computer Society. 30

[67] PATRICE GODEFROID. Partial-Order Methods for the Verification of Concurrent
Systems: An Approach to the State-Explosion Problem. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1996. 67

[68] PATRICE GODEFROID. Software Model Checking: The VeriSoft Approach.
Formal Methods in System Design, 26[2]:77–101, 2005. 25

[69] TOM GOFF, JAMES MORONSKI, D.S. PHATAK, AND VIPUL GUPTA. Freeze-
TCP: a true end-to-end TCP enhancement mechanism for mobile environments.
In INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE, 3, pages 1537–1545, Mar
2000. 98, 99, 102, 106, 182

[70] JAMES GOSLING, BILL JOY, JR. GUY L. STEELE, GILAD BRACHA, AND ALEX

BUCKLEY. The Java Language Specification, Java SE 7 Edition. Addison-Wesley
Professional, 1st edition, 2013. 131, 132

[71] G. HAMPEL, G. ABUSH-MAGDER, D. DÍAZ, AND A. DRABECK. The New
Paradigm for Wireless Network Optimization: A Synergy of Automated Processes
and Human Intervention. IEEE Communications Magazine, 43[3]:13–21, March
2005. 122

[72] K. HAVELUND, M. LOWRY, AND J. PENIX. Formal analysis of a space-craft
controller using spin. Software Engineering, IEEE Transactions on, 27[8]:749–
765, Aug 2001. 10

[73] K. HAVELUND, A. SKOU, K.G. LARSEN, AND K. LUND. Formal modeling
and analysis of an audio/video protocol: an industrial case study using uppaal. In
Real-Time Systems Symposium, 1997. Proceedings., The 18th IEEE, pages 2–13,
Dec 1997. 10

[74] KLAUS HAVELUND AND THOMAS PRESSBURGER. Model checking java pro-
grams using java pathfinder. International Journal on Software Tools for Technol-
ogy Transfer, 2[4]:366–381, 2000. 1, 11, 28, 137, 144, 177, 185

195

REFERENCES

[75] KLAUS HAVELUND AND GRIGORE ROŞU. An Overview of the Runtime Verifi-
cation Tool Java PathExplorer. Form. Methods Syst. Des., 24[2]:189–215, March
2004. 30

[76] J. HEATH, M. KWIATKOWSKA, G. NORMAN, D. PARKER, AND O. TYM-
CHYSHYN. Probabilistic model checking of complex biological pathways. In
C. PRIAMI, editor, Proc. Computational Methods in Systems Biology (CMSB’06),
4210 of Lecture Notes in Bioinformatics, pages 32–47. Springer Verlag, 2006. 10

[77] THOMAS R. HENDERSON, SUMIT ROY, SALLY FLOYD, AND GEORGE F. RILEY.
Ns-3 project goals. In Proceeding from the 2006 Workshop on Ns-2: The IP
Network Simulator, WNS2 ’06, New York, NY, USA, 2006. ACM. 24, 149, 187

[78] GERARD HOLZMANN AND RAJEEV JOSHI. Model-Driven Software Verification.
In SUSANNE GRAF AND LAURENT MOUNIER, editors, Model Checking Software,
2989 of Lecture Notes in Computer Science, pages 76–91. Springer Berlin /
Heidelberg, 2004. 10

[79] GERARD J. HOLZMANN. Design and validation of computer protocols. Prentice
Hall, 1991. 19, 24

[80] GERARD J. HOLZMANN. The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley Professional, September 2003. 10, 11, 16, 18, 19, 24,
69, 177, 181

[81] GERARD J. HOLZMANN AND MARGARET H. SMITH. Software Model Checking.
In JIANPING WU, SAMUEL T. CHANSON, AND QIANG GAO, editors, FORTE,
156 of IFIP Conference Proceedings, pages 481–497. Kluwer, 1999. 11

[82] GERARDJ. HOLZMANN. An analysis of bitstate hashing. Formal Methods in
System Design, 13[3]:289–307, 1998. 71

[83] PIM KARS. The application of promela and spin in the bos project. In Proceedings
of the Second Spin Workshop, pages 60–71, Aug 1996. 10, 19

[84] TAKAHIRO KATAGIRI, KENJI KISE, HIROAKI HONDA, AND TOSHITSUGU

YUBA. FIBER: A Generalized Framework for Auto-tuning Software. In ALEX

VEIDENBAUM, KAZUKI JOE, HIDEHARU AMANO, AND HIDEO AISO, editors,
High Performance Computing, 2858 of Lecture Notes in Computer Science, pages
146–159. Springer Berlin / Heidelberg, 2003. 27

[85] MOONZOO KIM, MAHESH VISWANATHAN, SAMPATH KANNAN, INSUP LEE,
AND OLEG SOKOLSKY. Java-MaC: A Run-Time Assurance Approach for
Java Programs. Formal Methods in System Design, 24[2]:129–155, 2004.
10.1023/B:FORM.0000017719.43755.7c. 25

196

REFERENCES

[86] RALF KREHER. UMTS Performance Measurement: A Practical Guide to KPIs
for the UTRAN Environment. Wiley, July 2006. 121, 122

[87] RALF KREHER. Key Performance Indicators (KPI) for UMTS and GSM. Techni-
cal Report TS 32.410, 3GPP, September 2009. 122

[88] MARTA KWIATKOWSKA, GETHIN NORMAN, AND DAVID PARKER. PRISM:
Probabilistic Symbolic Model Checker. In T. FIELD, P. HARRISON, J. BRADLEY,
AND U. HARDER, editors, Proc. 12th International Conference on Modelling
Techniques and Tools for Computer Performance Evaluation (TOOLS’02), 2324
of LNCS, pages 200–204. Springer, 2002. 10, 11

[89] KIM G. LARSEN, PAUL PETTERSSON, AND WANG YI. Uppaal in a nutshell.
International Journal on Software Tools for Technology Transfer, 1[1-2]:134–152,
1997. 10

[90] MICHELE LOMBARDI. jpf-ltl – Bitbucket repository. https://bitbucket.org/
michelelombardi/jpf-ltl, April 2014. 29, 144, 186

[91] A.P. MARKOPOULOU, F.A. TOBAGI, AND M.J. KARAM. Assessment of VoIP
quality over Internet backbones. In INFOCOM 2002. Twenty-First Annual Joint
Conference of the IEEE Computer and Communications Societies. Proceedings.
IEEE, 1, pages 150–159 vol.1, 2002. 112

[92] PEDRO MERINO AND ALBERTO SALMERÓN. Analysis and optimization of video
download on mobile devices. In XX Jornadas de Telecom I+D. Valladolid 27, 28
y 29 septiembre 2010 (CD-ROM), December 2010. 4, 186

[93] PEDRO MERINO AND ALBERTO SALMERÓN. Combining SPIN with ns-2 for
protocol optimization. In 17th International SPIN Workshop on Model Checking
of Software, SPIN 2010, 6349, pages 40–57. Springer, 2010. 4, 98, 186

[94] J. MÜLLER, M. LORENZ, F. GELLER, A. ZEIER, AND H. PLATTNER. As-
sessment of communication protocols in the EPC Network - replacing textual
SOAP and XML with binary google protocol buffers encoding. In Industrial En-
gineering and Engineering Management (IE EM), 2010 IEEE 17Th International
Conference on, pages 404–409, 2010. 57

[95] MADANLAL MUSUVATHI, DAVID Y. W. PARK, ANDY CHOU, DAWSON R.
ENGLER, AND DAVID L. DILL. CMC: A pragmatic approach to model checking
real code. In In Proceedings of the Fifth Symposium on Operating Systems Design
and Implementation, 2002. 25

197

https://bitbucket.org/michelelombardi/jpf-ltl
https://bitbucket.org/michelelombardi/jpf-ltl

REFERENCES

[96] PAUL MUTTON. Jibble Web Server. http://www.jibble.org/
jibblewebserver.php, February 2014. 141

[97] BRIAN D. NOBLE, M. SATYANARAYANAN, GIAO T. NGUYEN, AND RANDY H.
KATZ. Trace-based mobile network emulation. SIGCOMM Comput. Commun.
Rev., 27:51–61, October 1997. 129

[98] GEORGES NOGUEIRA, BRUNO BAYNAT, AND AHMED ZIRAM. An efficient
analytical model for QoS engineering in mobile cellular networks. In WOWMOM

’08: Proceedings of the 2008 International Symposium on a World of Wireless,
Mobile and Multimedia Networks, pages 1–12, Washington, DC, USA, 2008.
IEEE Computer Society. 122

[99] G. NORMAN AND V. SHMATIKOV. Analysis of probabilistic contract signing.
Journal of Computer Security, 14[6]:561–589, 2006. 10

[100] DORON PELED. Combining partial order reductions with on-the-fly model-
checking. In DAVIDL. DILL, editor, Computer Aided Verification, 818 of Lecture
Notes in Computer Science, pages 377–390. Springer Berlin Heidelberg, 1994. 67

[101] GIUSEPPE PIRO, NICOLA BALDO, AND MARCO MIOZZO. An lte module for the
ns-3 network simulator. In Proceedings of the 4th International ICST Conference
on Simulation Tools and Techniques, pages 415–422. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), 2011. 149

[102] AMIR PNUELI. The temporal logic of programs. pages 46–57, oct. 1977. 12, 13,
19, 178

[103] STEVEN PROCTER. Java NFS Server. http://www.void.org/~steven/jnfs/,
February 2014. 140

[104] J.P. QUEILLE AND J. SIFAKIS. Specification and verification of concurrent
systems in CESAR. In MARIANGIOLA DEZANI-CIANCAGLINI AND UGO MON-
TANARI, editors, International Symposium on Programming, 137 of Lecture Notes
in Computer Science, pages 337–351. Springer Berlin Heidelberg, 1982. 9

[105] ALBERTO SALMERÓN AND PEDRO MERINO. On-the-fly VoIP call quality evalu-
ation with improved E-model. In Proceedings of the 8th Performance Monitoring,
Measurement and Evaluation of Heterogeneous Wireless and Wired Networks
Workshop, PM2HW2N 2013, pages 145–151. ACM, November 2013. 4, 109, 118,
186

[106] DOUGLAS C. SCHMIDT. Pattern Languages of Program Design. chapter Reactor:
An Object Behavioral Pattern for Concurrent Event Demultiplexing and Event

198

http://www.jibble.org/jibblewebserver.php
http://www.jibble.org/jibblewebserver.php
http://www.void.org/~steven/jnfs/

REFERENCES

Handler Dispatching, pages 529–545. ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 1995. 94

[107] DOUGLAS C. SCHMIDT AND STEPHEN D. HUSTON. C++ Network Program-
ming Vol. 1: Mastering Complexity with ACE and Patterns. Addison-Wesley, 2nd
edition, 2002. 94

[108] DOUGLAS C. SCHMIDT AND STEPHEN D. HUSTON. C++ Network Program-
ming Vol. 2: Systematic Reuse with ACE and Frameworks. Addison-Wesley, 2002.
94

[109] BRUCE SCHNEIER. Applied cryptography (2nd ed.): protocols, algorithms, and
source code in C. John Wiley & Sons, Inc., New York, NY, USA, 1995. 71

[110] XIAOCHUAN SHEN, ADRIAN WONFOR, RICHARD PENTY, AND IAN WHITE.
Receiver Playout Buffer Requirement for TCP Video Streaming in the presence of
Burst Packet Drops. In London Communications Symposium 2009, 2009. 103

[111] A. SOBEIH, M. D’AMORIM, M. VISWANATHAN, D. MARINOV, AND J. C.
HOU. Assertion Checking in J-Sim Simulation Models of Network Protocols.
SIMULATION, 86[11]:651–673, October 2009. 25

[112] A. SOBEIH, J.C. HOU, LU-CHUAN KUNG, N. LI, HONGHAI ZHANG, WEI-
PENG CHEN, HUNG-YING TYAN, AND HYUK LIM. J-Sim: a simulation and
emulation environment for wireless sensor networks. Wireless Communications,
IEEE, 13[4]:104–119, 2006. 25

[113] PETER SOROTOKIN. FTP Server in Java. http://peter.sorotokin.com/ftpd/
ftpd.html, February 2014. 137

[114] YE TIAN, KAI XU, AND N. ANSARI. TCP in wireless environments: problems
and solutions. Communications Magazine, IEEE, 43[3]:S27–S32, March 2005.
98

[115] MOSHE Y. VARDI AND PIERRE WOLPER. Automata-theoretic techniques for
modal logics of programs. Journal of Computer and System Sciences, 32[2]:183–
221, 1986. 22, 137

[116] MOSHE Y. VARDI AND PIERRE WOLPER. Reasoning about infinite computations.
Information and Computation, 115:1–37, 1994. 13, 15

[117] WILLEM VISSER, KLAUS HAVELUND, GUILLAUME BRAT, SEUNGJOON PARK,
AND FLAVIO LERDA. Model Checking Programs. Automated Software Engineer-
ing, 10[2]:203–232, 2003. 25, 28, 144

199

http://peter.sorotokin.com/ftpd/ftpd.html
http://peter.sorotokin.com/ftpd/ftpd.html

REFERENCES

[118] PIERRE WOLPER AND DENIS LEROY. Reliable hashing without collision de-
tection. In COSTAS COURCOUBETIS, editor, Computer Aided Verification, 697
of Lecture Notes in Computer Science, pages 59–70. Springer Berlin Heidelberg,
1993. 71

[119] TAO YE, HEMA T. KAUR, SHIVKUMAR KALYANARAMAN, AND MURAT YUK-
SEL. Large-scale network parameter configuration using an on-line simulation
framework. IEEE/ACM Trans. Netw., 16[4]:777–790, 2008. 26, 27

[120] FUYUAN ZHANG, ZHENGWEI QI, HAIBING GUAN, XUEZHENG LIU, MAO

YANG, AND ZHENG ZHANG. FiLM: A Runtime Monitoring Tool for Distributed
Systems. In Secure Software Integration and Reliability Improvement, 2009. SSIRI
2009. Third IEEE International Conference on, pages 40–46, july 2009. 30

[121] LIREN ZHANG, LI ZHENG, AND KOH SOO NGEE. Effect of delay and delay
jitter on voice/video over IP. Computer Communications, 25[9]:863–873, 2002.
129

200

	Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Overview
	1.2 Contributions
	1.3 Organization

	I Preliminaries
	2 State of the art
	2.1 Model checking
	2.1.1 System modeling
	2.1.2 Property specification languages
	2.1.3 Automata-based LTL model checking
	2.1.4 Abstraction
	2.1.5 The Spin model checker

	2.2 Trace-based analysis
	2.2.1 Analysis of network simulations
	2.2.2 Analysis of Java programs

	II The OptySim trace analysis framework
	3 Analysis framework
	3.1 Framework overview
	3.1.1 Setup
	3.1.2 Code generation
	3.1.3 Analysis
	3.1.4 Results

	3.2 Protocol
	3.2.1 Negotiation
	3.2.2 Setup
	3.2.3 Execution
	3.2.4 Example

	3.3 Objectives
	3.3.1 State assertions
	3.3.2 LTL formulas and never claim automata
	3.3.3 Parameter configuration validation
	3.3.4 Inferring results from previous analyses

	3.4 Implementation
	3.4.1 Promela template
	3.4.2 Data structures
	3.4.3 Exploration and analysis
	3.4.4 Protocol implementation
	3.4.5 Template instantiation
	3.4.6 System integration

	3.5 Summary

	4 Abstraction of execution traces
	4.1 State space
	4.1.1 Parameter space
	4.1.2 External factors

	4.2 Trace projection
	4.2.1 Counter projection
	4.2.2 Hash projection
	4.2.3 Folded projections

	4.3 Preservation of results
	4.4 Operational semantics of executions exploration

	III Applications
	5 Analysis of ns-2 network simulations
	5.1 The ns-2 network simulator
	5.1.1 Architecture
	5.1.2 State space and traces

	5.2 Extraction of ns-2 execution traces
	5.2.1 Overview of integration with ns-2
	5.2.2 Generic C++ library
	5.2.3 ns-2 integration library

	5.3 Case study: video streaming over TCP on mobile environments
	5.3.1 Network scenario
	5.3.2 Reliability analysis
	5.3.3 Performance analysis

	5.4 Case study: E-model extension
	5.4.1 E-model for VoIP QoE evaluation
	5.4.2 On-the-fly E-model computation
	5.4.3 Implementation in ns-2
	5.4.4 Validation analysis

	6 Inverse modeling of network KPIs
	6.1 Key performance indicators
	6.2 Inverse modeling methodology
	6.2.1 SymPA

	6.3 Case study: jitter model
	6.3.1 Field test scenario
	6.3.2 Replaying jitter traces in simulations
	6.3.3 Inverse modeling

	6.4 Related work

	7 Analysis of Java execution traces
	7.1 The Java programming language
	7.1.1 Java Platform Debugger Architecture

	7.2 Extraction of Java execution traces
	7.2.1 Eclipse plug-in
	7.2.2 Runtime monitor

	7.3 Case studies
	7.3.1 Applications and requirements
	7.3.2 Counter projection
	7.3.3 Hash projection

	7.4 Related work
	7.4.1 Comparison with JPF

	IV Final remarks
	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future work

	V Appendices
	Appendix A: Configuration files
	A.1 XML Schema
	A.2 Legacy configuration
	A.2.1 ns-2 legacy configuration
	A.2.2 TJT legacy configuration

	Appendix B: Protocol definitions
	B.1 Promela model
	B.2 Protocol buffer message definitions
	Appendix C: Improved E-model algorithm
	Appendix D: Resumen en español
	D.1 El marco de trabajo de análisis OptySim
	D.1.1 Visión general del análisis
	D.1.2 Objetivos

	D.2 Proyección de trazas de ejecución
	D.3 Integración y casos de estudio: ns-2
	D.3.1 Caso de estudio: vídeo sobre TCP
	D.3.2 Caso de estudio: validación de E-model
	D.3.3 Caso de estudio: modelado inverso de KPIs

	D.4 Integración y casos de estudio: Java

	D.5 Conclusiones
	References

