1,113 research outputs found

    Virtual Machine Deployment Strategy Based on Improved PSO in Cloud Computing

    Get PDF
    Energy consumption is an important cost driven by growth of computing power, thereby energy conservation has become one of the major problems faced by cloud system. How to maximize the utilization of physical machines, reduce the number of virtual machine migrations, and maintain load balance under the constraints of physical machine resource thresholds that is the effective way to implement energy saving in data center. In the paper, we propose a multi-objective physical model for virtual machine deployment. Then the improved multi-objective particle swarm optimization (TPSO) is applied to virtual machine deployment. Compared to other algorithms, the algorithm has better ergodicity into the initial stage, improves the optimization precision and optimization efficiency of the particle swarm. The experimental results based on CloudSim simulation platform show that the algorithm is effective at improving physical machine resource utilization, reducing resource waste, and improving system load balance

    HSO: A Hybrid Swarm Optimization Algorithm for Re-Ducing Energy Consumption in the Cloudlets

    Get PDF
    Mobile Cloud Computing (MCC) is an emerging technology for the improvement of mobile service quality. MCC resources are dynamically allocated to the users who pay for the resources based on their needs. The drawback of this process is that it is prone to failure and demands a high energy input. Resource providers mainly focus on resource performance and utilization with more consideration on the constraints of service level agreement (SLA). Resource performance can be achieved through virtualization techniques which facilitates the sharing of resource providers’ information between different virtual machines. To address these issues, this study sets forth a novel algorithm (HSO) that optimized energy efficiency resource management in the cloud; the process of the proposed method involves the use of the developed cost and runtime-effective model to create a minimum energy configuration of the cloud compute nodes while guaranteeing the maintenance of all minimum performances. The cost functions will cover energy, performance and reliability concerns. With the proposed model, the performance of the Hybrid swarm algorithm was significantly increased, as observed by optimizing the number of tasks through simulation, (power consumption was reduced by 42%). The simulation studies also showed a reduction in the number of required calculations by about 20% by the inclusion of the presented algorithms compared to the traditional static approach. There was also a decrease in the node loss which allowed the optimization algorithm to achieve a minimal overhead on cloud compute resources while still saving energy significantly. Conclusively, an energy-aware optimization model which describes the required system constraints was presented in this study, and a further proposal for techniques to determine the best overall solution was also made

    Energy-efficient resource allocation scheme based on enhanced flower pollination algorithm for cloud computing data center

    Get PDF
    Cloud Computing (CC) has rapidly emerged as a successful paradigm for providing ICT infrastructure. Efficient and environmental-friendly resource allocation mechanisms, responsible for allocatinpg Cloud data center resources to execute user applications in the form of requests are undoubtedly required. One of the promising Nature-Inspired techniques for addressing virtualization, consolidation and energyaware problems is the Flower Pollination Algorithm (FPA). However, FPA suffers from entrapment and its static control parameters cannot maintain a balance between local and global search which could also lead to high energy consumption and inadequate resource utilization. This research developed an enhanced FPA-based energy efficient resource allocation scheme for Cloud data center which provides efficient resource utilization and energy efficiency with less probable Service Level Agreement (SLA) violations. Firstly, an Enhanced Flower Pollination Algorithm for Energy-Efficient Virtual Machine Placement (EFPA-EEVMP) was developed. In this algorithm, a Dynamic Switching Probability (DSP) strategy was adopted to balance the local and global search space in FPA used to minimize the energy consumption and maximize resource utilization. Secondly, Multi-Objective Hybrid Flower Pollination Resource Consolidation (MOH-FPRC) algorithm was developed. In this algorithm, Local Neighborhood Search (LNS) and Pareto optimisation strategies were combined with Clustering algorithm to avoid local trapping and address Cloud service providers conflicting objectives such as energy consumption and SLA violation. Lastly, Energy-Aware Multi-Cloud Flower Pollination Optimization (EAM-FPO) scheme was developed for distributed Multi-Cloud data center environment. In this scheme, Power Usage Effectiveness (PUE) and migration controller were utilised to obtain the optimal solution in a larger search space of the CC environment. The scheme was tested on MultiRecCloudSim simulator. Results of the simulation were compared with OEMACS, ACS-VMC, and EA-DP. The scheme produced outstanding performance improvement rate on the data center energy consumption by 20.5%, resource utilization by 23.9%, and SLA violation by 13.5%. The combined algorithms have reduced entrapment and maintaned balance between local and global search. Therefore, based on the findings the developed scheme has proven to be efficient in minimizing energy consumption while at the same time improving the data center resource allocation with minimum SLA violation

    Bio-inspired computation for big data fusion, storage, processing, learning and visualization: state of the art and future directions

    Get PDF
    This overview gravitates on research achievements that have recently emerged from the confluence between Big Data technologies and bio-inspired computation. A manifold of reasons can be identified for the profitable synergy between these two paradigms, all rooted on the adaptability, intelligence and robustness that biologically inspired principles can provide to technologies aimed to manage, retrieve, fuse and process Big Data efficiently. We delve into this research field by first analyzing in depth the existing literature, with a focus on advances reported in the last few years. This prior literature analysis is complemented by an identification of the new trends and open challenges in Big Data that remain unsolved to date, and that can be effectively addressed by bio-inspired algorithms. As a second contribution, this work elaborates on how bio-inspired algorithms need to be adapted for their use in a Big Data context, in which data fusion becomes crucial as a previous step to allow processing and mining several and potentially heterogeneous data sources. This analysis allows exploring and comparing the scope and efficiency of existing approaches across different problems and domains, with the purpose of identifying new potential applications and research niches. Finally, this survey highlights open issues that remain unsolved to date in this research avenue, alongside a prescription of recommendations for future research.This work has received funding support from the Basque Government (Eusko Jaurlaritza) through the Consolidated Research Group MATHMODE (IT1294-19), EMAITEK and ELK ARTEK programs. D. Camacho also acknowledges support from the Spanish Ministry of Science and Education under PID2020-117263GB-100 grant (FightDIS), the Comunidad Autonoma de Madrid under S2018/TCS-4566 grant (CYNAMON), and the CHIST ERA 2017 BDSI PACMEL Project (PCI2019-103623, Spain)

    HSO: A hybrid swarm optimization algorithm for reducing energy consumption in the cloudlets

    Get PDF
    Mobile Cloud Computing (MCC) is an emerging technology for the improvement of mobile service quality. MCC resources are dynamically allocated to the users who pay for the resources based on their needs. The drawback of this process is that it is prone to failure and demands a high energy input. Resource providers mainly focus on resource performance and utilization with more consideration on the constraints of service level agreement (SLA). Resource performance can be achieved through virtualization techniques which facilitates the sharing of resource providers’ information between different virtual machines. To address these issues, this study sets forth a novel algorithm (HSO) that optimized energy efficiency resource management in the cloud; the process of the proposed method involves the use of the developed cost and runtime-effective model to create a minimum energy configuration of the cloud compute nodes while guaranteeing the maintenance of all minimum performances. The cost functions will cover energy, performance and reliability concerns. With the proposed model, the performance of the Hybrid swarm algorithm was significantly increased, as observed by optimizing the number of tasks through simulation, (power consumption was reduced by 42%). The simulation studies also showed a reduction in the number of required calculations by about 20% by the inclusion of the presented algorithms compared to the traditional static approach. There was also a decrease in the node loss which allowed the optimization algorithm to achieve a minimal overhead on cloud compute resources while still saving energy significantly. Conclusively, an energy-aware optimization model which describes the required system constraints was presented in this study, and a further proposal for techniques to determine the best overall solution was also made

    Soft Computing Techiniques for the Protein Folding Problem on High Performance Computing Architectures

    Get PDF
    The protein-folding problem has been extensively studied during the last fifty years. The understanding of the dynamics of global shape of a protein and the influence on its biological function can help us to discover new and more effective drugs to deal with diseases of pharmacological relevance. Different computational approaches have been developed by different researchers in order to foresee the threedimensional arrangement of atoms of proteins from their sequences. However, the computational complexity of this problem makes mandatory the search for new models, novel algorithmic strategies and hardware platforms that provide solutions in a reasonable time frame. We present in this revision work the past and last tendencies regarding protein folding simulations from both perspectives; hardware and software. Of particular interest to us are both the use of inexact solutions to this computationally hard problem as well as which hardware platforms have been used for running this kind of Soft Computing techniques.This work is jointly supported by the FundaciónSéneca (Agencia Regional de Ciencia y Tecnología, Región de Murcia) under grants 15290/PI/2010 and 18946/JLI/13, by the Spanish MEC and European Commission FEDER under grant with reference TEC2012-37945-C02-02 and TIN2012-31345, by the Nils Coordinated Mobility under grant 012-ABEL-CM-2014A, in part financed by the European Regional Development Fund (ERDF). We also thank NVIDIA for hardware donation within UCAM GPU educational and research centers.Ingeniería, Industria y Construcció

    Power Modeling and Resource Optimization in Virtualized Environments

    Get PDF
    The provisioning of on-demand cloud services has revolutionized the IT industry. This emerging paradigm has drastically increased the growth of data centers (DCs) worldwide. Consequently, this rising number of DCs is contributing to a large amount of world total power consumption. This has directed the attention of researchers and service providers to investigate a power-aware solution for the deployment and management of these systems and networks. However, these solutions could be bene\ufb01cial only if derived from a precisely estimated power consumption at run-time. Accuracy in power estimation is a challenge in virtualized environments due to the lack of certainty of actual resources consumed by virtualized entities and of their impact on applications\u2019 performance. The heterogeneous cloud, composed of multi-tenancy architecture, has also raised several management challenges for both service providers and their clients. Task scheduling and resource allocation in such a system are considered as an NP-hard problem. The inappropriate allocation of resources causes the under-utilization of servers, hence reducing throughput and energy e\ufb03ciency. In this context, the cloud framework needs an e\ufb00ective management solution to maximize the use of available resources and capacity, and also to reduce the impact of their carbon footprint on the environment with reduced power consumption. This thesis addresses the issues of power measurement and resource utilization in virtualized environments as two primary objectives. At \ufb01rst, a survey on prior work of server power modeling and methods in virtualization architectures is carried out. This helps investigate the key challenges that elude the precision of power estimation when dealing with virtualized entities. A di\ufb00erent systematic approach is then presented to improve the prediction accuracy in these networks, considering the resource abstraction at di\ufb00erent architectural levels. Resource usage monitoring at the host and guest helps in identifying the di\ufb00erence in performance between the two. Using virtual Performance Monitoring Counters (vPMCs) at a guest level provides detailed information that helps in improving the prediction accuracy and can be further used for resource optimization, consolidation and load balancing. Later, the research also targets the critical issue of optimal resource utilization in cloud computing. This study seeks a generic, robust but simple approach to deal with resource allocation in cloud computing and networking. The inappropriate scheduling in the cloud causes under- and over- utilization of resources which in turn increases the power consumption and also degrades the system performance. This work \ufb01rst addresses some of the major challenges related to task scheduling in heterogeneous systems. After a critical analysis of existing approaches, this thesis presents a rather simple scheduling scheme based on the combination of heuristic solutions. Improved resource utilization with reduced processing time can be achieved using the proposed energy-e\ufb03cient scheduling algorithm

    Artificial intelligence (AI) methods in optical networks: A comprehensive survey

    Get PDF
    Producción CientíficaArtificial intelligence (AI) is an extensive scientific discipline which enables computer systems to solve problems by emulating complex biological processes such as learning, reasoning and self-correction. This paper presents a comprehensive review of the application of AI techniques for improving performance of optical communication systems and networks. The use of AI-based techniques is first studied in applications related to optical transmission, ranging from the characterization and operation of network components to performance monitoring, mitigation of nonlinearities, and quality of transmission estimation. Then, applications related to optical network control and management are also reviewed, including topics like optical network planning and operation in both transport and access networks. Finally, the paper also presents a summary of opportunities and challenges in optical networking where AI is expected to play a key role in the near future.Ministerio de Economía, Industria y Competitividad (Project EC2014-53071-C3-2-P, TEC2015-71932-REDT

    SHARING WITH LIVE MIGRATION ENERGY OPTIMIZATION TASK SCHEDULER FOR CLOUD COMPUTING DATACENTRES

    Get PDF
    The use of cloud computing is expanding, and it is becoming the driver for innovation in all companies to serve their customers around the world. A big attention was drawn to the huge energy that was consumed within those datacentres recently neglecting the energy consumption in the rest of the cloud components. Therefore, the energy consumption should be reduced to minimize performance losses, achieve the target battery lifetime, satisfy performance requirements, minimize power consumption, minimize the CO2 emissions, maximize the profit, and maximize resource utilization. Reducing power consumption in the cloud computing datacentres can be achieved by many ways such as managing or utilizing the resources, controlling redundancy, relocating datacentres, improvement of applications or dynamic voltage and frequency scaling. One of the most efficient ways to reduce power is to use a scheduling technique that will find the best task execution order based on the users demands and with the minimum execution time and cloud resources. It is quite a challenge in cloud environment to design an effective and an efficient task scheduling technique which is done based on the user requirements. The scheduling process is not an easy task because within the datacentre there is dissimilar hardware with different capacities and, to improve the resource utilization, an efficient scheduling algorithm must be applied on the incoming tasks to achieve efficient computing resource allocating and power optimization. The scheduler must maintain the balance between the Quality of Service and fairness among the jobs so that the efficiency may be increased. The aim of this project is to propose a novel method for optimizing energy usage in cloud computing environments that satisfy the Quality of Service (QoS) and the regulations of the Service Level Agreement (SLA). Applying a power- and resource-optimised scheduling algorithm will assist to control and improve the process of mapping between the datacentre servers and the incoming tasks and achieve the optimal deployment of the data centre resources to achieve good computing efficiency, network load minimization and reducing the energy consumption in the datacentre. This thesis explores cloud computing energy aware datacentre structures with diverse scheduling heuristics and propose a novel job scheduling technique with sharing and live migration based on file locality (SLM) aiming to maximize efficiency and save power consumed in the datacentre due to bandwidth usage utilization, minimizing the processing time and the system total make span. The propose SLM energy efficient scheduling strategy have four basic algorithms: 1) Job Classifier, 2) SLM job scheduler, 3) Dual fold VM virtualization and 4) VM threshold margins and consolidation. The SLM job classifier worked on categorising the incoming set of user requests to the datacentre in to two different queues based on these requests type and the source file needed to process them. The processing time of each job fluctuate based on the job type and the number of instructions for each job. The second algorithm, which is the SLM scheduler algorithm, dispatch jobs from both queues according to job arrival time and control the allocation process to the most appropriate and available VM based on job similarity according to a predefined synchronized job characteristic table (SJC). The SLM scheduler uses a replicated host’s infrastructure to save the wasted idle hosts energy by maximizing the basic host’s utilization as long as the system can deal with workflow while setting replicated hosts on off mode. The third SLM algorithm, the dual fold VM algorithm, divide the active VMs in to a top and low level slots to allocate similar jobs concurrently which maximize the host utilization at high workload and reduce the total make span. The VM threshold margins and consolidation algorithm set an upper and lower threshold margin as a trigger for VMs consolidation and load balancing process among running VMs, and deploy a continuous provisioning of overload and underutilize VMs detection scheme to maintain and control the system workload balance. The consolidation and load balancing is achieved by performing a series of dynamic live migrations which provides auto-scaling for the servers with in the datacentres. This thesis begins with cloud computing overview then preview the conceptual cloud resources management strategies with classification of scheduling heuristics. Following this, a Competitive analysis of energy efficient scheduling algorithms and related work is presented. The novel SLM algorithm is proposed and evaluated using the CloudSim toolkit under number of scenarios, then the result compared to Particle Swarm Optimization algorithm (PSO) and Ant Colony Algorithm (ACO) shows a significant improvement in the energy usage readings levels and total make span time which is the total time needed to finish processing all the tasks
    corecore