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Abstract

The provisioning of on-demand cloud services has revolutionized the IT industry. This
emerging paradigm has drastically increased the growth of data centers (DCs) worldwide.
Consequently, this rising number of DCs is contributing to a large amount of world
total power consumption. This has directed the attention of researchers and service
providers to investigate a power-aware solution for the deployment and management
of these systems and networks. However, these solutions could be beneficial only if
derived from a precisely estimated power consumption at run-time. Accuracy in power
estimation is a challenge in virtualized environments due to the lack of certainty of
actual resources consumed by virtualized entities and of their impact on applications’
performance. The heterogeneous cloud, composed of multi-tenancy architecture, has
also raised several management challenges for both service providers and their clients.
Task scheduling and resource allocation in such a system are considered as an NP-hard
problem. The inappropriate allocation of resources causes the under-utilization of servers,
hence reducing throughput and energy efficiency. In this context, the cloud framework
needs an effective management solution to maximize the use of available resources and
capacity, and also to reduce the impact of their carbon footprint on the environment
with reduced power consumption.

This thesis addresses the issues of power measurement and resource utilization in
virtualized environments as two primary objectives. At first, a survey on prior work of
server power modeling and methods in virtualization architectures is carried out. This
helps investigate the key challenges that elude the precision of power estimation when
dealing with virtualized entities. A different systematic approach is then presented to
improve the prediction accuracy in these networks, considering the resource abstraction
at different architectural levels. Resource usage monitoring at the host and guest helps
in identifying the difference of performance between the two. Using virtual Performance
Monitoring Counters (vPMCs) at a guest level provides detailed information that helps
in improving the prediction accuracy and can be further used for resource optimization,
consolidation and load balancing. Later, the research also targets the critical issue of
optimal resource utilization in cloud computing. This study seeks a generic, robust but
simple approach to deal with resource allocation in cloud computing and networking.
The inappropriate scheduling in cloud causes under- and over- utilization of resources
which in turn increases the power consumption and also degrades the system performance.
This work first addresses some of the major challenges related to task scheduling in the
heterogeneous systems. After critical analysis of existing approaches, the thesis presents
a rather simple scheduling scheme based on the combination of heuristic solutions.
Improved resource utilization with reduced processing time can be achieved using the
proposed energy-efficient scheduling algorithm.
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1 Introduction

This chapter provides the introduction to this thesis and outlines the motivation and
research questions on which this research is based on. The need and growth of data
centers are initially discussed in the first section which also highlights the need for
further research in this area. In the next section, problems addressed in this thesis are
presented, which is followed by the research questions. In the end, the organization of
thesis chapters is provided.

1.1 Motivation

Virtualization is the key technology behind today’s growing data centers and cloud
services. The concept of virtualization is not new, although, its use in cloud computing
with the introduction of containers has boosted up in the last decade [1]. Cloud computing
has opened new ways to access multiple on-demand resources from a remote pool of
servers. This technology has brought a new paradigm shift in IT industry which is
becoming popular day by day. Cloud services provide a number of facilities to their
users with easy access of resources, reduced management and deployment overheads,
portability, flexibility, low execution cost, etc. [2]. Enterprises of different scale either
small or big, all are now adopting the cloud computing technology to avoid the huge
cost of deployment and management of a whole IT infrastructure. These enterprises
are running and also developing their applications on these cloud platforms due their
reliability and globally available infrastructure. According to Forbes [3], the global
market of cloud services is maturing and providing certain support (in terms of speed,
security and scaling) for new digital businesses. This emerging demand has increased
the number of data centers and cloud significantly worldwide. The worldwide public
cloud service market is projected to grow by 36% in 2020 to a total of $240.3B from
$175.8B in 2018 [1]. Fig. 1.1 shows the revenue of cloud services for different vendors,
during the fourth quarter of the year 2017 and 2018.

This global era of new digital business provides flexible ways to access computing
resources, but at the same time burdening the service providers with huge power cost.
Operational and management cost in these data centers is increasing by billions of
dollars each year [5], [6]. Recent studies [7]-[9] estimated that the information and
communication technology (ICT) industry might consume 20% of the global electricity,
and will contribute up to 5.5% of world’s carbon emissions by 2025. In this scenario,
data centers on their own might account for more than 3.2% of greenhouse gas (GHG)
emissions (corresponding to 1.9 Gtons per year). Therefore, the emerging virtualized
environment needs an energy-efficient cloud and virtual networking infrastructure to
meet the modern world’s requirements. A report on the energy usage of US Datacenters
shows that measures can be taken to reduce the power consumption in future data centers
[10]. Several energy-aware frameworks and algorithms have already been proposed and
implemented which reduce and limit the power usage of servers. However, in this context,
it is also important for the predicted or observed power to be precise enough to make
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Fig. 1.1: Market share of cloud infrastructure services (IaaS, PaaS, Hosted Private Cloud),
as reported by Synergy Research Group [4].

the decision effective. But obtaining high accuracy in estimating power in a virtual
environment is challenging. Several power models available can predict the server power
with the desired accuracy, but the behavior of server power in a virtual environment
does not remain similar [11], [12]. Hence it is difficult to estimate the power consumption
profile in a virtualized environment. Since both data centers and the cloud experience
variable load and system size, this makes power modeling further challenging.

The heterogeneity also causes difficulty in managing and scheduling resources in the
network. Hence, another challenge possessed by huge data centers and the cloud is
the management and allocation of resources optimally. The inappropriate allocation
of resources and scheduling of tasks in a large-scale distributed system can waste the
server resources. According to a study, most of the time, servers in data centers are
only 30-50% utilized [13]. Hence, data centers are mostly under-utilized and require
efficient management mechanisms to improve their throughput while maintaining their
performance. This problem grows exponentially with increasing size of the network
hence is classified as an NP-hard problem in several studies [14], [15].

1.2 Goal

In this thesis, the research is focused on two major problems of cloud computing. The first
objective of this research is to investigate the cause of error and inaccuracy in available
power models, as well as, to propose a strategy that can observe the actual resource
consumption at hosts and virtual machines. This two-level monitoring is introduced
to have a piece of detailed information about system behavior. Analyzing which could
help in developing a power model with improved prediction accuracy. This improved
power model can be used in any power-aware scheduling or management schemes to
make them more effective.

The second part of this thesis is based on resource management in cloud computing.
In this part, the complexity and performance of available management models are first
analyzed. Later, an effective, less complex scheduling algorithm is proposed that could
improve resource utilization in the cloud with relatively short processing time. The
proposed scheme will be focusing on maximizing the resource utilization of servers such
that the network throughput is increased with minimum energy consumed.
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1.3 Research Questions

Considering the problems mentioned above, the scope of this thesis focuses on the
following identified research questions.These research questions are also categorized
into two subparts, each belonging to one of the two research problem addressed in this
doctoral work.

1.3.1 Power Modeling

Q1. What are important parameters or features for developing a power model? What
are the criteria of selecting the right parameters?

Q2. Will change in instruction processing speed and resource utilization of virtual
machines and the server at similar time instants be the same? If not, then is there
a certain relation between the two (host and VM) levels?

Q3. How the resource monitoring in a virtual environment could be done to obtain
actual consumed resources?

Q4. Does the power of the server remain linear for variable load and different server
configuration? How does the number of parallel running virtual machines and their
respective load affect the server power and performance?

1.3.2 Task Scheduling

Q1. How can the scheduling of tasks in cloud computing improve the utilization of
resources?

Q2. Does equally balanced load on servers consume less power or does server consolida-
tion provide energy-efficient results?

Q3. Is it possible to obtain real-time optimal scheduling solutions using heuristic search
algorithms?

Q4. What could be the optimal solution with acceptable latency and network perfor-
mance for task scheduling in cloud computing?

1.4 Thesis Organization

As the research in this thesis is comprised of two major parts, the study of 'power
estimation’ and its analysis is presented in the first chapters. In later chapters, literature
and experiments regarding 'task scheduling’ are presented. The organization of the
remaining chapters of the thesis is provided below.

In Chapter 2, a brief introduction to the concept of virtualization and cloud computing
is provided, to make these technologies and their architectures familiar to the reader.

In Chapter 3, a detailed survey on servers’ power models and measurement methods is
presented. An important step to carry out any research is to first identify the problem in
that domain; thus, this chapter provides a detailed research survey on available models
and measurement methods in a virtual environment.

In Chapter 4, the proposed approach for modeling server power is presented. Ex-
periments were carried out to extract the effective parameters to be included in power
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modeling. The prediction accuracy of the developed power model is analyzed in detail
to validate the performance of the proposed method.

In Chapter 5, an overview and background of cloud computing and its management
schemes is presented. It further provides the introduction to common terminologies,
scheduling literature and open research problems in cloud computing.

In Chapter 6, the solution to the scheduling problem is proposed by introducing a new
scheduling scheme. Initially, results and analysis of different case studies are presented;
later, a combined modeling approach is proposed to improve resource utilization and
network energy efficiency.

In Chapter 7, the conclusion of the thesis is presented by summarizing the thesis
contribution and future work.



2 Background and Foundation

2.1 Introduction to Virtualization

The virtualization technology is the set of hardware and software tools enabling the
abstraction of physical resources into several logical units. These units can be used and
operated separately using a different operating system and running different applications.
Virtualization is not a new technology, it has rather been in operation for decades. It
was introduced in the 1970s by IBM, which allowed the partition of different applications
running on similar hardware [16]. However, the introduction of the x86 microprocessor
made the processing fast and cheap enough that the need of virtualization was reduced.
But digitalization these days has again intensified its need for modern technology. In
recent years, modern processor architectures introduced the support of virtualization in
their designs. With this, virtualization has become available to everyone everywhere.
Continuous evolution and improvements in virtualization technology make it favorable
for various domains and at different scales.

In computing, virtualization is a means of creating virtual instances of a device or
resources such as a server, network devices, operating system, storage devices, etc.
Technically, it enables the sharing of physical resources by providing services to its users
worldwide. This spawned a remarkable growth of virtualization in IT infrastructure and
is the foundation of the increasingly popular service delivery model known as ’Cloud
Computing’. It helps in creating several useful services using dedicated hardware resources
of a single hardware unit. Thus, a single physical machine in a virtual environment can
act like multiple machines, where each machine is isolated from others. Moreover, it also
provides the essentials of consolidation and maximum resource utilization in the cloud
and data centers.

To abstract the hardware resources from an operating system, an intermediate layer
known as hypervisor is used [16]. This layer lies in between the hardware and Operating
System (OS) and is a medium of communication between hardware resources and their
virtual counterparts. The hardware where these hypervisors are running is called host,
whereas the virtual machine where the guest operating system is running is called guest.
The virtualization layer hides the complexity of underlying hardware architecture and
infrastructure providing feasibility and portability to its users.

2.1.1 Levels of Virtualization

Different levels of virtualization exist based on the type of services and resources to be
virtualized. Starting from the virtualization of instructions set architecture (ISA), it
goes to the virtualization of hardware, application level interface (API), process level,
operating system (OS), etc. [17]. This thesis, however, considers only the hardware-
level virtualization, which enables the creation of virtual machines in a data center or
cloud environment. The virtualization of hardware resources can be further categorized
depending on the resource used. Three major levels of hardware virtualization are
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network virtualization, storage virtualization, and server virtualization [18]. As the
name indicates, network virtualization is the creation of a virtual instance for network
communication. It shares the available network bandwidth of the host server with the
isolated virtual networks. In storage virtualization, virtualization gives access to disk
resources on a physical machine to the virtual entity. However, the VM is unaware of
the data location and its mapping on the storage device. Another level of virtualization
that is server virtualization allows multiple virtual servers (or VMs) to reside on a single
physical hardware. This technique is the basis of virtualization in data centers and in
the cloud computing environment.

2.1.2 Virtualization Genres

There are two different virtualization technologies available to create a virtual image
of any instance. One of these technologies is container-based, which is also known as
system-level virtualization or containerization. In containerization, users are allowed to
create "encapsulated" virtual entities. This encapsulated OS is isolated from the host
OS and is called a container. The major advantage of using containers is that they
are lightweight and therefore have very efficient system performance. But there is a
limitation to this technology, that is, the OS of the host and the container have to be
the same.

Another technology is based on the hypervisor where the virtual instance is created
using the layer of hypervisor between hardware and virtual level. The hypervisor is a
small software layer that enables multiple operating systems, to run alongside each other
and share the same physical computing resources. These hypervisors assign the slice of
computing resources associated with each VM and isolate them logically. The hypervisor
in any virtual environment is responsible for the whole life cycle of a virtual instance. For
any virtual machine all steps including its configuration, creation, allocation, termination
and even migration are managed by the hypervisor. These hypervisors can be further
classified into two types: native (or bare metal) and hosted hypervisors, which
are also known as Type 1 and Type 2 hypervisors, respectively [17]. Fig. 2.1 shows
the structure of Type 1 and Type 2 hypervisors.

Type 1 hypervisors sit directly on the bare-metal hardware. These native host running
hypervisors control the hardware resources and manage the guest operating system by
interacting with them directly. With the Type 1 hypervisor, there is no need to load an
operating system on the host as this hypervisor itself is an operating system. Type 1
hypervisors are very efficient because of having direct access to physical hardware. Xen,
Oracle VM, VMware ESXi are some examples of Type 1 hypervisors. The methodology
of how a bare-metal hypervisor allocates available resources, and how it handles driver
usage, also depends on whether the hypervisor is a Micro-kernelized or Monolithic
Hypervisor [19]. MS Hyper-V Server and Xen are micro-kernelized hypervisors that
leverage para-virtualization together with full-virtualization, while VMware ESXi is a
monolithic hypervisor which leverages full-virtualization.

Hypervisors that run on top of the OS, similar to other applications are known as
Type 2 hypervisors. In this case, the OS itself can abstract its hardware, and can
effectively manage the guest OS and VM as an OS process or application. Kernel-based
virtual machine (KVM) is one of the most commonly used Type 2 hypervisor, and is
often used in conjunction with the QEMU emulator. KVM became part of the Linux
kernel machine in 2007 and it supports full-virtualization. Type 2 hypervisors enable
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quick access between parallel running VMs but introduce security risks and latency
issues when they need to communicate through the hardware. That is why, this type of
hypervisor is usually preferred by individual PC users and professionals but rarely used
for servers. Some other examples of Type 2 hypervisors are VirtualBox, VMware Player,
and VMware Workstation.

2.2 Introduction to Cloud Computing

Building upon the concept of virtualization and virtualized infrastructure, cloud comput-
ing has become a widely used source of IT service delivery. It is a dominant heterogeneous
and distributed system that offers on-demand resource capacity for different customer
requirements.

Cloud computing is the migration of computing capabilities and storage from enterprises
and small network to the cloud. The user defines the resource requirement and the
cloud provider virtually assembles different requested resources and allocates them to the
particular user. The two major factors for clients to rely on cloud services are cost and
scalability. Cloud computing is based on a growing infrastructure, providing different
service paradigms such as software as a service (SaaS), infrastructure as a service (IaaS),
platform as a service (PaaS), data-Storage-as-a-Service (dSaaS), and development-as-a-
service (DaaS) [20], with a rapid trend toward "Everything as a Service" (XaaS). The
cloud computing environment, now encompassing up to the edge to include Mobile
Edge Computing (MEC) [21], is essentially based on a pool of computing, storage and
networking resources that need to be dynamically allocated upon user request. Besides a
multitude of user application components, a number of enterprises rely on cloud services
for their growing IT infrastructure. It is easier for cloud customers to use cloud services
rather than deploying and managing their own infrastructure. A recent report on the
growth of cloud computing services shows that there was a significant increase of up to
15% of cloud services in Europe in the year 2018 in comparison to 2014 [22].
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2.2.1 Cloud Architecture

The cloud computing architecture is composed of different components and sub-components
that are coupled together. There are mainly two major parts of cloud architecture:

front-end platform and back-end platform [23], as shown in fig. 2.2. Both these platforms

are connected to each other via a network, usually the Internet. The cloud front-end

platform is the end that is visible to the customer or user. It includes the user interface

and the client’s computer system, and the network which is being used to access the

cloud. Not all clients have the same user interface. The user interface at the front-end

could be different as the user choice of accessing web services could vary from Firefox,

Internet Explorer, Google Chrome, to others. Clients at this level could be a mobile

device or tablet, or a server or group of servers.

On the other hand, the back-end platform comprises of components and infrastruc-
ture at the service provider end. This is a relatively bigger and much important platform
as all functionality of cloud computing and cloud services is delivered from this end.
Servers, data storage systems, virtual machines, security mechanisms, and deployment
models are the major components at the back-end. A central controller to monitor the
network traffic and client requests is also a part of the cloud architecture, which follows
a set of protocols rules, and uses a special kind of software called middleware. This
is responsible for the control and management of services and ensures everything runs
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smoothly.

2.2.2 Cloud Deployment Models

Apart from publicly available clouds and cloud services, many organizations have their
private cloud infrastructures. Considering the need and use of cloud computing, several
models for deployment of the cloud have been developed. Some distinct cloud deployment
models are public, private, hybrid, and community cloud [23].

In the public cloud, the cloud infrastructure serves the requests of the general public
and shares the resources across multiple tenants. It is a centralized cloud whereby many
users concurrently can access different services from across the globe. Some of the services
on the public cloud are free but there are also some services that are available on-demand
pricing, allowing customers to use them according to the pay-per-usage model. The
Amazon Elastic Compute Cloud (EC2) is a primary example of a public cloud. Some
organizations, however, build their cloud infrastructure exclusively to be used by their
employees, multiple business units, or a distinct group. Services and resources of private
clouds are dedicated to a group of users provisioned by the cloud owner. These clouds
are usually managed via internal resources; however, sometimes they are also out-sourced
to third-parties for management. One of the reasons for using the private cloud is data
security and intrusion risks for many enterprises. For many users with sensitive data
or large-scale of their own users, private clouds are more efficient, cost-effective and
provide higher Quality of Service (QoS) than public clouds. The virtual private cloud
service, offered by many public cloud providers, is a special kind of cloud deployment.
These private clouds with strong network security and isolation among tenants, provision
resources only to the dedicated group of users and lie under the category of hybrid clouds.
Hybrid clouds combine the computational power and performance of public clouds, along
with flexibility and security gains of private clouds to satisfy their customers.

2.2.3 Cloud Services

Virtualization is considered the asset of optimization in IoT. The growing popularity
is due to its different levels of services for different users. According to the National
Institute of Science and Technology (NIST), the service model of cloud computing is
divided into three main types [23]. These three services are Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS). The structure of
these services is shown in fig. 2.3.

Infrastructure-as-a-Service (IaaS) is popular among enterprises for providing
the solution of resource management and cost management for their large network.
This model leases the infrastructure as a service, which includes guaranteed processing
power, storage, and network resources. The cloud consumers have control over the
computing environment such as running OS and application on a server, as well as
virtual network and storage, but they do not have any control over the underlying
virtualized infrastructure. They are not allowed to choose physical servers on which they
could provision their VMs. OpenStack is one open-source cloud management software
that provides Infrastructure level services.

Platform-as-a-Service (PaaS) provides the facility to its users to develop and run
web services on the cloud. These services are focused on the particular application as
they provide a specific OS to their users which unlike IaaS users, cannot choose their
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own OS. PaaS is technically a version of TaaS with a custom software stack for a given
application with access to the necessary services it requires. It allows cloud consumers
to deploy applications using programming environments, libraries, services and other
tools provided by service providers. Examples of PaaS include but are not limited to
Google App Engine, Heroku, and IBM BlueMix.

The simplest of these services is Software-as-a-Service (SaaS) that provides the
application to its users. The application is deployed from the centralized system and
later provided as a software (or application) to run on a local computer. It allows users
to lease the application and pay according to the model "pay-as-you-go". In SaaS, cloud
consumers have no control over the infrastructure nor over the application environment.
Google Gmail and Salesforce CRM are two typical examples of SaaS.

2.3 Advantages of Virtualization and Cloud Computing

The emerging growth of virtualization in different domains is due to its flexibility and
feasibility in the management and deployment of infrastructure [2], and these properties
are the basic requirements for any modern IT infrastructure. Cloud providers give their
clients a competitive advantage by providing the most innovative technology available.
In a virtualized environment, decoupling users from physical hardware infrastructure
while giving access to the cloud makes it flexible for the client to access and use the
services with enhanced portability, anywhere anytime. One of the benefits of isolation
either in physical or virtual environments is security. Consider a virtual machine running
on a host, along with many others, is being attacked. This affected VM will not impose
security risks to other parallel running VMs on a similar host. Similarly, any software
failure on a single VM will not effect the performance of other VMs.

One important factor for service providers and users in the cloud is the management
and operating cost of the system. Moving to the cloud using virtualization technology
has significantly reduced the management and maintenance costs of IT infrastructure [24].
Eliminating the use of hardware devices, networking devices and cables in the virtual
environment is an efficient way of reducing capital and deployment cost. The management
cost, floor space and operational cost are also reduced at a personal level. Most of the
enterprises, small organizations and new businesses save the purchasing, deployment and
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managing cost of the systems and equipment using the cloud infrastructure. Startups
can save their cost on investment; hence, they do not have to wait for years to get the
payback from it.

Different workload patterns and traffic intensity are also a major concern to maintain
system performance. The scalability in the virtualized environment makes it feasible
for applications with dynamic load to efficiently scale-up or scale-down the resource
request [2]. Software-based resource orchestration tools in a virtual environment further
provide rapid resource provisioning with an optimal solution. Monitoring of resources
and performance using software-based tools makes it relatively easy to manage, migrate
and reschedule VMs for load balancing. Load balancing and consolidation are two
hlcommon ways to improve resource utilization in these environments. Consolidation
further reduces the computing cost in the cloud by possibly activating only a small
number of servers.

Considering the environmental issues of the modern world, sustainability is also a
major concern in all domains. With reduced hardware components and minimizing the
power consumption (by running several applications or VMs on a single server), the
negative impact of IT infrastructure on the environment can be reduced [24]. However,
researchers are still investigating to further improve the energy-efficiency of algorithms
and frameworks to reduce the carbon footprint of data centers and virtualized technology.

11






3 A Survey: Power Measurement and
Power Consumption Models in
Virtualized Networking and
Computing Environments

3.1 Introduction

The emergence of cloud computing has led to massive virtualization in data centers. Net-
work Function Virtualization (NFV) [25] and mobile edge computing [26] are extending
the paradigm to both access and backhaul networks. Thanks to such increasingly avail-
able computing facilities, scientific, consumer and business domains are using software,
applications and infrastructure as services offered by their providers [27]. This recent
trend of growing virtualization and virtual networking has increased the power expendi-
ture at data centers and its adverse effect on the environment, owing to the increased
carbon footprint. Already in the year 2014 [6], the power consumption of cloud comuting
system and networks was about 100 billion kWh per year, with a global expenditure of
about 40 billion US dollars. According to a survey by the Natural Resources Defense
Council (NRDC) [5], data centers worldwide consumed in 2016 about 1.3% of the total
electricity. With this trend it is predicted that the total power consumption of US data
centers will most probably increase to 140 billion kWh by 2020. More recent studies
estimate that the ICT industry may reach 20% of the worldwide electrical requirements,
and emit up to 5.5% of the world’s carbon emissions by 2025 [7]-[9]. Within this scenario,
data centers on their own might account for more than 3.2% of greenhouse gas (GHG)
emissions (corresponding to 1.9 Gtons per year). Therefore, the emerging virtualized
environment needs an energy efficient cloud and virtual networking infrastructure to
meet the modern world’s requirements.

Strategic planning and developing methods for green computing in data centers have
been and still are under investigation. Recent data [10], [28] show that these advancements
in energy efficient frameworks and computing techniques might reduce the overall power
consumption of US data centers by 33 billion kWh in 2020. As regards the integrated
mobile and fixed networking environment of fifth generation mobile networks (5G), it has
been noted that virtualization, though capable of increased energy efficiency, owing to
consolidation of resources, risks to increase the power expenditure and carbon emission,
unless proper optimization and dynamic adaptation strategies are put in operation [29],
[30].

This high-level objective of remedial action therefore consists of optimization of power
usage in (a) data centers and (b) softwarized and virtualized networks. These broad
application scopes rest on a foundation of accurate power measurements of individual
virtual components. Accuracy in energy measurements facilitates devising energy-
efficient algorithms and effective VM consolidation methods. Precise modeling of power
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consumption of a virtual machine or a physical device is essential for optimization. It is
also essential for billing in multi-tenant environments, so that the Infrastructure Provider
(IPr) can charge customers the fair amount for the resources (including energy) they
consume.

However, it is difficult to measure power precisely for virtual components since current
power meter measurements cannot be related directly to them. Furthermore, power
consumption of similar virtual components differs based upon the running application and
hosting machine. Most power measurement models available measure the consumption of
the whole system. There is no accurate power meter available to measure the consumption
of a single core of a server or for a single VM or container.

We observe more challenges in the use of multi-core processors. Parallel processing
with an increased number of cores has increased speed and performance; however, power
consumption has also increased, owing to growing traffic volumes and power-hungry tasks,
unmatched by the hardware energy efficiency [31]. Further: with multi-core processors,
efficient resource utilization and fair task allocation is a challenge [31]. This shared
environment makes the power estimation of a virtual component even more challenging,
as different virtual components share the same host resources.

The survey in this chapter indicates that recent research has started to provide
directions to improve the accuracy of power-measurement tools. We suggest a unique
tool, a problem-approach-development (PAD) triad, which, to the best of our knowledge,
we are the first to use, to identify these directions. In the process of discovering triads,
we identify a number of interests, or research domains, which can be delineated within
the maturing research space on power consumption in virtualized environments. The
volume of works in these research domains of the space is prohibitively large for a single
survey. Here, we limit ourselves to one research domain: power models and meters for
virtual computing and networking environments. We do, however, identify the other
research domains in sec. 3.3.2.

This chapter is organized as follows. In sec. 3.2, we describe a unique method for
carrying out a qualitative analysis. To facilitate readability of this work, we precede the
detailed results with our analysis, presented in sec. 3.3. There, we give a qualitative
assessment of the primary research domain through our reflections on themes which
emerged as we organized the data. We have classified these themes as “state of the art”,
“fallacies”, “pitfalls” and “research domains”, to suggest guidance and warnings which
we were able to glean from others’ experiences. Sec. 3.4 carries the base product of this
survey. We provide a digest, through a balanced set of a synthesis, a graphic device and
statistics. The use of power models in real scenarios are presented in sec. 3.5. We wrap
up our reporting in sec. 3.6, where we present our observations on favored tools and
methods. Conclusion to the survey is provided in sec. 3.7.

3.2 Research Method Overview: Analysis with Structured
Coding

We base our method on (a) the coherence amongst widely-cited texts [32]-[35] in
recommending thematic analysis as an introduction to the methods of qualitative
analysis, and (b) upon its application in [36]. This form of qualitative analysis was
selected as the primary method of gathering insights. We used thematic analysis on
a body of works gathered from the ACM, IEEE and other sources (the “corpus”) to
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produce our results. Use of a recognized method of analysis provides the needed structure
and technique and supports the in-depth reading that, jointly, facilitate both objectivity
in our results and critique of our results. The corpus is our raw qualitative data. It
consists of a set of papers, which we refer to as research units (RUs), i.e. publications
(excluding surveys) in conference proceedings and journals. The prescriptions of sound
qualitative analysis for systematic review require a choice of coding method of this
data. The process of coding collates the diversity of the bodies of text into smaller codes
or labels. Codes are terse, dense representations of a verbose articulation of a concept,
and resemble jargon without the elitist connotation which this word carries.
Codes must have the following characteristics.

1. They must be semantically rigorous i.e. the meaning they represent must be
clear and their use (application) must be unconfutable.

2. They must be universally applicable across research units i.e. they must
provide a uniform means of dissecting publications. Use of more than one coding
system (i.e. two or more non-universal coding systems) may create a split in the
coded data with in-comparable parts across the split.

We satisfy these two requirements through the elemental coding method of structural
coding. Structural coding poses a series of questions relevant to the inquiry in hand and
is well suited to any problem which can be described using a standardized set of questions.
We deconstruct the problem of literature review into a standardized question-and-answer
protocol that can be directly converted into a structural coding approach. The questions
are the following:

1. What is the topic in which the researcher is interested?
2. What is the problem which the researcher(s) saw as an opportunity for study?
3. What approach(es) did the researchers take in an attempt to solve the problem?

4. What development(s) and/or contributions derive from the researcher(s) work?
The corresponding structural codes are:

1. Interest
2. Problems and derivatives (challenges)
3. Approaches

4. Developments / contributions

We refer to this protocol as the IPAD review protocol, and use it to survey research
into power modeling and measurement in virtualized environments. Each RU (paper)
is mined for “the topic in which the researcher is interested” (I-nodes), “the problem
which the researcher(s) saw as an opportunity for study” (P-nodes), the “approach(es)

. [taken by] the researchers ... in an attempt to solve the problem” (A-nodes) and the
“developments(s) and/or contributions deriv]ing] from the researcher(s) work”. The prod-
uct of mining an RU is therefore one or more bound collections, or tetrads, that facilitate
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a good apprehension of the RU. More importantly, as we explain shortly, it facilitates
the act of locating this RU within the greater landscape of research (here: into power
measurement and modelling in virtualized networking and computing environments).

In this particular study, diversity of interests was very limited. We refer to this
observation again while introducing sec. 3.3.2, “Research domains”. Therefore, we chose
to separate the interest-nodes from the rest of the nodes of the tetrad, to avoid repeating
essentially the same two interests with every RU analyzed. From here on, we will focus
on the P-A-D triads.

The act of coding is carried out as an intermediate step on the way towards catego-
rization. For example, given any number of research units, a set of approach codes is
collected. Minimally, one approach per RU can be discerned. Within the full set of
approach codes, some codes will be identical. Others can be reduced to a code which
carries enough of the original, unreduced meaning, to be non-trivial. This process of
proximation (of the codes therefore leads to the aforementioned categorization of the
codes into a condensed set that is conducive to (a) assimilation by a viewer, as well as
(b) further rationalization.

We embark upon such a rationalization. We observe that each research unit may
be represented as one or more triads and that the frequency of a triad within the
overall set identified, is itself highly representative of the state of the art. The frequency
of individual nodes (i.e. individual problem, or approach, or development) is itself
meaningful. We also attempt to interpret frequency of occurrence of pairs of these nodes,
or dyads. We expect the observed nodes, dyads, triads and their relative frequencies to
be fertile grounds for grounded reflection about the state of research. This culminates
our thematic analysis.

3.3 Analysis through Themes

3.3.1 State of the art
Trends

The concern about how to attribute system power to the virtual entities (VEs) in the
process of developing a model of power consumption. The most common approach is
that of attributing dynamic consumption only to guest VEs and static consumption to
the host, or to a privileged VE (root in Hyper-V, dom0 in Xen). This coarse attribution
must be complemented by one that is capable of dividing dynamic consumption amongst
the individual VEs. The approach differs depending on whether VMs or containers are
under study. With VMs, a common approach is to allocate processor events occurring
within a VM’s scheduled time and “space” (the executing cores) to the account of that
VM. In this manner, all three aspects of the model are captured: the events, the period
within which the events are registered, and the overall system power consumption.

The second most significant research path departs from the problem of modeling VM
power consumption in terms of its own resource use. The impact of utilization of a
specific resource (usually, the processor) on power consumption is investigated (resource
isolation) and used to develop a linear model.

A somewhat incidental path departs from concern with the relationship between
workload type and power. In the course of isolating specific resources while approaching
this problem, researchers observe aspects of the behavior of power consumption on
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specific processor hardware. For example, it was observed that the Xeon Core 2’s
exclusive-caching implementation activates L1 caches on cores that would otherwise be
idle [37]. Suppose that core “A” is loaded with a memory-intensive thread. Then core
“B”’, which would otherwise be idle, is activated not for processing but to operate a
sub-unit that searches L1 cache. This activation of otherwise idle cores leads to a rate of
growth of power consumption with workload that is sub-linear. This follows because the
rate of growth observed when the core “B” is intentionally loaded, is less than the rate of
growth when core “A” is loaded. Several other highly-specific observations like this can
be found [38], [39]. Their use is limited to specific hardware and the general lesson that
accurate, broadly-scoped modeling of power consumption cannot be a highly abstracted
study. We feel compelled to elaborate on this while discussing fallacies (sec. 3.3.4), as it
seems that there is need for greater awareness of these limitations.

We further observe that the challenge of power consumption as a function of VM
resource use is approached through three groupings of approach categories, which we
enumerate below. Before presenting the enumeration, it must be added that this challenge
has the complementary one of system power attribution (as described in this sub-section’s
first paragraph). A fourth approach category, i.e. the set of those used to deal with system
power attribution, should be added to our enumeration of groupings. Therefore, a basic
methodology of the study of modeling power consumption in virtualized environments
includes four complementary efforts:

1. Use of microarchitectural instrumentation and/or architectural instrumentation
2. Use of synthetic benchmarks (resource isolation) and/or representative workloads
3. Pre-selection of model type

4. Coarse (VE / non-VE) and granular (intra-VE) system power attribution

Our final observation concerns the scope for research in this field. Linear models are
represented in about 35% of all developments observed. Non-linear models (polynomial
regression or regression to some other closed form) are present in about 15%, while
alternative models (Gaussian Mixture Model, Support Vector Machine, etc.) are present
in about 10%. Meanwhile, researchers presenting alternative models have claimed that
these are more accurate than linear regressions. Polynomial and other types of regression
to closed-form are highly suspect, as they often coincide with modeling that is narrow in
scope. In sec. 3.6, we evaluate formal methods at some length and conclude that it is
time for future research to use the more sophisticated regression techniques.

Core challenge in VM power modeling and measurement

The core challenge common to all problems is that modeling power consumption by
a virtual machine has several dimensions of variability. Comparison with the power
consumption of physical machines throws this core challenge into sharper relief. With
physical machines:

e power consumption can be measured directly;

e the foundational dependence on virtualizing agent is ontologically foreign and
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e the activity of other physical machines (that do not send or receive workload) is
irrelevant.

It may be useful to think of the research spaces as possessing five dimensions of
variability:

1. workload
2. virtualization agent (genre and technology)
3. host (resources and architecture)

4. power attribution approach (e.g. dynamic only or static + dynamic; processor
only or processor and 1/0)

5. co-hosted VMs

Each model’s scope covers only a subspace of the ideal 5-dimensional space but the
extent is not usually stated. We touch upon this issue briefly in sec. 3.3.4.

Three levels of abstraction

We note that existing power models may be classified into one of three levels of abstraction.

1. Microarchitecture and architecture
2. Simple characterization of workload

3. Complex characterization of workload

Models at the microarchitecture and architecture levels of abstraction are low-level
models. Power consumption is expressed in terms of variables that are defined at
sub-CPU and computer system levels. The granularity of this level holds the greatest
potential for accuracy but the rate of change of observed variables poses significant
communicational and computational overhead. As a result, such models are unlikely to
be used in centralized, real-time deployment but may be used in a layered power-control
architecture as contemplated in ETSI Std. 203 237 [37]. Enokido, Takizawa and various
others with whom they have co-published use simple characterization of workload e.g.
[39]-[41]. These models describe power consumption in terms of fundamental descriptors
of workload, e.g. number of processes and transmit/receive data rate. The least granular
model uses a complex characterization of workload [30], [42]. The objective here is
to quickly proceed to a good estimate of the power or energy required to produce
the workload. This kind of model has no use in real-time control but it is useful for
macroscopic comparisons, i.e. comparisons between two disparate systems for provision
of a service. Possibly, the disparity is paradigmatic; for e.g.: classical vs virtualized
implementations. Thus in [30], the implied unit is the amount of power required to
deliver 1 million packets per second of throughput through an evolved packet-core’s
(EPC) serving gateway (SGW). In [42], while units of energy efficiency are not specified,
the objective is to minimize the amount of power consumed for baseband processing
functions in a radio-access network.
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Architectural or Microarchitectural Instrumentation

Many power models use hardware resource consumption to estimate the power consumed
by virtual components. A study was conducted in [43] to evaluate the available power
models for processors, VMs and servers. According to this survey, most of the power
models for virtual machines use physical machine counters to estimate the corresponding
resource utilization by the virtual components. We offer further insight on this matter.
We concur in the observation that much current research is concerned with modeling
power consumption of virtual machines. The approach may succinctly be described as
estimates obtained from models trained out of collected data. We further indicate that
approaches may be broadly divided into two groups, according to whether architectural
or microarchitectural instrumentation data is collected. We therefore divide the works
into these two groups, with further sub-division to create a representative set of samples.
Within each sample’s analysis, we present references to similar works.

1. Architectural instrumentation

(a) Joulemeter is a software power meter that was developed to measure the power
of running processes, applications and different components on a physical
host [44]. It has low overhead and uses a built-in power sensor available in
modern processors to measure the power drawn. It monitors the run time
resource usage to compute the resources used by any running process or a
virtual machine. For the virtual machine, the virtual processor’s activity is
tracked at the hypervisor where the resources consumed by each VM, such as
CPU utilization, memory and network are observed. Other components are
assumed static and included in the idle power of the server. The percentage
error for different workloads running on a host machine was in the range of 2
— 5%. This power monitoring tool can measure the power consumption by a
VM in a heterogeneous VM network as well. Joulemeter was also used for
the management and provisioning of a VM in a virtual environment in [44].
Experimental results show that VM management based on power estimation
by Joulemeter can reduce power consumption by up to 8-10%. Joulemeter
is no longer being developed by Microsoft as a standalone tool. Microsoft is
integrating energy-awareness directly into Visual Studio [45].

(b) Another approach is presented in [38]. Here, the power model of virtual
machines is designed by monitoring the power consumption of the server in
two phases. In the initial phase, no VM is running. The idle power of server
is measured, which includes the power consumed by CPU, hard disk, network
and other hardware components. Different polynomial degrees are allocated
automatically to the model variables to estimate the whole system power
on stressing CPU. Unknown parameters of the system’s power function are
found using multiple regression techniques. These components or variables are
assumed to provide the combined resource consumption of all VMs running.
In the second (runtime) phase, each virtual machine is started after some
amount of time, and then the effect of the VM on the counter values and
measured power, is tracked. Results show that a linear regression for power
consumption values with CPU intensive workload gives a higher error of up
to 10%, equivalent to an root mean square error of 20W. However, using
polynomial regression in the initial phase reduces the error to 1.9% with
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(a)

an average measurement deviation of 0.7W. The power estimation is also
observed by switching on the turbo mode of the processor. It was found that
with higher polynomial degree in the regression model, the estimation error
in turbo mode can be reduced too. The drawback of this approach is that
only the behavior of a single VM running alone on a server is considered.
Several VMs running concurrently on a server may consume the resources in
a different manner. Such loading is not considered in this study.

Another power model was designed to estimate the power consumed by a
physical host by varying the number of VMs running on it [46]. The power
profile of the host was created corresponding to the type and number of
loads running on each virtual machine. Results show that power consumption
increases non-linearly with the number of VMs. Linear regression was applied
to the observed data, which shows the logarithmic relation between VM
resource utilization and host power. However, this model is only useful as
long as the concurrent VMs consume equal processor resources. Hence this
model is limited in practice, since resources utilized by concurrent VMs may
vary. Also, it is difficult to estimate the consumption of individual VMs when
more than one VM is running on a host as the aggregated virtual load is
considered in the experiment.

Since the number of CPU cores also affects the power and performance of
the server and VMs, a core-aware power model (CAM) is proposed in [47].
This model profiles the power behavior of a VM and the server, considering
the CPU utilization and number of cores present. For the VM power model,
the CPU utilization of each VM is observed using the software tool Sysstat
running inside each VM, and the server power is calculated using the derived
core-aware power model. The resulting model can be used to study the impact
of varying the core count on a VM’s power consumption. The model has low
overhead, as it has just two features to train for different scenarios, although
in networks with dynamic resource allocation this model might not be feasible.

2. Microarchitectural instrumentation

In [48], a distributed accounting framework of system power consumption is
proposed, in order to manage guest machines. This framework is designed for
systems with hypervisor-based virtual machines, where energy management is
implemented at host-level and at guest-level. Host-level energy management
is responsible for controlling CPU and disk usage of the virtual machines,
whereas the guest-level monitors the same resources inside the VM. At the
host-level, CPU power is modeled using processor counter values. Each
counter is given a weight according to its contribution to power consumption.
For disk usage contribution to server power, the model uses disk usage and
transfer rate for idle and active state for a calculated time. The framework
also considers the recursive energy at the hypervisor layer which is usually
the amount of energy required for the transfer of information from virtual to
physical device and vice versa. Similarly, at the guest level, the vCPU and
vDisk and monitored, with the difference that host-level used real hardware
counters whereas guest-level uses the virtual performance counters. Using
this framework, the study proposed the energy-aware management of physical
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resources for a virtualized environment.

A power model for a virtual machine is presented in [49], which sums the
power consumption by 22 major sub-units of the Pentium 4 processor, based
on NetBurst microarchitecture. The authors select counters to represent the
different sub-units of the CPU. These include: instructions per second, L1
and L2 cache, Branch, Bus control, etc. Values obtained for each sub-unit
are weighted and aggregate power is calculated for the server.

Another study in the survey [37] suggested that different cache levels consume
different amounts of power. These metrics were incorporated in the research
design to develop a power model by observing the different levels of memory
hit by the running VM processes. Instructions retired and last-level cache
miss counter events were monitored to obtain CPU and memory utilization
by a process. Memory utilization shows significant change in the slope of its
linear model when used with parallel cache access compared with sequential
memory access. Hence, two different power models are derived for both cases.
Power bounds (power consumption range of a server) for each case are defined
using the particular case’s linear model. This model can estimate the power
required by any process through the number of memory hits at a particular
level of cache.

Another power model for VM was proposed using hardware counters in [50].
Instructions per cycle (IPC) and memory counters are used as the input fea-
ture for training the prediction model in this research. For the training phase,
the power model for the physical machine and its hosted VMs, is modeled on
a service machine (a “server”) using a Gaussian Mixture Model (GMM). Each
model consists of several Gaussian distributions, corresponding to possible
microarchitecture level interactions among components and reflected in coun-
ters values such as instruction per cycle (IPC), memory, cache etc. For the
prediction phase, these counter values are mapped using Gaussian Mixture
Vector Quantization (GMVQ) classifier to find the optimal power value for
the given input metrics. Results shows that this model can achieve prediction
accuracy with less than 10% error and outperforms linear regression models.
Since this model uses a separate power model for each client on a server, it
can be computationally exhaustive for multi-tenant servers such as in a cloud
data center. Data collection and modeling is carried out on a service machine
which is also a ‘server’ to reduce the impact of resource usage by the model
in power prediction. Host machines in the cluster send architecture metrics
of their constituent VMs to the server.

Another study proposed a software framework to collect the consumption of
resources by VMs [51]. The power model was then developed using resource
usage counters (oprofile for hardware events and iostat for disk usage) for
the VMs and dependencies of these counters on each other. A non-linear
regression model (Support Vector Regression (SVR)) was used to develop the
power model for this system. The study shows that different resource usage
counters are highly correlated and incorporating their relation in the model
can increase the accuracy of power consumption modeling.
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Direct or indirect measurement of power consumption in virtualized
environments?

We observe that most research in modeling power consumption seeks to obviate the
need for direct measurement through indirect measurement, namely: of resource use
which has a discoverable relationship with power consumption by the entity hosting
the resources. modeling, here, has the objective of indirect measurement of a variable
that is not directly accessible (power consumption by VEs), through others which have
convenient and reliable instrumentation. The accessible variables are referred to as
(power) proxies. Intel’s Running Average Power Limit (RAPL) interface provides a
unique approach to measurement as it directly addresses power consumption. The
accessible variables are referred to as (power) proxies. Intel’s RAPL interface provides a
unique approach to measurement as it directly addresses power consumption. However,
notwithstanding appearances of direct measurement, RAPL is actually based on a
software model that uses performance monitoring counters (PMCs) as predictor variables
to measure power consumption [52]. It is available in processors starting from the Sandy
Bridge microarchitecture. RAPL measures the power consumption of different physical
domains, where each domain consists of either cores, sockets, caches, or GPU. We briefly
denote its accuracy through references to research that has investigated them.

1. A study was conducted to find the advantages and drawbacks of using RAPL
[53]. Different Intel’s architectures such as Sandy Bridge, Haswell and Skylake
were used in the experiments to analyze the RAPL’s accuracy and its overhead.
Data collected were modeled using linear model and Generalized Additive Model
(GAM). Accuracy of predicted results was compared with the measured power
consumption from precise external hardware power meter where RAPL based
model shows 1.8-4.3% of error for the various architectures. Prediction accuracy
of RAPL based power model was also compared with power model based on OS
counters, where OS based models show high error of 5-16%. Also, the performance
overhead (in terms of wall clock time) of using RAPL was studied at different
sampling frequencies and for different application runs. Results show that even
with high sampling frequency of 1100Hz, RAPL incurs overhead of not more than
2%. Some limitations of using RAPL include: poor driver support to read energy
counters, overflow of registers due to its 32bit size and measurement of energy
consumed by individual core.

2. Another study to analyze the precision of RAPL is presented in [54], where only
the dynamic change in power consumption is observed. WattsUp Pro, an external
power measurement unit is used as a reference for power measurement values.
Intel Haswell and Skylake servers were used in the experiments to run different
applications and to find the reliability of counter based power model and external
power meter. However, in this research work, only two power domain packages
(power consumption of whole socket) and DRAM domain of RAPL were observed.
Applications such as dense matrix multiplication and 2D Fast Fourier Transform
were used for server power profiling. Results shows that power measurement error
varies with changing application and its workload size. For different applications
the average measurement error using RAPL was in the range of 13-73% considering
WattsUp power meter as the ground truth. It was concluded that with the
modern multi-core parallel processing and resource contention for shared resources,
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there is a complex non-linearity between performance, workload size and energy
consumption.

Lack of use of metrics of energy efficiency

We note several experiments [39], [40], [43], [55]-[58] that target power consumption
consumption but less than 5% of our corpus approach the problem in terms of some
energy efficiency metric [59]-[61] (see fig. 3.3 in sec. 3.4). It is necessary to move beyond
measurements of how much power was consumed, to measurements of how much power
was consumed to carry out a specific task. This change in approach facilitates comparison
between research works. More importantly, it directly addresses the question about cost
of operation of infrastructure.

This approach requires identification of a unit of comparison, that transcends the
boundaries of disparate systems that deliver this unit. This unit of comparison is referred
to in the LCA framework (ISO 14040) [62] as the functional unit. A definition specific
to telecommunications equipment is given in [63]: the functional unit is defined as “a
performance representation of the system under analysis”. Since this definition is too
broad to serve as a standard, units specific to a variety of classes of equipment are
defined [63]. Two approaches we have seen are hash/J [28] and J/Web Interaction [64].
The functional unit in these cases are performance of one crypto-hash and one web
interaction respectively. Another is to define a functional unit specific to a digital service
delivered over a telecommunications network, e.g. ten minutes’ time of browsing [65].

3.3.2 Research Domains

In the introduction (sec. 3.1), we claim to identify a number of interests, or research
domains within the “maturing research space on power consumption in virtualized
environments”. In this sub-section, we separate the interests from the rest of the nodes of
the tetrad (as we have pointed out while describing our method, in sec. 3.2), to give them
some prominence and avoid repeating essentially the same two interest categories with
every RU analyzed. We suggest that the interests are a theme in their own right and
briefly describe them in sub-sub-sections below where the interests / research domains
are named as their titles. Samples from the literature are used to better illustrate the
research domain referred to.

Models of power consumption

Models of power consumption are investigated at several levels of granularity, with a
variety of approaches.

1. Power models for servers [66], [67] are tackled in early work that attempted to
predict power consumption in computing machinery. One approach [66] is “power
profiling” of a physical host. Power profiling is a process that produces a qualitative
apprehension of the effect of a change in an independent variable upon the power
consumption of the entity under test. In so far as it remains qualitative, it can
only be used to guide design rather than produce a numerical model in the toolbox
of power-aware design.

2. Power models for processors are widely investigated. Although extensive
research has been carried out on the accurate measurement of power consumption
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of a physical system, the research question about precise measurements of a single
core’s power consumption is still open. Without having precise power estimation or
measurement, it is challenging to optimize the resource allocation, load distribution
and task management at the hypervisor level, where load balancing is one method
to achieve power efficiency in most processors and their networks.

(a)

Moreover, with the advent of multi-core systems, these measurement tasks are
now much harder [31]. Available power models consider the power consumption
of the whole system and balance the load with consideration of aggregated
traffic. Several studies, however, have been carried out to make the task
allocation among cores fair by developing power models for multi-core systems
[68]-[70]. Fair traffic allocation policies have been designed to share load
among the cores of a processor in order to have distributed power consumption.

In [71], the authors approach the problem using CPU hardware counters.
They found that the counter value for the number of instructions fetched can
affect the estimation of the system’s power consumption. A power model
using instructions fetched and instructions processed per CPU cycle was
developed and trained with different SPEC2000 benchmarks. Experimental
results obtained from the test dataset show that the model can estimate the
server power with an error of around 2.6%.

Another study [72] derives a simple power model for a multi-core micropro-
cessor with static and dynamic power consumption. The number of active
cores in a multi-core server can affect the dynamic power of the system, but
the static power consumption will remain constant by varying the number of
cores in idle state. Since memory components are also fabricated on chips,
researchers also included the power consumption by caches in the power
expression.

In the research work presented in [55], an optimal server configuration for
power and performance trade-off in the cloud environment is obtained. A
multi-core server is analyzed using an M/M/m queuing model where the
average task response time and its associated average power are measured.
The waiting time for the task is calculated using the queuing model and the
power consumption model is derived using the digital circuit power dissipation
expression, considering constant speed at all cores. This research shows that
power and performance optimization for a server can be obtained through
optimal selection of the server size (i.e. number of server cores) and core
speed. For servers with similar core speed, it is concluded that fewer cores
with high speed perform better than more cores at slower speed. A limitation
of this work is the consideration of an ideal case, where the speeds of all cores
are similar at every time instant, which is not the case in a real-life scenario.
Moreover, the resource utilization is measured for the whole system and not
on an individual core basis. Also, each core receives the same load; hence,
this model might not be valid for cores experiencing different workload and
power consumption.

3. Identification of good proxies for power consumption is another important
aspect to consider for power measurement. The objective is identification of those
parameters which have at least a clear correlation with power consumption. Keong
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et al. [56] take the approach of seeking software application metrics which fulfill
this proxy role.

The effect of parallel processing and architecture on system performance
and power

The effect of parallel processing and architecture on system performance and power
consumption is studied in [73]. Starting from Amdahl’s law, the authors observe how
the system’s energy can be affected by parallelism and traded off with delay cost. This
research work first derives an expression for a processor architecture’s generalized energy-
delay-product cost function. It then proceeds to determine expressions particular to
specific microarchitectures for the energy- and the delay components of the cost function.
Furthermore, two forms of the cost function are employed, to reflect the difference in
importance afforded to performance and energy savings, respectively. The Energy-Delay
(ED) cost function, where both energy and delay are equally weighted, and the Energy-
Delay square (ED2) cost function, with double contribution of delay, are used to evaluate
the processor speed and its corresponding performance. In ED2, more emphasis is placed
on performance (speed) than power. Since these generalized expressions embed the trade
off between power and delay, they can be used to optimize the processor performance
by considering these design parameters (as was done, e.g., in [74]-[76] in the context of
NEV).

Real-time control of power consumption

Real-time control of power consumption (using various approaches, particularly sched-
ulers) is widely investigated. One particular approach considered load balancing and
task-cache affinity [68]. To balance the load among cores, load assigned to different
threads may need to be switched across caches. It is desirable to balance two objectives:
(a) improve affinity between thread data and cache in a multi-core (multi-cache) system,
hence improving energy efficiency while (b) keeping load balanced among cores. Towards
this end, scheduling of request queues using dynamic weights is proposed. Tasks of
similar type are directed towards the same thread to avoid back and forth movement
(across cores) of arriving tasks. However, this may add network latency and increase
power depletion of the system as tasks with higher incoming frequency need to wait
longer at their thread queue. This problem is tackled by assigning weights to all tasks at
the scheduler, based on offline web traces. The selection of weight for each type of task
is based on how much time and CPU resources the task will take to process. Since the
mean service time is calculated from off-line log files, which may not closely match the
runtime dynamic system, the model appears to be suitable if the network has frequent
and similar types of traffic arrivals. Also, this model enforces hard affinity, i.e., each core
will process only a dedicated type of task, which is another limitation of this research
work.

Open and flexible programming interfaces

Open and flexible programming interfaces are of particular interest, as they abstract
away the diversity in parameterization of hardware power models, to facilitate interaction
with a control plane entity. Furthermore, abstraction can be used to convey the effect on
power consumption of control parameters, between the network management plane and
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the control plane of network devices. In this regard, the Green Abstraction Layer (GAL)
architecture was introduced in [77], and later adopted as an ETSI standard [78]; Power
management capabilities of the future energy telecommunication fixed network nodes. It
defines an abstract interface to represent power and performance parameters at different
levels of complexity of a network device (such as entire device, chassis, line cards, single
hardware component). The GAL represents the energy capabilities along the chain of
architectural hardware components of networking devices. The GAL concept can also be
extended to embrace virtual entities, and it might be an effective method to represent
different granularity levels of power consumptions also in virtualized environments.

3.3.3 Pitfalls

Power consumption does not in general increase linearly with processor
utilization

Notwithstanding advances made in identifying operating contexts that manifest a sub-
linear power-utilization relationship [37], [50], recent publications [76], [79]-[85] persist
in using the linear model without acknowledging its limitations. The model is simple
to use and has some foundations in research [67]. It has three premises, described here
with regard to the operation of Microsoft Windows:

1. When Windows has no threads to run on a logical core, it schedules the idle thread
[36]

2. The idle thread keeps the processor in a low-power state [87]. The specific state
depends on the processor’s green capabilities.

3. In the complement (non-idle time), the processor issues instructions at a constant
rate.

This simple model has limitations ([45], p.6/12, [50], p.808). It fails to take into
account diverse processor operating contexts, some of which are coming to bear on
current use cases. Specifically, the third premise is true only to the extent to which
instructions are being fetched and data are being loaded from/stored to instruction and
data cache respectively. Consider the context of 90% and greater hit ratios. Even the
short time periods over which rate of instruction issue is computed, can be expected to
lead to a narrowly distributed probability density function of such a rate. By contrast:
the lower the hit ratio at the cache level before main memory, the lower the fraction
of non-idle time at which power consumption saturates. This saturation is strikingly
illustrated in ([50], fig.1). Variation of power consumption due to execution of tests from
the SPEC CPU2000 benchmark suite is shown. The power consumption diverges at 25%
CPU utilization and the consumption of the processor-bound test (mesa) is greater than
that of the memory-bound test (mcf) by a factor of about 2.6.

For Intel processors with Intel® Hyper-Threading technology enabled, the operating
context under which a linear relationship is subject to the lowest error includes at least
the following two conditions.

1. The processor cores are increasing their instruction issue rate in proportion to the

fraction of time they spend busy [37]. This implies that instruction and data cache
hit ratios are high. This is simply the third premise.
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2. Only one logical core is active per physical core at any given time [37], [50].
Expressed alternatively, actual utilization must lie below half maximum utilization.
The underlying cause is that activation of the second logical core employs fewer
organizational units of the processor than activation of the first logical core.

The first condition is particularly problematic, as cache miss ratios are likely to be
much higher in the context of virtualized environments. In such environments, the
number of runnable threads is the sum of runnable threads controlled by independent
operating systems. Evidently, this is higher than the expected number of runnable
threads on a single server instance. Other evidence of this “utilization trap” is not hard
to find. In [79], the compute resource is stressed using cpulimit and stress-ng. The
“cpulimit” utility runs a specified process image, then pauses and resumes it until a
certain percentage utilization is reached [82]. The repetitive execution of a single process
is highly likely to create conditions for very high instruction- and data-cache hit ratios.

Application characteristics significantly impact power consumption

In [58], very high time overheads and significant power consumption overhead were
observed in the virtualized implementation of a web server with respect to its physical
counterpart. The empirical context consists of software network switches, which are part
of the agent of virtualization. While this is a representative context, it is noteworthy that
this is a network-intensive application that uses the agent of virtualization’s software
layer-2 switch. This is an emulation of a device. As such, this component (the emulation)
of the agent of virtualization does not meet the second of Popek’s and Goldberg’s three
characteristics of virtualized environments: “show|s| at worst only minor decreases in
speed” [88]. As regards power, the implication of the overhead in instructions is overhead
in consumption. Indeed, the authors recognize the scope of their work: they plan to
carry out research in “advanced [VM] packet switching techniques”.

The impact of application on server power consumption is central to the approach of
Enokido and Takizawa, who have published or co-published a series of works on models
of power consumption under different operating conditions, e.g. compute-intensive [40],
communication-intensive [39] and storage-intensive applications [39]. They explicitly
accentuate the relationship between power consumption model and application process
[40]. We address the fallacy of the generalized power consumption model in sec. 3.3.4.

Benchmarks may skew power consumption according to their
organizational dependencies

In sec. 3.3.3, it was seen that both “cpulimit” and “stress-ng” do not produce generally
representative measurement of power consumption. This observation is not limited
to measurement of power consumption. Use of kernels, toy programs and synthetic
benchmarks to measure performance has been identified as unrepresentative ([89], p.40)
of general performance. Benchmarks are standardized workload generators that are used
for comparison of computer systems for a highly specific class of application. Unless this
application class is a good representative of the productive application of the computer
system, the power consumption measured under test is not a reliable predictor of that
obtained during productive use. It is necessary to plan test workload generators in
advance and state the limits of validity of results. In [64], TPC-W is used which is a
transactional web benchmark that can simulate the business oriented online web-servers.
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The MySQL~++Java version of TPC-W benchmark, suitable for cloud applications, is
used to generate the online traffic, where three different traffic profiles based on browsing,
purchasing and ordering of books are generated. The throughput measure for these
servers are observed through the metric Web Interaction Per Second (WIPS).

Processor organization significantly impacts power consumption

We illustrate this point with a wide-ranging example. The Intel Xeon X5670 and AMD
Opteron 2435, both on x86-64 microarchitecture are compared in [90]. Different idle
loops (using no operation, pause, repetition, etc.) were tested to see their effect on power
consumption of both systems. It was observed that the Intel Xeon has a loop stream
detector, which disables the processor’s features like fetch and decode . On the other hand,
the AMD processor has no hint to process these loops efficiently; hence, it consumed
more power than the Intel processor. Furthermore, different ALU operations (such
as load, addition, multiplication, etc.) consume different amount of power depending
upon the instructions they require and memory location from where they are accessed.
For Intel’s processor bandwidth consumption of all ALU processes from a particular
memory location is almost same but there is a difference in their power consumption.
Such that ‘load’ operation consumes lowest power compare to other ALU operations
performed, and this held true for all memory locations. The reason for this is since
‘load’ instruction just needs to load the content in to the processor registers whereas
‘add’ and ‘mul’ operations are more computation demanding. This behavior was however
opposite on AMD processor, where the ‘load’ operation when accessed from L1 cache
consume almost double the bandwidth than other operations hence also consume more
power. This difference in resource utilization is due to the different microarchitecture. In
AMD processors, the ‘load’ instructions is handled by many floating-point pipelines, and
other instructions just uses single pipeline for their operations. Also AMD processors,
specifically, have an exclusive cache level design, which requires write-back function when
evicting data among different cache levels. On the other hand, Intel’s inclusive cache
design does not require this function; therefore consume less power. However, when
accessed from L2 cache, L3 cache, and RAM on AMD, all performed ALU operations
consume almost similar amount of bandwidth, and consume similar amount of power.

Power consumption or energy consumption?

Power consumption and energy consumption are evidently closely related yet concern
with one is not identical to concern with the other. Concern with energy consumption is
inherently a concern with the continued supply of energy whereas concern with power
consumption is a concern with the implications of using it at the current rate. Concern
with power consumption is less about the availability of energy and more about the cost
of its use and the rate at which it produces other undesirable side-effects, notably GHG
release. Therefore, power consumption is the focus of research in situations of regular
(if not guaranteed) supply; energy consumption is the focus where the energy source is
finite over a timespan of hours, or days. This distinction is perhaps a little pedantic yet
there is value in clearly conceiving of, and communicating, a research interest.
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3.3.4 Fallacies
A universal power model

We have suggested that the core challenge in modeling power consumption by virtual
entities is its number of dimensions of variability. This has been demonstrated throughout
this survey, where a number of generalizations have been addressed. Summarizing,
literature shows that:

e host power consumption does not generally have a linear relationship with processor
utilization;

e CPU-intensive workloads that repeatedly execute the same code skew power
consumption results;

e network-intensive workloads are power- and time-consuming because they employ
emulations of network switches, but the root cause (emulation in the hypervisor
software switch) disappears with SR-IOV ([91]. p.5);

e host saturation must be taken into account in predicting VM power consumption;

e processor utilization (an architectural attribute) is insufficient to predict host power
consumption and microarchitectural attributes, such as last-level-cache misses, are
necessary to predict host power consumption even for the same level of processor
utilization.

This list, while not exhaustive, amply illustrates that the several dimensions of
variability are significant in determination of VM power consumption. A model claiming
to determine power consumption as a function of fewer variables than the dimensions we
have pointed out must be accompanied by a scoping region that limits its use. While a
precise scope may be an unrealistic demand, looser conditions of use of the model are
essential. We now illustrate using two examples from the corpus. Khan compares (]28],
p.51) energy efficiency (hash/J) obtained by scheduling process threads on additional
cores, with that obtained by scheduling them on that hardware threads on active cores
(through Intel Hyper-Threading). He shows that the former is greater than the latter.
Enokido and Takizawa show ([40], p.279) that for a given data transmission rate through
the uplink of a software virtual switch, greater energy efficiency (W /bps) is obtained
by operating an additional hardware thread on an active core (through Intel Hyper-
Threading), than operating an otherwise idle core. An important difference lies in the
task’s processing “intensity”, i.e. the rate of supply of instructions. While Khan’s
operations are tightly bound to the processor (cryptographic hashing), Enokido’s and
Takizawa’s operations are distributed over the processor and network input/output.
Without delving into detail, it is realistic to hypothesize that the average instructions
per second demanded are far lower in the networking application, since transmission of
a large file (as is the case here) does not take place in one processing burst. Operating
time is divided between the processor and the media channel. In such a scenario, the
added capacity of the same-core hardware thread suffices.

Research on power models without knowing power-relevant context

We start with an example. Enokido’s and Takizawa’s work [39] derives a power con-
sumption model for a server while VMs run computation-bound processes. The servers
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used run on Intel Core i5-3230M processors. These processors are used in the mobile
device market [92]. They are capable of low-power idle states [93]. CentOS 6.5 uses a
tickles kernel [94]. Combined, these facts, relevant to the context of power consumption,
provide a plausible explanation for the observed increment in power, (denoted, in [46],
by min C;), when a core in a package is activated.

Another example regards [46]. No reference is made to whether Hyper Threading is
enabled. This is essential to understanding how the ESXi vCPUs are created. Neither
is any information given about how the vCPUs are related to physical (logical) cores.
Nor are we told how virtual network interfaces and switching are set up. ESXi version 5
offers both paravirtualization (“vmxnet”) and emulation (“e1000”) to implement virtual
network interfaces. The impact on energy consumption of selecting a virtual network
interface implemented by emulation, can be expected to be high [58].

The most notable general shortcoming regards the exploitation of processor low-power
modes of operation by hypervisors and guest operating systems. Such exploitation must
be investigated and conclusions stated as part of the declaration of experimental setup.
This facilitates the reproducibility of results and (as indicated within the fallacy about
a universal model) partially defines a scope for the model obtained. Both the above
examples can be applied to illustrating the fallacy of the universal power model but they
emphasize a particular aspect that merits special attention. A researcher into power
models is expected to qualify his/her results within the physical reality in which power
is being consumed. Research into power models involves hard components and a diligent
characterization thereof is essential to the acceptance of work as scientific research.

3.4 A Digest of Challenges, Approaches and Developments

This section contains our digest of research produced by the IPAD protocol. The digest
consists of:

1. the graphic device

2. statistics

3.4.1 Graphic Device

Fig. A.1, Fig. A.2, and Fig. A.3 are the product of this research coding structure referred
as IPAD (in sec. 3.2). These graphics in Appendix A are a node graph (or a mind map)
that shows the state-of-the-art of research in our chosen scope. In particular, these
graphs are encoding of surveyed research units, that strives to relieve a profile not only of
current knowledge (the developments) but also of what has been found a fruitful pursuit
(the approaches) thereof. This is obtained through the relationships that are illustrated
in the graphic between the problems addressed, the approaches to solutions, and the
knowledge obtained in pursuit of solutions. Each node in the graph is enumerated as
category or sub-category. Each problem, approach and development in the graph is
called a node and is represented by letter 'P’, A’ and ’D’ respectively. A full tabulation
of the nodes included within the categories in presented in Appendix B.
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3.4.2 Statistics

The frequency of occurrence of aspects of data collected is examined here. We combine
the structural codes into the following groups:

1. individual problems
2. individual developments
3. dyads of problems and approaches

4. triads of problems, approaches and developments

In the following sections, we interpret the statistics and suggest meaningful metrics
and report our results alongside.

Metric of research interest: Individual problems

For each problem (challenge) identified, we determine the number of times in which
it has been tackled in research units (RUs). We suggest this as a metric, denoted by
Ry, of the attention, or research interest, which this challenge is receiving. We also
observe that a solution to a problem can be approached, within a single RU, in multiple,
complementary ways. Indeed, this diversity is reflected in our data but the approach
diversity factor is not significant to the interest which this challenge attracts. We avoid
the approach diversity factor and measure attention by incrementing the metric only
once per RU in which it is tackled.

Nry P(j)
Ry, = Ejzl k (3.1)

N, N, j
e . YRy Pi(J)

where P,gj )is a binary variable that represents the presence (or lack thereof) of a problem
k within a single RU RUj, over the corpus of Ngy unique RUs, with a total of IV, unique,
identified challenges/problems.

Frequency of occurrence of categories of development

Development statistics are distributed thinly unless developments are categorized. How-
ever, when grouped into meaningful clusters, conclusions can be drawn about the
frequency with which developments take place in sub-spaces of this research space (see
Fig. 3.1). Thereby, a prospective researcher is guided through grounded insight into
works that cover this space. We avoid further interpretations of development statistics
in the interest of objectivity.

Metric of challenge complexity: Weighted challenges

We consider the diversity of approaches through which a challenge is tackled, as a metric
of challenge complexity. The set of all unique problem-approach pairs in the triads
is collected first. Then, for each problem, we add up the total number of pairs within
which that problem is found. We suggest a normalized complexity metric, C, as follows:

()
G- Zitt B (3.2
k ZNP Npa PA(j) )
i=124uj=1 *1
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Fig. 3.1: Frequency of development category

()

where ij is a binary variable that represents the presence (or lack thereof) of a problem
k, within a single P — A pair PAj, over the set of all Np4 unique P-A pairs within the
corpus; with a total of N, unique, identified challenges/problems.

Fig. 3.2 shows the research interest and complexity observed for the different categories
of challenges.

Metric of utility of an approach: Weighted approaches

We analyze approaches in terms of their utility i.e. how useful they are in the overall
motion between problems and developments, and denote this metric as Ux. We increment
the metric of utility each time a particular approach is a component of a triad within an
RU. Therefore, a single RU may increment the metric several times. The utility metric
of a specific approach k is the normalized metric:

Ntriads
N RU; (D)
Uy, = ZJ‘=RlU =1 LAy (3.3)
- Niriads ’
N N RU,; l
ST Sy A

where A,(f) is a binary variable that represents the presence (or lack thereof) of approach
k, within any of the Ny-jqds R, triads within a single research unit RUj;, over the corpus
of Npy unique RUg; with a total of N4 unique, identified approaches.

We emphasize that a single research unit may be described by several such triads that
include approach k. Fig. 3.3 shows the normalized frequency of occurrence and utility
metric observed with regard to approaches detected in the corpus.
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3.5 Applications

Interest in measuring and modeling power consumption by virtual machines and con-
tainers derives from the relationship which power consumption has with the cost of
operations of information and communication technology infrastructure. This state-
ment is relevant to infrastructure provision across the scale, whether in Cloud data
centers or virtualized infrastructure running in points of delivery within the access
segment of a public telecommunications network (PTN). Measurement and modeling are
applied to optimization of these operations. We distinguish between optimization and
minimization through service constraints: optimization is the minimization of costs
subject to constraints on operations explicitly or implicitly obtained from service-level
agreements (SLAs). A well-known example of the impact of SLAs on power consumption
regards the use of redundant equipment to meet service availability requirements. Service
availability (an important parameter of SLAs) depends critically on the absence of single
points of failure (SPOFs). The redundant physical equipment deployed to avoid SPOFs
increases power consumption. Power-aware operation of redundant infrastructure hinges
on models of physical infrastructure’s power consumption as a function of VM workload
(measured in terms of architectural or microarchitectural entities). From this observation,
it may be seen that application of modeling and measurement reviewed in section 4, lies
in the power-aware operation of virtualized environments.

Here, we survey research into power awareness of operations characteristic to virtualized
environments, where these characteristic operations have significant power consumption
that must be measured and modeled. Three concerns emerge:

1. Creation, deletion, startup, shutdown, hibernation, resumption and migration
operations characterize the dynamicity of virtualized environments. The significance
of their overhead in power consumption must be quantified to determine its
impact on energy efficiency. In particular, migration’s cost is not trivial, although
acceptable [95], [96].

2. Furthermore, in order to operate a commercial virtualized environment, hetero-
geneity in both VMs and hosts must be characterized in models. Primarily,
heterogeneity refers to variability in allocation of resource quantities: a virtualized
environment supports diverse VM sizes. Secondarily, there are also implementa-
tional differences in physical machines and these differences manifest themselves in
the power models. This dimension of variability must be included in modeling to
support frameworks of operation, administration and management (OAM).

3. Pay-per-use is one of the key tenets of Cloud Computing. Implementation of this
tenet depends upon the facility to account for resource usage. This facility may be
passed on to the consumer or reserved by the provider for internal cost control.
We observe an evolution of research into comprehensive frameworks capable of
automating the transformation of resource usage into cost.

The first two concerns are part of the broader scope of a Network Functions Virtu-
alization Management and Orchestration framework (NFV-MANO) [97] whereas the
latter concern is part of a Business Support System (BSS). We divide reviewed research
along these two system classes.

34



3.5 Applications

3.5.1 Management and Orchestration
VM Migration

We first consider a sample of works that deal with power-aware VM migrations [80],
[98]-[100]. Their approach is divided into two parts. The first part regards basic research,
where the researchers develop a power model to guide the second part. This latter part
may be described as an approach to applied research, where the power model(s) is(are)
used to quantify the impact of migrations on power consumption.

1. Problem in [98]: How does VM migration affect power consumption?

2. Approach:

a) Workload Model: Historical data about static and periodic cloud workload
patterns was collected and used in an ARIMA model to predict workload. The
predicted workload was transformed into a prediction of power consumption
through the linear/polynomial model of power consumption as a function of
virtual processor utilization.

b) Power Model: A relationship was obtained, through linear or polynomial
regression, between the workload (utilization of virtual processors hosted by
a physical machine), and its power consumption.

c¢) Applied research: The approach taken is to reduce frequency of migration.
The SLA is respected by bounding server power below a threshold. Server
power consumption is used since the relationship between workload and host
power consumption is determined during basic research, and measurement of
host power consumption is less invasive and less demanding than measurement
of several individual VM workloads.

3. Key Developments:

a) The migration algorithm does not migrate the VM as soon as the high CPU
utilization peak is detected. The algorithm waits for some time and if the
high utilization persists, then the VM is migrated. This facilitates improved
energy efficiency through optimal migration of heterogeneous virtual machines
under different workloads.

b) VMs can be migrated without violating performance terms of the Service-Level
Agreement (SLA) by limiting the server’s power consumption below a given
threshold. This framework considers the heterogeneity of virtual machines
and predicts the variation in key parameters such as power, performance and
migration cost, for different usage and size of the VM.

4. Limitations: The workload prediction model is limited to estimating the precise
power cost of periodic workloads; therefore, it might not be useful for a dynamic
scenario.

Orchestration in data centers

Deploying single service in a single host is fairly simple to manage, however, these days
in large data centers and cloud network no single server is serving a single application.
Virtualization has open new ways of service provisioning and application processing on a
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single server where several users can run number of different applications, each isolated
from other. The optimal resource management and task scheduling in such scenarios
may took infinitely long time and consequently may consume more energy. Hence, an
energy efficient management scheme, also called as orchestration tool, is needed that can
find the optimal solution of scheduling problem within polynomial time limit. Although,
some researchers proposed management schemes in [60], [101], [102], but there are also
some orchestration tools [103]-[105] available in the market, which helps to manage the
large network of cluster applications, multiple data centers, public and private clouds
etc. These tools are energy efficient choice for VM consolidation and load balancing due
to their robustness. Some proposed strategies and performance comparison of recent
management schemes are as follow,

1. Problem addressed in [60]: Develop an energy efficient management scheme for
large network with minimum impact on system performance.

2. Approach: Developed an energy-efficient cloud orchestrator (e-eco) which opt for
an appropriate management scheme considering the cloud application behavior
at a given instant. Two energy saving management schemes used in proposed
orchestrator are VM consolidation and DVFS.

3. Key Developments:

a) Proposed strategy will allow VM consolidation for hosts running at low CPU
usage rate when images of VM are centralized. It is an energy efficient
technique as it only requires memory pages to transfer through the network.
However, when VM images are only available where they were initialized, it
is preferred to reduce the processors frequency using DVFS to save energy.

b) In comparison to previous studies, e-eco reaches the same energy saving rates
with far less impact on the application performance. Performance trade-off
between power saving and SLA violation was about 25% and 6% respectively.

1. Problem addressed in [102]: Energy efficient orchestration tool for VM consolidation
in cloud

2. Approach: The optimize solution for VM placement and its network paths (required
band width for consolidation) is found by combining Greedy Bin Packing (GBP)
and Multi-Commodity Flow (MCF) algorithms. For making consolidation decision,
an additional information from user’s end is retrieved, that declare the used or idle
state of the resources. Different approaches for consolidation categorized as max
power saving (aggressive), balanced load and max performance (less aggressive),
are proposed based on the power and performance tradeoff.

3. Key Developments:

a) For critical and latency sensitive applications less-aggressive consolidation
approach (i.e. using maximum available servers) show better performance,
although energy efficiency is compromised to some extent in this case. Ag-
gressive consolidation (i.e. allocate maximum VMS to a single server) saves
the maximum energy while maintaining the performance when VMs are not

fully (100%) utilized.
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VM consolidation when considering the context information from users help
in reducing the power consumption if some idle VMs are present in the system.
The algorithm group all idle VMs together and place them on the server with
lowest power state to reduce power consumption.

. Problem in [106]: Performance evaluation of orchestration tools available in market
for large network management.

. Approach: Comparison of four most used orchestration tools Docker Swarm,
Kubernetes, Mesos and Cattle, has been done based on their framework complex-
ity, scheduling and service layer performance, network scaling and failover time.
Applications running on the servers includes Jenkins, WordPress and GitLab.

. Tools: Rancher software platform is used to organize the cluster and its Ul tool is
used to observe performance parameters of servers.

. Key Development:

2)

The deployment of Kubernetes is more resource hungry than other tools
because of its complex architecture. Whereas Cattle took the least time which
might be because it is the Rancher’s native tool. Hence, deploying Kubernetes
cost for more power resource than other available tools.

Time required to scale-up the network by creating replica images (up to
100) was also observed. When the images are available locally, Kubernetes
took the least time to deploy all replica images, whereas it took the most
when images are being downloaded from ‘Docker registry’. Hence, Kubernetes
when communicating outside the cluster have a huge overhead. However, the
increase in time was linear for increasing number of replicas over all platforms.

Recovery on failure of container and host server is also observed. For container
failure, Kubernetes again is the fastest to recover than Docker Swarm (other
two tools don’t have this feature), since it has a local Kubernetes agent to
monitor cluster health. Whereas host failure recovery was quick on Docker
Swarm than Kubernetes. This might be because Docker architecture has the
heartbeat functionality providing short time to report the failure, whereas
for Kubernetes manager is notified after a series of events which introduce
latency.

3.5.2 Real-time Control
Schedulers

In automated virtualized environments, scheduling is a set of activities in the control plane,
guided by a management policy, that instantiates, monitors, migrates and terminates
the virtual machines and/or containers which encapsulate the workload. One useful
implementation of a power-aware scheduler would operate either to minimize a (cost)
function of power under service constraints or a multi-objective function of power and
some key performance indicator.

1. In [107], Weighted Round Robin (WRR) scheduling of dynamically arriving tasks

among VMs is proposed. Variants of the Round Robin (RR) approach have been
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used in several scheduling processes. The algorithm presented in [107] combines
classical Round Robin and Weighted Round Robin and proposed and Improved
Weighted Round Robin (IWRR). The static scheduler in IWRR consider the
resource capacity, task length, priority and load on VMs to allocate task to an
appropriate VM. To further optimize the system performance, a dynamic scheduler
monitors the system status. It balances the load among VMs on completion of
each task. In this way unbalanced resource usage that may occur because of poor
estimation of task completion time or processing delay, could be fixed immediately.

2. To deal with dynamic load and resource management in virtualized environments,
a discrete state transition model is designed in [101]. This model provides a
predictive controller for virtual systems based on a non-linear power model. The
states are defined based on the server state (on or off), the number of VMs and
their frequency. The processor can switch among these states during runtime to
balance the workload among different virtual machines. This model, however,
has the limitation of being unsuitable for a large state space, as this will make
scheduling and design complex.

Server Power Capping

We apply the IPAD review protocol here. Since this triad regards an application, rather
than a model, we do not include the nodes mined here in the statistics.

1. Problem, in [99], Host power capping in dynamic environment

2. Approach:

a) Basic research: the effect of hyper-threading and processor fan speed on VM
power consumption is analyzed. The study found that the varying power
consumption of a fan changes the power consumption of a server. Also, to
attribute fan power consumption fairly among all VMs, each VM’s share is
found using the dynamic power behavior for each virtual machine.

b) Applied research: This power model was used to cap server power consumption.
A host near its power threshold is detected with assigned maximum and
minimum power of the server. The VM to migrate is chosen by monitoring
its dynamic power and its effect on server power after migration. The virtual
machine selected for migration is that with the least dynamic power necessary
to reduce its host power consumption below the upper threshold. The VM
consuming least dynamic power is chosen as that which takes least time to
migrate

3. Key developments: Results show that this power measurement scheme for virtual
machines is accurate enough to support effective server power capping through the
use of VM migration.

3.5.3 Billing

Fair billing of power consumption is enabled by granular tracking of the financial cost of
power consumption by resources (compute, storage and network) used by a customer.
The emphasis on usage is purposeful. Even with the earliest accounting method of
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billing by active time, it was recognized that resource allocation does not impinge on
an infrastructure provider’s operating cost until it is active, i.e. in use. At this level of
granularity, accounting is indiscriminate of power consumption. With respect to some
referential time period, whether the resource is active and idle or active and fully utilized,
only the active status affects the charge imposed on the customer. This is gratingly
unjust and calls for remedial action. Indeed, significant effort has been brought to bear
in at least two channels of effort: the academic, wherein modeling and measurement is
the primary means to enabling this application, and the industrial, where, concurrently,
efforts to harness academia’s (and industry’s) developments in this space are under way
in the form of a green abstraction layer for virtualized environments. A brief review of
these two channels follows.

Development within academia

1. We observe firstly several works directed specifically at coupling power consumption,
virtual resource usage and accounting for costs. Here, the intention is not solely
to relate virtual resource usage and the ensuing power consumption but rather a
more ambitious infrastructural combination of measurement and cost into a single
System.

a) In [108],
i. Problem: The authors tackle per-VM energy consumption.

ii. Approach: They extend earlier work [109] on modeling power consump-
tion by multi-core processors through microarchitectural instrumentation
of processor subunit activity. The monitoring tool, perfmon2 [110], en-
ables gathering of resource usage counters per process. The agent of
virtualization, KVM [111], encapsulates all thread activity deriving from
a single VM, into a single process. Thereby, the Linux operating system
running KVM — the “host OS” [108], provides a single process of reference
for perfmon2’s tracking.

iii. Formal method: Linear regression fits the training perfmon2 data into a
model of power consumption.

iv. Development: The authors shows their model remains accurate with
simultaneous VMs and when tested under conditions where DVFS is
applied to processor operations. They observe that the principal limitation
regards tracking “brownouts” under conditions of moderately dense VM
packing per host.

b) In [112]

i. Problem: Billing cost for cloud service is not based on CPU /resource
usage, instead it is fixed based on VM size and time duration it is used.

)

ii. Approach: Authors identified that the cost models such as ‘pay-as-you-go
and even ‘pay-as-you-use’ does not charge fair amount to its users, as
these models do not consider the workload on processor or consumed
resources. These models charge same amount to their users, those having
similar VM configuration even if they utilize different CPU percentages.
Consider the case where two users using similar VM on cloud but running
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different applications, such as webserver and CPU intensive workload.
The VM running web-server will use around 5% of the CPU with idle
period whereas other VM might use 90% of the CPU resources. The
current models such as ‘pay-as-you-go’, will charge the same price to
both users despite both having distinct workload, profiles and consequent
energy consumption. Hence authors in [112], proposed a cost model for
VM instances based on ‘Proportional-Shared Virtual Energy (PSVE)’,
which is composed of CPU energy consumption and traditional commodity
prices such as management and operational cost of hypervisor.

iii. Method: Developing an analytical cost model for the VM instances, to
have fair distribution of energy consumption between hosted tenants.

iv. Development:
A. The energy consumed by a single vCPU is dependent on its workload.

B. Considering the CPU usage knowledge available at hypervisor, a
proportional energy-cost sharing model for a VM can be developed.

C. Proposed model can also be used to evaluate the efficiency of services
by service providers and to develop optimized applications to reduce
energy consumption.

Industrialization Development/Green Computing

The industrial effort is visible in the attempt to extend the European standard for
green abstraction of non-virtualized environments [37] to virtualized environments. This
second version of the standard [78] for a green abstraction layer aims to facilitate the
development of software for automation of control and accounting functions. It is tightly
integrated into ETSI’s group of specifications on management and orchestration of
virtual functions, e.g. [97], adhering to the architecture described therein. Along with
improving architecture for green computing, use of renewable energy source (RES) to
operate cloud data centers is also proposed. Renewable energy generators using solar
panels were installed at data centers located in different geographical locations [113].
These data centers were using a flexible load management tool EcoMultiCloud [114],
that balance the load considering objectives such as energy cost variation and renewable
energy production in the region at a particular time. Performance evaluations shows that
use of RES in distributed data center network can save energy cost significantly without
comprising on network performance, if smart management strategy is implemented.

3.5.4 Macroscopic Analysis

We have referred to a complex characterization of workload (sec. 3.3.1) as a means to
“quickly proceed to a good estimate of the power or energy required to produce the
workload”. Such an approach abstracts real-time operation of a computing or telecom-
munications (sub-) system, by reducing the characterization of the power-performance
relationship of its major components to a conservative ratio of power consumed to
produce a unit of workload. Therefore, the aim of such research is not to facilitate
real-time energy-aware control (through the development of models of real-time, dynamic
power consumption) but to justify the use of an (alternative) architecture, organization
or implementation. Two examples are described briefly below.
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In [30], the concern regards whether a telecommunications system built around virtual
network functions can readily be claimed more energy efficient than one built around
physical network functions. A case study is undertaken with a focus on the evolved packet
core’s (EPC) serving gateway (SGW). Part of the modus operandi of this application of
power modeling is explicitly declared in [30]:

1. a mathematical model, and
2. the energy consumed to meet
3. the performance levels demanded of the SGW.

The performance levels demanded are derived from the workload. Therefore, a profile
of workload is required, to determine the performance of the system components over a
temporal (and possibly geographical) range. The conjunction of a temporally unfolding
workload and power consumed to meet this workload lead to the energy consumption.
Hence, a figure of merit can be ascribed: the energy consumed to process the workload
is an indicator of energy efficiency.

The missing piece in this puzzle is how to “fit” the workload into the investigated (sub-)
system (this is the first phase) and therefrom, to its power consumption (this is the second
phase). Herein lies the key abstraction inherent to the macroscopic analysis. In the
first phase, the maximum throughput of a server bridges the gap between hardware and
workload. The second phase transforms a performance level into a power consumption.
In this case, the approach is relatively simple. The maximum throughput is bound,
reasonably albeit sweepingly, to the maximum power consumption of the implementing
device (here, a commodity-off-the-shelf server, or a chassis-bound SGW). We identify
this two-phase transformation from workload to power consumption as a model in the
highest of the three levels of abstraction into which we have classified power models
earlier.

In [42], the telecommunications sub-system is a centralized- (cloud-) radio access
network (C-RAN). The workload consists of a volume of baseband signal processing at
the virtual baseband unit (vBBU). The baseband signal processing function is divided
into four transmission steps (coding, modulation, mapping and multiple-input-multiple-
output processing, followed by a Fast Fourier Transform); there are also the inverse
four reception steps. Each step loads a single vBBU with a certain amount of a unit
of operation: one million operations per time slot (1 MOPTS). This is the first phase
particular case of the key abstraction: the computing hardware that performs any one of
the four steps, is reduced to a capacity in terms of MOPTS. The second phase (transforms
performance into a demand for power) maps the operation of the vBBU to a power
consumption that is in part independent of baseband-signal-processing-load (“static”)
and in part directly proportional to this load (“dynamic”).

Given these abstractions, and provided that realistic figures can be sourced to represent
them, then the power demands of a load profile can be estimated. Here, the ultimate
objective is not the consumption estimate itself but a comparison with alternative
algorithms for dispatching the steps of baseband signal processing to the vBBUs in a
pool.
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3.6 The Engineer’s Kit Bag

3.6.1 Observations on tools
Workload Generators/Benchmarks

Reliability of the studies, analyses and development of models is greatly dependent on
the environment and workload considered. Setting up the real environment is relatively
easy than finding appropriate workload. A well-suited benchmark suite that has the
various stress ratio of different aspects, and have similar computing requirement as of
real-time applications in data centers should be consider.

The Standard Performance Evaluation Corporation (SPEC) provides the number
of benchmarks for different applications and performance evaluation. SPEC CPU
benchmarks are industry standards and well accepted in research studies [115]. For
cloud applications, available benchmark suite SPEC Cloud IaaS, stresses the resource
provisioning, storage, network resources and computation. For emerging multi-core
processors and parallel processing applications, PARSEC benchmark is developed which
incorporates the workloads from multiple domains [61]. Another benchmark suite
derived from NASA real fluid computational applications is NPB-MP, which is suitable
for traditional HPC workloads [61].

Cloud providers and cloud sites were also evaluated using these benchmarks, in a
study [116], BitCurrent bench mark was used to evaluate nine different cloud providers
and CloudHarmonics was used to evaluate 144 different cloud sites. Another study
[117] evaluate the cloud performance models and different cloud benchmark suites on
Amazon EC2. Five widely used benchmarks used in [117] includes BenchCloud, this was
developed in academia under USC and contains a workload from real-time social media
applications for big data processing. Another academia based benchmark is CloudSuite
that was developed under EPFL, Lusuanne. The workload pattern for Cloudsuite is
based on Media streaming, web services and Data/Graphic analytics. Two industry
based workload pattern generated by Yahoo and Trans. Proc. Council are YCSB and
TPC-W respectively. Where TPC-W is a webserver based benchmark and YCSB is
a synthetic workload for cloud serving evaluation. HI Bench is a workload developed
specifically to run Hadoop programs in clouds.

Selection of benchmark suite for evaluating modern processor must also consider the
processor configurations such as multi-core or single core, SMT and Turbo Boost enabled,
etc. Considering these requirements, workload pattern of different benchmarks also
have different stressing capability such as serial stressing and paralleling stressing. The
analysis of multi-core system using several instances of serial benchmark suite (such as
SPEC CPU) is not preferred, as these instances will be treated as multiple applications
[61]. It further increases the energy consumption due to unexpected contention for
shared resources. Therefore, parallel benchmark suites such as NPB-MPI, PARSEC etc.
should be used to analyze the performance of parallel processing.

Resource Monitoring Tools

Several methods of monitoring performance are available which either observe parameters
inside the VM or through its host [6]. Methods that monitor the VM performance
from outside a VM are known as black box methods. These use different software and
hardware power meters to observe performance and resource usage. On the other hand,
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white box methods run a proxy program that collects resource utilization data. However,
these proxy programs can also impact measurements, which is not considered in many
studies.

According to the survey in [6], it was found that the black box methods using software
meters or hardware counters are more reliable. Moreover, they impose little overhead
on the system, and their own effect is minimized. Different software tools of this kind,
such as OProfile [118], PERF, sysstat [119] are available to collect data about different
resources like memory access, storage and other performance metrics. Several power
models have also been developed using these tools, with some of them accounting for
the effect of multi-core processors in their model. Considering the available literature,
Linux perf [120] is a widely-used performance-monitoring tool; this latter observation
is confirmed in [121]. It is integrated in the kernel and hence provides deep insight of
system behavior. Care must be exercised in selecting the number of counters to observe
and the sampling frequency. Inappropriate selection can adversely affect the accuracy of
observed values.

Software based meters are also used to monitor hardware resources and network traffic,
to estimate power consumption of virtual machines [122]. Since these software meters
run on the object of study, their own resource consumption must also be considered [43].
Moreover, algorithms and languages chosen for designing a software meter also have
significant impact on power consumption [123]. This study finds that recursive algorithms
are more energy efficient than the iterative ones. Furthermore, implementations of tools
in C and C++ are the most energy efficient. Implementations in other languages
consumed significantly more power. Perl consumes the most power, followed by OCaml,
Python and Prolong. The Perl implementation consumes 25516 J, while the most energy
efficient implementation (C++) consumes just 53 J (the C implementation consumes
54.5 7).

3.6.2 A brief methodology: observations on formal methods

We comment here on another compartment of the researcher’s toolkit: a robust method-
ology of formal methods. We refer to methodology here in the classical sense of it being a
study of alternative methods used for modeling, with the intention of picking the method
most suited to the task at hand. Indeed, we have observed in the statistics that some
research is seeking alternatives to linear regression as a means of fitting relationships
between power and its determinants. Both linear and non-linear methods are being used
to model power consumption of modern processors. The most common methods used
to develop power models are linear models includes Least Square Estimation (LSE),
Lasso, Mantis etc. [6]. We have confirmed this in our work here, where linear models
are far more numerous than the rest. However, non-linear models such as Polynomial
Regression, Multi-Gaussian Regression and Exponential Regression are also being used.
The following are some studies that used different modeling methods to improve precision
of server power models.

1. The dynamic behavior of traffic and heterogeneity of network in cloud computing
and data centers cannot rely on power model based on particular workload behavior.
This requires the use of reinforcement learning for continuous improvement of the
model with the changing environment and network behavior. One approach uses
an Elman Neural Network (ENN) is proposed to estimate the power consumed by
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servers in cloud network [124]. The Elan Neural Network consists of input, output
and state (instead of hidden layer) layers, where the state layer is a combination of
several hidden layers with local feedback within these hidden layers. This local
feedback helps model to learn the temporal pattern of the dataset for the specified
time interval, which is neglected in other regression methods. Server resources
such as CPU utilization, memory and disk usage, and I/O request rate are fed
as inputs to the model which has the power of the system as the output. Two
hyper-parameters, number of neurons in the state layer and set back time of Back
Propagation Through Time (BPTT), are optimized for the training. When this
model was used to estimate power consumption for two different servers, it showed
better accuracy than existing Artificial Neural Networks (ANN) and regression
models.

. It is also evident from literature that servers with different configurations and
multi-core functionality, may possess linear or non-linear behavior in their power
consumption depending on the offered load. Hence different studies suggest both
linear and non-linear regression methods to develop a power model for the server.
One such study used Simple Linear Regression and Generalized Additive Models
(GAM) to estimate the power consumption of the server under different load
conditions [53]. RAPL counters were used to collect the training data, later the
accuracy of power estimation for different servers was compared using an external
power meter as the ground truth. The model was developed for memory intensive
applications, using the memory statistics and power consumption as the predicted
and response variable, respectively. Since the power profile of the server had some
non-linearity, hence GAM predicted power of the server more precisely in non-linear
region than the linear model.

. It is challenging to predict real-time (runtime), optimal, task scheduling with
Dynamic Voltage Frequency scaling (DVFS) and Dynamic Power Management
(DPM) enabled. Hence machine learning based models are preferred as they can
be trained and adapted. The Ordinary Least Square (OLS), Support Vector
Machine (SVM), Artificial Neural Network (ANN), Naive Bayes, Multinomial
Logistic Regression (MLR) are some of the many supervised learning methods
that have been used in different environment to optimize runtime scheduling [125].
Considering the dynamic behavior of servers, different reinforcement learning (RL)
methods are also being used. Reinforcement learning algorithms such as Q-learning,
On-line distributed, Modular Q-leaning, Back Propagation Neural Network (BPNN)
and Multi-Level RL (MLRL) are mostly used to minimize the energy consumption
of the server while continuously improving the model [125]. These reinforcement
models have been found effective in power management of data centers by through
consolidation and optimal VM allocation.

Architecture, system deployment, and workload patterns in computing environment
are so diverse that one modeling approach and method cannot be identified as the
universal solution for all circumstances. However, model selection diagnostic measures
need to be used to assess the reliability of the selected model. The basic rule of thumb is
to select the simplest model and only move to a more complex one if the desired accuracy
is not met. The dataset itself contains information such as multicollinearity, number of
outliers, size of dataset, non-linearity, etc. that points towards the right choice. The
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nature of data points, that is whether the input variables are independent of each other
or not, is one important factor. Analyzing the relationship between input and output
variables is also useful to find an appropriate method. If the relationship between the
two is continuous and linear, simple linear models could be effective. The size of dataset
also plays a role. For some complex models, computation time can increase exponentially.
Hence for big data analysis clustering, classification algorithms, frequent pattern mining
are some techniques to divide the dateset into smaller set and make it feasible for data
analysis [126]. Moreover, big data require traditional machine learning algorithms to
be modified so they can work in parallel computing environments. Machine learning
algorithms generally used for big data analysis are evolutionary algorithms, regression
trees, and neural networks. Among these, the evolutionary algorithms such as genetic
algorithm, swarm intelligence, and ant clustering are considered more robust methods as
their sub-populations can run on parallel computing resource. Hence, these modeling
methods reduce computation time when run on a GPU, instead of a CPU, on a parallel
computing platform.

The ratio of size of dataset and number of input features is also important to assess
before moving forward. Studies suggested that a single increment in number of input
features will lead to an exponential growth in the dataset. With multiple input features,
the dataset must be big enough to avoid the ‘curse of dimensionality’ Other options
could be to reduce number of features based on statistical information such as Principal
Component Analysis (PCA), probability value (p-value), correlation, stepwise regression,
and vector quantization and mixture model [127], [128]. When the relationship among
input and output variable is far more complex to identify using collected data points,
non-parametric methods could be useful. Instead of learning pattern of given data points,
these models generate different distributions to extract more useful information. An
example of one such method is Gaussian Process Regression, that creates the Gaussian
distribution for the set of selected data points.

With this we observed that no one method is perfect for modeling in all cases. Model
accuracy is dependent on the right choice of modeling method, which can be made via
thorough assessment of raw data and post processing methods available.

3.7 Conclusion

A recent study [129] found that, during the period 2010 — 2015, the power consumption
by Information and Communication Technology (ICT) in various parts of the world
was less than estimated. This is, at least in part, due to the use of energy efficient
IoT communication modules and devices and in part to the effect of data centers and
virtualization. This is encouraging and motivates further research into development of
Green in IT.

This chapter highlights the current state-of-art of the power measuring models and
methods at the hardware and virtual level. Energy-efficient data centers and virtualization
depend on modeling that is fit for purpose. Such models support the power-performance
trade-off in single as well as distributed systems. In turn, modeling depends on power
measurement. Power models and meters available to measure the resource consumption
of the system are based on different parameters (e.g. architectural and microarchitectural)
and approaches (e.g. resource isolation, resource management, workload adaptation).
Many power models are available but their accuracy under advanced microarchitectures
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and system organization is questionable. Multi-processor CPUs make it challenging to
estimate the power consumption of the system precisely, further increasing complexity
at the finer granularity levels such as that of cores.

Moreover, use of emerging virtualization has several benefits such as running different
processes or applications on a single server, isolation among VMs and reduced power
consumption but still power metering for virtual machines is not yet available. For
power estimation in a virtual network, extant power models for hardware components
cannot be used, since resource mapping and its consumption at the virtual level differ.
Software and hardware power meters are being used to measure the power consumption
of virtual components, but observation and estimation of a single virtual component is
still an open issue. Power models for virtual networks are also available but there is room
for improvement in accuracy. Further precision in these networks can be obtained by
introducing power- and energy-aware network management. Moreover, excessive training
algorithms are being used to develop a more general power model for virtual machines.
These model can be useful to estimate the power for even untrained input data set.
Power-aware network management can also help in reducing the growing issue of CO4
emission. Thus, measurement of accurate power consumption for virtual machines can
serve as the basis for fair cost to its users and will also facilitate green computing.
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4.1 Introduction

The growing use of virtual resources either in private or public data centers or cloud
services has drastically increased the power usage and, hence, the cost of their operation
and management. To reduce the power consumption at data centers, research has been
carried out at infrastructure, software and hardware level. Researchers are developing
more reliable power models along with power-aware allocation and scheduling schemes
for optimal power usage under different scenarios. And also for trading among power
consumption and performance in terms of computational effectiveness and processing
delay, among other indicators. It is also important in these infrastructures to charge
customers, availing cloud services, with a fair amount for the resources they consume.
And this could be made possible by more accurate power measurements.

To effectively improve the efficiency of any system, it is necessary to be aware of the
refined relation between system resource usage and its power consumption This will help
in making more informed decisions to improve energy efficiency and such awareness can
be achieved through a comprehensive and fine granularity level of system monitoring. As
discussed in the previous chapter, monitoring can be done using either software power
meter or hardware power meter. Further to incorporate energy awareness in decision
making, power models are required to estimate the server power at run time.

The chapter below further discusses research questions tackled in this research work.
Later on, the chapter proceeds by describing approaches and tools that are used in
an attempt to derive the power model. The proposed methods and models are also
presented, and their performance and precision are discussed later on.

4.2 Motivation

4.2.1 Research Questions

This chapter describes and develops the power model for the server in a virtual environ-
ment considering the detailed monitoring of resources at both guest and host levels for
precision. This improved prediction accuracy could also be useful to make an effective
energy-aware decision and to develop an improved cost model for cloud service availing
clients. To capture details regarding resource consumption and their corresponding
significant metrics, this research proposes some questions which could be beneficial in
determining and justifying the requirement of the proposed power model. The questions
are as following,

1. How does the behavior of server power consumption changes in a virtual environ-
ment? If it differs in various situations, what are the factors causing this variation
and relationship among them?
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2. What is the significance of using related features and performance counters based
on different kinds of stress/load or applications?

3. How the system-wide effect can be captured using some effective and significant
features in a virtualized environment, such that it provides sufficient information
for power modeling?

4. How the multi-core and core sharing in modern processors effect the power con-
sumption?

5. What is the impact of selected method of modeling on the prediction accuracy of
the power model?

This work aims to derive, via system performance monitoring, a power model for
run-time power estimation of a server in a virtual environment. Also, to identify the
change of performance at the guest and host level which could help in load balancing
and resource optimization through two-levels monitoring.

4.3 In-context

4.3.1 Performance Monitoring Counters (PMCs)

As the development continues into virtual environments, the need of tools and methods
to analyze their performance characteristics grows. At hardware level, many processor
architectures have now integrated hardware counters to observe the system behavior
[130]. Some of these counters can also be exposed at the guest level with the support
of hypervisors, and are called virtual Performance Monitoring Counters (vPMCs) [131].
One such hypervisor providing the facility of vPMCs is KVM (Kernel-based Virtual
Machine). The PMCs are located in the Performance Monitoring Unit (PMU) of Intel
and AMD processors. On physical host, these counters are easily accessible, but are
inherently not exposed at the guest level due to security concern. However, monitoring
of these counters at the guest level is possible by enabling the vPMCs at the host.
This feature allows software running inside virtual machines to access this performance
information, just as it would when running on a physical machine. Different processor
architectures provide visibility of different vPMCs to the guest. PMCs are actually
the Model Specific Registers (MS), which keep on counting different microarchitectural
events. An interrupt is raised if the counter overflows by reaching the defined number of
maximum counts. Some of the most common events available in most of the processors
include CPU cycle count, instruction count, CPU clock, translation lookaside buffer
(TLB) accesses and misses, branch retired count and misses, and cache misses. Studies
show that PMCs can be used for effective runtime optimization. By leveraging these
counters, the Operating System (OS) is capable of making resource-aware scheduling
decisions.

4.3.2 PERF - a Linux tool for profiling

There are many tools available to collect the information from these counters. The type
of tool can be selected depending upon the sampling frequency and granularity level of
information required. In this study, PERF [120], a profiling tool for Linux based system
is chosen. PERF is a non-invasive performance analyzing tool in Linux. This userspace
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controlling utility is capable of statistical profiling of the entire system. It is known by
different names as PERF, Linux perf event, and Performance Counter for Linux (PCL).
It provides access to the Performance Monitoring Unit (PMU) in kernel space, and thus
provides a low-level insight to the system behavior considering events happening and
resource usage. Fig. 4.1 below shows the different sources of data collection in PERF,

Linux perf_events Event Sources

Dynamic Tracepoints syscalls: PMCs
Tracing
extd: o ting Svst sock: // SChié: cycles
A perating System / tés ‘1 instructions
icati signat: branch-*
Applications / / timer: Llo%
workqueue:
uprobes System Librarie; / £ LLC-*
X System Call Interface/ [4 CPU l
Int t
VFS Sockets 4 Scheduler / nterconnec CPU
! File Systems TCP/UDP A 1
kprobes ! kmem:
A\ Volume Manager IP Virtual <« vmscan: Memory
Block Device Interface Ethernet 4 Memory, writeback: Bus
Device Drivers
A4 / E / N~ DRAM
jbd2: / / net: irq:
block: scsi: skb:
mem-load
mem-store
Software Events cpu-clock page-faults
cs migrations minor-faults
major-faults
1

Fig. 4.1: Map of sources of PERF events [120].

The Linux PERF tool monitors the hardware and software counters in the CPU and
generates the report of the collected data. A list of available events can be obtained by
running the ’list’ command. A sample output of running this command is presented in
fig. 4.2.

From fig. 4.2 we find out that the particular system is able to collect counter values
for branch-instructions, bus cycles, branch-misses, cpu-cycles, instructions, and many
others. The counters collected in this research are low level counters such as CPU cycles,
instruction, page faults, etc., instrumented using the perf ’stat’ command. PERF, when
run with the ’stat’ command, collects the statistics for the operations executed in the
command. An example output of a perf ’stat’” command is shown in fig. 4.3.

The command in fig. 4.3 runs perf stat to collect system-wide counter statistics for 5
seconds. Hundreds of different PMCs are available; however, any processor can record
only few of them at a time. This is due to the limited processor capacity and also to avoid
the frequent interrupts generated while collecting counter values.The amount of time
taken by the tool for data sampling is its ’overhead’. The Linux PERF tool is selected in
this thesis due to its very little overhead and less impact on performance. Studies show
that PERF incurs 5%(or less) overhead for the sampling frequency of 100,000Hz, which is
way smaller than the other profilers and is acceptable in many cases. However, sampling
frequency is an important factor for causing overhead; hence, it must be chosen wisely.
PERF provides far more information than other profilers with minimum overhead, and
it supports both hardware events (branch miss, instruction counts) and software events
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Fig. 4.2: A sample output of 'PERF List’ command

(context-switches, page misses).

4.3.3 Stress Generator

The stress or workload generator is a tool that can run different programs, mimicking
the real workload [132]. These tools are useful in research when the user knows the
characteristics of its application or workload, and can use these tools to generate related
load. These tools provides a variety of stress programs for different kinds of applications.
The stress generator used in this thesis to produce load on VMs is stress-ng. This is a
command-line tool and is designed to stress the system in different ways. It has a wide
range of stress programs to stress computer systems with computation of floating point,
integer, bit manipulation and control flow. The user can select the type of stress, such
as CPU, memory, and can also change the intensity level to stress these resources. For
CPU-intensive stressing, the number of CPUs to stress and their utilization percentage
can be chosen using the simple stress command. The selected stress methods with integer
and floating point operations runs on the VM in sequence. For these experiments only
CPU-intensive workload is considered, where the workload is increased by increasing
the virtual CPU (vCPU) utilization on the VM. The intensity of stress is increased by
increasing the vCPU utilization percentage from 0 to 100% with step of 10 units. A
sample command to create stress on a single CPU core with 50% CPU utilization for 30
seconds is,

$ stress-ng -c 1 -1 50 -t 30
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11 branches

Fig. 4.3: A sample output of 'PERF stat’ command

4.3.4 Power Distribution Unit (PDU)

A power meter is a hardware device that reports the information about the power
consumption, in watts. In contrast, a Power Distribution Unit (PDU), is a device used to
distribute electric power to the system, more specifically to the racks of computers and
networking equipment, and to the servers in data centers. These PDUs monitor the power
consumption of the system and manage power resources accordingly. They are connected
to the power socket of the system, and are used for power capping and sensing system’s
power consumption for various other controlling options. These PDUs can also be used
as a power measurement device, to measure the power value for respective load on the
server, hence are useful for power profiling of the server. As discussed in chapter 3, the
power measurement of servers can be done either internally using integrated sensors and
power models, or externally through separate power meters such as power distribution
units(PDUs) for data centers. In most cases, the power measured using external power
meters is considered more accurate than that stemming from mathematically derived
and developed power models. This is because an external hardware meter does not
require any hardware changes on the system or running software on the device, which
reduces the overhead and the influence of the measuring device on the measurement
values. Usually, high-end PDUs offer +1% of error and 0.1 watt precision (e.g. Raritan
Dominion PX-5367) [133]. Hence, the validity of the derived power model in research
must be compared with the external hardware power meter. Sampling rate is also
important while collecting data from PDUs, as with small sampling rate, surges in
power consumption can be missed, and on contrary high sampling rates would incur
extra overhead on the system performance. This research work also uses the PDU for
system-wide power profiling and its modeling.

4.4 Proposed Modeling Approach

Accurate measurement of energy consumption during an application execution is a
key to energy minimization techniques at the software level. There are three popular
approaches for this: (a) System-level physical measurements using external power meters,
(b) Measurements using on-chip power sensors and (c¢) Energy predictive models. Data
collected through (a) and (b) can be used to construct a real-time power estimation model
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Fig. 4.4: Black-box modeling

such as (c). This power modeling can be accomplished generally in two ways: detailed
analytical modeling and high-level black-box modeling. For analytical modeling, detailed
knowledge of hardware components is required, but there are generally limitations in
generality and portability. On the other hand, black-box modeling is feasible for scalable
and dynamic networks, and are flexible to modify for different servers and environments.
Hence, to avoid the complexity of analytical modeling, this research focuses on the
black-box modeling method. The black-box modeling is a learning-based approach where
the collected data is trained through the selected method. These models are not aware of
the internal working of the system or about the relation among different system variables,
instead, they are representative of the functional relationship between system inputs and
outputs. In particular, black-box models are derived from the observed experimental
data, which has the capability to define the system behavior with sufficient accuracy.
Although using black-box modeling might sacrifice some accuracy, but it favors simplicity
by avoiding reliance on detailed knowledge of the hardware’s implementation. In a
virtualized environment, the identification of the relationship among different mutually
interacting variables increases the complexity of modeling. Black-box modeling with
little architecture and configuration knowledge could be useful in such a scenario.

Sensor-based counters integrated into system architecture are used to monitor the
system performance. Studies [6], [109], [134] show that using built-in performance
counters are a reasonable and cost-effective choice for power and performance modeling;
therefore this work uses PMCs for collecting resource usage information. Also, it is
evident from literature that performance monitoring at the host as a whole is not
sufficient in virtual environment; therefore, the observation of virtual performance
counters (vVPMCs) at the guest-level is also introduced. We did two-level (host and
guest levels) resource monitoring to analyze how the system behavior changes in two
environments. Performance monitoring at two levels and the selection of effective
performance counters could help in developing an improved power model.

Many hardware and software counters are available to monitor several events and
resource usage; however, using too many performance counters simultaneously does not
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necessarily provide accurate counts. The selection of effective performance counters is
therefore important. Since different kinds of workloads have different resource usage, this
work is concentrated on CPU-intensive workload, as it is a dominant contributor to server
power consumption. After analyzing the effect of all observed counters, non-significant
counter values can be neglected before modeling. Only a few significant counters are
valuable for modeling; otherwise, the higher number of counters with the limited amount
of dataset could causes the 'curse of dimensionality’, since with the growing number of
inputs the size of the required dataset to be trained grows exponentially. Hence, the ratio
of a number of input features and dataset size must be appropriate to avoid complexity
and retain model performance. Datasets collected in this research consist of around 1600
data points for several counters. After analyzing observed data, the number of input
features is later reduced to avoid unnecessary complexity in the model. Moreover, the
monitoring of performance counters and measurement of power consumption using the
PDU is done simultaneously, for different load intensities and host configurations. These
measured values of power and performance were then used to extract the power profile
of the server under different configurations. This system profiling is a powerful tool that
is meant to derive the power model in this work.

Moreover, use of machine learning algorithms in recent modeling methods is also
increasing. These models are feasible for large and heterogeneous systems; hence, they are
useful for power and performance modeling in virtual environments, as well [135]. This
could also reduce the model complexity for large virtualized systems [136], [137]. Hence,
the power consumption of the server as a function of workload and other parameters
might be better represented using regression models, depending upon the active number
of cores, CPU utilization, and model selection. Several linear and non-linear methods are
available that can be selected for an appropriate modeling. This model selection considers
the type of processor architecture, system behavior and load on the system. This is
an important step, as the selection of complex non-linear models for a simple system
might incur extra overheads. On the other hand, a simple linear model for a complex
resource-sharing system could result in inefficient modeling. As the power behavior of
the system varies from linearity to non-linearity based on its load and environment, both
kinds of models are used in this study. In many cases, non-linear models can provide
more accurate results, but they are also more complex than linear ones. Hence, there will
always be a trade-off between computational complexity and accuracy for these models.
Further, to evaluate the accuracy of models using the proposed approach, estimated
power values of the models are compared with the external connected PDU, which has
the precision of about 0.1 W, with a low internal power consumption of about 5W to
TW.

The section below discusses how the training dataset is generated for modeling and
which methods are used in the proposed approach for modeling.

4.5 Training Dataset

The training dataset and the training methods are the essence of modeling. For a good
regression, identification and using of effective features is very important. According
to [138], micro-operations fetched per cycle or instruction counts could be useful for
modeling by using regression techniques, for CPU-intensive workload. Also, [139] presents
some effective counters for CPU-intensive load including instruction count, CPU cycles,
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branch count and misses, cache misses, and stalled instructions. Since our research
is targeting attributed power consumption by virtual components, associated virtual
memory counters as a page fault, CPU migration major fault and minor faults were
also considered [120]. Several counters were observed in this research for different CPU
workload intensity, and later the effect on all counter values with respect to the changing
load was analyzed. Although many counter values vary accordingly, only counters which
have significant impact are considered. In most researches, a number of variables are
collected but only few are used for modeling. This is because more number of features in
modeling can cause complexity and reduce accuracy (if data the set is small). Also, only
significant features should be extracted to have a simple model. This feature reduction
can be done in several ways; one way of doing this is using p-value that indicates the
significance of relationship among variables [127]. Features having higher p-value have no
significance and can be removed from the training dataset. Another method of feature
selection could be adjusted R-squared and predicted R-squared. The value of R-squared
of the model shows how well the model is explaining the data [127]. One can also use the
stepwise regression and select the best subset of features for modeling. In the stepwise
method, different features are selected and used to train the model. The model giving
minimum error for the set of features is selected. This method is used in this research,
where the power modeling is done using different sets of input features. A set of features
is selected by analyzing their variance at different load intensities. Fig. 4.5 shows the
change in different counter values for different load across all running VMs.

As we can see from fig. 4.5, the most prominent variation is observed in instruction
counts, and the CPU cycles constitute the second most dominant feature. The number
of stalled cycles and branch counts are next to show increase with increasing load.
So, we neglect the other non-effective counters in modeling for this research to avoid
complexity. Only the most effective counters i.e. stalled instructions, total instructions
and CPU cycles at the host and guest level are used in the approach this thesis propose.
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The number of Instructions Per Second (IPS) is an approximate indicator of the likely
performance of a load and is obtained considering the total instructions processed
(including stalled instructions and all retired instructions). Where stalled instructions
are the instruction cycles that are wasted due to operations such as cache miss, and
retired instructions are the actual cycles that process the request.

Instructions per second (IPS) can be calculated by using eq. (4.1) or eq. (4.2) below,

IPS — total instructions retired + stalled instructions (4.1)

total time

instructions X cores X cpuclock
IPS = P

cpu cycles (42)
The IPS of virtual machines and the host are fed as the input feature (predictor
variable) for training. The power measured for the same instant using the external
PDU will be treated as the response variable. To the best of the authors’ knowledge,
performance monitoring of individual VMs (using vPMCs) has not been done earlier for
power modeling. This novel approach has the effect of reducing the prediction error and
providing solutions to develop power models for even larger systems by using machine
learning methods.

4.6 Training Models

The selection of regression technique is another challenge in machine learning. Number
of independent variables, type of dependent variables and shape of the regression line
are some parameters that can be used to select an appropriate regression method. A
linear model of the power consumption of processors can be used for relatively small
CPU utilization; however, as the CPU utilization increases, power consumption tends to
be better approximated by a non-linear model. The effect is more significant especially
in modern processors with multi-cores and the tendency to share cores among different
processes. Considering this behavior, both linear and non-linear modeling techniques
are used in this research.

4.6.1 Linear Least Squares Regression (LLSR)

When the nature of dependent variable is continuous and the regression line for input
and output variables is linear, then the most simplest and widely used Linear Least
Square Regression (LLSR) can be a good choice. LLSR model is the simplest and
most commonly used predictive analysis model that represents the linear relationship
between a single dependent variable y and a single (or many) independent variable(s)
X = [z1,%2,...,2y) [140]. Instead of using absolute difference values, LLSR uses the
square values of the differences between measured and predicted points. The sum of
square distances between the data points and predicted values should be minimum to get
the best approximate value from the model. A simple LLSR model with single dependent
and single independent variable can be written as eq. (4.3),

y= P00+ Pix+e (4.3)
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where g is a constant, 5y relates the change in predictor variable x to the mean of the
response variable y, and € is the random noise error. The output function of this model
is the best fitted line for the given data points.

4.6.2 Linear Support Vector Regression (LSVR)

The Support Vector Machine (SVM) is a supervised learning algorithm which is being
used for classification and regression in datasets. SVM is useful for datasets where
prediction of response is difficult due to random system response [141]. In simple words,
it is commonly used for data where the output variables are not easily separable in
one dimension. Since we use different combinations of load on a number of VMs in
our experiments, this may generate similar number of MIPS (Million Instructions Per
Second) for different experiments. So, the effect of VM instructions on the physical
device and consequently on the power consumption of the server is analyzed using the
Support Vector Regression (SVR). This would help in distinguishing among different
environments for similar output. SVR works with the same mechanism as SVM and
projects the given one dimension data onto a higher dimensional plane. This makes the
identification and classification of data points easier.

To study in depth the effect of one variable on the other, SVM maps data points of
the training set into multi-dimensional feature space using some fixed mapping. The
hidden relation among these data at higher dimension space is then determined and a
model based on kernel function is constructed in this feature space. Different kinds of
kernels, linear or nonlinear, can be used depending upon the nature of data points. The
so-called primal formula for linear SVM to derive the vector 5 of the coefficients of the
linear regression model through (constrained) minimization is,

N
F(B)=588+C Y (ente) (14)
n=1

where prime denotes transpose. The quality of the estimated values is measured with
a loss function, for which slack variables are introduced. The slack variables €, and €},
defines the allowed range of error. The data points outside this range are penalized.
This penalty in the model is determined by the constant C, a positive numeric value
that controls the penalty imposed on observations that lie outside the € margin.

4.6.3 Quadratic Support Vector Regression (QSVR)

As we know from the literature that modern processors with core sharing capability
may have non-linearity in dynamic power consumption, we also use some non-linear
models to train our dataset. One non-linear model used in this research is Quadratic
SVR [142], where the kernel function for the SVR is quadratic instead of linear. When
the relation between dependent and independent variables in feature space is non-linear,
non-linear kernel functions provide more precise estimation. In QSVR a non-linear kernel
constructs the hyperplane using a quadratic function to map the data points. This can
be expressed as eq. (4.5),

N
f(B) = (5ﬁ+1 Z en +€,) (4.5)
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The quality of the model in SVM is measured with the distance of the estimated
value to the hyperplane, using slack variables. These slack variables ¢, and €}, define
the allowed range of error across the hyperplane. The data points outside this range are
penalized by a constant, C, a positive numeric value.

4.6.4 Gaussian Process Regression (GPR)

In some complex architecture, it is difficult for many methods to model correctly or to
identify incorrect modeled points. In such scenario, a model is required which could
self-test its validity and be able to correct its response. One such model is Gaussian
Process Regression (GPR), which is a non-parametric approach to regression. GPR
can work well on small data sets as well and has the ability to predict precisely. GPR
does not learn the given data points of training data, but it rather infers a probability
distribution over all possible values. GPR also has the ability to distinguish among
output variables generated in different environments. The Gaussian process based on
prior information keeps improving the posterior information, and model the output of
the given dataset only when it is completely certain about it. Because of this, GPR is
also computationally expensive and its complexity grows with the size of the data set.

The Gaussian Process (GP) is a collection of multivariate Gaussian distributions, where
each distribution is defined by a finite subset of data points [143]. GP can be formally
defined by the mean and covariance (or kernel) function of all Gaussian distributions of
data points. The kernel function of the GP is however parameterized using parameters
such as scale length to normalize all data points and standard deviation in the dataset,
as shown in eq. (4.6). The covariance function shows the relation of neighboring input
values to their corresponding output value. This covariance function, is selected as to
make the Gaussian distribution for each dataset smoother. A ’Squared Exponential’
function is used as the kernel for GPR in this research, expressed mathematically in
eq. (4.7).

f(x) = GP(m(z), K(z,2')) (4.6)
Ty — X4 T Ty — T4
K (z,2]0) = J?e:np[—;( i) (@i = ), (4.7)

o

where prime denote transpose, £ = x1, X2, ....T, is the set of n data points, m and K are
the mean and covariance function of the GP, 6 is the hyperparameter, which consist of
scale length 0; and standard deviation in data points o.

For LLSR computations for 100 and 1000 data points will remain same, whereas in
GPR number of computation for such case increases significantly. This is because for
each set of data point the Gaussian distribution is calculated for modeling and prediction,
which becomes more complex with large amount of data.

4.7 Performance Measures

Different linear and non-linear models are evaluated based on their prediction accuracy
and model complexity. Two error metrics, root mean square error (RMSE) and mean
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absolute error (MAE) are used, along with their percentage, and can be calculated as in
eq. (4.8) and eq. (4.9):

N . )2
RMSE _ \/ZZ:l (ylj\r[ed yl) (48)
N ) —
MAE :’ lel(ylpred yl) ‘ (49)

N

where y; is the measured power, y; ., is the estimated power and N is the total
number of samples.

While training, the reliability of the model is achieved using cross-validation, which
helps in generalization of the model for new data points. In cross-validation the training
data set is divided in to two subsets (train and test), one for training and other for
testing. For k-fold cross-validation, the dataset is divided and trained k times. The
model developed is based on the summarized evaluation of the results of each K —th set.
However, there is a bias-variance trade-off associated with the choice of k in k-fold cross-
validation. Typically, given these considerations, one performs k-fold cross-validation
using k = 5 or k = 10, as these values have been shown empirically to yield test error
rate estimates that suffer neither from excessively high bias nor from very high variance
[144]. Thus in this research work, 5-fold cross-validation is used.

Furthermore, model complexity is evaluated considering the training time and pre-
diction speed for different models. Training time is the time that model takes to train
the whole data set and is measured in seconds. The model’s prediction speed is defined
as the number of predictions a model can make for a given input in one second, hence
represented in units of observations/second (obs/s).

4.8 Power Modeling

To develop a power model, the study was carried out in two phases. In the first phase, the
strategy to train the model is selected by implementing different modeling approaches.
Later, the chosen modeling approach is further analyzed in depth to answer the research
question of this work.

4.8.1 First Phase: Methodology Selection

The instruction count per second for a VM can change by increasing the workload on
a similar virtual machine, and also if other virtual machines are running in parallel.
Hence, the approach of measuring instruction counts at VM level helps in obtaining
the detailed insight of VM performance and corresponding resource usage. Likewise,
monitoring resource counters for individual VM at the physical level helps in identifying
the relation between resource requested (processed) by the VM and its corresponding
physical resource consumption. This rises the question whether power modeling by
considering the resource usage at guest level could produce better results, or the model
requires the status of consumed resources at host level, as well. Hence, to create a better
model from the collected data, initially some hypotheses were tested to identify which
approach and what features are effective.
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Hypotheses

Below mentioned are some hypotheses that were tested in this phase of the experiment.

e H1: Training the power model with the resources monitored at VM level can
provide acceptable results;

e H2: Modeling in two steps, mapping virtual MIPS to physical MIPS, then mapping
physical MIPS to the power consumed could provide a more precise estimation.

To test the above mentioned hypotheses, an experimental test-bed was setup at
the CNIT National Laboratory of Smart and Secure Networks (S2N) in Genoa, and
experiments were carried out at a small scale.

During the data collection phase of the experiments, vPMCs for each VM were
monitored individually at VM level. Instruction changes for a particular VM were also
monitored at the physical machine at the same time. The change in instructions’ rate at
both levels is calculated by using Egs. (4.10) and (4.11), where 7 is the number of VMs
running and j represents the vCPU utilization (or workload on the VM). Furthermore,
the power consumption of the server is obtained using the PDU, and the change in power
is obtained using Eq. (4.12).

AMIPSyy;, = MIPSyyi, j — MIPSyag, idie (4.10)
AJ-\/-[I:Psselrver = MIPSserver,j - MIPSserver,idle (411)
A‘Pserver = I'server,j — Pserver,idle (412)

where, i € {1,2} and j € {10,20,...,100}.

To determine the change in power and instructions, idle values for both variables were
also obtained. Idle server power is found to be 17 W for the machine whose characteristics
are reported in tab. 4.1, and MIPS at the server when idle were 0.4 MIPS. Also, idle
MIPS observed at each VM were 0.5 MIPS on average.

Two different modeling methods were used for the datasets, which will be referred to
as Modell and Model2 from now on.

Modell: In Modell, a dataset containing the instruction count collected at the
VM level is used. The sum of the increase in instruction rates from idle level of all
VMs running the specific experiment, ), AMIPSyy,, will be fed as the predictor. The
response variable for Modell is the change in power at the server corresponding to the
varying load. Hence, this model comprises of one step modeling, and maps VM MIPS to
their corresponding power consumption.

Model2: For training of Model2, the model is divided into two sub-models, which
will be referred to as Model 2a and Model 2b. In model 2a, the relation between
> AMIPSyy;, and the AMIPSgerver is determined, whereas, in model 2b, the server
power change, A Pyerver, is modeled corresponding to the AMIPSgerver-

Fig. 4.6 illustrates the considered modeling approaches. Both models are trained using
linear regression models, LLSR and LSVR. For blind test validation of trained models,
measured data is divided into training and testing datasets, with 80% and 20% of data,
respectively.
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Zi AMIPSVMz A Pyerver
Model 1 >

Zi AMIPSVMz Model ANHPSserver Model APserver
2a, 2b

Fig. 4.6: Illustration of the two strategies to model power change from the change in
virtual machine MIPS.

Tab. 4.1: System configuration for the Server and VM

Server VM

Processor Intel(R) Core(TM) i7-6770HQ CPU Intel(R) Core(TM) i7-6770HQ CPU
No. of CPUs 8 1
0S Linux 4.9.0-3-amd64 Linux 4.4.0-134-generic

Cache 6144KB 16384KB

RAM 32GB 2GB
Hypervisor Nova (gemu-KVM) -

Genova Test Bed

The experimental test-bed has been set up using the OpenStack software. The “Intel(R)
Core(TM) i7-6770HQ” CPU is used as the server, whereas “compute (NOVA)” [145]

serves as the hypervisor. The server has two VMs running, both with similar configuration.

Further configuration details about the server and VMs are listed in Tab. 4.1.

The program “stress-ng” is used to generate the workload on VMs. The selected stress
methods with integer and floating point operations runs on the VMs in sequence. For
these experiments only CPU-intensive workload was considered, where the workload
is increased by increasing the virtual CPU (vCPU) utilization on the VM. In each
experiment workload on a VM is increased by 10% of virtual CPU utilization and goes
up to 100%. The power behavior of the server is also observed in different scenarios, such
as no load, single VM, two VMs. The virtual machine instructions processed by a specific
VM are measured using the Linux PERF tool inside the VM. MIPS of each VM are also
monitored at the server level using the same tool. At the same time dynamic power
of server is monitored remotely using the external Power Distribution Unit “Raritan
JSON-RPC(PX2)”.

Results and Discussion

Instructions measured at the VM by changing its workload are presented in fig. 4.7
(left). Tt shows the increase in number of instructions at the VM with increasing load on
its vCPU. The number of instructions further grows by increasing the number of VMs
running on the server. As can be observed in fig. 4.7 (left), the processor needs to process
a maximum of around 3000 million instructions per second (MIPS) to reach the 100%
load on the vCPU for a single VM. However, a similar server when running 2 VMs at
100% of their vCPU utilization requires more than 5000 million instructions to process
per second. This increase in processor speed is obvious, as with two VMs the processor
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Fig. 4.7: Left: Increasing the vCPU utilization via a stress program leads to an increase
in virtual machine MIPS. Right: The same increased vCPU utilization also
increases the power consumption at the server running the VM. Legend: Only
1 VM with load (—), 2 VMs in parallel (—)

needs to process the load of two CPU cores. Moreover, when a processor executes more
instructions per cycle, it also consumes more power. The change in power consumption
at the server with changing load at the VMs is shown in the right part of fig. 4.7. The
power for a single VM with increasing load changes from 0.49 W to 8.5 W, whereas this
change for 2 VMs running in parallel is from 1.6 W to 13.3 W. Although MIPS processed
at the server for two VMs are almost doubled with respect to those of a single VM, the
change in power consumption is increasing with different rate. With these observations,
the VM power models are trained with two different regression methods. At first, LLSR
is used to train the dataset for modell and model2. The parameters obtained for these
models are listed in the top part of tab. 4.2. A similar dataset is then used to train for
LSVR for both models; model parameters obtained for this training are listed in the
bottom part of tab. 4.2.

Tab. 4.2: Models’ Parameters

LLSR
Parameter Modell Model2 (equiv.) Model 2a  Model 2b
Bo 0.5369 1.4395 32.769 0.1687
b1 0.0025 0.0021 0.0533 0.0388
LSVR
B 0.1074 - 2.8876 0.5398
€ 0.4030 - 10.807 0.403
C 4.0305 - 108.07 4.0305
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Fig. 4.8: Model 1 vs. Model 2 and individual components of Model 2. Legend: “x” shows
measured data used for training, while the predictions from LLSR and LSVR
are shown by “o” and “+”, respectively.

The mapping of data points for Modell obtained after training is shown in the top
left part of fig. 4.8. As the measured data points show almost a linear behavior, the
predicted values for both models are very close to the measured ones. The Root Mean
Square Error (RMSE) for both models is also small, as can be seen in tab. 4.3. Both
LLSR and LSVR models perform almost similarly, with RMSE of about 0.5 W. We can
also observe that there is not much variation in prediction for test data in both cases, as
shown in fig. 4.9. Hence, for some small scale system, linear models can predict with
limited error, which is acceptable in many cases. However, we can not conclude this for
much bigger systems.

Measured and predicted values for Model2a and Model2b are shown in the lower part
of fig. 4.8. Here we can see that the measured data for Model2a is scattered for some
data points. The scattering of these data points show that there is no defined relation
between the MIPS processed at the virtual level and processed MIPS at the physical
level. Clearly, the relation between the two is not linear; as a matter of fact, there is
a lot of uncertainty between the two variables. Hence, this model might impose high
error on prediction. The LSVR regression model tries to compensate this scattering in
training by increasing its tolerable error margin € (high value of € in Model2a). But
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Tab. 4.3: Models’ Prediction Error

Reg. Cross- Testset
Model Validation RMSE
RMSE
Model 1 LLSR 0.532W  0.504 W
ode LSVR  0545W  0.507W
Model 2a LLSR 44 .4 MIPS 43.5 MIPS
LSVR 45.5 MIPS 55.5 MIPS
LLSR 1.510 W 1.2W
Model 2b rovp  1580W  1.39W
Model 2 LLSR - 0.640 W
(combined) LSVR - 1.0O7T0W

still some data points are extremely far away, which causes the cross-validation RMSE
of the model to be around 44 MIPS. A similar effect was also observed for test data
where the predicted RMSE value is 43 MIPS, shown in table 4.3. The second part of
Model2, i.e. Model2b, however performs much better, as shown in the bottom right
corner of fig. 4.8. Variation in measured data points is not as much as in Model2a.
This can be supported with the observed data in fig. 4.7, where the change in MIPS
was higher than the change in power by increasing the number of VMs. Hence, the
error percentage for this model could be less than Model2a, but will be higher than
with Modell. As observed, the cross-validation RMSE of model2b is 1.5 W for both
LLSR and LSVR (refer to tab. 4.3). The prediction error for Model2b is also small,
around 1.2W. However, since Model2a and Model2b alone have no significance and
since they are designed to be used together, their combined effect on prediction must
also be analyzed. In the top right corner of fig. 4.8, data points for combined Model2 are
shown. It can be observed that the predicted values are overlapping the measured data
points in most cases. The combined model shows that the negative effect of Model2a is
balanced a little with Model2b; however, the prediction at extreme data points (such as
for minimum MIPS and for maximum MIPS) still exhibits more deviation than with
Modell. The RMSE of test data for the combined Model2, is 0.6 W for LLSR and
1.07 W for LSVR, which is significantly improved from individual Model2a and Model2b
performance. However, the box-plot of prediction error for combined Model2 in fig. 4.9
show more variation as compared to Modell, but the average prediction error still lies
within the uncertainty of £1.5 W for both regression types for Model2.

From the results of these models it can be concluded that Model2, through the
combined parts, improves the prediction error from individual Models (2a and 2b).
However, Modell performs better than the combined Model2 when trained with LLSR.
With LSVR, the combined effect in Model2 is almost similar to Modell. The percentage
prediction error for Modell is found to be 6-7%, whereas the error for Model2 lies in
the range 8-14%. These modeling approaches are less complex in comparison to other
existing models which uses several counter values and their dependencies at the server
level. The model provides the similar prediction accuracy (even improved prediction
error in Modell), while using a less complex single counter value at the VM end.
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Fig. 4.9: Box-plot of error for Model 1 and Model 2. Legend: Median error (—),
15t — 34 quartile of errors (—), overall error range (---)

4.8.2 Second Phase: Further Analysis

The results in the previous section suggest that the introduction of two-step modeling
has no significant positive effect on power estimation. Indeed, there are more details
of input features (two-step model) but, since the relation between the host and virtual
MIPS is not clearly defined, Model2 is performing no better than Modell. Hence, the
selection of a less complex modeling approach could be a smart choice for further analysis.
Considering this, further experiments for detailed analysis were carried out using the
single-step approach of Modell. These experiments were carried out on the setup at
"Hamburg University of Technology (TUHH)’, with increased number of VMs and more
combinations of load intensity on all VMs. Also, the rate of change in MIPS at the host
is fed along with the VM MIPS as the input feature to the model.

Hypotheses

For this phase, hypotheses considered includes,

e H1: The resource consumption at the host level differs from that of the guest level
for a given load.

e H2: At higher load, the power consumption behavior of the server becomes
non-linear.

e H3: The prediction accuracy can be improved using a smaller number of features

The methodology in this phase is similar to the one adopted in sec. 4.8.1, where
the modeling consists of three steps: server power profiling, model training and then
power estimation. For the power profiling of a server, a set of measurements are taken
by running different workloads at the server. Various workload intensities are used to
cover the whole range of CPU utilization. Along with that, performance counters at
the host and guest machines and power consumption of the server are also observed. A
bigger dataset is collected in this phase than in the previous experiments, as in these
experiments all possible load combinations (from 0-100% CPU utilization, with intervals
of 10 steps) were used on all eight virtual machines. Virtual PMCs (vPMCs) at individual
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VMs are monitored along with PMCs at the host to observe resource utilization with
much finer granularity. Then, the power consumption relation corresponding to the
instruction count is modelled. The change in instructions’ count and power is calculated
using the similar equations (egs. (4.10) to (4.12)) used in the previous experiment phase
(in sec. 4.8.1).

For blind test validation of trained models, measured data is divided into training
and testing dataset, with 80% and 20% of data, respectively. For training, features
including A > MIPSyy, of individual VMs and AMIPSgerver are fed as predictors,
whereas A Pserver at the server corresponding to the varying load is the model’s response
variable. Moreover, the relation between consumed resources at host and guest level at
a similar instant is determined. Model reliability and validity is later evaluated based on
different performance metrics.

TUHH Experimental Setup

For these experiments a new system was setup at TUHH, Hamburg. It includes a single
server with KVM [11] as a hypervisor, and different numbers (1-8) of virtual machines.
Server and VM configurations are listed in tab. 4.4 below.

Tab. 4.4: Server’s and VMs’ Configuration

Server VM
Processor Intel(R)  Xeon(R) Intel(R)  Xeon(R)
CPU E3-1270 V2 CPU E3-1270 V2
No. of CPUs 4 1-2
0OS Ubuntu 18.04.1 LTS  Ubuntu 18.04.2 LTS
RAM 31GB 2GB
Storage 916GB 53GB
Powe'rserver,idle 33.6 -
(W)
MIPS;q. 80 0.3

The workload generator “stress-ng” is used to stress the vCPUs. The selected stress
methods with integer and floating point operations run on each VMs. For these ex-
periments only CPU-intensive workload is considered, where the workload is increased
by increasing the virtual CPU (vCPU) utilization from 0% to 100%, with all possible
load combinations (in intervals of 10 units) among all VMs. With increased number
of load combinations the size of the dataset also grows, which can improve the model
reliability. In each experiment, different combinations of CPU workload run on active
VMs. Resource monitoring using PMCs is carried out at both levels, host and guest,
using the advanced observability Linux tool "PERF”. At the same time, the dynamic
power of the server is monitored remotely using an external power distribution unit
“GUDE Expert Power Control 8226-1". Further experiment’s parameters are presented
in tab. 4.5.
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Tab. 4.5: Experiment’s Parameters

Parameter Value

No. of VMs 1-8

CPU load 0-100%

No. of repetitions 5

Linear regression models LLSR, LSVR
Non-linear regression models QSVR, GPR
No. of input features 1-10

No. of output features 1

Cross validation 5-fold

Run time 60 s

Training Data Analysis

In this section, we first discuss the measurements obtained for power profiling of the
server. Graphs below show how the server behaves with different numbers of VMs
running in parallel and how is the performance changing in terms of MIPS (million
instructions per second) for different scenarios.

From fig. 4.10 we can observe that by increasing the number of virtual machines the
total number of instructions processed in one second also increases, even if the total CPU
utilization remain similar. Considering the case of 50% CPU utilization in fig. 4.10, when
this 50% of CPU usage is distributed among four virtual machines more instructions are
processed. In comparison, if the same CPU load is distributed on two virtual machines,
the number of processed instructions is reduced. The reason is that, with more VMs,
the hypervisor needs to process more requests from individual VMs to the physical host.
This effect becomes more significant with increasing number of VMs. This increase in
MIPS also depends on how the CPU load is distributed among different VMs. In the
same figure, considering the similar case of 50% CPU utilization for four VMs, there
are obviously a number of ways to distribute this 50% usage among them. Some of
these combinations were selected for the experiments and results show that the required
MIPS vary slightly for different combinations. Also, in modern machines, the processor
adjusts its processing speed depending upon the load; the effect of CPU usage and its
performance does not remain linear as a consequence of the adjustment strategy. As it
can also be observed from the same figure, the change in MIPS processed is increasing
non-linearly at higher CPU utilization for four VMs.

Fig. 4.11 shows how different numbers of VMs and load affect the server power. It can
be observed that for lower number of VMs, the server power consumption increases almost
linearly. However, the increase becomes non-linear for higher numbers, such as with 6
and 8 VMs. Power consumption also tends towards non-linearity with over-utilization of
processor capacity. Many datacenters perform CPU overcommittment using hypervisors,
running multiple virtual machines on a single computer where the total number of virtual
CPUs exceeds the total number of physical CPUs available. This aspect is studied by
using the same number of VMs but with different numbers of vCPUs in an experiment.
Considering fig. 4.12, four VMs each having a single core constitute 4 vCPUs in total,
which is also the maximum CPU capacity of the server (refer to tab. 4.4). The change
in power consumption in this case is also practically linear. However, when the total of
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8 vCPUs are assigned to these 4 VMs, the power consumption trend against utilization
becomes non-linear. Hence, when the number of vCPUs exceeds the available physical
CPU capacity, VMs start contending for CPU resources. In such scenarios, modern
processors share the cores among vCPUs, and this core sharing is causing the non-linear
behavior in power consumption.
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Fig. 4.11: Server power consumption vs CPU utilization for different numbers of running
VMs. Legend: —+—8VM, —6VM, —+—4VM, —&-3VM, 2VM, —-—1VM

Models Analysis

As we observed from fig. 4.11 and fig. 4.12, the power consumption curve of the server
against vCPU utilization changes from almost linear to non-linear with increasing number
of parallel running VMs and vCPUs. Also, the required MIPS tend toward a non-linear
increase with increasing load and number of VMs (refer to fig. 4.10). Therefore, both
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Fig. 4.12: Server power consumption vs CPU core. Legend: —4VM_8vCPU,
——4VM_ 4vCPU

linear and non-linear models are used in this research for training purpose.

Fig. 4.13 shows the response plot of different models after training for all data points
included in the dataset. From these responses we found that almost all of the models
estimate the values precisely in the middle range of the data points, i.e. when the total
MIPS processed are not at extreme limits. However, for small MIPS values, linear models
are prone to some error. Also, with higher MIPS there were some scattered estimated
values from all models. Linear models have more erroneous values at higher MIPS,
owing to non-linearities occurring in the power consumption, which are more accurately
captured by non-linear models. This deviation of estimated value for different models
is further analyzed for test the dataset in fig. 4.14 which will be discussed later in this
section.

Other performance metrics considered for the evaluation of these models are model’s
training time and prediction time. The training times for non-linear models are found
to be longer than those of linear models. This is because non-linear models are more
complex and require more computations and processing. Indeed, linear models such
as LLSR and LSVR have simpler functions; hence, they can model the response value
using simple linear equations. On the other hand, for non-linear models kernel functions
are more complex. The kernel function for GPR is based on finding a multi-variate
Gaussian for a small set of data points, which becomes computationally more expensive
with increasing number of data points. Also in QSVR, the kernel function is a quadratic
equation, which is simpler than GPR, but is more complex compared to linear functions.
Hence, these complex functions take longer for non-linear models to get trained and also
take more time for prediction. Comparisons of training and prediction times for these
models are presented in tab. 4.6. From this table it can be observed that linear models
(such as LLSR and LSVR) took 1-8 seconds for training, and the similar dataset took
around 23 seconds of training with QSVR. However, the maximum training time of about
84 seconds is taken by the GPR model, since it has the most complex kernel function.
Hence, the fastest training can be done with the simplest linear functions (such as LLSR)
which take only 1 sec to train the whole dataset. Also, for the validation (or testing)
phase it is evident (from tab. 4.6) that GPR is the slowest to make predictions for the
given data. The prediction rate of the GPR is 23x10% per second whereas the LLSR
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Tab. 4.6: Model’s Performance Indicators

LLSR LSVR QSVR GPR

Training time (s) 0.964 7.918 22.7  83.8
Prediction time 17e4 18e4 24e4 23e3

(obs/s)

is fastest with 17x10% predictions per second. Hence, the use of simple functions for
modeling can make the estimation process 10 time faster compared to complex functions.

These models were further tested with both seen and unseen data to validate their
reliability. Linear models, when used for seen datasets, estimate the power values for
the middle range of load with minimum error. However, the error values increase as the
load on the server increases. As we mentioned, modern processors change their power
state and speed to adapt to load variations, which introduces non-linearities in the power
consumption curve; hence, linear models do not fit well in those regions. In comparison,
non-linear models when tested with the same dataset estimate power more precisely.
The error percentage of both linear models is almost similar; however, the modeling
complexity of LSVR is far greater than LLSR. Furthermore, both non-linear models also
behave similarly for the given dataset. Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE) of all four models are presented in tab. 4.7, where we can see
that GPR performs best among all models with RMSE% of about 0.98%, whereas other
models have RMSE% in the range of 1.2-2.9%. This precision in GPR comes at the cost
of time and complexity, as can be seen in tab. 4.6.

The test dataset was also used to analyze the model performance and find the model’s
precision for unseen data. Fig. 4.14 shows the measured and estimated values of different
models for the test dataset. We can see that linear models for the test data have
predicted values further away from measured ones, especially at extreme data points.
Results shows that prediction accuracy is also decreased in non-linear models with the
test dataset. Hence, for unseen data all models exhibit some increased error percentage.
From tab. 4.7, we can see that RMSE% for linear models increases up to 3.4%, for GPR
to 1.34%, and there is a very little increase in QSVR.

Models studied in the literature [135], [146] that used the machine learning approach
and performance counters for power modeling have error percentages in the range of
1.5-10%. In comparison, the proposed methodology predicts power consumption more
accurately with minimum error of 0.9%, especially with non-linear models.

Small prediction errors in the proposed research approach are due to the selection
of effective performance features in training. Performance counters used in the data
have high correlation with the changing workload. Also the performance monitoring at
both host and guest level helps in estimating the real amount of resources requested
and processed. Models with complex kernel functions such as non-linear ones take more
time to train and predict; however, they can give more precise estimated results. From
results it can be concluded that the model selection for power estimation comes with a
trade-off between accuracy and complexity. The modeling method for a specific workload
or application can be chosen based on the acceptable error percentage and prediction
latency. In most virtualized systems, servers use core sharing for processing multiple
requests; non-linear models appear to be more suitable for these cases.
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Fig. 4.14: Predicted power for test dataset. Legend: —e—LLSR, -+ LSVR, <—QSVR,
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4.9 Conclusion

Measurement of power attributed to specific virtual components has become necessary
and critical at the same time. With growing virtualization in servers and in the network,
energy efficient load scheduling and optimized resource management is required. The
estimated power consumption caused by the incoming workload to a VM can help servers
making smart decisions upon VMs’ initialization or their migration. This also requires
precise knowledge of the actual resources consumed by individual virtual components.
In this research work, we tried to highlight the primary factors that can improve the
power estimation of any server. In a virtual environment, it is essential to observe
the behavior of both host and guest machines to develop any power and performance
model. Hence, we accounted for both hardware performance counters of servers and
virtual performance counters of guest machines, to gain insight of generated requests and
their processing at both levels. Monitoring too many counters simultaneously does not
necessarily provide accurate counts; therefore, effective counters based on application
type must be selected. This research further analyzed the performance difference between
the host and guest level, and studied the effect of using counter values of both levels.
Our aim while developing the power model emphasize on the prediction precision along
with less overhead and complexity in the model.

As for big systems, such as data centers, server power modeling could be critical, with
hundreds of VMs with several different configurations, machine learning algorithms can
be useful in these scenarios. The selection of less complex models can reduce the training
time even for huge datasets. The proposed approach uses machine learning algorithms to
develop a power model and observe the performance counters inside VMs. The dataset
consists of effective features (counters) for training helps improving the overall error
percentage of the proposed approach. However, the results cannot identify one model
to be generalized for any kind of server, although using the proposed methodology and
training features can help developing accurate power models. Model selection should be

71



4 Improved Power Modeling in Virtualized Environments

Tab. 4.7: Models error

LLSR LSVR QSVR GPR LLSR, SPTL

ANN [146]
[135]
Seen dataset
Cross-Validation  1.68 1.58 0.78 0.84 - - -
Error (Watt)
RMSE (W) 1.51 1.65 0.70 0.64 - - -
RMSE % 2.9 2.98 1.2 0.98 - - -
MAE (W) 1.13 1.12 0.55 0.48 - - -
MAE % 1.97 1.96 0.92 0.83 - - -
Unseen dataset
Cross-Validation  1.76 2.0 1.2 0.9 - - -
Error (Watt)
RMSE (W) 1.61 1.62 0.71 0.78 - - -
RMSE % 3.39 3.46 1.29 1.34 - - -
MAE (W) 122 12 054 05 - - -
MAE % 2.21 2.18 0.94 0.93 5.42 1.83 4

based on the consideration of trade-off between prediction accuracy and model complexity,
acceptable in the particular system for a specific application. Some findings and major
contribution of this study are presented below.

4.9.1 Findings

After analyzing the experimental results, we can conclude the following:
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e The number of operations processed at hosts is generally different from that

processed at VM level. So, in order to do effective resource scheduling and load
balancing among VMs, performance and resource monitoring at VM level is also
necessary.

The power consumption of the server becomes non-linear at higher load. However,
it is unfair to say that only an increasing number of VMs causes the non-linear
behaviour of server power consumption. Instead, considering fig. 4.11 we can say
that non-linearity is also introduced in modern processors when the offered load
exceeds the available core capacity of the server. That is, when a server starts
sharing its core among different entities, the power profile of the server changes
to non-linear; this non-linearity increases with increasing over-utilization of core
resources.

Considering the above two points we can see that in modern processors the server
behavior changes towards non-linearity. Therefore, one has to be careful while
selecting modeling methods as the processor properties and load on the processor
can dynamically change the server profile. Considering this the selection of different
models for different load intensities can be made.



4.10 Future Directions

e The significance of using effective counters was also analyzed. Collecting a number
of counters is necessary but extracting only effective ones from them is also
important. The results of using several counters show that their number may
become redundant in terms of features for training. Hence, it is useful to reduce
the training features for the sake of reducing model complexity.

4.9.2 Contributions

We summarize below some major contributions of this section.

e The research has analyzed in some detail the behavior at two system levels, i.e. the
host level and the guest level. On identifying the performance difference between
the two, one can estimate the actual resources required at the host level to process
the requested resources at the guest level. This estimation could help service
providers in establishing management policies at datacenters and the cloud to use
the system resources more efficiently and to optimally balance the load among
different entities.

e The power model proposed in this research work exhibits reduced error in compar-
ison to existing models. The precision of the proposed power model is between
97-99%, even for the unseen data points. This accuracy in power estimation
could help improving the effectiveness of making power-aware decisions such as
scheduling, power-capping, consolidation, etc. The proposed model also did not
compromise on the complexity of the model and achieved high accuracy in power
estimation with simple modeling techniques. Hence, high performance at the cost
of low overheard can be obtained while using a minimum number of features and
simple regression models.

4.10 Future Directions

In future, this work can be extended to derive the power model for an individual VM, by
more selective exploitation of performance monitoring counters. These VM power models
would be beneficial for both, service provides and clients. Service providers can have
effective resource management and they can also develop cost models for their services
based on actual resource usage. Such improved cost models will help clients to pay a
fair amount for the resources they used. Moreover, models considering different types of
workloads such as network- or memory-intensive ones can be developed, by finding their
corresponding performance counters since, besides CPUs, memory and network are two
dominant components in server power consumption.

With the development in energy management services, it is also expected that in future
the introduction of energy saving technologies will make the CPU power consumption less
relevant. In such scenarios, the power models will require to incorporate other dynamic
factors contributing to power consumption, for accuracy and model effectiveness. These
might include the effect of components such as disk, network cards, RAM, etc. In
addition, if a large part of these power consuming components is not considered, power
models could become relatively unpredictable. This will certainly increase the difficulty
to develop and design an accurate power model and therefore it is an important and
challenging research direction.
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5 Overview of Resource Management
and Task Scheduling in the Cloud
Computing System

5.1 Introduction

Distributed systems offer a tremendous processing capacity. However, to realize this
tremendous computing capacity, and to take full advantage of it, good resource allocation
schemes are needed. Cloud scheduling is a research area that targets the efficient
utilization of cloud resources. In the cloud, Scheduling is the process of detecting resources
and allocating them to users, whereas resource management is a way to do it appropriately
by optimizing resource utilization and improving system performance. An unbalanced
server load could result in over- or under-utilization of resources, performance degradation,
higher operation and execution costs, and may also lead to violation of Service Level
Agreements (SLAs) [147]. Hence, task scheduling is an important functionality to avoid
unbalanced load and inappropriate allocation of resources, in a system with hundreds or
thousands of servers. The size of cloud networks is growing to deal with the increasing
demand of incoming traffic, which makes optimal resource allocation further complex.
Cloud scheduling is therefore categorized as an NP-hard problem in the literature [14],
[15]. Variable workload patterns, uncertainty and heterogeneity of resources are major
hurdles in the development of an efficient and optimal scheduling algorithm. Cloud
providers and consumers both can get benefit from effective scheduling, such as by having
minimum makespan and computation time, reduced latency and robustness, maximum
resource utilization, scalable and heterogeneous services, and reduced cost [147].

In this chapter, introduction to scheduling in cloud computing is provided. The first
section of the chapter describes some related notations and terminologies which are
being used in this environment. Chapter further proceeds with the categorization of
algorithms, which are usually based on the characteristics and nature of the variables
in the system. Some scheduling algorithms are then briefly discussed, followed by the
section presenting the existing literature and challenges posed by scheduling of tasks
and allocation of resources in cloud computing.

5.2 Notation and Terminology

Just as the services, demands, and framework changes in different computing systems
and communication networks, performance metrics and terminologies relating objectives,
constraints and the environment also change. This section discusses some notations,
performance metrics and terminologies used in scheduling in cloud computing. The
main characteristics of any scheduling scheme in the cloud comprises of objectives,
current environment, and constraints. Some most targeted objectives in these systems
include (but are not limited to) reduced energy consumption, waiting time and makespan
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minimization, overhead and complexity reduction, lower CAPEX and OPEX, maximum
resource utilization and fault tolerance. However, cloud providers must consider the
Service Level Agreement (SLA) of their clients while providing high Quality of Service
(QoS).

The optimization of the objectives, however, is restricted with given constraints which
must be considered while finding an optimal solution. The constraints are the strict
system features that can not be compromised. Constraints considered in the system
could be due time, deadline, processing speed and processing capability of a machine,
preemption, priority, power threshold, etc. Processing capability refers to the fact that
not all machines can process any task. Some machines are dedicated to process a specific
kind of task and vice versa.

There are also several primary and derived performance metrics available that are
evaluated to analyze the system performance. Similar to the problems’ objectives
and constraints, performance metrics also vary for different users and applications.
Task completion time, throughput, makespan, cost, energy consumption, and resource
utilization can be listed as some of the widely used metrics in cloud computing. Some of
the metrics have high significance as they might also be used to derive the performance of
other metrics. Once such example is task completion time that may affect the throughput
and power consumption of the network as well.

Discussed below are some notations and terminologies which are highly related to
scheduling in cloud computing.

Processing Speed: It is the processing speed of each VM in the system and is
measured in million instructions per second (MIPS). The processing speed of any
machine can be represented either as the sum of the speed of all cores or processing speed
of a single core. In the latter case, if all cores operate at the same speed, processing
speed can be multiplied by the total number of cores to get the maximum speed of the
machine.

Cost: It is one major objective for service providers. The cost of the system is defined
as the combination of VM migration cost, failure cost, operational cost, cost of execution
and communication. There are various factors that could affect it. Cost reduction can
be made at software level, hardware or architectural level, legal processing, etc.

Arrival and Completion Time: The time at which the task enters the system is
task’s arrival time. Similarly, when a task finishes its processing and leaves the system,
that instant is called completion time of the task.

Execution Time: This is the actual time at which the task starts processing. The
tasks are not scheduled immediately upon their arrival in the system; there is some
scheduling delay or some time the scheduler waits for a batch of tasks to complete. This
usually add delay for the task to execute.

Waiting Time: The time during which the task wait in the system queue, before
start processing is called its waiting time. It is the period between the arrival and
execution time of the task. In the case of preemption, an additional waiting time is
added if the task is paused and resumed again later.

Processing Time: The processing time of the task is the time any task takes to
finish its job. It is the time between the execution and completion time of the task.

Deadline: The deadline of the task is the strict restriction for the completion of
a specific task. The tasks associated with the deadline constraint should finish their
processing before reaching their deadline. Tasks that cross their deadline are considered
as failed or lost, hence degrading the system throughput.
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Due Time: It is defined as the time by which a task should try to finish its processing.
If any task finishes after its due time it will be considered late and will be evaluated for
its lateness.

Lateness: The lateness of the task is defined as an additional time any task takes to
finish after its due time.

Makespan: The Makespan of the task is the total span of time that any task spent
in the system. The time from the arrival of the task into the system until it finishes its
processing and leaves. However, some applications also consider the makespan of the
process (or for a batch), where the makespan is the time when the first task arrives in
the system and the last task leaves the system.

Energy (or Power) Consumption: This is the one important performance metric,
from both economical and environmental point of view, and is also used as an objective
function in many applications. Power and energy are two dependent variables, which
should be reduced to minimize operational cost and carbon footprint. The energy
consumed by the system is the amount of power resources used by the system during
an interval of time. The major sources of power consumption in cloud computing are
computation resources, cooling and management system, and networking devices.

Migration: It is an act of moving a VM from one server to another server either to
achieve load balancing or for other performance gains. Migration is a complex process
where the selection of VM to be migrated and of the server on which to migrate is
a strategic decision. Moreover, migration cost is an overhead itself, which should be
considered precisely before making any decision. Migration of a VM can be done in a
number of ways such as offline and online migration, pre-copy and post-copy migration,
etc. Several models are available to calculate the migration cost and to make a right
consolidation decision.

5.3 Categories of Scheduling Algorithms

Scheduling algorithms can be categorized based on the characteristics of tasks, objectives
of scheduling algorithms, approaches and methods adopted for scheduling, etc. Some of
these categories [148] are elaborated below.

o Dependent and Independent: These two algorithms are differentiated from each
other based on the dependency of their precedence tasks. With the introduction
of containers and virtual network functions (VNFs), different applications divide
the task into sub-tasks for fast processing. These sub-tasks can run in parallel
but sometimes have a dependency on other tasks. In this context, the dependent
tasks can not be executed until all their precedence tasks have finished, i.e. they
depend on their parent tasks. On the contrary, independent tasks do not have any
dependency on other tasks and can be executed unconditionally.

e Online and Offline: The offline schedulers have all required details of tasks such
as their arrival rate, processing time, required resources, etc., before the start of
scheduling. With the complete set of input information, the algorithm finds a way
to efficiently process the inputs and obtain an optimal solution. However, online
schedulers only receive information about the task on its arrival. The workload in
these cases is unpredictable and schedulers on the run-time decides the mapping
of a task to a VM. Since these schedulers have no information about the task
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arrival rate in advance, they just try to optimize the solution for a given instant.
Considering the dynamics in a cloud network, online schedulers are mostly used by
service providers.

e Meta-heuristics and Heuristics: These methods are used to find the solution
of the scheduling problem in polynomial time. Heuristic algorithms systematically
explore the search space and have a definite searching rule to find the solution. Meta-
heuristic is a higher level of heuristic search that searches for the optimal solution
in an iterative manner. The iterative process guides heuristics to explore the
search space efficiently. It considers the feedback from the last iteration, objective
function, and prior performance of the system to find the optimal solution. The
combination of exploration and exploitation in meta-heuristics, although providing
the best solution even for the complex problem (where heuristics might fail to
provide one), requires a significantly long time.

e Resource Oriented and Application Oriented: In any system, clients and
providers are two entities that can be benefited from the algorithms and methods
used. The QoS and SLAs are concerned with the satisfaction of clients; however,
reducing the OPEX and other costs concerns the service providers. Models that
consider clients’ satisfaction as their objective are called as application-oriented
models, whereas objectives such as load balancing and optimal resource usage fall
under the category of resource-oriented models.

e Single Objective and Multi-Objective: Since different applications and work-
load have different requirements and performance criteria, there could also be
multiple objectives for a single application. Hence single- and multi-objective
applications require different methodologies to maximize their performance. In
multi-objective algorithms, there is a trade-off between two or more gains, and an
optimal point is selected through different strategies.

As discussed above, the scheduling algorithms can be divided into different categories,
where a single algorithm could possess the characteristics of more than one category.
Some widely used scheduling algorithms are described in Appendix C.1.

5.4 Related Work

In recent years, virtualization technology has been widely applied in data centers, however,
the CPU utilization of traditional servers is only 40% on average [13]. Besides, the
Gartner report show that, underutilized servers have high energy consumption, and
virtualization can reduce energy use as high as 80%, and save the deployment (area)
space up to 85% [1], [149]. To resolve the contradiction between the number of servers
and resource utilization, many service providers adopt virtualization to integrate server
resources and save costs. Though cloud computing is no longer a new research area,
its growing demand continues to challenge for better performance, reliable and more
energy-efficient solutions for service providers and their users. Initially, scheduling
techniques such as first-come first-served, round-robin, and various other schemes that do
not consider the system parameters, were being used in cloud computing [150]. However,
with the expanding use of cloud services, researchers realized that the cloud environment
requires more dynamic, efficient and reliable algorithms. Task scheduling in cloud

78



5.4 Related Work

computing is an NP-Hard problem that exhibits a large state space that complicates the
search of optimal solutions in polynomial run-time [14], [15]. These problems are often
addressed by using heuristic methods and approximation algorithms.

According to a study in [150], two major categories of scheduling are based on deter-
ministic and evolutionary approaches. Deterministic approaches schedule the incoming
tasks using algorithm based on priority, integer programming, max-min algorithms,
etc., whereas evolutionary algorithms include, among others, genetic methods, particle
swarm, ant colony, and cuckoo search. Both kinds of approaches are being used to
improve the scheduling by maximizing resource utilization and by reducing delay in
task execution. Also, different workload patterns in cloud computing have different
resource requirements and also different SLA requirements which lead to several different
application-based scheduling schemes. According to a survey on cloud computing [151],
scheduling of tasks based on types of resources may include networking, computing,
power, and storage. Researchers proposed different models to optimally use these re-
sources and maximize the performance of servers in the cloud. According to a study [13],
most of the time servers in data centers utilize only 30-50% of their total processing
capacity. And this might be due to the inappropriate allocation of resources. Hence,
future data centers need to increase their utilization rates for effective processing.

A study presented in [152] considered sensitive tasks scheduling based on their dead-
lines. They used the Open Nebula platform that uses the backfilling algorithm to
schedule processes based on their deadline. The backfilling algorithm is an optimize
FCFS algorithm that first sorted all processes in queue and then allocate them sequen-
tially. However, owing to the conflicts with similar kind of task arrival, the increased
failure rate in backfilling is addressed in the proposed scheme [152]. The proposed
approach improved the failure rate by avoiding sorting of tasks, which was done earlier
based on the task arrival time. Instead, the proposed scheme tries to schedule all the
tasks at run time. Each arriving task is scheduled considering its deadline and excess
time it has. The excess time of a task, also called 'gap time’ in the paper, is the
difference between the expected execution time and deadline of a given task. Tasks
with smaller gap time are allocated first to the VMs so that they can finish their job
before approaching their deadline. Results show that this scheme improves VM uti-
lization and also the successful allocation of tasks for the various workloads. Another
task scheduling algorithm considering the available network bandwidth is proposed in
[153]. All incoming tasks with the same execution time are grouped together and are
checked for the availability of bandwidth resources on each VM. The simulation shows
improved bandwidth utilization, but lacks in providing the utilization of other resources
that were not considered for optimization. Also, tasks with similar task length were
considered in this study, which might not be applicable in real-world cloud computing.
One resource management technique using 'Dynamic Voltage and Frequency Scaling’
(DVFS) is proposed in [154]. In this technique, the voltage of the processor is adjusted
to maximize the utilization based on the current load. One of the recent studies [155],
proposed a heuristic-based scheduling scheme which comprises an analytic hierarchy
process to optimize the resource usage. The scheduling process starts with the ranking of
each incoming tasks, based on their size and run-time. Later, tasks are assessed for their
resource requirements such as CPU, memory, and bandwidth, and assigned to available
virtual machines. The load on each VM is also constantly monitored, which helps to
balance the tasks running on them. The experimental evaluation of this scheme shows
that the processing time of tasks by this approach is reduced by 20-25%, CPU utilization
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is increased by 4%, whereas memory and bandwidth utilization rate are doubled.

Yet another study analyzed the effect of performance interference on the energy
efficiency of the system [156]. Performance interference occurs in virtual environments
when several VMs running on a similar server compete for the resources. A workload
heterogeneity based scheduling is proposed that allocates the workloads based on their
characteristics and their resource consumption on different servers. Results show that
this scheme can reduce performance interference by 27.5%, and it improves the energy
efficiency of a data center by 15%. One way to avoid the resource wastage in cloud
computing is to have a balanced network load and avoid under- or over-utilization of
CPU on any server. Balancing the load on servers has also been used in several studies
to reduce power consumption. Load balancing is achieved usually considering the CPU
usage of the server, while ignoring the other resources such as memory, bandwidth, and
disk. An algorithm to attain the optimal energy solution of VM scheduling based on
multi-objective is presented in [157]. The Multi-Resource Energy Efficiency Particle
Swarm Optimization (MREE-PSO) method is proposed based on optimizing CPU and
disk usage. Furthermore, local and global fitness of the swarm particle is assessed at
each iteration to increase the probability of having the best solution by avoiding local
minima. The MREE-PSO maximizes the resource utilization of the hosts by reducing
the number of active servers which consequently reduces power consumption. Improved
energy efficiency was observed for the proposed scheme compared to Modified Best Fit
Decreasing (MBFD) and Modified Best Fit Heuristic (MBFH).

Time is also a constraint in scheduling algorithms. Services in the cloud are typically
on a pay-per-use basis. So, tenants do not want to stay longer in the network, and hence
reducing processing time is also a concern for both consumers and service providers.
This requires scheduling algorithms not to be computationally expensive, as this could
lead to increased latency [157]. Its effect could be more significant for dynamic traffic
arrival and high traffic density. A Heuristic-based approach is used in [158], to solve
the task scheduling problem in the cloud computing environment. Authors proposed an
enhanced 'Fruit Fly Optimization Algorithm (FOA)’ as 'Pareto FOA’. Two objective
functions minimized in this approach are rent cost and makespan of the task. At first,
random number of tasks are generated, where each task further has random number
of sub-tasks or services. Later, each sub-task searches for enough available resources
to execute. The cost of this heuristic search is minimized by allocating the task to a
machine with a minimum cost to capacity ratio. Then, the population for the next
heuristic search is selected by non-dominant sorting of tasks. However, reallocating tasks
each time for a new heuristic solution will incur additional cost in this scheme. Results
show that Pareto FOA reaches the optimal solution faster with reduced network cost.
However, the algorithm is more complex than many other existing approaches.

The cost of running servers in the cloud network is also an important performance
metric that can be computed in several ways depending on the service provider and the
services offered. One of the research works determines the cost of a virtual machine in
the cloud based on the processing delay and energy consumed [75]. Some parameters
affecting the server’s cost [159] includes processing time, the power consumed, processing
capacity and execution cost. The proposed scheme tries to reduce the cost by reducing
the processing time and maximizing CPU utilization.

Power consumption in the cloud can be broadly classified into three categories, per-
taining to software, servers, and cooling [160]. Optimizing energy at any level can make
a significant reduction to the power cost and it can also contribute towards the green
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computing environment. Power capping of a server is also useful in many scenarios
such as to avoid any breakdown due to surges, high traffic load, etc. Hence, most of
the data centers and cloud networks have their server power consumption limited up
to 75-85% of their total power [161]. Power threshold examples can also be seen at a
tech-giant stores like Amazon’s EC, where amazon’s largest instance 'm1.xlarge’ when
allocated to the server, had been restricted to use only 75% of the CPU [162]. The
server’s power threshold is set based on applications’ trade-offs in terms of latency and
power [163]. For critical applications, a meta-heuristic solution is sometime not feasible
as they take long time to find a solution. The greedy heuristic solutions are preferred in
these scenarios, where a scheduling decision is made based on the current system status
and satisfaction of predefined rules. A greedy task-scheduling approach is presented
in [164] to reduce the power consumption of the system by minimizing the active
number of servers. With the rule of most-efficient server first, the algorithm sort the
available servers by their corresponding computing capacity. Considering the deadline of
the task as a constraint, a model is designed to schedule the incoming tasks to the most
efficient server (first server in the sorted list) first, until its saturation point is reached.
Later, other servers from the sorted list are considered for scheduling of the remaining
tasks. This work only consider the offline task arrival, where the resource requirement of
tasks were known in advance.

In the cloud, scheduling process is required for two functions, scheduling of a VM and
of a task. However, models and methods used for scheduling in both cases are often
similar. The Best Fit algorithm for VMs scheduling is used in [165], where hosts are first
arranged in ascending order of their capacity and the requested VM is then allocated
to the host which has the maximum unused resources available to accommodate new
VMs. Results show that the time complexity for a single VM allocation is reduced to
O(log n), where n is the number of virtual machines. However, this allocation time is
further reduced to a constant O(1) for the Worst Fit scheme, where hosts are arranged
in descending order before scheduling. Both Best Fit and Worst Fit strategies show
reduced allocation time as well as the reduce number of active hosts when compared
with ’Balance’ and 'Greedy’ algorithms, and hence can be considered as an optimal
choice for similar scenarios.

5.5 Open Issues in Cloud Computing

A methodological survey [147] on challenges and issues of task scheduling in cloud
computing analyzed its literature from various aspects. They studied by categorizing the
research as the classification of resources, resource distribution policies, QoS parameters,
resource scheduling tools, etc. Based on different techniques used in each scheme, the
authors in [147] classify the group of schemes as cost-effective, time-based, SLA- and QoS-
dependent, optimization, energy, and dynamic network behavior-based. Furthermore,
the survey highlights the significant components to consider while designing a scheduling
algorithm. These components include availability, reliability, security, cost, execution
time, energy, resource utilization, SLA violation rate, throughput, bandwidth, and
user satisfaction. The study [147] suggested two new aspects to be considered for
task scheduling; namely: QoS-aware scheduling, and self-management of cloud services.
According to the authors, cloud services are provisioned according to the available
resources and not ensuring the performance. Hence, there is a need to evolve scheduling
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Fig. 5.1: Worldwide power consumption of data centers in GW [167].

schemes based on QoS requirements. Secondly, the self-management of system resources
will help in keeping the system stable in unpredictable conditions and it will adapt new
environment quickly. The survey concludes that self-management service, migration,
and server consolidation, QoS and energy efficiency are still greater challenges in cloud
computing. Discussed below are some focused open issues in cloud computing of the
recent era.

5.5.1 Power Consumption

We already studied in the literature that the growing server farms are significantly
increasing the rate of power consumption by data centers each year. This huge power
consumption rising both economical and ethical issues those concerns the energy cost
and the carbon footprint [166]. This domain has been remained under-focused at all
times. A report on data center’s power consumption by Lawrence Berkeley National
Laboratory in 2014 [167] estimated that by 2020 data centers would most likely be using
200 billion kWh of energy. Power consumption estimation stated in this report is present
in fig. 5.1.

Increasing power consumption led to the increased server’s temperature, which in
the long run could degrade the server performance, and also increase the cost of the
cooling system. The power consumption at data centers is constituted of different factors
including processors, cooling systems, network equipments, and other secondary resources
[168]. But two components contributing to major power consumption are computing
resources and cooling services. Improving energy efficiency on a large-scale distributed
system is challenging. Therefore, the problem of power consumption even after being
studied for years still requires more effort. Moreover, a maximum of about 18% of
the existing research work is using energy-aware scheduling for cloud computing [147],
indicating that the cloud still needs energy-efficient algorithms to reduce its execution
and operational cost.

5.5.2 Network Uncertainty and Heterogeneity

Each virtual machine in the cloud may have different configuration, and similarly, each
incoming task may have different requirements. Hence, the heterogeneous nature of the
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system environment is another challenge. The scheduling methods and their objective
functions depends upon the workload type and its Quality of Services (QoS) requirements.
However, in any case, the maximization of the CPU utilization and reduction of the
execution and operational costs are among the major concerns for most researchers.
Since the cloud facilitates the users across the globe, hence with users having different
region and applications have different resource requirements which constitute a dynamic
and heterogeneous cloud environment. Network bandwidth demand for different multi-
media applications, variable workload patterns, user’s location, and device type, all have
become factors for creating uncertainty in the cloud [20]. Another changing variable
in the virtual network is VM migration and consolidation. Since huge data centers
have hundreds and thousands of servers distributed over several racks, this also varies
the cost of VM migration. Also, there are numerous factors involved for the network
heterogeneity, finding a holistic solution while optimizing all dynamic variables is difficult
to attain. Also, according to a survey [147], not many of the studies have considered the
heterogeneity of workload in their research, which is, however, one major characteristic
of the cloud.

5.5.3 Security

The developments in cloud computing are also speeding up the rate of outsourcing of
services in several organizations. This ultimately is increasing the security risks such
as network and other infrastructural vulnerabilities, user access, authentication, and
privacy. The cloud users engaged in web services and applications need to trust service
providers for their data sharing and privacy. Data security and privacy are traditional
issues in computing and networking, which has been addressed by a large number of
researchers and yet is a matter of investigation and lively discussion. Along with that,
the advent of virtualization, multi-tenancy and shared resource pools has imposed new
threats to the privacy of cloud computing [169]. These non-traditional issues are usually
over-looked in security service provided. Data stored on the cloud has a major concern
about the privacy of shared data. An attack on a single user can affect multiple tenants.
Outsourcing of privacy services is also a threat where the third party is involved for
data management. Several controlling schemes and architectures have been proposed
dedicated to a single cloud framework and addressing particular attack problems, but
a more generalized architecture dealing with different security issues in the cloud is
still missing. One survey on security challenges of the cloud [170] concludes that cloud
services regarding legal and administrative concerns have been studied well enough and
solutions to them are available. However, domains like secure virtualization are still an
open issue. Legal issues, compliance, and loss of data are three major issues in cloud
security, where legal issues and compliance appear in 73% of the studies and 12% of
the studies cover the issue of secure virtualization. Network and data security have also
been given little attention and hence require more research efforts.

5.5.4 Availability and Reliability

High availability and reliability are among the great expectations of customers in cloud
computing. Reliability in the cloud can be defined as the probability that the system is
operational at all time without any failure, whereas the availability of the system is the
probability that at a given instant the system is accessible, and functioning correctly
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[171]. The idea of having no physical offices or companies came to existence due to the
availability of resources anywhere, anytime. In recent years, cloud computing has gained
great attention from global businesses and government agencies, thus it is becoming
essential to provide high availability for cloud services to maintain customer’s confidence.
For these remote customers, their data, quality of data, reliability of data, and computing
resources is all their worth. They can only be satisfied if high availability of resources,
the possibility of data back up in case of failure, fast response time and high performance
can be ensured [172]. Failures that could affect the reliability in the cloud are hardware
failure, software failure, cloud management system failure, security failure, environment
failure, and human faults. Future research in these directions can be carried out to
improve the system reliability [171].
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6 Optimal Task Scheduling in Cloud
Computing

6.1 Introduction

Scheduling is the process of detection, selection, and allocation of appropriate resources
to the users. Task scheduling in any network is important; otherwise, a network with
a bunch of servers can have an unbalanced load and this will result in over- or under-
utilization of resources, performance degradation, higher operational and execution cost,
and may also violate Service Level Agreement(SLA) [147]. Efficient scheduling schemes,
however, can reduce the cost, processing time, power consumption and can also improve
other service requirements such as security, reliability, and scalability.

The problem of resource allocation in large-scale shared cloud infrastructures is known
to be NP-hard and has been studied in many contexts in the past [14], [15]. This chapter
aims to find a reasonably good heuristic solution in a relatively short time. The available
heuristic solutions considering different objectives are targeted to efficiency in energy
and performance. One goal of this research is to look for a less complex scheme, that
can make the scheduling decision quicker and less resource consuming.

In this chapter, we first look at the issues and motivations for scheduling in cloud
computing environments. Considering those, the problem definition for this research
work will be stated in a later section. The chapter further proceeds with the description
of the system which is being analyzed and present different case studies done to achieve
final goals. The proposed scheduling method is then proposed in the last case, which is
evaluated for different performance metrics.

6.2 Motivation

As discussed in chapter 5, resource scheduling in the cloud possesses several challenges.
Considering the SLAs and network architecture, constraints and objectives of the system
vary; however, the goal in all systems is to find optimal task to VM mapping and task
scheduling, usually for heterogeneous networks. A few of the issues motivated to carry
out this research includes the under- and over-utilization of resources, model complexities,
and energy-efficient scheduling, while maintaining the performance.

According to a study [13], most of the time servers in data centers are being utilized
only 30-50% of their total capacity. This might be due to the inappropriate allocation of
resources. Hence, for optimal resource utilization, future data centers need to increase
their utilization rates; thus, shifting towards the cloud will benefit with lower costs and
increase services. Moreover, the complexity of scheduling schemes introduces a delay
in task execution. This optimization problem is NP-Hard, as it is similar to the bin
packing problem which becomes more complex with different sizes of bins and boxes.
Most researchers propose optimal search solutions to find the best possible mapping for
incoming tasks to available resources. However, using these optimal search heuristics
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could be costly, especially for huge data set such as in the cloud. Also, the optimal
solution is only possible in limited cases of NP-Hard problems in polynomial time. So,
to avoid uncertainty and huge computation delay, some research proposed heuristic rules
to find the optimal solution in a relatively short time. The solution obtained using these
rules might not necessarily be the optimal one, but it provides good enough results in
most cases. The worst-case scenarios for these heuristics have also been analyzed, which
provide bounds for their performance. The time complexity for scheduling n tasks using
"Simulated Annealing’, which is an optimal search method, is O((n? 4+ n)logn) [173],
whereas the solution using the heuristic rule such as 'Longest Processing Time (LPT)
first” costs O(logn) [174].

Moreover, the effect on power consumption using different approaches is also studied
in the literature. The factors affecting the power consumption of the server include the
system internal power usage, application resource requests and schedulers processing
[136]. Hence, we can reduce the overall power consumption by selecting energy-efficient
scheduling schemes. But, since the major contribution of power in data centers and cloud
networks is through computing sources and their management equipment, the problem
resource allocation is also addressed and tackled in this research. A significant amount
of idle power is consumed by the server, i.e. when the servers are powered on but not
executing any task. This is usually static but varies from server to server, depending
upon its configuration and architecture. Mostly the idle power ranges from 30 W to
140 W which is usually 60% of the server maximum power [175]. This power wastage can
be reduced by powering up only a few servers. According to the [136], the total power
consumption of the data center is dependent on static and dynamic power consumed by
an individual server, where a significant amount of static power is comprised of server
idle power.

M
Protar = Z(‘Pjstutic + deynamir:) + Pjsecondwy (6~1)
j=1
In eq. (6.1) ([136]), Piotas is the total power consumed by the cloud or data center,
Piiatic is power consumed at power-on state of the server, Pyynamic is the change in
power caused with resource usage, and Psccondary is an additional power used for cooling,
management of the system and network devices, etc., and M is the total number of
servers in the system.
Considering the above-mentioned issues and possible solution, this thesis research tries
to solve the problem through combination of heuristic rules that are proved to provide
the sub-optimal solution even in the worst case.

6.3 Problem Definition in Scheduling

A scheduling problem can be defined using three characteristics « | 8 | v, which represents
the system environment and its objectives. The environment of processing machines is
represented by «, where different configuration of the system could be a single machine
(1), identical machines in parallel (P,,), parallel machines with different speeds (Q.,)
and unrelated machines (R,,) (further detail in Appendix C.2). The field 8 represents
the system constraint(s) and, v field contains the objective function(s). Depending upon
the priorities and SLAs, the system implies different constraints such as task preemption,
task’s due time and deadline, processing delay, waiting time, power consumption, etc.
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The objective function for the system also varies for different users and their applications.
This concerns the performance and QoS which is maximized to achieve maximum gain(s)
for a particular system. The most common objectives in scheduling problems are task
makespan, total completion time, maximum completion time, energy consumption, cost,
load balance, etc.

In the cases below, we will formally present our problem using the formulation
described above. We describe a non-preemptive dynamic task scheduling problem for
heterogeneous computing systems, such as the cloud. The problem considers a system
of parallel machines with the objective of minimizing the overall execution time and
maximizing the resource utilization of servers. A set of 't’ independent tasks is to be
allocated on 'm’ non-preemptive machines, where t > m > 2. The task scheduler is
used to map tasks on selected virtual machines for execution. Preemption of the task,
considering any sort of priority is not considered. Any task, once started processing on
any of the machine, will finish its processing without any pause in between. The system
is studied under different machine environments, homogeneous (P,,) and heterogeneous
(R;,), with and without any constraints, and considering different objective functions.
The constraints considered include task due time and objectives in different cases are
resources optimization, task completion time and lateness. Each case-study analyzes
the system performance under defined objectives and strategy used to find the optimal
solution. The final scheduling algorithm is then proposed considering multiple objectives
derived from the results of previously studied cases. The proposed algorithm in each case
is compared with the two most commonly used scheduling algorithms, Round Robin(RR)
and Simulated Annealing(SA) Heuristic approaches (refer appendix C for details). These
models are selected to compare the performance of proposed methods with the simplest
one (RR) and one complex (SA) scheme and to observe where the proposed algorithm
lies in terms of complexity and performance in comparison.

6.4 System Overview

The study considers the system with several parallel servers (or host machines) where each
server hosts a different number of running virtual machines. Both cases of homogeneous
(similar VMs) and heterogeneous (different VMs) systems are considered in this research.
Also, the dynamic and heterogeneous nature of tasks is considered to incorporate the
real-world scenario for the case studies. Tasks are supposed to arrive in the system
according to a Poisson distribution with arrival rate A and are collected in a single
system queue T'. The scheduling is initiated on completion of a batch, where the size
of the batch is defined in simulation parameters. In case of a shortage of computation
resources, all remaining tasks in the queue are scheduled later on the availability of
resources i.e. when any task finishes its job and leaves the system. Considering a point
in time of the execution of the scheduling process, the time indexes in system variables
below are avoided. The system consists of a set of servers S, comprising n servers:

S ={s1,82,-"* ,8n} (6.2)

where each server s; € S has mg, VMs running on it. These VMs on a single server can
be represented as a set V;:

Vsi = {Usi,la Us;,2, " " ° 7v3i7m5¢} (63)
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The VMs are allocated on the servers based on their core capacity, where each core of VM
can be allocated to a single core of a server. The resource capacity of each VM may be
different and is defined by the number of cores possessed by a VM and processing capacity
in Million Instruction per Second (MIPS), where all cores are supposed to have the same
processing speed. The j VM of server s; can be represented as vs, j(cs, j, ps;.;), Where
Cs;,j 18 a positive integer and represents the number of cores, and py, ; is the processing
speed of each single core in the VM.

Furthermore, there is a single task queue T consisting of the number of tasks present
in the system at the observation instant:

T = {tlatQ’ o vtk}’ 1< k < kmax (64)

where kpax is the maximum allowed number of tasks in queue at any given instant of
time.

Each task t, has a certain number of sub-tasks that defines the number of cores that a
task can use on a given VM to run sub-tasks in parallel. The scheduler tries to allocate
each sub-task on a separate core to reduce the task’s processing time. The k" task can
be represented as ty(cg, l;), where ¢ is the number of sub-tasks (or cores) for task g,
and the vector I = Ue1slk2, - ke, is the number of instructions or task length for all
sub-tasks in a task ¢;. The scheduling process is initiated after the batch of task (with
k=10) has arrived in the system queue "T’ or when any tasks leaves the system. When
there is no suitable VM available to process the given task the task remain in queue and
will be processed in the next cycle. The processing time (pj) of a task allocated to V M
of server s; can be determined using the eq. (6.5),

e (i)
Pr=—"—"—" (6.5)
Psij
Constraint in the system as task ’due time (dj)’ is also considered, where the task, if
finishing after its due time, is evaluated for its lateness (l). The due time of the task is
the task’s processing time with some delay. The equations below define the lateness and
due time of the task,

= Ck — (ax, + dy;) (6.6)

dx =pr +rD (6.7)

where C}, is the completion time of any task or the time when the task leaves the system
and ay is the arrival time of the task in the system. The value (rD) is a randomly
assigned delay within the range of 1-5 seconds. The performance of the system based on
resource utilization is also studied while considering the core capacity of the server as a
resource. The utilization cost (or core cost) is determined by the amount of cores being
under- or over-utilized. The core utilization cost of the system with a total of n servers,
mg VMs, and ¢t tasks can be expressed as

n Ms; t
Core Costgys = Z Z(CSiJ) - Z(ck) (6.8)
si=1j=1 k=1

Considering eq. (6.8), the system will be over-utilized if the value of Core Costgsys < 0,
and if the Core Costgys > 0 then the system is considered as underutilized. The system
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is said to be maximum utilized for Core Costs,s = 0. Furthermore, the complexity
of each algorithm is measured in terms of the time taken by the algorithm to map
all the incoming tasks to the available VMs. Moreover, power consumed and energy
consumption of the system are also analyzed. The linear power model is used to measure
the power consumed by each server, where the power is a linear function of the server
CPU utilization and can be expressed as,

POweTsystem = Z (Pstaticsi + (b * ¢sz)> (69)

s;i=1

where b is a constant and ¢ is the server CPU utilization.

6.5 Simulation Environment

A recent survey on cloud computing shows that about 81% of researchers are using the
CloudSim simulation tool to carry out simulation-based analysis for cloud [147]. Thus,
the Cloudsim-Plus 4.0 simulation tool is used in this thesis to implement the proposed
scheduling schemes. Incoming tasks in this tool are referred to as ’Cloudlets’, so task
and cloudlet will be interchangeably used in the later sections of this research. The
simulation network considered consists of 50 servers, where 150 virtual machines are
distributed among them. Further, servers and VMs configurations are shown in table
tab. 6.1. The network is heterogeneous; that is, the virtual machines have a different
number of CPU cores and hence different processing capacity (MIPS). Also, all incoming
tasks have different processing length (required number of processing Instructions) and
can process on different number of cores based on the number of sub-tasks. Variable
task length is assigned according to continuous distribution and is used to analyze the
performance of the network for different task sizes. Also, a Poisson’s distribution of task
arrivals with different mean values is used in the simulation to analyze the scheduling
behavior for various traffic densities. To observe different system scenarios, static and
dynamic tasks are processed. Tasks already present in the system before the simulation
starts are referred to as static tasks, and the system knows about these task requirements
in advance. Tasks arriving in the system according to the Poisson distribution are
considered as dynamic tasks. The simulation will end when all the generated tasks are
processed and leave the system. The results of the proposed algorithms are compared
with the Simple Round Robin (RR) and Simulated Annealing (SA) Heuristic Scheduling
schemes in each of the following cases.

Further simulation parameters are presented in table tab. 6.2, and parameters for
simulated annealing heuristic scheduling approach are presented in table tab. 6.3.

Tab. 6.1: System configuration for the Server and VM

Server VM
No. of machines 50 150
No. of CPU cores 32 1-16
Core speed (p) 1000 MIPS 1000 MIPS
RAM 2048 GB 512 GB

Hypervisor Xen -
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Tab. 6.2: Simulation parameter

Parameters

Value

Simulation tool

CloudsimPlus 4.0

No. of repetitions 3
Max no. of task 50 - 500

Static task  50-500

Dynamic task 50-450

Task arrival rate per second (\) 1 - 16

No. of sub-tasks (c¢) 1-8
Sub-task length/instructions () 1000 - 10 x 103
Task due time in sec (d;) 1-5

Server power model
Task batch size
Server static power

Linear model
10
37%

Server Power Threshold (§) 85%

Tab. 6.3: SA Heuristic scheduling parameters

Parameter Value

Initial temperature 1
Cold temperature 0.0001
Cooling rate 0.003
Neighbour searches total no. of task

6.6 Case Study I

To have a stable system, we know that the total utilization of the whole system must
not exceed its total capacity. We also analyzed from the literature that factors causing
waste of CPU capacity include the inappropriate allocation of resources. Hence, in this
case, the proposed algorithm tries to maximize the CPU utilization by avoiding the
resource wastage in the contention for their use. The approach proposed is a modified
best-fit scheduling algorithm for task allocation. For this case, we have a system of 'm’
parallel machines where each machine has a different number of cores; hence the machine
environment for the given system corresponds to R,,. The objective function for this
scheduling scheme is to maximize the servers’ utilization (¢) while avoiding under- or
over-utilization. Hence the problem for this case can be stated as,

Rl |9 (6.10)

6.6.1 Pseudo Best Fit Scheduling (PBFS) Algorithm

The Pseudo Best Fit Scheduling (PBFS) algorithm tries to find an appropriate VM
that has minimum unused resources available for task allocation. The over- and under-
utilization of the resources can be measured in several terms; in this research, the number
of cores of a VM is considered as a parameter. If the number of tasks allocated to any
VM requires a number of cores greater than the available cores of the VM, then the VM
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is said to be over-utilized. Similarly, if a VM at any time instance has some cores unused,
it will be considered as under-utilized. The proposed optimal scheduling will allocate the
tasks such that the number of cores of a VM is equal to the number of cores required by
the task(s) allocated on it. Hence, the proposed method optimally uses the resources to
the maximum available capacity which could also serve as a consolidation strategy.

The scheduler for this scheme starts scheduling by detecting the available and required
resources in the system. It first takes a task t;(cy, ly) from the queue T in FCFS (First
Come First Served) order and allocates it. The algorithm does not look for the optimal
best fit solution; instead, it allocates the task to the first available machine satisfying
the given conditions. Hence, it is called 'Pseudo Best Fit (PBF)’. The residual core
capacities of the VMs on the available set of servers S are detected and compared with
the required resources of a task as,

Vel = {vs;,5 | Vs, € Vs, Aes,j > cx, Vs € S} (6.11)

where Vg contains the list of VMs that have enough available free resources. A task-to-
VM mapping function f can be represented as,

[T x Ve —{0,1} (6.12)
where,
1, if ¢, is mapped to vy, ;
Flte,vs,j) = k1S THAPP J (6.13)
0, otherwise

The objective function to this problem is expressed in eq. (6.14), that is to find an
optimal mapping of tasks to VMs such that the difference between required cores by
tasks allocated to VM and available cores of a VM is kept to a minimum.

fop=min | Y |clon) = X et | |-

vsz‘yjevsel tkeTvsi,j (614)
Tvsbj = {tk | tk- S T AN f(tk’vsi,j) = 1}

where fopt is the optimal task-to-VM mapping, ¢(-) is the function to calculate the cores
required by a task (c; = c(t)) or cores available for a VM (cs, j = ¢(vs,,5)), and T, ; is
the set of tasks that are mapped to a VM vy, ;. When there are no suitable resources
available for any task in the queue, the task will remain in the queue. From the list
V Mg, the VM with minimum available resources is selected as the optimal VM for the
given task. Hence, the proposed PBFS allocates the task to the maximum utilized VM.
But it does not allocate more than the available capacity to any VM, thus attempting
to achieve the maximum utilization of the CPU resources per unit time. The scheduler
repeats the process of the task scheduling until all the generated tasks are processed.
It further schedules the waiting tasks in the queue when any finished task leaves the
system. Hence, the scheduler does not check the availability of resources at every instant,
which reduces the computational overhead; instead, it looks for the resources when there
are possible free resources available or when any new batch (of tasks) arrives.
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6.6.2 Results and Discussion

The simulation environment and system is similar to parameters defined in tab. 6.1,
tab. 6.2, and tab. 6.3. However, simulation for this case is carried out with static
cloudlets (tasks) only i.e. all the cloudlets will be present in the system queue at the
start of the simulation. A total of 500 cloudlets were generated, where each cloudlet has
a different cloudlet length following a continuous distribution in the range of 1000 to
10,000 instructions. Simulation will stop once all the cloudlets finish their service.

The simulation results obtained are analyzed for different performance metrics and the
proposed scheme is compared with RR and SA scheduling schemes. Since the objective
of this case is to maximize the resource utilization, we observe the utilization of cores
for each scheme and later analyze the effect on resource utilization per second. Fig. 6.1
shows the total number of cores that were either over- or under-utilized in each case and
is referred to as core cost (refer eq. (6.8)). The SA and RR algorithms allocate all the
available cloudlets to the number of machines available in the system and do not consider
the over- or under-utilization of resources. Nonetheless, SA tries to optimize the resource
usage while searching for the solution by minimizing the under- or over-utilization. As
we observe from fig. 6.1, the maximum core cost is around 1300 on average for the SA
algorithm, whereas RR has cost around 1100 on average which is a little lower than SA.
For the PBFS algorithm, the cost is very much lower and is around 100. As mentioned
earlier, this cost includes both the over- and under-utilization of cores; therefore, fig. 6.2a
and fig. 6.2b show these costs separately. In fig. 6.2a we see that the SA algorithm has
the maximum over-utilization of resources and RR has a little lower than that. Also,
the major contribution in total core cost in both cases is due to the over-utilization of
resources, where the under-utilization cost is significantly smaller than over-utilization,
as shown in fig. 6.2b. Since the PBFS works on the principle of avoiding over-utilization,
it does not allocate resource more than the available capacity of the VM. Hence, the
over-utilization cost for this scheme is zero. However, an adverse effect of this approach
could be a long waiting time for cloudlets in some cases.

The system behavior for resource wastage due to under-utilization shows that the
proposed scheme has some underutilized core cost (fig. 6.2b). This might be due to
excessive resources which may not be required for the given number of tasks. Another
reasonable factor could be that the remaining resources at a given moment might not be
enough for the cloudlet to be scheduled, due to which these resources remain unused
and the cloudlet is scheduled in the next cycle. However, still, the performance of the
proposed scheme provides a better mapping of cloudlets to VMs in comparison to the
other two approaches. The under-utilization cost for SA and RR is 200 and 80 on
average, respectively, where the PBFS cost on average is similar to RR but it goes as
low as 30 in some cases.

As observed from the above results, utilization cost in terms of cores is minimum
for the PBFSS; so, its effect on the resource utilization rate is also analyzed. Fig. 6.3
shows the CPU utilization per second for all three schemes. We can observe from these
results that the maximum utilization rate obtained for the PBFS is around 18%, whereas
the SA has the worst utilization rate of 2%, and RR is performing almost similar to
SA with 3% utilization. As SA and RR allocate all available cloudlets to the available
VMs, without considering the over-utilization of resources, this causes the sharing of
core resources among multiple cloudlets. The contention of resources creates delays
and depletes energy in control and management rather than job processing. Another

92



6.6 Case Study I

T
—
1,000 | ——

E
(@)
()
5
S 500/ |

O B | | | i

SA PBFS RR

Scheduling Scheme

Fig. 6.1: Casel, total cost of under- and over-utilized cores for Simulated Annealing
(SA), Pseudo Best Fit Scheduling (PBFS) and Round Robin (RR) scheduling
schemes

important factor affecting the utilization rate adversely for SA is its complexity; the
algorithm took a longer time to find an optimal solution, which in turn increases latency
and worsens the utilization rate. On the contrary, the PBFS is decision-based scheduling
and is therefore faster. Also, it only allocates the cloudlet until the availability of
resources, hence avoiding unnecessary resource contention at the core-level.

The time complexity of the proposed model is also evaluated based on the results
shown in fig. 6.4. Total mapping time, that is the time required to allocate all the
cloudlets to the available VMs is observed. The PBFS, adopting a simple decision-based
policy, took less time compared to SA that took much longer time while searching for the
optimal solution in the whole solution space. The total time taken by the SA algorithm
for this case is about 40s, whereas the PBFS took only a negligible amount of time
i.e. around a few seconds. The major factor of increased mapping time in SA is the
optimal search for a solution in a solution space. This solution space gets bigger and
more complex with larger number of tasks in the system. The RR scheme here also
took almost a similar time as that of the proposed scheme, as it also allocates a task to
a VM in a cyclic round-robin fashion, without optimizing the resource. However, the
proposed algorithm will be preferred over RR because of its improved performance in
CPU utilization and energy minimization. Fig. 6.5 shows the energy consumption by all
three schemes during the process. The energy consumed by RR is higher than the energy
consumed by the proposed scheme. It is because RR took longer to process all cloudlets,
due to core sharing, which is avoided in the PBFS scheme by avoiding over-utilization.
However, the maximum energy is consumed by the SA algorithm to process a similar
number of cloudlets.
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Fig. 6.2: Casel, the cost for over- and under-utilization of the CPU cores for Simulated
Annealing (SA), Pseudo Best Fit Scheduling (PBFS) and Round Robin (RR)
scheduling schemes

6.7 Case Study II

In the second case, the effect of heuristic solutions on improving the completion time of
tasks is studied. The completion time of any task is referred to as the time at which the
task finishes its job and leaves the system, which, of course, depends on their schedule.
The completion time can be optimized in different ways depending upon the application
requirement. The applications’ interest in minimizing the makespan, i.e. to process
all tasks in minimum time without considering the completion time of an individual
task, focuses on the maximum completion time (min(Ch,qz)) as their objective function.
The maximum completion time is the completion time of the last task processed on
any of the machines, and the makespan is the period at which the first job starts its
processing till the last job finishes and leaves the system. The objective of minimizing
the Ciq. is an important one in practice as it has an effect of load balancing over
various machines. On the other hand, time-critical applications where the user wants to
minimize the completion time of individual task will have the objective to minimize the
sum of completion time of all tasks (min}_ C;). Both of these objectives have optimal
heuristic rule solutions available (chapter 05 in [174]) as Long Processing Time (LPT)
first and Short Processing Time (SPT) first, respectively. In this case, we would like
to reduce the makespan in order to finish the processing of all tasks in minimum time.
Also, there is no priority assigned to any task, therefore, optimizing the completion time
of individual task is of no interest in this case. Considering this, the problem addressed,
in this case, can be defined as

6.7.1 Longest Task First Scheduling (LTFS) Algorithm

As discussed earlier, the problem of finding an optimal solution to map all incoming tasks
to the available machines is an NP-Hard problem, even if only two parallel machines are
available in the system [174]. This motivates the design of heuristic methods where with
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Fig. 6.3: Casel, percentage of CPU utilization rate (¢/s) for Simulated Annealing (SA),
Pseudo Best Fit Scheduling (PBFS) and Round Robin (RR) scheduling schemes

moderate computational effort can produce a solution that is reasonably close to optimal.
The extreme research in an optimization problem in the last decades has provided some
heuristics solutions to solve these problems in polynomial time. In this case, we revisit
the famous heuristic solution LPT, proposed in 1969 (by Graham) [176], and which is
still considered as the optimal one for identical parallel machines with the objective of
minimizing the makespan. At first, the LPT rule sorts the list of tasks in order and then
schedule them one after another. Initial probabilistic studies to analyze the validity of
the LPT rule considered the tasks with independent processing time, generated from
some given probability distribution. Detailed analysis of these problems strengthens the
intuition that LPT is a reasonable heuristic for scheduling problem P,,| |Cpq,- In this
case, the Longest Task first Scheduling (LTFS) algorithm is proposed, which is based
on the LPT rule. The algorithm first sorts all the tasks present in the queue at a given
time instant, in descending order of their processing time. After that, the scheduler
takes a single task from the queue and schedules it on the available machine. In such
a scenario, the shortest task will start processing in the end, hence it will be the last
one to finish the process. As according to the LPT heuristics the shortest tasks are
scheduled in the end, they can be used for load balancing on the machines. When there
is no appropriate machine available to process the task, the task will remain in the queue
and the scheduler will try to schedule it when any tasks leave the system.

The LPT heuristic solution is proved to provide a near-optimal solution. The maximum
diversion of heuristic solution from the optimal one, even in the worst-case scenario is
proved to be (Theorem 5.1.1 in [174]),

Crmaz (LPT) _ (4 1 )

7me(OPT) <l|lz—— (6.16)

3 3Im
where Cyu:(LPT) is the makespan obtained through the LPT rule and Cq,(OPT) is
the optimal makespan of the problem, which is possibly unknown. The above eq. (6.16),
is the bound provided and proved by Graham for the LPT heuristics. However, em-
pirical experiments have shown that the LPT performs much better in practice than
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Fig. 6.4: Casel, total mapping time to map all cloudlets to VMs for Simulated Annealing
(SA), Pseudo Best Fit Scheduling (PBFS) and Round Robin (RR) scheduling
schemes

its worst-case scenario ratio. Under different studies, heuristic rules are proven to be
asymptotically optimal. This worst-case bound is, however, inherently pessimistic and
does not necessarily provide performance information of the method. Since the scheduling
decision is based on a simple rule this solution is not computationally expensive, with
time complexity of order O(n log n + n log m), where O(n log(n)) is the time complexity
to sort tasks, m is the number of machines and n is the number of tasks.

6.7.2 Results and Discussion

In this case, the dynamic arrival of cloudlets is considered where the cloudlets are arriving
in the system according to a Poisson distribution. The total number of generated cloudlets
is 500, which are generated at different arrival rates. The simulation will stop once all
the cloudlets finish their services. The proposed algorithm, in this case, is LTFS that
follows the LPT rule to schedule the incoming cloudlets, and the proposed scheme is
compared with the SA and RR scheduling algorithms. Since the objective, in this case,
is to reduce the maximum completion time, we first analyze its effect in fig. 6.6. For
different arrival rates, we observed that the proposed LTFS is performing better than
the other two, where the maximum time taken by the LTFS is around 200s, whereas it
is around 400s for the other schemes. Since the solution obtained using SA does not
perform significantly better than other schemes, it is assumed that the solution provided
by SA is not the optimal one. SA might need more iterations to reach the near-optimal
solution, which definitely will cost more resources and incur a delay. However, the effect
of LPT in these results is significant, where LTFS minimizes the maximum completion
at different arrival rates with a significant difference. The time taken by LTFS, in this
case, is almost three times less than RR and SA, which is reduced further at higher rates.
For the arrival rate of sixteen cloudlets per second (A = 16), C,q, is around 50s for
LTFS, 200s for SA, and 400s for RR. The reason for increased completion time at a
lower arrival rate is the long waiting time at the scheduler for batch completion before it
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Fig. 6.5: Casel, total energy consumption for Simulated Annealing (SA), Pseudo Best
Fit Scheduling (PBFS) and Round Robin (RR) scheduling schemes

could start scheduling them. However, at a high arrival rate, the cloudlets in a batch are
collected faster and the scheduler can schedule them more frequently, reducing the delay.

Further, the complexity of schemes in terms of their mapping time is shown in
fig. 6.7. The complex algorithm of SA took more time to schedule the given cloudlets in
comparison to RR and LTFS. But here we could see that the mapping time of cloudlets
in case2 is much lower than casel and it is due to mapping a smaller number of cloudlets
at a given time. In casel, 500 cloudlets were to be mapped at a given time instant, which
increased the solution space for SA whereas, in case2 cloudlets are arriving and being
mapped in small batches; hence, their mapping requires less time. However, in both
cases, RR and LTFS perform much better than SA as they use simple mapping policies
based on heuristic rules. Another important point to note here is that the mapping time,
in this case, is not varying with an increasing number of cloudlets per second (\); this
might be because before starting the scheduling process for a new batch, the cloudlets
from the previous batch have been scheduled and started their processes already, or
there might be a smaller number of cloudlets left in the queue.

The effect on the processing time of the cloudlets is also analyzed for all schemes.
The sum of processing time of all cloudlets is presented in fig. 6.8 and the individual
processing time of cloudlets are shown in fig. 6.9. From fig. 6.8 we observe that the
total processing time of cloudlets is increasing almost linearly for SA and RR, with
increasing arrival rate, as with increased number of cloudlets in the system, congestion in
the system increases causing a delay in task processing. However, the strange behavior
of constant processing time is observed for LTFS. This again could be due to the fact
that, before scheduling a new batch, all previous cloudlets in the system might have
been allocated. This is further analyzed from the results of the cloudlets’ individual
processing time.

In the simulation, a total of 500 cloudlets were generated dynamically, hence there is
a probability that at high arrival rate, cloudlets arriving later in the system will have to
wait longer before execution. The cloudlets processing already in the system might add
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a delay in execution on tasks arriving later. Especially in the case of LTFS, where the
over-utilization of resources is not allowed, cloudlets might need to wait longer. However,
in SA and RR, the arriving task may be scheduled soon after the batch completion, but
due to over-utilization of core resources, cloudlets contend for the resources which in
turn affect their processing time. But, as we already observed from fig. 6.8, cloudlets in
the LTFS case are processed fast enough and do not encounter any congestion. So, the
effect of resource contention and task density is further analyzed using the individual
processing time of cloudlets. Fig. 6.9 shows the processing time of an individual cloudlet
for the arrival rate of 16 cloudlets per second. We can see that for SA and RR schemes
the processing time of an individual cloudlet is growing exponentially. For a total of
500 cloudlets, cloudlets till 300 have almost similar processing time in all three cases.
Afterward, however, the processing time of cloudlets starts growing for SA and RR
algorithm, whereas there is a negligible effect in the LTFS scheme.

Another metric of interest is the operating and management cost of the system,
which is based on power consumption. The total power consumed by the system
over time is observed and energy consumed is calculated. If we analyze the graph in
fig. 6.10, we can observe that the energy consumption of the proposed scheme is the
lowest among all. Also, with increasing arrival rate the energy consumed in all cases
is decreasing significantly in the LTFS scheme, where the energy consumption drops
from 8 x 1072 kWh to 2 x 1072 kWh for different arrival rates. Whereas, the total energy
consumption in SA and RR cases is almost similar and lies in the range of 0.10kWh
to 0.13kWh. The reduction in consumption at a higher rate is due to the frequent
scheduling of cloudlets, where the batch is completed quicker with fast arriving cloudlets.
The proposed scheme in this case, is again the simple decision-based policy, which tries
to optimize the completion time of the cloudlets. The minimal completion time of the
LTFS scheme and less complex algorithm reduces the total time required to map and
process all cloudlets, which as a result reduces energy consumption.
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6.8 Case Study III

Results obtained from previous cases are used to derive a new improved scheduling scheme
proposed in this case. The Greedy Best Fit Scheduling (GBFS) algorithm proposed
here considers the objective of reducing maximum completion time and maximizing
resource utilization to obtain the gains of both. Combining the rules of sec. 6.6 and
sec. 6.7, this algorithm acts greedily in finding the near-optimal solution. The GBFS
algorithm does not search for the best solution; instead, it makes the scheduling decision
based on defined rules and conditions. This scheme aims to maximize the rate of CPU
utilization and reduces the overall completion time using a fairly simple approach. In
this case, the power consumption of the servers is also monitored to avoid exceeding
the server’s power threshold. Most of the servers in data centers and cloud networks
have a power threshold limit to avoid the server breakdown due to system uncertainties
and unpredictable workload surges. Hence power monitoring and management is an
important aspect in these environments. Moreover, an additional system constraint
of the task’s due time has also taken into account to make the system comparable to
the real environment. The due time related problems typically have maximum lateness
as the objective. The lateness of the task (I;) can be investigated by comparing the
completion time of the task (C%) with its due time (dy) eq. (6.6). It implies that to
minimize the lateness of any task, the task must finish its processing before reaching its
due time. Here it should be noted that the due time is not the deadline for the task. So,
if the task does not start processing before its due time, it will not be removed from the
queue or considered lost; instead, the delay will be evaluated considering its lateness.
According to [174], finding an optimal solution with lateness as an objective requires to
schedule all tasks considering minimizing their completion time. Hence, the heuristic
solution for both objectives, lateness and maximum completion time, is to apply the
LPT rule. This case further analyzes the performance of each scheme in more detail
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considering several performance metrics. Here we can define the problem for this case as,
Rm| dk |¢7 Cmaan lk (617)

6.8.1 Greedy Best Fit Scheduling (GBFS) Algorithm

The algorithm is based on several steps to include the effect of all heuristics applied.
Before starting scheduling, the algorithm first applies the LTFS (sec. 6.6) rule and sorts
the available cloudlets in the system. The cloudlets in the system queue are sorted in
descending order of their processing time. Also, the limited power resources of the servers
are used by capping the server at a given power threshold (§) during task scheduling.
The power consumption of the servers as a function of CPU utilization is estimated
using a linear power model, which is the function of CPU utilization (eq. (6.9)). Servers
those already have reached their power threshold are not considered further in the
scheduling process until their power consumption is reduced after finishing some running
tasks. Hence, the algorithm uses the concept of power capping of the server to avoid
excessive power consumption. The proposed scheduler first selects the servers having
power consumption under the threshold limit,

Ss = {87; | si€SA Psi < 5} (6.18)

where Ss is the list of selected servers, P, is the power of the server s; and J is the power
threshold. Afterward, the scheduler starts scheduling by detecting the available and
required resources. It first takes a task t(cx, l_;;) from the sorted queue and allocates it
based on Pseudo Best Fit Scheduling (PBFS) (sec. 6.7). The algorithm does not look for
the optimal best fit solution; instead, it allocates the task to the first available machines
satisfying the given conditions. After extracting the available servers for scheduling and
task from the sorted queue, it extracts the list of VMs capable of processing the selected
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cloudlet. The residual core capacities of the VMs on selected servers in S5 are detected
and compared with the required resources of a cloudlet,

Vel = {vs;5 | vs,5 € Vs, Nes, j > e, Vsi € S5} (6.19)

where Ve contains the list of VMs that have enough available free resources. A similar
mapping objective of minimizing the waste resources as in case2 is used, and the optimal
cloudlets to VM mapping solution is obtained using equation eq. (6.14). This function
assigns an optimal VM, V M, to each cloudlet from the list V M. The scheduler
repeats the process of cloudlet scheduling until all the generated cloudlets are processed.
It further schedules the waiting cloudlets in the queue when any finished cloudlet leaves
the system. Hence, the scheduler does not check the availability of resources at every
instant, which reduces the computational overhead; instead, it looks for the resources
when there is a possibility of free resource available or when any new batch (of cloudlets)
arrives.

Further, the mechanism of the proposed GBFS scheme is explained using the pseudo-
code in fig. 6.11 and flow chart in fig. 6.12.

6.8.2 Results and Discussion

The system is evaluated for dynamic cloudlets arrival with the system parameters and
configurations as mentioned in tab. 6.1, tab. 6.2, and tab. 6.3. At first, the overall
completion time of all cloudlets is discussed using the results presented in fig. 6.13. These
results are for dynamic cloudlets arrival with different mean arrival rates. The worst
performance of SA can be observed from the graph, where it takes approximately 3-4
times longer than the proposed algorithm to process all cloudlets. Round Robin in this
case performs a little bit better than SA, compared to casel of static cloudlets where it
performs almost similar to SA. This shows that SA performance is further degraded in a
dynamic situation with continuous task arrivals. The effect of LPT is significant here, as
it reduced the completion time for GBF'S significantly at all arrival rates. Much lower
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completion time at a higher rate is observed due to frequent scheduling with a large
number of cloudlets coming into the system in less time. This might, however, create a
bottleneck if the arrival rate of tasks is too high.

Next, we analyze the usage of CPU resources by comparing the rate of CPU utilization
in each scheme. Fig. 6.14 shows the CPU utilization per second for all three schemes,
from which we can observe that the GBFS uses more CPU resources per unit time than
other scheduling methods. However, this is less in comparison to casel, which might
be due to the dynamic arrival of cloudlets. In casel, there were more cloudlets to be
processed at a specific moment, whereas in this case only a small number of cloudlets
(one batch and cloudlets in the queue if present) are to be processed at any given time.
The CPU utilization rate was around 20% in casel, which is reaching a maximum of
15% in this case for the proposed algorithm. However, most of the resources are wasted
in SA and RR schemes, where the CPU utilization is only 2-3% per second, SA and RR
being unaware of the resource utilization causing delay and increased processing time
for the cloudlets. In this way, both algorithms process a similar number of cloudlets in
a much longer time, reducing the CPU utilization rate. This behavior of SA and RR
remains similar for different arrival rates, whereas the GBFS is improving the server
resource utilization for larger numbers of cloudlets in the system.

To see if this low utilization rate in SA and RR algorithms is the effect of longer
processing time of cloudlets, we analyze the sum of processing times of all cloudlets in
the system. Fig. 6.15 shows the sum of processing time of all cloudlets of case3, where
the processing time for SA and RR is increased a little compared to case2 but the trend
is almost similar (a linear increase). On the other hand, the processing time of GBFS is
again a constant, which is because any cloudlet will take the same amount of resources
even if arriving at different arrival rates, as there is no effect of resource contention
and core sharing in the proposed scheme. Also, it is expected that there would be a
little delay in the execution of arriving cloudlets, as the cloudlets arrived earlier in the
GBFS system might have finished before scheduling a new batch. While the effect of
core sharing with a larger number of cloudlets is visible in SA and RR, the sums of
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Fig. 6.11: Pseudo code for GBFS Algorithm

1. procedure GBFS(T, S, 9)

2: T + Tasks in queue

3 S « Set of servers in a network

4 0 < Power threshold of a server

5: task(ty) finish listener < false > Trigger when any task finishes
6 while T' is not empty do > No task left in queue
7 ty < Task from queue

8 Sy ¢ SiforPs, <6

9: VM ger < c(vs,,5) > c(tr)

10: V Mopt <= min(c(vs, j)) in VM)

11: if V M,y # empty then

12: assign t, — >V .Mp

13: else

14: if VMsel % empty then

15: goto 9

16: else

17: goto 6

18: end if

19: end if
20: end while
21: goto Task finish listener
22: Task finish listener :
23: while t; finish listener = true do
24: ty finish listener = false
25: goto 6
26: end while
27: return > All Tasks finished

28: end procedure
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processing times in these two schemes are increasing with increasing arrival rate, as
with more cloudlets resource sharing will observe more contention. Hence, we see that
over-utilization of resources can increase the processing time, but on the contrary, the
waiting time for the cloudlets could grow exponentially at a very high arrival rate.

As mentioned earlier, we analyze the performance in terms of the lateness of cloudlets,
as well. The sum of the lateness of all cloudlets at different arrival rates is shown in
fig. 6.16. Since lateness of the cloudlet is the delay in completion of a task concerning
its defined due time, we consider the cloudlets finishing with lateness less than zero were
scheduled efficiently. From fig. 6.16 we can see that almost all the cloudlets in the GBFS
scheme finished before their due time, and lateness in SA and RR is increasing with
increasing number cloudlets in the system. This behavior corresponds to the processing
time of the cloudlets; since the cloudlets at SA and RR took longer to process, they
are finishing late and consequently are considered delayed. On the contrary, cloudlets
in GBF'S are processed fast and they finish their processing before reaching their due
time. This also shows that for time-critical applications, where tasks are associated with
deadline, the number of cloudlets expired in the system will be greater in SA and RR
due to increased latency imposed by these schemes.

After analyzing the cloudlets related performance metrics, the system computational
cost for these schemes is evaluated. Results are shown in fig. 6.17 reporting the total
mapping time of each scheduling scheme required to map all cloudlets entered into the
system, to the available VMs. Since we know that the SA is an optimal search based
algorithm and RR and GBFS are condition-based scheduling policies, the computational
complexity of SA is very much higher ([173]) than the other two ([174]). Furthermore,
the complexity of SA increases more with dynamic cloudlets arrival as compared to
static ones. Hence, SA in this case took maximum time to search for an optimal solution
and the other two schemes took almost similar time to map all the cloudlets, which is
nearly a few seconds.

One of the important aspects for service providers is the system cost that we also
tried to reduce using less complex energy-efficient scheduling. Fig. 6.18 shows the energy
consumed in the mapping and processing of all generated cloudlets for case3. Since with
the dynamic arrival of cloudlets, scheduling is to be initiated several times as compared
to the static environment, where all the cloudlets are generated at start and the scheduler
has all the details of cloudlets, this one time scheduling makes it less resource consuming
in static scenarios. However, frequent scheduling using complex schemes costs for more
overheads and more system resources. This we can observe from fig. 6.18, where the SA
consumed high energy compared to the proposed GBFS scheme. And we also observe the
high energy consumption with RR, which is a relatively very simple scheduling method.
High consumption in the RR case is due to inappropriate scheduling, although it maps
the task to the VM using a simple algorithm, but it does not consider the available
and requested resources to optimize the scheduling solution. In contrast, the GBFS
algorithm uses heuristic rules and also considers the available and requested resources to
improve the CPU utilization and reduce the system cost overall. Since energy consumed
is dependent on the time taken to process all cloudlets, therefore the consumed energy
in GBFS is further reduced at a high arrival rate as it processes all generated cloudlets
in less time.
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6.9 Conclusion

Cloud computing environments require energy-efficient algorithms and maximum re-
source utilization to improve the network’s reliability and QoS at a low cost. Since task
scheduling is an NP-Hard problem, most of the existing algorithms use evolving heuristic
approaches to obtain the optimal solution. These meta-heuristic solutions for scheduling
are complex, and also their complexity increases exponentially for high density networks;
therefore they are not suitable for critical applications or making real-time scheduling
decisions. This research work is particularly focused on optimizing the resource provi-
sioning and processing time in the cloud. Through different case studies, a relatively
simple and improved scheduling algorithm, Greedy Best Fit Scheduling, is proposed.
The proposed method in sec. 6.8 is derived from the observations and results of case
studies carried out in sec. 6.6 and sec. 6.7. The GBFS algorithm is less complex, as it
uses a decision-based heuristic approach to find the sub-optimal solution. It allocates
the tasks, to the VM having minimum available resources and hence it attempts to
maximize the utilization the available capacity of an individual server. The overall
processing time is also reduced by first arranging the tasks in a specific order. The
GBEFS further considers the power threshold of the server while scheduling to secures
the server’s unused resources for unpredictable high traffic density.
Listed below are some major findings of this research,

e Resource utilization in cloud computing can be improved using the best fit strategy.
The Pseudo Best Fit algorithm reduces the resource wastage by trying to allocate
all small unused chunks of resources. The time complexity of this approach is also
relatively less than that of meta-heuristic methods (such as SA). And reason for
this is that PBFS does not search for the optimal solution, instead it allocates a
VM to the task when the given conditions are satisfied.

e Using the simple LTFS rule, the overall processing time of all tasks can be reduced.
The LTFS rule is based on arranging tasks in a specific order, which is descending
based on their processing time in this research. This is one optimal way to improve
the response time of the system when there are a number of tasks with different
characteristics in the system queue. Results show that in system with parallel
machines of different speed and capacity, this rule reduces the average processing
time and hence the cost and energy consumption of the system.

e The experiments were also carried out at different task arrival rates (in sec. 6.7 and
sec. 6.8) which could help in choosing the optimal arrival rate for a given system.
At very low mean arrival rate processing time and energy consumption are higher,
whereas this could be improved with increasing arrival rate such as for A = 8 to A
=16. However, arrival rates much higher than this could cause long waiting times
for the tasks, especially in the proposed schemes where the tasks have to wait for
free resources to be allocated.

e Combination of different heuristic rules can provide acceptable results in complex
system. It reduces the time and computational complexity of the scheduling scheme
and improves the system performance. The solutions obtained using a heuristic
rule might not be the optimal ones, but they provide quick and good enough
solutions for task scheduling, where long scheduling delay cannot be tolerated.
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Results of all presented case studies shows that the heuristic rule based scheduling
performs well among existing Round Robin and Simulated Annealing approaches. It
reduces the scheduling complexity, improves the system cost by utilizing the maximum
server capacity and also improves the processing time of individual tasks by avoiding
the over-utilization of the server resources. Running a minimum number of servers
(using the best fit strategy) in the system further reduces the power consumption and
hence the energy consumed by the overall system. Hence, it can be concluded that
the GBFS algorithm is an efficient choice for both service provider and consumer from
economical and performance points of view. In the future, it could be of interest to
further improve the objective function by introducing constraints such as task priority
and delay. Different applications have different constraints and objectives, hence these
metrics specific to any application can be considered for a particular scenario. Also, the
performance of schemes were not analyzed for time critical applications. But results
shows that the more number of tasks are delayed in SA and RR compared to GBFS,
which is an indication that the proposed method can perform well for time critical
applications as well. The performance of the proposed scheme can further be validated
by doing experiments on real system.

This research work provides an initial step toward using multiple rules to achieve
network gains; different heuristics rules can be used to find the optimal combination
for any system. Moreover, this research work has just targeted the assignment of
incoming tasks; however, the algorithm could also be used for VM migration and server
consolidation. Reallocation of running tasks among different VMs and migration of VMs
for consolidation using the proposed scheme may provide efficient solutions.
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7 Conclusion

This thesis is mainly focused on the challenge of improving resource utilization in data
centers and the cloud with reduced energy consumption. Two basic techniques to achieve
this goal are energy-aware or power-aware algorithms and energy-efficient mechanism and
methods. The power-aware algorithms require precise power measurement and estimation
to make the effective power-aware decision at run-time. This domain is discussed in the
first research phase of this thesis where detailed research is first carried out on challenges
and later an improved power model is developed. The accurate power estimation using
the proposed model can make the power-aware decision in cloud management more
effective. The research also deals with the second technique that rely on energy-efficient
algorithms. Attention is given to the energy-efficient scheduling scheme in this research.
An efficient, less complex and fairly simple scheduling scheme is presented in the second
research phase of the thesis. However, a trade-off between waiting time and performance
has to be made at a higher arrival rates.

7.1 Thesis Contribution

With respect to the defined objectives, this thesis brings the following key contributions,

1. At first, a research survey on prior work of power modeling and measurement
methods was done. It is a detailed study on how the server power modeling could
be affected by various factors and what is the effect of virtualization on the server
power profile. The survey categorized the research problems, approaches taken and
key developments, of the literature into major themes to improve its readability.
It also shed light on the use of power modeling in macroscopic analyses of the
system. The survey further summarizes the useful tools and methods based on
the statistical result of the studies considered during the survey. In short, the
survey contains concrete information, starting with a deep analysis of the available
methods and techniques to the summary of widely used and useful methods.

2. The next research contribution is the development of the power model for a server
in a virtual environment by introducing resource monitoring at the virtual level.
The proposed model uses the concept of resource monitoring at two different levels
of architecture (host and virtual level), which helps in identifying the missing
components in the development of the power model. The research work first
identifies and collects different parameters that are later used to learn the system
profile and extract the significant variables. A power model for the server is
developed using different regression techniques. The accuracy of the proposed
model shows improved results which can estimate the power precisely from 96 % to
99.1%. This is 1% to 4% improved precision compared to some existing models.
Thus, this research work provides a less complex and improved power estimation
model for a virtualized environment. With these results, it is expected that the
proposed method will help in making effective power-aware decisions.
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7 Conclusion

3. In the second phase of this thesis, research focuses on the scheduling problem of
a cloud computing environment. Considering the under-utilization and waste of
server resources in data centers, an efficient scheduling algorithm is proposed based
on the Greedy and BestFit strategies. Two objectives considered in this research
for task scheduling are processing time and resource utilization. A step-by-step
study was carried out, starting with the simple system and single objective, to
analyze the gains in different cases. An improved scheduling scheme "GBFS’ is
then proposed in the last case study that combine the gains of previous cases. The
proposed algorithm finds the task to VM mapping solution in such a way that
maximizes resource utilization and also reduces the total completion time. Hence,
it reduces the power consumed by the system, as well. The proposed method is
relatively a less complex approach compared to meta-heuristic methods in terms of
time and computational complexity. Power capping of the servers is also considered
in the proposed scheme to avoid sudden server failure.

7.2 Future Work

This research in scheduling and power modeling in the virtual environment does not
end here with these contributions, on the contrary; it opens new ways to develop and
implement algorithms based on these methods. Inaccurate estimation in power-aware
algorithms can sometimes cause ineffective results. One such scenario is the use of a
power estimation model for power capping of the server where inaccurate prediction
could either overload the server or might waste some server resources. Thus, an improved
power model could make more effective decisions in such cases. Moreover, the proposed
power model has introduced resource monitoring at the guest level, which could be used
in developing cost models (to charge cloud customers) by service providers. Currently,
cloud customers are charged based on different cost models but none of them considers
the actual resources consumed by the user, which is sometimes unfair to the user.

Moreover, the scheduling scheme using heuristic rules could prove useful in critical
applications, where meta-heuristics fail to provide a quick solution. Since the proposed
scheme reduces the processing time of the tasks, it could also help in improving the
throughput and reliability of time-critical applications. The reliability of the proposed
scheduling scheme can also be compared to the experimental setup to study its effec-
tiveness in a real environment. This would help in analyzing further limitations of the
scheme and opens area for further development.

Further possible extension of this work could be to use the proposed methods in
different environments and for different applications that can provide a new ground to
analyze the validity of these models. Some additional limitations might arise for the
proposed models when using them in a different system environment and for different
user applications. Further enhancements to improve the gains of the proposed models
for a particular application or service can also be made.
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A Graph of Problems, Approaches and
Developments (PAD)

The node graph (or mind map) below illustrates the detailed information about each
Problem-Approach-Development (PAD) path (triad). These maps give an overview of
estimated problem complexity: a problem tackled by numerous approaches is considered
more complex (see eq. (3.2)). The three figures (Fig. A.1, Fig. A.2, and Fig. A.3) show
the various approaches adopted in the literature, departing from a specific problem
category, to obtain different developments. Given any one problem node, denoted by Pj,
one or more of a number of approach(es) Ak, contribute (at least in part) to achieve the
development DI, where 'j’, 'k’ and 'l’ represent the respective node numbers.
A description of each nodes’ label is provided in Appendix B.
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Fig. A.1: Problem-Approach-Development (PAD) Graph-part 1
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Fig. A.2: Problem-Approach-Development (PAD) Graph-part 2
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B Graph Nodes Description

Tables given below complement the node graphs in Appendix A. Description to the
Problem, Approach and Development nodes are provides in tab. B.1, tab. B.2 and

tab. B.3, respectively.

Category Node no.
Architecture vs power for VMs and PMs P1
Power vs virtualization genre P2
Power vs virtualization technology P3
Power vs workload type P4
VM’s power vs physical host’s configuration P5
Power vs number and size of concurrent VMs P6
Power as a function of VM resource use P7
Power as a function of host resource use P8
System power attribution P9
Power as a function of provision of a service by virtual systems | P10
Host power as a function of VM or container resource use P11
Power as a function of temperature and frequency P12
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Power as a function of container resource use

P13

Tab. B.1: Problem nodes, enumerated and showing category names

‘ Category ‘ Node no. Sub-category
Managed resource allo- | Al.1 Frequency-scaling
cation
Al.2 NUMA
Al.3 Simultaneous multi-threading
Al4 NIC data rate capacity or utilization
Resource isolation A2.1 Processor-intensive workload
A2.2 Memory-intensive workload
A2.3 Network-intensive workload
A2.4 Disk-intensive workload
A2.5 CPU-core-specific workload
A2.6 Memory-hierarchy-level specific workload
A2.7 Multi-core: obtain a given CPU utilization
in different core load distribution
Micro-architectural in- | A3.1 Microarchitecture event instrumentation
strumentation
A3.2 Microarchitecture power instrumentation
Architectural instrumen- | A4.1 Processor utilization
tation
A4.2 Container utilization
A4.3 Hard disk drive utilization
Ad.4 Instrumentation inside custom i/o device
emulator
Workloads representa- | A5.1 TPC-W
tive of real use
A5.2 File transfer
A5.3 Floating-point operations
A54 SPEC CPU2006
A5.5 SPEC CPU2000
Ab5.6 NPB
Ab5.7 GCC
A5.8 PARSEC
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Identification of metric | A6.1 J/Web interaction
of energy efficiency
A6.2 hash/J
Simple workload charac- | A7.1 Network transmit bandwidth
terization
A7.2 Number of workload prA ocesses
Various attribution tech- | A8.1 Dynamic power only to guest VEs and
niques static to host/privileged VM
AR.2 Both static and dynamic power to guest
VEs
A8.31 Events occurring in a VM’s time of opera-
tion
A8.32 Events arising out of the activities of emu-
lating drivers obo VM
A8.33 Events occurring in a thread’s time of op-
eration
A84 Decomposition of system power into con-
tainer power through CPU utilization
A10 Identification of a unit of workload and
procurement of a load profile
Selection of model type | All.1 Linear
All1.2 Polynomial
Al11.3 Sub-linear
All14 Gaussian mixture
All5 Support vector regression
Hardware sensors Al4 Low-level analysis of physical nature of pro-
cessor, including implicit use of Dennard’s
law.
Al5.1 CPU package temperature

Tab. B.2: Approach nodes, enumerated and showing category and sub-category names

Category

Node no.

Sub-category
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Observations on depen-
dency of power consump-
tion on architecture

D32.1

D32.2

D32.3

D324

D32.5

D32.6

D32.7

Host energy efficiency (EEy), measured in
hash/J, peaks at some frequency for any
number of threads >1

VM EEy, measured in hash/J, peaks at
some frequency for any number of threads
For the same number of running threads,
use of Hyper-Threading less energy effi-
cient than scheduling the threads onto
added cores

For the same average transmit data rate,
use of Hyper-Threading more energy effi-
cient than using processing on added cores
NUMA has no effect on EEy of CPU-
intensive activity unless it causes frequent
thread-switching

Processor power varies non-linearly with
utilization if DF'S active but linearly if DF'S
inactive

If the number of threads demanding 100%
utilization is greater than the number
of processor logical cores, the EEy of
processor-bound tasks decreases

Observations on depen-
dency of power consump-
tion on specific hard-
ware

D28.1

D28.2

D28.3

D28.4

Ivy Bridge laptop processor shows step
increment in power consumption between
idle and one active core

AMD Phenom II multi-core processor
power varies if the same overall utilization
is obtained by different core load distribu-
tions

Xeon Core 2 cache coherency architec-
ture activates cores that would otherwise
be idle, therefore introducing sub-linear
growth of power consumption when previ-
ously idle cores are loaded

Nehalem core’s deep-sleep (C-) states add
step transition in power consumption from
purely idle to active

Groups of developments
that regard power con-
sumption in IT system
implementation
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34.1

Power vs network-utilization slope in-
creases sub-linearly with the number of
VMs




D34.2

D34.3

D71

D7.2

D33.1

D33.2

D33.3

D33.4

D33.5

Power required for packet delivery in vir-
tualized environments using software net-
work switches >>power required in non-
virtualized environments

Power increases linearly with Linux vbr’s
average transmit data rate

For a given VM, power consumption de-
pends on its host

VM power consumption on any given host
is positively correlated with VM size

Power vs CPU utilization slope increases
sub-linearly with the number of VMs, on
VMware ESXi version 5

Power consumption does not depend on
virtualization genre or technology for
processor- and memory-intensive work-
loads

Power consumed by containers is less than
power consumed by VMs for network-
intensive workload

Both hardware-assisted virtualization and
paravirtualization are less efficient than
non-virtualized operation in use of proces-
sor caches.

Power consumed by KVM less than power
consumed by Xen on network-intensive
workload

Scalability of models

D29.1

D29.2

Power model scalable to multiple concur-
rent VM operation

Power model scalable to multiple concur-
rent container operation

Groups of developments
that regard models
of power consump-
tion in  virtualized
environments:

20: Linear
21: Non-linear
31: Beyond linear
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18: Macroscopic

124

25

D20.1

D20.2

D20.3

D20.4

D20.5

D20.6

D20.7

D20.8

D23.1

D23.2

D23.3

D31.1

Disk i/o energy modelled as function of
transfer time and power consumed in an
active state

Linear model of host power in terms of
architectural instrumentation, obtained us-
ing a resource-homogeneous workload
Linear model of VM power in terms of
architectural instrumentation, obtained us-
ing a specific workload

Linear model of VM power in terms of mi-
croarchitectural instrumentation, obtained
using a specific workload

Linear model of VM power in terms of
architectural instrumentation, obtained us-
ing a homogeneous workload

Linear model of host power in terms of mi-
croarchitectural instrumentation, obtained
using a specific workload

Linear model of host and VM power in
terms of microarchitectural instrumenta-
tion, obtained using a CPU 4 memory
workload

Linear model of thread power in terms
of microarchitectural instrumentation, ob-
tained using a mixed CPU and memory
workload

Linear model of container power in terms
of microarchitectural instrumentation and
processor utilization, obtained using a
mixed CPU and memory workload

Non-linear model of host power in terms
of architectural instrumentation, obtained
using a homogeneous workload
Non-linear model of VM power in terms
of architectural instrumentation, obtained
using a specific workload

Non-linear model of host power in terms of
microarchitectural instrumentation, tem-
perature and frequency, obtained using a
mixed CPU and memory workload

Gaussian mixture model, in terms of pro-
cessor utilization, instructions per cycle,
memory accesses per cycle, cache transac-
tions per cycle and obtained using a mixed
CPU and memory workload




D31.2 Support Vector Regression model, in terms
of microarchitectural instrumentation and
obtained using a mixed CPU, memory and
disk workload.

D18 Service-specific macroscopic power model
Relative accuracy of for- | D30.1 Accuracy of Gaussian Mixture model ex-
mal approaches ceeds that of linear regression model,
whether uni- or multivariate
D30.2 Accuracy of linear, CPU-utilization-only
regression is highly dependent on host con-
figuration
D30.3 Accuracy of Support Vector Regression
model exceeds that of linear regression
model
D26 Power analysis of P4 processor in terms of

area of, and rate of access to, sub-units of
the processor

D27 Processor power model tested under desk-
top applications and found to have modest
accuracy.

D9 Highest EEy (J/Web interaction) occurs

when the VM hosting the web application
is being hit with more traffic than its ca-
pacity.

D24 Predicted host power in terms of total re-
source utilization is slightly less than the
total predicted VM power in terms of indi-
vidual VMs’ resource utilization

Tab. B.3: Development nodes, enumerated and showing category names
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C Task Scheduling

C.1 Scheduling Algorithms

The scheduling algorithms considered in this thesis are majorly differentiated as heuristic
and meta-heuristic methods. Hence, major scheduling algorithms that lie in these
categories of scheduling are presented below.

C.1.1 Heuristic Algorithms

A heuristic technique is an approach to problem-solving that employs a practical method
but does not guarantee an optimal solution. Considering the fact that finding an optimal
solution in many problems is impractical in a limited amount of time, these heuristic
methods help in providing a good quality approximation to the exact solutions. These
approaches are problem-dependent and find the solution by effectively applying problem
features. One drawback of using these methods is they might sometime get trapped in
local optima, and hence be unable to find a globally optimal solution. Discussed below
are some widely used heuristic methods, which have been adopted in several domains
and are still considered as a good choice for less complex problems.

First Come First Served

The First Come First Served (FCFS) strategy is the simplest scheduling method where
each incoming task is scheduled on the basis of its arrival order. All arriving tasks
are collected in the system queue through the tail, and the scheduler selects the task
from the head of the queue [177]. This scheme is usually effective in systems where the
arriving tasks have no priority and have no objective function to optimize. This is why
it is rarely used in scheduling problems that require an optimal solution, but it may
be rather effective for systems with task having the same priority and requiring a fair
treatment.

Best Fit

The Best Fit (BF) scheduling algorithm allocates the task to the minimum of available
resources. All the available resources of the system which has the capacity to process
the given task are first extracted. Required resources by the task are then allocated to
the machine which has the least unused resources left. In such a way, the BF algorithm
fills out the small chunks of unused resources and improves the overall utilization of the
system [177]. This strategy is useful for consolidation and load balancing as well, where
a task (or a group of tasks) is used to avoid resource wastage.
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Linear Programming

Linear Programming (LP) is an approach to obtain the maximum or minimum of a linear
function with some given constraints, over a set of variables [178]. The constraints in the
linear programming should be linear, they just cannot follow other curvature or shape.
Integer Programming (IP) is a kind of Linear Programming where all the variables are
restricted to be integers. It is a very powerful tool to find the solution for problems that
contain both continuous and discrete variables, such as scheduling in a heterogeneous
environment. Mixed Integer Programming (MIP), however, has the flexibility of having
some variable as integers and some as non-integers.

Shortest Processing Time / Longest Processing Time

These two heuristic rules were proposed in the early 1970s considering the objective
of the makespan of the system and task. The Shortest Processing Time (SPT) first
algorithm is suitable for the system where the completion time of individual tasks matters
and needs to be reduced. On the contrary, for the objective of minimizing the overall
completion time of the system the Longest Processing Time (LPT) first rule is applied.
The scheduling of tasks in these models is initiated by sorting all the given tasks either
in ascending (for SPT) or descending (for LPT) order and then scheduling them one
after another [174]. These methods are proved to provide a good solution even in a
worst-case scenario within a bounded condition. However, studies show that the solution
obtained in many cases is much better than the worst-case bound.

Min-Min / Max-Min

Min-min and max-min algorithms work on the similar principle of SPT and LPT heuristic
rules. In the min-min algorithm, tasks with minimum completion time are selected to
schedule first. Max-min works in the opposite way to min-min and schedules the tasks
with maximum processing time first [177].

Round Robin

The Round Robin policy allocates a fixed time slot to each task for processing. The fixed
time slot is called Time Quantum and is usually between 10-100 milliseconds [177]. Once
the assigned QT for any task is finished, the task is preempted and its current state
is stored. The rounds continue until all the tasks in the system finish processing. One
drawback of this scheme is that it does not consider the available resources, task priority,
required resources, and hence it does not provide an efficient schedule in many cases.
Several variants of round-robin have been proposed, which consider system parameters
and dynamics to improve the response time of tasks and other parameters. One improved
RR model is Weighted Round Robin (WRR) that considers the resource availability of
VMs before scheduling and assigns more load to the VM having high resource capability
[107].

Gradient Descent

Gradient Descent (GD) is a classical mathematical-based approach to find the local
minima of a function. It is an iterative optimization method that takes a step proportional
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to the negative gradient of the function at the current point [179]. The GD algorithm
is designed on the theory that if a function with multiple variables is distinct and
differentiable in a neighborhood of a certain point, then the search can reach the
minimum faster if it follows the negative gradient from that point. This algorithm can
be caught in local minima sometime, but jumping randomly in a few iterations can
reduce this risk. An algorithm that works opposite to GD is the Steepest Ascent Method
(SAM), in which the iterative step is taken in proportion to the positive gradient. SAM
is used for the problems needs to maximize the objective function.

Priority Based

With the long delay in execution and processing, some tasks take much longer to finish.
So, in critical applications, tasks are associated with a deadline and they are restricted
to finish their job within a given deadline, otherwise, they will be considered as failed or
lost. Moreover, in the cloud, different customers may have different priorities based on
the services they purchased. Such tasks are typically scheduled based on their priority to
satisfy the customer requirement. Scheduling in Priority Based (PB) algorithms starts
by assigning a fixed priority score to each task and arranging them in order [177]. Tasks
with higher priority are then scheduled first to reduce their completion time and meet
the client’s requirement.

C.1.2 Meta-Heuristic Algorithms

Meta-heuristics is a higher-level procedure to find an optimal solution, using an iterative
approach. These methods are often based on the learning of the concept of natural living
and evolutionary science. They are the combination of local search and randomization to
reach the global optimal solution. They can provide the optimal solution to the problem
but might take much longer time in some cases. Two major characteristics that usually
affect the computational time of these models are the complexity of their approach and
the number of system variables.

Simulated Annealing

Simulated Annealing (SA) is a probabilistic search algorithm. The concept of SA is
derived from the formation of the crystalline structure into an ordered state. It uses the
annealing process that iterates the heating and gradually cools down the structure. A
similar physical phenomenon is adopted in SA, where the temperature is set high in the
initial stage of the execution due to which the system has a high probability to accept
solutions. The jump occurs in the system to avoid local minima when there is a high
probability of poor solution in a region. The temperature of the system decreases as the
time elapses and a point is reached where iterations can be terminated. At this point, the
simulation attains a solution where no further improvement can be made. The number
of successive iterations in finding an optimal solution could be very high; therefore, some
researchers compromise on the solution and limit the number of iterations. The rate
of cooling and terminating cooling temperature can also affect the accuracy and time
complexity of the process.
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Genetic Algorithms

A Genetic Algorithm (GA) is a meta-heuristic algorithm, inspired by Darwin’s theory of
natural evolution, genetics, and population growth. It reflects the process of natural life
where the selected genes produce the offspring for the next generation [180]. The GA
works with an initial population of variables known as chromosomes. Once the initial
generation is created, the algorithm evolves using three operators: selection, crossover,
and mutation. In the selection operator, the most fit chromosomes with good fitness
scores are selected as parents at the reproduction stage. The selected individuals are
now allowed to pass their genes to successive generation. These selected individuals
are randomly mated in crossover operations and create a completely new individual
(offspring). The concept of mutation is then brought to bring diversity in the next
generations. An arbitrary change of the genes is implemented at this stage, but keeping
its probability low to avoid potential disruption in a good solution. The process is
terminated when the termination criteria are met or the number of desired generations
are created.

Pareto Optimal Front

Pareto Optimal Front (POF) provides a solution to problems with multiple objectives.
There is no single solution that can optimize all objectives of the problem. In such
a scenario, several solutions are possible with conflicts among objectives and one has
to compromise over one or other objectives. To solve these multi-objective problems,
several algorithms derived functions to trade-off among different objectives. One such
method is the Pareto Optimal Front that analyzes the trade-offs of the stated problem
using the given function. It then provides the optimal front which contains the optimal
solution to the problem [181], [182]. The solution can not be improved further in any
other dimension, although, based on acceptable trade-off, any point on that front can be
chosen as an optimal solution.

Swarm Intelligence

The optimization methods inspired by the social behavior of animal species living in
large colonies fall under this category. Two swarm intelligence methods, Particle Swarm
Optimization and Ant Colony Optimization are discussed in this chapter.

Particle Swarm Optimization: Particle Swarm Optimization (PSO) is a robust evolu-
tionary strategy based on the behavior of a group of birds. The swarm is formed by a
bunch of particles, where each particle is allowed to move around and explore the search
space [182]. Each particle in the system distributes its information to its immediate
neighbors, and they communicate collectively to converge to a single point. Each particle
has its own position and velocity. The best-known solution for PSO is the solution where
the most number of particles have converged, and best-position of any particle is the
position of that particle from the best-known solution. The direction of the particle
is determined by three components, own previous velocity of the particle, the distance
of best-known solution from the individual particle itself, and the so far best-solution
distance from swarms. The particles in swarm avoid the local minima if their own best
solution is better than the swarm’s solution. The optimal solution is achieved once all
the swarm particles converge to a single point.
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Ant Colony Optimization:Ant Colony Optimization (ACO) is also a population-based
meta-heuristic model that can be used to find the optimal solution for complex problems.
It is based on the behavior of ants searching for food [182]. Ants while searching for
food first wander randomly, on finding food they walk back to the colony while leaving
behind markers. These markers, which is actually a chemical known as pheromones are
the main contributor in ACO. The other ants come across these pheromones with some
probability to reach the food, while populating the space with their own markers and
paths. As the number of ants and pheromones increases, the probability of having the
shortest path in the search space increases. The ACO exploits a similar mechanism to
find an optimal solution, by using agents (as software ants) to search for a good solution.

C.2 Different Machine Environment in Task Scheduling

A scheduling problem in any domain can be defined using three parameters a|5|y. The
first parameter in this definition 'a’ defines the environment of processing machine(s).
There could be numerous machine environments depending upon number of processing
machines and their characteristics. The second parameter ’3’ is the system constraints.
It provides the detail of processing different application based on user requirement. This
field can be left empty if no particular characteristics or constraints are applied on
the system. Some example of processing characteristics are preemption of tasks, tasks
deadline, due time of task and precedence. The objective of the system is defined using
the term ’v’. The v field can have single or multiple objectives that are to be optimize
in the given system. Some widely used scheduling objectives are average completion
time, maximum completion time, lateness, tardiness, resource utilization, and makespan.
Described below are some different machine environments for task processing.

e Single machine (1): In this case, there is only one processing machine available
in the system. Hence, this is the most simplest environment for task scheduling
where all incoming task can only be allocated to one single machine. This case could
also refer to special case for other complicated multiple machine environments.

e Identical machines in parallel (P,,): A system with 'm’ number of parallel
processing machines where all machines have same processing speed and similar
configuration falls under this category. Any task in this case can be assigned to
any of the machine available in the system.

¢ Machines in parallel with different speed (Q,,): A system of parallel running
processing machines where all machines have different processing speed comes
under this classification. The search space for optimization (task scheduling) in this
case is much broader as processing of tasks can be optimize considering different
machines’ speeds. But this heterogeneity also increases the complexity of the
system, thus the scheduler in these cases will require longer time to find an optimal
solution. A special case of this category with all machines having similar speed
will be similar to the previous case of P,,.

e Unrelated machines in parallel (R,,): This is the special case of parallel
machine environment where each machine has some processing constraints. Not all
available machines in the system can process any given task, and these machines
are limited to process only particular kind of task(s). The optimal scheduling of
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tasks in this case is also complex due to more number of variables in machine
environment.
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