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Abstract

VIRTUAL MACHINE CONSOLIDATION IN CLOUD DATA CENTRES

USING A PARAMETER-BASED PLACEMENT STRATEGY

Abdelkhalik Mosa
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2019

Cloud computing enables cloud providers to offer computing infrastructure as a
service in the form of virtual machines (VMs). VM placement is a vital component
of any cloud management platform (e.g. OpenStack). VM placement is the process of
mapping VMs to physical machines (PMs) efficiently according to the cloud provider’s
objectives and placement constraints. So far, any VM placement solution adopts either
a reservation-based or demand-based VM placement strategies. Reservation-based
VM placement allocates VMs to PMs according to the reserved VM size regardless
of the actual workload. If a VM is making use of only a fraction of its reservation, then
this leads to PM underutilization, which wastes energy and results in more costs. In
contrast, demand-based VM placement consolidates VMs based on the actual work-
loads demand which may lead to better utilization. However, it may incur more service
level agreement violations (SLAVs) resulting from overloaded PMs and/or VM migra-
tions among PMs due to workload fluctuations. This thesis aims to introduce a novel
VM placement strategy to control the tradeoff between PM utilization and SLAVs that
will allow cloud providers to explore the whole space of VM placement options that
range from demand-based to reservation-based, with the help of a single parameter.
The thesis first presents our strategy called parameter-based VM placement using a
static parameter. Then it introduces various algorithms that adjust this parameter con-
tinuously at run-time in a way that a provider can maintain the number of SLAVs below
a certain (predetermined) threshold while using the smallest possible number of PMs.
These algorithms fine-tune the parameter both at the cloud data center level and at the
VM level using reactive and hybrid (reactive and proactive) approaches. An empirical
evaluation using CloudSim confirms that the proposed parameter-based VM placement
solution offers more flexibility in choosing between different tradeoffs.
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Chapter 1

Introduction

1.1 Introduction to Cloud Computing

Cloud computing is a computing paradigm wherein computing resources are offered as
elastic on-demand services over a network [MG10]. According to the NIST [MG10],
there are five essential characteristics of the cloud model, namely, on-demand self-

service, broad network access, resource pooling, rapid elasticity and measured ser-

vice. The on-demand self-service means that the cloud computing services are auto-
matically available upon request without requiring human interaction with the cloud
provider. Broad network access means that the cloud data centre (CDC) provides all
cloud services through a network and hence clients can access such services using
mobile devices or personal computers (PCs). The resource pooling characteristic in-
dicates that the computing resources are pooled in the CDC for serving multiple users
based on the multi-tenancy model. Multi-tenancy is a software architecture in which
multiple customers (tenants) can use a single instance of the application as if each of
them has a separate instance. Rapid elasticity indicates that computing services can
be easily provisioned, released and scaled up and down based on the user request. Fi-
nally, a measured service means that the cloud services are monitored, measured, and
the user pays based on a pay-per-use model. The inherent benefits and the elasticity of
the cloud lure cloud customers to use cloud services whenever convenient.

The three principal actors in public cloud environments are cloud providers, cloud

customers and end users [JS14]. Cloud providers offer computing resources as cloud
services through their cloud infrastructures. They offer these services as metered
ones based on a pay-per-use model. Cloud customers buy cloud services from cloud
providers to host their applications and run the required services. By the end, cloud

16



1.1. INTRODUCTION TO CLOUD COMPUTING 17

customers offer services hosted by cloud providers to the end users. The end users
are the consumers of cloud services that are offered either by the cloud customers or
directly by the cloud providers. As an illustration, Airbnb1 (an example of a cloud cus-
tomer) uses the cloud infrastructure offered by Amazon Elastic Compute Cloud (Ama-
zon EC2)2 (an example of a cloud provider) to host their applications that are finally
used by Airbnb users (an example of end users). Those various actors in cloud environ-
ments usually have different objectives. For example, cloud providers normally aim to
maximize their profit while satisfying the cloud customers’ needs by meeting service
level agreement (SLA). The service level agreement (SLA) is an agreement between
the service provider and the customer/user that specifies the quality and scope of the
service besides the responsibilities of the service provider [AB12]. The SLA defines
the quality of service (QoS) requirements (e.g. performance, availability, and reliabil-
ity of applications or infrastructure) in the form of a contractual document between the
service provider and customers [LS14]. On the other hand, the cloud customers’ ob-
jectives include increasing their return on investment (ROI) and satisfying end users by
achieving the QoS requirements. This thesis considers the cloud provider’s objectives,
so it pays more attention to the role of cloud providers and customers and overlooks
the end users’ role as it is not essential to the context of this research.

Cloud deployment models: Figure 1.1 presents the four common cloud deployment
models namely, public, private, community and hybrid [BKNT11]. In public cloud
environments, cloud providers offer the cloud infrastructure as elastic, on-demand ser-
vices over the Internet to the general public who can use it on a pay-per-use basis. In
the public cloud, the cloud customers and the cloud provider usually belong to dif-
ferent organizational entities. Examples of public cloud providers include Amazon,
Google, Microsoft, and Rackspace. Public clouds enable cloud customers to offload
their data and applications on demand without worrying about the initial investment
and maintenance costs in addition to shortening the start-up time for their services.
On the contrary, some organizational entities may prefer building their private clouds
due to security considerations in public clouds including confidentiality, integrity, and
availability. A private cloud, also called internal cloud or intraCloud, is only accessi-
ble to authorized users within the organization and is exclusively owned and managed
by a single organization. Private clouds permit organizations to have total control of

1https://www.airbnb.com/ [Accessed: 29-January-2018]
2https://aws.amazon.com/ec2 [Accessed: 29-January-2018]
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their cloud infrastructure. In private clouds, the cloud provider and the users belong
to the same organizational entity. If multiple organizations have shared concerns, then
they can build a shared cloud infrastructure which is known as a community cloud.
The management of the community cloud can be by either some/all members of the
community cloud or even a third party. The main purpose of the community cloud is
to meet the shared requirements of the participating entities. Finally, the hybrid cloud
deployment model is a combination of two or more of the previously mentioned cloud
deployment models (public, private, or community). For example, in Figure 1.1, Hy-

brid cloud (1) is composed of a private and a public cloud while Hybrid cloud (2) is
composed of a community and a public cloud. This thesis is only concerned with the
public or private implementations of the cloud.

Figure 1.1: Cloud deployment models

Cloud service models: Creating a private cloud involves building the whole cloud
infrastructure starting from the network design, purchase of the physical machines/servers
(PMs) to the installation of the operating system (OS) and the applications and finally
monitoring and managing the cloud. Figure 1.2(a) presents the different management
components for creating a private (on-premise) cloud. Private cloud owners use cloud
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management tools such as OpenStack3, OpenNebula4 or Eucalyptus5 to manage their
own implementations of their private clouds. On the contrary, public cloud providers
can offer their cloud infrastructure on a pay-per-use basis through different service
models. Cloud service models follow an everything-as-a-service (XaaS) model where
X denotes the type of the service [BKNT11]. The three fundamental service models
are infrastructure as a service (IaaS), platform as a service (PaaS) and software as a

service (SaaS) [BKNT11]. Figure 1.2 shows the responsibilities of the cloud provider
compared to the responsibilities of the cloud customer on each service model as op-
posed to the private cloud scenario.

Figure 1.2: Cloud service models

Public IaaS providers provision the cloud infrastructure (including networking,
storage, servers, and the virtualization) in the form of virtual machines (VMs) as
shown in Figure 1.2(b). An IaaS cloud customer can install the desired OS, program-
ming platform and applications. Common examples of IaaS providers include Amazon
Elastic Compute Cloud (Amazon EC2)6, Microsoft Azure7 and Rackspace8. The PaaS
providers offer services for developers such as programming environments, database
management systems (DBMSs), execution environments and development tools. The

3https://www.openstack.org/ [Accessed: 22-Jan-2018]
4https://opennebula.org/ [Accessed: 22-Jan-2018]
5https://github.com/eucalyptus/eucalyptus/wiki [Accessed: 22-Jan-2018]
6https://aws.amazon.com/ec2/ [Accessed: 22-Jan-2018]
7https://azure.microsoft.com/ [Accessed: 22-Jan-2018]
8http://www.rackspace.com/ [Accessed: 22-Jan-2018]
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PaaS customers (e.g.software developers) only care about building their applications
without worrying about any hardware or software requirements which can help rising
productivity rapidly. Examples of PaaS providers include Google App Engine9, AWS
Elastic Beanstalk10 and Zoho Creator11. Finally, public cloud providers can offer soft-
ware applications as services through the SaaS service model. The customer of the
SaaS needs only to have Internet access to use cloud applications. The SaaS customer
neither cares about the cloud infrastructure nor the platform that hosts the applications
as shown in Figure 1.2(d). Customers use the SaaS model even before the advent of
the cloud hype. As an illustration, one of the earliest SaaS services used by the In-
ternet users was the email service where electronic mail providers offer sending and
receiving emails as a service over the Internet. Email service is a form of SaaS as the
email user can use the email service on-demand over the Internet without caring about
the infrastructure. Some of the well-known SaaS applications include Google Docs,
Sheets, and Slides12 and Microsoft Office 36513.

The IaaS service model (in public or private clouds) is the primary concern of this
thesis; where the cloud provider offers the computing infrastructure in the form of
VMs, and cloud customers can request VMs of specific sizes based on the available
instance types.

1.2 Virtualization Technology

Cloud computing is a normal evolution of the existing technologies. Common ex-
amples of technologies that enabled the existence of cloud computing include service

oriented architecture (SOA) [CHT03], utility computing [Rap04], Web 2.0 [Ale06],
multi-tenancy [BZP+10], automation [KC03] and virtualization [BDF+03]. Virtual-
ization technology is one of the basic building blocks that underpin the cloud com-
puting infrastructure by creating multiple virtual instances of hardware, storage, and
networking resources.

Virtualization is one of the principal technologies that enabled the existence of the
cloud computing. In computing, virtualization means creating a virtual version of a
computing resource; this computing resource might be server hardware, a storage or

9https://cloud.google.com/appengine/ [Accessed: 22-Jan-2018]
10https://aws.amazon.com/elasticbeanstalk/ [Accessed: 22-Jan-2018]
11https://www.zoho.com/creator/ [Accessed: 22-Jan-2018]
12https://docs.google.com [Accessed: 22-Jan-2018]
13http://products.office.com/en-gb/business/Office [Accessed: 22-Jan-2018]
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networking device, an OS or an application. Common types of virtualization include
hardware or platform (using either full virtualization or paravirtualization), OS, stor-

age, network, desktop and application virtualization [BKNT11]. This section discusses
only the hardware full virtualization due to its relevance to the context.

Figure 1.3: Type-1 versus Type-2 Hypervisors, adapted from [BKNT11]

Hardware virtualization (a.k.a platform) enables creating multiple virtual machines
(VMs) on a single physical machine (PM). A virtual machine refers to the software im-
plementation of a virtual and isolated computer that seems to be a physical machine
(end user usually does not know whether it is physical or virtual). The hardware virtu-
alization makes use of a new abstraction layer called virtual machine monitor (VMM)

or hypervisor to make calls from the VM to the PM [Dan09]. The VMM or the hyper-
visor is low-level software that enables creating, managing and configuring VMs by
allocating computing resources to the guest VMs in real-time. Furthermore, the VMM
facilitates both online and offline migration of the VMs. Full hardware virtualization
emulates the entire VM by using one of the two types of hypervisors namely, type-1

(a.k.a bare-metal or native) or type-2 (a.k.a hosted) hypervisors. Type-1 hypervisor
runs directly on top of the bare metal hardware without the need for any hosting OSs;
therefore it is an OS independent, as shown in Figure 1.3(a). Some examples of type-1
hypervisors include VMware ESXi14, Citrix XenServer15 and Microsoft Hyper-V16.

14http://www.vmware.com/products/esxi-and-esx/overview [Accessed: 22-Jan-2018]
15https://www.citrix.com/products/xenserver/overview.html [Accessed: 22-Jan-2018]
16https://www.microsoft.com/en-gb/cloud-platform/server-virtualization [Accessed: 22-Jan-2018]
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On the contrary, type-2 hypervisors run on top of a traditional host OS like any other
software as shown in Figure 1.3(b); therefore, type-2 hypervisors are OS dependent.
Examples of type-2 hypervisors include kernel-based virtual machine17 (KVM), Vir-
tualBox18 and VMware Workstation19. By and large, type-1 hypervisors are more
relevant to large-scale data centres as they provide higher performance and availability
compared to type-2 hypervisors.

Hardware virtualization simplifies the process of creating, terminating, and man-
aging VMs. The virtualization technology played a vital role in addressing the issue of
overprovisioning in traditional (non-virtualized) data centres. The following subsec-
tion illustrates how virtualization technology managed to solve key issues in traditional
data centres and facilitated the emergence of cloud data centres.

1.2.1 Data Centres and Virtualization

A data centre is a large group of networked computing and storage resources that are
used by organizations to deliver, process, and store shared applications and data. Tradi-
tional data centres used to suffer from an overprovisioning problem before the birth of
the virtualization technology. Overprovisioning means allocating more resources than
the required to meet peak workload demands. Common reasons for overprovision-
ing in traditional data centres include: (1) guaranteeing reliable performance during
peak times, and (2) using dedicated servers for each type of application even though
those servers are rarely used. Resource overprovisioning made traditional data cen-
tres experience sprawl situations. Server sprawl20 occurs when the data centre has
many underutilized dedicated servers that take up too much space, resources and en-
ergy compared to the actual workload. Even though overprovisioning can help to meet
SLA requirements, it wastes resources and incurs additional costs.

Using server virtualization, the operators of data centres can consolidate multiple
VMs into a single PM and thus cuts down the unjustified cost of server sprawl. Virtual-
ization achieves efficient resource utilization as well as energy savings through server

consolidation [BKNT11] by gaining from the underutilized servers [LKN+09]. Server
consolidation is an approach to efficiently utilize the data centre resources by either
replacing legacy dedicated servers (to save space) or combining multiple virtualized

17https://www.linux-kvm.org/page/Main Page [Accessed: 22-Jan-2018]
18https://www.virtualbox.org/ [Accessed: 22-Jan-2018]
19http://www.vmware.com/uk/products/workstation [Accessed: 22-Jan-2018]
20http://searchdatacenter.techtarget.com/definition/server-sprawl
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servers, which minimizes the total number of running PMs. Server consolidation is
one example of the capacity planning or capacity management problems and is also
known as workload concentration [WBS16]. Cloud data centres (CDCs) use server
consolidation to mitigate the server sprawl problem. A CDC is a virtualized data cen-
tre that is self-managed by a cloud management software. Consequently, virtualization
technology helped in mitigating the resource overprovisioning problem and server un-
derutilization in traditional data centres by consolidating multiple VMs into a single
PM. However, overprovisioning still exists in cloud data centres due to the underuti-
lization of VMs.

Server consolidation using virtualization can be either manual or automated. Under
manual consolidation, the CDC operator has to manually decide which VMs should be
consolidated on a specific PM. On the contrary, automated VM consolidation is carried
out by a cloud management software . A cloud management software controls PMs,
storage, and networking resources throughout the CDC. Existing cloud management
tools (a.k.a. cloud operating systems (COSs)) such as OpenStack with the embedded
VMMs such as KVM or VMware ESXi manage the infrastructure of the CDC. Auto-
mated VM consolidation includes the assignment of VMs to the PMs, a problem gen-
erally known as VM placement. The following section illustrates the effect of servers’
underutilization on energy waste in data centres.

1.3 Server Utilization and Energy Efficiency

Cloud data centres are growing to be the backbone of the Internet and the back-end
infrastructure of the new generation of end-users’ thin clients [AE15]. The global
energy consumption of data centres is growing and expected to grow. By 2030, the
global data centres are expected to consume a total of 2967 TWh [AE15]. However,
data centres’ operators can save over 50% of the energy consumption by adopting
the best practices to efficiently use the data centres’ resources [AE15]. According to
the Uptime Institute survey [Sta15], power usage efficiency (PUE), operating expense,
kW per rack, and server utilization are the top four most important metrics by data
centre operators and IT practitioners. Additionally, power efficiency and hardware
consolidation (for reducing costs and utilizing data centres efficiently) are two of the
top ten data centre management priorities [HU13]. Low server utilization is one of the
leading causes of energy waste [Nrd15], and it is one of the most common topics for
data centre efficiency after PUE [WD14].
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Server utilization represents the amount of used resources on the server relative to
the maximum server capacity. For example, a server’s CPU utilization is the CPU load
divided by the maximum CPU capacity. Low server utilization (a result of overcapac-
ity or overprovisioning) is one of the critical concerns for the data centre management
as server resources unused most of the time. The server underutilization wastes energy
as an entirely idle PM can consume around 70% of its peak power [FWB07] due to
the narrow dynamic power range of the servers. Additionally, more than a fifth of IT
devices do nothing rather than warming the planet [Nrd15]. Furthermore, according to
the findings by the Uptime Institute [KT15, KFK08], 30% of the US data centres are
comatose. A comatose server is the one that is running and using electricity but does
not deliver useful services. The main reason for the low server utilization is the over-
provisioning of the computing resources to meet the demands at peak periods. Data
centres are mostly overprovisioned, and the PMs are only 10-50% utilized most of the
time [BH07]. Other examples for low server utilization include corporate servers that
are idle out of the work hours and during the night. An additional example, developer
workstations are idle most of the time; only used during code compilation, testing,
etc. This low server utilization means that extra PMs are wasting energy without a real
added value.

The inefficiency of server utilization and the related energy consumption requires
more efficient solutions that reduce the underutilization per PMs. Accomplishing effi-
ciency with big cloud providers (such as Amazon or Google) does not solve the prob-
lem as the primary cloud providers only account for about 5% while the majority are
small and medium-size governmental and corporate data centres [WD14]. Energy effi-
cient VM placement solutions that achieve better utilization ratios can cut energy waste
from server underutilization which results in a better environmental (by increasing the
resulting CO2 emissions) and financial impact.

1.4 Virtual Machine Placement

For an efficient consolidation of the VMs in CDCs, a cloud provider needs to optimize
the placement of VMs on the data centre’s PMs in a way that increases the profit from
hosting the VMs. VM placement is the process of assigning VMs to PMs to achieve
organizational objectives. IBM launched the concept of autonomic computing to refer
to self-managing systems that automatically adapt to the changing requirements of the
system and manage upcoming issues with minimum human intervention [SB03]. A
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VM placement solution is an example of an autonomic (self-managing) system as it
can manage itself by adapting to changes without requiring human intervention. Devel-
oping such an autonomic system requires adopting one of the common policies: action

(rule-based), goal or utility function [KD07]. A VM placement solution considers ei-
ther the initial mapping of the VMs to PMs (a.k.a. initial or static VM placement) or
the dynamic reallocation of the VMs using live migration (a.k.a. dynamic VM place-
ment) [LL+12].

1.4.1 Initial (Static) VM Placement

Cloud customers send VM placement requests to cloud providers; this VM placement
request specifies the size of the required resources per the VM (e.g. CPU, memory, and
bandwidth). The cloud management software uses the initial VM placement controller
to either accept or reject the VM placement requests and then assigns each accepted
VM to an appropriate PM. The fundamental question is how to place the VMs on the
least possible number of PMs while satisfying the SLA requirements. This question (of
initial VM placement problem) is an example of a high-dimensional bin packing prob-
lem, which is one of the well-known NP-hard problems. Cloud management software
that only uses initial or static VM placement does not make use of the live migration of
the VMs. Consequently, the initial VM placement determines the PM on which a VM
will be launched, and this VM-to-PM assignment is not changed until the deallocation
of the VM regardless of any changes in the cloud environment. Commonly, the initial
VM placement uses a reservation-based VM placement strategy, which assigns VMs
to PMs according to a (statically) reserved VM size regardless of the actual workload
utilization.

Employing only an initial VM placement solution might not utilize the PMs effi-
ciently due to the static nature of the initial VM placement as well as the adoption of a
reservation-based VM placement strategy. As an illustration, the initial VM placement
does not reallocate VMs due to the deallocation of some other VMs which might lead
to underutilization per PMs. Moreover, the initial VM placement does not react to
workload changes per VMs. For example, if (at some point in time) a VM is making
use of only a fraction of its reservation this also leads to PM underutilization. The un-
derutilization per PMs leads to inefficient utilization of the PMs which wastes energy
and, on a grand scale, it may result in substantial financial and environmental costs.
Therefore, using dynamic VM placement solutions that can adapt to changes in CDC
by reallocating the VMs could result in a better utilization.
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1.4.2 Dynamic VM Placement

The dynamic VM placement involves creating a self-managing system that adapts to
the changes in the cloud environment by migrating VMs in a way that helps in achiev-
ing the cloud provider’s goals. As previously described (in Section 1.4.1), the changes
in the cloud environment might include allocations of new VMs, deallocation of ex-
isting VMs, the numerous variations of the applications’ workload on the hosted VMs
and hardware failures. Therefore, using only the initial VM placement is not suffi-
cient. The dynamic consolidation of the VMs is crucial for utilizing the data centre’s
resources efficiently by either reacting or proacting to changes in the cloud data cen-
tre. The dynamic allocation runs over short time periods either periodically or based
on specific triggers. The dynamic VM placement solution automatically reallocates
VMs among the suitable PMs whenever needed using the live migration utility. Occa-
sionally, the dynamic placement controller may migrate VMs from underutilized and
overutilized PMs. As an illustration, the dynamic VM placement controller might mi-
grate all VMs from underutilized PMs and turn these PMs off or switch them into one
of the power saving modes to minimize the number of running PMs for more efficient
utilization of the PMs and hence more energy savings.

The question that arises is: on which basis does the dynamic VM placement con-
troller reallocate the VMs? In general, the dynamic VM placement controller esti-
mates the VM reallocation decision based on the adopted VM placement strategy. So
far, the two common VM placement strategies are reservation-based and demand-

based [WTAPB15].

In reservation-based VM placement, VMs are assigned to PMs based on the re-
quested (by the user) VM size (CPU, memory and bandwidth capacities) regardless of
the actual utilization. Dynamic reservation-based placement may react to VM deallo-
cation or new VM allocations by migrating VMs between PMs. Nevertheless, it does
not respond to fluctuations in the workload, which means that VM resources may be
reserved regardless of actual use.

In contrast, demand-based placement assigns VMs to PMs based on the current

workload demand rather than the reserved resources. The demand-based placement
requires a knowledge of the resource demand that can be identified using reactive,
predictive or hybrid methods [HKR+14]. The VM reallocation based on the actual
workload demand, rather than the reserved VM size, may potentially improve a PM’s
utilization. The improvement in utilization can be achieved by migrating VMs from
underutilized (according to actual workload utilization) PMs. This migration process
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may help switch some PMs into one of the power saving modes whenever possible.
However, such a migration (and demand-based placement in general) may result in
more service level agreement violations (SLAVs). A service level agreement (SLA)
defines the quality of service (QoS) requirements (e.g. availability of VMs) in the form
of a contractual document between the service provider and the customer [LS14]. An
SLA violation (SLAV) occurs when previously agreed upon SLA requirements are
not met. The two common sources of SLAVs in the IaaS are: (1) the unavailability of
VMs due to the migration process, and (2) the overutilization of PMs due to the aggres-
sive consolidation of VMs. Both reservation-based and demand-based VM placement
strategies confirm that there is a trade-off between the utilization of PMs and the re-
sulting SLAVs. Figure 1.4 demonstrates this trade-off where a better PM utilization
(i.e. fewer number of PMs being used) may lead to a high number of SLAVs, whereas
a low number of SLAVs may imply worse PM utilization.

Figure 1.4: Trade-off between PM’s utilization and number of SLAVs
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1.5 Motivation

According to Aristotle’s philosophy, “[t]he golden mean or golden middle way is the
desirable middle between two extremes, one of excess and the other of deficiency”
[Gol]. However, so far, the existing VM placement literature has only considered
the two extremes of the VM placement strategies. The first extreme strategy is the
reservation-based placement, which results in utilization deficiency (underutilization)
of the data centre’s PMs. The second extreme strategy is the excess demand-based
placement, which may tend to contribute to more SLAVs. These two extremes of the
VM placement strategies suffer from resource/energy wastage due to resource overpro-
visioning in case of reservation-based placement and incurs financial penalties besides
affecting customer satisfaction due to resource underprovisioning in case of demand-
based placement.

Consequently, this thesis aims to find a more desirable and flexible strategy (by ex-
ploring the middle way) that could help to overcome the problems associated with the
two extremes of the placement strategies. The proposed strategy seeks to exploit the
area between demand-based and reservation-based placement striving for a workable
and flexible balance between the number of SLAVs and the utilization of PMs accord-
ing to some cloud providers’ goals. For example, allowing a limited number of SLAVs
may yield an economic benefit to cloud providers and better resource utilization while
reducing cost for cloud customers.

1.6 Aim and Research Questions

This thesis aims to investigate the benefits of a novel VM placement strategy that
can generate a multitude of VMs-to-PMs allocations beyond reservation-based and
demand-based allocation. The proposed VM placement strategy introduces a tunable
parameter, which becomes an input to the VM placement problem. Therefore, we
have named this new placement strategy as parameter-based VM placement strategy.
The parameter-based VM placement strategy seeks to find VMs-to-PMs mappings that
strike a workable and flexible balance according to cloud providers’ goals, such as
minimizing energy consumption, improving PM utilization, and reducing the resulting
SLA violations.

In developing this research, the following research questions were considered to
help define the objectives to accomplish our research aim.
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1. What are the benefits of a strategy that combines both reservation-based
and demand-based allocation of VMs to PMs?
To answer this question, the approach followed was to conduct a critical analy-
sis of current VM placement solutions. The literature reports various measurable
benefits for both reservation-based and demand-based allocation of VMs to PMs.
These benefits of reservation-based placement include adherence to the QoS re-
quirements, while demand-based ensures better utilization and energy savings,
among others. The details of the advantages and the shortcomings of these two
VM placement strategies are discussed at length in Chapter 2, within a novel
classification of the state-of-the-art of VMs placement and consolidation solu-
tions. Through this analysis, it was found that there are two principal metrics
(namely, number of SLAVs and PMs utilization) that can measure the benefits of
the existing VM placement strategies as shown in Figure 1.4. As a result, these
two metrics, or variations thereof (such as the number of PMs, energy consump-
tion and percentage of SLAVs), were chosen to evaluate our proposed strategy.

2. What are the main components of the VM placement solution and how to
model the proposed strategy to combine both reservation-based and demand-
based allocation of VMs to PMs?
The critical analysis that serves to answer the previous question also helped to
answer this question. Particularly, we also analysed the literature as to how the
VMs-to-PMs placement problem has been modelled. Based on this analysis, we
decided to design a system architecture and a mathematical model of the VM
placement solution. The system architecture provides a framework to organize
the software components of our strategy, and is described in Chapter 3. The
mathematical model (described in Chapter 4) allows a quick and precise way
to quantify the relationship between the number of SLAs and PMs utilization,
along with other related metrics, and is thus the basis for the design of the various
algorithms that comprise our strategy.

3. How to find flexible VMs-to-PMs mappings by exploring the space between
demand-based and reservation-based placement?
To answer this question, the research objective was to determine an efficient
way for choosing VMs-to-PMs mappings that consider both demand-based and
reservation-based placement. Our design decision was the definition of a single
parameter α whose extreme values (zero and one) represent the two extremes of
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VM placement strategies, namely, reservation-based and demand-based place-
ment. The following equation formulates the operation of our parameter-based
VM placement strategy.

ar
j(t) = α · (cr

j−dr
j(t))+dr

j(t),

where ar
j(t) is the amount of resources allocated to VM j at time t, cr

j is the capac-
ity of resource r per VM j (reservation) and dr

j(t) represents the actual demand
of resource r at time t. That is:

α =

0, Demand-based VM Placement (only)

1, Reservation-based VM Placement (only)

By simply changing the value of α (to a value between 0 and 1), our strategy
makes it possible to define VMs-to-PMs mappings that combine both reservation-
based and demand-based placement.

The proposed parameter-based VM placement strategy takes into account the
current workload demand and the maximum resource size per each VM. Then,
based on the VM placement objective, it seeks to utilize the PMs efficiently
(maximizing the utilization ratio) by minimizing the estimated underutilization
per resource type, while reducing SLAVs by reducing overutilization situations.

4. How to estimate the parameter α on the fly to achieve the cloud provider’s
objectives?
Our research objective was to investigate and design various tuning algorithms
that estimate a dynamic parameter which optimizes utilization without exceed-
ing a certain threshold of number of SLAVs. Instead of using a predefined static
parameter, such tuning algorithms should observe the predefined SLAVs thresh-
old while actively seeking to optimize resource utilization. It should scale up
a VM’s allocated resources (bounded by the VM’s maximum size) when the
number of SLAVs exceeds the SLAVs threshold. On the other hand, it should
scale down the allocated resources when the number of current SLAVs is lower
than the SLAVs threshold to ensure better utilization of the PMs. The tuning
algorithms can estimate the dynamic parameter either instantaneously (based on
the current SLAVs and its distance from the predefined SLAVs threshold) or by
considering the historical values of the SLAVs.
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5. How to incorporate the workload prediction of the individual VMs into our
strategy?
To answer this question, the research objective to develop a hybrid approach
that adjusts the value of the parameter α both reactively and proactively. Such
a hybrid approach reacts to the current SLAVs and its relation to the SLAVs
threshold, aiming to fine-tune the parameter α by making use of the predicted
workload of each individual VM. For predicting the VMs’ workload, we adopted
two supervised learning algorithms, namely random forests and long short-term
memory, which are illustrated in Chapter 6.

6. How to build the cloud environment for testing and evaluating the perfor-
mance of the algorithms in the proposed VM placement strategy?
An important question was to decide whether to use a real or simulated cloud
environment to evaluate the proposed strategy. The decision was to find a proper
cloud simulation framework to simulate the required cloud data centre and the
VM placement strategy. Using simulation can help in overcoming the repro-
ducibility and scalability problems associated with the real-world cloud experi-
ments. Cloud simulation can make the testing and evaluation process more man-
ageable, cost-effective and reproducible. This thesis made use of the well-known
and widely-used open source CloudSim which stands out among counterparts in
the VM placement research. The proposed algorithms have has been evaluated
using both real (from PlanetLab) and synthetic workload traces.

1.7 Contributions

The key contributions of this thesis are summarized as follows:

1. Introducing a novel classification and a critical analysis of the state-of-the-art
of the VM placement literature. The proposed classification presents a roadmap
for introducing VM placement solutions. This roadmap can also be followed
when creating autonomic systems in other domains of computer science. Addi-
tionally, it demonstrates common pitfalls in VM placement research and points
out potential research directions. The details of the novel classification can be
found in Chapter 2. During the review, an empirical evaluation of a genetic
algorithm and simulated annealing has been conducted to reallocate VMs in
CDCs dynamically; more details in Appendix A. Finally, a genetic algorithm
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for dynamic VM placement that considers both CPU and memory resources was
evaluated [MS19]; more details in Appendix B:

• Abdelkhalik Mosa and Rizos Sakellariou. Dynamic Virtual Machine Place-
ment Considering CPU and Memory Resource Requirements. In 2019
IEEE 12th International Conference on Cloud Computing (CLOUD) (pp.
196-198). IEEE.

2. Designing a system architecture for the VM placement solution that utilizes the
novel parameter-based VM placement strategy. The architecture includes com-
ponents for initial VM placement, dynamic VM placement, and the parameter
estimation. Additionally, establishing and calculating performance metrics that
can be used for evaluating various VM placement solutions. More details can be
found in Chapter 3.

3. A novel VM placement strategy (parameter-based) that works in the area be-
tween the actual resource demand and the full reservation of the VMs. This
novel VM placement strategy offers the cloud provider more flexibility to choose
between utilization and SLAVs tradeoffs. By and large, the proposed parameter-
based strategy can motivate researchers to pay more attention to the middle way
between extreme solutions as it can add significant value. The details of the
parameter-based VM placement strategy can be found in Chapter 4. Parts of the
material in Chapter 4 have been published in [MS17b]:

• Abdelkhalik Mosa and Rizos Sakellariou. Virtual machine consolidation
for cloud data centres using parameter-based adaptive allocation. In Pro-
ceedings of the Fifth European Conference on the Engineering of Computer-
Based Systems, pages 1–16. ACM, 2017.

4. Introducing adaptive heuristics that can estimate the proper value of the param-
eter (of the parameter-based solution) on the fly to optimize resource utilization
without exceeding the cloud provider’s SLAVs thresholds. These heuristics can
enable cloud providers to set SLAVs thresholds that should not be surpassed.
The proposed dynamic tuning algorithms can be found in Chapter 5. Parts of
this material have been published in [MS18]:

• Abdelkhalik Mosa and Rizos Sakellariou. Dynamic tuning for parameter-
based virtual machine placement. In Proceedings of the 17th International
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Symposium on Parallel and Distributed Computing (ISPDC), pages 38 –
45, IEEE, 2018.

5. A proposal of a hybrid approach (reactive and proactive) to estimate the value
of the parameter per VM. To do so, two supervised learning techniques (ran-
dom forests and long short-term memory) are adopted to predict the future CPU
utilization of the individual VMs. The details of the hybrid approach for the
parameter estimation and the prediction of the VMs’ resource utilization can be
found in Chapter 6.

6. Conducting an empirical evaluation of the proposed VM placement strategy and
the associated algorithms using CloudSim. The empirical evaluation has been
conducted by using both synthetic and real workload traces. The details of the
empirical evaluation can be found in Chapters 4, 5, and 6.

1.8 Summary and Thesis Structure

This chapter has introduced the scope of the research described in this thesis, which
involves designing a novel flexible VM placement strategy that spans the area between
the reservation-based and demand-based VM placement strategies. The novel aspects
of the proposed VM placement strategy were outlined. A critical task involves de-
veloping a new autonomic VM placement solution to facilitate exploring the tradeoff
between the costs of resource overutilization and SLA violations. Another task in-
volves the autonomic management of VM consolidation without exceeding a given
threshold of SLA violations while optimizing resource utilization.

The remainder of the thesis is structured as follows:

• Chapter 2 reviews the state of the art of VM placement as well as classifies the
existing VM placement solutions based on the type of the problem being solved,
the VM placement strategy being followed, the adopted policies for making the
VMP solution autonomic and the placement objectives.

• Chapter 3 describes the system design of the proposed parameter-based VM
placement solution. Additionally, it illustrates the design assumption, the sim-
ulation environment, and the performance metrics that are used to measure the
effectiveness of the proposed solution.
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• Chapter 4 introduces the proposed parameter-based VM placement solution based
on our novel parameter-based VM placement strategy. It demonstrates a heuristics-
based VM placement solution for both the initial and the dynamic placement of
the VMs; Chapter 4 is based on [MS17b].

• Chapter 5 presents the dynamic algorithms that automatically estimates and fine-
tune the parameter of the proposed parameter-based VM placement solution us-
ing reactive approaches; Chapter 5 is derived from [MS18].

• Chapter 6 adopts a hybrid approach (that is both reactive and proactive) to esti-
mate the parameter per each VM based on the SLAVs threshold and the predicted
CPU usage of the VMs. This chapter makes use of two parameters: one for the
CDC level and the other for the VM level. Chapter 6 makes use of both random
forests and long short-term memory (LSTM) to predict CPU utilization of the
VMs.

• Chapter 7 concludes the work done and proposes a list of possible future direc-
tions that may require further investigation.

• Appendix A conducts an empirical evaluation of a genetic algorithm and a sim-
ulated annealing algorithm for the dynamic demand-based reallocation of VMs
in cloud data centres for reducing energy and SLA violation costs.

• Appendix B examines the initial and dynamic reallocation of VMs using both
CPU and memory requirements. It uses a genetic algorithm for the dynamic re-
allocation and compares it to the well-known best-fit decreasing algorithm. It
confirms the importance of considering memory resources during VM place-
ment, particularly in the case of memory-intensive VMs.



Chapter 2

VM Placement Problems, Strategies,
Policies and Objectives

2.1 Introduction

Efficient virtual VM placement solutions enable operators of public or private cloud
data centres (CDCs) to consolidate VMs on the least possible number of physical ma-
chines (PM)s which is an attractive option for energy and savings [Man15, BB12,
MP16]. However, the VM placement problem is difficult for many reasons, including
the NP-hard nature of the problem itself [HMGW07], the many variants of the VM
placement problem [Man15], and the non-obvious framework/pathway to follow when
proposing a new VM placement solution. The various variants of the VM placement
usually result from the different cloud deployment models (e.g. public or private) and
the type of service model (IaaS, PaaS, or SaaS), which leads to entirely different VM
placement objectives and constraints. Cloud providers offer VMs in two formats: (1)
VMs are offered directly to customers in the form of IaaS, and the user can install
and run the required OS and applications, (2) VMs are offered as a wrapper of the
applications or platform in case of SaaS or PaaS [ZCB10].

In addition to the previously stated difficulties, what makes it even more difficult
is that many authors do not explicitly define the variant of VM placement that they are
solving. The reader has to infer the type of the VM placement problem indirectly either
from the proposed algorithms or from the conducted experiments [Man15]. As an
illustration, one common variant is the process of assigning short-term jobs or tasks (in
the form of VMs) to PMs. This variant is more related to workload or task scheduling
than VM placement (as the VMs are used to wrap applications and not provided as an

35
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IaaS). For that task scheduling problem, it may be better for the cloud provider to run
these tasks on Linux containers instead of VMs as the performance of containers is
equal to or outperforms VMs [FFRR15]. Furthermore, in the task scheduling problem,
the cloud customer may care about the response time rather than the availability of the
VMs. Therefore, a precise definition of the variant of the VM placement problem being
addressed is critical. This thesis tackles the VM placement problem where the VMs are
offered in the form of IaaS (previously introduced in Section 1.4). The cloud customers
request VMs of a specific size (with particular resource characteristics such as the
CPU and memory) for a particular time. The cloud operators offer their infrastructure
directly to the customers in the form of various VM instances. As an example, Amazon
EC2 offers multiple types of VM instances1 to meet the needs of the diverse cloud
customers. Then, cloud customers can run any number and type of applications on their
VMs bounded by the capacity of the requested VMs. Accordingly, the VM placement
solution is considered as application-agnostic as it does not have any prior knowledge
of the nature of applications running by every single customer.

Following a critical literature review, this chapter introduces a novel classification
of VM placement solutions. This novel classification points out the relevant issues
in current VM placement solutions and demonstrates a clear framework/pathway for
researchers to follow when they try to tackle any variant of the VM placement prob-
lems. In comparison to existing reviews of VM placement and resource management
in CDCs (such as [Man15, PS16]), our review is different in what follows: (1) It
concentrates only on the VM placement from the IaaS perspective. (2) It introduces
a novel classification of the existing VM placement research. The following section
provides an overview of our classification.

2.2 Overview of the Proposed Classification

The proposed novel classification has four aspects represented in four main classes
and a few subclasses, as shown in Figure 2.1. The main classes are the VM placement
problems, strategies, policies and objectives. To the best of our knowledge, there are
no previous review articles (of VM placement) that have explicitly classified the VM
placement based on the adopted VM placement strategies and policies. Our classifica-
tion offers a high-level yet comprehensive view that can guide researchers to identify
and reason about research avenues in VM placement. As an illustration, a researcher

1https://aws.amazon.com/ec2/instance-types/
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can delineate his/her pathway when proposing a new VM placement solution by an-
swering the following questions:

• Firstly, which version of the VM placement problem is he/she trying to solve?
By and large, any VM placement solution tries to solve either an initial (static)

or a dynamic version of the VM placement problem. Additionally, the literature
solves both online and offline versions of the initial VM placement.

• Secondly, on reallocating a VM, should it be reallocated considering its reserved
size or the actual resources it has been using (or it may require in the future)?
This defines what we call the VM placement strategy.
So far, all existing VM placement solutions follow either a reservation-based or
a demand-based strategy to allocate resources to the VMs. Additionally, how
to adapt to changes in the demand in case of a demand-based VM placement
strategy? This can be achieved by following a reactive, proactive or hybrid

approaches.

• Thirdly, how the VM placement solution is going to be self-managing (auto-
nomic) by adapting to various changes in the CDC without requiring a human
intervention?
This can be achieved by following one the VM placement policies such as action

(rule-based) or utility functions for creating an autonomic VM placement sys-
tem. Adopting such policies allows the system to automatically change its state
to a better one when necessary.

• Finally, what are the VM placement objectives?
Any VM placement solution seeks to achieve multiple and usually contradic-
tory objectives. Common examples of the VM placement objectives include en-

ergy savings, efficient utilization of the PMs, minimizing SLA violations (SLAVs),
maximizing profit, balancing the load among the PMs, minimizing network over-

heads, reducing temperature, or a combination of them.

The remainder of this chapter provides an in-depth investigation of the proposed
classification of the VM placement research while discussing relevant literature under
each category.
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Figure 2.1: Classification of current VM placement research in IaaS



2.3. VM PLACEMENT PROBLEMS 39

2.3 VM Placement Problems

The existing literature on VM placement attempts to solve either an initial (a.k.a static)
or a dynamic version of the VM placement problem. A solution to an initial VM place-
ment problem tries to find the most suitable PM to host the VM specified in a new VM
placement request. An initial VM placement controller does not reallocate a VM after
it has been initially allocated, regardless of any changes in the resource demand. Only
when the lease duration of the VM is expired, it is completely deallocated. However,
a dynamic VM placement controller uses the live migration utility to redistribute the
VMs if this redistribution is expected to work towards achieving the cloud provider’s
objectives. By and large, the operators of CDCs use dynamic VM placement to ensure
better utilization of data centres’ resources.

Most of the literature on dynamic VM placement confirms that using the dynamic
VM placement to reallocate VMs can reduce energy consumption, which results in
financial and environmental gains. However, static VM placement might be more ef-
ficient than dynamic VM placement in some specific scenarios of private clouds im-
plementations [WBS16]. For example, Wolke et al. [WBS16] have conducted a set
of empirical experiments to evaluate the effectiveness of different types of static and
dynamic resource allocation mechanisms in private (corporate) cloud environments.
They conclude that using static resource allocation in corporate data centres is more
efficient than using dynamic resource allocation for a typical workload of business ap-
plications. They suggested using live migration only exceptionally as it may cause
more overheads, which can affect the response time. Again, this notion cannot be
generalized as it is only valid for a specific scenario in private clouds and a particu-
lar nature of the workload (for example, as a fixed set of business applications with
repeating workload patterns). Moreover, private clouds usually host a fixed number
of VMs which host a set of corporate applications; however, in a public cloud, the
number of VMs is changing, and VMs are being provisioned and deallocated con-
tinuously [WBS16]. This section presents an in-depth investigation and analysis of
the current solutions for both the initial and dynamic versions of the VM placement
problem.

2.3.1 Initial (static) VM Placement

A great deal of previous research into VM placement has focused on the initial (static)
mapping of VMs-to-PMs. The mapping of VMs-to-PMs in CDCs is a variant of the
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vector bin packing problem where PMs represent the bins, and the VMs represent the
items that need packing [BB12]. Up to now, there are no polynomial-time algorithms
that can solve bin packing problems and their variants, and therefore they have been
classified as NP-hard problems [Hoc97]. Initial VM placement solutions have been
further divided into online or offline versions [LPB15]. Offline versions receive the en-
tire input of VMs, PMs, and workload in advance, and hence can produce an optimal
solution of VM placement problem. In online versions of initial VM placement, all
the input data is not known in advance, and the algorithm usually receives new VM
placement requests over time. As an illustration, if there are n VMs that need to be
assigned to the existing PMs, then an offline solution must have all the n VM place-
ment requests in advance. On the contrary, an online solution is only given the ith VM
placement request after mapping the previous i−1 requests. One of the common pit-
falls on existing initial VM placement research is that it solves an offline version which
does not reflect the online nature of the problem in public clouds. Therefore online al-
gorithms are adopted in the real world practical implementations of VM placement
controllers. Figure 2.2 demonstrates the function of the initial VM placement, where it
receives requests for allocating VMs and tries to map the VMs to the most fitting hosts
(PMs) based on the adopted filters and weights. The NOVA filter scheduler, described
next, chooses the most weighted hosts after filtering out non-suitable hosts.

Figure 2.2: Initial (static) VM Placement
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As an example of an exiting initial VM placement controller, this paragraph de-
scribes how does OpenStack NOVA allocates VMs to PMs in cloud data centres. Open-
Stack is a cloud management tool that controls compute, storage, and networking re-
sources throughout a cloud data centre. OpenStack is a component-based cloud plat-
form like Amazon Web Services (AWS) but developed by the community. OpenStack
automates the creation and management of compute instances such as VMs using the
NOVA2 component while it uses other components to automate other services such as
the network, security, and storage. The NOVA component uses NOVA Filter Sched-

uler [Fil] to allocate VMs to PMs (which is an example of an initial VM placement
controller). The Nova-schedule process receives a VM request and determines where
it should run (on which PM a VM should be launched). The Nova scheduler uses filters

and weighting to choose a PM to which the VM should be allocated as shown in Fig-
ure 2.3. The NOVA filter scheduler chooses the most weighted hosts after filtering out
non-suitable hosts. The following paragraphs review and analyse some of the research
conducted for solving the initial VM placement problem.

Figure 2.3: NOVA Filter Scheduler, from [Fil]

2https://docs.openstack.org/nova/latest/
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Mills et al. [MFD11] have developed a standard objective method for evaluating
various online versions of the initial VM placement algorithms in large clouds. They
aimed to find a single standard method for comparing initial on-demand VM placement
solutions instead of using multiple disjoint approaches. They declare that the major-
ity of the existing initial VM placement solutions have an incomplete view of CDCs,
which leads to inefficient placement decisions. The reason for this incomplete view is
that they treat CDCs as an unstructured set of PMs and neglect the fact that PMs are
grouped into racks/clusters. Therefore, they considered two levels during the evalua-
tion, namely cluster level and PM/node level. Cluster-level decisions seek to identify
the most appropriate cluster/rack of PMs. Within a selected rack, PM-level decisions
select a PM onto which to assign the VMs. They have tested three different criteria for
choosing the relevant cluster, namely least-full first (LFF), percent allocated (PAL),
and random. Besides, they have evaluated six heuristics for placing the VM on the
proper node within the chosen cluster. These algorithms are first fit (FF), LFF, most-
full first (MFF), next fit (NF), random, and tag and pack (TP). They conclude that using
two-level initial VM placement based on cluster and PM level yields better results than
considering the flat architecture that relies only on the PM level. Moreover, they found
that placing VMs of the same VM request or VMs belonging to the same customer to
the same cluster achieves better network performance during communication among
these VMs. However, they concluded that there are no significant quantitative differ-
ences among the 18 combinations of the initial VM placement algorithms that they
tested. Eventually, they assure the importance of picking the proper criteria for cluster
selection as it can significantly increase the cloud provider’s revenue.

Using simple heuristics such as first-fit decreasing (FFD) or best-fit decreasing
(BFD) for creating an online VM placement solution is a viable option due to their
simplicity and strength. For example, Beloglazov et al. [BB12] begins with the initial
assignment of VMs-to-PMs intending to minimize energy consumption. They propose
a power-aware version of the BFD algorithm that considers power consumption during
the placement. They sort all VMs in decreasing order based on the current CPU uti-
lization and then allocate VMs to PMs that cause the least possible increase in power
consumption due to the allocation. Another example, Shi et al. [SBBJ13] solve a vari-
ant of the initial VM placement problem with the aim of maximizing the revenue. Each
set of VMs is constrained by both the individual VM’s characteristics (CPU, memory,
and bandwidth) as well as placement constraints. The placement constraints include
security and anti-collocation requirements. To solve this problem, they propose two
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approaches; one is based on the FFD while the other uses integer linear programming
(ILP). The FFD-based solution classifies the VM requests into different categories and
satisfies the placement constraints. For the ILP-based solution, they formulate the
problem as an ILP problem that deals with the required placement constraints and VM
types. The ILP solution provides an optimal VM placement; however, it is not suitable
for the online placement of newly arrived VM placement requests and is not benefi-
cial in case of medium and large-sized CDCs. Even though the FFD-based solution
offers a sub-optimal solution, it can also provide near-optimal solutions for small-size
problems. Most importantly, the FFD-based heuristic is capable of solving an online
version of the problem by accepting new VM placement requests. They conclude that
adopting the heuristics for the online initial VM-to-PM mapping are practical and more
effective than the ILP counterparts.

On the other hand, global search metaheuristics such as ant colony optimization
(ACO) and genetic algorithms (GA) have been adopted for the initial VM placement.
For example, Ma et al. [LL+12] expressed the initial VM placement problem as a
multi-objective optimization problem and solved it using the ACO algorithm. They
aimed to reduce three conflicting objectives, which are power consumption, SLA vio-
lations, and resource wastage. Zhao et al. [ZWL+18] adopted ACO for solving the ini-
tial VM placement problem striving to find a balance between energy savings and the
required performance of VMs. However, their experimental evaluation overlooks the
scalability of the solution as they test their proposal using only ten VMs on homoge-
neous PMs. Ye et al. [YYL17] considered four objectives, which are reducing energy
consumption and maximizing load balance, PMs’ utilization, and robustness. They
solved this problem using an energy-aware version of the knee point-driven evolution-
ary algorithm (KnEA), which they have named as energy-efficient KnEA (EEKnEA).
Striving to reduce power consumption and costs, Yousefipour et al. [YRJ] formulated
the VM placement problem as a mixed-integer nonlinear programming problem and
introduced energy- and cost-aware VM consolidation (ECVMC) solution using a GA.
On the other side, Quang-Hung et al. [QHNN+13] solved an offline version of the
static VM placement problem in private clouds using a power-aware genetic algorithm
(GAPA). Their private cloud scenario considers a university cloud where students and
researchers can request VMs during specific class times. Based on the findings of
the solutions that adopt metaheuristics [LL+12, YYL17, YRJ, QHNN+13], they con-
clude that ACO, GA and KnEA outperform existing heuristics that use FFD, BFD
and permutation pack (PP) algorithms. Additionally, it is found that ACO and KnEA
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outperform GA [LL+12, YYL17]. However, these metaheuristics-based solutions are
more relevant to offline VM placement, which is impractical for real scenarios on pub-
lic cloud data centres. Using a metaheuristic for the initial VM placement is absurd as
the algorithm will run each time a new VM placement request is received, which can
have a high probability of changing the current VMs-to-PMs mapping that degrades
the overall performance of the VMs. One more downside of adopting metaheuristics
is that the majority of them are computationally expensive as opposed to the simple
heuristics.

Virtual data centre (VDC) embedding problem, another variant of the VM place-
ment problems, involves an efficient mapping of the VDC to the existing physical
infrastructure in CDCs. Rabbani et al. [REP+13] propose a static VDC embedding so-
lution, which assigns not only the VMs but also the virtual links as well as the virtual
switches. Therefore, they have developed a centralized network-aware approach that
allocates VDCs of any topology type by explicitly considering the virtual switches and
links in the placement request. They focus on the networking infrastructure, which is
usually ignored by many of the previous VM placement solutions. To do so, they al-
locate VMs of the same request to the same PM whenever possible to reduce network
overhead as well as resource fragmentation. Their proposed heuristic solution balances
the load while considering communication costs. Wuhib et al. [WYS13] have devel-
oped an architecture that simultaneously allocates compute and network resources to
VDCs. The proposed architecture consists of multiple controllers where each of them
handles a different objective such as energy efficiency, load balancing, fair allocation,
and service differentiation. They address both the initial and dynamic allocation of
the VMs. For the initial placement of the VDC, they allocate one VM at a time. For
finding the proper mapping of each VM, they introduced an algorithm that operates as
follows; for each VM, it selects d random PMs and then places the VM on the PM that
minimizes the value of the objective function. If no feasible solution is found, then the
algorithm selects another d random PMs. This algorithm is more viable for large-scale
CDCs as opposed to search-based counterparts.

To investigate the effect of the resource consumption of the co-located VMs on
the performance of the individual VMs, Corradi et al. [CFF14] propose a practical
energy-aware VM consolidation solution for OpenStack. Their proposed solution aims
to reduce energy consumption and resource wastage while considering networking
requirements. Their empirical evaluation indicates that a VM consolidation solution
may be theoretically feasible; however, it may not guarantee the SLA requirements
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due to the interference among the co-located VMs. The degradation of the VMs’
performance depends on the type of services running on the co-located VMs. They
conclude that any VM consolidation solution should thoroughly take the interference
due to aggregated resource consumption among the co-located VMs into consideration
to satisfy the SLA requirements.

Reviewing the VM placement literature confirms that the area of initial VM place-
ment is ripe enough. Moreover, it assures the importance of examining the hierarchical
structure of the CDC as opposed to the simplified flat architectures. Finally, online
solutions for the initial VM placement problem are practical as they reflect the con-
tinuous arrival of VM placement requests on public clouds as opposed to the offline
counterparts.

2.3.2 Dynamic VM Placement

On the contrary to initial VM placement, a dynamic VM placement solution starts
with an existing VMs-to-PMs mapping (which reflects the current state of the system).
Then, the dynamic VM placement solution attempts to reach a new mapping (state)
that achieves the placement objectives without violating the placement constraints.
A dynamic VM placement solution adapts to changes in the cloud environment by
migrating VMs among PMs, aiming at a more efficient VMs-to-PMs mapping. On
the one hand, dynamic VM placement may result in some unused PMs being turned
off or switched to lower power modes, which can save energy [DAGLO12]. On the
other hand, dynamic VM placement may result in more SLA violations (SLAVs) due
to the temporal unavailability of the VMs during the migration time [LXJ+11] . None
of the existing cloud management tools, such as OpenStack, considers the dynamic
placement of VMs after the initial allocation [WTAPB15].

Figure 2.4 illustrates how the dynamic VM placement solution migrates VMs from
underutilized PMs, and switch unused PMs off to save energy. As an example, the
dynamic VM placement controller migrates VM7 from PM4 to PM3 and switches PM4

off, which reduces the running PMs and hence saves energy consumption. The ag-
gressive consolidation of VMs may result in overload situations, which can degrade
the quality of the service provided. As a result, the dynamic VM placement controller
starts migrating one or more VMs from an overutilized PM until it becomes no longer
overutilized. If none of the running (active) PMs is able to host the migrating VM, then
the dynamic VM placement controller switches one of the inactive (powered off) PMs
on so that it can host the VM as shown in Figure 2.5.
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Figure 2.4: Migrating VMs from PM4 (underutilized), and switching PM4 off

Figure 2.5: Migrating VM9 from PM3 (overutilized), and switching PM4 on

There is a relatively large body of VM placement literature that is concerned with
the dynamic reallocation of the VMs following the initial placement of the VMs to
adapt to workload changes in the CDC. Examples of these dynamic VM placement
solutions include [LLW11, CBHM12, BB12, CD13, XSC13, WYS13, BS14, CMR15,
MP16, FAP+15, ZHL16, MR16, KDA+17, WT18, LSWJ18]. The act of changing
the system state of the current VMs-to-PMs mapping in the dynamic VM placement
solution requires a triggering mechanism. There are various triggering mechanisms
for VM reallocation in dynamic VM placement solutions, including periodic, event-
driven, hybrid, or threshold-based [PS16]. The following sections review and analyse
the current VM placement solutions based on the adopted strategies (Section 2.4),
policies (Section 2.5), and objectives (Section 2.6).
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2.4 VM Placement Strategies

Following the identification of the type of VM placement problem being solved (initial
or dynamic or both) and the choice between the online and offline versions, the next
fundamental question for the dynamic VM placement solution is: On what basis is it
going to reallocate the VMs? The current literature on dynamic VM placement solu-
tions dynamically reallocates VMs based on either the reserved VM size as specified by
the user (reservation-based) or the actual workload demand (demand-based). In this
thesis, we refer to the basis on which the VMs are reallocated as the VM placement

strategy. The adopted VM placement strategy determines the amount of resources that
need to be allocated to each VM. Thus, the reservation-based VM placement strategy
allocates resources that are equal to the entire VM size, even if the VM is completely
idle. However, the demand-based VM placement strategy allocates resources corre-
sponding to the actual demand of each VM, bounded by the VM size. The reservation-
based VM placement strategy ensures better availability and durability; however, it
might lead to underutilization of PMs if customers do not fully utilize their VMs dur-
ing the reservation period. The demand-based VM placement strategy resizes the allo-
cated resources for each VM based on the actual workload demand. As opposed to the
reservation-based VM placement strategy, the demand-based VM placement strategy
can guarantee more efficient utilization of the PMs but may incur additional SLAVs.
Recall that, the efficient utilization of the PMs helps using less number of PMs through
consolidating VMs into fewer PMs. The remainder of this section reviews reservation-
and demand-based placement strategies on the current VM placement literature.

2.4.1 Reservation-based VM Placement Strategy

The reservation-based VM placement strategy can be applied to both the initial and
dynamic versions of the VM placement problems. All the existing initial VM place-
ment solutions in the literature employ the reservation-based placement to allocate re-
sources to the VMs. However, there is a limited number of research articles that adopt
reservation-based VM placement for the dynamic reallocation of the VMs. Compared
to the initial VM placement, a dynamic reservation-based VM placement strategy is
aware of some of the changes in the cloud environment (such as the deallocation of
the VMs) and can migrate VMs accordingly. As a result, a dynamic reservation-based
VM placement tends to improve resource utilization when compared to the initial VM
placement.
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Lin et al. [LLW11] have proposed two algorithms to dynamically consolidate VMs
in CDCs using a reservation-based VM placement strategy. Both algorithms employ
the notion of retiring PMs and the retirement threshold. Their proposed algorithm sets
a PM in retiring state when one of the hosted VMs is deallocated (after finishing its
job or by the end of the booking time). When the algorithm marks a PM as retiring, it
rejects any new VM placement requests to that same PM so that it can switch the PM
off to save energy after deallocating the other hosted VMs. To speed up the consolida-
tion process, they introduced the retirement threshold, which specifies the waiting time
before the algorithm forces the migration of the remaining VMs in a retiring PM. The
first algorithm is a modification of the original round-robin, which they have called
dynamic round-robin (DRR); the second is a hybrid one that employs either the first fit
(FF) algorithm or the DRR based on the incoming rate of VMs. The hybrid algorithm
uses FF when the incoming rate of VMs is high; otherwise, it uses DRR. They con-
clude that the hybrid algorithm offers the best results in terms of the best savings rate
for both energy consumption and the number of running PMs.

Based on the fact that cloud customers do not book VMs for the same time and
therefore, some VMs will end before others (VMs are deallocated), Borgetto et al. [BS14]
have proposed a dynamic reservation-based VM placement solution. Their proposed
algorithm dynamically reallocates VMs intending to save energy consumption while
maintaining the resources reserved by the users. They used a modified vector packing
algorithm to redistribute VMs in order to efficiently make use of underutilized PMs
after deallocating some of the hosted VMs. Their proposal takes the overheads result-
ing from switching the PMs on and off into consideration. Their proposed scheduler
shows energy savings compared to the default OpenNebula’s scheduler. Finally, they
have conducted small-scale experiments using only six PMs. Thus large-scale exper-
iments need to be conducted to verify the scalability of their solutions in large-scale
cloud scenarios.

2.4.2 Demand-based VM Placement Strategy

Much of the current literature on dynamic VM placement solutions pays particular
attention to the demand-based VM placement strategy (significantly more than the
reservation-based VM placement) since it is expected to ensure better energy sav-
ings. A dynamic demand-based VM placement controller dynamically reconfigures
the VMs-to-PMs mapping in order to optimize the cloud providers’ objectives (e.g. en-
ergy, revenue, or SLAs). The workload demand identification method and the action
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taken due to the change in the workload makes the VM placement solution dynamic
rather than static. The dynamic demand-based reallocation of the VMs requires run-
time monitoring of the PMs’ resource utilization as well as the hosted VMs. By mon-
itoring the resource utilization, the dynamic VM placement controller can react to
overutilization and underutilization situations by migrating VMs using live migration.
Furthermore, a dynamic VM placement controller can predict resource usage by adopt-
ing the relevant time series prediction models, which enables it to put the expected
changes in the CDC into consideration beforehand. There is a considerable amount of
previous studies that focused on creating dynamic VM placement solutions that adopt
the demand-based VM placement strategy. The remaining paragraphs of this section
describe some of these studies.

To adapt to the ongoing allocation and deallocation of VMs, the work of Calcavec-
chia et al. [CBHM12] consider the continuous optimization of the VMs (after the ini-
tial VM placement) to ensure better satisfaction of the VM’s demand. They propose
a technique called Backward Speculative Placement (BSP), which assumes previous
knowledge of historical workload traces of VMs in the data centre. The BSP technique
divides the VM placement into two phases. The first phase is called continuous de-
ployment (an example of an online VM placement controller), which only deals with
the newly received VM requests, and it assigns VMs-to-PMs using a BFD algorithm.
The BFD algorithm places VMs according to a score function, which measures the
level of demand dissatisfaction. The second phase is called ongoing optimization (an
example of a dynamic VM placement controller), which aims to optimize the current
VMs-to-PMs mapping by migrating VMs from the most loaded PMs to others that are
likely to ensure a better demand satisfaction.

Aiming to reduce energy consumption (by minimizing underutilization per PMs)
while satisfying SLA requirements (by reducing overutilization situations), Beloglazov et

al. [BB12] developed a dynamic VM placement solution. After the initial allocation of
the VMs to PMs using a modified version of BFD (power-aware BFD), they follow a
heuristic-based approach to automatically consolidate the VMs onto the least possible
number of PMs while reducing the SLAVs. Their proposed approach follows a divide
and conquer concept by dividing the dynamic VM placement problem into four sub-
problems, namely host overload detection, host underload detection, VM selection, and
VM placement. The subproblem of host overload detection involves deciding when a
host is considered as overloaded. Once the host is deemed to be overloaded, some
VMs should be selected for migration from this overloaded host to a non-overloaded



50CHAPTER 2. VM PLACEMENT PROBLEMS, STRATEGIES, POLICIES AND OBJECTIVES

one until that host becomes no more overutilized. They proposed three techniques for
solving the host overload detection problem using static or adaptive thresholds. The
subproblem of host underload detection aims to detect underloaded hosts. After the
discovery of an underloaded host, all VMs in that host should be migrated to another
host if possible and switching that host into a power-saving mode. The VM selection
subproblem tries to select VMs for migration from the overloaded hosts to decrease the
SLA violations (SLAVs). For the VM selection subproblem, they proposed three al-
gorithms, namely minimum migration time (MMT), random selection (RS), and max-
imum correlation (MC). Eventually, the VM placement subproblem aims to determine
the appropriate PMs that should host the VMs migrated from both overloaded and un-
derloaded PMs. Their proposed solution periodically reallocates VMs either to achieve
energy savings by turning some PMs off or to minimize the resulting SLAVs by mi-
grating the VMs to non-overloaded PMs or even by switching some PMs on to host
the migrating VMs.

Several VM placement proposals aimed to achieve further energy savings while
reducing SLAVs by introducing new algorithms for the subproblems of Beloglazov’s et

al. [BB12] proposal. The following list summarizes some examples of these solutions
as follows:

• Cao et al. [CD13] propose a modified heuristic-based VM consolidation frame-
work. Their proposal is based on the idea that there is no certainty that an over-
loaded host will eventually lead to SLAVs. An overloaded host may or may not
violate the SLA requirements. Therefore, migrating VMs from overloaded hosts
that are not expected to generate SLAVs is not beneficial and will result in more
energy consumption. Accordingly, their work seeks to enhance the VMs’ se-
lection from overloaded hosts to include only hosts that are expected to violate
the SLA requirements. To do so, they initially identify overloaded hosts with
one overload detection algorithm such as interquartile range (IQR) or local re-
gression robust (LRR) or median absolute deviation (MAD) [BB12]. Then, they
classify any overloaded host as either likely or not likely to incur SLAVs. The
VM selection algorithm selects VMs from overloaded hosts with SLA violation
to migrate them to other suitable hosts; and then selects VMs from overloaded
hosts without SLAVs using the proposed SLAV decision.

• Chowdhury et al. [CMR15] have introduced a new set of VM placement so-
lutions based on both the first-fit decreasing (FFD) and worst-fit decreasing
(WFD) algorithms. They have presented a modified WFD (MWFD), second
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WFD (SWDF), and an FFD with a decreasing host. For finding a proper map-
ping for the VMs selected for migration, they cluster those VMs and start by
allocating VMs from high-density clusters first. By so doing, they managed to
consolidate the VMs with less energy consumption and SLA violations com-
pared to the existing heuristics.

• Monil et al. [MR16] propose a new algorithm for host overload detection and
another one for VM selection. Their algorithm for host overload detection aims
to foretell whether the host is going to be overloaded or not by making use of
the mean, median, and standard deviation of the last n resource demands of the
VMs running on that host. For the proposed VM selection algorithm, a VM
is going to be selected for migration if the VM’s CPU utilization is lower than
the migration control threshold; otherwise, the VM with the highest fuzzy value
will be chosen first. They conclude that the results from the proposed algorithms
outperform the existing heuristics.

• Khoshkholghi et al. [KDA+17] have proposed algorithms for host overload and
underload detection as well as for VM selection and placement. The host under-
load detection algorithm uses a vector magnitude squared of multiple resources.
With the new algorithms, they managed to reduce both energy consumption and
the resulting SLAVs. Moreover, they have proposed an algorithm that uses an
iterative weighted linear regression approach to decide whether a host is over-
loaded or not. They have also introduced three algorithms for selecting VMs
from the overloaded hosts. Finally, they have added a two-phase VM placement
approach that can effectively map both new VM placement requests as well as
the migrating VMs.

• Wang et al. [WT18] adopted a modified version of the BFD algorithm to allocate
the VMs to the suitable PMs without violating the placement constraints. They
named the proposed VM placement solution as space aware best fit decreasing
(SABFD). By space-aware, they mean the available CPU resources in a PM after
allocating a VM to it. In addition, they have proposed a new approach for VM
selection from overutilized PMs. Their approach selects the VM with the highest
CPU utilization for migration from the overutilized PMs.

The majority of dynamic VM placement solutions in the literature consider only
a single resource (CPU) and ignore other resources such as memory and bandwidth.
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However, other dynamic VM placement solutions jointly consider multiple resource
types as follows:

• Xiao et al. [XSC13] try to dynamically reallocate the VMs in the CDC based on
the workload demand. From this reallocation, they aim to minimize the overload
situations per the PMs as well as reducing energy consumption. To improve the
utilization of the PMs across all resource types (CPU, memory, and bandwidth),
they have introduced the skewness concept so that they can appropriately con-
solidate the VMs efficiently. Furthermore, they have deployed load prediction
mechanisms to reduce the number of overload situation whose effectiveness has
been confirmed is supported by the conducted experiments.

• To jointly allocate compute and network resources dynamically to VDCs, Wuhib et

al. [WYS13] have proposed a dynamic VM placement controller that can switch
between different management objectives. They have developed a distributed
architecture that dynamically estimates VM allocations based on a modified ver-
sion of a highly-scalable, generic gossip protocol called the generic resource
management protocol (GRMP). The GRMP algorithm tries to find a better al-
location based on the specified management objectives. The GRMP algorithm
enables PMs to share their states (e.g. the set of hosted VMs) using a push-pull
interaction. Each PM can compute a new VMs-to-PMs mapping and apply it
with the help of live migration.

• Using a genetic algorithm, Mosa et al. [MS19] propose a VM placement solu-
tion that dynamically reallocates VMs based on the actual demand of the indi-
vidual VMs. The proposed solution considers different resource types (namely,
CPU and memory) while aiming to minimize underutilization and overutiliza-
tion scenarios in the cloud data centre. The conducted experiments highlight the
importance of considering multiple resource types. Finally, they conclude that
the genetic algorithm outperforms the well-known best-fit decreasing algorithm
for dynamic VM placement.

Reactive, Proactive and Hybrid Demand-based VM Placement

Commonly, an autonomic demand-based VM placement solution can adapt to changes
in the CDC using reactive, proactive or hybrid approaches [HKR+14]. A dynamic
VM placement solution that follows a reactive approach responds to the current state
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of the system by migrating VMs to meet the cloud provider’s objectives. The reactive
controller monitors the status of the CDC and makes changes to VMs-to-PMs map-
pings only based on the current state, and it is agnostic of any future forecasts. On
the contrary, a proactive approach employs prediction methods to forecast the antici-
pated workload and acts accordingly. Predictive methods use historical workload data
to predict the expected resource demand with the help of workload prediction mod-
els. Proactive VM management works well when the VMs’ workload is periodic or
seasonal. Therefore, many VM placement solutions assume that VMs present specific
repeatable patterns that can be easily predicted (e.g.patterns repeated at a particular
time of the day, month, or year). However, proactive approaches do not work well
when the workload is unpredictable. Finally, hybrid approaches combine reactive and
proactive (predictive) approaches to make more efficient VM migration decisions.

A number of dynamic VM placement solutions have adopted various machine
learning techniques and statistical prediction methods to achieve better PM utiliza-
tion ratios as well as reduce SLAVs from the unnecessary frequent migrations and the
overutilization scenarios. The list below describes some of the VM placement solu-
tions that adopt prediction methods.

• Zhou et al. [ZHL16] proposed an adaptive three-threshold energy-aware algo-
rithm (ATEA) algorithm that makes use of the historical utilization data. They
have set three thresholds to determine four classes of hosts based on the actual
load (little, light, moderate and heavy). They have proposed adaptive algorithms
to decide the threshold values based on the k-Means clustering algorithm. Ad-
ditionally, they have introduced three approaches for selecting VMs from over-
loaded PMs based on the memory size and the CPU utilization of the VMs. They
conclude that the proposed dynamic thresholds are more efficient than the fixed
counterparts.

• Farahnakian et al. [FPLP13] have proposed a dynamic VM placement solution
that consolidates CDC’s VMs on the least number of PMs with the help of a
k-nearest neighbor (KNN) supervised learning algorithm. They managed to pre-
dict resource utilization, which is used to proactively figure out both underuti-
lization as well as the overutilization situations per each PM. Compared to other
reactive approaches, their proactive approach of forecasting underutilized and
overutilized PMs enabled them to reduce energy consumption and SLAVs.

• Nguyen et al. [NFYJ18] have proposed a new VM placement solution that aims
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to improve energy efficiency using multiple usage prediction. They used multi-
ple linear regression to predict the future utilization of multiple resource types.
To improve energy efficiency, they sought to reduce both the frequent changes
in the power state of each PM and the unnecessary numerous VM migrations.
They conclude that the prediction of resource usage enabled them to achieve
better energy saving rates with satisfying compliance with the quality of service
requirements.

There are relatively few proposals that considered hybrid approaches to allocate
resources in data centres efficiently. For example, Gandhi et al. [GCG+12] propose a
hybrid method for resource allocation that deploys reactive and predictive controllers
aiming to reduce SLAVs and energy consumption. Their proposal consists of four con-
trollers, namely base workload forecaster, predictive controller, reactive controller, and
the coordinator. Their solution makes use of the periodic patterns in workloads, and
hence the base workload forecaster analyses historical data to find patterns that rep-
resent the base workload. The base workload forecaster discretizes the patterns using
fast Fourier transform (FFT). The predictive controller takes the foretasted patterns as
input, estimates the required resources, and allocates the resources accordingly. The
coordinator takes the actual workload as input and forwards it to the predictive con-
troller if it does not exceed the base workload. Additionally, the coordinator transmits
the actual workload to the reactive controller if the actual workload exceeds the base
one. The reactive controller handles the excess demand by adding more servers.

To reduce overload situations of the PMs in CDCs, Xiao et al. [XSC13] have used
a proactive approach to predict the workload, which results in preventing over 46% of
overloaded PMs on their experiments. Bobroff et al. [BKB07] deployed a proactive,
dynamic VM placement solution that adapts to the changes in the workload demands
to minimize the number of running PMs while meeting the specified SLAVs’ rate. The
solution uses three main modules, namely measurement, forecasting and placement.
The measurement module monitors resource utilization; the forecasting module pre-
dicts the demand for the next interval, and the placement module allocates VMs to
PMs and migrates VMs accordingly. The placement module finds an approximate so-
lution using the well-known first-fit algorithm. However, their proposed solution only
considers the CPU and will only work well with offline scenarios.

Regardless of the apparent advantages of deploying proactive solutions for VM
placement in CDCs, not all VMs can benefit from them. For ensuring better opti-
mization with low prediction error, the workload should express high variability as
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well as strong autocorrelation [BKB07]. Therefore, the proactive VM placement is
only beneficial when the VMs’ workload exhibits significant variability. VMs with
low variability in the workload will barely benefit from dynamic VM reallocation. It
is worth mentioning that many proactive VM placement solutions assume predictable
workload patterns, which may not always be applicable.

2.5 Virtual Machine Placement Policies

The dynamic placement of VMs in CDCs involves developing an autonomic (self-

managing) system where the VM placement solution adapts to various changes by
reallocating the VMs accordingly. In 2001, IBM launched the concept of autonomic

computing to refer to self-managing systems that automatically adapt to the changing
requirements of the system and manage upcoming issues with minimum human inter-
vention [SB03]. An autonomic system manages its behavior according to the system’s
objectives by deploying the appropriate policy. A policy causes the self-managing
system to take actions that change its current state to a better one. There are three
common policy mechanisms for controlling any self-managing system namely action

(rule-based), goal and utility function policies [KD07]. Regardless of the adopted pol-
icy type, the self-managing system decides the actions it should take to move from its
current state to a better new state, as shown in Figure 2.6.

2.5.1 Action-based (Rule-based) VM Placement Policy

The action (a.k.a rule-based) policies take the form of If (condition) then (action). An
example of a condition might be the overutilization or the underutilization thresholds
of a PM expressed as a percentage of CPU or memory use. An example of an action

is the migration of some VMs to mitigate the overutilization and underutilization situ-
ations. The action policies only care about what action the system should do whenever
it is in any given state. The action policies do not specify the state that the system will
reach after taking action. As an illustration, suppose that there is a system that has an
autonomic manager which aims to avoid overutilization and underutilization situations
of the PMs. If that system adopts an action policy, then it will try to migrate some
VMs from the overutilized PMs, or it will try to migrate all VMs from underutilized
PMs and switch them to a power-saving mode. Therefore, the possible states might
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Figure 2.6: States and actions of an autonomic system [KD07]

be {overloaded PMs, underloaded PMs}, and the action is {migrating some VMs, mi-
grating all VMs}. Each state is a result of the current VMs-to-PMs mapping. The fol-
lowing pseudo-code demonstrates an example of a possible action-based (rule-based)
manager.

1: if (cpuUtilization >= 90%) then . Overutilized PM
2: migrateSomeV Ms()

3: else if cpuUtilization <= 40% then . Underutilized PM
4: migrateAllV Ms()

5: else
6: do nothing

A high proportion of the existing VM placement solutions in the literature adopt
action-based policies [LLW11, CBHM12, BB12, CD13, XSC13, WLFJ13, BS14, CMR15,
ZHL16, MR16, DHC16, KDA+17, WT18].
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2.5.2 Goal-based VM Placement Policy

On the contrary, goal policies specify the desired state of the system. The goal policy
cares about computing the action that moves the system from the current state to the
desired state. Put simply, goal policies classify the system states as either desirable
or undesirable and take the necessary action to move the undesirable state to a desir-
able one. The following pseudo-code shows an illustration of an autonomic manager
developed using goal policies:

40% <= cpuUtilization <= 90%

The downside of goal policies is that they do not enable a fine-grained expression of
the preferences as they only perform a kind of binary classification against the current
state of the system. Therefore, a goal policy accepts the current state as long as it
is within the range of the desired states, even if there is a better state that should be
considered instead. To the best of our knowledge, no VM placement solution in the
literature relies on goal policies for the dynamic placement of the VMs.

2.5.3 Utility-based VM Placement Policy

Utility function policies compute the desired state by repeatedly choosing the state
with the highest utility from the possible ones. Utility functions seek to find the state
that maximizes the utility, and they are considered as an extension of goal policies
without having to specify the desired state in advance. Utility functions entail selecting
the appropriate utility attributes followed by modeling the utility function and finally
using a proper search algorithm for optimizing the system. The following pseudo-code
shows an example of an autonomic manager developed using a utility function [MP16]:

Utility(a, t) = Income(a, t)−EnergyCost(a, t)

Income(a, t) = ∑
V M∈a

IncomePerV M(V M,cost)−ViolationCost(a, t)

The above utility function aims to maximize the cloud provider’s profit from host-
ing the VMs by minimizing the energy and SLA violation costs. Here, the utility
function is defined by the high-level objectives of the cloud provider. Utility function
policies are more relevant for creating self-managing systems as they focus on the de-
sired state rather than the current state [KD07]. Utility-based policies offer a holistic
view of the decision making process. In addition to that, utility functions are favored



58CHAPTER 2. VM PLACEMENT PROBLEMS, STRATEGIES, POLICIES AND OBJECTIVES

over goal policies as they enable more fine-grained behavior by providing more flex-
ibility in expressing the system’s attributes. Examples of dynamic utility-based VM
placement solutions include [FMCB14, FAP+15, MP16, YRJ].

Utility-based dynamic VM placement solutions adopt various search algorithms
that enable them to find the state with the highest utility. For example, Mosa et

al. [MP16] have deployed a meta-heuristic search algorithm using GA that explores
several VMs-to-PMs mappings to find the one that maximizes the utility. To achieve
that goal, they have formulated a utility function that maximizes the profit by increas-
ing the income and decreasing the associated costs. The two primary sources of costs
(that they aimed to decrease) were energy costs as well as the SLAVs’ penalties. Their
proposed solution outperforms existing heuristics by minimizing the amount of energy
consumed as well as SLAVs from both overloaded PMs and VMs’ migrations. Farah-
nakian et al. [FAP+15] is another example of a utility-based solution that deploys ant
colony system (ACS) meta-heuristic to search for a near-optimal VMs-to-PMs map-
ping that achieves the consolidation goals. They propose a dynamic VM placement
approach that aims to consolidate VMs in a way that reduces the energy consump-
tion and satisfies the SLA requirements. They have formulated the VM consolidation
problem as a multi-objective optimization problem that considers both the number of
inactive PMs as well as the number of VMs’ migrations. They conclude that the pro-
posed dynamic VM placement solution using ACS outperforms existing heuristics in
terms of energy savings, minimizing the SLAVs as well as minimizing the total number
of VM migrations. Simulated annealing (SA) was proven to find efficient solutions for
such NP-complete problems [Kir84]. Therefore, Appendix A demonstrates an empiri-
cal evaluation of a genetic algorithm (GA) versus simulated annealing (SA) algorithm
for the dynamic reallocation of VMs based on the actual workload demand. The results
of the empirical evaluation confirm that GA outperforms SA by saving more energy
while reducing SLAVs. Additionally, it is found that GA can produce a more desirable
solution than SA when limiting the execution time of the experiment.

By reviewing existing utility-based solutions for dynamic VM placement, it is ev-
ident that utility functions outperform action policies for creating self-managing sys-
tems. Such conclusion conforms with the conclusions previously made by Kephart et

al. [KD07]. However, one of the major difficulties with utility-based policies is the
choice of appropriate parameters for the adopted metaheuristic. The majority of meta-
heuristics require parameter tuning to produce robust results. Another concern about
the utility-based solution is the computational complexity and the total execution time.
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2.6 Virtual Machine Placement Objectives

Regardless of the nature of the VM placement problem and the deployed strategy and
policy, any VM placement solution seeks to achieve distinctive and sometimes con-
tradictory high-level optimization objectives. Common VM placement objectives in-
clude increasing profit or revenue, saving energy consumption, minimizing the number

of powered-on PMs, improving PMs’ utilization, balancing the load among the active

PMs, minimizing network communication overheads, satisfying the SLA requirements,
reducing the resulting temperature or ensuring security requirements. Furthermore,
some VM placement solutions might consider other customer requirements such as
anti-co-location where VMs belonging to the same customer should be placed on dif-
ferent PMs to avoid a single point of failure. By analysing the objectives proposed
in previous work, one can find that some of them are related and reflect the same ob-
jective, and they share the underlying goals. For example, energy efficiency, efficient
utilization of the PMs, and minimizing the number of running PMs almost reflect the
same goal. Moreover, profit and revenue are in the same category; minimizing SLAVs,
ensuring QoS requirements, and minimizing overload situations can also be considered
as one class of objectives. In what follows, we classify existing VM placement solu-
tions based on the high-level placement objectives for both initial and dynamic VM
placement problems, as shown in Figure 2.7.

2.6.1 Energy and Utilization-aware VM Placement

Energy efficiency is one of the most widely considered VM placement objectives due
to its economic and environmental impact on data centres. Energy consumption rep-
resents nearly 50% of the total operational costs of the data centres [FHG+08]. Addi-
tionally, the power usage efficiency is a highly-ranked metric by the majority of data
centre operators [Sta15]. Consequently, most of the research carried out on both initial
and dynamic VM placement aim to decrease energy consumption in CDCs. Generally,
power management techniques are either static or dynamic, and each of them can be
achieved at the hardware or software level [BBLZ11]. The most common power-saving
techniques in VM placement include dynamic voltage and frequency scaling (DVFS),
soft scaling, efficient utilization of the PMs through VM consolidation, and switching
unused PMs into one of the power saving modes. DVFS can save energy consumption
by lowering the CPU frequency. More et al. [MMP+14] propose an energy manager
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Figure 2.7: High-level classification of VM placement objectives

that applies multiple energy-saving techniques such as soft scaling, DVFS, VM con-
solidation, and switching idle PMs off. VM consolidation techniques ensure energy
efficiency by improving the utilization of the PMs that eventually minimizes the num-
ber of active PMs. Jing et al. [XF11] propose a centralized energy-efficient cross-layer
dynamic VM placement system that simultaneously saves energy, reduces performance
degradation, and prevents thermal hotspots. Many initial VM placement solutions
aim to reduce energy consumption and resource wastage [LL+12, FMCB14, CFF14].
Moreover, Dynamic demand-based VM placement makes use of VM consolidation to
minimize the number of running PMs and hence reduces energy consumption [BAB12,
MR16, FAP+15, MP16, DHC16, MM17]. Furthermore, dynamic reservation-based
VM placement solutions also consider energy efficiency [LLW11, BS14]. Lucanin et

al. [LB13] designed a grid-conscious cloud model that is aware of the changes in elec-
tricity prices during the day. They analyse real-time electricity prices and optimize
energy usage based on the prices. They proposed normal VM instances that should be
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available all the time as well as green instances, which can be paused when the elec-
tricity prices are high. Finally, they proposed a peak pauser algorithm, which pauses
the green instances during the hours of peak electricity prices.

2.6.2 SLA and QoS-aware VM Placement

Cloud providers pay particular attention to the SLA to keep the customer satisfied
so as not to pay additional penalties due to SLAVs or to lose unsatisfied customers.
As an illustration, Amazon loses 1% in sales due to every additional 100ms of la-
tency [GCG+12]. A large proportion of the work in the VM placement literature
considers meeting the QoS requirements by minimizing all sources of SLAVs such
as overload situations and the aggressive migration of the VMs. The SLA require-
ments are different among the various cloud service models, which means that there
are different methods for defining the SLA for each service model. For example, in the
SaaS, the cloud provider might care about minimizing the makespan. Makespan is the
total time spent from receiving a task for execution until the end of the execution. On
the contrary, the way of calculating SLAVs in the IaaS is entirely different, as it neither
depends on the applications’ response time nor their execution time. The SLA in the
IaaS pays extra attention to the availability of the infrastructure. Xiao et al. [XSC13]
strive to avoid overload situations per the PMs. Examples of SLA-aware VM place-
ment proposals in the IaaS include [CD13, SW12, BAB12, WLFJ13, FAP+15, MP16,
ZHL16, MR16].

2.6.3 Profit or Revenue-aware VM Placement

A realistic estimation of any VM placement solution in CDCs can be translated into
monetary success or failure. Therefore, developing a VM placement solution that can
consider the high-level objectives of the cloud provider through profit or revenue is
truly useful. Utility functions are of great value in expressing such financial goals,
and the utility-based VM placement solution can choose the state that results in higher
profit or revenue. Maximizing the revenue or profit can be considered for the initial
as well as the dynamic VM placement. For example, Mosa et al. [MP16] have devel-
oped a profit-aware dynamic VM placement solution that tries to decrease the costs of
VM placement to maximize the cloud provider’s profit. An example of an initial VM
placement solution that is revenue-aware proposed by Shi et al. [SBBJ13], where they
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try to allocate sets of VMs with different security and anti-colocation constraints. Ad-
ditionally, Shi et al. [SH11] propose a VM placement solution that aims to maximize
the profit from the VM placement while maintaining the required SLA and constrained
by the power budget.

2.6.4 Load Balancing-aware VM Placement

A load-balance-aware VM placement solution can balance the load either inside each
PM (intra-PM load balancing) or among the PMs (inter-PM load balancing) [LZLY17].
Intra-PM load balancer balances the load among the different resources types (CPU,
Memory, . . . ) of the same PM. Inter-PM load balancer balances the load among all
PMs. Both intra-PM and inter-PM load balancers can be either initial (incremental) or
dynamic. Inter-PM load balancing is a critical objective for data centres’ operators to
avoid hot spots. Hot spots may result from the aggressive consolidation of VMs, which
lead to more overload situations. Hot spots violate the SLA, degrade the reliability and
availability of the hosted VMs and lessen the lifetime of the PMs [CFF14]. Intra-PM
load balancing minimizes resources wastage of each PM. Moreover, balancing the load
is essential to ensure the availability and scalability of the CDC [MSY12]. Many static
and dynamic VM placement solutions aimed to balance the load among the running
PMs [REP+13, WYS13, YYL17, LZLY17].

2.6.5 Network-aware VM Placement

VMs can affect the performance of each other due to contention for network band-
width. Wang et al. [WMZ11] proposed an online packing algorithm for VM consol-
idation considering bandwidth requirements. They formulated the VM consolidation
problem as a stochastic bin packing problem and modeled the VMs’ bandwidth as
probabilistic distributions. Furthermore, they have chosen to place VMs that are in-
tensively communicating with each other in the same or the nearest possible PM for
minimizing network overhead [JS14]. Li et al. [LLYL15] formulated the multi-tenant
VM allocation problem with the goal of reducing the network diameter of all the ten-
ants. They developed an LP-MKP algorithm, which is a layered progressive resource
allocation algorithm based on the multiple knapsack problem. Biran et al. [BCF+12]
propose a network-aware VM placement solution that places CPU, memory in addition
to network resources. They formulated a network-aware optimization problem named
min cut ratio-aware VM placement (MCRVMP). The MCRVM placement problem is
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defined in a data centre with tree-based network topology. The proposed two heuris-
tics for solving the MCRVMP problem, namely 2-phase connected component-based
recursive split (2PCCRS) and greedy heuristic (GH). Their solution works well with
medium-size CDCs. Ilkhechi et al. [IKU15] present a network-aware VM placement
solution for a specific scenario where VMs require to exchange intensive network traf-
fic with fixed nodes (called sinks). They aimed to maximize the satisfaction through
improving the VMs performance. They introduced an off-line greedy approach and a
heuristic-based solution, which assumes that each PM can only host a single VM. Tzir-
itas et al. [TLK+18] introduced a communication-aware (aiming to avoid unnecessary
network traffic during VM migration) and energy-aware VM placement solution using
the graph-coloring algorithm. They migrate VMs in batches as opposed to the current
solutions that consider single VM migrations. They managed to optimize network traf-
fic resulting from communication dependencies between VMs, which enabled them to
reduce network overheads and energy consumption.

2.6.6 Thermal-aware VM Placement

Data centres’ PMs, network devices, and other peripherals generate heat, which needs
dissipation for better reliability and lower operational costs. Thermal dissipation con-
tributes to the operational costs of the data centres [Kre00]. Thermal-aware VM place-
ment solutions balance the temperature resulting from the PMs. Thermal-aware place-
ment aims to mitigate hot spots and keep the temperature within a range that makes
the data centre reliable. Thermal-aware VM placement might contradict with energy-
aware VM placement [XF10a]. For example, minimizing the number of running PMs
can lead to creating hotspots resulted from heat imbalance. The trade-off among dif-
ferent placement objectives should be taken into account. Many proposals consider
thermal-aware placement during workload scheduling in contrast to the limited number
in case VM placement. Xu et al. [XF10a] developed a thermal-aware VM placement
solution that ensures thermal efficiency by making sure that the CPU’s temperature is
within the safe range.

2.6.7 Multiple Objectives-aware VM Placement

In realistic scenarios, an initial or dynamic VM placement solution considers not only
a single criterion, but multiple objectives which may be contradictory. Solving a
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VM placement problem with multiple objectives can be formulated either as a multi-
objective problem or as a single objective that considers all the required objectives in
the objective function. For example, Gao et al. [GGQ+13] have addressed multiple
objectives (resource wastage and power consumption) simultaneously by proposing a
multi-objective ant colony solution that tries to find the set of non-dominated solutions
that can minimize energy and resource wastage simultaneously. Xu et al. [XF10a]
solved the VM placement problem using multi-objective optimization aiming to save
power consumption and reduce resource waste and thermal costs. Minimizing en-
ergy consumption for running the VMs while reducing the resulting SLA violations
has been widely considered in the literature(e.g. [BB12, WLFJ13, CD13, FAP+15,
ZWL+18, LSWJ18]). Zheng et al. [ZLD+15] consolidate VMs while considering
three conflicting objectives, namely reducing power consumption, balancing the load
among the PMs, and minimizing the migration time.

2.7 Discussion

Table 2.1 summarizes some of the current VM placement solutions by classifying them
based on the type of the problem being solved, the adopted VM placement strategy,
policy, and placement objectives. Furthermore, the conducted analytical review re-
sulted in a novel classification that helped in outlining some observations on the cur-
rent state-of-the-art of VM placement research. These observations describe candidate
research areas that can advance the state-of-the-art and guide VM placement research
to focus on areas that may have a beneficial impact. Accordingly, the following subsec-
tions describe these observations by outlining some of the problems and opportunities
in the current VM placement research. These observations are described grouped into
three directions namely exploring new VM placement strategies, real-world perfor-

mance evaluation of existing solutions, and developing an evaluation and verification

framework. These observations directed the work done on this thesis.

2.7.1 Exploring New VM Placement Strategies

A significant and growing portion of the VM placement literature has investigated
reservation-based and demand-based VM placement strategies while solving the ini-
tial and dynamic VM placement problems. Such VM placement proposals tended to
focus only on the two extremes of the VM placement strategies (reservation-based and
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Table 2.1: VM placement solutions based on problem, strategy, policy and objectives
Research Problem Strategy Policy Objectives

Ma et al. [LL+12] S r U (ACO) E, SLAV & RW
Lin et al. [LLW11] D r A E
Calcavecchia et al. [CBHM12] S + D d A VMs’ DS
Beloglazov et al. [BB12] D d A E & SLA
Cao et al. [CD13] D d A E and SLA
Xiao et al. [XSC13] D d A OA & NPMs
Wang et al. [WLFJ13] D d A E & SLA
Rabbani et al. [REP+13] S r A LB & CC
Quang-Hung et al. [QHNN+13] S r U (GA) E
Shi et al. [SBBJ13] S r UA Revenue
Wuhib et al. [WYS13] D r A E, LB, FA & SD
Farahnakian et al. [FPLP13] D d A E & SLA
Ferdaus et al. [FMCB14] S r U (ACO) E & RW
Corradi et al. [CFF14] S r A E
Borgetto et al. [BS14] D r A E
Deng et al. [DHC16] D d A E & SLA
Ye et al. [YYL17] S r U (EEKnEA) E, LB, Ut & Ro
Zhao et al. [ZWL+18] S r U (ACO) E & P
Ilkhechi et al. [IKU15] S r A NS
Farahnakian et al. [FAP+15] D d U (ACS) E & SLA
Chowdhury et al. [CMR15] D d A E & S
Zhou et al. [ZHL16] D d A E & SLA
Monil et al. [MR16] D d A E & SLA
Khoshkholghi et al. [KDA+17] D d A E & S
Monil et al. [MM17] D d A E & SLA
Li et al. [LZLY17] D d U (BBO) LB
Mosa et al. [MP16] D d U (GA) Profit
Wang et al. [WT18] D d A E & S
Yousefipour et al. [YRJ] S r U (GA) E & cost
Liu et al. [LSWJ18] D d A E & SLA
Nguyen et al. [NFYJ18] D d A E & SLA
Mosa et al. [MS19] D d U (GA) UU and OU

• Static or initial (S), Dynamic (D), Reservation (r), Demand (d), Utility-based (U), Action-
based (A), Utility and Action (UA), Ant Colony optimization (ACO), Genetic Algorithm (GA),
Biogeography-Based optimization (BBO), Energy (E), Service Level Agreement (SLA), SLA
Violation (SLAV), Demand Satisfaction (DS), Load Balancing (LB), Utilization (Ut), Robust-
ness (Ro), Performance (P), Network Satisfaction (NS), Communication Costs (CC), Overload
Avoidance (OA), Number of PMs (NPMs), Fair Allocation (FA), Service Differentiation (SD),
Resource Wastage (RW), underutilization (UU), overutilization (OU).

• In the above table, any solution to the dynamic (D) VM placement problem means that it has
considered the initial (static) VM placement problem as well.
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demand-based strategies). A reservation-based VM placement can satisfy the SLA re-
quirements at the cost of underutilization of the PMs, which means more energy waste.
A demand-based VM placement strategy results in more efficient utilization, but leads
to more SLAVs (See the strategy column of Table 2.1). To the best of our knowledge,
so far, there have been no attempts made to study the middle way between allocating
the full reservation and allocating the actual demand. We think that exploring the area
between reservation-based placement and demand-based placement could offer vari-
ous alternative tradeoffs and contribute to better flexibility in the decision-making for
cloud providers or private cloud owners. Therefore, the focus of this thesis is to de-
velop a new VM placement solution that makes use of a novel VM placement strategy.
That novel VM placement strategy explores the area in-between full-reservation and
the actual demand-based allocation.

2.7.2 Real-world Performance Evaluation of Existing Solutions

A considerable amount of literature has proposed numerous solutions for both the ini-
tial and dynamic VM placement using different policies. The academic literature on
VM placement solutions has revealed repetitions and duplications, and many of them
are just a reinvention of the wheel. Therefore, conducting experiments that evaluate
the existing solutions using a real private cloud data centre or a collaborative research
cloud data centre (in collaboration with other institutions) can add significant value
to the VM placement research. By such in-vivo experiments, researchers can measure
the actual effectiveness of current solutions in practical scenarios and even discover re-
strictions of applying others. Furthermore, conducting these in-vivo experiments can
help researchers conduct a realistic cost-benefit analysis regarding the adoption of a
particular VM placement policy as opposed to others.

2.7.3 Developing an Evaluation and Verification Framework

If the access to real CDCs to implement VM placement solutions is not possible, then
it is vital to develop a component-based evaluation and verification framework that
can systematically verify existing solutions. Researchers usually develop and validate
their solutions in various simulations environments that are incomparable. A functional
area of research is to build an adequate evaluation and verification framework that uses
realistic workloads so that it can easily compare alternative VM placement proposals
with the same set of practical settings. Additionally, the framework can be offered



2.8. SUMMARY 67

through a web-based system linked to a simulated or a real CDC so that researchers
only upload their algorithms and run them. Through such a framework, researchers can
easily plug their new VM placement solutions, which are evaluated and tested against
practical use cases.

2.8 Summary

This chapter has introduced a novel classification of the existing VM placement re-
search in four areas, namely VM placement problems, strategies, policies, and objec-
tives. This novel classification and analysis can direct the future researcher to con-
centrate on areas of higher impact. This chapter started by reviewing the initial (both
online and offline versions) and dynamic VM placement problems. Online solutions
for the initial VM placement reflect the real scenarios on CDCs; however, dynamic
VM placement solutions are usually offline. The review confirms that using two levels
(cluster and PM) during the VM placement yields more robust results than only consid-
ering one level. Then, the chapter described the basis on which the VMs are reallocated
using either the reservation-based or the demand-based VM placement strategies and
reviewed the related articles. The demand-based VM placement solution can be reac-
tive, proactive, or hybrid. After that, the chapter has covered the three standard policies
adopted for creating self-managing VM placement solutions. It is observed that exist-
ing VM placement solutions in the literature are either action-based or utility-based.
The prohibitive SLAVs and underutilization costs are roadblocks to consolidation ra-
tios from demand-based and reservation-based VM placement strategies, respectively.
Regardless of the VM placement strategy or the policy used, any VM placement so-
lution can consider either a single- or multi-objective (e.g. energy, utilization, SLA,
profit, load balancing, temperature, or a combination of them). Finally, the chapter
shows the lessons learned, and some points out some possible future directions.

To conclude, we think that proposing new solutions for either the initial or dy-
namic VM placement, using either reservation or demand-based strategies, may not
have a high impact. The current VM placement research has already covered dozens
of the action-based and utility-based solutions with many repetitions of the deployed
algorithms. Therefore, we think that to conduct VM placement research with a high
impact, it needs either to be conducted in real cloud environments or through collabora-
tion with cloud providers. If this is not possible, then new cloud evaluation frameworks
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that reflect the real nature of the cloud environment are essential and can have a sig-
nificant impact by measuring the effectiveness of the existing solutions in a standard
practical way. Finally, another direction that worth further investigation is exploring
the area between reservation-based and demand-based VM placement strategies, which
we have decided to be the focus of this thesis.



Chapter 3

System Architecture and Simulation
Environment

3.1 Introduction

This chapter aims to illustrate the principal components of the system architecture of
the VM placement solution. This architecture represents the design foundation of the
proposed parameter-based VM placement solution. Then, it describes the essential
characteristics of the workload running on the VMs and any design assumptions. Due
to the limitations of conducting in-vivo (real) experiments, the chapter reviews the
most widely used cloud simulation toolkits. Then, it demonstrates in detail the one
that has been adopted for conducting the empirical evaluation (CloudSim). Eventually,
the chapter outlines and demonstrates the calculation of the performance metrics that
are used to measure the performance of the proposed algorithms.

3.2 Main Components of the System Architecture

Figure 3.1 exhibits an abstract view of the system architecture and the main compo-
nents of the proposed parameter-based VM placement solution for cloud data centres
(CDCs). The main components are the CDC, the customer requests (in the form of
VM placement requests) and the VM placement controller which consists of initial VM

placement controller, dynamic VM placement controller and parameter estimation.

69
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Figure 3.1: Main components of the parameter-based VM placement architecture

3.2.1 Cloud Data Centre

The CDC hosts many PMs, storage, network devices, and other infrastructure elements
that make it function accurately, such as power sources and cooling systems. The CDC
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hosts three types of PMs namely, compute, monitoring, and management. A compute
PM is a PM that performs the computational works and hosts VMs; each hosted VM
is running on one of the compute PMs. Big cloud providers (or even private cloud
owners) usually manage large-scale CDCs that consist of hundreds of thousands of
compute PMs. For example, in May 2013, Netcraft1 reported that the number of PMs
in the US East (Northern Virginia) region of AWS EC2 is 93,537 with a growth rate
of 7.4% over the last four months. Both the initial and the dynamic VM placement
solution require runtime monitoring of the resource utilization of the CDC’s PMs’ as
well as the hosted VMs. Therefore, the cloud monitoring component runs a monitoring
software to collect monitoring information of CDC’s devices and send it to other com-
ponents that require it. Examples of the monitoring information collected by the CDC
monitoring component include the resource utilization of both the VMs and the PMs,
the current SLAVs, the health of PMs and VMs, and the energy consumption. The
monitoring information is collected at each scheduling interval. Prometheus2 is an ex-
ample of a powerful open-source cloud-native monitoring and alerting toolkit that can
generate ad-hoc graphs and alerts. Finally, a management PM is the one that provides
many management functions such as controlling the compute PMs, VMs, users’ au-
thentication, VM images, storage, and network. In this thesis, we are only concerned
with one management function, which is the autonomic placement of VMs to PMs.
All the PMs are connected through a hierarchical network architecture; however, we
ignore the network details as it is out of the scope of this work. In what follows, we
will use the term PM to refer to a compute PM (a.k.a host).

The target CDC is assumed to consist of N heterogeneous PMs; each PM has n

CPU cores, and each CPU core is defined by the total number of MIPS x (million
instructions per second), so the total processing capacity of a single PM is nx. To map
a VM to a PM, the capacity of the required virtual CPU core should be less than or
equal to the available capacity of one of the physical CPU cores. Additionally, all PMs
in the CDC support resource oversubscription, which means that the resource capacity
of all VMs hosted in a specific PM might exceed the capacity of that PM. Each PM
is also characterized by other resource types, such as the amount of memory and the
available network bandwidth. The CDC runs a virtual machine manager (VMM) that
manages the allocation of VMs and enables the live migration of the VMs among the
running PMs. The CDC stores the VMs’ images and the data on a storage area network

1https://news.netcraft.com/archives/2013/05/20/amazon-web-services-growth-unrelenting.html
2https://prometheus.io/
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(SAN). Moreover, it is assumed that the cloud provider can offer various VM instances
of different sizes based on the amount of resources allocated for each VM type. As an
illustration, examples of VMs’ instances might be extra-large, large, medium, small,
and extra small. This architecture assumes that the cloud provider or the private cloud
owner has no prior knowledge of the type and the resource usage of the applications
running on the customers’ VMs. Therefore, this research considers an IaaS service
model, which is application-agnostic.

3.2.2 VM Placement Requests

The IaaS cloud customers submit requests to lease VMs of a predefined size for a
particular time. Each VM placement request might consist of either a single VM or
multiple VMs to be hosted by the cloud provider’s infrastructure (this also applies to
private cloud scenario). The VM placement request specifies the required size of the
VM(s) based on the available VMs’ instances. VM placement requests are made online
and continuously received by the cloud providers. Each VM placement request is
initially being assessed by the initial VM placement controller, which decides whether
to accept or reject the VM(s) placement request based on resource availability or any
other further constraints.

3.2.3 VM Placement Controller

The VM placement controller automatically manages the initial placement and the re-
allocation of VMs in the CDC. A typical VM placement controller should reflect the
non-deterministic behaviour of the system. As an illustration, the VM placement re-
quests should be represented as stochastic processes, so that these requests arrive with
some probability. This probability can be obtained from solving a stochastic optimiza-
tion problem. However, constructing a stochastic model for the components of the VM
placement controller is not a straightforward task. For example, the utilization of VMs
in CDCs is complex and cannot be easily modelled using simplistic statistical distri-
butions. Moreover, simulating the non-deterministic behaviour may not guarantee that
the solution will be optimal for a particular case [Bel13]. Therefore, the behaviour
of the proposed parameter-based VM placement solution is deterministic due to the
complexity and other issues associated with reflecting the non-deterministic behaviour
of cloud environments. As illustrated in Figure 3.1, the VM placement controller con-
sists of three components, namely the initial VM placement controller, dynamic VM
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controller, and parameter estimation. The details of these components are explained in
the following subsections.

Initial VM Placement Controller

The initial VM placement controller receives monitoring information (from the CDC
monitoring component) about the PMs and the VMs in the CDC, as shown in Fig-
ure 3.2. If the initial VM placement controller accepts a VM placement request, then
it starts mapping the VM(s) to the proper PM(s) based on the adopted initial VM
placement solution. In practical scenarios, the initial VM placement controller solves
an online optimization problem as the cloud provider continuously receives new VM
placement requests over time. The adopted virtualization technology, through the vir-
tual machine manager (VMM), allocates the VMs’ resources on the specified PM(s)
according to the mapping decision of the initial VM placement controller.

Figure 3.2: Initial VM placement controller

Dynamic VM Placement Controller

The dynamic VM placement controller reallocates the VMs to improve the current
state of the system based on the specified VM placement objectives and constraints.
Figure 3.3 indicates that the dynamic VM placement controller uses the current VMs-
to-PMs mapping in addition to other monitoring information to create a new VMs-to-
PMs mapping that may result in a better state of the system. A key question is: How
often does the VM placement controller reallocate the VMs? The answer to this ques-
tion depends on the adopted triggering mechanism. The triggering mechanisms may
be periodic, event-driven, hybrid, or threshold-based [PS16]. In the proposed architec-
ture, the dynamic VM placement controller runs periodically at predefined scheduling
intervals (every five minutes of the simulated time).
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Figure 3.3: Dynamic VM placement controller

During each scheduling interval (and by making use of the monitoring informa-
tion), the dynamic VM placement reallocates the VMs from the set of source PMs to
the set of the target PMs. A source PM is the one that is the source of migration (re-
quires migrating some or all of the VMs that it hosts). As an illustration, a PM might
migrate some of the VMs when it is overutilized, or it might migrate all the hosted
VMs when it is underutilized (this is an example of a source PM). On the contrary, a
target PM is the one that can accept migrating VMs or can host new VM placement
requests. A target PM is a candidate for hosting VMs migrated from source PMs.
Target PMs should have sufficient resources and should not be overutilized after host-
ing the migrated VMs. Solutions of the dynamic VM placement controller make use
of offline algorithms as it originally has all the current VMs in the CDC in advance
and should redistribute them according to the adopted VM placement strategy, policy,
and objectives. Figure 3.3 shows the input to the dynamic VM placement controller,
where the current VMs-to-PMs mapping is one of the inputs besides other monitoring
information.

Parameter Estimation

The parameter estimation component is the final component of the proposed parameter-
based VM placement system architecture (shown in Figure 3.1). Parameter estimation
is a new component of the VM placement architecture which works only for the pro-
posed parameter-based VM placement solution. Both the initial and dynamic VM
placement controllers can make use of the parameter. The parameter can be either static
(set by the cloud operator) or dynamic (estimated automatically using various param-
eter estimation algorithms). Chapter 4 introduces the parameter-based VM placement
solution using a predefined static parameter. Furthermore, Chapters (5, 6) propose dif-
ferent algorithms for the dynamic estimation of the parameter based on the monitoring
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information received from the CDC monitoring component. The algorithm design and
the implementation details of the initial and dynamic VM placement controllers as well
as various parameter estimation algorithms are presented on Chapters (4, 5, 6).

3.3 Simulation of Cloud Data Centre

Recall that the thesis is about the development and evaluation of a new VM placement
solution that adopts a novel parameter-based VM placement strategy. The develop-
ment and evaluation of this new VM placement solutions is accomplished using either
real-world or simulated experiments. Real-world experiments (a.k.a. in-vivo) are con-
ducted using the infrastructure of a real CDC. By and large, the real-world experiments
are usually expensive, time-consuming, and maybe tedious to perform [BVWS14].
Conducting experiments in cloud infrastructure based on real CDC is usually not pos-
sible for academic researchers as the majority of researchers in academic institutions
do not have access to real cloud data centres. Even if researchers managed to access the
real CDCs to conduct their experiments, they would usually face two common prob-
lems, namely scalability and reproducibility. Scalability problem means that the size
of the experiment is limited to the current network design, compute PMs, storage, and
network devices of the accessed CDC. The reproducibility problem results from the
difficulty of reproducing the results by having to build the same real CDC that is not
simple to reproduce. Moreover, testing specific non-common scenarios in real CDC
may be difficult and require too much time; for example, testing specific workload
patterns or network conditions.

Modelling and simulation technologies can model and simulate real complex en-
vironments using either software-only or a combination of software and hardware in
case of emulation [ZPXD12]. Simulating cloud computing environments can make
the testing and evaluation process easier, cost-effective, and reproducible. Moreover,
it can simulate large-scale CDCs without much pain. This means that simulated en-
vironments can overcome the reproducibility and scalability problems of real-world
cloud experiments. Researchers have been using simulation tools extensively in com-
puter networks, grid, and distributed systems. Examples of research-focused computer
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networks’ simulators include NS-33, OPNET4 and OMNeT++5. Additionally, exam-
ples of simulators for simulating large-scale distributed systems include GridSim6 and
SimGrid7. Finally, there are many existing cloud simulation tools for simulating cloud
computing environments such as CloudSim [CRB+11a], GreenCloud [Uni10], Cloud-
Sched [TZX+15], EMUSIM [CNDRB13], DCSim [TKBL12], MDCSim [LSN+09],
and iCanCloud [NnVPC+12].

Due to the previously stated advantages of using simulation toolkits, this thesis
makes use of a cloud simulation tool for the development and evaluation of the pro-
posed VM placement solution. However, typical questions that arise from using sim-
ulated environments include: shall researchers develop their own simulators or make
use of existing ones, and which one of the current simulators should they use and why?
The following subsection briefly describes the commonly used cloud simulation tools
and our choice of the simulation toolkit for the implementation and evaluation of the
proposed VM placement solution.

3.3.1 Common Cloud Simulators

This subsection examines three of the commonly used cloud simulation toolkits, namely
CloudSim, GreenCloud, and iCanCloud. Then, Section 3.3.2 justifies the choice of the
specific cloud simulator based on three criteria.

CloudSim8 is a framework for modelling and simulating CDCs and cloud ser-
vices for various service models. It is an event-driven open-source simulation toolkit
programmed in Java and developed by the CLOUDS Laboratory at the University of
Melbourne. CloudSim can simulate energy-aware computing resources in large-scale
CDCs. Additionally, it can simulate network topologies and allow live migration of
VMs for supporting the dynamic reallocation of the VMs [CRDB09, GSA12]. Fur-
thermore, it supports simulating federated clouds and allows users to develop and test
their allocation policies. CloudSim does not have a graphical user interface (GUI);
however, the CloudAnalyst extension supports a GUI. Several new projects add exten-
sions to the core CloudSim to enable the simulation of new environments or to add

3https://www.nsnam.org/ [Accessed: 23-Jan-2018]
4https://www.riverbed.com/gb/products/steelcentral/opnet.html [Accessed: 23-Jan-2018]
5https://omnetpp.org/ [Accessed: 23-Jan-2018]
6http://www.buyya.com/gridsim/ [Accessed: 23-Jan-2018]
7http://simgrid.gforge.inria.fr/ [Accessed: 23-Jan-2018]
8http://www.cloudbus.org/cloudsim/ [Accessed: 23-Jan-2018]
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new functionality. As an illustration, iFogSim9 enables simulating resource manage-
ment and scheduling policies in Fog computing. CloudSimEx10 extends CloudSim by
adding more utilities, allow running experiments in parallel and simulating MapRe-
duce. EdgeCloudSim11 simulates Edge computing scenarios. More further exten-
sions of CloudSim include WorkflowSim, Cloud2Sim, SimpleWorkflow, Dynamic-
CloudSim, RealCloudSim, CloudReports, CloudAuction, CloudMIG Xpress, and Cloud-
Analyst. These various extensions and the common use of CloudSim makes it one of
the most widely used cloud simulators in academic research.

GreenCloud [Uni10] can be a handy alternative cloud simulator when the experi-
ments focus on the communication aspects of the cloud environment. GreenCloud is
an open-source packet-level cloud simulation toolkit that models and simulates energy-
aware cloud data centres by extending the NS-2 network simulator. GreenCloud is
programmed using C++ and Tool Command Language (TCL) scripts. GreenCloud
pays more attention to communication networks in the cloud. Additionally, it models
energy consumed by the data centre’s entities, including servers, switches, and com-
munication links. It simulates different computing resources, including CPU, mem-
ory, and network with various energy models for each of these resources. Besides, it
supports VM migration in addition to a simple graphical user interface (GUI). Cloud
researchers can use GreenCloud to develop their algorithms for resource allocation,
workload scheduling, and to optimize network communication. GreenCloud is pretty
powerful for simulating network-aware resource scheduling algorithms, and it consid-
ers a three-tier hierarchical network architecture of the CDC. To ease the deployment
and usage, the GreenCloud is also available as a standalone VM so that it can be easily
used and redistributed without requiring any additional configurations. Finally, Green-
Cloud provides a dashboard that presents graphs and statistics of the simulation results.

Finally, iCanCloud12 is another open-source C++ based scalable cloud simula-
tion toolkit. The underlying platform for the iCanCloud simulator is OMNET and
MPI [NnVPC+12]. It has built-in methods to compute energy consumption for each
computing resource in the cloud data centre. Like other simulators, users can build and
test their allocation policies and find the trade-off between cost and performance. iCan-
Cloud supports parallel experiments and provides models for public cloud providers
such as Amazon. Moreover, it has a full GUI for managing and configuring PMs,

9https://github.com/Cloudslab/iFogSim
10https://github.com/Cloudslab/CloudSimEx
11https://github.com/CagataySonmez/EdgeCloudSim
12http://www.arcos.inf.uc3m.es/ icancloud/Home.html [Accessed: 23-Jan-2018]
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VMs, experiments, and generating graphical results. However, the downside of iCan-
Cloud is that it does not support VM migration algorithms at the moment.

3.3.2 Choosing the Proper Simulation Toolkit

Tian et al. [TXC+15] compared four cloud simulators, namely, CloudSim, Green-
Cloud, iCanCloud, and CloudSched. Their comparison concluded that none of these
simulators is perfect for all scenarios. Additionally, the choice of the appropriate sim-
ulator is based on the problem type and the optimization objectives. So far, no cloud
simulation toolkit outperforms all the others in all aspects, so it is recommended to
choose the one that better suits the experimental requirements of the problem that is
being solved. This thesis adopts CloudSim for the implementation and empirical eval-
uation of the proposed VM placement solution for the following reasons:

• Ease of reproducibility:
Reproducible research is highly valuable as it enables others to verify the results
and conclusions. Commonly, using popular open-source cloud simulators is bet-
ter than creating a customized simulation tool regarding the reproducibility of
the results. By using open-source cloud simulation toolkits, other researchers
may be able to replicate the conducted experiments and reproduce the results.

• Widely used and facilitates comparison and evaluation:
CloudSim simulation toolkit is one of the most widely used cloud simulators by
the research community in the area of VM placement and resource management
in cloud environments [MS17a]. Some examples of research conducted with the
help of CloudSim for workload scheduling and VM placement research areas in-
clude [CRB11b, BB12, WGB11, TCTB11, BB10, QHNN+13, MP16, MS17a].
Using a widely used cloud simulator can facilitate the evaluation, verification,
and comparison tasks. Furthermore, CloudSim comes with the prepacked real
dataset (PlanetLab) besides the ability to generate random traces. Moreover,
CloudSim has different test drivers representing different solutions using the
available dataset for the VM placement.

The primary weakness point of CloudSim is related to the limitations and inaccu-
racy of its communications models [NnVPC+12]. Because communication models
are out of the scope of this work, such limitations and restrictions are insignificant for
the conducted research. One final reason for using CloudSim is experience reuse as
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CloudSim has many extensions for containers, edge, and fog computing (it acts as a
Swiss knife for multiple jobs). The following subsection demonstrates the architecture
of the CloudSim simulation toolkit.

3.3.3 CloudSim Architecture

The CloudSim toolkit follows a layered architecture consisting of three main lay-
ers namely, core simulation engine, CloudSim and user code. Figure 3.4 (adapted
from [CRB+11a]) exhibits the layered architecture of the CloudSim simulator.

Figure 3.4: CloudSim layered architecture, adapted from [CRB+11a]

The core simulation engine (the bottom layer of the architecture) supports core sim-
ulation functionalities, including the creation of different entities (data centres, PMs,
VMs, brokers, Cloudlets), queuing, events’ processing, managing, and communication
among entities. The CloudSim layer (the middle layer) is responsible for modelling
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and simulating the virtualized cloud data centre. This layer can define all network-
related functions such as network topology and the calculation of message delay. The
CloudSim layer configures the data centre, VMs, brokers, Cloudlets, and allocates the
required resources such as CPU, memory, storage, and bandwidth for both the VMs
and PMs. The Cloud Services sublayer (of the CloudSim layer) is the most critical
layer to the context of this work. For example, the VM provisioning component in
the Cloud Services sublayer involves allocating VMs to the PMs using the appropriate
VM placement strategies and policies. To develop our proposed parameter-based VM
placement solution, we have extended the basic functionality of the VM provisioning
by implementing the required algorithms. Finally, the user code layer (the top layer
of the CloudSim architecture) enables CloudSim users to specify the configuration of
the desired cloud data centre. For example, it enables CloudSim users to determine
the number of data centres, the number of PMs, the number of VMs, and the applica-
tions’ workload represented by the Cloudlets. Therefore, the user code layer enables
CloudSim users to test different scenarios which involve specific application require-
ments as well as various data centre settings.

3.4 Settings of the Simulated Cloud Data Centre

The proposed parameter-based VM placement solution is implemented and evaluated
using a single CDC. The specific settings of the simulated CDC, including number and
types of VMs and PMs, are described in what follows. The CPU of each PM or VM
in the CDC is defined by the number of cores; the capacity of each core is defined in
million instructions per second (MIPS). Tables 3.1 and 3.2 illustrates the characteristics
and the types of the PMs and VMs used in the simulated CDC. In Tables 3.1 and 3.2,
memory is defined in Megabit (MB), and bandwidth in Megabit per second (Mbps).
The settings of the PMs are the default ones that are embedded in CloudSim. The
energy consumption is estimated based on these exact types of PMs. The number of
VMs and PMs in the CDC depends on the type of the used cloud traces (e.g. synthetic
or real PlanetLab traces). The number of PMs is 800, and the number of VMs is usually
more than 1000 VMs. The resource requirements of VMs varies over time due to the
changes in the workload demand of the applications of each single cloud customer. The
cloud provider aims to utilize the PMs’ resources efficiently while satisfying the SLA
requirements. The details of the workload traces are demonstrated in the upcoming
section.
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Table 3.1: PM Types
PM Type Number of CPU cores Core Capacity Memory(MB) Bandwidth(Mbps)

HP ProLiant G4 2 1860 4096 1024
HP ProLiant G5 2 2660 4096 1024

Table 3.2: VM Types
VM Type Number of CPU cores Core Capacity Memory(MB) Bandwidth(Mbps)

High-CPU Medium 1 2500 870 100
Large 1 2000 1740 100
Small 1 1000 1740 100
Micro 1 500 613 100

3.5 Workload Traces

This section describes the workload traces that represent the resources requirements of
the applications on the running VMs. Different workload traces are crucial for evaluat-
ing the proposed algorithms to have a better understanding of their effectiveness. The
number of publicly available workload traces is limited, and even the currently avail-
able traces hide some details for privacy concerns (for example, using relative values
of the actual sizes of the servers and the VMs rather than the real ones). PlanetLab
traces are one of the most commonly used real cloud traces, and they are embedded in
CloudSim. What we care about in such traces is the resource utilization (CPU, memory
and bandwidth utilization) of the VMs or the PMs. Due to limitations of the current
real traces, this thesis also makes use of synthetic workload traces. The following sub-
section describes the characteristics of both the real and the synthetic workload traces
in more detail.

3.5.1 Normal PlanetLab Traces

The first source of real workload traces is from the CoMon project13, which has been
used to generate monitoring statistics from the PlanetLab14 platform. The workload
data represent CPU utilization recorded every five minutes and collected in the period
between March and April 2011 from over a thousand VMs that are hosted by PMs
located at different places all over the world. These normal PlanetLab traces are al-
ready embedded with CloudSim and available for public use. Figure 3.5 exhibits the

13http://comon.cs.princeton.edu/
14https://www.planet-lab.org/



82CHAPTER 3. SYSTEM ARCHITECTURE AND SIMULATION ENVIRONMENT

Gaussian kernel density estimate (KDE) of the CPU utilization for a total of 1033 VMs
on the 20th of April 2011. As can been seen from Figure 3.5, the average utilization
of PlanetLab traces is low (less than 13%), which confirms the fact that servers are
underutilized most of the time. As the average CPU utilization of all VMs does not
exhibit the change in workload over time, so Figure 3.6 shows the change of the CPU
utilization of two selected PlanetLab machines over the day. Figure 3.6(a) reveals that
the workload is fluctuating over the course of the day between 0% utilization to almost
100% utilization. On the other hand, Figure 3.6(b) indicates that VM 2 is entirely idle
(as the CPU utilization of VM 2 is zero) for more than eight hours.

Figure 3.5: Distribution of normal PlanetLab VMs’ utilization

3.5.2 Skewed PlanetLab Traces

Because of the low utilization nature of the real normal PlanetLab traces, we have
created another skewed version of these traces. With this skewed version of the normal
PlanetLab traces, the aim is to have higher utilization of the VMs so that we test the
behavior of the proposed algorithms against VMs that are low and highly utilized. The
skewed PlanetPlab traces skews the original PlanetLab traces by multiplying the values
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Figure 3.6: CPU utilization of two selected PlanetLab machines over a day

of CPU utilization by five bounded by the VM size. Because we are multiplying by
a fixed number, this means that VMs with 0% utilizations are going to have the same
utilization percentage in both the normal and skewed versions of PlanetLab traces.

3.5.3 Synthetic (Random) Traces

CloudSim offers a way to generate synthetic (random) workload traces for testing var-
ious VM placement solutions. The synthetic workload traces represent artificial CPU
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Figure 3.7: Distribution of the VMs’ utilization using the synthetic traces

utilization values (with a sampling rate of five minutes over a day) that have been gen-
erated based on a uniform random distribution with values in the range between zero
and one. These workload traces represent the CPU utilization of the tasks or applica-
tions running on each VM. Figure 3.7 presents the Gaussian kernel density estimate
(KDE) of the synthetic the CPU utilization of the 1033 VMs. The average utilization
of the synthetic traces is higher than the average utilization of the normal PlanetLab
traces (50% as opposed to 13%).

3.6 Performance Metrics

1. Energy consumption:
The total power consumption of a PM is determined by the utilization of var-
ious resource types, including the CPU, memory, storage, and cooling system.
However, several studies indicate that there is a linear relationship between en-
ergy consumption and CPU utilization of the PMs [FWB07]. Moreover, the
linear relationship between energy consumption and CPU utilization exists even
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when the CPU frequency is dynamically adjusted to save power; for example, by
using techniques such as dynamic voltage and frequency scaling (DVFS). Con-
sequently, and due to the complexity of modelling power consumption in multi-
core systems, this thesis estimates energy consumption using real data of the
power consumption of two specific servers. CloudSim uses the SPECpower15

benchmark for the estimation of the energy consumption by the PMs. Table 3.3,
from [BB12], exhibits the energy consumption, in Watts, at different CPU uti-
lization levels of two server configurations with dual-core CPUs. The selected
servers, shown in Table 3.3, are HP ProLiant ML110 G4 and HP ProLiant
ML110 G5.

Table 3.3: Energy consumption (in Watts) at different CPU utilization levels [BB12]
Server Name 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

HP ProLiant G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117
HP ProLiant G5 93.7 97 101 105 110 116 121 125 129 133 135

2. Absolute normalized number of running PMs:
The absolute normalized number of running PMs (ANPMs) calculates the abso-
lute normalized total number of active PMs in the CDC by considering the CPU
capacity and the running time of each PM. The CPU capacity of a PM is normal-
ized to the largest CPU capacity of all active PMs, and the running time of a PM
that is calculated relative to the total simulation time of the experiment. As an
illustration, if there is a single PM running during the whole simulation time and
its CPU capacity is equal to the capacity of the PM with the largest CPU, then
the ANPMs will be increased by one. Similarly, if the CPU capacity of a PM is
equal to the CPU capacity of the largest PM and the PM runs only for half of the
simulation time, then the ANPMs is going to be increased by 0.5; and so forth.
Equation 3.1 demonstrates the computation of the absolute normalized number
of PMs running in the CDC.

ANPMs =
n

∑
i=1

(normcpu
i ×normta

i ). (3.1)

In Equation 3.1, normcpu
i is the normalized CPU capacity (in million instruc-

tions per second (MIPs)) of PMi and normta
i is the normalized active time of

15http://www.spec.org/power-ssj2008
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PMi. Equations (3.2 and 3.3) shows the calculations of both normcpu
i and normta

i

respectively.

normcpu
i =

ccpu
i

ccpu
max

. (3.2)

normta
i =

tai

ts
. (3.3)

Here, ccpu
i is the CPU capacity of PMi and ccpu

max is the CPU capacity of the PM
with the largest CPU capacity in the CDC. Additionally, tai is the running (active)
time of PMi, and ts is the total simulation time of the experiment.

3. Number of migrations and migration Time (RTm):
The number of migrations defines the total number of VM migrations. Too many
unnecessary migrations can result in more energy consumption [DMKP16]. The
relative migration time RTm is the percentage of time required for all VMs’ mi-
grations which is calculated in Equation 3.4, where tm j is the time required to
migrate VM j, and ta j is the total time during which VM j was active.

RTm =
∑

m
j=1 tm j

∑
m
j=1 ta j

. (3.4)

4. SLA violations (SLAVs):
Service level agreement (SLA) defines the quality of service requirements (QoS)
as a contract between the service provider and the customer. In a cloud infras-
tructure, SLA is considered to be violated when the resource requirements of a
VM (bounded by the maximum VM size) are not sufficiently provided at any
point of time. Therefore, estimating SLA violations (SLAVs) is commonly de-
termined by the amount of under-allocated resources per VM at any time. There
are two primary sources of the SLAVs in the IaaS service model [BB12]:

(a) The first source of SLAVs is the one that results from the overutilization of

PMs due to the aggressive consolidation of VMs to ensure better utilization
ratios. The SLAVs resulting from the overutilization of PMs (SLAVO) is
estimated as follows:

SLAVO =
1
n

n

∑
i=1

toi

tai
,

where n is the number of running PMs, toi is the time period during which
PMi is overutilized, and tai is the active (running) time of PMi.
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(b) The second source of SALVs is the one which results from the migration of

VMs among various PMs. The VMs can be migrated when the hosting PM
is overutilized or underutilized due to the change in workload demand of
VMs over time. The SLAVs resulting from the migration of VMs among
PMs (SLAV M) is estimated as follows:

SLAV M =
1
m

m

∑
j=1

dcpu
d j

dcpu
j

,

where m is the total number of running VMs, dcpu
d j is the amount of under-

allocated CPU demand per VM j due to VM migration, and dcpu
j is the total

CPU demand by VM j.

Therefore, SLAVs is estimated as a composite metric that considers the two pre-
viously sated sources of violations as shown in Equation (3.5).

SLAV = SLAVO×SLAV M. (3.5)

The SLAVO estimates the SLAVs resulting for the overutilization of PMs, and
SLAV M calculates the SLAVs resulting from the migration of VMs among the
CDC’s PMs. Further details on the two sources of SLAVs can be found in Sec-
tion 4.3.

5. Total number of SLA violations (NSLAVs):
Another way for estimating the SLAVs is to count the number of times dur-
ing which the allocated resources per PM are less than the requested resources.
Therefore, we can say that there is a violation per PMi at time t, when the amount
of allocated CPU acpu

i (t) is less than the actual CPU demand dcpu
i (t) regardless

of the time of the violation.

NSLAVit =

1 if: acpu
i (t)< dcpu

i (t)

0 otherwise

6. Average CPU utilization:
By and large, the CPU utilization of a PM refers to the actual usage of the CPU
resource to run the required workload. In the conducted experiments, the CPU
utilization of PMi at time t is estimated by dividing the CPU demand by the PM’s
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CPU capacity. However, if there is an SLA violation per PM (i.e. the allocated
resources are less than the actual demand), then the CPU utilization is calculated
by dividing the allocated CPU by the CPU capacity of that PM. The following
Equation summarizes the two cases of estimating the CPU utilization of PMi at
time t:

ucpu
i (t) =


acpu

i (t)
ccpu

i (t) if: acpu
i (t)<= dcpu

i (t)
dcpu

i (t)
ccpu

i (t) otherwise

The CPU utilization of a single PM is the average utilization of the PM’s CPU
over the simulation time for each scheduling interval. As an illustration, if the
simulation time is one hour, and the scheduling interval is five minutes, then
CPU utilization is the average of the utilizations across the hour for each interval
(i.e. the average of 12 CPU utilizations). Accordingly, the CPU utilization of
PMi across all the scheduling intervals is calculated as follows:

ucpu
i =

1
q
.

q

∑
l=1

ucpu
il ,

where q is the number of scheduling intervals and ucpu
il is the CPU utilization of

PMi at interval l. The average CPU utilization of all PMs across the entire CDC
is defined as follows:

Ucpu
cdc =

1
n
.

n

∑
i=1

ucpu
i .

7. Number of PM shutdowns:
The frequent shutting down of PMs incurs cost as there is a setup cost to get the
powered off PM up and running. For example, powering on an application server
takes 260 seconds, during which the server is using its peak power [GHBRK12].
Turning a PM on also could take extra time for updating the application and/or
the operating systems, which adds extra cost. Therefore, the number of shut-
downs should not be too much so as not to lead to more SLA violations.

3.7 Summary

In this chapter, we have presented the main components of the architecture of the pro-
posed parameter-based VM placement solution. These components are the CDC, the
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VM placement requests, the initial VM placement controller, monitoring, dynamic VM
placement controller, and the parameter estimation component. The parameter estima-
tion component is introduced to work with the proposed parameter-based VM place-
ment strategy. This parameter can be either statically defined or dynamically estimated
on the fly. Then, the chapter discussed the importance of using cloud simulators due
to the costs, limitations, and difficulties associated with the in-vivo experiments. After
that, the chapter reviewed three of the most widely used cloud simulators and outlined
the criteria for choosing the proper one. This work uses CloudSim simulation toolkit
for the empirical evaluation of the proposed algorithms. The layered CloudSim archi-
tecture has been introduced, and the settings of the simulated CDC has been demon-
strated. After that, the chapter described both the real (such as normal PlanetLab and
skewed PlanetLab) and the synthetic workload traces. Finally, the chapter defined and
demonstrated the estimation of the various performance metrics that are going to be
used throughout the thesis to measure the efficiency of the proposed algorithms.



Chapter 4

Parameter-based Virtual Machine
Placement

4.1 Introduction

As pointed out in Chapters 1 and 2, the reservation-based and demand-based VM
placement strategies represent the two extremes for allocating VMs in CDCs. Ad-
ditionally, both the initial (static) and the dynamic reservation-based VM placement
strategies do not utilize the CDC’s PMs efficiently, which results in more energy waste
and CO2 emissions. However, the reservation-based VM placement strategy can sat-
isfy SLA requirements (here, we ignore hardware and network failures). On the other
hand, the dynamic demand-based VM placement strategy utilizes the infrastructure ef-
ficiently by ensuring better consolidation ratios, which minimize underutilization and
hence saves energy, CO2 emissions and operational costs. However, the demand-based
VM placement results in more SLA violations (SLAVs) from both the PMs’ overload
situations and the excessive migrations of VMs, which degrade the quality of service
(QoS). Therefore, there is a trade-off between the efficient utilization of PMs and the
resulting SLAVs.

This chapter introduces a new parameter-based VM placement solution based on
a novel VM placement strategy by investigating the middle way between the demand-
based and reservation-based VM placement strategies. We have named the proposed
VM placement strategy as parameter-based because it exploits the space between the
full reservation and the demand-based allocation with the help of a single parameter
(α). The operators of public or private clouds can set the value of that parameter based
on the business preferences. The work on this chapter is based on the paper [MS17b].

90
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4.2 VM Placement Problem

The primary goal of the VM placement is to find a proper mapping of the VMs to
the PMs that achieves better consolidation ratios while reducing SLAVs. An effective
VM placement solution should find a good trade-off between utilization and SLAVs
by reducing underutilization and overutilization situations of the CDC’s PMs. A VM
placement controller is usually embedded in a cloud management solution such as
OpenStack. The VM placement in CDCs is a complex problem due to the heterogene-
ity of resource types, the variability, and unpredictability of the applications’ workload,
the conflicting objectives, and the large-scale of the current CDCs. The relationship be-
tween the VM placement controller and the other components of the parameter-based
VM placement solution has been described earlier in Chapter 3. The following sec-
tion presents the mathematical formulation of the VM placement problem, and Section
4.2.2 defines the objective function.

4.2.1 Mathematical Formulation

This section presents the mathematical formulation of the VM placement in a single
CDC that is managed by a public cloud provider or a private cloud owner. Supposing
that the CDC houses n physical machines (PMs) defined as P = {p1, p2, . . . , pn}; each
p ∈ P is defined as consisting of three distinct resource types, namely CPU, memory
(Mem) and bandwidth (BW). The types of resources of any PM are defined as r ∈ R,
where R = {CPU,Mem,BW}. The capacity c of resource type r of PMi is defined as
cr

i ∈Cr, where Cr = {cr
1,c

r
2, . . .c

r
n}. Accordingly, ccpu

i , cmem
i and cbw

i represent PMi’s
total capacity of CPU, memory and bandwidth respectively. At any time t, a PMi

could be either active (running) or inactive (switched off or in any of the power saving
modes).

pi =

0, if: PMi is not active

1, if: PMi is active

The cloud provider offers various VMs instances to IaaS customers; the CDC can
run m VMs on the available PMs. Each VM is defined as consisting of CPU, Mem
and BW resources, and as v ∈V where V = {v1,v2, . . .vm}. The initial VM placement
controller maps the set of the VMs (V ) to a subset of the active PMs (P) using the
mapping function; f :V→P such that ∀v∈V,∃p∈P : p= f (v) as shown in Figure 4.1.
The placement of VM j on PMi at time t is defined as xi j(t) = 1. Equation 4.1 ensures
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that, any active VM is only placed on a single PM at time t.

n

∑
i=1

xi j(t) = 1. (4.1)

Additionally, the initial VM placement controller ensures that the resource capacity of
each PM should exceed the total capacity of the hosted VMs.

The dynamic VM placement controller adaptively reallocates VMs according to
the cloud provider’s objectives during each scheduling interval l ∈ L, L = {l1, l2, . . . lq}.
The total resource demand (of the applications running on the hosted VMs) for each
resource type r of PMi at time t is defined as dr

i (t) ∈ Dr, where Dr = {dr
1,d

r
2, . . .d

r
n}.

Therefore, dcpu
i (t), dmem

i (t) and dbw
i (t) represent the CPU, memory and bandwidth

demand of all the VMs running on PMi at time t. The resource demand of VM j at timet

dr
j(t) is bounded by the reserved capacity of the VM j (cr

j(t)); therefore, cr
j(t)≥ dr

j(t).
The allocated resources to VM j at time t is defined as ar

j(t); therefore, ar
j(t) ≥ dr

j(t)

satisfies resource requirements per VMs by ensuring that the allocated resources for
VM j are greater than or equal to the requested resources (actual demand). At any time
t, if ar

j(t) < dr
j(t), this means that VM j is likely to incur SLAVs. To avoid SLAVs

while ensuring better utilization for any VM j at any time t, the relationship among
the VM’s capacity (full reservation), the actual resource demand, and the allocated
resources should be as follows:

cr
j(t)≥ ar

j(t)≥ dr
j(t).

Figure 4.1: VMs-to-PMs mapping
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At any time, the utilization state of a PM could be in one of the following five
utilization states; namely, fully-utilized, partially-utilized, under-utilized, over-utilized

or non-utilized. A PM is called non-utilized when it is either switched off or in one
of the power saving modes which indicates that the total resource utilization is 0%.
A PM is considered as over-utilized when the total demand from the hosted VMs is
greater than the PM’s capacity of any resource type r (i.e. dr

i (t) > cr
i (t)) or when the

maximum utilization of any resource type is greater than the overutilization threshold.
A PM is underutilized when it is active, and the maximum utilization of any resource
type is less than the underutilization threshold. A partially-utilized PM is the one
that is neither overutilized nor underutilized. Assuming that each PM is defined by z

resource types (CPU, Mem, BW); a summary of the five utilization states of any PM
are formally specified below, where underT hreshold and overT hreshold represent the
PM’s underutilization and overutilization thresholds respectively.

state(pi(t)) =



non-utilized if: ∑
z
r=1 ur

i (t) = 0% or switched off

fully-utilized if: ur
i (t) = 100%

partially-utilized if: underT hreshold < ur
i (t)< overT hreshold

under-utilized if: 0% < maxz
r=1(u

r
i (t))6 underT hreshold

over-utilized if: maxz
r=1(u

r
it)> overT hreshold

The percentage of underutilization per resource r of PMi at time t is wr
i (t) ∈W r,

where W r = {wr
1,w

r
2, . . . ,w

r
n}. Accordingly, the underutilization of CPU, memory,

bandwidth per PMi at time t is wcpu
i (t), wmem

i (t) and wbw
i (t) respectively. The un-

derutilization per PMi at time t (wr
i (t)) is zero when the PM’s utilization is 100%

(ur
i (t)> 100%); the wr

i (t) is calculated as shown in Equation 4.2.

wr
i (t) = (100−ur

i (t)). (4.2)

Any PM can become overutilized per any resource type due to the aggressive con-
solidation of VMs which may violate the Quality of Service (QoS) requirements de-
fined in the service level agreement (SLA). The overutilization per resource of type r

per PMi at time t is defined as or
i (t) ∈ Or

i . Accordingly, the overutilization of CPU,
Mem and BW per PMi at time t is defined as ocpu

i (t), oram
i (t) and obw

i (t) respectively.
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Equation 4.3 shows the calculation of or
i (t) in condition that dr

i (t)> cr
i (t):

or
i (t) =

dr
i (t)− cr

i (t)
cr

i (t)
. (4.3)

An efficient VM placement solution aims to efficiently utilize the PMs by minimiz-
ing the average underutilization of active PMs. The estimation of average underutiliza-
tion per resource type r for all active PMs in a single scheduling interval l is shown
in Equation 4.4; where, k defines the number of currently active partially-utilized or
underutilized PMs.

W̄ r
l =

1
k
.

n

∑
i=1

wr
i . (4.4)

Equation 4.5 calculates the average underutilization per resource r of all PMs across
all q scheduling intervals:

W̄ r =
1
q
.

q

∑
l=1

W̄ r
l . (4.5)

An efficient VM placement solution aims to reduce overutilization situations in or-
der to avoid SLAVs penalties and customer dissatisfaction. Assuming that there are y

overutilized (overbooked) PMs, the average resource overutilization for all the overuti-
lized PMs in the scheduling interval l is computed as shown in Equation 4.6.

Ōr
t =

1
l
.

n

∑
i=1

or
i . (4.6)

Finally, Equation 4.7 calculates the average resource overutilization per resource type
r of all running PMs across all the q scheduling intervals.

Ōr =
1
q
.

q

∑
l=1

Ōr
l . (4.7)

The following subsection defines the objective function of the proposed VM placement
solution based on this mathematical formulation.

4.2.2 Objective Function of Proposed Solution

The main objective of the VM consolidation is to run the VMs on the least possible
number of the PMs. By monitoring the current resource utilization, the objective func-
tion seeks to utilize the PMs efficiently by minimizing the underutilization per resource
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type, while reducing SLA violations by minimizing overutilization. Equation (4.8) de-
fines the objective function for each scheduling interval l supposing that there are z

resource types.

Minimize (
z

∑
r=1

(Srw.W̄ r
l +Sro.Ōr

l )) (4.8)

Here, W̄ r
l is the average underutilization per resource r of all PMs running in inter-

val l. Minimizing the underutilization per PM inherently means reducing the number
of running PMs and hence improves the average utilization of the CDC. The Ōr

l is
the average overutilization per resource r for PMs running in interval l. Minimizing
overutilization reduces the SLAVs resulting from the aggressive consolidation of the
VMs. The Srw and Sro are weights representing the relative significance of the un-
derutilization and overutilization of each resource r respectively. These weights are
between zero and one as follows:

0 6 Srw 6 1, and 0 6 Sro 6 1

To ensure the SLA requirements are met, the capacity of any single PMi should be
greater than the total allocated resources to all the hosted h VMs.

cr
i >

h

∑
j=1

a ji(t).

4.3 Sources of SLA Violations in IaaS

A service level agreement (SLA) defines the quality of service (QoS) requirements
in the form of a contractual document between the service provider and the cus-
tomer [LS14]. An SLA violation (SLAV) means that the previously agreed-upon SLA
requirements have not been met. The SLA requirements are different for each type
of cloud service models. For example, in the software as a service (SaaS) model,
the response time is an essential requirement of an SLA. On the other hand, in the
infrastructure as a service (IaaS) model, response time may not the most critical at-
tribute; availability is usually an essential requirement. A proper definition of the SLA
should be workload independent; therefore, an SLA is expressed as meeting the re-
source requirements of each VM over the time. In this thesis, we consider that SLA
requirements of a VM are met when 100% of the resources requested by that VM are
delivered at any time bounded by the maximum resource capacity of that VM. There
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are many sources of SLA violations in the IaaS service model, such as live migration

of VMs, overutilization of the PMs, hardware, or network failure, system outage and
interference among co-located VMs. Regardless of the source of the SLA violations,
at any point of time, there are SLAVs whenever the resources allocated to a VM are
less than the requested resources bounded by the VM size, as shown in Figure 4.2.

Figure 4.2: SLAVs based on the requested and allocated resources

The proposed VM placement solution considers only two sources of SLAVs, namely
live migration and overutilization of the PMs. Overutilization of the PMs results from
the aggressive consolidation of VMs through demand-based placement. Live migra-
tion causes performance degradation as the VM is not available during the migration
time. The following subsections 4.3.1 and 4.3.2 detail violations from live migration
and PM overutilization.

4.3.1 Violations due to Live Migration (SLAVM)

Live migration moves running VMs from one PM to another with no or minimal im-
pact on the availability of VMs to users. Live migration is a valuable tool for the
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administrators of cloud data centres as it facilitates multiple tasks such as balancing
the load between physical servers, fault management, and low-level system mainte-
nance [CFH+05]. The majority of the live migration process is completed while a VM
is running, and hence it improves the efficiency of the cloud data centres with mini-
mum downtime. The process of copying pages is performed while the VM is running.
For example, if we are migrating VM j from PM1 to PM2 then, the downtime of VM j

is only the time required to suspend VM j on PM1 plus the time to generate address
resolution protocol (ARP) request to redirect traffic to PM2 in addition to the time
to synchronize the state of VM j on PM2 [CFH+05]. ARP is a communication pro-
tocol that finds the data link layer address (e.g.media access control (MAC) address)
of the given logical address (e.g.internet protocol (IP)). The migration time depends
on the available network bandwidth as well as the memory utilization of the running
VM [Dar14]. There is a linear relationship between memory capacity and migration
time. However, there is an inverse correlation between migration time and network
bandwidth. Equation (4.9) estimates the time required to migrate a VM j supposing
that the images and data of VMs are stored on a storage area network (SAN).

tm j =
dmem

j

avbw
j
. (4.9)

Here, tm j is the time required to migrate VM j; dmem
j and avbw

j represent VM j’s CPU
demand and the available network bandwidth respectively.

Adopting live migration of the VMs might lead to more efficient utilization of PMs
in a cloud data centre by migrating the VMs from under-utilized PMs and switching
them into one of the power-saving modes or even turning them off. Moreover, live
Migration might also assist in improving the quality of service (QoS) requirements by
migrating VMs from over-utilized (overloaded) PMs. However, the number of VM
migrations should be controlled in a way that helps strike a good balance between
efficient utilization of the PMs and the resulting SLAVs due to the migration process.
Too many migrations degrade the performance and increase the SLAVs, while too few
migrations may lead to less efficient utilization of the PMs. Hence a balance is required
to consider this trade-off. The reasons for migration depend upon the current state of
the VMs-to-PMs mapping and the adopted VM placement policy.

The SLA violations from migrations (SLAVM) is a performance metric that esti-
mates the performance degradation resulting from the migration of VMs among PMs.
The SLAVM for a specific VM is estimated by dividing the underallocation per CPU
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due to migration by the VM’s total CPU demand. Equation 4.10 shows the calculation
of the SLAVM for all VMs in the CDC.

SLAV M =
1
m

m

∑
j=1

dcpu
d j

dcpu
j

, (4.10)

where dcpu
d j is the VM j’s under-allocated CPU demand due to migration, dcpu

j is the
total CPU demand by VM j and m is the total number of VMs.

4.3.2 Violations due to PMs’ Overutilization

SLAs are satisfied when 100% of the VM’s demand is met at any time. The SLAVO
metric computes the SLA violations from PM’s overutilization, which is the time dur-
ing which the PM is 100% utilized in any of the resource types. SLAVO happens
when the resource demand is higher than the allocated amount bounded by the VM’s
capacity. The SLAVO of PMi is calculated, as shown in Equation 4.11.

SLAVOi =
toi

tai
. (4.11)

Here, toi is the time during which PMi is overutilized in one of its resource types (CPU,
memory, or bandwidth) and tai is the total time during which PMi is active (running).
Equation 4.12 estimates the average SLAVO for all PMs in the CDC.

SLAVO =
1
n

n

∑
i=1

toi

tai
. (4.12)

4.4 Action Policy for Parameter-based VM Placement

Any VM placement solution is an example of an autonomic (self-managing) system
that can adapt (by either reacting or proacting) to changes in the CDC without re-
quiring any human intervention. Developing such an autonomic parameter-based VM
placement solution can be achieved using one of the widely used policies, as previ-
ously discussed in Chapter 2. By reviewing the VM placement literature, the two
most commonly used policies for creating such a self-managing system are action
(rule-based) or utility function-based policies. The goal policies are not preferred for
creating self-managing systems as the utility function is considered as a more flexible
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and fine-grained extension of the goal policies [KD07]. The action (rule-based) sys-
tems take the form of if (condition) then (action); action policies only care about what
action the system should take whenever it is in any given state. Action policies do not
specify the state that the system will reach after taking action; it is all about what the
system should do in the current state. The proposed autonomic parameter-based VM
placement solution solves both initial and dynamic VM placement. It allocates the
VM resources based on the proposed parameter-based VM placement strategy using
an action-based policy. The reason for adopting an action policy is that it makes the
presentation of the proposed parameter-based solution simpler to perceive; however,
other policies can be used to achieve the same goal. The remainder of this section
presents a summary of the adopted action-based framework for creating the proposed
parameter-based VM placement solution.

Following the initial mapping of VMs to suitable PMs, the proposed dynamic
parameter-based VM placement solution seeks to reallocate the VMs to achieve cloud
provider’s objectives. Figure 4.3 exhibits the adopted action-based policy for the dy-
namic reallocation of VMs in the CDC. Figure 4.3 illustrates how the system moves
from the current state (current VMs-to-PMs mapping) to a new state (a more efficient
VMs-to-PMs mapping) to either ensure more efficient utilization of PMs or reduce
SLAVs whenever possible. The action-based policy for the dynamic reallocation of
the VMs [XSC13, BB12, MR16] divides the dynamic VM placement problem into
four subproblems, namely, cold PM detection, hot PM detection, VM selection and
VM placement. Any active PM is classified as normal (partially-utilized) when it is
neither overutilized nor underutilized. However, an active PM is considered hot or
cold if it is either overutilized or underutilized, respectively. The details of how the
system detects hot or cold PMs are described as follows:

• Hot PM Detection:
The aggressive consolidation of VMs into CDC’s PMs might make a PM overuti-
lized when the total workload demands of the hosted VMs exceed the capacity of
the hosting PM. The parameter-based VM solution tags a PM as hot (i.e. overuti-
lized) when the CPU utilization of that PM exceeds a predefined overutilization
threshold. The proposed parameter-based VM placement solution aims to satisfy
the SLA requirements by minimizing the overutilization situations, which in turn
reduces SLAVs. Accordingly, if the PM’s state is hot, then the action should be
migrating some VMs until the PM becomes normal (partially-utilized as defined
in Section 4.2.1). There are various approaches for detecting hot PMs, such as
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Figure 4.3: Action-based policy for the dynamic reallocation of VMs in CDC

using static threshold, local regression, robust local regression, or median ab-
solute deviation [BB12, XSC13]. In this work, the proposed solution adopts a
static threshold for hot PM detection. The static threshold identifies a PM as
hot when the resource utilization of that PM is greater than the predefined static
overutilization threshold. For example, if the overutilization threshold is set to
90%, then the system will tag the PM as hot whenever the PM’s utilization is ≥
90%.

• Cold PM Detection:
The proposed parameter-based VM placement solution seeks to save energy by
improving PMs’ utilization through the reduction of the underutilization ratio per
PMs. As a result, when the dynamic parameter-based VM placement controller
identifies a cold (i.e.underutilized) PM, it attempts to correct the current state of
the system by migrating all the hosted VMs to other PMs and switch that PM
off or into one of the power saving modes. There are various approaches for
detecting cold PMs, such as using a static threshold to define cold PMs based
on the utilization percentage. However, the proposed solution selects the least
utilized PM and try to migrate the hosted VMs into other PMs and turn that PM
off whenever possible.

Recall Figure 4.3, at each scheduling interval (typically every five minutes), the
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dynamic parameter-based VM placement controller uses the current state of the sys-
tem to decide the next possible state based on the predefined placement objectives
and constraints. If all PMs on the current VMs-to-PMs mapping are normal, then the
dynamic VM placement controller does nothing and retains the current state of the
system. However, if the state of some PMs is cold, then the dynamic VM placement
controller will try to migrate all VMs and switch the cold PM off. On the other hand,
when the dynamic VM placement controller detects a hot PM, then it should migrate
one or more VMs from the hot PM until it becomes normal (partially-utilized).

The next question that arises is which VMs to select for migration and why. The
answer to this question is based on the adopted VM selection approach. There are
different approaches to decide which VMs to choose for migration from the hot PMs;
these VM selection approaches include a random selection of the VMs, selecting VMs
based on specific criteria such as memory or CPU utilization, or using fuzzy logic as
in [MR16]. In the proposed parameter-based VM placement solution, we have chosen
to select the VM with the minimum memory utilization to ensure minimum migration
time per VM, which can help in reducing the performance degradation per VM due to
migration. Regardless of the adopted VM selection approach, the migration of VMs
from both hot and cold PMs results in a new state of the system, which is characterized
by a new VMs-to-PMs mapping.

The final question is where (on which PMs?) to place the new VM placement
requests (using the initial VM placement), and how much resources should be allocated
for each new VM placement request. Additionally, during the dynamic VM placement,
where to place the VMs selected for migration from both cold and hot PMs, and how
much resources should be allocated for each of these VMs? The proposed parameter-
based VM placement solution answers these questions about both the initial and the
dynamic VM placement controllers in the following subsection.

4.4.1 Parameter-based VM Placement

The principal purpose of the VM placement is assigning VMs to PMs to achieve the
cloud provider objectives without violating the constraints; this is accomplished using
both the initial and dynamic VM placement as introduced beforehand. Consequently,
the proposed parameter-based VM placement should consider both the initial and dy-
namic controllers. The initial VM placement controller receives VM placement re-
quests from the cloud customers, and then either accepts or rejects the requests based
on resource availability. Then, it assigns the accepted VM placement requests to the
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appropriate PMs based on the resource capacity defined by the VM types (reservation-
based placement). The initial VM placement is a kind of N-dimensional bin packing
problem where PMs represent the bins, VMs represent the items to be packed, and the
capacity of the resource types defines bin size. On the other hand, the dynamic VM
placement controller starts with an existing VMs-to-PMs mapping and tries to generate
a better mapping (if possible) based on the current one. The dynamic placement strives
to find suitable PMs for allocating the VMs that have been selected for migration from
hot and cold PMs. Finding a proper PM for VM migration is crucial as it dramatically
affects the efficiency of the whole VM placement solution. The dynamic reallocation
of the VMs runs periodically for finding a more efficient allocation that meets the cloud
provider’s objectives.

Figure 4.4: Reservation vs demand vs parameter-based placement

The proposed VM placement solution makes use of a novel parameter-based VM
placement strategy, which explores the space between the resources required for the
actual workload (demand-based allocation) and the resources needed for a VM at full
capacity (reservation-based allocation). Figure 4.4 shows the area in which parameter-
based placement operates compared to both the reservation-based and demand-based
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placement approaches. Figure 4.4 demonstrates that the amount of resources allocated
for a VM in case of reservation-based placement is constant over time, even if the VM
is completely idle. However, the amount of allocated resources in case of demand-
based placement is changing over time based on the workload demand.

Figure 4.5: Parameter-based VM placement solution uses 0 <= α <= 1

The parameter-based VM placement strategy adds an extra margin (slack) to the al-
located resources for meeting the actual demand requirements to accommodate some
later sudden increase of the workload. The parameter-based VM placement assigns
VMs to PMs based on a predefined parameter (α) aiming to overcome the problems
associated with both the reservation-based and demand-based VM placement strate-
gies. It enables the cloud provider to fine-tune the trade-off between utilization (and
energy accordingly) and SLAVs. The amount of resources allocated for a VM using the
parameter-based VM placement strategy is defined in Equation (4.13), which allocates
resources per VM by utilizing the space between the actual demand and the VM’s size
(total reservation). Equation 4.13 estimates how much resources the parameter-based
VM placement strategy is going to allocate to VM j at time t.

ar
j(t) = α · (cr

j−dr
j(t))+dr

j(t), (4.13)

where ar
j(t) is the amount of resources (between full reservation and actual demand)

that should be allocated to VM j at time t, cr
j is the capacity of resource r per VM j

(reservation) and dr
j(t) represents the actual demand of resource r at time t. The pa-

rameter α represents a knob that specifies the desired scale between the actual demand
and the full reservation. As an illustration, when the parameter α is set to zero (α = 0),
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this means that we are adopting demand-based placement. On the other hand, when
the parameter α is set to one (α = 1), this corresponds to reservation-based placement.
Figure 4.5 shows that the parameter α of the parameter-based strategy acts as a knob
in the range 0 6 α 6 1 to give different allocation options for the cloud provider.

The cloud operator can set the parameter α, which is an input to the parameter-
based VM placement controller, as shown in Figure 4.6. Besides the parameter, other
inputs to the initial and dynamic VM placement controllers are sent to the parameter-
based VM placement controller, as introduced in Chapter 3). The details of the parameter-
based VM placement algorithm are presented in the remainder of this section.

Figure 4.6: The parameter is an input to the parameter-based VM placement controller

Parameter-based VM Placement Algorithm

Algorithm 1 presents the proposed parameter-based VM placement solution which
works for both initial and dynamic placement based on the “type” parameter. The
“type” parameter is either “INITIAL” (for the initial placement of the VMs) or “DY-

NAMIC” (for the dynamic reallocation of the VMs based on the proposed parameter-
based VM placement strategy). The vmList represents either the list of the VM that
need to be initially allocated or the set of the VMs that requires migration to attain
a satisfying VMs-to-PMs mapping state. The list of the VMs are sorted decreasingly
based on the VMs’ CPU capacity when the type is “INITIAL” or based on the real CPU
demand when type is “DYNAMIC”. For each VM on the VMs’ list, the parameter-
based VM placement algorithm needs to know the reserved size (capacity) of CPU per
the VM (ccpu

vm ) as well as the actual CPU demand of the VM (dcpu
vm ). An active PM is a

PM that is currently running while a PM that is switched off or in a power-saving mode
is called an inactive PM. Both active and inactive PMs are sorted increasingly based on
the PM’s available CPU. Then, the algorithm decides the value of the parameter (α):
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Algorithm 1 Parameter-based virtual machine placement
1: vmList← sort(vmList, type, “DESC”);
2: ccpu

vm ← the CPU capacity of the VM;
3: dcpu

vm ← the CPU demand of the VM;
4: inactivePMs← sort(inactivePMs, “availablecpu”, “ASC”);
5: vmsToPmsMapping← Empty;
6: if (type is “INITIAL”)) then
7: α← 1;
8: else
9: α← set the parameter (α);

10: for all (vm in vmList) do
11: activePMs← sort(activePMs, “availablecpu”, “ASC”);
12: for all (activePm in activePms) do
13: if (avcpu

activePm > α.(ccpu
vm −dcpu

vm )+dcpu
vm ) then

14: vmsToPmsMapping.add(vm, activePm)
15: if the vm is still not allocated then
16: for all (inactivePm in inactivePms) do
17: if (avcpu

inactivePm > α.(ccpu
vm −dcpu

vm )+dcpu
vm ) then

18: vmsToPmsMapping.add(vm, inactivePm)
19: return vmsToPmsMapping;

for initial VM placement, the VMs are allocated based on the reserved size, and there-
fore α is set to 1; otherwise, α is set based on the preferences of the cloud operator.
After that, Algorithm 1 attempts to map each VM to a fitting PM based on the value
of the parameter (α). A PM is fitting for hosting a VM if the available CPU per the
PM (avcpu

activePm) is higher than the amount of CPU required for allocation based on the
value of the parameter (α). The algorithm will switch one of the suitable inactive PMs
on when there is no fitting active PM to host the VM. Once a fitting PM found to host
the VM, the VM and the PM are appended to the vmsToPmsMapping. The algorithm
returns the VMs-to-PMs mapping when all VMs have been mapped to the appropriate
PMs. The computational complexity of Algorithm 1 depends on the way of estimating
the parameter α (statically or dynamically). Having n PMs and m VMs, the worst-case
complexity of Algorithm 1 happens when the allocation of every VM requires acti-
vation of one of the inactive PMs. In case of a static value of the parameter α as in
this chapter, the worst-case computational complexity of Algorithm 1 is going to be
O(n+m/2)m. However, in the case of the dynamic estimation of the parameter, the
computational complexity depends on the adopted approach for parameter estimation,
as shown in Chapter 5.
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4.5 Experimental Evaluation

Using the proposed parameter-based VM placement solution, the following experi-
ments aim to explore the range between the demand-based placement and reservation-
based placement. The experiments examine the effect of changing the amount of the
allocated CPU resources by using various values of the parameter α as previously de-
fined in Equation 4.13.

4.5.1 Experiments Setup

The experiments were conducted using the CloudSim1 (version 3.0.3) simulation frame-
work. The simulated cloud data centre (CDC) consists of 800 PMs, which are hosting
1033 VMs (the reason for choosing that specific number of VMs and PMs because the
PlanetLab traces were extracted from an environment that same number of VMs and
PMs). The exact details of the characteristics and types of VMs and the PMs have been
previously described in Tables 3.1 and 3.2. The VMs in the following experiments runs
three types of workload traces; namely, random, normal PlanetLab traces and skewed
PlanetLab traces (the details of the workload traces, have been previously described in
Section 3.5.

Algorithm 1 is used for both the initial and the dynamic placement of the VMs in
the CDC. For the initial VM placement, the parameter α is set to one. For the dynamic
VM placement, the amount of allocated resources for each VM ranges between the
demand-based VM placement (α = 0) to reservation-based VM placement (α = 1).
The experiments test the effect of changing the value of the parameter α from 0.0 to
1.0 with an increment of 0.1.

For the dynamic VM parameter-based placement, the conducted experiments react
to both the hot and cold PMs by migrating VMs whenever possible:

• For hot PM detection: The experiments make use of a static overutilization
threshold of CPU utilization. As an illustration, a PM is considered hot, when
CPU utilization is 100%. Additionally, In Experiment 4, we have also explored
other overutilization thresholds such as 80% and 90%.

• For VM selection: The following experiments migrate VMs from hot PMs to
minimize the resulting SLAVs by reducing the overutilization situations. The

1https://github.com/Cloudslab/cloudsim/releases/tag/cloudsim-3.0.3
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conducted experiments chose to start by migrating VMs with the minimum
memory for the hot PMs so that it can reduce the overall migration time.

• For cold PM detection: After migrating VMs from hot PMs, the dynamic VM
placement controller tries to migrate all VMs from the least utilized PM without
resulting in any hot PMs whenever possible. If all VMs have been migrated from
a cold PM, then the dynamic VM placement controller switches that PM off to
save energy.

The simulated CDC runs for a whole day, and the dynamic parameter-based VM
placement solution takes place every five minutes of simulated time. To measure the
performance of the parameter-based VM placement solution, the conducted experi-
ments measure the following performance metrics:(1) energy consumption; (2) ab-
solute number of PMs (NPMs); (3) number of SLAVs (NSLAVs); (4) percentage of
SLAVs (SLAVs); (5) average CPU utilization; (6) Number of VM migrations. The
estimation of these performance metrics has been described in Section 3.6.

The academic literature on VM placement has revealed the permanence of SLA vi-
olations in the case of demand-based placement (i.e. setting α to 0); even when adopt-
ing highly sophisticated algorithms (for VM placement, PM overload and underload
detection, and VM selection) [RCTY19, XHL19, KA19, ARMMA18, RKT19, WT18].
This confirms that all demand-based VM placement solutions suffer from SLA vi-
olations, and therefore there is always an area to explore between the demand- and
reservation-based strategies. We have conducted three experiments, where each ex-
periment runs using one of the three different workload traces. The details of the
conducted experiments and the results are described below:

4.5.2 Experiment 1: Using Synthetic Traces

Experiment 1 analyses the results of the proposed parameter-based VM placement
solution using the randomly generated CPU usage traces. In this experiment, vari-
ous performance metrics have been calculated such as the absolute number of VMs,
SLAVs, energy consumption and the average CPU utilization in relation to the change
of the parameter α.

Absolute number of PMs (NPMs) to number of SLA violations (NSLAVs):

Figure 4.7(a) shows the change in the number of SLAVs (NSLAVs) to the absolute
number of the running PMs as the value of the parameter α changes from zero to one.
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Each point in the figure represents a distinct value of the parameter α as defined in
Equation 4.13. In the beginning, a little increment in the value of the parameter α

results in a significant and gradual reduction in the number of SLAVs. As shown in
Figure 4.7(a), using the demand-based VM placement (by setting α = 0), the number
of PMs is reduced by around 50% compared to the reservation-based VM placement
when α is set to one. Looking at Figure 4.7(a), it is apparent that the demand-based
VM placement introduces more SLA violations. The most interesting aspect of Fig-
ure 4.7(a) is that the cloud provider can reduce more than 37% of the total number of
SLAVs with only around 13% increment in the number of running PMs by setting the
value of the parameter α to 0.2, which authenticates the gained flexibility and benefit
of adopting the parameter α.

Energy consumption to percentage of SLAVs:

Figure 4.7(b) shows energy consumption to the percentage of SLAVs along with the
change in the parameter α. Figure 4.7(b) demonstrates that adopting the parameter-
based VM placement strategy can enable the cloud provider to reduce energy con-
sumption by around 28% (as opposed to reservation-based VM placement) while hav-
ing a near 0% SLAVs (when setting the value of α to 0.6). The inverse relationship
between energy consumption and SLAVs while changing the parameter α enables the
cloud provider to find a suitable trade-off between the cloud service cost and violation
costs. A closer inspection of Figure 4.7(b) suggests that adding an extra slack to the
demand-based VM placement (e.g. setting α = 0.2) can significantly reduce SLAVs
with a moderate increase in the amount of energy consumed.

Average CPU utilization:

The efficient utilization of PMs is of great importance to the operators of CDCs.
Therefore, the dynamic reallocation of VMs tries to ensure more efficient utilization
by reducing the underutilization scenarios. It is apparent from Figure 4.7(c) that the
demand-based placement (α = 0) improves the average CPU utilization by more than
50% (70.7% as opposed to 47% in case of reservation-based VM placement). Fig-
ure 4.7(c) shows that setting the value of the parameter α in the range [0.1, 0.3] im-
proves PMs’ utilization. Additionally, it also shows that the highest CPU utilization
is achieved when the values of the parameter α are set between 0.1 and 0.2. Besides
reducing the SLAVs (as shown in Figure 4.7(a)), adjusting the value of the parameter
α may improve the average utilization of the PMs.
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Figure 4.7: Experiment 1: using synthetic workload traces

Number of VM migrations:

Figure 4.7(d) shows the change in the number of VM migrations for each value of
the parameter α. From Figure 4.7(d), it is clear that increasing the value of param-
eter α between zero and one results in a significant reduction in the number of VM
migrations. Additionally, when the parameter α is set to one (reservation-based place-
ment), there are no migrations (number of migrations is zero). Therefore, using the
parameter-based VM placement, the cloud provider can control the number of VM
migrations within the CDC to reduce the overall SLAVs.
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4.5.3 Experiment 2: Using Normal PlanetLab Traces

In contrast to Experiment 1, this experiment evaluates the proposed parameter-based
VM placement solution using real workload traces from PlanetLab. Recall from Chap-
ter 3, the average CPU utilization of the normal PlanetLab traces is low, which validates
the fact that most servers are underutilized most of the time. The effect of this low uti-
lization can be seen in the following results from the parameter-based VM placement
solution using normal PlanetLab traces.

Figure 4.8: Experiment 2: using normal PlanetLab traces

Absolute number of PMs (NPMs) to number of SLA violations (NSLAVs):

Figure 4.8(a) presents the results obtained from using the normal PlanetLab traces by
displaying the NSLAVs to the absolute number of PMs as the value of the parameter
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α moves from zero to one. What stands out in Figure 4.8(a) is that it exhibits a sharp
decrease in the number of SLAVs when the value of parameter α increases from 0
to 0.2. This rate of decrement in the number of SLAVs is even more apparent when
compared to the results from the synthetic workload traces shown in Experiment 1. On
the other hand, there is no significant change in the number of SLAVs for values of
parameter α≥ 0.3 due to the low utilization nature of the normal PlanetLab traces.

Energy consumption to percentage of SLAVs:

In Figure 4.8(b), there is a clear trend of decreasing the percentage of SLAVs when
increasing the parameter α from 0.0 to 0.2. Compared to reservation-based placement
(when α is set to one); setting the parameter α to 0.2 reduces the percentage of SLAVs
to near 0% (the exact value is 0.00005%) while reducing the energy consumption by
around 66%.

Average CPU utilization:

Figure 4.8(c) shows the average CPU utilization to the absolute number of PMs as
the parameter-based VM placement solution moves between the demand-based and
reservation-based placement. For the normal PlanetLab workload, it did not reveal
precisely the same pattern that previously appeared in the random workload experi-
ment. This is due to the nature of the normal PlanetLab traces, as the actual utilization
of many VMs is 0%. As demonstrated in Equation (4.13), when the CPU demand of a
VM is zero, then the value of the allocated CPU resources for the VM is going to be
a percentage of the reservation. Accordingly, the CPU utilization is based only on the
reservation (VM size) when the VM is entirely idle.

Number of VM migrations:

Figure 4.8(d) demonstrates that increasing the value of the parameter α from zero
to one will significantly reduce the number of VM migrations. The number of VM
migrations is reduced by 27% when setting the parameter α to 0.2. What is apparently
counter-intuitive in Figure 4.8(d) is that when the parameter α is set to one (reservation-
based), the number of VM migrations is not zero (the number of migrations is precisely
399). The reason for this is that many of the PlanetLab VMs have 0% utilization
which makes some PMs underutilized, and hence VM migration happens to improve
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the utilization of these PMs. If the cloud provider decided to prevent VM migrations
when α is set to one, then he can achieve this by disabling the cold PM detection.

4.5.4 Experiment 3: Using Skewed PlanetLab Traces

Experiment 3 reports the results from adopting the parameter-based VM placement
solution using the skewed workload traces from PlanetLab (more details about the
traces can be found in Chapter 3).

Figure 4.9: Experiment 3: using skewed PlanetLab traces

Absolute number of PMs (NPMs) to number of SLA violations (NSLAVs):

Figure 4.9(a) proves that the skewed PlanetLab traces exhibits a similar behaviour
to both the normal PlanetLab and the synthetic traces. All the tested traces confirm
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that a little increase in the value of the parameter α results in a noticeable reduction
in the number of SLAVs. In Figure 4.9(a), the decrease in the number of SLAVs
shows a gradual behaviour (as opposed to the more sudden behaviour in case of normal
PlanetLab traces in Experiment 2). The reason for this gradual decrease is that the
average utilization of the VMs is higher in the skewed PlanetLab traces, which has
also be seen on the synthetic traces of Experiment 1.

Energy consumption to percentage of SLAVs:

Figure 4.9(b) shows that increasing the value of the parameter α results in an apparent
reduction in the percentage of SLAVs. Furthermore, Figure 4.9(b) confirms that there
is also a significant decrease in the percentage of SLAVs as the parameter α approaches
0.2. Comparing Figure 4.9(b) to the results from the synthetic and normal PlanetLab
traces demonstrates the same conclusion which confirms that it is a potential profit for
the cloud provider to make use of the parameter α.

Average CPU utilization:

Figure 4.9(c) reveals that a cloud provider could ensure better utilization of the PMs by
a little increase in the value of the parameter α (setting α = 0.1). Furthermore, when
the parameter α is set to 0.2, the cloud provider could almost get the same utilization
as in demand-based placement while reducing the number of SLAVs by 58% with only
around 15% increase in the number of running PMs.

Number of VM migrations:

Figure 4.9(c) shows the same behaviour appeared in case of the synthetic and normal
PlanetLab traces; increasing the value of the parameter α from zero to one results in
a significant reduction in the number of VM migrations. As in case of the normal
PlanetLab traces, it is clear that there are VM migration even when the parameter α is
set to 1. The reason for these migrations, when α = 1, is that some PMs are entirely
idle (as the utilization of the hosted VMs is 0%) and hence some VM migrations will
happen to improve the utilization of PMs. Disabling the cold PM detection mechanism
will enable the CDC operator to prevent these migrations when setting α to one.
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Figure 4.10: Experiment 4: PMs’ Overutilization threshold versus parameter α using
normal PlanetLab (a), and synthetic traces (b)

4.5.5 Experiment 4: Overutilization threshold versus Parameter α

The goal of Experiment 4 is to examine the effect of changing the PMs’ overutilization
threshold to the change in the value of parameter (α) for the hosted VMs.
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In Figure 4.10, the X-axis exhibits the absolute number of PMs used for hosting the
VMs, while the Y-axis represents the percentage of SLAVs. Additionally, each point
represents a different value of the parameter α starting from 0 (demand) at the top left
of the figure, and increasing by 0.1 till reaching 1 (reservation) at the bottom right
of the figure. Figures 4.10(a),(b) present results using PlanetLab and synthetic traces
respectively; the green, red and blue lines represent the number of PMs to SLAVs under
the overutilization thresholds of 100%, 90% and 80% respectively. From Figure 4.10,
it is apparent that there is a tradeoff between increasing the value of the parameter α

and the decrease of the overutilization threshold using both normal PlanetLab traces
and synthetic ones. Figure 4.10 confirms that reducing the overutilization threshold
per individual PMs along with the increase in the value of the parameter α results in an
apparent rise in the number of running PMs and a reduction in the resulting of SLAVs.
On the other hand, increasing the PMs’ overutilization threshold along with a decrease
in the value of parameter α improves the PMs’ utilization (shown in the lower number
of used PMs) at the cost of an increase in the SLAVs. Overall, Experiment 4 indicates
that the operators of CDCs can combine the PM’s overutilization threshold and the
parameter α of the VMs to get more viable options for the tradeoff between utilization
and SLAVs.

4.6 Summary

This chapter started by introducing the mathematical formulation of the VM place-
ment problem and the objective function as well as the placement constraints. Then,
it explained the sources of SLAVs in the IaaS service model which commonly result
from both the overutilization situations per PMs due to the aggressive consolidation of
the VMs as well as the migrations of the VMs among PMs. The VM migration time
depends on both the memory utilization and the available network bandwidth. Next,
the chapter introduced the new parameter-based VM placement strategy which repre-
sents the middle way between the existing VM placement strategies (demand-based
and reservation-based VM placement strategies).

The proposed parameter-based VM placement strategy makes use of a single pa-
rameter (α) that allows investigating the entire area between full-reservation and demand-
based allocation based on a custom equation. For solving the proposed parameter-
based VM placement strategy, the chapter presented an action (rule-based) policy for
both the initial and the dynamic VM placement based on the type of placement.
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The empirical evaluation of the proposed parameter-based VM placement using
three types of workload traces revealed exciting insights as well as viable options for
the cloud operators. The results confirm that the parameter-based VM placement strat-
egy can give the cloud operators more flexibility in choosing between different alterna-
tives. For example, a little increase in the value of the parameter (α) results in a signif-
icant change in the energy consumption and SLAVs which enables the cloud provider
to find a better balance between the conflicting objectives. Additionally, it is found that
combining the PM’s overutilization threshold in relation to the parameter α of the VMs
results in more options for the tradeoff between utilization and SLAVs. Such viable al-
ternatives are not available when using both demand-based and reservation-based VM
placement strategies. To conclude, the proposed parameter-based VM placement can
open new doors for various opportunities for public cloud providers or private cloud
owners to strike an appropriate balance between energy consumption and SLAVs.



Chapter 5

Dynamic Tuning for Parameter-based
Virtual Machine Placement

5.1 Introduction

In Chapter 4, we have investigated the middle way between allocating VMs to PMs
based on the reserved VM size (reservation-based placement) and the actual workload
demand of VMs (demand-based placement). Examining this middle way resulted in
the proposed parameter-based VM placement solution that offers more flexibility in
CDC management through enabling cloud providers to specify the optimization ratio
of business-related metrics such as PM utilization or SLA violations (SLAVs), among
others. For this purpose, the parameter α of our solution is set statically to the desired
ratio and as an input to the VM placement algorithm. In our evaluation of our solution
in Chapter 4, the value of the parameter α remained constant throughout each entire
experiment and, in industrial settings, would remain constant until explicitly changed.

This chapter extends the capabilities of the parameter-based VM placement solu-
tion by introducing a dynamically adjusted value for the parameter α. The chapter
first demonstrates the need and benefits of employing such dynamic adjustment. This
is followed by an introduction to the proposed dynamic algorithms that can automat-
ically fine-tune the value of the parameter α on the fly based on the cloud provider’s
objectives and any other placement constraints. Finally, an empirical evaluation is pre-
sented to evaluate the proposed algorithms for the dynamic estimation of the parameter
α. The work on this chapter is based on the paper [MS18].

117
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5.2 The Need for a Dynamic Parameter

One of the main characteristics for the wide adoption of cloud computing is the rapid
elasticity where the cloud services are easily provisioned, released and scaled up and
down based on the user request. There are two common scaling approaches in cloud
environments namely, vertical and horizontal scaling [VRMB11]. Vertical scaling
resizes each VM by scaling a VM’s allocated resources (CPU, memory, bandwidth) up
when the workload ramps up or down otherwise. Horizontal scaling involves adding
more PMs or VMs for running the hosted applications.

The parameter-based VM placement scales the allocated resources per each VM up
or down based on the cloud provider objectives. It considers vertical scaling by adding
an extra margin (slack) to the resources required to meet the actual demand to accom-
modate some later sudden increase of the workload. This margin is calculated based
on the current value of the parameter α as shown in Equation 4.13 which introduced in
Chapter 4 and recalled here for convenience. The parameter α in Equation 4.13 spec-
ifies the extra slack to the demand-based placement based on the difference between
the full reservation and the actual demand. The changes in the value of the param-
eter result in many possible VMs-to-PMs mappings which reflect different trade-offs
between the utilization and SLAVs. The extreme values of the parameter (0 and 1)
represent the two extremes of the VM placement strategies.

α =

0, Demand-based VM Placement

1, Reservation-based VM Placement

There are some questions that cloud providers may raise to ensure efficient place-
ment of VMs in the CDC, for example:

• What value of the parameter α should the cloud provider set so that the resulting
SLAVs do not surpass a specific SLAVs threshold?

• Which value of the parameter α the cloud provider should set to ensure that the
consumption is below a specific threshold?

Adopting a parameter-based VM placement solution that keeps using the same value
of α (static parameter) will not enable the cloud provider to set a SLAVs threshold
that should not be surpassed. Such a statically predefined value of the parameter α

cannot guarantee a number of SLAVs less than a predefined SLAVs threshold (unless
the parameter α is set to 1, or close to 1). The reason for that is because the number
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of SLAVs depends on both the current value of the parameter α (and hence the VM-
to-PM mapping) and the specific characteristics of the workloads running on each
single VM. Therefore, it becomes a challenge to dynamically estimate the value of the
parameter α at each scheduling interval so that the resulting number of SLAVs does
not exceed the SLAVs threshold (without underutilizing the resources to save energy
consumption). Adopting a dynamic parameter can also enable the cloud provider to
set other thresholds for energy consumption, the number of active PMs or the number
of VM migrations and whatever he cares about. The following sections describe the
proposed algorithms for estimating a dynamic parameter in more detail.

5.3 Dynamic Parameter-based VM Placement

We can dynamically tune the value of the parameter α either per (1) scheduling interval
or (2) per VM. Optimizing the value of α for each scheduling interval means that the
parameter α may be adjusted per interval based on the specified thresholds, but all VMs
will have the same value of α. Tuning α per VM means that the value of α may be
modified per each VM for each scheduling interval. In this chapter, we are considering
the online estimation of α per scheduling interval. Chapter 6 considers estimating α

per VM for each interval.

In this work, we assume that there is a predefined SLAVs threshold (set by the
cloud provider) that defines the number of SLAVs that should not be exceeded in order
to meet the SLA requirements derived from some business goals. Similar thresholds
can be managed for different business goals (e.g. energy consumption, cost . . . ). The
proposed dynamic parameter-based VM placement solution observes the predefined
threshold while actively seeking to optimize resource utilization. On the one hand, the
proposed dynamic parameter-based VM placement algorithms can scale up a VM’s
allocated resources (bounded by the VM’s maximum size) when the number of SLAVs
exceeds the SLAVs threshold. On the other hand, the proposed algorithms can scale
down the allocated resources when the number of current SLAVs is lower than the
SLAVs threshold to ensure better utilization of the PMs. Figure 5.1 demonstrates one
of the possible changes in the value of the parameter α over the scheduling intervals
according to the relationship between the current SLAVs and the SLAVs threshold.
Exceeding the SLAVs threshold results in an increase in the value of the parameter and
vice versa.

In what follows, two generic approaches that can dynamically estimate the value of



120CHAPTER 5. DYNAMIC TUNING FOR PARAMETER-BASED VM PLACEMENT

Figure 5.1: Dynamic parameter in relation to SLAVs threshold and current SLAVs

the parameter α are presented; namely, instantaneous and window-based. These two
approaches correspond to different methods to increase or decrease the value of the pa-
rameter α at each scheduling interval. The rate of adjusting the value of the parameter
α can be either conservative or non-conservative. By conservative we mean that the
rate of increase or decrease is low, while non-conservative means the change rate of α

is high. The non-conservative approach ensures a quick reaction to the changes in the
CDC, while the conservative yields in a slower response to the changes. Making use of
the benefits of both the conservative and non-conservative approaches, we also adopted
a flexible approach which reflects both the conservative and the non-conservative to-
gether. The window-based approach is an example of history-aware algorithms that
are flexible and can make use of previously known data. Figure 5.2 shows a summary
of the proposed algorithms for the online estimation of the parameter.
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Figure 5.2: Algorithm classification for dynamic parameter estimation

5.4 Instantaneous Approach

The instantaneous approach estimates the value of the parameter α based on the cur-
rent value of the number of SLAVs and its difference from the SLAVs threshold. The
conducted experiments show that the conservative version of the instantaneous ap-
proach is inefficient in the environments where the workload indicates very high levels
of fluctuations which results in higher levels of SLAVs. Using only a conservative ap-
proach that slowly adjusts the value of the parameter α won’t enable the cloud provider
to achieve his goals efficiently. Therefore, we ignored the conservative instantaneous
approach and considered a non-conservative one that can promptly adjust the rate of
increase or decrease of the allocated resources (in this work, we are only considering
CPU resources) to adapt to high workload fluctuations. Thus, we hope to reduce the
number of SLAVs whenever this number exceeds the SLAVs threshold by increasing
the value of α. Conversely, the value of the parameter α is reduced when the num-
ber of current SLAVs is lower than the SLAVs threshold. The amount of change in
the value of α should drive efficient PM utilization without exceeding the predefined
SLAVs threshold.

The instantaneous approach estimates a new value of the parameter α based on the
difference between the current number of SLAVs and the SLAVs threshold (which we
call it the distance). The distance is the absolute value of the difference between the
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Figure 5.3: Non-conservative instantaneous approach to estimate the parameter (α)

SLAVs threshold and the current SLAVs as shown in Equation 5.1. To give a slight
boost when this difference is close to zero, we take the square root of the difference;
this seems to enable the algorithm to adapt promptly and makes it less sensitive to the
initial value of the parameter α.

distance = |thresholdSlavs− currentSlavs| (5.1)

Figure 5.3 shows how does the non-conservative instantaneous approach estimates the
value of the parameter α based on the distance between current SLAVs and the SLAVs
threshold. At time ti in Figure 5.3, the current SLAVs are higher than the SLAVs
threshold, and therefore the instantaneous approach increases the value of α using the
square root of the distance bounded by one (as the amount of allocated resources is
limited by the reserved VM size). On the other hand, at time t j, the current SLAVs
(SLAVt j) are less than the SLAVs threshold, and hence the value of the parameter α is
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decreased bounded by zero (as the minimum allocated resources should be based on
the demand) to reduce resource wastage and improve energy consumption.

Algorithm 2 Estimating α for use by a non-conservative instantaneous approach
1: currentSlavs← getCurrentSlavs();
2: thresholdSlavs← The non-exceeding SLAVs threshold;
3: α← get current value of α;
4: distance← |thresholdSlavs− currentSlavs|
5: if (currentSlavs ≥ thresholdSlavs) then
6: α = min(1,α+

√
distance);

7: if (currentSlavs < thresholdSlavs) then
8: α = max(0,α−

√
distance);

9: return α;

Algorithm 2 shows the computation of the value of the parameter α using the square
root of the absolute distance between the current number of SLAVs and the SLAVs
threshold. Algorithm 2 is an example of a non-conservative approach as it tries to
promptly change the value of α with the help of the square root (distance ∈ (0,1), so√

distance > distance). Line 1 of Algorithm 2 computes the current value of SLAVs,
and Line 2 defines the SLAVs threshold. Then, the algorithm reads the current value
of the parameter α and computes the distance as the absolute difference between the
SLAVs threshold and the current value of SLAVs. In Lines 5 to 8, the algorithm adjusts
the value of the parameter α. It increases α if current SLAVs are greater than the
SLAVs threshold and vice versa (as shown in Lines 6 and 8 respectively). Finally, the
algorithm returns the estimated value of α as shown in Line 9. Algorithm 2 takes a
constant time regardless of the number of inputs, so the computational complexity is
O(1).

5.5 Window-based Approach

As previously introduced, the instantaneous approach only cares about the current
value of the SLAVs as opposed to the SLAVs threshold. This means that we might
be missing useful information that may lead to a better adjustment to the value of the
parameter α. For example, the frequency of adjusting the parameter α in the instan-
taneous approach is high. Additionally, the adjustment decision is triggered based on
the current value of SLAVs as opposed to the SLAVs threshold.

On the contrary, the window-based approach is history-aware in that it makes use
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Figure 5.4: Increasing trend - using a window of SLAVs history to estimate α

of some of the previous values of the number of SLAVs in addition to the current value
of the SLAVs. Thus, it looks through a window of a specified size into the history of
SLAVs to identify a trend (if there is one) with the preceding SLAVs (for example,
whether the number of SLAVs is increasing or decreasing) in order to help estimate a
more informed and fine-grained value of the parameter α. Using such a window entails
that the parameter α is only adjusted (if deemed necessary) after a certain amount
of time determined by the window size and the interval time). This span between
assessments to take actions tend to make the solution more robust so as not to react
to sudden changes that may not last for a long time. As an illustration, in Figure 5.4,
the number of SLAVs at ti+2 (SLAVti+2) is higher than the SLAVs threshold, and the
number of SLAVs is increasing over Window 1, which is the area between ti and ti+2.
Consequently, we should increase the allocated resources by increasing the value of α

at a high rate to reduce the number of SLAVs as soon as possible. Nevertheless, when
the current number of SLAVs is lower than the SLAVs threshold, and the number of
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SLAVs is increasing, as shown over Window 2 in Figure 5.4, then we should decrease
the value of the parameter α by a small rate to ensure less energy consumption through
better utilization without exceeding the SLAVs threshold. Figure 5.4 confirms that the
window-based approach will not take action before a specific time (the time imposed
by the window size). For example, the value of α is not changed at timei+1 and time j+1

even though the SLAVs are increasing.

Figure 5.5: Increasing trend - using a window of SLAVs history to estimate α

Figure 5.5 shows a decreasing trend over the specified windows and how does the
value of the parameter α is estimated accordingly. For example, when the current
SLAVs are higher than the SLAVs threshold and the window is decreasing, then the
value of α is increased by a smaller amount (as shown over Window1). However, when
the current SLAVs are less than the SLAVs threshold, and the window is decreasing,
then the value of the parameter α might be reduced by a high amount to ensure efficient
utilization (as shown over Window2).

Algorithm 3 describes the window-based approach that makes use of the previous
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Algorithm 3 Estimating α using a window-based approach
1: currentSlavs← getCurrentSlavs();
2: thresholdSlavs← The non-exceeding SLAV threshold;
3: α← get current value of α;
4: distance← |thresholdSlavs− currentSlavs|
5: slavHistory[]← stores previous SLAVs values;
6: slavHistory.add(currentSlavs);
7: windowSize← set window size;
8: window[]← selectedHistory(slavHistory, windowSize);
9: if (currentSlavs ≥ thresholdSlavs) then

10: for (i = 0; i < len(window); i++ ) do
11: if (window[i] > window[i+1]) then
12: α = min(1,α+distance);
13: return α;
14: else
15: continue;
16: α = min(1,α+

√
distance);

17: else
18: for (i = 0; i< length(window); i++) do
19: if (window[i] < window[i+1]) then
20: α = max(0,α−distance);
21: return α;
22: else
23: continue;
24: α = max(0,α−

√
distance);

25: return α;

values of SLAVs to calculate the parameter α. Algorithm 3 starts by calculating the
current value of SLAV, then it adds it to the history of SLAVs by making use of the
slavHistory array. After that, the algorithm saves the selected history in the window

array, which will include the previously stored values of SLAVs for the specified win-

dowSize. Then, the algorithm checks whether the number of current SLAVs is greater
or less than the SLAVs threshold. When the number of current SLAVs is greater than
or equal to the SLAVs threshold, and the number of SLAVs is not increasing, then the
algorithm increases the parameter α by a small value as shown in Lines 9 - 12. How-
ever, the algorithm increases the parameter α by a higher amount when the number of
SLAVs is increasing (in which case we use the square root, as shown in Line 16). On
the other hand, when the number of the current SLAVs is less than the SLAVs thresh-
old, and the number of SLAVs is not decreasing, then we reduce α by a small value
as shown in Lines 18 - 20. Same as before, the algorithm reduces the parameter α by
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a higher value when the number of current SLAVs is less than the SLAVs threshold,
and the number of SLAVs is decreasing as shown in Line 24. Algorithm 3 is flexible
as it uses both conservative and non-conservative rates for adjusting the current value
of the parameter α. The computational complexity of Algorithm 3 is O(n) where n is
window size (the number of previous SLAVs values to investigate).

5.6 Experiments Setup

The details of the simulated CDC are the same as the one previously introduced in
Section 4.5.1. In the following experiments in Section 5.7, the initial placement of
the VMs as well as the dynamic reallocation of the VMs are based on Algorithm 1
which has been introduced in Chapter 4. The experiments then use the instantaneous
and window-based approaches to dynamically estimate the value of the parameter α

that guarantees the different SLA requirements instead of using a static value of the
parameter α.

We have conducted experiments to evaluate the estimation of the parameter α using
both the instantaneous and window-based approaches. For the window-based dynamic
parameter estimation approach (shown in Algorithm 3), we have used a window of size
two to capture the trend of previous SLAVs and check whether the number of SLAVs
is increasing or decreasing. For each of the two approaches, we have calculated two
performance metrics:

• The amount of energy (in KWh) consumed by all PMs to allocate the VMs with-
out exceeding the predefined SLAVs threshold.

• The resulting value of SLAVs.

To run the two algorithms for estimating an online value of the parameter α, we have
to set an initial value for the parameter α in both algorithms. The choice of the initial
values of α is as follows:

• The experiments run using four different initial values for the parameter α, from
the following list.

Initial values of α : [0.2,0.4,0.6,0.8].

The reason for choosing such values is to make sure they can cover the majority
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of the range between zero (demand-based), and one (reservation-based). Choos-
ing these different values enable us to test the sensitivity of each algorithm to
each different value of the initial parameter α.

As in Chapter 4, the two algorithms for the online estimation of α have been
tested using the same three types of workload traces (synthetic, normal PlanetLab, and
skewed PlanetLab). From the cloud provider’s point of view, we need to set SLAVs
thresholds that should not be exceeded; therefore, we have tested six different values
of SLAVs thresholds as follows:

• SLAVs thresholds for the synthetic traces:
The list of the chosen SLAVs thresholds for synthetic traces are as follows:

SLAVs thresholds: [0.1, 0.05, 0.01, 0.005, 0.003 and 0.001].

The reason for starting the SLAVs thresholds with the value 0.1 is because the
SLAVs resulting from the demand-based placement (i.e., α = 0, when the num-
ber of SLAVs is expected to be highest) is 0.1063.

• SLAVs thresholds for both normal and skewed PlanetLab traces:
The list of the chosen SLAVs thresholds for the PlanetLab traces are as follows:

SLAVs thresholds: [0.05, 0.03, 0.01, 0.005, 0.003 and 0.001].

The reason for starting with a value of 0.05 as the SLAVs resulting from demand-
based VM placement is 0.0542.

The dynamic VM placement uses algorithms to detect hot (overutilized) and cold
(underutilized) PMs to take the proper action. For the detection of hot PMs, these
experiments have used a static overutilization threshold of CPU utilization; a PM is
considered to be hot (overutilized) when CPU utilization is 100%. Whenever the
parameter-based VM placement algorithm detects a hot PM, it chooses to migrate
VMs with the minimum memory from the hot PM to minimize the total migration
time which reduces the overall SLAVs. After migrating VMs from hot PMs, the al-
gorithm tries to migrate all VMs from cold PMs by starting by the least underutilized
PMs whenever possible. The simulation of the experiments runs for a full day, and
the dynamic reallocation of the VMs takes place every five minutes of simulated time
(scheduling interval).
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Figure 5.6: Energy to SLAVs using the synthetic traces

5.7 Experimental evaluation

The following three subsections describe and analyse the results from three exper-
iments. Each one of these conducted experiments evaluates the instantaneous and
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window-based approaches using one of the three types of workloads (synthetic, normal
PlanetLab, and skewed Planetlab traces).

5.7.1 Experiment 1: Using Synthetic Traces

Figure 5.6 shows the amount of energy consumed and the resulting SLAVs under the
specified SLAVs threshold by running both the instantaneous and the window-based
approaches using the synthetic workload traces. In each subgraph of Figure 5.6, the
X-axis represents the resulting SLAVs, and the Y-axis represents the amount of energy
consumed to allocate the VMs to comply with the specified SLAVs threshold. The red
dotted vertical line represents the SLAVs threshold; this experiment and the next ones
assume that the cloud provider has specified a different SLAVs threshold in each of
these subgraphs. Each point represents energy consumption to the number of SLAVs
(cf. Equation 4.13 in Chapter 4) using a different initial values of the parameter α

(initial α: 0.2, 0.4, 0.6 and 0.8).

By and large, Figure 5.6 shows that the window-based approach (green dots) ad-
heres to the various specified SLAVs thresholds in all the six subgraphs with more
savings of energy consumption as opposed to the instantaneous approach (blue rectan-
gles). Nevertheless, Figure 5.6(d), (e) surpassed the predetermined SLAVs threshold
with an insignificant value. Additionally, Figure 5.6 demonstrates that the window-
based approach performs better than the instantaneous approach as it can meet the
SLAVs threshold while consuming less energy; which becomes more obvious as the
cloud provider decreases the predefined SLAVs threshold. However, for high values
of SLAVs thresholds, as shown in Figure 5.6(a), both approaches are somewhat sensi-
tive to the initial value of the parameter α as shown in the spread of the plotted points
across the Y-axis. Finally, Figure 5.6(b), (c), (d), (e) and (f) show that the window-
based approach becomes less sensitive to the initial value of α as the SLAVs threshold
gets smaller, in contrast to the instantaneous approach.

5.7.2 Experiment 2: Using Normal PlanetLab Traces

Experiment 2 aims to examine the behaviour of both the instantaneous and window-
based approaches using real workload traces from PlanetLab instead of the synthetic
ones. Figure 5.7 shows the consumed energy and the resulting SLAVs from adopting
the two approaches using normal PlanetLab traces. As concluded from Experiment 1,
Figure 5.7 still confirm that the window-based approach usually performs better than
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Figure 5.7: Energy to SLAVs using normal PlanetLab traces

the instantaneous one as it can adhere to the SLAVs threshold with lower energy con-
sumption. Moreover, both approaches do not exceed the SLAVs threshold except for
the insignificant value of exceeding the SLAVs threshold in Figure 5.7(f). As opposed
to the synthetic traces, the normal PlanetLab traces show somewhat higher sensitivity
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to the initial value of the parameter α as the PlanetLab traces have higher variabil-
ity in the data. Furthermore, the results reported from Experiment 2 suggest that the
window-based approach produces better outcomes; by showing less sensitivity to the
initial value of the parameter α when the SLAVs threshold is set to smaller values.
However, it shows higher sensitivity for higher values of SLAVs thresholds. All in
all, both experiments demonstrate that, as expected, the window-based approach can
estimate the parameter α in a way that provides better results.

5.7.3 Experiment 3: Using Skewed PlanetLab Traces

Finally, Experiment 3 examines the results from the non-conservative instantaneous
approach and the window-based one using the skewed PlanetLab traces. Generally,
the window-based approach can estimate a parameter that results in more efficient PM
utilization while adhering to the specified SLAVs threshold, as shown in Figure 5.8.
Furthermore, Figure 5.8 confirms that the window-based approach becomes less sen-
sitive to the initial value of the parameter α when the required SLAVs threshold is
reduced (becomes near to zero). Experiments 1, 2, and 3 confirm that a cloud provider
can adopt both instantaneous or window-based approaches to dynamically estimate the
value of the parameter α based on a predefined SLAVs threshold. In summary, these
experimental results show that adopting a window-based approach for the online esti-
mation of the parameter returns a more fine-tuned parameter that efficiently utilize the
PMs while not exceeding the specified SLAVs thresholds.

5.8 Discussion

Both the instantaneous and window-based approaches proved to dynamically estimate
the value of the parameter α on the fly. This online estimation of the parameter α

offers more flexibility for CDC management in achieving business-related objectives
such as setting an SLAVs threshold that should not be exceeded. One of the issues that
emerges from adopting these approaches is that both methods use the same value of the
parameter α for all VMs (a single α for the whole CDC for each scheduling interval).
Setting α the same for all VMs could waste energy as some VMs might have a higher
value of α even though that VM may be idle or low utilized. If the parameter-based VM
placement solution can use a small value of the parameter for the underutilized VMs,
then this might lead to more efficient utilization (decreasing the value of α reduces
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the added slack to the demand which minimizes underutilization). Consequently, the
following chapter (Chapter 6) tries to ensure more efficient utilization by adjusting the
value of the parameter per each VM whenever it is expected to be useful.

Figure 5.8: Energy to SLAVs using skewed PlanetLab traces
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5.9 Summary

This chapter demonstrated the need for dynamically estimating the value of the param-
eter α of the proposed parameter-based VM placement solution on the fly. The reason
for this is that a statically predefined, fixed value of the parameter α cannot guaran-
tee, due to workload fluctuations, that the number of SLAVs is less than a predefined
SLAVs threshold (unless the parameter α is set to one, or close to one). The estima-
tion of the parameter α on the fly has the objective of not to exceed a certain SLAVs
threshold while achieving better utilization.

Next, the chapter explained that there are two general approaches for the online
estimation of the parameter, namely, instantaneous and window-based. The instanta-
neous approach adjusts the value of the parameter α immediately based on the dis-
tance between the number of current SLAVs and the predefined SLAVs threshold. The
window-based approach makes use of the recent history of the number of SLAVs be-
fore making the appropriate decision concerning the estimation of the parameter α. By
and large, the two proposed approaches managed to adhere to the SLAVs threshold.
However, the experimental evaluation confirms that the window-based approach out-
performs the instantaneous one by meeting the SLA with better PM utilization and en-
ergy savings. The performance gain of the window-based approach may be attributed
to: (1) the more sophisticated strategy used to select the rate with which to increase
or decrease the value of the parameter α, (2) and perhaps due to the mix between the
conservative and non-conservative choices in the window-based algorithm.



Chapter 6

Parameter tuning using a Hybrid
Approach

6.1 Introduction

In Chapter 5, we have introduced reactive instantaneous and window-based approaches
for the dynamic estimation of the parameter α. These approaches are reactive as they
adjust the value of the parameter α based on the SLAVs threshold compared to the
current and previous values of SLAVs, respectively. The value of the estimated pa-
rameter α might change for each scheduling interval; however, it is the same for all
VMs in the cloud data centre (CDC). Determining the parameter α for each VM (a
workload-aware parameter) as opposed to establishing a CDC-wide parameter could
result in more favourable results in terms of more efficient utilization of the PMs while
adhering to the SLA requirements. Therefore, this chapter focuses on the online es-
timation of the parameter α for each VM on each scheduling interval using a hybrid
approach.

This chapter presents a hybrid approach (both reactive and proactive) for param-
eter estimation. The proposed hybrid approach is reactive as it reacts to the current
state of the VMs-to-PMs mapping based on the present SLAVs and the SLAVs thresh-
old. Moreover, it is proactive as it adjusts the value of the parameter based on the
predicted CPU utilization of the individual VMs. To adopt this hybrid approach, the
parameter-based VM placement solution should be able to forecast the future workload
for each VM and act accordingly. Therefore, this chapter demonstrates the application
of two techniques for time series prediction to predict the VMs’ CPU utilization for
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the proposed hybrid approach of parameter estimation. These two techniques are ran-
dom forests (RF) and a recurrent neural network model using long short-term memory
(LSTM).

6.2 A Hybrid Approach for Parameter Estimation

If a cloud provider can estimate the utilization of a VM for the next scheduling inter-
val(s), then he can make use of this knowledge to reduce the value of the parameter
whenever he is reasonably sure that future utilization is going to be less than the cur-
rent one. Reducing the value of the parameter α will minimize the amount of allocated
resources for a VM, which can ensure more efficient utilization in order to save more
energy. In such a scenario, the parameter-based VM placement solution will need to
adopt two parameters as follows:

1. The first parameter is a SLAVs threshold at the CDC level, whose purpose is to
ensure that acquired SLA requirements are observed as much as possible. We
use αcdc to refer to this parameter which is the same parameter that has been
previously introduced in Chapter 5.

2. The second parameter is for the VM level, where each VM could have a different
value of that parameter to ensure more efficient utilization. We use αvm to refer
to the parameter for the VM level. The maximum value of the αvm is bounded
by the maximum value of the αcdc. Estimating αvm is the focus of this chapter
with the help of time-series prediction techniques.

As an illustration, Figure 6.1 shows an example of adjusting the value of a VM’s pa-
rameter αvm based on the predicted CPU utilization in the following interval(s). In
Figure 6.1, the current CPU utilization of a VM at time ti (currentcpu

ti ) is higher than
the expected CPU utilization of that VM at time ti+1 (predictedcpu

ti+1), so increasing the
value of parameter is not useful and just wastes resources. Therefore, we can set the
value of αvm to a minimum value (zero as an example). On the other hand, if the cur-
rent CPU utilization of a VM at time t j (currentcpu

t j ) is expected to be lower than the
predicted CPU utilization of that VM at time t j+1 (predictedcpu

t j+1), then it may be better
to set the value of αvm to the same value of αcdc to make sure that it sticks to the SLAVs
threshold. These are just examples, but the principal idea is that the cloud provider can
adjust the value of the αvm with the help of the predicted utilization to ensure higher
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utilization of the CDC’s VMs. The following section describes the algorithm used for
estimating the parameter per each VM (αvm).

Figure 6.1: Parameter per VM based on current and predicted CPU utilization

6.3 Parameter Estimation for VM Level

Algorithm 4 estimates and sets the value of parameter αvm of each VM by considering
the predicted CPU utilization and the current value of the CDC’s parameter αcdc. Line
2 of Algorithm 4 estimates the value of αcdc using the window-based approach which
was previously introduced in Algorithm 3. After that, the algorithm creates an array
to store the n predicted CPU utilizations of each single VM. Then, the algorithm loops
over each VM in the list of VMs to set the value of each VM’s parameter αvm. Al-
gorithm 4 stores the VM’s current CPU utilization, and then predicts the next n CPU
utilizations of the current VM. We have decided to compare the current CPU utiliza-
tions to the future n predicted values (and not just the next predicted value) to try to
mitigate prediction errors and to make the algorithm more robust by not responding to
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single sudden spikes. Checking these n predicted utilizations could make the changes
of the αvm more robust and reduce the possibility of more SLAVs situations. Then, Al-
gorithm 4 compares the current value of CPU utilization to the array of the predicted
values of the next n scheduling intervals as shown in Line 8. If the maximum value
of the array of the n predicted CPU utilizations is expected to be less than the current
CPU utilization, then it may be a good opportunity to reduce the value of the parameter
αvm to ensure better resource utilization (the algorithm sets to zero as shown in Line
9). Setting αvm = 0 when the algorithm is confident that the future CPU utilizations are
less than the current minimizes the underutilization per VMs. However, if the current
CPU utilization is lower than or equal to the maximum of the array of the n predicted
utilizations, then the algorithm will set the value of the parameter αvm to the same
value of αcdc to ensure that the resulting SLAVs do not exceed the predefined SLAVs
threshold as shown in Line 11. Algorithm 4 only reduces the value of the αvm when-
ever it is expected that the predicted utilization over the n future intervals is lower than
the current interval. By this, we can ensure the same level of SLA requirements (when
αvm is set to the current value of αcdc), while ensuring better utilization when αvm is
reduced to a minimum value. The computational complexity of Algorithm 4 is O(mn)
where m is the number of VMs, and n is the number of predicted CPU utilizations that
the algorithm needs to check.

Algorithm 4 Estimating parameter (α) per VM based on predicted utilization
1: vmList← list of VMs;
2: αcdc← get current value of αcdc;
3: αvm← set the initial value of α for each VM;
4: nextNPredictedUtilization[]← array storing the n predicted future utilization;
5: for all (vm in vmList) do
6: currentUtilization = vm.getCurrentUtilization();
7: nextNPredictedUtilization = vm.getNextNUtilization();
8: if (max(nextNPredictedUtilization) ≤ currentUtilization) then
9: αvm← 0;

10: else
11: αvm← αcdc;
12: Return αvm;

Sections 6.4, 6.5 and describes in detail how the proposed hybrid approach predicts
the future CPU utilizations of the VMs with the help of supervised learning prediction
techniques starting from data preparation to model evaluation.
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6.4 Time Series Prediction

We aim to predict the values of CPU utilization of each VM for one or more future
scheduling intervals so that we can adjust the value of the parameter of our parameter-
based VM placement solution wisely. By making use of the history of CPU utilization,
we can predict the future ones, which helps in making better placement decisions. The
CPU utilizations of VMs is an example of a time series where CPU usage of each
machine is collected at regular intervals in a timely order. There are two types of
classes of time-series forecasting methodologies which are summarized as follows:

1. Classical statistical techniques: Examples of the classical statistical forecasting
approaches include the autoregressive integrated moving average (ARIMA) and
exponential smoothing.

2. Machine learning (ML) and deep learning (DL) techniques: Example of su-
pervised ML forecasting approaches include random forests (RF) and support
vector regression (SVR). An example of a DL approach is the recurrent neural
networks (RNN).

The hybrid approach for parameter estimation adopts two supervised learning tech-
niques for predicting CPU utilization namely, RF and LSTM to adjust the parameter
αvm accordingly. Predicting CPU utilization is an example of a supervised learning
process as CPU traces have features such as server name, time, and the actual CPU
utilization which represents the target variable (the one that needs to be predicted).
Finally, predicting CPU utilization is a regression and not a classification task as the
values of the target variable (CPU utilization) are continuous (for classification tasks,
target variables are categorical discreet classes).

Recall that the goal of our prediction task is to predict the CPU utilization of the
specified VMs over the future scheduling intervals. Regardless of the adopted time-
series forecasting technique, the following five steps summarize the main tasks that
have been followed to predict the CPU utilization of the VMs:

1. Acquisition and preparation of CPU traces:
For this task, we need to define the source of data and clean that data. After this,
we should transform the data in the proper structure. Finally, we split the data
into training and testing sets.

2. Establishing a baseline model: It is always better to set a baseline model that
the adopted prediction model should beat. If the prediction model is worse than
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the baseline model, then this is a clear indication that this model is useless and we
should find another one. Here, we have chosen to set the baseline model to the
baseline error which is the absolute difference between the average utilization
and the actual ones. Therefore, the adopted prediction model should at least beat
the baseline error.

3. Model training:
In this task, we will train the two models (RF and LSTM) using the training set
and setting the required parameters.

4. Making predictions:
Once the model has been trained to learn the relationship between features and
targets, we can start to make predictions on the test set.

5. Performance metrics of predictions:
Finally, we evaluate the performance of the prediction models using performance
metrics and perform hyperparameter optimization if required to improve the re-
sults of the prediction model. Hyperparameters are parameters that configured
externally by the users of the model and can not be estimated from the data.
They are called hyperparameters to differentiate it from the model parameters
that are internal to the model and whose values can be estimated from the data.
Examples of hyperparameters include the number of layers and batch size in an
artificial neural network (ANN) or the k in K-nearest neighbour (k-NN).

Tasks (1) and (2) are the same for both RF and LSTM, so we are going to discuss
them in the following subsections. Then, we are going to demonstrate tasks (3, 4, 5)
under Subsections 6.5.1 and 6.5.2.

6.4.1 Acquisition and Preparation of CPU Traces

The majority of machine learning models are profoundly affected by the amount of
data available. As previously introduced in Chapter 3, there is a limited number of
publicly available cloud data sets. The available PlanetLab traces contain server uti-
lization throughout ten days in the period between the 3rd of Mach 2011, and the 20th

of April 2011. The data are in the form of CPU utilization percentage and recorded
every five minutes. K-fold cross-validation is a simple and powerful approach for split-
ting the data into training and test sets. It divides the data into k groups, and iteratively
selects one of the groups to be the test set while the remaining k−1 to be the training
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set [JWHT13]. Empirical evaluations show that choosing a value of five or ten for k

can enhance the learning of the model [KJ13]. This means that the test set is usually
between 80% and 90%. The available PlanetLab CPU traces are for ten days only, and
the aim is to predict the CPU utilization of the VMs on the last day (20th April 2011).
Therefore, the first nine days of the PlanetLab traces represent the training set, while
the last day (20th April 2011) represent the test set.

The current CPU traces are organized in files (each server usage data are in one file
for each day), and each file has 288 rows where each row is the CPU usage recorded
every five minutes of each day. Because this thesis employs supervised ML and DL
approaches for the CPU prediction; so, the available CPU usage traces need to be
transformed into the proper structure that the prediction model requires. Therefore,
the current data structure needs to be converted into a one that consists of input (X)
and output (y) components. Based on the provided training set, the prediction model
can learn how to map inputs (X) to outputs (y).

y = f (X).

For example, if we have six points of CPU utilization values as follows:

CPU utilization = [12,6,17,82,67,77].

These data points will be transformed into the proper structure for the supervised
ML/DL technique as follows:

Input(X) Output(y)
[12, 6, 17, 82] 67
[6, 17, 82, 67] 77

On this new structure, each output (y) depends on several previous steps, which
are known as the lag observations. In the previous example, we suppose that the lag
is four, so each output (y) is estimated based on the four previous CPU utilization
traces. Thus, the question is how we can convert the existing CPU traces into samples
of input and output components? Instead of preparing it manually, the deep learning
library Keras1 provides a TimeseriesGenerator class that can automatically convert the
univariate CPU usage traces into batches of temporal data that are suitable to train the
supervised ML/DL model.

1https://keras.io/
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One of the useful exploratory data analysis tools before creating a prediction model
is to figure out the correlation between the current CPU traces. Therefore, we employ
the autocorrelation function (ACF) and the partial autocorrelation function (PACF) to
analyse the correlation among the CPU traces. The following subsection plots and
presents the ACF and PACF of the PlanetLab traces.

Autocorrelation and Partial Autocorrelation Functions

Both autocorrelation function (ACF) and partial autocorrelation function (PACF) are
measures of association between current and past values of time-series data. ACF and
PACF are handy measures for prediction as they indicate which past series values are
most valuable in predicting future values. On the one hand, an ACF can measure the
association between time series observations by estimating a correlation coefficient at
certain lags of the series. As an illustration, lag-1 autocorrelation measures the corre-
lation between yt and yt−1; lag-2 autocorrelation measures the correlation between yt

and yt−2 (two periods apart) and so forth. On the other hand, a PACF at lag x measures
the correlation between series values and its lagged values after removing the effect of
in-between x lags.

Figure 6.2 exhibits the ACF and PACF of the CPU utilization of PlanetLab traces.
In both plots, the x-axis represents the lag, and the y-axis represents the autocorrelation
(usually between -1 and 1). The autocorrelation at lag zero is always one, as each value
perfectly correlates with itself. In the autocorrelation plot, a spike at lag 1 indicates a
correlation of around 0.7 between each series value and the preceding value; also, the
peak at lag 2 shows a strong correlation between each value and the value of the two
previous points, and so on. The ACF plot indicates that there is a strong autocorrelation
component, whereas the PACF plot suggests that this component is distinct for the first
10 to 20 lag observations, approximately. Figure 6.2 suggests that a good starting size
of a window would be between 10 and 20.

6.4.2 Establishing a Baseline Model

The mean absolute error (MAE) is used as the baseline error that the prediction model
should outperform to be considered valuable. The baseline error is the absolute differ-
ence between the average CPU utilization and the actual values of CPU utilization, as
shown in Equation 6.1.

MAE(y, ȳ) =
1
n

n

∑
l=1
|ȳ− y| (6.1)
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Figure 6.2: ACF and PACF

Here n is the number of CPU traces, y is the actual CPU utilization, and ȳ is the average
CPU utilization. Based on the test dataset of PlanetLab traces, we have estimated the
baseline error using the MAE.

BaselineError = 10.31.

This means that the MAE resulting from the adopted prediction model should be less
than 10.31; otherwise, it is useless. If the MAE of the prediction model is greater than
the baseline error, then that model is considered worthless. Once the baseline error has
been estimated, the next step is to start the model training process.

6.5 Model Training and Making Predictions

This chapter adopted two supervised learning algorithms, namely RF and LSTM. The
following subsections demonstrate these two algorithms in detail, starting from model
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training and making predictions to the performance evaluation of the resulting model.

6.5.1 Random Forest

Random forest (RF) is one of the ensemble learning methods that generate and com-
bine multiple classifiers and aggregate their results, which improves the performance
of the model [LW+02]. RF is an example of a robust supervised machine learning al-
gorithm that is introduced by Leo Breiman [Bre01], depending on decision trees (DTs).
Put simply, a RF is a collection of many randomized independent DTs, and it combines
the predictions from these multiple DTs (which will have a broader scope of informa-
tion) to make a better prediction [LW+02]. Each DT in the random forest grows using a
bootstrap version of the sample instead of using the entire sample. A bootstrap version
of the sample means that some data points will be missing, and some might be selected
more than once (which is known as sampling with replacement). Moreover, random
forest adds randomness to the split of each node of the tree, which yields better per-
formance compared to support vector machines (SVM) and neural networks [Bre01].
Random forest is an averaging method of the various independent estimators (DTs).
If the RF is solving a regression task, then it estimates the mean of the various DTs.
On the other hand, RF estimates the highest vote among the DTs if a classification

task is being solved. Figure 6.3, from [RGSCD+16], shows how a RF can be used for
solving a regression problem. Any RF has two important parameters: (1) the number
of trees in the forest, (2) number of variables at each node of any tree [LW+02]. Let us
assume that n represent the number of samples in the training data set, f is the number
of features, and ntrees is the number of trees in the random forest. Then, the computa-
tional complexity of the RF training algorithm for the regression task is O(n2 f ntrees).
Additionally, the computational complexity of RF prediction is O( f ntrees).

Motivations for using RFs include easy to use, computational efficiency, fewer pa-

rameters to tune, and good performance. RFs are easy to use and available through
many powerful, open-source libraries such as scikit-learn2. Additionally, a RF can
be grown in parallel as it consists of many disjoint DTs. Furthermore, a RF only re-
quires few parameters to tune, can be applied to a wide range of prediction problems,
and have an outstanding practical performance [SBV+15]. Finally, another important
feature of RFs is that they can approximate both linear and nonlinear functions.

2https://scikit-learn.org/stable/
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Figure 6.3: Random forest for regression from [RGSCD+16]

RF: Model Training and Making Predictions

The following set of parameters have been used to train the random forest regression
model using scikit-learn library:

• Number of estimators: The number of estimators represents the number of deci-
sion trees in the RF; 200 estimators have been used for training the RF model.

• Maximum depth: This parameter defines the maximum depth of each decision
tree; the RF model has been trained using a depth of 20.

• Criterion: The quality of each split is measured using a criterion function such
as mean squared error (MSE) or mean absolute error (MAE). MSE has been used
as the criterion to measure the quality of the split.



146 CHAPTER 6. PARAMETER TUNING USING A HYBRID APPROACH

• Random state: Random number generators require a seed which is represented
by the random state parameter. The random state has been set to 100.

• Number of jobs: This parameter defines the number of jobs to run in parallel; a
value of −1 has been used, which means to use all available processors.

Following the model training using the training dataset, we have used the model
to make predictions of the test data set (which is represented by the last day of Plan-
etLab traces). Figure 6.4 shows the predicted versus actual CPU utilization from four
randomly selected VMs using the random forest. The X-axis represents the time in
minutes, and the Y-axis represents the percentage of CPU utilization. Figure 6.4 il-
lustrates that the predicted CPU utilization (using RF) is quite good without too much
optimization of the hyperparameters, which means that the model is robust.

Figure 6.4: RF: Predicted versus actual CPU utilization of four random VMs
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6.5.2 Long Short-Term Memory

An artificial neural network (ANN) is a computing system inspired by (but not identi-
cal to) the biological neural networks (NN) of human brains [Kri07]. An ANN tries to
mimic human brains by considering examples to learn how to perform tasks without
being explicitly programmed to do so. An ANN consists of three components: (1) set
of neurons, (2) directed connections among the neurons, and (3) weights of the con-
nections. A neuron (also known as a unit or a node) is the central unit of an ANN.
Each neuron in the ANN represents a simple processing unit and loosely models the
neurons in a biological brain. The connections among neurons resemble the synapses
in a biological brain by transferring signals among neurons. The weight of a connec-
tion represents the strength of connections between neurons and decides how much
influence the input will have on the output. Each neuron receives a number of inputs,
the weights of the connections and a bias value. During the model training phase, the
weights are updated in a way that decreases the prediction error (loss). The bias adds an
extra input to make sure that the neuron can be activated if all inputs are zeros. Besides
the inputs, weights, and bias, the activation function defines the output of a neuron
by squashing the output values in a smaller range. Common examples of activation
functions include linear, sigmoid, hyperbolic tangent (tanh), softmax, exponential lin-
ear unit (elu) [CUH15], scaled exponential linear units (SELUs) [KUMH17], rectified
linear unit(ReLU), and parametric rectified linear unit(PReLU). Figure 6.5 shows the
operations at a single neuron of a single-layered ANN and explains how the output
of a neuron is calculated based on the inputs, weights, bias and the application of the
sigmoid activation function (g).

An ANN consists of an input layer, output layer and one or more hidden layers.
If an ANN has two or more hidden layers, then it is called a deep neural network.
Figure 6.6 shows the architecture of an ANN. The input layer accepts the input values
and passes them to the next layer. The hidden layers consist of one or more hidden
layers, and each hidden layer may have a different number of neurons. The connection
between each two connected neurons should have a weight representing the strength of
that connection. The output layer receives input from the last hidden layer; the number
of outputs depends on the number of classes in case of classification problems or a
single value in case of regression problems.

The traditional feedforward neural networks, also known as multilayer perceptrons
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Figure 6.5: Operations at a single neuron of a single-layered ANN, from [Sta14]

Figure 6.6: Architecture of an ANN, from [BGF18]

(MLPs), have some limitations, including being stateless, and having no explicit han-
dling or understanding of the temporal structure between observations [Bro17]. There-
fore, Recurrent Neural Networks (RNNs) has been introduced to allow information
persistence. RNNs are a special type of neural network with loops that enable it to
retain information, by allowing information to be passed from one step of the net-
work to the next. Figure 6.7, from [Bro17], shows an example of an unrolled RNN
that reveals how the RNN can take input from previous time steps. In Figure 6.7
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(X(t),X(t +1), . . .) represent multiple time steps of the input, (y(t),y(t +1), . . .) rep-
resent multiple time steps of outputs, and (u(t),u(t + 1), . . .) represent multiple time
steps of internal state. Figure 6.7 demonstrates that the inputs at the current time step
X(t+1) takes the output y(t) and the state u(t) of the previous time step (t). RNNs suits
sequence problems as they can pass information from previous time steps to following
time steps. A Sequence imposes an order on the data sample, and that order must be
maintained when training models and making predictions [Bro17]. As an illustration,
the CPU prediction problem is an example of sequence problems where the learning
model should preserve the order of the CPU utilization across the time during model
training and prediction phases.

Figure 6.7: Example of an unfolded recurrent neural network, from [Bro17]

Theoretically, RNNs are expected to handle long-term dependencies where the gap
between the current and previous time steps becomes very large. However, in practice,
it is found that RNNs are not capable of handling long-term dependencies [BSF94].
Therefore, Long Short-Term Memory (LSTM) has been introduced to solve the long-
term dependencies of the standard RNNs. LSTM is a learning technique based on
RNNs [GES02] that is widely used for sequence problems such as speech recognition,
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sentiment analysis, and text prediction. What is special about LSTM network is that it
has internal contextual state cells that act as long-term or short-term memory cells, and
therefore, it is capable of learning long-term dependencies [HS97]. LSTM networks
have memory blocks that are connected into layers, and each block contains gates that
manage the state of the block and the output. There are three types of gates within
a memory block namely, input, output and forget. The forget gate decides what in-
formation to discard or throw away from the previous cell state.The input gate decides
which values from the input to update the memory state (updating old cell state into the
new cell state). Finally, the output gate decides what to output based on the input and
memory. It is found that LSTM outperforms traditional RNNs on temporal process-
ing tasks [GES02]. There are many variants of LSTM that introduce minor or major
changes; for example, combining the input and forget gates into a single new gate
called update gate [CVMG+14]. So far, the performance of various LSTM variants
does not show significant differences [GSK+16].

LSTM: Model Training and Making Predictions

Keras3, a Python-based open-source neural network library, is used for the implemen-
tation and evaluation of the LSTM model. The following are the set of hyperparameters
and their values that have been used during the training of the LSTM model.

• Batch size: The batch size is an integer that defines the number of training sam-
ples to be processed before updating the internal parameters of the LSTM model.
The entire training dataset can be divided into many batches. A mini-batch gra-

dient descent have been adopted where the batch size is greater than one and
less than the size of the training dataset. There is an inverse relationship be-
tween the batch size and the required memory space. Popular batch sizes for
the mini-batch gradient descent include 32, 64, and 128 samples. Therefore, we
have used a batch size consisting of 64 samples for LSTM training.

• Number of epochs: The number of epochs is an integer that defines the number
of times that the learning algorithm will work through the entire training dataset.
The number of epochs should be sufficient so that the learning algorithm can
run until the prediction error is adequately minimized. The learning curve can
be plotted using the number of epochs against the error to see the fit (e.g. over-
fitting, underfitting, or good fitting) of the model. The model training has been

3https://keras.io/
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conducted using 10 epochs, which were reasonable to improve LSTM learning
by minimizing the prediction error.

• Number of units in the LSTM layer: Number of units in an LSTM layer defines
the dimension of LSTM’s inner memory cells (the number of neurons per LSTM
layer). An LSTM layer consisting of 50 units has been used during LSTM model
training.

• Activation function: The activation function determines the output of a neural
in each layer of the neural network. Common activation functions have been
mentioned in Section 6.5.2. The tanh activation function has been used for the
LSTM layer, while a linear activation layer has been used for the output layer as
it fits well for regression tasks.

• Optimizer: To compile a Keras model, we need to specify the optimizer, which
is a search technique that iteratively updates the model’s weights. Common op-
timizers include stochastic gradient descent (SGD) [Bot10], Adagrad [DHS11],
Adadelta [Zei12] and Adam [Ker18b]. Adam optimizer [KB14] has been adopted
as it is computationally efficient (does not require too much memory). Addition-
ally, Adam optimizer suits prediction problems that have significant data very
well [KB14].

• Loss function: The loss (a.k.a error) function estimates the error for current the
state of the LSTM model so that the weights can be updated to decrease the
prediction error. There are various loss functions for regression and classifica-
tion problems. Examples of loss functions for regression include mean squared
error (MSE), mean absolute error (MAE), and mean squared logarithmic er-
ror (MSLE). On the other hand, examples of loss functions for classification
tasks include binary cross-entropy, sparse multiclass cross-entropy, and squared
hinge [Ker18a]. MSE has been used as the loss function for the LSTM model.

• Dropout ratio: The dropout layer helps prevent overfitting and hence reduces
the sensitivity to the weights. The dropout ratio defines the fraction of the units
to drop for the linear transformation of the inputs; the dropout ratio is always
between 0 and 1. As a best practice, it is recommended to use a dropout rate
between 0.2 and 0.5 as too-small ratio will have minimal effect, and a too-high
ratio results in under-learning by the neural network. The adopted LSTM model
uses a value of 0.2 for the dropout ratio.
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Once the LSTM model has been constructed based on the training dataset of Planet-
Lab CPU traces, the resulting model has been used to predict the last day of PlanetLab
traces (which represent the test dataset). Figure 6.8 shows the predicted versus actual
CPU utilization from four randomly selected VMs using the resulting LSTM model.
The visual analysis of LSTM predictions in Figure 6.8 are comparable to the ones from
random forest that has been previously shown in Figure 6.4.

Figure 6.8: LSTM: Predicted versus actual CPU utilization of four random VMs

6.5.3 Model Evaluation

This section aims to evaluate the performance of both RF and LSTM for the prediction
of CPU utilization. Scikit-learn offers several methods to evaluate the quality of the
model’s predictions. To measure the regression performance, there are various regres-
sion metrics such as mean absolute error (MAE), mean squared error (MSE), Root

mean square error (RMSE) and R-squared (R2). Table 6.1 summarises the results of
the performance metrics for both RF and LSTM using both training and test datasets.
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Table 6.1: Performance evaluation of RF and LSTM
Algorithm MAE MSE RMSE R2

RF Training set 3.63586 33.60172 5.7967 0.85828
LSTM Training set 4.57961 68.24607 8.26112 0.71102
RF Test set 5.56713 102.18039 10.10843 0.56002
LSTM Test set 5.43764 103.02204 10.14998 0.5565

In Table 6.1, the first three metrics (MAE, MSE, and RMSE) are different measures
of prediction errors. On the other hand, the R2 is the regression score function, which
measures the goodness of the model fit. Considering the results of the training dataset
in Table 6.1, it can be seen that RF outperforms LSTM. However, looking at the results
from the test dataset, there is no significant difference between the two models ( they
are comparable).

As the evaluation of the prediction phase has been completed, the following section
describes the experimental evaluation of the proposed hybrid approach for parameter
estimation per VM (αvm) using RF.

6.6 Experimental evaluation

6.6.1 Experiments Setup

The details of the experimental setup are as follows:
The initial and dynamic VM placement algorithm, the overload and the underload
detection algorithms, the SLAVs thresholds and the choice of the initial values of the
parameter αcdc are exactly the same as those in Section 5.6. The main difference is that
the following experiment only uses the normal PlanetLab traces. Finally, the details of
the hyperparameters used for both RF and LSTM have been reported in Section 6.5.1
and Section 6.5.2 respectively.

6.6.2 Reactive versus Hybrid Parameter Estimation

This experiment aims to evaluate the reactive and hybrid (using RF) approaches for the
parameter estimation. On the one hand, the window-based approach (c.f. Algorithm3)
represents the reactive estimation of the CDC’s parameter αcdc. On the other hand,
Algorithm 4 represents the hybrid approach for the VM-level parameter αvm. The
experiment uses RF to predict the future CPU usage of the VMs in the hybrid approach
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(Algorithm 4). The reason for adopting RF is that it is computationally efficient and
shows almost the same performance (or even slightly better) compared to LSTM as
previously demonstrated in Section 6.5.3.

Figure 6.9: Hybrid versus reactive approaches for parameter estimation
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Figure 6.9 shows the results from the reactive window-based approach (c.f. Algo-
rithm 3) as opposed to the ones from the hybrid approach that predicts CPU utilization
using random forest based on Algorithm 4. Each one of the six sub-plots measures the
energy consumed and the resulting SLAVs for the specified SLAV threshold. On each
sub-plots, there are eight points; four for each approach (reactive and hybrid). Each
point represents a different value for the initial parameter (initial values are 0.2, 0.4,
0.6, and 0.8 as previously described in Chapter 5). By and large, Figure 6.9 shows that
predicting the CPU utilization results in more efficient utilization of the PMs (shown
in the lower values of energy consumption while meeting the SLA requirements).

Moreover, Figures 6.9(a), (b), (c) and (d) show that the hybrid approach is slightly
less sensitive to the initial value of the parameter αcdc which can be seen in the lower
dispersion of the plotted points of the hybrid versus the reactive approach. Addition-
ally, they confirm the energy savings, which resulted from predicting the utilization in
the hybrid approach as opposed to the reactive window-based approach. When com-
paring the best values of the reactive (windows-based) and the hybrid (using RF), we
can see that the hybrid approach can save an additional 7% and 8% of energy con-
sumption. As an illustration, in Figure 6.9(c), the lowest energy consumption using
the hybrid approach is 90 KWh as opposed to 98 KWh in case of the reactive ap-
proach. The only case when the hybrid approach did not manage to show significant
improvement above the reactive approach is when the SLAVs threshold is very low.
With better prediction accuracy, which can be obtained by training the models using
more data that may even have more feature, the hybrid approach can show more sig-
nificant improvements in energy savings.

Figure 6.10 summarizes the average energy consumption for the hybrid and re-
active approaches using different values of the SLAVs thresholds. Figure 6.10 has
ignored the resulting SLAVs, as the average SLAVs from both approaches were al-
most the same and managed to comply with the specified SLAVs threshold. It can be
seen from Figure 6.10 that the hybrid approach can improve energy-savings for all the
specified SLAVs thresholds except when the SLAVs threshold is minimal (e.g.0.001).
What is striking about Figure 6.10 is that the reactive approach is found to be slightly
better than the hybrid approach for the smallest value of SLAVs threshold. Looking at
Figure 6.9(f), it can bee seen that one of the points from the hybrid approach is located
away from others, which justifies the increase in the average energy consumption of
the hybrid approach in Figure 6.10.
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Figure 6.10: Average energy consumption using hybrid and reactive approaches for
the specified SLAVs’ thresholds.

6.7 Discussion

On the one hand, the evaluation of RF and LSTM for predicting VMs’ CPU utilization
using the test dataset indicate that there is no significant difference between the two su-
pervised learning approaches. In general, additional CPU traces (e.g. traces for longer
periods such as months) besides considering other features such as the name of each
server, the day of the week, and server location may result in more efficient predictions
for the LSTM model. On the other hand, the proposed hybrid approach for parameter
estimation per VM shows its effectiveness even with the current limited amount of the
PlanetLab traces. However, a more efficient prediction could result in further energy
savings while adhering to the SLA requirements.

Some machine learning models can support offline learning, while others support
online learning. In offline learning, the machine learning models are typically trained
only once and then used for prediction whenever the model is satisfactory. The perfor-
mance of the offline model might be degraded over time, especially when the environ-
ment frequently changes with new observations. On the other hand, in online learning,
the model is trained and updated continuously using the new observations and adapts
accordingly. Offline learning can be considered as a good option if there is enough
training data set, and the data are not continuous streams. Over time, the model can be
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updated with new observations to avoid performance degradation, and that new model
can replace the old one for making predictions. However, the CPU utilization traces are
continuous streams of data, and hence online learning algorithm may be better than the
offline ones. LSTM originally supports batch learning; however, it can support online
learning by setting the batch size to one (while in production). Setting the batch size
to one will make LSTM adapt quickly, but it can affect the prediction accuracy. There-
fore, experimenting with other models that support online learning (e.g. hierarchical
temporal memory (HTM) [CSAH16]) of streaming data worth further investigation.

Even though the hybrid approach using prediction models outperforms the reactive
one for parameter estimation, the computational complexity of these predictive models
should be put into consideration. The computational cost of predictive models, espe-
cially the neural network-based ones (such as LSTM), is high during the training phase.
However, the advances in hardware and the cloud-based computational services make
the training of these model more feasible. Additionally, neural network-based mod-
els are generally slow to train, but they are usually fast to evaluate [Bro17]. Therefore,
with powerful hardware, the cost of prediction models (especially during training) may
become less significant. This makes the adoption of these models practical even if the
current added value is not of great significance in the conducted experiment. However,
with more data, features, and further hyperparameter optimization, such models can
improve the performance of the hybrid approach.

6.8 Summary

This chapter sets out to investigate the impact of adopting a hybrid (reactive and proac-
tive) approach on improving the PMs’ utilization while satisfying SLA requirements.
The hybrid approach both reacts to the current SLAVs and forecasts the CPU utiliza-
tion of the VMs. Predicting the CPU utilization of the individual VMs enables the
parameter-based VM placement solution to update the value of the parameter accord-
ingly. Therefore, there was a need to have two parameters: (1) one parameter for the
CDC level αcdc, and (2) another parameter for the VM level αvm. The current value
of αcdc bounds the maximum value of each αvm. Then, the chapter demonstrated the
algorithm for the hybrid approach to adjust αvm taking into consideration the predicted
value for the CPU utilization.

Before creating a prediction model for the CPU utilization, the PlanetLab traces
has been transformed into an inputs and outputs structure that suits the supervised
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learning algorithms. Then, we have conducted an exploratory data analysis of the
PlanetLab traces with the help of ACF and PACF function. The graphs of ACF and
PACF showed that there is a correlation between the current and previous CPU uti-
lization which means they can be predicted. Next, the chapter described the details of
creating the two regression methods that we have adopted for prediction, namely, RF
and LSTM. The results from RF and LSTM are comparable, and there is no significant
difference between the results from the two approaches. Additional datasets can reveal
the difference between the two approaches as the neural network-based learning mod-
els improve with extra data. There is also a need to investigate online learning models
such as hierarchical temporal memory (HTM) as CPU traces are examples of online
streaming data. Eventually, the chapter evaluated the new hybrid approach, which
predicts CPU Utilization using RF, against the reactive window-based approach. The
empirical evaluation confirms that predicting VMs’ utilization results in more efficient
utilization ratios of the hosting PMs, which improves energy savings and reduces other
related costs.



Chapter 7

Conclusion and Future Directions

7.1 Conclusion

In modern cloud data centres, resource overprovisioning can lead to inefficient utiliza-
tion (underutilization) of the CDC’s PMs, which results in more energy consumption
and operational costs. On the other hand, underprovisioning may result in overuti-
lization situations, which may lead to more SLAVs. The SLAVs incurs additional
costs related to either the penalties that must be paid to the cloud customers or los-
ing unsatisfied customers. Therefore, there is a cloudless trade-off between energy
consumption and SLAVs in existing reservation-based and demand-based VM place-
ment strategies. All current literature on VM placement pays the entire attention to the
two extremes of the VM placement strategies and ignore the middle way in-between
these two strategies. As a result, this thesis aimed to find a more desirable and flexible
strategy (representing the middle way) that might help to overcome the problems as-
sociated with the two extremes. This strategy exploits the area between demand-based
and reservation-based placement, striving for a workable balance between resource
utilization and SLAVs.

Chapter 2 conducted a review and a critical analysis of existing literature on VM
placement, which resulted in a novel classification of the existing VM placement re-
search. The proposed classification groups current VM placement research in four
areas, namely VM placement problems, strategies, policies, and objectives. Through
our novel classification and analysis, we aim to direct ourselves and other researchers
to concentrate on areas of higher impact. Additionally, our novel classification offers
a roadmap that can be followed when trying to propose a new VM placement solution.
This roadmap is summarized in the following four steps:

159



160 CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS

1. Specifying the type of the problem being solved (initial vs. dynamic placement)
and the architecture of the CDC.

2. Choosing the strategy to allocate resources to VMs (reservation-based vs. demand-
based strategies).

3. Deciding the autonomic policy (e.g. action or utility functions) that should be
applied to develop these self-managing VM placement systems.

4. Specifying the placement objectives and constraints.

Moreover, the observations concluded from the critical review of the literature were
the key to define three possible areas that require further investigations. These re-
search areas are: (1) exploring new VM placement strategies, (2) real-world perfor-
mance evaluation of existing solutions, and (3) developing an evaluation and verifica-
tion framework. Using these observations and the roadmap, we managed to delineate
our pathway to introduce novel VM placement solution by investigating the area be-
tween demand- and reservation-based VM placement strategies. Furthermore, during
the analytical review of the literature, an empirical evaluation of a genetic algorithm
and simulated annealing for the dynamic reallocation of VMs been conducted (in Ap-
pendix A). This evaluation concludes that a genetic algorithm outperforms simulated
annealing for the dynamic reallocation of VMs in CDCs. Additionally, another empir-
ical evaluation of a VM placement solution that considers CPU and memory resources
has been conducted (in Appendix B), which points out the importance of considering
multiple types of resources. Eventually, it is found that the prohibitive SLAVs and
underutilization costs are roadblocks to consolidation ratios from demand-based and
reservation-based VM placement strategies, respectively.

Chapter 3 demonstrated the main components of the proposed parameter-based
VM placement solution, which includes the VM placement requests, the initial VM
placement controller, monitoring, dynamic VM placement controller, and the parame-
ter estimation components. The parameter can be either statically set or dynamically
estimated on the fly. Then, the chapter justified the reasons for adopting the CloudSim
simulator. These reasons include assuring reproducibility at a low cost and the ex-
tensive use of CloudSim in the area of VM placement and resource management in
clouds. After that, the chapter described the details of the simulated cloud environment
and the characteristics of workload traces, besides demonstrating the need for skewing
the PlanetLab traces. Finally, the chapter proposed various performance metrics that
can measure the performance of the proposed VM placement solution.
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Chapter 4 demonstrated the proposed parameter-based VM placement solution that
makes use of a single static parameter to explore the middle way between the two ex-
tremes (reservation-based and demand-based) of VM placement strategies. Chapter 4
started by demonstrating the mathematical formulation of the VM placement problem.
Then, it illustrated the details of the initial and dynamic components of the proposed
parameter-based VM placement solution. The conducted experiments on Chapter 4
concludes the inherent benefits of investigating the area between the actual demand
and the full reservation using the proposed parameter-based VM placement strategy.
As an illustration, with a slight decrease in the allocated resources (compared to the
reservation-based VM placement), the parameter-based VM placement can save a con-
siderable amount of the SLAVs with an insignificant increase in the amount of energy
consumed. As opposed to the existing demand-based and reservation-based VM place-
ment strategies, the proposed parameter-based VM placement strategy proved to offer
wide flexibility and viable options for CDC operators to strike an appropriate balance
between energy consumption and SLAVs. The static nature of the parameter intro-
duced in Chapter 4 is a key limitation of the proposed parameter-based VM placement
strategy. Employing such a static parameter is not enough to enable the cloud provider
to set specific business-related thresholds that should not be surpassed.

Chapter 5 demonstrated the need for the dynamic estimation of the parameter α

of the proposed parameter-based VM placement solution. Because a static parame-
ter α does not enable the cloud provider to set SLAVs thresholds that should not be
exceeded, Chapter 5 proposed different algorithms for the dynamic estimation of the
parameter α on the fly. The dynamic estimation of the parameter α has the objective
of not exceeding a certain SLAVs threshold while achieving an efficient resource uti-
lization. Then, the chapter presented two algorithms for the online estimation of the
parameter (namely, instantaneous and window-based). The instantaneous approach ad-
justs the value of the parameter α based on the distance between the current number of
SLAVs and the predefined SLAVs threshold. The window-based approach makes use
of the recent history of the number of SLAVs. This online estimation of the parameter
α offers more flexibility for CDC management in achieving business-related objec-
tives, such as setting an SLAVs threshold that should not be exceeded. Experimental
evaluation concludes that the window-based approach is more efficient in estimating a
dynamic parameter that adheres to the SLAVs threshold while efficiently utilizes the
PMs, thus saving energy and costs. However, the principal limitation of the dynamic
approaches introduced in Chapter 5 is that they are coarse-grained as they estimate the
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same value of parameter α for all VMs. Therefore, more-fine grained approaches are
required to estimate different values for the parameter for each single VM whenever
needed.

Finally, Chapter 6 introduced a hybrid approach that can estimate a fine-grained
parameter at the VM level. The proposed hybrid approach estimates the parameter
at the VM level by considering the current SLAVs threshold (reactive) and the pre-
dicted CPU utilization of the VMs (proactive). Chapter 6 investigated two supervised
learning models (namely, RF and LSTM) to predict the CPU utilization of the indi-
vidual VMs. The model evaluation concludes that there is no significant difference in
the performance of the two techniques for CPU prediction. The hybrid approach con-
firms that predicting the utilization of the individual VMs can result in better utilization
ratios of the hosting PMs and hence saves energy and other related costs. The com-
putational complexity of the predictive models might be a limiting factor, especially
when the model accuracy is not quite high. Notwithstanding the computational com-
plexity of these predictive models, the advances in the hardware with more historical
data and features can result in more efficient prediction, which aids in building robust
VM placement solutions.

7.2 Future directions

The remaining of this chapter introduces some potential research directions that can
extend the work conducted in this thesis.

7.2.1 Online Prediction of Resource utilization using Real Traces

This direction of research involves two factors, namely using online prediction al-

gorithms that support data streams and exploring additional real traces of resource
utilization. Concerning the online prediction of data streams, monitoring tools in real
cloud data centres generate continuous streams of various metrics, including resource
utilization. Therefore, online prediction algorithms are required to learn and adapt to
changes in the data continuously. One suggestion is to investigate the effectiveness
of the hierarchical temporal memory (HTM) as opposed to the neural-network-based
model. The reasons for choosing HTM include: (1) its continuous learning nature
using data streams, (2) proven robustness against noise in data, (3) requires less hy-
perparameter optimization. Concerning the exploration of additional real traces, it is
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crucial to test the online prediction algorithms on various real workload traces which
exhibit distinct characteristics. With more additional datasets, we can measure the
effectiveness of the adopted learning algorithms; additionally, more data for neural-
network-based prediction techniques (such as LSTM) can improve the learning pro-
cess and lead to more accurate predictions. Therefore, conducting comparative studies
of learning algorithms that support online learning using several real data sources can
add real value to the current literature on predicting resource utilization in cloud and
distributed environments.

7.2.2 Various SLA Requirements per Instance Type

The work on this thesis sought to consolidate VMs while satisfying the cloud provider’s
objectives by not exceeding a predefined SLAVs threshold for the entire CDC. How-
ever, we propose an alternative wherein the cloud provider can offer a number of VM
instances with different SLAVs thresholds for each type of VM instance. In this sce-
nario, the SLAVs thresholds are set for the individual types pf VM instances and are
not for the whole cloud data centre. For example, if a cloud user requires the full reser-
vation regardless of the cots, then we can set α = 1. On the other hand, new parameter
estimation approaches can be proposed to estimate the value of the parameter for each
type of the running VM instances based on the SLA requirements.

7.2.3 Multiple Resource Types Parameter-based VM Placement

In this thesis, we have introduced the parameter-based VM placement strategy based on
a single resource type (CPU). Despite the importance of CPU resources, it is essential
to consider other resource types such as memory and network requirements. As an
illustration, if the cloud provider is offering VM instances that are either memory-
intensive or network-intensive, then considering memory and network requirements is
going to be of great importance. Furthermore, an additional research direction might
be considering the topology type of the underlying network architecture of the CDC
and estimating its effectiveness in large-scale cloud infrastructures.
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7.2.4 Parameter-based VM Placement using Utility Functions

In our proposed parameter-based VM placement solution, we have adopted an action
policy to create an autonomic system that adapts to changes in the cloud data cen-
tre. A potential research direction might be employing a utility-based policy for the
parameter-based VM placement solution. The reason for this suggestion is that the
utility-based approaches are compelling for creating such self-managing systems, and
therefore may introduce some valuable insights. This utility-based approach involves
utility function definition followed by the adoption of meta-heuristics such as genetic
algorithms, ant colony system, particle swarm optimization, or others to search for the
desired state of the VMs-to-PMs mapping.

7.2.5 Considering Multiple Cloud Data Centres

The majority of existing VM placement solutions, including the work conducted in this
thesis, only considers a single cloud data centre. However, reallocating VMs among
various CDCs that spans multiple geographical locations might be useful for several
use-cases. The consideration of multiple CDCs entails paying attention to the con-
straints of VMs’ migrations across various geographical locations of the data centres.
There is also a need to conduct a cost-benefit analysis of VMs’ migrations among
CDCs belonging to the same cloud provider.

7.2.6 Real (in-vivo) Evaluation of Existing Solutions

With accessibility to even a small-scale cloud data centre, conducting real-world exper-
iments can add tangible value and can result in useful insights. Even though there many
limitations of running real experiments as previously explained in Chapter 3, there are
some possible ways to bypass such limitations. For example, using small-scale private
cloud data centre that hosts dozens of PMs might be of great value. Another option
is the collaboration with institutions that have their own cloud data centres, or even
creating community clouds for research institutions in any region. Conducting real
experiments would enable us to measure the effectiveness of many of the current solu-
tions in practical scenarios. Furthermore, conducting real experiments can tell us why
many of the industrial solutions adopt action policies even though the research shows
that utility-based policies result in better solutions.
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7.2.7 An Evaluation and Verification Framework

A final potential research direction might be the development of a component-based
evaluation and verification framework that can systematically verify existing solutions
using real workload traces. Currently, researchers develop and validate their solutions
in various simulations environments that are usually incomparable. This framework
can be offered through a web-based system linked to a simulated or a real CDC so
that researchers only upload their algorithms and run them. The proposal of such an
evaluation framework can enable researchers to easily plug their new VM placement
solutions, which are then evaluated and tested against realistic use-cases.
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[CUH15] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast
and accurate deep network learning by exponential linear units (elus).
arXiv preprint arXiv:1511.07289, 2015.

[CVMG+14] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry
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Gabriel G. Castañé, Jesus Carretero, and Ignacio M. Llorente. ICan-
Cloud: A Flexible and Scalable Cloud Infrastructure Simulator. Jour-

nal of Grid Computing, 10(1):185–209, 2012.

[Nrd15] Nrdc.org. America’s Data Centers Consuming and Wasting Growing
Amounts of Energy, 2015.

[NS10] TR Nair and Kavitha Sooda. Comparison of genetic algorithm and
simulated annealing technique for optimal path selection in network
routing. arXiv preprint arXiv:1001.3920, 2010.

[PS16] Ilia Pietri and Rizos Sakellariou. Mapping virtual machines onto phys-
ical machines in cloud computing: A survey. ACM Computing Surveys

(CSUR), 49(3):49, 2016.



178 BIBLIOGRAPHY

[QHNN+13] Nguyen Quang-Hung, Pham Dac Nien, Nguyen Hoai Nam,
Nguyen Huynh Tuong, and Nam Thoai. A genetic algorithm for
power-aware virtual machine allocation in private cloud. In Information

and Communication Technology-EurAsia Conference, pages 183–191.
Springer, 2013.

[Rap04] Michael A Rappa. The utility business model and the future of com-
puting services. IBM systems journal, 43(1):32–42, 2004.

[RCTY19] Xiaojun Ruan, Haiquan Chen, Yun Tian, and Shu Yin. Virtual ma-
chine allocation and migration based on performance-to-power ra-
tio in energy-efficient clouds. Future Generation Computer Systems,
100:380–394, 2019.

[REP+13] M. G. Rabbani, R. P. Esteves, M. Podlesny, G. Simon, L. Z. Granville,
and R. Boutaba. On tackling virtual data center embedding problem.
In 2013 IFIP/IEEE International Symposium on Integrated Network

Management (IM 2013), pages 177–184, May 2013.

[RGSCD+16] Vı́ctor Francisco Rodrı́guez Galiano, Manuel Sánchez Castillo,
Jadunandan Dash, Peter Atkinson, and José Ojeda Zújar. Modelling
interannual variation in the spring and autumn land surface phenology
of the european forest. Biogeosciences, 13, 3305-3317., 2016.

[RI94] R. L. Rao and S. S. Iyengar. Bin-packing by simulated annealing. Com-

puters and Mathematics with Applications, 27(5):71–82, 1994.

[RKT19] Somayeh Rahmani, Vahid Khajehvand, and Mohsen Torabian.
Burstiness-aware virtual machine placement in cloud computing sys-
tems. The Journal of Supercomputing, pages 1–26, 2019.

[SB03] R. Sterritt and D. Bustard. Towards an autonomic computing environ-
ment. 14th International Workshop on Database and Expert Systems

Applications, 2003. Proceedings., 2003.

[SBBJ13] L. Shi, B. Butler, D. Botvich, and B. Jennings. Provisioning of requests
for virtual machine sets with placement constraints in iaas clouds. In
2013 IFIP/IEEE International Symposium on Integrated Network Man-

agement (IM 2013), pages 499–505, May 2013.



BIBLIOGRAPHY 179

[SBV+15] Erwan Scornet, Gérard Biau, Jean-Philippe Vert, et al. Consistency of
random forests. The Annals of Statistics, 43(4):1716–1741, 2015.

[SDJ99] Randall S Sexton, Robert E Dorsey, and John D Johnson. Optimization
of neural networks: A comparative analysis of the genetic algorithm
and simulated annealing. European Journal of Operational Research,
114(3):589–601, 1999.

[SH11] W. Shi and B. Hong. Towards profitable virtual machine placement
in the data center. In 2011 Fourth IEEE International Conference on

Utility and Cloud Computing, pages 138–145, Dec 2011.

[Sta14] Dustin Stansbury. A gentle introduction to artificial neural networks.
https://theclevermachine.wordpress.com/2014/09/11/

a-gentle-introduction-to-artificial-neural-networks/,
2014.

[Sta15] M Stansberry. Uptime institute data center industry survey 2015 - focus
on budgets, planning, metrics, and life safety. https://www.scribd.
com/document/293839439/uptime-report-pdf, 2015.

[SW12] Thomas Setzer and Andreas Wolke. Virtual machine re-assignment
considering migration overhead. Proceedings of the 2012 IEEE Net-

work Operations and Management Symposium, NOMS 2012, pages
631–634, 2012.

[TCTB11] Adel Nadjaran Toosi, Rodrigo N Calheiros, Ruppa K Thulasiram, and
Rajkumar Buyya. Resource Provisioning Policies to Increase IaaS
Provider’s Profit in a Federated Cloud Environment. In High Perfor-

mance Computing and Communications (HPCC), 2011 IEEE 13th In-

ternational Conference on, pages 279–287. IEEE, 2011.

[TKBL12] M. Tighe, G. Keller, M. Bauer, and H. Lutfiyya. Dcsim: A data centre
simulation tool for evaluating dynamic virtualized resource manage-
ment. In 2012 8th international conference on network and service

management (cnsm) and 2012 workshop on systems virtualiztion man-

agement (svm), pages 385–392, Oct 2012.



180 BIBLIOGRAPHY

[TLK+18] Nikos Tziritas, Thanasis Loukopoulos, Samee Khan, Cheng-Zhong
Xu, and Albert Zomaya. A communication-aware energy-efficient
graph-coloring algorithm for vm placement in clouds. In 2018

IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced &

Trusted Computing, Scalable Computing & Communications, Cloud

& Big Data Computing, Internet of People and Smart City Innovation

(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pages 1684–
1691. IEEE, 2018.

[TXC+15] Wenhong Tian, Minxian Xu, Aiguo Chen, Guozhong Li, Xinyang
Wang, and Yu Chen. Open-source simulators for cloud computing:
Comparative study and challenging issues. Simulation Modelling Prac-

tice and Theory, 58:239–254, 2015.

[TZX+15] W. Tian, Y. Zhao, M. Xu, Y. Zhong, and X. Sun. A toolkit for modeling
and simulation of real-time virtual machine allocation in a cloud data
center. IEEE Transactions on Automation Science and Engineering,
12(1):153–161, Jan 2015.

[Uni10] University of Luxembourg. GreenCloud - The green cloud simulator,
2010.

[VRMB11] Luis M Vaquero, Luis Rodero-Merino, and Rajkumar Buyya. Dynam-
ically scaling applications in the cloud. ACM SIGCOMM Computer

Communication Review, 41(1):45–52, 2011.

[WBS16] Andreas Wolke, Martin Bichler, and Thomas Setzer. Planning vs. dy-
namic control: Resource allocation in corporate clouds. IEEE Trans-

actions on Cloud Computing, 4(3):322–335, 2016.

[WD14] Josh Whitney and Pierre Delforge. Nrdc: Data center efficiency as-
sessment - scaling up energy efficiency across the data center industry:
Evaluating key drivers and barriers, 2014.

[WGB11] Linlin Wu, Saurabh Kumar Garg, and Rajkumar Buyya. SLA-based
resource allocation for software as a service provider (SaaS) in cloud
computing environments. In Cluster, Cloud and Grid Computing (CC-

Grid), 2011 11th IEEE/ACM International Symposium on, pages 195–
204. IEEE, 2011.



BIBLIOGRAPHY 181

[Whi94] Darrell Whitley. A genetic algorithm tutorial. Statistics and Comput-

ing, 4(2):65–85, 1994.

[WLFJ13] Xiaoying Wang, Xiaojing Liu, Lihua Fan, and Xuhan Jia. A decen-
tralized virtual machine migration approach of data centers for cloud
computing. Mathematical Problems in Engineering, 2013, 2013.

[WLZ+13] S. Wang, Z. Liu, Z. Zheng, Q. Sun, and F. Yang. Particle swarm op-
timization for energy-aware virtual machine placement optimization in
virtualized data centers. In 2013 International Conference on Parallel

and Distributed Systems, pages 102–109, Dec 2013.

[WMZ11] Meng Wang, Xiaoqiao Meng, and Li Zhang. Consolidating virtual ma-
chines with dynamic bandwidth demand in data centers. In INFOCOM,

2011 Proceedings IEEE, pages 71–75. IEEE, 2011.

[WT18] Hui Wang and Huaglory Tianfield. Energy-aware dynamic virtual ma-
chine consolidation for cloud datacenters. IEEE Access, 6:15259–
15273, 2018.

[WTAPB15] Andreas Wolke, Boldbaatar Tsend-Ayush, Carl Pfeiffer, and Martin
Bichler. More than bin packing: Dynamic resource allocation strate-
gies in cloud data centers. Information Systems, 52:83–95, 2015.

[WYS13] Fetahi Wuhib, Rerngvit Yanggratoke, and Rolf Stadler. Allocating
Compute and Network Resources Under Management Objectives in
Large-Scale Clouds. Journal of Network and Systems Management,
pages 1–26, 2013.

[XF10a] Jing Xu and José a B Fortes. Multi-objective virtual machine placement
in virtualized data center environments. Proceedings - 2010 IEEE/ACM

International Conference on Green Computing and Communications,

GreenCom 2010, 2010 IEEE/ACM International Conference on Cyber,

Physical and Social Computing, CPSCom 2010, pages 179–188, 2010.

[XF10b] Jing Xu and Jose AB Fortes. Multi-objective virtual machine place-
ment in virtualized data center environments. In 2010 IEEE/ACM Int’l

Conference on Green Computing and Communications & Int’l Confer-

ence on Cyber, Physical and Social Computing, pages 179–188. IEEE,
2010.



182 BIBLIOGRAPHY
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Appendix A

Simulated Annealing vs Genetic
Algorithm for Dynamic Reallocation
of VMs in Cloud Data Centres

A.1 Introduction

This appendix aims to conduct an empirical evaluation of two well-known metaheuris-
tic search techniques for the dynamic reallocation of VMs among PMs in cloud data
centres. These two metaheuristics are a genetic algorithm (GA) and simulated an-
nealing (SA). Based on the current resource demand, the two metaheuristics will seek
to reallocate VMs among CDC’s PMs dynamically for saving energy and reducing
SLAVs. Firstly, this appendix describes the problem of the dynamic demand-based
reallocation of VMs, followed by the definition of the cost function. Then, the ap-
pendix introduces GA and SA algorithms and describes the dynamic reallocation of
VMs using both metaheuristics based on the specified cost function. The main con-
cern is to compare the energy consumption, percentage of SLA violations, and the
execution time between the two metaheuristics search techniques. By and large, the
conducted experiments conclude that GA outperforms SA for the dynamic reallocation
of VMs. The results confirm that, for the same amount of time, the GA implementation
is better than the SA regarding the amount of energy consumed and the percentage of
SLAVs. The results conclude that GA better suits the dynamic reallocation of the VMs
as opposed to SA.

Mosa et al. [MP16] proposed a utility-based solution that dynamically reallocates
VMs to reduce the VM placement cost by saving energy consumption and reducing
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SLA violations (SLAVs). This utility-based solution makes use of a genetic algorithm
(GA) to search for a robust solution that achieves the cloud provider’s objectives. In
this appendix, we have revisited the search algorithm (searching for a better VMs-
to-PMs mapping) for the same problem using the simulated annealing (SA). There are
common similarities between GA and SA, even though they are using entirely different
terminologies. Theoretically, a simulated annealing algorithm could be considered as
equal to a genetic algorithm with only one solution, which means there is no crossover
operation. The type of the problem and the representation of the solution determine
which algorithm could be more beneficial. Bost GA and SA have been empirically
evaluated against each other in literature for different application domains such as cir-
cuit partitioning [MC96], optimal path selection in network routing [NS10], training
neural networks [SDJ99], and continuous network design [XWW09]. From these pre-
vious studies on GA versus SA, there is no generally accepted superiority of GA over
SA. However, such superiority could exist in specific application domains. The pri-
mary motivation for evaluating SA for the dynamic reallocation of VMs is that SA was
proven to find efficient solutions for NP-complete problems [Kir84].

A.2 Dynamic Reallocation of VMs

The dynamic reallocation of VMs involves searching several potential VMs-to-PMs
assignments to find a robust assignment that achieves the cloud provider’s goals. Once
the dynamic reallocation algorithm finds a more efficient VMs-to-PMs assignment,
it starts reallocating the VMs to the new PMs based on the best-found assignment.
Table A.1, shows an example of a possible mapping of VMs to PMs. The VM number
represents the mapping index, while the PM number represents the PM that is going to
host the VM.

Table A.1: An example of VMs to PMs assignment

VM1 VM2 VM3 VM4 . . . . . . . . . VMn

PM1 PM2 PM1 PM2 . . . . . . . . . PMm

The dynamic reallocation of VMs aims to place the VMs on the least possible
number of PMs and switch unused PMs off to save energy consumption and reduce
operational costs. Figure A.1 shows the current VMs-to-PMs mapping as an input to
the dynamic VM reallocation solution, which uses either GA or SA to search for an
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efficient mapping based on the cost function. Both GA and SA explore the search space
to find a more suitable assignment that saves energy and reduces SLA violations. The
dynamic VMs reallocation algorithm runs periodically at fixed time intervals, which
are five minutes of simulated time. Single objective GA and SA can optimise only
one single variable. Therefore, the following section defines the cost function, which
GA and SA are going to use to measure the fitness of any candidate VMs-to-PMs
assignment.

Figure A.1: Input, search and output for the dynamic VM reallocation

A.2.1 Cost Function

Equation A.1, from [MP16], defines the cost function, which aims to minimize the
costs of energy consumption and SLA violations. The ultimate goal is to minimize the
total cost of hosting the VMs to maximize the cloud provider’s profit. The fitness of
any potential VMs-to-PMs assignments using either GA or SA are evaluated against
the cost function.

Cost(a, t) = EstimatedEnergyCost(a, t)+EstimatedViolationCost(a, t)+

PDMCost(a, t)).
(A.1)
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Here a is a map that represents the VMs-to-PMs assignment, and t is the time period
of the assignment. EstimatedEnergyCost(a, t) is the expected energy cost due to the
assignment. EstimatedViolationCost(a, t) is the expected violation cost resulting from
the overutilization of the PM. PDMCost(a, t) is the cost of the performance degrada-

tion due to the migration (PDM). The calculation details of energy and SLA violation
costs can be found in [MP16]. The following section describes the details of GA and
SAL for the dynamic reallocation of VMs in cloud data centres.

A.3 Genetic Algorithm and Simulated Annealing

A.3.1 Genetic Algorithm

Genetic algorithms are population-based search techniques that mimic Charles Dar-
wins theory of natural evolution [Luk15]. Genetic algorithms were introduced in 1970
by John Holland. A genetic algorithm (GA) starts with a population consisting of sev-
eral individuals where each individual represents a candidate solution in the problem
being solved. The cost function measures the fitness of each of these candidate so-
lutions. For creating a new generation, some solutions are selected for crossover to
reproduce new offsprings. The mutation is applied, and the process continues until
reaching the specified stopping criteria.

Creating Initial Population

The initial population is created by generating a population of N individuals, where N

is the population size. For the VMs reallocation problem, each individual, candidate

solution, is represented by VMs-to-PMs assignment/mapping. Generally, the initial
population is either randomly generated by allowing the entire range of possible solu-
tions. However, in this appendix, the initial population has been generated by mutating
the VMs in the current VMs-to-PMs assignment. The reason for starting with the
current VMs-to-PMs assignment is that the algorithm can keep it if there is no better
solution.

Fitness Evaluation

The cost (fitness) measures the quality of each candidate solution proposed by the
metaheuristic algorithm. The evaluation of the cost function involves assigning a sin-
gle value (fitness score) to each candidate solution. The probability that a candidate
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solution (individual) will be selected for reproduction depends on its fitness score. The
candidate solution with the lowest cost is considered to be the best. The cost function,
introduced in Section A.2.1, is used to measure the quality of each candidate solution.

Next Generation

The genetic algorithm runs for several times based on the specified number of gener-
ations. Three central operations are required for creating the next generation namely
parents selection, crossover and mutation. The details of these operations are described
below:

• Parents Selection:

For applying the crossover operation, parents need to be chosen from the current
population. Parents selection involves selecting candidate VMs-to-PMs assign-
ments (representing parents). Each candidate solution could be selected as a
parent, and individuals with high fitness scores might be favourable for selec-
tion.

• Crossover:

The crossover operation works by selecting two parent solutions and applying a
crossover technique. The crossover probability indicates how many parent solu-
tions, individuals, are selected for mating [Whi94]. The implementation of GA
in this work adopts a single-point crossover where two offspring are produced
by swapping beyond the crossover point. Table A.2, illustrates how the new off-
spring is created by mating two parents using single-point crossover. The “‖”
symbol represents the crossover point.

Table A.2: Single point crossover
Parent1 PM1 PM2 PM1 ‖ PM3 PM2 PM1
Parent2 PM2 PM1 PM3 ‖ PM1 PM3 PM3

Offspring1 PM1 PM2 PM1 ‖ PM1 PM3 PM3
Offspring2 PM2 PM1 PM3 ‖ PM3 PM2 PM1

• Mutation:

The mutation process alters the values of an existing solution based on the mu-
tation probability. Mutation is applied to new offsprings generated from the
crossover operation [CSP11]. A number of candidate solutions (VMs-to-PMs
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assignments) of the current population are selected for mutation. New mutated
solutions are created as a result of the mutation process. In the resulted mutated
solutions, some VMs are migrated to different PMs. The number of the mutated
VMs depends on the mutation probability, which defines how many PMs, to
which the VMs are assigned, need to be changed to new ones. Table A.3 demon-
strates an example of how the mutation works. The PMs in bold in the original
offspring are mutated to new ones in the mutated offspring, which means that
some VMs are assigned to new PMs.

Table A.3: Mutating the PMs
Original Offspring PM1 PM2 PM1 . . . PM1 PM3 PM3
Mutated Offspring PM1 PM4 PM1 . . . PM2 PM2 PM3

Stopping Criteria

The generation of new fitter candidate solutions is repeated until reaching the stopping
criteria. Common examples of stopping criteria include (1) fixed number of genera-
tions, (2) satisfying minimum criteria, (3) reaching the maximum execution time, or
(4) the fittest solution reaches a plateau (further generations do not improve the result).
The stopping criteria for our implementation of the genetic algorithm is based on a
fixed number of generations. The algorithm proceeds to search for more competitive
solutions until the number of generation becomes zero. After reaching the stopping
criteria, the algorithm returns the best solution found so far.

A.3.2 Simulated Annealing Algorithm

Simulated annealing (SA), also known as statistical cooling, is a general-purpose stochas-
tic optimisation technique which helps finding near-optimal solutions for NP-complete
problems [RI94]. In 1983, Kirkpatrick etal [KGV83] introduced SA by mimicking the
process of annealing in metallurgy. Simulated annealing, a generalization of the Monte
Carlo method, finds global minimum cost solutions by exploiting the analogy between
the physical states of the system till reaching thermal equilibrium and the intermediate
stages of a solution of a combinatorial problem. SA approximates the global optimum
of a given function. SA performs an iterative refinement, and it can accept non-optimal
solutions (i.e. ones that increase the objective, depending on some probability) to avoid
getting stuck into local minima.
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Algorithm A.3.2 shows pseudo-code for the simulated annealing algorithm, which
is used for reallocating VMs with the goal of energy-saving and reducing SLA viola-
tions. As a requirement, the SA algorithm needs to clearly define the initial configu-
ration/solution, initial temperature, final temperature, the temperature decrease factor,
the number of iterations per temperature, and the acceptance probability. The details
of these operations are defined below:

Algorithm 5 Simulated annealing algorithm for VM reallocation
1: function VMREALLOCATIONUSINGSA
2: Save currentV mToPmAllocation
3: currentAllocation← currentV mToPmAllocation
4: bestAllocation← currentAllocation
5: C(Allocationcurrent)← currentAllocationCost
6: C(Allocationneighbor)← neighborAllocationCost
7: Tinitial ← initialTemperature
8: Tmin← f inalTemperature
9: for t = Tinitial; t > Tmin; t = t ∗decreaseFactor do

10: for i = 0; i < numberO f IterationsPerTemp; i++ do
11: neighborAllocation← selectNeighbor()
12: ∆(C)←C(Allocationcurrent)−C(Allocationneighbor)
13: if ∆(C)> 0 then
14: currentAllocation← neighborAllocation
15: else if ∆(C)< 0 then
16: acceptanceProbability← e∆(C)/t

17: randomValue← getRandomDouble()
18: if randomValue < acceptanceProbability then
19: currentAllocation← neighborAllocation
20: if C(Scurrent)<C(Sbest) then
21: bestAllocation← currentAllocation

• Initial Configuration:
Typical implementations of SA start with a random configuration that represents
the initial solution. However, it might be better to start with an existing solu-
tion instead of randomly creating an initial solution. Therefore, we have used
the current solution, which is the current VMs-to-PMs mapping from either the
initial VM placement or from the previous interval of the dynamic placement.
The main idea of using an existing solution is that the algorithm can keep it if
there is no better solution and hence minimize the number of migrations. Lines
2 and 3 in Algorithm A.3.2 sets the initial configuration by saving the current
VMs-to-PMs allocation as the best allocation.
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• Initial Temperature:
There is no widely accepted method for setting the initial temperature of the SA
algorithm. On the one hand, the initial temperature should not be too low as
this will not enable the algorithm to search for numerous neighbours. Choosing
too low initial temperature may result in a final solution that is near to initial one
without significant improvements. On the other hand, if the initial temperature is
higher than required, then this might lead to a kind of random search, especially
in the early stages. Line 7 in Algorithm A.3.2 sets the initial temperature.

• Final Temperature:
The SA algorithm usually starts with the initial temperature; then, the tempera-
ture is reduced until a final temperature is reached. The final temperature should
be close to zero; however, the SA algorithm should not wait until it reaches zero
as this might take longer time without noticeable enhancement toward the final
solution. Line 8 in Algorithm A.3.2 defines the final temperature.

• Temperature Decrease Factor:
The temperature decrease factor affects the quality of the final solution, as a
low decrease increases the execution time. In contrast, a rather high decrease
may result in local minima. In our SA implementation, we adopt a geometric
decrement to ensure that the algorithm runs fewer times for higher values and
more times for lower ones. The geometric decrement is:

temperature = temperature∗β

, where 0 < β < 1; the algorithm will take more time when approaches one as the
cooling rate will be slower. Previous experiments confirm that using a decrease
factor in the range between 0.8 and 0.99 produces good results – a decrease
factor with a value of 0.95 results in high-quality solutions for the bin packing
problem [RI94]. The geometric decrement of the temperature is applied on the
loop in Line 9 of Algorithm A.3.2.

• Number of Iterations per Temperature:
For each iteration, a VM is randomly selected from the currently running VMs
and assigned to a non-overutilized PM. This selection happens a fixed number
of times based on the number of iterations per temperature. The number of
iterations per temperature starts in the loop in Line 10 of Algorithm A.3.2.
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• Acceptance Probability:
The algorithm accepts the new candidate VMs-to-PMs assignment/allocation if
the cost of the candidate assignment is less than the cost of the current one. As
shown in Equation A.2 and Lines 12 to 14 of Algorithm A.3.2, the candidate
solution is accepted if the difference between the cost of the current allocation
and the candidate one is greater than zero.

∆(C) = cost(currentAllocation)− cost(neighbourAllocation). (A.2)

To avoid local minima, the algorithm can accept a worse solution under a specific
condition. A worse solution that incurs a higher cost can be accepted based
on a probability that depends on the Boltzmann distribution, which mimics the
physical annealing. Equation A.3, and in Lines 15 to 19 of Algorithm A.3.2,
show the probability of accepting a solution.

P(∆(C)) = e∆(C)/current temperature. (A.3)

If the difference between the two solutions is less than zero, then the algorithm
calculates the acceptance probability and compare it to a random double between
zero and one. If the random value is less than the acceptance probability, then
the new solution will be accepted.

A.4 Experimental Evaluation

This section evaluates GA and SA for the dynamic reallocation of the VMs. It starts
by describing the simulation settings, the performance metrics, and concludes with
conducted experiments.

A.4.1 Simulation Settings

The simulation environment represents a cloud data center consisting of 100 PMs and
200 VMs. The PMs are of two types HP ProLiant ML110 G4 and G5. The HP ProLiant
ML110 G4 has two CPU cores with 1860 MIPS per core, and the G5 also has two cores
with 2660 per core. The VMs are of four types; with 2500, 2000, 1000, and 500 MIPs
for the first, second, third, and the fourth type of VMs [BB12]. The application data are
randomly generated by CloudSim cloudlets. The reallocation of VMs happens every
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five minutes, and the simulation of the experiments runs for one day of simulation time.
This means there are 288 cycles/runs of the reallocation algorithm; 12 cycles per hour
multiplied by 24 hours. All the experiments have been running on a Core i7 laptop
with six GB of RAM.

A.4.2 Performance Metrics

Three main performance metrics are used for the evaluation:

• Energy Consumption: The amount of energy consumed by the data centre in
kWh.

• Overall SLA violations: The overall SLA violations for all the running VMs
which is computed as follows:

overallSlaViolations =
totalMipsReuestedByV Ms− totalAllocatedMips

totalMipsReuestedByV Ms

• Execution Time: The total execution time of running the experiment using both
the genetic algorithm and the simulated annealing.

A.4.3 Experiments

A total number of 400 experiments have been carried out on both GA and SA using dif-
ferent values for energy and violation costs. These experiments enabled us to measure
the effectiveness of GA versus SA with the help of the previously stated performance
metrics.

Genetic Algorithm versus Simulated Annealing without Limiting Execution Time

The scatter plot in Figure A.2 exhibits energy consumption to SLA violations using
genetic algorithm and simulated annealing algorithms. The triangles represent results
from GA, while the circles represent the ones from the SA algorithm. This scatter
plot is a result of around 400 experiments on both algorithms. By and large, Fig-
ure A.2 demonstrates that the GA outperforms the SA algorithm. What stands out in
Figure A.2 is that GA can reach better values that SA was not able to find without lim-
iting the execution time. Furthermore, it is observed that increasing the total number
of iterations for the SA (by increasing initial temperature and the number of iterations
per temperature) reaches a plateau and did not show any further improvements.
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Figure A.2: Energy consumption to overall SLAVs using GA and SA.

Figure A.3: Energy consumption to overall SLAVs using GA and SA; limiting execu-
tion time to one minute.
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Genetic Algorithm versus Simulated Annealing with Execution Time Constraint

This experiment aims to evaluate GA and SA when limiting the execution time. In
this experiment, the execution time is limited to one minute to figure out the efficiency
of both algorithms with the specified execution time constraint. With no confusion,
Figure A.3 demonstrates that, for the same execution time, the genetic algorithm is
more efficient than the simulated annealing algorithm for the dynamic reallocation of
VMs in cloud data centres.

A.5 Conclusion

This appendix follows a utility-based approach for the dynamic reallocation of VMs in
cloud data centres. An empirical evaluation has been conducted to compare between a
genetic algorithm and a simulated annealing algorithm for the VMs reallocation prob-
lem. Both the genetic algorithm and simulated annealing algorithm attempt to dynam-
ically find a better VMs-to-PMs assignment that achieves the cloud provider’s goals.
Results demonstrate that using a genetic algorithm outperforms SA for the dynamic
reallocation of the VMs in terms of energy-saving, reduction of SLA violations, and
the execution time. Furthermore, results show that for the same execution time, the
GA outperforms the SA. Accordingly, this appendix concludes that using genetic al-
gorithms is recommended over simulated annealing for the dynamic reallocation of
VMs in cloud data centres.



Appendix B

Dynamic Virtual Machine Placement
Considering CPU and Memory
Resource Requirements

B.1 Introduction

A high proportion of current VM placement solutions examine only CPU resources
and ignore other types of resources such as memory, storage, or network bandwidth.
Currently, many VMs may be either memory-intensive or bandwidth-intensive, which
suggests that the CPU is not the most important resource type in such cases. There-
fore, considering different types of resources (or characteristics), including memory or
network bandwidth, becomes critical. For example, Amazon EC2 offers VM instances
that are optimised for computation, memory, or storage [Ama].

This appendix examines the problem of allocating VMs along more than one of
these characteristics by proposing a dynamic demand-based VM placement solution
that considers both CPU and memory requirements. The proposed solution adopts a
genetic algorithm (GA) aiming to reduce underutilization as well as overutilization
situations of both CPU and memory, which ensures better overall utilization and a
reduction in the resulting SLAVs. Empirical evaluation using CloudSim highlights the
importance of considering multiple resource types. In addition, it demonstrates that
the genetic algorithm outperforms the well-known best-fit decreasing algorithm for
dynamic VM placement. The work on this appendix is based on the paper [MS19].

A large body of literature has investigated the use of metaheuristics to reallocate
VMs among PMs dynamically based on predefined objective functions. Some of these
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solutions adopt a genetic algorithm [JCC15, MP16], an ant colony system [FAP+15],
while others use particle swarm optimization [WLZ+13]. However, many of these so-
lutions only consider a single type of resource, often CPU [BB12, WLZ+13, MP16,
WLFJ13]. There are other solutions that consider multiple resources using a genetic al-
gorithm. However, they only solved the initial VM placement and did not consider the
dynamic reallocation of the VMs after they are initially allocated [XF10b]. Therefore,
this appendix proposes a CPU- and memory-aware dynamic VM placement solution
based on a genetic algorithm.

B.2 Placement Objective

The main objective for the VM placement is to utilize the PMs efficiently while meet-
ing SLA requirements to reduce energy consumption and operational costs. Therefore,
the objective function seeks to utilize the PMs efficiently by minimizing the estimated
underutilization per each resource type (CPU and memory), while reducing SLAVs by
minimizing the estimated overutilization at each scheduling interval. Underutilization
is defined as the ratio of available (or unused) capacity divided by the total capacity of
a given resource type. However, Overutilization is defined as the demand that exceeds
the capacity of a given resource type.

Minimize (
n

∑
r=1

(W̄ r + Ōr)) (B.1)

In Equation B.1, n represents the number of resource types (CPU and memory in this
appendix, but this could be generalized to storage, bandwidth). The average underuti-
lization per resource type r of all PMs running at a scheduling interval is represented
by W̄ r. Finally, Ōr is the average overutilization per resource type r for all PMs running
on the current scheduling interval.

B.3 Dynamic VM Placement using a Genetic Algorithm

The proposed dynamic VM placement solution solves both the initial and dynamic VM
placement problems. For the initial VM placement, it adopts a power-aware best-fit
decreasing (BFD) heuristic [BB12] that allocates VMs based on the resource require-
ments defined by VM types. Then, the dynamic reallocation of the VMs may happen
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during each scheduling interval (periodically every five simulated minutes) using a ge-
netic algorithm. The GA examines possible VMs-to-PMs mappings/assignments, and
choose the best one that can reduce underutilization and overutilization based on the
objective function defined by Equation B.1.

Algorithm 6 shows the pseudo-code of the GA for the dynamic reallocation of the
VMs after initial placement. The GA runs at each scheduling interval for a specified
number of times according to the predefined number of generations. At each schedul-
ing interval, the algorithm tries to find a valid source and target PMs. The source and
target PMs are the PMs that are either a source or a target of VMs’ migrations. Source
PMs are the ones that are not switched off and host running VMs, while target PMs are
the ones that are not overutilized before of after the migration of the VMs from source
PMs. The GA creates the initial population of candidate VMs-to-PMs mappings by
mutating the current mapping. For each generation, the GA first selects the parent us-
ing tournament selection, applies uniform crossover, mutates the VMs, and evaluates
the candidate VMs-to-PMs mapping based on the objective function (Section B.2).

Once the GA finds the best possible VMs-to-PMs mapping for a given scheduling
interval, it will start the VM migration process to reflect the changes in the new VMs-
to-PMs mapping.

Algorithm 6 Dynamic reallocation of VMs using a GA
1: Input: schedulingIntervals, generations;
2: for all (schedulingIntervals) do
3: Store current VMs-to-PMs mapping;
4: Find source and target PMs;
5: Build initial population of VMs-to-PMs mapping;
6: Evaluate candidate mappings using Equation B.1;
7: for all (generations) do
8: Select parents for crossover;
9: Crossover based on the cross over ratio;

10: Mutate VMs using only the source PMs (active);
11: Evaluate candidate mappings using Equation B.1;
12: Select population for next generation;
13: Save best allocation found so far;
14: Build migration map from the best found allocation;
15: Apply VM migration based on the migration map;
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B.4 Experimental Evaluation

B.4.1 Simulation Settings

The CloudSim simulation toolkit [CRDB09] is used to simulate a cloud data centre,
which consists of two types of PMs, namely, HP ProLiant ML110 (two cores at 1860
MHz each) and HP ProLiant ML110 G5 (two cores at 2660 MHz each) that can host
four different VM types. CloudSim generates synthetic CPU and RAM utilization
traces every five simulated minutes based on a uniform normal distribution with values
between zero and one. The simulation works for a whole day, and the dynamic real-
location of the VMs takes place every five minutes (scheduling interval). For testing
different capabilities, we also have skewed memory utilization to be more than 50%
in some experiments to measure the efficiency of the algorithm in case of memory-
intensive VMs.

This appendix compares the GA dynamic reallocation with a baseline BFD heuris-
tic for dynamic VM placement. The baseline BFD for the dynamic reallocation starts
migrating VMs from overutilized PMs when the utilization level of the CPU or mem-
ory is 100%. Moreover, it chooses VMs with minimum memory sizes for migration
from overutilized PMs to minimize the total migration time.

B.4.2 Performance Metrics

1. Average overall underutilization (AOUU):
AOUU is the average of ACUU and ARUU, which correspond to average under-
utilization per CPU and memory, respectively.

2. Average overall SLA violations (AOSLAVs):
AOSLAVs estimates the average number of SLA violations and is calculated as
follows:

AOSLAV s =
1
2
(OCSLAV s+ORSLAV s),

where OCSLAVs represents CPU SLA violations for all active PMs and is esti-
mated as follows:

OCSLAV s =
RequestedCPU−AllocatedCPU

RequestedCPU
.
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The ORSLAVs represents memory SLA violations for all active PMs and is es-
timated as follows:

ORSLAV s =
RequestedRam−AllocatedRam

RequestedRam
.

B.4.3 Experiments

Two experiments have been conducted to evaluate the performance of the GA proposal
against the baseline BDF for the dynamic reallocation of the VMs. The first experi-
ment uses the normal CPU and memory utilization traces, while the second experiment
increases VMs’ memory requirements to over 50%.

Experiment 1: Normal CPU and memory utilization

Figure B.1: AOSLAVs and AOUU using different data centre sizes (#VMs,#PMs)

Figure B.1 summarizes the results from the proposed GA-based solution as op-
posed to the baseline BFD heuristic using different data centre sizes, ranging from
100 to 5000 PMs that host 200 to 10,000 VMs. The X-axis shows the AOSLAVs
and AOUU (for each size of the data centre), while the Y-axis is showing their corre-
sponding values as a percentage. The experiments run for a whole day of simulation
time except the instances with 4,000 and 10,000 VMs that run for only 6 hours due to
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memory constraints. Figure B.1 confirms that GA outperforms BFD for the dynamic
reallocation of VMs while considering CPU and memory requirements.

Experiment 2: Skewed memory utilization

This experiment skews memory utilization (over 50%) to assess the reaction of both
solutions to the increase in memory requirements in case of memory-intensive ap-
plications. Figure B.2 shows that the ACUU of the proposed GA-based solution is
45.95% compared to 57.97% of the baseline BFD solution, which means around 20%
improvement in CPU utilization. Furthermore, the ARUU is 22.56% and 38.69% for
the proposed GA-based solution and the baseline BFD solution, respectively, which
indicates that using GA can reduce memory underutilization by around 40% as op-
posed to the baseline BFD. In Figure B.2, the size of the circle defines the AOSLAVs,
which shows that the proposed GA-based solution managed to reduce the AOSLAVs
by around 70%.

Figure B.2: Average CPU and memory underutilization along with AOSLAVs in a
memory-intensive scenario.
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B.5 Conclusion

This appendix addresses the dynamic VM placement problem by considering both
CPU and memory resource requirements of the hosted VMs. The appendix makes
use of a genetic algorithm for the dynamic reallocation of the VMs. The candidate
solutions are evaluated against an objective function that aims to reduce overutilization
as well as underutilization of the running PMs to minimize the resulting SLAVs and
improve overall utilization. The empirical evaluation proves that the dynamic VM
placement using the genetic algorithm outperforms the well-known best-fit decreasing
algorithm. Eventually, considering multiple types of resources, including memory or
network bandwidth becomes critical as the applications running on the VMs can be
memory- or network-intensive.


