249 research outputs found

    Recent Advances in Multi-modal 3D Scene Understanding: A Comprehensive Survey and Evaluation

    Full text link
    Multi-modal 3D scene understanding has gained considerable attention due to its wide applications in many areas, such as autonomous driving and human-computer interaction. Compared to conventional single-modal 3D understanding, introducing an additional modality not only elevates the richness and precision of scene interpretation but also ensures a more robust and resilient understanding. This becomes especially crucial in varied and challenging environments where solely relying on 3D data might be inadequate. While there has been a surge in the development of multi-modal 3D methods over past three years, especially those integrating multi-camera images (3D+2D) and textual descriptions (3D+language), a comprehensive and in-depth review is notably absent. In this article, we present a systematic survey of recent progress to bridge this gap. We begin by briefly introducing a background that formally defines various 3D multi-modal tasks and summarizes their inherent challenges. After that, we present a novel taxonomy that delivers a thorough categorization of existing methods according to modalities and tasks, exploring their respective strengths and limitations. Furthermore, comparative results of recent approaches on several benchmark datasets, together with insightful analysis, are offered. Finally, we discuss the unresolved issues and provide several potential avenues for future research

    Uncertainty Minimization in Robotic 3D Mapping Systems Operating in Dynamic Large-Scale Environments

    Get PDF
    This dissertation research is motivated by the potential and promise of 3D sensing technologies in safety and security applications. With specific focus on unmanned robotic mapping to aid clean-up of hazardous environments, under-vehicle inspection, automatic runway/pavement inspection and modeling of urban environments, we develop modular, multi-sensor, multi-modality robotic 3D imaging prototypes using localization/navigation hardware, laser range scanners and video cameras. While deploying our multi-modality complementary approach to pose and structure recovery in dynamic real-world operating conditions, we observe several data fusion issues that state-of-the-art methodologies are not able to handle. Different bounds on the noise model of heterogeneous sensors, the dynamism of the operating conditions and the interaction of the sensing mechanisms with the environment introduce situations where sensors can intermittently degenerate to accuracy levels lower than their design specification. This observation necessitates the derivation of methods to integrate multi-sensor data considering sensor conflict, performance degradation and potential failure during operation. Our work in this dissertation contributes the derivation of a fault-diagnosis framework inspired by information complexity theory to the data fusion literature. We implement the framework as opportunistic sensing intelligence that is able to evolve a belief policy on the sensors within the multi-agent 3D mapping systems to survive and counter concerns of failure in challenging operating conditions. The implementation of the information-theoretic framework, in addition to eliminating failed/non-functional sensors and avoiding catastrophic fusion, is able to minimize uncertainty during autonomous operation by adaptively deciding to fuse or choose believable sensors. We demonstrate our framework through experiments in multi-sensor robot state localization in large scale dynamic environments and vision-based 3D inference. Our modular hardware and software design of robotic imaging prototypes along with the opportunistic sensing intelligence provides significant improvements towards autonomous accurate photo-realistic 3D mapping and remote visualization of scenes for the motivating applications

    VIDEO FOREGROUND LOCALIZATION FROM TRADITIONAL METHODS TO DEEP LEARNING

    Get PDF
    These days, detection of Visual Attention Regions (VAR), such as moving objects has become an integral part of many Computer Vision applications, viz. pattern recognition, object detection and classification, video surveillance, autonomous driving, human-machine interaction (HMI), and so forth. The moving object identification using bounding boxes has matured to the level of localizing the objects along their rigid borders and the process is called foreground localization (FGL). Over the decades, many image segmentation methodologies have been well studied, devised, and extended to suit the video FGL. Despite that, still, the problem of video foreground (FG) segmentation remains an intriguing task yet appealing due to its ill-posed nature and myriad of applications. Maintaining spatial and temporal coherence, particularly at object boundaries, persists challenging, and computationally burdensome. It even gets harder when the background possesses dynamic nature, like swaying tree branches or shimmering water body, and illumination variations, shadows cast by the moving objects, or when the video sequences have jittery frames caused by vibrating or unstable camera mounts on a surveillance post or moving robot. At the same time, in the analysis of traffic flow or human activity, the performance of an intelligent system substantially depends on its robustness of localizing the VAR, i.e., the FG. To this end, the natural question arises as what is the best way to deal with these challenges? Thus, the goal of this thesis is to investigate plausible real-time performant implementations from traditional approaches to modern-day deep learning (DL) models for FGL that can be applicable to many video content-aware applications (VCAA). It focuses mainly on improving existing methodologies through harnessing multimodal spatial and temporal cues for a delineated FGL. The first part of the dissertation is dedicated for enhancing conventional sample-based and Gaussian mixture model (GMM)-based video FGL using probability mass function (PMF), temporal median filtering, and fusing CIEDE2000 color similarity, color distortion, and illumination measures, and picking an appropriate adaptive threshold to extract the FG pixels. The subjective and objective evaluations are done to show the improvements over a number of similar conventional methods. The second part of the thesis focuses on exploiting and improving deep convolutional neural networks (DCNN) for the problem as mentioned earlier. Consequently, three models akin to encoder-decoder (EnDec) network are implemented with various innovative strategies to improve the quality of the FG segmentation. The strategies are not limited to double encoding - slow decoding feature learning, multi-view receptive field feature fusion, and incorporating spatiotemporal cues through long-shortterm memory (LSTM) units both in the subsampling and upsampling subnetworks. Experimental studies are carried out thoroughly on all conditions from baselines to challenging video sequences to prove the effectiveness of the proposed DCNNs. The analysis demonstrates that the architectural efficiency over other methods while quantitative and qualitative experiments show the competitive performance of the proposed models compared to the state-of-the-art

    On the use of smartphones as novel photogrammetric water gauging instruments: Developing tools for crowdsourcing water levels

    Get PDF
    The term global climate change is omnipresent since the beginning of the last decade. Changes in the global climate are associated with an increase in heavy rainfalls that can cause nearly unpredictable flash floods. Consequently, spatio-temporally high-resolution monitoring of rivers becomes increasingly important. Water gauging stations continuously and precisely measure water levels. However, they are rather expensive in purchase and maintenance and are preferably installed at water bodies relevant for water management. Small-scale catchments remain often ungauged. In order to increase the data density of hydrometric monitoring networks and thus to improve the prediction quality of flood events, new, flexible and cost-effective water level measurement technologies are required. They should be oriented towards the accuracy requirements of conventional measurement systems and facilitate the observation of water levels at virtually any time, even at the smallest rivers. A possible solution is the development of a photogrammetric smartphone application (app) for crowdsourcing water levels, which merely requires voluntary users to take pictures of a river section to determine the water level. Today’s smartphones integrate high-resolution cameras, a variety of sensors, powerful processors, and mass storage. However, they are designed for the mass market and use low-cost hardware that cannot comply with the quality of geodetic measurement technology. In order to investigate the potential for mobile measurement applications, research was conducted on the smartphone as a photogrammetric measurement instrument as part of the doctoral project. The studies deal with the geometric stability of smartphone cameras regarding device-internal temperature changes and with the accuracy potential of rotation parameters measured with smartphone sensors. The results show a high, temperature-related variability of the interior orientation parameters, which is why the calibration of the camera should be carried out during the immediate measurement. The results of the sensor investigations show considerable inaccuracies when measuring rotation parameters, especially the compass angle (errors up to 90° were observed). The same applies to position parameters measured by global navigation satellite system (GNSS) receivers built into smartphones. According to the literature, positional accuracies of about 5 m are possible in best conditions. Otherwise, errors of several 10 m are to be expected. As a result, direct georeferencing of image measurements using current smartphone technology should be discouraged. In consideration of the results, the water gauging app Open Water Levels (OWL) was developed, whose methodological development and implementation constituted the core of the thesis project. OWL enables the flexible measurement of water levels via crowdsourcing without requiring additional equipment or being limited to specific river sections. Data acquisition and processing take place directly in the field, so that the water level information is immediately available. In practice, the user captures a short time-lapse sequence of a river bank with OWL, which is used to calculate a spatio-temporal texture that enables the detection of the water line. In order to translate the image measurement into 3D object space, a synthetic, photo-realistic image of the situation is created from existing 3D data of the river section to be investigated. Necessary approximations of the image orientation parameters are measured by smartphone sensors and GNSS. The assignment of camera image and synthetic image allows for the determination of the interior and exterior orientation parameters by means of space resection and finally the transfer of the image-measured 2D water line into the 3D object space to derive the prevalent water level in the reference system of the 3D data. In comparison with conventionally measured water levels, OWL reveals an accuracy potential of 2 cm on average, provided that synthetic image and camera image exhibit consistent image contents and that the water line can be reliably detected. In the present dissertation, related geometric and radiometric problems are comprehensively discussed. Furthermore, possible solutions, based on advancing developments in smartphone technology and image processing as well as the increasing availability of 3D reference data, are presented in the synthesis of the work. The app Open Water Levels, which is currently available as a beta version and has been tested on selected devices, provides a basis, which, with continuous further development, aims to achieve a final release for crowdsourcing water levels towards the establishment of new and the expansion of existing monitoring networks.Der Begriff des globalen Klimawandels ist seit Beginn des letzten Jahrzehnts allgegenwärtig. Die Veränderung des Weltklimas ist mit einer Zunahme von Starkregenereignissen verbunden, die nahezu unvorhersehbare Sturzfluten verursachen können. Folglich gewinnt die raumzeitlich hochaufgelöste Überwachung von Fließgewässern zunehmend an Bedeutung. Pegelmessstationen erfassen kontinuierlich und präzise Wasserstände, sind jedoch in Anschaffung und Wartung sehr teuer und werden vorzugsweise an wasserwirtschaftlich-relevanten Gewässern installiert. Kleinere Gewässer bleiben häufig unbeobachtet. Um die Datendichte hydrometrischer Messnetze zu erhöhen und somit die Vorhersagequalität von Hochwasserereignissen zu verbessern, sind neue, kostengünstige und flexibel einsetzbare Wasserstandsmesstechnologien erforderlich. Diese sollten sich an den Genauigkeitsanforderungen konventioneller Messsysteme orientieren und die Beobachtung von Wasserständen zu praktisch jedem Zeitpunkt, selbst an den kleinsten Flüssen, ermöglichen. Ein Lösungsvorschlag ist die Entwicklung einer photogrammetrischen Smartphone-Anwendung (App) zum Crowdsourcing von Wasserständen mit welcher freiwillige Nutzer lediglich Bilder eines Flussabschnitts aufnehmen müssen, um daraus den Wasserstand zu bestimmen. Heutige Smartphones integrieren hochauflösende Kameras, eine Vielzahl von Sensoren, leistungsfähige Prozessoren und Massenspeicher. Sie sind jedoch für den Massenmarkt konzipiert und verwenden kostengünstige Hardware, die nicht der Qualität geodätischer Messtechnik entsprechen kann. Um das Einsatzpotential in mobilen Messanwendungen zu eruieren, sind Untersuchungen zum Smartphone als photogrammetrisches Messinstrument im Rahmen des Promotionsprojekts durchgeführt worden. Die Studien befassen sich mit der geometrischen Stabilität von Smartphone-Kameras bezüglich geräteinterner Temperaturänderungen und mit dem Genauigkeitspotential von mit Smartphone-Sensoren gemessenen Rotationsparametern. Die Ergebnisse zeigen eine starke, temperaturbedingte Variabilität der inneren Orientierungsparameter, weshalb die Kalibrierung der Kamera zum unmittelbaren Messzeitpunkt erfolgen sollte. Die Ergebnisse der Sensoruntersuchungen zeigen große Ungenauigkeiten bei der Messung der Rotationsparameter, insbesondere des Kompasswinkels (Fehler von bis zu 90° festgestellt). Selbiges gilt auch für Positionsparameter, gemessen durch in Smartphones eingebaute Empfänger für Signale globaler Navigationssatellitensysteme (GNSS). Wie aus der Literatur zu entnehmen ist, lassen sich unter besten Bedingungen Lagegenauigkeiten von etwa 5 m erreichen. Abseits davon sind Fehler von mehreren 10 m zu erwarten. Infolgedessen ist von einer direkten Georeferenzierung von Bildmessungen mittels aktueller Smartphone-Technologie abzusehen. Unter Berücksichtigung der gewonnenen Erkenntnisse wurde die Pegel-App Open Water Levels (OWL) entwickelt, deren methodische Entwicklung und Implementierung den Kern der Arbeit bildete. OWL ermöglicht die flexible Messung von Wasserständen via Crowdsourcing, ohne dabei zusätzliche Ausrüstung zu verlangen oder auf spezifische Flussabschnitte beschränkt zu sein. Datenaufnahme und Verarbeitung erfolgen direkt im Feld, so dass die Pegelinformationen sofort verfügbar sind. Praktisch nimmt der Anwender mit OWL eine kurze Zeitraffersequenz eines Flussufers auf, die zur Berechnung einer Raum-Zeit-Textur dient und die Erkennung der Wasserlinie ermöglicht. Zur Übersetzung der Bildmessung in den 3D-Objektraum wird aus vorhandenen 3D-Daten des zu untersuchenden Flussabschnittes ein synthetisches, photorealistisches Abbild der Aufnahmesituation erstellt. Erforderliche Näherungen der Bildorientierungsparameter werden von Smartphone-Sensoren und GNSS gemessen. Die Zuordnung von Kamerabild und synthetischem Bild erlaubt die Bestimmung der inneren und äußeren Orientierungsparameter mittels räumlichen Rückwärtsschnitt. Nach Rekonstruktion der Aufnahmesituation lässt sich die im Bild gemessene 2D-Wasserlinie in den 3D-Objektraum projizieren und der vorherrschende Wasserstand im Referenzsystem der 3D-Daten ableiten. Im Soll-Ist-Vergleich mit konventionell gemessenen Pegeldaten zeigt OWL ein erreichbares Genauigkeitspotential von durchschnittlich 2 cm, insofern synthetisches und reales Kamerabild einen möglichst konsistenten Bildinhalt aufweisen und die Wasserlinie zuverlässig detektiert werden kann. In der vorliegenden Dissertation werden damit verbundene geometrische und radiometrische Probleme ausführlich diskutiert sowie Lösungsansätze, auf der Basis fortschreitender Entwicklungen von Smartphone-Technologie und Bildverarbeitung sowie der zunehmenden Verfügbarkeit von 3D-Referenzdaten, in der Synthese der Arbeit vorgestellt. Mit der gegenwärtig als Betaversion vorliegenden und auf ausgewählten Geräten getesteten App Open Water Levels wurde eine Basis geschaffen, die mit kontinuierlicher Weiterentwicklung eine finale Freigabe für das Crowdsourcing von Wasserständen und damit den Aufbau neuer und die Erweiterung bestehender Monitoring-Netzwerke anstrebt

    Lidar-based Obstacle Detection and Recognition for Autonomous Agricultural Vehicles

    Get PDF
    Today, agricultural vehicles are available that can drive autonomously and follow exact route plans more precisely than human operators. Combined with advancements in precision agriculture, autonomous agricultural robots can reduce manual labor, improve workflow, and optimize yield. However, as of today, human operators are still required for monitoring the environment and acting upon potential obstacles in front of the vehicle. To eliminate this need, safety must be ensured by accurate and reliable obstacle detection and avoidance systems.In this thesis, lidar-based obstacle detection and recognition in agricultural environments has been investigated. A rotating multi-beam lidar generating 3D point clouds was used for point-wise classification of agricultural scenes, while multi-modal fusion with cameras and radar was used to increase performance and robustness. Two research perception platforms were presented and used for data acquisition. The proposed methods were all evaluated on recorded datasets that represented a wide range of realistic agricultural environments and included both static and dynamic obstacles.For 3D point cloud classification, two methods were proposed for handling density variations during feature extraction. One method outperformed a frequently used generic 3D feature descriptor, whereas the other method showed promising preliminary results using deep learning on 2D range images. For multi-modal fusion, four methods were proposed for combining lidar with color camera, thermal camera, and radar. Gradual improvements in classification accuracy were seen, as spatial, temporal, and multi-modal relationships were introduced in the models. Finally, occupancy grid mapping was used to fuse and map detections globally, and runtime obstacle detection was applied on mapped detections along the vehicle path, thus simulating an actual traversal.The proposed methods serve as a first step towards full autonomy for agricultural vehicles. The study has thus shown that recent advancements in autonomous driving can be transferred to the agricultural domain, when accurate distinctions are made between obstacles and processable vegetation. Future research in the domain has further been facilitated with the release of the multi-modal obstacle dataset, FieldSAFE

    Detection and representation of moving objects for video surveillance

    Get PDF
    In this dissertation two new approaches have been introduced for the automatic detection of moving objects (such as people and vehicles) in video surveillance sequences. The first technique analyses the original video and exploits spatial and temporal information to find those pixels in the images that correspond to moving objects. The second technique analyses video sequences that have been encoded according to a recent video coding standard (H.264/AVC). As such, only the compressed features are analyzed to find moving objects. The latter technique results in a very fast and accurate detection (up to 20 times faster than the related work). Lastly, we investigated how different XML-based metadata standards can be used to represent information about these moving objects. We proposed the usage of Semantic Web Technologies to combine information described according to different metadata standards

    Urban informality: the production of informal landscapes of musical performance in Sydney

    Get PDF
    In Sydney, a variety of informal spaces of musical production and performance exist, from autonomously-organized public performance spaces, to top-down, hierarchical, closed spaces, and any number of configurations in between. Are these informal spaces an enactment of progressive rights to the city? Do they contribute to gentrification and urban renewal processes? This thesis critically interrogates the urban politics of these different expressions of informality in the Sydney music scene. Following McFarlane and Waibel (2012), I consider informality as a multi-dimensional concept that can be conceived of in four ways: spatial categorization, organizational form, governmental tool, and negotiable value. In my own contribution to the literature, I seek to understand the relationship between informality and the State, based on these criteria. Drawing upon an ethnographic study of several informal performance spaces and events in Sydney, I have devised a typology of informal spaces. These are: (1) informal spaces, (2) informally formal spaces, and (3) formally informal spaces. This typology allows us to differentiate between the urban politics of different kinds of informality in globalizing cities, in order to understand which processes subsume informality into neoliberal modes of urban governance, and which processes aim to create more socially just cities

    A comprehensive approach for the efficient acquisition and processing of hyperspectral images and sequence

    Get PDF
    Programa Oficial de Doctorado en Computación. 5009P01[Abstract] Despite the scientific and technological developments achieved during the last two decades in the hyperspectral field, some methodological, operational and conceptual issues have restricted the progress, promotion and popular dissemination of this technology. These shortcomings include the specialized knowledge required for the acquisition of hyperspectral images, the shortage of publicly accessible hyperspectral image repositories with reliable ground truth images or the lack of methodologies that allow for the adaptation of algorithms to particular user or application processing needs. The work presented here has the objective of contributing to the hyperspectral field with procedures for the automatic acquisition of hyperspectral scenes, including the hardware adaptation of our own imagers and the development of methods for the calibration and correction of the hyperspectral datacubes, the creation of a publicly available hyperspectral repository of well categorized and labeled images and the design and implementation of novel computational intelligence based processing techniques that solve typical issues related to the segmentation and denoising of hyperspectral images as well as sequences of them taking into account their temporal evolution.[Resumen] A pesar de los desarrollos tecnológicos y científicos logrados en el campo hiperespectral durante las dos últimas décadas, alg\mas limitaciones de tipo metodológico, operacional y conceptual han restringido el progreso, difusión y popularización de esta tecnología, entre ellas, el conocimiento especializado requerido en la adquisición de imágenes hiperespectrales, la carencia de repositorios de imágenes hiperespectrales con etiquetados fiables y de acceso público o la falta de metodologías que posibiliten la adaptación de algoritmos a usuarios o necesidades de procesamiento concretas. Este trabajo doctoral tiene el objetivo de contribuir al campo hiperespectral con procedimientos para la adquisición automática de escenas hiperespectrales, incluyendo la adaptación hardware de cámaras hiperespectrales propias y el desarrollo de métodos para la calibración y corrección de cubos de datos hiperespectrales; la creación de un repositorio hiperespectral de acceso público con imágenes categorizadas y con verdades de terreno fiables; y el diseño e implementación de técnicas de procesamiento basadas en inteligencia computacional para la resolución de problemas típicamente relacionados con las tareas de segmentación y eliminación de ruido en imágenes estáticas y secuencias de imágenes hiperespectrales teniendo en consideración su evolución temporal.[Resumo] A pesar dos desenvolvementos tecnolóxicos e científicos logrados no campo hiperespectral durante as dúas últimas décadas, algunhas lirrútacións de tipo metodolóxico¡ operacional e conceptual restrinxiron o progreso) difusión e popularización desta tecnoloxía, entre elas, o coñecemento especializado requirido na adquisición de imaxes hiperespectrales¡ a carencia de repositorios de irnaxes hiperespectrales con etiquetaxes fiables e de acceso público ou a falta de metodoloxías que posibiliten a adaptación de algoritmos a usuarios ou necesidades de procesamento concretas. Este traballo doutoral ten o obxectívo de contribuir ao campo hiperespectral con procedementos para a adquisición automática de eicenas hiperespectrais, incluíndo a adaptación hardware de cámaras hiperespectrales propias e o desenvolvemento de métodos para a calibración e corrección de cubos de datos hiperespectrais; a creación dun repositorio hiperespectral de acceso público con imaxes categorizadas e con verdades de terreo fiables; e o deseño e implementación de técnicas de procesamento baseadas en intelixencia computacional para a resolución de problemas tipicamente relacionado~ coas tarefas de segmentación e eliminación de ruído en imaxes estáticas e secuencias de imaxes hiperespectrai~ tendo en consideración a súa evolución temporal
    corecore