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Summary

The last decade, we have witnessed an explosion of video surveillance cameras
and systems. Such a system monitors the video feeds of several cameras and
is responsible for management, visualization and storage of the recorded data.
With the number of video cameras within one system increasing, it became
clear that human operators are no longer capable of monitoring the amount of
captured data. Hence, the need for intelligent video analytics arose and to-
gether with the increase of cameras came the raise of efforts in the domain
of automatic video analysis. This new branch within the computer vision re-
search field has soon become a large research topic, steered by industrial and
governmental funds.

Different applications have been deployed like crowd control, detection of in-
truders, theft, left luggage detection, etc. New use cases were introduced,
which benefit of the computer vision algorithms e.g., in traffic control (in-
cident detection, speeding, intersection management, congestion monitoring
and so on) or retail (people counting, activity patterns).

Much research has been done on all aspects of an intelligent video surveillance
system. Algorithms were developed to detect and segment moving objects like
people and cars. Tracking algorithms find the temporal dependencies between
objects in different frames or camera views. Trajectories and body shape are
used to determine and predict the behaviour of detected objects. Face and
licence plate recognition are examples of more advanced techniques working
on the segmented images.

When considering such video surveillance applications, two main restrictions
are made. Speed and accuracy are of uttermost importance. Almost all of
the aforementioned use cases require a fast and accurate initial segmentation
of moving objects. Although this is the first step, it is also one of the most dif-
ficult ones due to it’s dependence on the statistics of the captured video data.
The major problems in accurately detecting and segmenting moving objects
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are noise, shadows, lighting changes, background movement and so on. Addi-
tionally, occlusion, differences in size, speed, and shape of the moving objects,
stopped objects or moved background objects make it difficult to create a reli-
able moving object detection system.

When object detection is incorporated in large-scale video surveillance sys-
tems, means are necessary to define how the objects, or other events of in-
terest, can be signalled, communicated and stored. The usage of standardized
(XML-based) metadata has been proposed to create interoperability within one
system. However, when trying to combine different surveillance systems, or
modules of different vendors, the usage of different XML-based standards in-
troduces again interoperability issues. Different standards generally use differ-
ent constructs to represent the same concepts.

Our research is situated within the context of an intelligent surveillance system,
where we focus on moving object detection and the usage of different XML-
based metadata standards. Firstly, we present two novel background subtrac-
tion techniques to detect moving objects when using a static camera. The first
technique works on uncompressed video data, while the second analyses video
sequences compressed according to a recent video standard (H.264/AVC).
In the latter, we use features available in the H.264/AVC-compressed video
stream to detect the moving objects. Lastly, we investigate the problems that
occur when trying to describe these detected objects by using standardized
XML-based metadata formats. We solve these issues in the context of (per-
sonal) content management systems, since these can be seen as a generaliza-
tion of video surveillance systems.

First, we give an in-depth explanation about moving object detection in the
pixel domain. In this case, the input of the algorithms are uncompressed im-
age sequences and the purpose is to find those pixels in the images that cor-
respond to moving objects. Finding moving objects in the pixel domain is
a well-studied problem and numerous algorithms have been proposed. One
of the most popular group of methods are background subtraction techniques.
During the surveillance of a scene, a background model is created and dynam-
ically updated. For each new image, deviations of the pixel values from the
background model are detected and used to classify the observations as be-
longing to background or foreground. We elaborate on the related work in this
field, and enumerate a number of problems that current background subtraction
systems suffer from.

We present a robust moving object detection technique. The proposed system
is a multi-modal spatio-temporal background subtraction technique that finds
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those pixels corresponding to moving objects.

The temporal background subtraction system uses a weighted mixture of mo-
dels and is combined with a fast spatial image segmentation technique. The
models consist of an average, an upper and lower threshold, a maximum dif-
ference with the last background value, and an illumination allowance based
on photon noise statistics of the image. The problem of gradual illumination
changes is well-known and a number of methods exist in the literature to deal
with it, but at the cost of high additional complexity. By incorporating the dif-
ference with the last background value, we presented a very fast and efficient
technique to deal with the problem of gradual illumination changes. New pixel
values are compared with the models of the mixture to find a match. Conse-
quently, a decision (classification as foreground or background) is made based
on the weights of the models. The parameters of the models are continuously
updated according to the newly captured images to follow the dynamics of the
surveilled environment. Finally, a shadow removal scheme has been included
to improve the detection results.

The processing speed of video analytics algorithms is very important, espe-
cially in the context of a video surveillance system. We present an intelligent
analysis mask, which allows to reduce the number of pixels that need to be an-
alyzed for each frame. Lastly, a fast image segmentation is introduced, which
applies edge detection to find segments in the images. Photon noise statistics
are incorporated to remove noisy edges and holes in the edges are filled. This
segmentation is combined with the background subtraction.

To evaluate the proposed system, we compare the results with those of related
works in the field. Different sequences are analyzed and the results (in number
of correctly classified pixels) are presented. Visual examples are included to
give the reader a better idea of the benefits of our system. Lastly, execution
times are compared to show the gains in speed that our method achieves.

Most video surveillance systems incorporate an aspect of digital video and
rely on advanced video coding formats for the efficient representation, trans-
mission, and/or storage of digital video content. Hence a decoding step is
needed, before algorithms for video analytics can be applied. Many research
efforts have been done to apply those algorithms directly on the compressed
video sequences. As such, not relying on the pixel information, but on the
features created during the encoding process. In this dissertation, we focused
on the H.264/AVC specification for digital video coding, which has become
the de facto benchmark in the domain of digital video coding with respect to
compression.
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H.264/AVC is a rather new video standard, but the first cameras supporting this
video format have already hit the surveillance market. A number of approaches
exist to detect moving objects in the H.264/AVC compressed domain. One
common aspect of these systems is the usage of motion vector information
available in the compressed bitstreams. However, motion vectors are created
from a coding point of view and, hence, do not necessarily represent the actual
motion in a video sequence. As a result, these algorithms spend a large amount
of processing to remove noisy motion vectors.

We present a novel moving object detection method, working in the
H.264/AVC compressed domain, that disregards the motion vector informa-
tion entirely. The proposed method relies on the degree of compression that an
encoder can achieve for different parts of the frames. We make the assumption
that an encoder can compress parts of the background well, while it has more
difficulties to compress parts of moving objects. To show that our assumption
holds, we present an analysis of the bit usage for different macroblocks in the
compressed bitstream. These observations are consequently used to create a
compressed domain technique that finds macroblocks assumed to correspond
with moving objects. During execution, a background model is created based
on the sizes (in bits) of the macroblocks. For new images, the sizes of the
macroblocks are compared with this model to detect unusual large sizes. The
corresponding macroblocks are assumed to correspond to moving objects and
are spatially and temporally filtered. However, the usage of macroblocks can
be too coarse, since these consist of 16×16 pixels. Consequently, we refined
the algorithm up to blocks of 4×4 pixels by analysing sub-macroblocks of the
detected macroblocks that lie on edges of moving objects.

As with our algorithm in the pixel domain, an extensive comparison is made
with related work in this field. We show that our system outperforms other
moving object detection techniques that rely on the motion vector informa-
tion. Different challenging surveillance sequences are used for the compari-
son. Moreover, since the features we use, being the amount of compression
for blocks in a frame, can be extracted from a compressed video very fast, we
largely outperform the related work in terms of processing time. As such we
can detect moving objects up to 20 times faster than the related work in this
domain.

Additionally, we evaluate the influence of the encoder configuration on the
detection performance of the algorithm. This is a study that is neglected by
most of the related work in this domain. We show that different configurations,
hence resulting in different compressed video streams, have an influence on the
performance of the algorithm, but that we are less dependent on it compared



ix

to the approaches based on motion vectors.

A last aspect that we cover in this dissertation is how to deal with interop-
erability issues and the lack to describe semantic knowledge when using dif-
ferent XML-based metadata standards. We briefly discuss how this problem
arises in the context of video surveillance systems. Next, we elaborate on how
the same problems occur in the management of (personal) content. As such,
our research is focused on how to solve those issues when applied to personal
content management systems.

We present a novel layered architecture that uses Semantic Web technologies
to combine different metadata standards in the lower layer, while the higher
layer consists of specific ontologies representing metadata that is relevant for
personal content management systems. The metadata standards and relations
between them are represented as OWL ontologies and we have created the first
formal representation (using OWL) of the DIG35 image metadata standard.
We show how it is incorporated in the framework and how it can be com-
bined with other metadata standards, like MPEG-7. For evaluation purposes a
general use case scenario is presented, consisting of the upload of a resource,
importing of the existing metadata fields, adding an annotation according to a
different metadata format, and using high-level metadata to retrieve the con-
tent. We show how our proposed system is more suited to solve this use case
than related work in the field.

To conclude, in this dissertation different aspects of an intelligent video
surveillance system were considered. The emphasis lays on the detection of
moving objects, both in pixel and compressed domain. Finally, the usage of
XML-based metadata has been studied and we presented methods to enhance
the interoperability. We hope to have convinced the reader that our work is re-
levant for current and future multimedia systems and can be applied in a wide
range of applications, being video surveillance or content management. The
application of H.264/AVC in the video surveillance market is only just begin-
ning to bloom. Also, the usage of metadata to describe events will become
even more important with the increase of cameras and systems in the future.
Lastly, tool support for the Semantic Web Technologies is improving and these
techniques are becoming more popular. As such, it is our belief that the results
presented in this dissertation will only increase in value in the coming years.
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Samenvatting

De laatste jaren is het gebruik van bewakingscamera’s of videobewakingssys-
temen exponentieel toegenomen. Een dergelijk systeem beheert de data-input
van verscheidene camera’s en is verantwoordelijk voor het beheer, de visuali-
satie en de opslag van de opgenomen gegevens. Aangezien het aanal camera’s
binnen één systeem drastisch steeg, werd het duidelijk dat de menselijke opera-
toren niet meer in staat zijn om deze hoeveelheid informatie te verwerken. Van-
daar ontstond de behoefte aan intelligente videobewakingssystemen en samen
met het aantal camera’s stegen ook de inspanningen op het gebied van auto-
matische videoanalyse. Deze nieuwe tak binnen het onderzoekgebied van de
computervisie is spoedig een groot onderzoekonderwerp geworden, dat door
industriële en regeringsfondsen wordt gestuurd.

Tegenwoordig kent automatische video-analyse verschillende toepassingen
zoals de detectie van indringers, het voorkomen van diefstal, controle van
menigtes, detectie van ongelukken, opsporing van achtergelaten bagage, de-
tectie van rondhangende personen, enz. Bovendien worden computervisie-
algoritmes ook toegepast in andere domeinen zoals in het verkeer (snel-
heidscontrole, detectie van ongevallen, beheren van kruispunten, filecontrole,
herkenning van nummerplaten, enz.) of in de kleinhandel (tellen van klanten,
of registreren van activiteitspatronen).

Er werd reeds veel onderzoek verricht omtrent alle aspecten van intelligente
videobewakingssystemen. Algoritmes werden ontwikkeld om bewegende ob-
jecten zoals mensen en voertuigen te ontdekken en te segmenteren. Opvolgal-
goritmes volgen deze objecten over verschillende beelden of tussen verschil-
lende camera’s. De afgelegde trajecten en de lichaamsvorm worden gebruikt
om het gedrag van de gedetecteerde objecten te bepalen en te voorspellen.
Meer geavanceerde technieken zijn bijvoorbeeld nummerplaat- en gezichts-
herkenning.
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Videobewakingstoepassingen worden gekenmerkt door twee belangrijke as-
pecten; de snelheid en de nauwkeurigheid van detectie zijn van uiterst be-
lang. Bijna alle voornoemde toepassingen vereisen een snelle en nauwkeurige
detectie en segmentatie van de bewegende objecten. Hoewel deze detectie de
eerste stap is, is het ook één van de moeilijkste, omwille van de afhankelijk-
heid van de opgenomen videosequentie. De belangrijkste problemen zijn ruis,
schaduwen, lichtveranderingen en bewegingen in de omgeving. Bovendien
maken occlusies, verschillen in grootte, snelheid en vorm van de bewegende
objecten, objecten die halt houden of delen uit de omgeving die veranderen het
moeilijk om een betrouwbaar detectiesysteem te maken.

Als objectdetectie-algoritmes worden toegepast in grote videobewakingsssys-
temen is er nood aan een manier om deze gedetecteerde objecten of
gebeurtenissen te signaleren, mede te delen en op te slaan. Het gebruik
van gestandaardiseerde (op XML-gebaseerde) metadatastandaarden werd
voorgesteld om tot interoperabiliteit te komen binnen één systeem. Nochtans,
wanneer verschillende bewakingssystemen, of modules van verschillende ori-
gine binnen één systeem, gecombineerd worden, introduceert het gebruik
van verschillende XML-gebaseerde standaarden opnieuw interoperabiliteits-
problemen. De verschillende standaarden gebruiken namelijk verschillende
constructies om dezelfde concepten te vertegenwoordigen.

Ons onderzoek is gesitueerd binnen de context van een intelligent videobewa-
kingssysteem, waar wij ons enerzijds richten op het detecteren van bewegende
objecten en anderzijds op het gebruik van verschillende XML-gebaseerde stan-
daarden om deze objecten te beschrijven. Ten eerste, stellen we twee nieuwe
achtergrondsubtractietechnieken voor om bewegende objecten te detecteren bij
gebruik van een statische camera. De eerste techniek werkt op basis van onge-
comprimeerde videosequenties en analyseert de pixels van elk beeld om be-
wegende objecten te detecteren. De tweede techniek analyseert sequenties die
volgens een recente videostandaard (H.264/AVC) werden gecodeerd. Hierbij
worden eigenschappen van de H.264/AVC-gecodeerde videostroom gebruikt
om de bewegende objecten te detecteren. Ten slotte onderzoeken we de pro-
blemen die voorkomen wanneer de gedetecteerde objecten beschreven wor-
den met gestandaardiseerde XML-gebaseerde metadataformaten. We lossen
deze problemen echter op in de context van contentmanagementsystemen,
aangezien deze als generalisatie van videobewakingssystemen kunnen worden
gezien.

In eerste instantie wordt de detectie van bewegende objecten in het pixel-
domein besproken. In dit geval bestaat de input van de algoritmes uit onge-
comprimeerde videosequenties en het doel is die pixels in de beelden te vin-
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den die overeenstemmen met bewegende objecten. De detectie van bewe-
gende objecten in het pixeldomein is een uitgebreid bestudeerd probleem en
talrijke methodes werden voorgesteld. Eén van de populairste groep methodes
zijn achtergrondsubtractietechnieken. Tijdens het analyseren van de videodata
wordt een achtergrondmodel gecreëerd en dynamisch bijgewerkt. Voor elk
nieuw beeld worden de afwijkingen van de pixelwaarden ten opzichte van het
achtergrondmodel bepaald en gebruikt om de observaties te classificeren als
achtergrond (deel van de omgeving) of voorgrond (een bewegend object). We
gaan uitvoerig in op het verwante werk in dit domein en sommen een aantal
problemen op waaraan de huidige achtergrondsubtractiesystemen lijden.

In deze verhandeling stellen we een robuust detectie-algoritme voor bewe-
gende objecten voor. Het voorgestelde systeem is een multimodale spatio-
temporele achtergrondsubtractietechniek dat pixels vindt die overeenkomen
met bewegende objecten. Er wordt gebruik gemaakt van een gewogen com-
binatie van achtergrondmodellen, gecombineerd met een snelle beeldsegmen-
tatie. De modellen bestaan uit een gemiddelde waarde, een hogere en lagere
drempelwaarde, een maximumverschil met de laatst waargenomen achter-
grondwaarde, en een luminantiemaat die op de statistieken van de foton-
ruis in het beeld gebaseerd is. Het probleem van geleidelijke lichtveran-
deringen is bekend in de literatuur en een aantal oplossingen werden reeds
voorgesteld, maar deze werken ten koste van hoge complexiteit. Door het
verschil met de laatst waargenomen achtergrondwaarde te bekijken, wordt
hier een zeer snelle en efficiënte techniek voorgesteld. Nieuwe pixelwaarden
worden vergeleken met deze modellen om een overeenkomst te vinden. Na-
dien wordt een besluit (classificatie als voorgrond of achtergrond) genomen,
gebaseerd op de gewichten van de modellen. Vervolgens worden de parame-
ters van de modellen bijgewerkt aan de hand van de nieuwe pixelwaarden om
de dynamiek van de omgeving op te volgen. Tot slot worden schaduwen be-
handeld om de detectieresultaten te verbeteren. De verwerkingssnelheid van
de algoritmes is zeer belangrijk, vooral in de context van een videobewakings-
systeem. Daarom stellen we een intelligent analysemasker voor, dat toestaat
om het aantal pixels te verminderen die voor elk beeld geanalyseerd moeten
worden. Ten slotte wordt een snelle beeldsegmentatie gentroduceerd die rand-
opsporing toepast om het beeld op te delen in segmenten. De ruisstatistieken
van de video worden geanalyseerd om foute randen te verwijderen en gaten op
te vullen. Deze segmentatie wordt uiteindelijk gecombineerd met de achter-
grondsubtractie.

Om het voorgestelde systeem te evalueren vergelijken we het met gerelateerd
werk in dit domein. Verschillende videobewakingssequenties worden geanaly-
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seerd en de resultaten (uitgedrukt in aantal van correct geclassificeerde pixels)
worden voorgesteld. Om de lezer een beter idee te geven van de voordelen van
ons systeem, worden een aantal visuele voorbeelden gegeven. Ten slotte wor-
den de uitvoeringstijden vergeleken om de snelheidswinsten van onze methode
aan te tonen.

Tegenwoordig omvatten de meeste videobewakingssystemen videocompressie
voor de efficinte voorstelling, transmissie, en/of opslag van de opgenomen
videosequenties. Indien de video gecodeerd werd, is een decodeerstap nodig,
alvorens de video kan geanalyseerd worden met algoritmes werkend in het
pixeldomein. Daarom worden reeds onderzoeksinspanningen geleverd naar al-
goritmes die rechtstreeks op de gecodeerde videosequenties kunnen toegepast
worden. Deze baseren zich dus niet op de pixelwaardes, maar op de infor-
matie die in de videosequentie overblijft nadat deze gecodeerd werd. In deze
verhandeling concentreren wij ons op de H.264/AVC-specificatie voor digitale
videocodering. Een specificatie die momenteel toonaangevend is qua video-
compressie.

H.264/AVC is een eerder nieuwe videostandaard, maar de eerste camera’s die
dit videoformaat ondersteunen hebben reeds de videobewakingsmarkt gevon-
den. In de literatuur werden reeds een aantal methodes voorgesteld die
bewegende objecten trachten te detecteren, rechtstreeks in het H.264/AVC-
gecomprimeerd domein. Een gemeenschappelijk aspect van deze systemen is
het gebruik van bewegingsvectoren die aanwezig zijn in de gecomprimeerde
videosequenties. Nochtans worden deze bewegingsvectoren gecreerd vanuit
het standpunt van videocodering, dus met het doel de compressie te verhogen.
Vandaar vertegenwoordigen deze niet noodzakelijk de echte beweging aan-
wezig in de videosequentie. Dientengevolge besteden deze algoritmes een
grote hoeveelheid werk aan het filteren van de bewegingsvectoren om rele-
vante informatie over te houden voor de detectie van bewegende objecten.

Wij stellen hier een nieuw algoritme voor dat bewegende objecten de-
tecteert, rechtstreeks in het H.264/AVC-gecomprimeerd domein, waarbij de
bewegingsvectoren genegeerd worden. De voorgestelde methode baseert zich
op de graad van compressie die een videocodec bereikt voor verschillende
blokken van een beeld. Hierbij gaan we uit van de veronderstelling dat delen
van het beeld die overeenkomen met achtergrond beter kunnen gecomprimeerd
worden dan delen die overeenkomen met bewegende objecten. Om aan te to-
nen dat onze veronderstelling houdt, maken we een analyse van het bitgebruik
van de verschillende macroblokken (blokken bestaande uit 16×16 pixels) in
een gecodeerde videostroom. Deze observaties werden gebruikt om tot een
detectie-algoritme te komen dat macroblokken vindt, waarvan verondersteld
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wordt dat ze overeenkomen met bewegende objecten. Het algoritme creert een
achtergrondmodel gebaseerd op de grootte (in bits) van de macroblokken. Voor
elk nieuw beeld wordt de grootte van macroblokken vergeleken met dit model
om ongebruikelijke grote blokken te ontdekken. Deze macroblokken komen
vermoedelijk overeen met bewegende objecten en worden dan spatieel en tem-
poreel gefilterd. Het gebruik van macroblokken kan te ruw zijn aangezien deze
uit 16×16 pixels bestaan. Derhalve verfijnen wij het algoritme tot blokken van
4×4 pixels door de submacroblokken te analyseren.

Zoals met het algoritme in het pixeldomein wordt een uitgebreide vergelijk-
ing gemaakt met het verwante werk uit de literatuur. We tonen aan dat ons
systeem betere resultaten geeft dan verwante technieken die gebaseerd zijn op
bewegingsvectoren. Verschillende videobewakingssequenties worden gebruikt
voor deze vergelijking.

De nodige informatie over de mate van compressie voor de blokken van een
beeld kan heel vlug uit de gecodeerde video gehaald worden. Vandaar overtreft
ons voorstel de verwante technieken in termen van verwerkingssnelheid. Onze
techniek detecteert bewegende objecten tot 20 keer sneller dan het verwante
werk in dit domein. Bovendien wordt er in deze verhandeling dieper inge-
gaan op de invloed die de configuratie van de gebruikte videocodec heeft op
de prestaties van de algoritmes. Dit is een studie die in de literatuur ont-
breekt bij het merendeel van gerelateerde technieken. Er wordt aangetoond dat
de verschillende configuraties, resulterend in verschillende gecomprimeerde
videostromen, een invloed hebben op de prestaties van de detectiealgoritmes.
Maar vergeleken met de technieken gebaseerd op bewegingsvectoren is ons
systeem minder afhankelijk van deze configuratieverschillen.

Een laatste aspect dat in deze verhandeling behandeld wordt, is hoe om te gaan
met de interoperabiliteitsproblemen die gentroduceerd worden door het ge-
bruik van verschillende XML-gebaseerde metadatastandaarden. We bespreken
kort hoe dit probleem zich in de context van videobewakingssystemen voor-
doet. Daarna weiden we uit over hoe dezelfde problemen in het beheer
van (persoonlijke) multimediale data voorkomen. Aangezien een videobewa-
kingssysteem kan aanzien worden als een specifiek geval van contentmanage-
mentsystemen, gaan we de problemen aanpakken in de bredere context van
contentmanagement. Er wordt een nieuwe gelaagde architectuur voorgesteld
die Semantische Webtechnologien gebruikt om verschillende metadatafor-
maten in de lagere laag te combineren, terwijl de hogere laag uit speci-
fieke ontologien bestaat die metadata vertegenwoordigen die relevant zijn
voor persoonlijke contentmanagementsystemen. De metadataformaten en
de relaties tussen hen worden voorgesteld door ontologien in OWL en we
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hebben de eerste formele representatie, gebruikmakende van OWL, gemaakt
van de DIG35-metadatastandaard. Deze ontologie wordt opgenomen in de
architectuur en gecombineerd met andere metadatastandaarden zoals MPEG-
7. Voor de evaluatie van de architectuur wordt een scenario opgesteld
bestaande uit het importeren van multimediale data en metadata in het con-
tentmanagementsysteem, het toevoegen van een annotatie volgens een ge-
standaardiseerd metadataformaat en het gebruiken van metadata om de mul-
timediale data terug op te vragen. Vervolgens wordt er aangetoond hoe het
voorgesteld systeem geschikter is om dit scenario te doorlopen dan het ver-
wante werk in dit domein.

In deze verhandeling werden verschillende aspecten van een intelligent video-
bewakingssysteem behandeld. Een grote nadruk lag op de detectie van bewe-
gende objecten, zowel in het pixel- als gecomprimeerde domein. Tot slot werd
het gebruik van XML-gebaseerde metadata bestudeerd en hebben we methodes
voorgesteld om de interoperabiliteit te verbeteren. We hopen dan ook de lezer
overtuigd te hebben dat dit onderzoek een originele bijdrage heeft geleverd tot
de ontwikkeling van een intelligent videobewakingssysteem.

Het gebruik van H.264/AVC-codering in de videobewakingsmarkt bevindt zich
nog in een eerste fase. Bovendien zal het gebruik van metadata om gede-
tecteerde objecten of gebeurtenissen te beschrijven steeds belangrijker wor-
den met de verhoging van het aantal camera’s en videobewakingssystemen.
Ten slotte stijgt de populariteit en het aantal ondersteunende softwarepakket-
ten van de Semantische Webtechnologieën voortdurend. Als dusdanig is het
ons geloof dat de resultaten die in deze verhandeling worden voorgesteld in de
komende jaren nog in waarde zullen toenemen.
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Chapter 1

Introduction

Big brother is watching you.
– George Orwell (1903 - 1950) – ”1984”.

In this dissertation, we present our work on the detection and representation
of moving objects in video surveillance sequences. Two main research direc-
tions were taken, firstly, we focus on feature extraction, being the detection and
segmentation of moving objects. This feature extraction step is handled in 2
domains, resulting in moving object detection techniques working in the pixel
and in the compressed domain. The second direction is research on the rep-
resentation of these extracted features by using standardized metadata. Here
we extend our domain from video surveillance to content management sys-
tems and investigate how different metadata standards can be used together. In
the next section, we describe the general context and explain some important
concepts for the rest of the dissertation.

1.1 Context

The use of video cameras to surveille a certain environment has a long-lasting
tradition. The first press reports, indicating the usage of video surveillance in
public areas, date from 1965. Initially, the video surveillance systems were
mostly used as a deterrent to prevent crime, however the systems were quickly
adopted to monitor a wide range of actions (intrusion, loitering, left baggage,
crowding, slip or fall detection, etc.). Moreover, visual surveillance has been
successfully applied in different domains (insurance industry, traffic control,
etc.).
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With the growth of the video surveillance market came an increase in research
efforts in the domain of automated video analysis, which became a large part
of the computer vision research branch. The goal is to aid and improve the
efficiency of human operators in the surveillance of large scenes by applying
computer vision algorithms on the captured video data. These algorithms de-
tect, track, and identify objects, recognize faces, detect abnormal behaviour,
predict movement of objects, etc.

Finally, the internet made video surveillance systems work on a much larger
scale than before, introducing distributed, multi-camera video surveillance sys-
tems. Recent efforts continue, the new trends are mobile video surveillance
(Apple announced its interest in using the iPhone to deliver quality mobile
video surveillance) and megapixel surveillance cameras [1].

Figure 1.1 shows the architecture of an intelligent video surveillance system.

Analysis

Compression

Decode

Analysis

Processing Visualization

Storage

Decode

Figure 1.1: General Video Surveillance System.

A camera is used to record video sequences of a certain scene. In most cases a
first form of processing is applied here, including contrast enhancement, noise
reduction, etc. In case of a smart camera the processing also includes video
analytics like motion detection. This processing can be used to reduce the
amount of data that is sent from the camera. Such cameras only produce video
streams if a certain amount of motion is detected in the scene (although this is
called motion detection, the source of the change can also encompass noise or
changing lighting conditions).
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Since the beginnings of digital video surveillance, compression is used to re-
duce the bandwidth and storage costs. An encoder is used to remove the re-
dundancy in and between the video frames and a compressed video stream is
created. Finally, a decoder is needed to reconstruct the original video stream
when visualization is needed.

An analysis module decodes the video stream and performs the actual analysis
(dependent on the use case of the system). The results of the analysis are
manifested in some kind of format. This could be a mark-up on the original
video, a representation of the detected events by means of a metadata standard,
a binary signal on an alarm channel, etc. A visualization module combines
these outputs, decodes the video, and makes a comprehensive overview for the
end-user or operator. Lastly, the video feeds and possible metadata are stored
by a storage module.

In this dissertation we focus on the analysis by creating moving object detec-
tion algorithms in the pixel and compressed domain. We make an abstraction
of where the actual analysis happens and focus on the algorithms that perform
it. Additionally, we have investigated the use of different metadata standards
for the representation of the analysis results.

1.2 Moving Object Detection

Video surveillance is proliferating worldwide, and although the efforts done to
create smart autonomic video surveillance systems are increasing, providing
fast and accurate solutions remains difficult [2].

Typical surveillance systems start with the detection and extraction of moving
objects in image sequences. Generally, the objects that one wants to detect in
an image are called foreground objects. In this dissertation we focus on mov-
ing objects, as such, moving vehicles need to be detected, but once a vehicle
stops for a long period (e.g., a parked car) it should not be regarded as fore-
ground anymore. The part of the image that does not correspond with those
foreground objects is called background. Note that the background itself can
be highly dynamic and change over time. Next, these foreground objects are
tracked over time and are classified in known categories. Subsequently, intelli-
gent decisions about the behaviour of these objects can be taken and alerts are
issued if necessary. Since automation is the goal, it is desirable to achieve very
high sensitivity with the lowest possible false alarm rates. Figure 1.2 shows a
schema listing different components used within an analysis module [3].
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Camera 1

Environment modelling

Object detection

Object classification

Tracking

Behavior understanding 
and description

Personal 
identification

Fusion of information from multiple cameras

Camera n

Environment modelling

Object detection

Object classification

Tracking

Behavior understanding 
and description

Personal 
identification

…...

Figure 1.2: Structure of a general analysis module in video surveillance systems.

An analysis module consists of different stages covering low-level,
intermediate-level, and high-level vision. A visual surveillance application
may not contain all the stages in the framework and other stages may be added
depending on the application. The stages of the framework are described in
the following.

Environment modelling The process of detecting motion or segmenting
moving objects involves environment modelling, motion segmentation
and object classification. To be able to separate moving objects from
the scene, a model for the environment or background is needed. The
model makes it possible to determine, if a pixel or region in the frame
corresponds to a background or a foreground object.

Object detection This stage detects and segments pixels or regions corre-
sponding to foreground objects using the environment or background
model. These pixels or regions are the focus for the later stages in the
framework. Most segmentation methods make use of either spatial or
temporal information in the video sequence. Environment modelling
and object detection are regarded as low-level vision algorithms.
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Object classification The detected regions from the motion segmentation
stage may correspond to different targets in the scene. In traffic surveil-
lance applications these targets may be humans and vehicles. Hence, it
is essential to classify the detected regions. This is often in the literature
considered as a standard pattern recognition task.

Tracking Having segmented the foreground objects, visual surveillance sys-
tems track these objects from frame to frame. Tracking foreground ob-
jects over time typically involves matching objects in consecutive frames
using descriptions of e.g., points, lines, or blobs. The main problem re-
lated to the tracking stage is how to handle occlusion. By tracking fore-
ground objects the system is able to supply information on the history of
the objects in the video sequence.

Behaviour understanding and description Following tracking is the prob-
lem of understanding object behaviour. In this stage, high-level descrip-
tions of actions and interactions are formed. Shapes of the segmented
objects are analysed to interprete the actual behaviour of the objects. The
object history from the tracking stage can be utilized in the interpretation
of the object motion patterns. Understanding of behaviour can simply
be seen as classification of time varying data. Typically, the behaviour
is classified as normal or abnormal.

Personal identification This stage is at the same level as behaviour under-
standing and description. In this stage, a known identity is assigned to
the tracked object. In case of surveillance of humans, biometric descrip-
tions of the human face or gait can be used. A different approach is
needed when assigning identities to vehicles. Given that the vehicles
have a license plate and it is possible to extract an image of the license
plates, it is rather straightforward to assign an identity to vehicles.

Fusion of information from multiple cameras Segmenting foreground ob-
jects, object classification, tracking, behaviour understanding, and per-
sonal identification can be accomplished using a single camera. How-
ever, using multiple cameras can overcome problems regarding occlu-
sion and depth estimation of the objects, and is called high-level vision.
In this stage, the information from the previous stages is collected. Addi-
tionally, fusion of low-level information may result in higher reliability
of the overall system.
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Within this dissertation we focus on video surveillance systems using only one
camera. The use of multiple cameras or sensors increases the possibilities (and
complexity) of a video surveillance system. For example, problems of occlu-
sions can more easily be dealt with when using the feeds of different cameras.
Nevertheless, even in multi-camera systems, processing is needed that focuses
on streams of a single surveillance camera. Moreover, we make the assump-
tion of a static camera. This excludes moving cameras, like those mounted
on cars or unmanned aerial vehicles (UAVs), but also discards pan-tilt-zoom
(PTZ) cameras. Much work has been done to compensate for camera-motion
(disregarding the source of motion), so even when using a static camera these
algorithms can be applied to simulate a static camera [4, 5].

The recent rapid increase in the amount of surveillance cameras has led to a
strong demand for automatic methods for processing their outputs. Nowadays,
researchers are focusing on activity and behaviour analysis, to be able to make
automated intelligent decisions. Detection of loitering, luggage abandoned by
the owner, trespassing, and theft of items are typical examples of high level
actions, which the computer vision community wants to tackle. All these ac-
tions require an initial detection of moving objects before any further analysis
can be done. So the detection and segmentation of objects of interest in image
sequences is the first processing step in visual surveillance applications.

Detecting and segmenting moving objects are closely related. If one detects
a moving object, it already has been segmented to some point, likewise, if an
object is segmented it is likely to be detected. It is important to clearly state
the difference between object detection and object segmentation techniques.

Object segmentation by itself is not so much on the detection of the object but
on providing a detailed segment representing the object. Fig. 1.3 shows two
typical examples of outputs of a segmentation approach. Such approaches are
typically used for object-based video coding, object recognition, or content
based image retrieval.

Within the domain of video surveillance the detection of moving objects is
about creating a foreground-background segmentation. The manner in which
these objects are detected and segmented can differ. The centroid, bounding
box, outer edge, block-based segmentation and pixel-wise segmentation are
all examples of outputs of detection algorithms. It should be clear that some
outputs put less restrictions on the algorithms than others.

In this work, when talking about object detection, the goal is to get a pixel-
wise segmentation of the detected objects. Hence, an optimal system gives
only those pixels as output that correspond with foreground objects.
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(a) (b)

(c) (d)

Figure 1.3: Examples of object segmentation where regions with similar movement
characteristics are segmented together.

This is an important aspect when considering the manner of evaluation of algo-
rithms that detect moving objects. For the evaluation, a ground truth annotation
is used. For the creation of such a ground truth, all the pixels of an image are
manually labelled as belonging to the foreground or background. To reduce
the amount of work that comes with this, for each video sequence, only a rep-
resentative set of images is annotated. The output of the algorithms is then
pixel-wisely compared with the ground truth. Next, different statistical perfor-
mance measures can be used to evaluate how accurate the resulting detection
resembles the ground truth annotation. In this dissertation, when discussing
the algorithms that we have created, we will elaborate more on the ground
truth and performance measures that are used for evaluation purposes.

Note that our goal is to create a binary classifier; a pixel is either part of some
moving object, or part of the background. This has two main implications:
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• If multiple moving objects are present in the scene, we can make no
distinction between them.

• No probabilities are assigned to the detection.

The actual distinction between the detected objects is the responsibility of fur-
ther modules in the analysis chain (as shown in Fig.1.2). An optimal object
detection can only benefit a successful classification.

The use of a probabilistic output (denoting which areas of the detection are
more probable to correspond to the moving object than others) could increase
the usability of the object detection system. Such an output could allow for
better tracking or identification. However, the binary detection is an approach
that is common in related work in this field. Finally, the typical evaluation
means count the numbers of pixels that are correctly or wrongly classified, so
they rely on a binary output.

A final note that needs to be made, is the definition of a moving object. Con-
ceptually, moving objects in the scene can be people, cars, bicycles, animals,
etc. It is the responsibility of higher level modules to make a classification of
the detected object. Events that should not be detected are fixed objects that
have motion (e.g., waving trees and escalators). The detection of moving ob-
jects in dynamic scenes has been the subject of research for several years and
different approaches exist [6].

Frame differencing One of the simplest forms of object detection where con-
secutive frames are subtracted from each other to find pixels that repre-
sent foreground objects. This technique typically yields only parts of the
foreground objects.

Optical flow This technique uses the characteristics of motion vectors of
moving objects to detect foreground objects. This flow is detected by
back-tracking features of the current frame to the previous frames, as
such, creating motion vectors. The size and direction of these vectors
are consequently used to detect moving objects. However, most opti-
cal flow methods are considered to be computationally expensive and
sensitive to noise [7].

Template matching This group of techniques relies on templates of certain
predefined objects (e.g., cardboard and stick models) [8]. The images are
then searched for good matches with these templates to facilitate object
detection. However, the entire image has to be searched to find a match
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with a template and the many possible poses, scales, and viewpoints
make this method very complex.

Background subtraction This is one of the most used techniques for detect-
ing moving objects. During the surveillance of a scene, a background
model is created and dynamically updated. For each new image, devi-
ations of the pixel values from the background model are detected and
used to classify the observations as belonging to background or fore-
ground. Note that frame differencing can be seen as a simple form of
background subtraction where the background model consists of the pre-
vious frame.

Many different models have been proposed for background subtraction and the
need to cope with multi-modal background environments has soon been estab-
lished. This multi-modality manifests itself in regions where a single pixel
value can follow multiple distributions according to the given situation of the
environment (e.g., a moving tree). Hence, the literature contains background
subtraction systems that use multiple models for each pixel.

Newly captured images need to be analysed entirely. This means that every
new pixel has to be checked for consistency with the specific background
model. Afterwards, a decision is taken for each pixel whether it represents
background or foreground. Finally, adaptive background subtraction systems
adjust the parameters of their models to better match the existing environ-
ment. Simple background subtraction algorithms can be very fast, even when
analysing every pixel of an image. However, when using adaptive systems with
multiple background models, the processing of each single pixel becomes haz-
ardous. This is indeed a problem, since, initially, background subtraction sys-
tems gained popularity because they were much faster than other techniques
like optical flow and template matching. Additionally, there are a number of
important problems when using background subtraction algorithms (quick il-
lumination changes, initialization with moving objects, ghosts, and shadows,
etc.), as was reported in [9].

In this work we present a multi-modal spatio-temporal background subtraction
technique, containing solutions to a number of problems that current back-
ground subtraction schemes suffer from. To overcome the complexity of the
traditional methods we present a simpler mixture of models technique (SMM).
Simple models are used and the system is tailored to achieve high speed and
better accuracy, dealing with quick illumination changes, noise, and shadows.
SMM is a temporal technique, meaning to make a decision about a specific
pixel it uses information on the values of that pixel in the past. Spatial infor-
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mation is used to extend SMM. We present a fast edge-based image segmenta-
tion that is combined with SMM to improve the detection results. This results
in a robust moving object detection technique called extended SMM (eSMM).
An extensive evaluation is performed to show the applicability in indoor and
outdoor environments and results are presented on different challenging se-
quences.

Note that the presented system works in the pixel domain and is only appli-
cable if we have the actual pixel values for each captured image. A practi-
cal video surveillance scenario includes video compression to reduce the used
bandwidth and storage. Consequently, if one wants to analyse the captured im-
ages to find moving objects, a decoding step is needed before the algorithms
described above can be executed. In this context, we ignore the fact that some
processing could be done on the camera itself, so before the video is encoded.

To avoid the decoding step and to reuse the work done during the encoding,
the literature holds several efforts that detect moving objects directly upon the
compressed video stream. In this case, the goal is, like for the algorithms
above, to detect moving objects fast and accurately. For this purpose, the com-
pressed video stream is analysed and the specific coding constructs that are
available in the stream are used to detect moving objects. Since the compressed
video is a more compact representation of the original video stream, analytics
working in the compressed domain can be faster than the pixel-domain ap-
proaches. Moreover, it is not necessary to fully decode the video stream before
the analysis can be done, resulting in additional gains in time.

In this dissertation, in addition to our moving object detection technique that
works in the pixel domain, we present a moving object detection technique in
the compressed domain. We use H.264/AVC for the compression of the video
sequences, which is the latest video coding standard of the ITU-T Video Cod-
ing Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group
(MPEG) [10]. This new video coding standard is likely to overtake the video
surveillance market, allowing to further reduce bandwidth and storage costs
compared to existing approaches.

When trying to detect moving objects by solely looking at an H.264/AVC com-
pressed video stream, several features can be used. Related work in this do-
main mostly relies on the motion vectors created during compression. How-
ever, we will show that the usage of motion vectors introduces issues, which
need additional complexity to be solved.

In this dissertation we present a novel alternative approach that works on a
higher level. Based on our observations, we discovered the specific compres-
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sion ratio of H.264/AVC compressed bitstreams to be more useful for object
detection. The assumption is that the video encoder can compress parts of the
background better than parts of an image containing foreground objects. This
assumption forms the base of a moving object detection technique working in
the H.264/AVC compressed domain.

1.3 Metadata

The output of our object detection systems (in pixel and compressed domain)
are pixel-wise segmentations of the image in foreground and background re-
gions. These could form the input for high-level analysis modules to make
intelligent decisions on objects, classes, trajectories, and behaviours. When
using a distributed video surveillance system, an interchange format is needed
to describe and share such detection results. Such information, used to de-
scribe data, is generally called metadata and it has applications in a broad
range of domains within computer science. In the context of video surveil-
lance, different metadata standards have been proposed using the Extensible
Markup Language (XML) as underlying language. XML allows to structure
data according to an XML schema. The latter defines terms and constructs to
represent the metadata and states the structure of the metadata. However, the
usage of XML to describe detected objects or events can infer some problems.

In this dissertation, we will show that a number of different approaches exist
in formatting the metadata associated with a video surveillance system. How-
ever, there is not one general metadata standard that is generally accepted, and
most likely such a standard will not be introduced in the near future. Conse-
quently, combining different metadata schemes with each other seems to be
the only solution to create interoperability between different modules and sys-
tems. However, the usage of different XML-based metadata standards for the
same purpose can introduce interoperability issues. The standards generally
use different XML constructs to denote the same concept. As such, it can be
hard to find similarities between annotations using these different standards.

Moreover, XML does not allow to explicitly define the semantics of the con-
cepts that are described. Traditional metadata standards present an XML
schema to define the structure and fields that can be used, and supply a textual
description of the meaning of the different concepts. As such, the metadata is
machine-readable but the semantics of the metadata fields is not.

These are general problems when using different XML-based metadata stan-
dards. In this dissertation, we have tackled this issue in the context of an-
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notation of personal pictures. Nowadays, anybody can produce multimedia
content and the internet allows to massively share personal content with oth-
ers. Metadata is used to annotate these images for retrieval and discovery.
Different XML-based metadata standards exist exactly for this purpose, but as
mentioned above, these can introduce interoperability issues and lack the ca-
pabilities to include semantic meaning. We introduce the usage of Semantic
Web technologies as a way to integrate these XML-based metadata standards.
The Semantic Web provides a common framework that allows data to be shared
and reused across application, enterprise, and community boundaries [11]. For
this purpose, different technologies are being developped and within this dis-
sertation we deploy the Web Ontology Language (OWL) [12]. This language
permits the definition of custom defined concepts and relationships on which
can be reasoned. Finally, we present a layered architecture for semantic per-
sonal content management systems that uses OWL on all layers.

1.4 Outline

This dissertation is organized as follows. In the next chapter, we present our
work done in the pixel domain to detect moving objects. We present a ro-
bust multi-modal spatio-temporal background subtraction system. First, we
elaborate on general problems that object detection techniques are faced with.
Second, related work within this domain is presented. Next, we give an in-
depth overview of our system and analyse it by including a comparison with
related work on speed and accuracy of detection. The latter is shown both on
objective (by evaluating the correctness of the detection for each pixel of an
image) and subjective (visual examples) results.

In Chapter 3, we present a novel high-speed moving object detection tech-
nique that works in the H.264/AVC compressed domain. Again, we elaborate
on related work, presenting systems that detect moving objects in MPEG com-
pressed domain, with a strong focus on H.264/AVC specific techniques. The
H.264/AVC specification is briefly touched and important concepts for this dis-
sertation are explained. Subsequently, we present our observations of the link
between compression ratio and foreground objects that triggered our research
in this domain. Next, the system, based on those observations, is outlined.
As in Chapter 2, we compare the proposed algorithm with related work and
discuss the performance (in terms of speed, objective and subjective results).
Lastly, we study the influence of different encoding configurations on our and
related work.
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Chapter 4 focuses on the interoperability problems of XML-based metadata
standards and we show how this is applicable to video surveillance systems.
Our work to solve these problems was done in the domain of personal content
management systems. So, after the initial elaboration on these problems in
the context of video surveillance, it is shown how the same problems arise
in other domains, like the management of personal (annotated) content. We
present related work in this domain and create an architecture for semantic
personal content management systems. An extensive elaboration is given on
how Semantic Web technologies can be used to deal with the given problems
and we present the benefits of our system by means of a general use case
scenario. The system is compared with the related work, giving a detailed
analysis of where our system outperforms the related work in solving this use
case.

Finally, the conclusions and future work of this dissertation are presented in
Chapter 5.

1.5 Overview Publications

The research activities that have lead to this dissertation resulted in a number
of publications listed in the Science Citation Index: one paper is published
in SPIE’s Optical Engineering, two other papers are accepted for publication
in Elsevier’s Journal of Visual Communication & Image Representation. Our
work also contributed to a paper appearing in Multimedia Systems. Next to
this, the work described in this dissertation contributed to 11 papers as first
author and 6 as co-author, which were presented at international conferences.
Lastly, several contributions were submitted to the MPEG community.

1.5.1 SCI-listed Publications

1. Chris Poppe, Sarah De Bruyne, Tom Paridaens, Peter Lambert, and Rik
Van de Walle. Moving Object Detection in the H.264/AVC Compressed
Domain for Video Surveillance Applications. Visual Communication
and Image Representation

2. Chris Poppe, Gaëtan Martens, Erik Mannens, and Rik Van de Walle. Per-
sonal Content Management System a Semantic Approach. Visual Com-
munication and Image Representation, 47:131 – 144, February 2009
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3. Chris Poppe, Gaëtan Martens, Sarah De Bruyne, Peter Lambert, and Rik
Van de Walle. Robust spatio-temporal multimodal background subtrac-
tion for video surveillance. Optical Engineering, 47:110101, October
2008

4. Davy De Schrijver, Chris Poppe, Sam Lerouge, Wesley De Neve, and
Rik Van de Walle. MPEG-21 Bitstream Syntax Descriptions for Scalable
Video Codecs. Multimedia Systems, 11:403–421, June 2006

1.5.2 Other Publications

1. Sarah De Bruyne, Chris Poppe, Steven Verstockt, Peter Lambert, and
Rik Van de Walle. Estimating Motion Reliability to Improve Moving
Object Detection in the H.264/AVC Domain. In To be published in
Proceedings of The International Conference on Multimedia and Expo
(ICME) 2009, June 2009

2. Chris Poppe, Sarah De Bruyne, Peter Lambert, and Rik Van de Walle.
Effect of H.264/AVC Compression on Object Detection for Video
Surveillance. In Proceedings of The International Workshop on Image
Analysis for Multimedia Interactive Services (WIAMIS) 2009, May 2009

3. Davy Van Deursen, Chris Poppe, Gaëtan Martens, Erik Mannens, and
Rik Van de Walle. XML to RDF Conversion: a Generic Approach. In
Proceedings of 4th International Conference on Automated Solutions for
Cross Media Content and Multi-channel Distribution (AXMEDIS) 2008,
pages 138 – 144, 2008

4. Gaëtan Martens, Chris Poppe, Peter Lambert, and Rik Van de Walle.
Unsupervised Texture Segmentation and Labeling using Biologically In-
spired Features. In Proceedings of MMSP2008, pages 159–164, 2008

5. Chris Poppe, Gaëtan Martens, Sarah De Bruyne, Peter Lambert, and Rik
Van de Walle. Dealing with Gradual Lighting Changes in Video Surveil-
lance for Indoor Environments. In Proceedings of 15th World Congress
on Intelligent Transport Systems, November 2008

6. Chris Poppe, Sarah De Bruyne, Gaëtan Martens, Peter Lambert, and Rik
Van de Walle. Intelligent Preprocessing for Fast Moving Object Detec-
tion. In Proceedings of SPIE Security and Defense, volume 6978, March
2008
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7. Chris Poppe, Frederik De Keukelaere, Saar De Zutter, Sarah De Bruyne,
Wesley De Neve, and Rik Van de Walle. Predictable Processing of Mul-
timedia Content, Using MPEG-21 Digital Item Processing. In Proceed-
ings of the 8th Pacific Rim Conference on Multimedia, volume 4810,
pages 549 – 558, December 2007

8. Chris Poppe, Gaëtan Martens, Peter Lambert, and Rik Van de Walle.
Improved Background Mixture Models for Video Surveillance Appli-
cations. Lecture Notes in Computer Science, 8th Asian Conference on
Computer Vision(ACCV 2007), 4843:251–260, 2007

9. Chris Poppe, Gaëtan Martens, Peter Lambert, and Rik Van de Walle.
Dealing with Quick Illumination Changes when using Background Mix-
ture Models. In Proceedings 8th Asian Conference on Computer Vision,
volume 4843, Tokyo, November 2007

10. Chris Poppe, Gaëtan Martens, Peter Lambert, and Rik Van de Walle.
Mixture Models Based Background Subtraction for Video Surveillance
Applications. In Lecture Notes in Computer Science: Proceedings 12th
International Conference on Computer Analysis of Images and Patterns,
volume 4673, pages 28–35, August 2007

11. Chris Poppe, Saar De Zutter, Wesley De Neve, and Rik Van de Walle.
Reconfigurable Multimedia: Putting the User in the Middle. In Pro-
ceedings of COST298 conference: the Good, the Bad an the Unexpected,
pages 15–30, May 2007

12. Gaëtan Martens, Chris Poppe, and Rik Van de Walle. Enhanced Grating
Cell Features for Unsupervised Texture Segmentation. In Proceedings
of Performance Evaluation for Computer Vision: 31ste AAPR/OAGM
Workshop, pages 9–16, Wien, May 2007

13. M. Ransburg, H. Hellwagner, R. Cazoulat, B. Pellan, C. Concolato,
S. De Zutter, C. Poppe, R. Van de Walle, and A Hutter. Dynamic and
Distributed Adaptation of Scalable Multimedia Content in a Context-
Aware Environment. In Proceedings of the WiCon‘06 conference, 2006

14. Chris Poppe, Frederik De Keukelaere, Saar De Zutter, and Rik Van de
Walle. Advanced Multimedia Systems using MPEG-21 Digital Item
Processing. In Proceedings of the Eight IEEE International Symposium
on Multimedia, pages 785–786, San Diego, December 2006

15. Chris Poppe, Ingo Wolf, Sven Wischnowsky, Saar De Zutter, and Rik
Van de Walle. Licensing System in an online MPEG-21 Environment. In
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Proceedings of the IADIS international conference WWW/internet 2006,
volume II, pages 315–319, Murcia, October 2006

16. Chris Poppe, Michael Ransburg, Saar De Zutter, and Rik Van de Walle.
Interoperable Affective Context Collection using MPEG-21. In Pro-
ceedings of the International Conference on Wireless Mobile and Mul-
timedia Networks Proceedings, volume II, pages 1603–1606, China,
November 2006

17. Saar De Zutter, Frederik De Keukelaere, Chris Poppe, and Rik Van de
Walle. Performance Analysis of MPEG-21 Technologies on Mobile
Devices. In Proceedings of SPIE-IST Electronic Imaging, Science and
Technology, volume 6074, page 12, San José, January 2006

1.5.3 MPEG Contributions

1. Chris Poppe, Saar De Zutter, and Rik Van de Walle. ISO/IEC
JTC1/SC29/WG11 m13965, Contribution to Utility Software for
ISO/IEC 21000-10 DIP/AMD 1, MPEG-document, October 2006

2. Saar De Zutter, Chris Poppe, Davy De Schrijver, and Rik Van de Walle.
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tober 2006
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Chapter 2

Pixel Domain Object
Detection

It’s for your protection.
– Beverly Griffin (2002).

2.1 Introduction

Within the computer vision community several different approaches have been
presented for the detection of moving objects in dynamic scenes [6]. One of
the common techniques is background subtraction. During the surveillance
of an environment, a background model is created and dynamically updated.
Moving objects of interest, called foreground objects, are composed of those
pixels that differ significantly from this background model. These background
subtraction techniques quickly evolved from single static models to multi-
modal, dynamically updated models.

First reports on background subtraction techniques used a static background
model, created during a training phase. However, the environment that is mon-
itored can be highly dynamic, caused by changing weather conditions, camera
noise, changes in the background (like closed or opened doors, parked cars)
and so on. Hence, creating a static background model for long-term use is
not an option. Consequently, different ways were proposed to create a dy-
namic background model. Examples of this are the use of a running average or
median for each pixel over the last n frames, as proposed in [39] and [40], re-
spectively. Other techniques model each pixel with a Kalman filter [41] or use
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a Gaussian distribution per pixel to represent the background [42]. When ap-
plying these techniques in a practical scenario, another issue arises. Motion in
the background (such as waving trees) introduces a multi-modal behaviour of
the actual background, so a background model consisting of multiple models
is required for the same pixel position.

The Mixture of Gaussian Models (MGM) is one of the most popular (multi-
modal) background subtraction techniques [43]. By using a mixture of Gaus-
sian models and a dynamic update scheme, it can handle highly complex,
multi-modal scenes with difficult situations like moving trees and bushes, clut-
ter, noise, and permanent changes of the background. This technique will be
discussed in-depth in Section 2.3.

Although it gives good results, the use of the Gaussian models and the update
scheme are complex, which increases the processing times. Moreover, a num-
ber of problems remain hard to deal with. Toyama et al. discussed in detail
several known problems when using background subtraction algorithms [44].
This list was also adopted by Javed et al. who selected a number of impor-
tant problems that have not been addressed by most background subtraction
algorithms [9]. We group them in the following items:

Illumination changes Gradual illumination changes, e.g., caused by moving
clouds, can alter the appearance of the environment, resulting in cor-
rupted background models. Additionally, sudden illumination changes,
like a light that is switched on or off, have a large impact on most back-
ground subtraction systems. To decide whether a large change of pixel
value is caused by such an event, global image processing is needed.
Moreover, these illumination changes can typically occur in different
parts of the environment, which even further complicates the detection
of them.

Shadows Although related to the first item, this is a particular hard prob-
lem since shadows cast by moving objects are moving themselves. Ad-
vanced processing is generally needed to make the difference between
moving objects and the shadows that they cast. Shadows cast by parts
of the background can also cause problems since they are directly de-
pendent on the light sources in the environment and can change with
them.

Dynamic environments Typical examples of these are waving trees, flags, or
other events, that should not be regarded as a moving object, but intro-
duce changes in the background.



2.1. Introduction 19

Ghosts This is the general name for objects that are part of the background
and have moved to another location. In this case the part of the image
where the object originally was located is seen for the first time and con-
sequently regarded as foreground. This creates a ghost in the detection
results since no real object is present at the detected spot. A typical
example is a parked car that leaves.

Moved or stopped object This occurs when a moving object stops and be-
comes motionless for a while. The assumption is that a background
subtraction system should be able to adapt itself to avoid continuous de-
tections. This also applies to parts of the background that have changed
(e.g., a closed door or window). Note that when a background object is
relocated, we face both the problem of ghosts and moved objects.

Initialization with moving objects The problem occurs when it is hard to
find images that have no or only few moving objects. This troubles the
initialization of the background models and causes the performance of
the algorithm to be low in the beginning. This problem can be seen as a
mixture of the above problems and generally the same solutions apply.

To make the traditional MGM more robust to some of these known issues and
to overcome the complexity, we present a simple mixture of models technique
(SMM). Our models consist of an average, an upper and lower threshold, a
maximum difference with the last background value, and an illumination al-
lowance based on photon noise. Background subtraction techniques as dis-
cussed here are temporal techniques. They analyse the changes of pixel values
over time to make a decision about background and foreground. However, in
many cases only performing temporal background subtraction is insufficient,
so spatial information is used to extend SMM. We present a fast edge-based
image segmentation that is combined with SMM to improve the detection re-
sults, resulting in a technique called extended SMM (eSMM).

In this chapter, we first present related work that uses background subtraction
to detect moving objects. Next, we elaborate on the mixture of Gaussian mo-
dels technique and discuss the simpler models we propose. Subsequently, the
spatial image segmentation is presented, which is combined with the temporal
background subtraction. In Section 2.6 experimental results are shown and we
end with the conclusions and an elaboration on our original contributions.
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2.2 Related Work

Many efforts have been made in the field of object detection using background
subtraction.

Haritaoglu et al. presented the W4 system in which they used a minimum
value, maximum value, and maximum difference with the previous pixel to
evaluate new pixel values [45]. However, these parameters are defined dur-
ing a training period and are only periodically updated. Moreover, they do
not use different models to cope with the multi-modal behaviour of complex
environments.

Wu et al. gave a concise overview of background subtraction algorithms and
compare MGM with their proposed technique [46]. They use a global Gaus-
sian mixture model, built upon a difference image between the current image
and an estimated background. Although their system is better for localization
and contour preserving, it is more sensitive to complex environmental move-
ments (such as waving trees).

Lee et al. improved MGM by introducing means to initialize the background
models when moving objects are present in the environment [47]. They pre-
sented an online expectation maximization learning algorithm for training
adaptive Gaussian mixtures. Their system allows to initialize the mixture mo-
dels much faster than the original approach. Related to this topic, Zhang et
al. presented an online background reconstruction method to cope with the
initialization problem [48]. Additionally, they presented a change history map
to control the foreground mergence time and made it independent of the learn-
ing rate. As such, they deal with the initialization problem and the problem of
ghosts (background objects that are moved) but cannot deal with quick illumi-
nation changes.

Zivkovic et al. improved MGM by automatically selecting the number of com-
ponents per pixel [49]. In some sequences this might be favourable, however
in dynamic and complex environments the performance diminishes to that of
the original technique.

Shan et al. presented an improved algorithm for motion detection based on
MGM [50]. They use the HSV color space for shadow removal and use color
histograms to deal with global illumination changes. Yang et al. adopted
MGM and deal with fast changes by separating the update speed of the weights
and the Gaussian parameters [51]. However, their technique is restrictedly suit-
able for slowly moving objects.
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In [9], Javed et al. presented a number of important problems when using
background subtraction algorithms, as discussed in the previous section. Ac-
cordingly, they proposed a system using pixel, region, and frame level pro-
cessing, but their technique is based on a complex gradients-based algorithm.
Unfortunately, the paper does not provide any information about the additional
processing times needed for this technique.

Tian et al. [52] used a similar approach as the one used in [9] to deal with
illumination changes. They presented a texture similarity measure based on
gradient vectors, obtained by the Sobel operator. A fixed window is used for
the retrieval of the gradient vectors, which largely determines the performance
of their system (both in processing time and accuracy) .

Numerous techniques have been proposed to deal with shadows. An inter-
esting overview on the detection of moving shadows is given in [53]. Prati
et al. divide the shadow detection techniques in four classes, of which the
deterministic non-model based approach shows the best results for the entire
evaluation set used in the overview. Since the two critical requirements of a
video surveillance system are accuracy and speed, not every shadow removal
technique is appropriate. Multi-modal background subtraction techniques give
good detection results, but the maintenance of several models for each pixel is
computational expensive. Therefore, every additional processing task should
be minimal. Furthermore, MGM was created to cope with highly dynamic en-
vironments, with the only assumption being the static camera. According to
these constraints and following the results presented by Prati et al., we have
chosen the technique described by Cucchiara et al. for a comparison with our
system [54]. Results hereof are presented in Section 2.6.

As the related work suggests, using pixel-wise background subtraction is not
enough in many cases, so spatial information is used to improve the results.
Yokoyama et al. presented an object detection and tracking system based on
edge detection [55]. They segment the image based on the Canny edge de-
tection and remove edges with little motion (compared to the previous frame).
Subsequently, they apply a line restoration step based on connected component
analysis to recover edges that are wrongly deleted. Again, they use the back-
ground edges found in the previous frame to improve the results. Although
they succeed in detecting moving objects this way, detection in multi-modal
environments or in scenes with slowly moving objects is hard.

As can be learned from the related work, the use of multiple models is essen-
tial to deal with multi-modal environments. Moreover, difficult situations, like
shadows and illumination changes, are hard to tackle without high additional



22 Pixel Domain Object Detection

complexity. Finally, the related work shows that including spatial information
can improve the detection. However, the discussed techniques either rely on
complex methods to deal with these problems, or they do not present a gen-
eral robust system. Based on these observations, we present a robust spatio-
temporal multi-modal background subtraction system. In the next section we
elaborate on MGM since it forms the base of our system.

2.3 Background Subtraction using MGM

When using background subtraction, a background model is created, which
resembles the observed environment as closely as possible. A dynamic and
complex environment typically introduces different background values for the
same pixel (e.g., movement of branches), so using a single model to repre-
sent the background is insufficient. Therefore, MGM introduces a mixture of
models and it was first proposed by Stauffer and Grimson in [43]. MGM is a
time-adaptive per pixel subtraction technique in which every pixel in frame t is
represented by a vector, called Xt, consisting of three color components (red,
green, and blue). For every pixel a mixture of multivariate normal distribu-
tions, which are the actual models, is maintained and each of these models is
assigned a weight. The Gaussian distribution G of the ith model in the mixture
is given by:

G (Xt, µi,t,Σi,t) =
1√

(2π)n |Σi,t|
e−

1
2
(Xt−µi,t)

T Σ−1
t (Xt−µi,t). (2.1)

The parameters are µi,t and Σi,t, which are the mean and covariance matrix
of the distribution, respectively. For computational simplicity, the covariance
matrix is assumed to be diagonal.

For every new pixel, a matching, an update, and a decision step are executed.
In the matching step, the new pixel value is compared with the models of the
mixture. A pixel is matched if its value occurs inside a confidence interval
within 2.5 standard deviations from the mean of the model. In that case, the
parameters of the corresponding distribution are updated according to (2.2),
(2.3), and (2.4):

µi,t = (1− ρ) µi,t−1 + ρ (Xt) , (2.2)

Σi,t = (1− ρ) Σi,t−1 + ρ (Xt − µi,t) (Xt − µi,t)
T , (2.3)

ρ = αG (Xt, µi,t−1,Σi,t−1) . (2.4)
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The learning rate, α, is a global parameter, and introduces a trade-off between
fast adaptation and detection of slowly moving objects. Each model i has a
weight, wi,t, which is updated for every new image according to (2.5):

wi,t = (1− α) wi,t−1 + αMi,t . (2.5)

If the corresponding model introduced a match, Mi,t is 1 , otherwise it is 0.
Equations (2.2) to (2.5) represent the update step.

Finally, in the decision step, the models are sorted according to their weights.
MGM assumes that background pixels occur more frequently than actual fore-
ground pixels. For that reason, a threshold T based on these weights, is used
to decide which models of the mixture depict background or foreground. In-
deed, if a pixel value occurs recurrently, the weight of the corresponding model
increases and, eventually, it is assumed to be background. In the rest of this
chapter we will use the term background models to denote those models in the
mixture that depict background.

If the current pixel value cannot be matched with any of the models, the model
with the lowest weight is discarded and replaced by a normal distribution with
a small weight, a mean equal to the current pixel value, and a large covariance.
In this case the pixel is assumed to be a foreground pixel.

The next section shows the changes we propose to MGM, which result in a
technique called Simple Mixture of Models (SMM).

2.4 Background Subtraction using SMM

The mixture of weighted Gaussian models used in MGM could be regarded
as a collection of feature vectors, describing certain states of a pixel. In this
sense, the feature vector consists of a weight, mean and variance (in case of
gray values) or a vector of means and variances (in case of more-dimensional
color spaces).

These feature vectors are then used within the matching, update, and decision
steps. Our conviction is that the true strength of MGM does not lie in the use of
the Gaussian models, but in the use of the mixture of weighted models within
these three steps, allowing to deal with dynamic multi-modal environments.

Hence, we propose to use novel feature vectors, while inheriting and modifying
the overall structure of MGM. The first feature is an intensity allowance based
on statistics of photon noise. Secondly, we incorporate in the feature vector a
maximum difference with previously recorded background values to cope with
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gradual illumination changes. And finally, we include a mean and a dynamic
upper and lower threshold (called φup,i,t and φdown,i,t, respectively), which
replace the Gaussian parameters.

These new feature vectors form the new models used within SMM and ac-
cordingly the matching, update and decision steps are adjusted. To further
improve the results, within the decision step, a shadow removal step is incor-
porated. Finally, to reduce the processing time, we introduce an analysis mask
that decides which pixels in a frame will be processed according to the above
techniques. The detection results of these pixels are subsequently interpolated
to form a decision for the remaining pixels.

The entire process of SMM is visualized in Figure 2.1. First we use an anal-
ysis mask to decide which pixels of an image will be processed according to
the matching, update and decision step. The matching step and the new feature
vectors are explained in the next section. Subsequently, Section 2.4.2 discusses
the new update step. Finally, Section 2.4.3 discusses the decision step, includ-
ing the shadow removal step and usage of the analysis mask.

2.4.1 Matching step

The matching step, shown in Figure 2.1, is a modified version of the matching
step of MGM.

The input of this step are those pixels that are selected by the analysis mask.
For the other pixels in the image a decision will be made by interpolating the
output of the analysed pixels.

Firstly, the new pixel value, that is being analysed, is evaluated according to
an intensity allowance based on Skellam parameters to deal with the effect of
photon noise (explained in the next section). If the difference of the new value
and the mean of one of the models is smaller than the intensity allowance at
that pixel position, a match is made.

Secondly, if no match was made, the pixel value is analysed to see if a gradual
change in illumination has happened. Again, if a gradual change is detected, a
match is made with the corresponding model.

Finally, if none of the above have raised a match, the new pixel value is com-
pared with the means of the models using the dynamic upper and lower thresh-
olds.

This last step is similar to the matching step of MGM, which uses the means
and standard deviations of the Gaussian distribution. However, some papers
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Figure 2.1: Flow chart representing the SMM algorithm.
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have already shown that the assumption that data, gathered by surveillance
cameras, follows a Gaussian distribution, does not always hold [56]. We be-
lieve that the true strength of MGM does not lie in the use of these Gaussian
distributions, but in the use of the mixture of weighted models, which can deal
with multi-modal environments. Additionally, in Section 2.4.2, we show how
the calculation of the Gaussian probability density function, in the update step,
can be avoided. Therefore, the conceptual use of the Gaussian distributions is
discarded and we use a mean, and a dynamic upper and lower threshold.

Dealing with photon noise

Hwang et al. already claimed that photon noise is the most dominant noise
component in CCD or CMOS cameras [56]. They made a prediction of the
photon noise and applied this to create a more precise edge detection. Indeed,
their results show that the Canny edge detection can be outperformed by taking
the photon noise into account. In the next paragraphs we elaborate on their
work and the noise model they use.

For each pixel position, they determine a Skellam distribution that models the
differences in recorded pixel values over time. Subsequently, an acceptance
region is created for this distribution. Finally, the maximum intensity differ-
ence that falls in this acceptance region is called the intensity allowance ∆XA

and is used to determine whether a change in pixel value is due to photon noise
or to something else.

Their method is based on images of a static scene, so we extend it to multi-
modal environments to make it usable in actual video surveillance systems.
When dealing with multi-modal background environments, a single pixel value
can follow multiple modes according to the given situation of the environment
(e.g., a moving tree). Accordingly, for each mode m that we see during the
gathering of the data, a Skellam distribution is determined. As such, we find for
each pixel a number of intensity allowances ∆XA,m according to the different
modes. Next, we first discuss how Hwang et al. find ∆XA, secondly we show
how we extend their method to find ∆XA,m.

When using CCD or CMOS cameras the intensity is determined by the amount
of photons that reach the camera. The number of photons is governed by the
laws of quantum physics. Due to the statiscal nature of these photons the
amount of photons that reach the camera will vary, resulting in photon noise.
Such noise is usually modelled by a Poisson distribution [57], and the differ-
ence between two Poisson random variables is defined as a Skellam distribu-



2.4. Background Subtraction using SMM 27

tion [58].

The parameters of a Skellam distribution can be estimated by using the statis-
tics of the Skellam distributions. The cumulative distribution function of a
Skellam distribution is given by:

F (∆X;µ1, µ2) = Σ∆X
k=−∞e−(µ1+µ2)

(
µ1

µ2

) k
2

Ik (2
√

µ1µ2) . (2.6)

µ1 and µ2 are the means of the two Poisson distributions, and Ik (z) is the
modified Bessel function of the first kind [59]. The cumulative distribution
function of a Skellam distribution is only defined at integer values and here
∆X represents the difference between two intensity values. If we can find
the Skellam distribution for a certain pixel position, an allowance for intensity
variation due to sensor noise can be determined. The acceptance region for an
intensity difference ∆X can be defined as:

A (∆X;µ1, µ2) = F (∆X;µ1, µ2)− F (−∆X − 1;µ1, µ2) . (2.7)

Equation (2.7) can be rewritten as:

A (∆X;µ1, µ2) = Σ∆X
k=−∆Xe−(µ1+µ2)

(
µ1

µ2

) k
2

Ik (2
√

µ1µ2) . (2.8)

The intensity allowance ∆XA is determined by:

∆XA =
arg max

∆X A (∆X;µ1, µ2)
s.t. A (∆X;µ1, µ2) ≤ 1− αS . (2.9)

αS determines the numbers of false positives [60]. The parameter αS can be
interpreted as follows: a high value means that the acceptance region and the
intensity allowance is very small, so only very small differences between con-
secutive pixels will be regarded as created by photon noise. As such, if the
photon noise causes larger differences, these will fall outside the acceptance
region and the system will not regard them as being caused by photon noise, so
more false positives will occur. Accordingly, a low αS will increase the pixel
difference that is assumed to be caused by photon noise. So, here the accep-
tance region is used to find the highest intensity difference that still matches
the restrictions imposed by αS . To benefit a practical implementation hereof,
we give a recursive definition of equation (2.7), based on equation (2.8):
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A (0;µ1, µ2) = e−(µ1+µ2)I0 (2
√

µ1µ2)

A (∆X;µ1, µ2) = A (∆X − 1;µ1, µ2) +

e−(µ1+µ2)

((
µ1

µ2

)∆X
2

+
(

µ1

µ2

)−∆X
2

)
I∆X (2

√
µ1µ2) (2.10)

The parameters of the Skellam distribution (µ1 and µ2) can be found by esti-
mating the mean µS and the variance σ2

S of the Skellam distribution [58]. The
parameters and the mean µS and the variance σ2

S are related as follows:

µS = µ1 − µ2, (2.11)

σ2
S = µ1 + µ2. (2.12)

Hwang et al. discussed three methods to obtain µS and σ2
S . The first one

calculates the average intensity differences between the same pixel positions
in consecutive frames. A second approach is to search for a homogenously
colored patch in an image and to calculate the average intensity difference
within this patch. The third approach shows how they automatically select a
homogeneous patch to calculate the parameters of the Skellam distributions.

At this point, for each pixel of a frame ∆XA can be found. Next we discuss
how the method of Hwang et al. can be extended to find ∆XA,m for different
modes.

Since we face large environments surveilled by a camera, the amount of large
homogeneously colored patches will be small, due to textures and details in
the environment. Therefore we adopt the first method of Hwang et al. to make
an estimation of the Skellam parameters. In practical scenarios, when dealing
with multi-modal background environments, it can be hard to get consecutive
images representing the same background values. This multi-modality man-
ifests itself in regions where a single pixel value can follow multiple modes
according to the given situation of the environment (e.g., a moving tree). Dif-
ferent colors correspond to different photon noise distributions so, accordingly,
for each mode m that we see during the gathering of the data, the parameters
of the according Skellam distribution (µS,m and σ2

S,m) need to be calculated.

To detect that a pixel value belongs to a new mode, we use variables Ym that
correspond to the first pixel value that is seen from a certain mode. Here, m
stands for the current mode; initially it is set to 0. We assume that, if a pixel
value Xt differs more than 30 from this variable, it is caused by the appearance
of a new mode. In that case we create an additional variable Ym+1, equal to
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the current pixel value, to represent this new mode. As such, all the data can
be assigned to the found modes. For each of the modes detected this way, a
µS,m and σ2

S,m is created and maintained:

µS,m =
∑

t (Xt −Xt+1)
n

, (2.13)

σ2
S,m =

∑
t (µS,m − (Xt −Xt+1))

2

n
, (2.14)

s.t. |Xt − Ym| ≤ 30.

The value of 30 to determine whether a pixel value belongs to a different mode
is based on work of Zang et al [61]. They have done an in-depth analysis of the
optimal parameter settings for MGM (in which each mode is represented as a
Gaussian distribution). They showed that when creating a new Gaussian model
in the mixture, an initial standard deviation equal to 12 gives good results.
This means that the matching criteria of 2.5 standard deviations results in a
pixel difference of 30. Consequently, we use this value to decide if a new pixel
value corresponds to a new mode.

As such, if a pixel is part of a dynamic background, each mode will result in a
different Skellam distribution and corresponding intensity allowance ∆XA,m.

The first step of the matching step is to use these intensity allowances to find
a match with one of the models in the mixture. So for each model i in the
mixture we need to find the appropriate intensity allowance by comparing the
mean of the model µi,t with the recorded variables Ym for that pixel position.
Subsequently, the corresponding ∆XA,m is used to check if the new pixel
value can be matched with that model. If the difference between the new pixel
value and the mean of the model is smaller than ∆XA,m, a match is made. As
a result, if the value of a background pixel has changed due to photon noise it
will still be matched by the according model. Using the intensity allowances,
which are calculated based on the statistics of the photon noise in the image,
allows to deal with different levels of noise in the video sequences. If no match
was found with the models, the matching step continues with checking whether
an illumination change has occurred.
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Dealing with illumination changes

One of the major problems one faces while creating an automated video
surveillance system, is changing lighting conditions [6], [62]. Sudden grad-
ual changes in illumination (e.g., due to a cloud gradually changing the light-
ing conditions of the environment) are hazardous for traditional pixel based
background subtraction systems. The changes can manifest themselves over a
long period (e.g., day turning into night) or over a very short period (e.g., cloud
blocking the sun). MGM is an adaptive system and the learning rate is typically
small (α is usually less than 0.01), so it is able to deal with the slow changes of
light. These slow changes will result in a gradual change of the model param-
eters such that the new background pixel values will always be matched by the
updated background models. However, dealing with fast gradual changes is
difficult. If the learning rate is low, the models will not be adapted fast enough
to incorporate these fast gradual lighting changes. Consequently, a pixel that
is subject to fast gradual lighting changes will be considered to be foreground.
MGM relies on a learning rate for both the update of the models parameters
and the weights. Increasing the learning rate is not an option since parts of slow
moving objects will be considered as part of the background. The models will
also be highly sensitive for small noise and adapt their parameters too fast. As
such, fast changes in lighting affect MGM drastically, as shown in Figure 2.2.
The figure shows the results of applying MGM to the PetsD2TeC2 sequence
(with a resolution of 384x288) provided by IBM Research [63] at several time
points. Black pixels depict the background, white pixels are assumed to be
foreground. The images depict a fragment of the monitored environment be-
ing subject of changing illumination circumstances in a relatively short time
period, causing a repetitive increase of certain pixel values. As can be seen,
the falsely detected regions can range from very small regions of misclassified
pixels, to regions encompassing half of the image.

Figure 2.3 shows the influence of the lighting changes on the number of false
detections (called false positives) for every 50th frame, when applying MGM.
As can be seen, the lighting change, occurring at frame 2100 to 2850, increases
the number of false positives drastically.

The shown sequence contains a good example of the problem we face. The
change in illumination here is very fast (30 seconds) and gradual (a human ob-
server has a hard job noticing it), but the effect is large. The reason why MGM
fails is the following: in the matching step, MGM only takes the difference of
a new pixel value with the means of the models into account and does not re-
gard the actual previous value for that pixel. Although the means are updated
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(a) (b)

(c) (d)

Figure 2.2: Impact of illumination changes on different time instances on the
PetsD2TeC2 sequence: a typical input image (a), the output of MGM, with α = 0.01,
for frames 2115 (b), 2230 (c), and 2400 (d).

with every new pixel value, the adaptation is not fast enough to encompass
the lighting change. As such, if values increase consistently, but with small
intermediate steps, the pixel values will eventually fall out of the range of the
models.

To solve this problem, we make the following assumption: if the value of a
pixel was considered to be background and there is only a small change, then
the new pixel value is background too. Consequently, we assume that a small
change is not due to the appearance of a foreground object. As such, we need
to store the actual previous pixel value that was regarded as background. For
every background model in our mixture the last pixel value that matched the
model is stored. When analysing a new pixel value, we look for the smallest
difference with the stored background pixel values. If this difference is small,
a match with the according background model is immediately made. Conse-
quently, the changes proposed here will only be visible if a new pixel value has
a small difference with one of the previous background values.

To monitor the difference, two independent thresholds (named the gradual
thresholds φgrad,up,i,t and φgrad,down,i,t) are used to cope with illumination
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Figure 2.3: Impact of illumination changes on the number of false positives for the
PetsD2TeC2 sequence.

changes that cause the scene to become lighter and darker. Since we already
have a normal upper and lower threshold φup,i,t and φdown,i,t, the gradual
thresholds are made dependent on these normal thresholds. In our experiments,
the gradual thresholds are set to be 70% of the according normal thresholds.
This value was experimentally determined on sequences with gradual illumi-
nation changes on which MGM fails. Higher values (≥ 90%) can result in
detection failures, since pixels corresponding with moving objects might be
concidered to belong to a illumination change. If low values are used, not all
illumination changes can be dealt with.

In Section 2.2 related work was discussed, including techniques that give a
solution to the problem of gradual illumination changes. These techniques
are based on pixel, region, and frame level processing, using a gradients-
based algorithm, whereas our proposed solution to the illumination changes
is solely pixel-based. Figure 2.4, shows the visual results of MGM, the work
by Javed et al. [9], and the use of the gradual thresholds, for a scene that suffers
from an illumination change. The figure shows that our pixel-based approach
achieves similar results as more complex techniques in coping with illumina-
tion changes.
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(a) (b)

(c) (d)

Figure 2.4: The influence of quick illumination changes in an outdoor surveilled
environment: the current frame (a), output from MGM (b), output from [9] (c), and
output by using the gradual thresholds of SMM (d).

We want to stress that the gradual changes in lighting described here are not
only present in outdoor surveillance scenarios. When analysing the PETS 2007
datasets and the AVSS 2007 datasets, we discovered that the same problems
arise in typical indoor scenarios. The influence of a gradual lighting change
in an indoor environment on MGM can be seen in Figure 2.5. It shows input
images of an airport and a subway, and the detection results of MGM and the
usage of gradual thresholds. The origin of a gradual change of pixel values
can be a change in illumination, soft shadows cast by objects or background,
reflections, etc. Whatever the origin is, when fast gradual changes occur, it is
most likely not due to the appearance of foreground objects. Consequently,
using our proposed change will result in less falsely detected pixels, while
keeping the same amount of true detections.

Note that within our proposed algorithm, when an illumination change occurs,
initially it might be regarded as photon noise. However, when the illumination
change continues, it will exceed the intensity allowance ∆XA,m and will no
longer be regarded as photon noise. From that point on the check against the
gradual thresholds is triggered, so we can detect the illumination change.
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Figure 2.5: Left: current frame, centre: output by MGM, right: output by proposed
system. First row shows the ”s00-thirdview” sequence of the PETS2007 dataset, im-
age 170. Second row shows the ”AVSS AB easy” sequence of the AVSS2007 dataset,
image 1290; image 3790.
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Matching with Simple Models

Finally, if none of the above have raised a match, the models are evaluated
using the upper and lower thresholds, φup,i,t and φdown,i,t, respectively. In
case that the new pixel value is larger than the average, a match occurs if
the difference is smaller than φup,i,t. Likewise, for new pixel values that are
smaller than the average, the difference is checked against φdown,i,t.

If no match has been found, the model with the lowest weight is discarded and
a new one is created. The pixel value is then considered to match with this
new model. After the matching, the same update steps as in MGM to adjust
the mean, weights, and thresholds of the models are performed, with some
modifications, discussed in the next section.

2.4.2 Update step

First, the update step of MGM demands heavy calculations, since for every
matched model the probability distribution function is used to calculate the
parameter ρ. Previous research has shown that this calculation can be skipped
since this value usually is very small and does not change much [64]. We
adopt this in our system and use a constant parameter ρ. This allows us to
adjust the learning rate α and the update speed ρ separately. The learning
rate influences the weights and consequently the speed at which foreground
objects are learned into the background. The update speed represents how fast
the individual models adapt their parameters to new matched pixel values.

Initially, we set the learning rate high to deal with moving objects that are
present in the scene when the algorithm is started. Since the models are ini-
tialized based on the first pixel values they get, these foreground objects are
wrongly considered to be part of the actual background. When these objects
move, a ghost will appear, since the actual background pixels that are revealed
don’t match the misinterpreted background models. A high learning rate al-
lows to learn these pixels into the background fast and gets rid of these initial-
ization ghosts very quickly. This is specifically interesting when monitoring
crowded scenes with fast moving objects (such as highways). Figure 2.12(f)
shows how MGM suffers from these initialization ghosts. The system wrongly
detects cars that were present in the first frame. The figure shows that our pro-
posed system can deal with these since the initial high learning rate allows to
quickly model the actual background. Note that this does not present a solution
to deal with ghosts occurring during the surveillance of the scene (e.g., when
a static background object like a parked vehicle starts to move). We refer to
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other techniques to deal with this problem [65].

We reuse equations ( 2.2) and ( 2.5) to update the means and weights of our
models. In SMM, we do not use the standard deviations to find a match but
have an independent upper and lower matching threshold. The separation of
these thresholds allows to update them individually according to following
equations:

φup,i,t = (1− ρ/ 2)φup,i,t−1 + ρ (Xt − µi,t) , (2.15)

φdown,i,t = (1− ρ/ 2)φdown,i,t−1 + ρ (µi,t −Xt) . (2.16)

If the difference with the new pixel value is smaller than half of the threshold,
this will result in a decrease of the threshold. Otherwise the threshold will be
increased and the amount of decrease and increase depends on ρ.

2.4.3 Decision step

In this step, a decision is made about the pixel being processed. This decision
is divided in three steps and explained in the next sections. Firstly, the mixture
of models is analysed based on the weights to decide which models depict
foreground or background. That way a decision is found for the current pixel
based on the matched model. Next, if the decision was foreground, we apply
shadow analysis to correct the decision if necessary. Lastly, a decision is made
for those pixels that were not analysed due to the analysis mask.

Decide between Background or Foreground

We alter the sorting of models as it is done in MGM, by introducing two pre-
liminary steps. In most of the cases there is only one model that corresponds to
the background. As such, the first step should be to check whether the weight
of the matched model is larger than the predefined threshold. If not, the next
step is to check if the weight of the matched model is smaller than all other
values. In this case the model surely depicts foreground. Since these two cases
occur frequently, a costly sorting step can be avoided. If neither of the initial
conditions is fulfilled, the sorting as introduced in MGM can be applied and the
threshold T is used to decide which models of the mixture depict background
or foreground.



2.4. Background Subtraction using SMM 37

Dealing with shadows

MGM is not capable of dealing with shadows. Several techniques have been
proposed to deal with this problem [53,54]. Since we are dealing with a multi-
modal environment, we present a shadow removal scheme that follows the dy-
namics of the actual scene. When the decision for a certain pixel is foreground
and all color components are darker than the corresponding background val-
ues, color components are normalized according to the following equations
(we discard the time notation t here and Xr, Xg, and Xb represent the R, G
and B color components respectively):

XR =
Xr

Xr + Xg + Xb
, (2.17)

XG =
Xg

Xr + Xg + Xb
, (2.18)

XB =
Xb

Xr + Xg + Xb
. (2.19)

These values are then compared with the normalized means of each back-
ground model. A shadow parameter (δ) is introduced for this comparison, so
for each background model j present in the mixture we apply equation (2.20):

D = 0 if (|XR − µj,R| < δ) ∧ (|XG − µj,G| < δ) ∧ (|XB − µj,B| < δ) .
(2.20)

D stands for the decision and if equal to 0 a shadow has been detected. Con-
sequently, the decision result of the temporal background subtraction will be
converted to background.

Prati et al. divide shadow detection systems in four categories [53]. They
first make a separation between deterministic and statistical approaches. The
former approaches use an on/off decision about the pixel origin, the latter use
probabilistic functions to describe the class membership. The deterministic ap-
proaches are further divided in systems that use model-based knowledge and
systems that do not. The statistical approaches are divided in parametrical and
non-parametrical methods. Prati et al. chose for each category a representative
technique and made an extensive comparison. They concluded that, for gen-
eral purposes with minimal assumptions, the deterministic non-model-based
approach gives the best results. For the deterministic non-model-based ap-
proach they choose the Sakbot system [54]. This technique uses the HSV color
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space and relies on 4 independent parameters to detect shadows. Our shadow
detection system, which also falls in the deterministic non-model-based ap-
proach, only uses one parameter δ and avoids a costly conversion to the HSV
color space. Shan et al. present a shadow removal scheme in HSV color space
that achieves even better results than the Sakbot system [50]. Therefore, we
give an objective and subjective comparison of our system with their work in
Section 2.6. In this evaluation δ is set to 0.01 (a value determined by analysing
a training sequence) and this value is consequently used for all sequences.

Analysis Mask

A common solution to increase the processing speed of pixel domain object
detection techniques, is to decrease the frame rate at which the environment is
monitored. Only regarding half or one fourth increases the processing speed
linearly. However, temporal consistency is very important to successfully track
moving objects, so working with a reduced frame rate makes this difficult.
During tracking, detected objects are matched with objects detected in previ-
ous frames to find the object trajectories. This matching also allows to identify
the objects in newly captured frames.

A second approach is to reduce the image resolution. Evidently, when down-
scaling the images we get a linear increase in speed of the surveillance systems.
In most cases the aspect ratio of the images is kept the same. Thus, downscal-
ing the image results typically in an image that is one fourth of the original. If
one changes the aspect ratio (e.g., by only analysing the odd rows in an image)
the objects become deformed, which can be bad for classification. Nowadays,
captured surveillance images tend to be small. Large-scale surveillance sys-
tems work with multiple feeds, captured by a distributed camera system, and
covering large sites. Therefore, to reduce bandwidth usage and processing
times, low-cost cameras capture images in small resolutions (CIF to QCIF).
Additionally, in the case of a surveillance camera covering wide ranges of an
environment, specific objects of interest tend to be very small and only repre-
sent a couple of pixels of the entire frame. Therefore, simply downscaling the
images will result in additional detection failures.

Finally, a popular method to increase the speed, is to apply course motion
detection first before analysing the entire frame [66]. In this case, simple
frame differencing is used. When nothing happens in the scene, the frames
are skipped; vice versa, if a large amount of motion is detected, the frame is
analysed. Although this works well in static controlled environments (e.g., in-
door video surveillance), it would be bad in more complex environments (like
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(a) (b) (c) (d)

Figure 2.6: 2x2 patches that constitute the analysis masks for four consecutive frames.
The patch for the first (a), second (b), third (c) and fourth (d) frame are shown.

outdoor scenes with movement of trees or crowded scenes) since movement
will be detected everywhere. As such, the gain in speed is very dependent on
the actual monitored environment and the activity within.

To increase the processing speed, we have chosen to use a checkerboard pattern
for the evaluation of the frames. We use a mask, equal to the image size to
decide which pixels to evaluate when processing a new image. The mask is
constructed by 2×2 patches, which are repeated over the entire image. We
use four different masks to make sure that every pixel in an image is evaluated
at least once in four consecutive images. So for every new image the mask
is switched. Figure 2.6 shows the patches that constitute the different masks
for four consecutive frames. The positions marked with an X are the pixels
for which the normal background subtraction is executed. The results are then
used to make a decision about the surrounding pixels. Positions denoted with
H will apply horizontal interpolation. This means that for the pixel at that
position, the results of the pixels to the left and right are evaluated. If both
pixels were considered foreground, then the decision for the current pixel is
foreground, otherwise it is background. For the positions in the patch denoted
by V we will take the upper and lower pixels into account. Finally, for the
positions denoted by D , the upper left, upper right, lower left and lower right
pixels are used. If three of them are considered foreground, the current pixel
is foreground.

We want to achieve high sensitivity regarding the moving objects. Therefore,
the interpolation of pixels might be insufficient. Typically, edges of detected
objects can be falsely interpolated as background. Therefore, we add another
layer of intelligence to the analysis mask. If the decision of the background
subtraction for a certain pixel was foreground, then we update the masks such
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that the surrounding pixels will be evaluated in the next frames. For each
of these surrounding pixels we use a decreasing counter to decide whether it
is analysed or not. Every time a foreground pixel is detected, the counter is
reset to its original value. If a background pixel is detected, we decrease the
counter until it reaches zero. In that case, the initial mask values are used
again. Consequently, if an object enters the monitored environment and some
of the objects’ pixels are correctly detected, the immediate surroundings will
be evaluated in the next frames, resulting in a more accurate detection.

The latter step increases the detection accuracy but has as a disadvantage that
it introduces a trade-off between detection and speed. Since the mask is now
made dependent on the detection results, environments with many moving ob-
jects will result in the analysis of large parts of the frame. On the contrary, if
no moving objects are present only one fourth of the pixels in a frame are anal-
ysed, resulting in faster execution times. If the speed needs to be kept constant,
a maximum could be put on the number of additional pixels that are analysed
and on the size of the counters used.

Moreover, the mask acts as a morphologic filter since very small blobs of pixels
are deleted in advance. Objects that are large enough (larger than the minimal
distance between the analysed pixels in the mask) are still detected due to
interpolation. This is an advantage compared to plain frame rate reduction,
since temporal consistency is very important for tracking of objects. Normal
spatial reduction (down scaling of images) results in certain positions of the
frame that are never evaluated. Especially when the surveillance system is
monitoring a wide outdoor environment, some moving objects might constitute
only a couple of pixels in the image. With our masks every pixel position in
the surveilled content will be analysed once during four consecutive frames.

The disadvantage of the analysis mask is that edges of moving objects might be
less accurately detected. However, using the spatial segmentation, as explained
in the next section, reduces this effect.

2.5 Extended SMM (eSMM)

SMM takes for each pixel only the past pixel values into account, so only
temporal information is used. In this section, we will include spatial informa-
tion (such as neighbouring pixel values) to improve the temporal detection of
SMM. For this approach, in parallel with SMM, the image is segmented into
different regions according to edge information. For this purpose we first in-
troduce our edge detection algorithm in Section 2.5.1. These edges are then
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(a) (b)

(c)

Figure 2.7: Results of edge detection on Indoor sequence showing: the current frame
(a), output from Canny edge detection (b), output from Skellam edge detection (c).

used to make an entire segmentation of the image, which is discussed in Sec-
tion 2.5.2. Finally, this segmentation is combined with the output of SMM in
Section 2.5.3 to improve the results of the temporal object detection.

2.5.1 Edge detection

We use the edge detection technique proposed by Hwang et al. in [56] to
find edges in the image. Since this technique incorporates the photon noise,
it achieves better results than the well-known Canny edge detection technique
[67]. Hwang et al. worked on static images, or sequences of static images,
resulting in an intensity allowance for every pixel position of the frame. How-
ever, we have the intensity allowances for different modes of the background
as discussed in Section 2.4.1 so the edge detection can be further improved.
Figure 2.7 shows the typical differences between the Canny edge detector and
our edge detector based on the Skellam distributions. We have used 100 frames
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Figure 2.8: Results of Skellam edge detection: the current frame (a), output from
Skellam edge detection (b), output from extended Skellam edge detection (c).

to determine the Skellam parameters and to create the intensity allowance data.
Our Skellam-based edge detection succeeds in eliminating several edges that
are due to noise. For every new image this edge detection is done, since in a
dynamic environment edges tend to be highly dynamic themselves. Although
the edge detection gives good results, it is not optimal and edges can be dis-
continuous. To segment the image based on these edges, it is important to have
as many closed regions as possible. Therefore, an extension is built on the out-
put of the edge detector. Loose ends are detected with a 3x3 search window
and the ends are extended in the direction of the edge, we use an extension
of 5 pixels at most. If more pixels are used, false segmentations will occur
more frequently due to noise. Considering that surveillance cameras typically
capture an entire environment, it is assumed that many small regions will be
found. Therefore 5 pixels should be sufficient to close possible wholes in the
edges. This parameter is dependent on the resolution of the images and the
complexity of the monitored environment. Figure 2.8 shows the result of ap-
plying the canny edge detector and the extended version on an image. As can
be seen, the extended version is able to close some regions that were left open.
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2.5.2 Segmentation

After the extension step, the image is divided into several closed regions and
we use a flood fill operation to give each segment a different value. The pixels
representing the edge positions get the value of the smallest neighbouring re-
gion. This way, border pixels of small objects are assigned to the region of the
object itself. As such, every pixel in the image can be assigned to one and only
one region. Fast segmentation is an important factor since the results will be
used in the further processing of our surveillance system. Although image seg-
mentation techniques exist that obtain better results, these are more complex
and less suited for processing surveillance video data in real-time [68].

2.5.3 Combining SMM with Spatial Image Segmentation

The goal is to improve the results of SMM by using the edge-based segmen-
tation. To accomplish this, we use a two-pass matching step, as shown in
following pseudo-code and explained in the next paragraph:

for each pixel(x,y) in frame t
if SMM(x,y) == FG
nrPix(segment(x,y))++

for each pixel(x,y) in frame t
if SMM(x,y) == BG
if nrPix(segment(x,y)) > 0.8*size(segment(x,y))
SMM(x,y) = FG

else
if nrPix(segment(x,y)) > 0.6*size(segment(x,y))

if smallestDiff(x,y) > theta * threshold(x,y)
SMM(x,y) = FG

First, we store for each segment in the segmented image the number of cor-
responding foreground pixels resulting from SMM. In a second step, we go
over all background pixels resulting from SMM and see which segments cor-
respond with their location. If this segment contains many foreground pixels,
it is assumed that the entire segment should represent foreground. The deci-
sion hereof happens according to a hysteresis threshold. When the segment
has more than 80% foreground pixels, we denote each pixel of the segment
as foreground. If there are less than 60% foreground pixels nothing happens.
Finally, if there are more than 60% and less than 80% foreground pixels, an
extra control step is applied. In that case the pixels of the segment are only
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regarded as foreground if they differ enough from the background means. The
smallest difference of the current pixel with the means of the background mo-
dels is searched. If this difference lies within a smaller threshold than the one
related to the background model the decision remains background. In the other
case the pixel is denoted as foreground. This extra control step prevents that
small, wrongly segmented, regions will be entirely regarded as foreground.

As such the detection result of SMM is extended to comply with the segmen-
tation result. This way, foreground pixels that were not detected by only us-
ing the temporal information in SMM, can still be found. The segmentation
only corrects pixels denoted as background. The number of detected fore-
ground pixels will therefore only increase. We call the system extended SMM
(eSMM).

Note that within eSMM the numbers of pixels that are falsely regarded as
foreground, can increase. If a segment already contains many pixels that are
wrongly considered by SMM to be foreground, caused by shadows, severe
noise, etc., the entire segment might be regarded as foreground, increasing the
false detections even more. This effect is discussed in the next section and it is
shown that the effect is minor since SMM puts a lot of effort to minimize the
number of false alarms.

2.6 Experimental Results

In this section we evaluate our proposed algorithm by comparing it to related
work. First, we make an objective comparison to evaluate the accuracy of the
proposed algorithm. Next, visual examples are given to show the added value
of our system. Finally, a rough comparison of processing speed is given. Note
that other comparisons (e.g., memory usage) could be usefull, but we restrict
ourselves to the evaluation means that are typically used in the related work.

2.6.1 Objective Comparison

To evaluate our system, we present Receiver Operator Characteristic (ROC)
graphs. If a real background pixel is misclassified as foreground, it is called
a false positive (FP). If a foreground pixel is not detected, it is called a false
negative (FN). Correctly classified foreground or background pixels are called
true positives (TP) or negatives (TN), respectively. To find the false positives
and negatives we have made a manual ground truth annotation for each se-
quence for every 50th frame. This ground truth was consequently compared



2.6. Experimental Results 45

with the output of each algorithm to obtain the number of false positives and
negatives for those frames. Finally, these values are summed for the entire
sequence to create the ROC graphs. The x-axis shows the False Positive Rate
(FPR), which defines how many incorrect positive results occur among all neg-
ative samples available during the test. In this case, it represents the number
of pixels that were incorrectly considered as foreground, among all the real
background pixels, called real negatives:

FPR =
FP

RealNegatives
. (2.21)

The True Positive Rate (TPR), shown on the y-axis, is the sensitivity and de-
notes the percentage of the real foreground pixels, called real positives, that
were correctly classified:

TPR =
TP

RealPositives
. (2.22)

Good systems obtain a high TPR and low FPR. To get different values for the
ROC curves, the learning rate α takes values from 0.0001 (very slow learning,
the models are kept almost static) to 0.05 (very fast learning, new pixel values
have much influence on the models). For each value of α, the TPR and FPR is
calculated and plotted. Values recorded with a high learning rate will typically
be situated to the lower left corner of the graph. Indeed, if a high learning rate
is used, the parameters and weights of the models are adapted more drastically
so they follow the dynamics of the background, resulting in less false positives.
Additionally, slow moving objects will be learned into the background faster,
resulting in more false negatives. When using a slow learning rate, objects
will not be learned quickly into the background, moreover, the models are
not capable of adapting to small variations of the background. This results in
less false negatives and more false positives. In many surveillance scenarios,
the amount of pixels that represents background is very large. Especially in
outdoor environments, the moving objects will only occupy a small percentage
of the scene. Therefore, the FPR needs to be very small, since for an image of
CIF resolution (352 by 288 pixels) a FPR of 1% means we have about 1000
pixels misclassified as foreground. If the size of the objects in the images is
small, the FPR needs to be very small too. Accordingly, having a TPR of 60%
means that if there is an object encompassing 100 pixels, we detect 60 pixels
of it.

Figure 2.9, Figure 2.10, and Figure 2.11 show a quantitative comparison be-
tween MGM, the algorithm of [50] (called Shan2006), SMM, and eSMM for
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Figure 2.9: ROC graph for MGM, Shan2006, SMM, and eSMM on outdoor se-
quences: the PetsD2TeC2 sequence (a) and the Highway sequence (b).
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Figure 2.10: ROC graph for MGM, Shan2006, SMM, and eSMM on indoor se-
quences: the Indoor sequence (a) and the Ismail sequence (b).
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Figure 2.11: ROC graph for MGM, Shan2006, SMM, and eSMM on the Thirdview
sequence.

challenging outdoor and indoor sequences. As can be seen in the figures, SMM
has less erroneously interpreted background pixels than MGM and Shan2006.
This is because we take the photon noise, gradual lighting changes and shad-
ows into account. However, in most cases SMM introduces more false nega-
tives. This is mostly due to parts of real foreground objects that are regarded
as shadows or that fall in the intensity allowance of the models. We see that
the same occurs for Shan2006. However, on average SMM has less false neg-
atives (a higher TPR) than Shan2006. Moreover, the use of the edge-based im-
age segmentation in eSMM increases the TPR even further. The combination
of the spatial and temporal information introduces again some false positives,
but it performs still better than MGM and Shan2006. This increase in false
positives is mostly due to background pixels, erroneously interpreted as fore-
ground by SMM that are extended by the segmentation technique. Indeed, if
many of these misdetections are situated in the same segment, the segment will
be regarded as foreground, introducing false detections. Additionally, since the
segmentation technique used in our system was built to perform in real-time, it
is not optimal and segments can occur that do not correspond to true segments
in the image. If such segments contain many true positives the entire segment
is regarded as foreground, which results in additional false positives. Better
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segmentation techniques can definitely improve the FP rate of eSMM.

Note that for the ROC graph in Figure 2.9(b) SMM and eSMM are each centred
around the same values. The reason for this is that the Highway sequence
shows a highway with many fast moving cars that pass by. The fast moving
objects are never learned into the background, so changing the learning rate
has not much influence on the detection results. The vehicles in the sequence
have similar color distributions as the road they drive on. Moreover, the road
reflects on the metal surface of the cars. MGM and Shan2006 are able to detect
these parts but are very sensitive to noise in the image. This explains the higher
number of false positives compared to SMM and eSMM. In the latter we notice
that the segmentation is not optimal due to the resemblance of the objects to
the background. As a result, eSMM is not able to close the holes in the cars,
hence the different behaviour compared to MGM and Shan2006. Although
eSMM has more false negatives in this sequence, we are still able to detect
large parts of each vehicle. So, the bounding boxes of our detection and those
of MGM and Shan2006 are very similar.

Figure 2.10(a) shows that, for high learning speeds, the number of false pos-
itives for Shan2006 increases again (visible in the bottom left corner of the
graph). Within this technique the learning speed is divided by the weight of a
model to obtain the update speed. As a result, a high learning speed, combined
with low weights of the models, creates a very high update speed. This makes
the models very sensitive to noise, which results in additional false positives.

2.6.2 Subjective Examples

A visual comparison on the analysis of indoor and outdoor sequences is given
in Figure 2.12 and Figure 2.13, respectively. The figures show, from top to
bottom, the current frame, the ground truth, the output of MGM, the output
of Shan2006, and the output of eSMM on representative images of different
sequences. Both indoor and outdoor environments are shown, which contain
slow and fast moving objects of different sizes. As can be seen, eSMM deals
better with several problems like lighting changes, shadows, reflections, and
initial ghosts. This matches the objective results of the previous section in the
sense that, when using eSMM, there are less false positives, while most of the
objects are still detected.

The first column of Figure 2.12 shows a frame of the PetsD2TeC2 sequence,
during a gradual illumination change. Shan2006 is less sensitive to this effect,
however, it misses some of the moving objects entirely. Our proposed system
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Table 2.1: Average execution times for MGM, SMM, segmentation and eSMM in
milliseconds per frame for several sequences (resolutions are given for each sequence).

sequence MGM SMM seg eSMM
avg stdv avg stdv avg stdv avg stdv

Pets (384x288) 120 18 34 6 55 2 100 11
Highway (320x240) 96 10 24 2 49 7 82 3
Indoor (340x240) 105 12 22 3 33 3 65 6
Ismail (320x240) 103 14 25 3 34 2 67 3
ThirdV (720x576) 922 64 277 26 129 11 427 31

can handle the illumination change and is still capable of detecting the moving
objects. Looking at the results for the Highway sequence, it is noticed that
both Shan2006 and eSMM can deal with ghosts. However, both algorithms
are not capable of dealing with the strong shadows inherent to this sequence.
Similarly, for indoor sequences, eSMM succeeds in reducing the FPs while
providing a good segmentation of the moving objects.

2.6.3 Execution Times

Table 2.1 shows a comparison of the execution times for the different test se-
quences. For each sequence we recorded for each frame the time it takes to
perform the object detection and consequently present the average values and
standard deviations. For the implementation of SMM and eSMM we used the
same code base as for MGM. This way we can make a fair comparison in ex-
ecution times. The execution speeds of Shan2006 are not shown in the table
since that system is also based on MGM, but introduces histogram calcula-
tions for each frame and applies color space conversions for each pixel, which
makes it slower. All measurements were done on an Intel dual Core 2.13GHz
processor with 2GB RAM. As shown, SMM is much faster than MGM. The
gain in speed here is mostly due to the interpolation mask, the use of a con-
stant ρ, which prevents the costly computation of the probability distribution
function, and the smart sorting of the models. Although eSMM introduces
improvements of the detection results, it also slows down the system. Never-
theless, eSMM is still faster than MGM. The processing time for segmenting
the image according to the edges is also shown, since for each frame this step
can be done entirely independent from SMM. Consequently, a parallel imple-
mentation would allow to reduce the processing time even further.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 2.12: First row: current frame, second row: ground truth, third row: output
by MGM, fourth row: output by Shan2006 [50], and fifth row: output by eSMM. The
columns show the results for the PetsD2TeC2 sequence (frame 2300) and the Highway
sequence (frame 50).
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Figure 2.13: First row: current frame, second row: ground truth, third row: output
by MGM, fourth row: output by Shan2006 [50], and fifth row: output by eSMM. The
columns show the results for the Indoor sequence (frame 900), the Ismail sequence
(frame 550), and the Thirdview sequence (frame 300).
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2.7 Conclusions

In this chapter we presented a new robust background subtraction scheme
based on a mixture of models that includes both temporal and spatial infor-
mation. We proposed the use of simple models and altered matching, update,
and decision steps. The matching step uses separate thresholds for lower and
higher pixel values, instead of the Gaussian-based threshold in MGM. An in-
tensity allowance is introduced that models photon noise by Skellam distribu-
tions. Additionally, a maximum difference with previous pixel values is used
to successfully deal with gradual lighting changes. The decision step is ex-
tended with a simple and effective shadow removal scheme. The processing
speed is raised by introducing a dynamic analysis mask that decides which
pixels of an image are analysed. Subsequently, interpolation is used to make
a decision about the pixels that were not analysed. We have shown that this
mask has minor influence on the detection performance of the algorithm. Fi-
nally, to improve this temporal background subtraction technique even more,
an image segmentation based on edge information is used. The segmentation
is combined with the background subtraction to improve the detection results
by reducing the number of false negatives.

Experimental results show that we get far less false positives than MGM, with-
out an increase in misdetections. Additionally, a comparison is given with a
more recent advanced background subtraction technique. It is shown that our
system is more robust and decreases the number of false positives and neg-
atives. Finally, a comparison of execution times shows that we can process
frames up to 50% faster.

Our contributions regarding this algorithm to detect moving objects in the pixel
domain can also be found in the following publications.

1. Chris Poppe, Sarah De Bruyne, Peter Lambert, and Rik Van de Walle.
Effect of H.264/AVC Compression on Object Detection for Video
Surveillance. In Proceedings of The International Workshop on Image
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2. Chris Poppe, Gaëtan Martens, Sarah De Bruyne, Peter Lambert, and Rik
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Chapter 3

Compressed Domain Object
Detection

The eye is in the sky.
– Philip K. Dick (1957)

3.1 Introduction

Video surveillance systems will only rarely consist of a single camera. Such
multi-camera surveillance systems come with a huge cost in bandwidth and
storage. When capturing color images in RGB color space, at CIF resolution
(352x288 pixels) and 25 frames per second, one needs a data throughput of
58 Mbps. In the context of video surveillance systems, the cameras need to
run 24 hours a day for 7 days a week, as such creating a huge amount of data.
Therefore, a practical video surveillance scenario includes video compression
to reduce the used bandwidth and storage.

When looking at surveillance systems today, a common approach is to use
cameras that compress the captured images with Motion JPEG. Motion JPEG
uses intra-frame coding technology that is very similar in technology to the
I-frame part of video coding standards such as MPEG-1 and MPEG-2. Using
only intra-frame coding technology makes the degree of compression capabil-
ity independent of the amount of motion in the scene, since temporal prediction
is not being used. However, although the bitrate of Motion JPEG is substan-
tially better than uncompressed video, in most cases it is substantially worse
than that of video codecs that employ inter-frame motion compensation.
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Consequently, many cameras provide the option to use more advanced video
compression techniques. Nowadays, it is hard to find a surveillance camera
that does not provide support for MPEG-based video codecs like MPEG-
4. With H.264/AVC [10] a new video compression standard was introduced
that outperforms MPEG-4 (and other codecs) [69]. Since this new codec
outperforms other codecs in coding efficiency, it is no surprise that the first
H.264/AVC cameras have already hit the surveillance market and it is as-
sumed that more and more video surveillance data will be encoded in this
new format [70]. We refer to Appendix A for an elaboration on concepts of
H.264/AVC that are important in the context of this chapter.

If video compression is used and the analysis is not performed on the camera
itself, a decoding step is needed before the captured images can be used as
input for algorithms such as the one described in the previous chapter. To avoid
this decoding step and to reuse the work done during the encoding, several
efforts are done to detect moving objects directly upon the compressed video
stream.

Several algorithms have been proposed to analyse video content in the MPEG
compressed domain, which have good performance [71]. These algorithms
typically rely on two types of features available in the compressed video: mo-
tion vectors (MVs) and transform coefficients. The MVs are treated as a sparse
and noisy motion field. Transform coefficients are often used to construct DC
images or are treated as a texture feature to measure similarity within blocks.
However, H.264/AVC contains new features that make previous object detec-
tion techniques in MPEG compressed domain not directly reusable. The major
differences with previous coding formats (like MPEG-2) are the variable block
size motion compensation, which means a macroblock can now be partitioned
into several smaller blocks, where each block has its own MVs. Furthermore,
as spatial intra prediction is introduced, DC coefficients in intra-coded mac-
roblocks no longer represent average energy, but only represent an energy dif-
ference.

When looking into object detection techniques that work in the H.264/AVC
compressed domain, few approaches exist, mostly relying on the MV field.
Due to its coding-oriented nature, the MV field is noisy, meaning the MV
does not correspond to the true motion, and requires additional complexity to
be processed. Hence, we present a novel alternative approach to detect mo-
ving objects that works on a higher level. When analysing an H.264/AVC
compressed bitstream, the size (in bits) that a macroblock (MB) occupies, is
recorded. Based on these sizes, a background model is created during a train-
ing period. New images are consequently compared with this model to yield
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MBs that correspond to moving objects. Subsequently, these MBs are spa-
tially and temporally filtered to remove noise. Finally, the sizes of the sixteen
4x4 blocks within a boundary MB are evaluated to make a more fine-grained
segmentation.

The next section presents related work on moving object detection in the
MPEG compressed domain, with a strong focus on techniques that work in the
H.264/AVC compressed domain. Subsequently, we elaborate on the context
of this research, showing some assumptions made about the H.264/AVC cod-
ing. Next, a number of observations are presented that were made during the
analysis of H.264/AVC compressed sequences. Consequently, we propose a
system, based on these observations, to find moving objects in the H.264/AVC
compressed domain. Experimental results of our system are shown in Section
3.5 and concluding remarks are made in Section 3.6.

3.2 Related Work

Several techniques exist that deal with moving object detection in the MPEG-2
compressed domain. Zen et al. used the MV magnitudes to determine whether
a block corresponds to a moving object [72]. According to the MV angle
similarity, the blocks are spatially merged to reduce the effect of noisy MVs.
Jamrozik and Hayes used a levelled watershed technique on a MV field that
was accumulated over time [73]. Long et al. created a MV field by accumu-
lation over time and used a median filter to clean the field [74]. Additionally,
they created a feature vector consisting of the DCT coefficients to refine the
MV field even further.

Most techniques that work in the MPEG-2 compressed domain are based on
the MV field, hence it is no surprise that this approach is adopted in the lit-
erature by H.264/AVC compressed domain techniques. Thilak and Cruesere
presented a system to track targets in H.264/AVC video [75]. They used the
MV magnitudes to detect objects of interest. As a consequence, MVs that
point in different directions are still considered as belonging to the same ob-
ject. Moreover, their system relies on prior knowledge of the size of the target.

Zeng et al. classified MVs in edge, foreground, background and noise MVs,
to create a moving object detection system in the H.264/AVC compressed do-
main [76]. In a post-processing step, the classified MV field is then submitted
to Markovian labelling, to yield 4×4 blocks that correspond to moving ob-
jects. This labelling uses spatial and temporal information, and the block size
to decide whether a MV corresponds to a moving object. Finally, backtrack-
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ing is used to make a decision for the I pictures. They presented good results,
however the system utilizes several parameters for the thresholds in the classi-
fication and the weights used in the labelling, and these have to be fine-tuned
for different sequences.

This system has been reused by Yang et al. to perform moving object seg-
mentation [77]. The labelling result is linked with an image consisting of DC
coefficients that is obtained from partly decoded I pictures. Finally, an extra
decoding step is performed on the regions around the edges of the found ob-
jects and edge information in the pixel domain is extracted for refinement. The
performance (both in execution speed and segmentation accuracy), is very de-
pendent on the employed thresholds and the size of the objects that are present
in the scene.

Liu et al. created a normalized and median filtered MV field to perform mo-
ving object segmentation [78]. Subsequently, a complex binary partition tree
filtering is used to segment the MV field. The complexity of the partition tree
increases drastically with a noisy MV field.

As was the case in the MPEG-2 compressed domain analysis techniques, most
techniques that work on the H.264/AVC compressed domain, are based on
the MV field. However, as MVs are created from a coding point of view,
they generally are created to optimally compress the video, not to optimally
represent the real motion in the sequence. Consequently, MV fields can be very
noisy and it is difficult to find real moving objects based solely on this field.
Hence, we present an alternative technique that solely relies on the number
of bits that a MB uses, in an H.264/AVC compressed bitstream, to perform
moving object detection.

3.3 Context

The H.264/AVC video streams are generated using the Joint Model reference
software (version JM 12.4), the encoder settings can be found in Appendix B.
This work is restrained to the Baseline Profile of H.264/AVC, which is suitable
for video surveillance applications thanks to the low coding complexity. As
such, only I and P pictures can be used, each partition in a MB has at most
one MV, and CAVLC entropy coding is used. This restriction is also made
in related work and is most likely to be supported by surveillance cameras in
the near future. In the rest of the chapter, we assume that a picture consists
of only one slice, containing the entire picture. Hence we will use the terms I
and P pictures. Additionally, we assume that the video sequences have an Intra
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period of 16, meaning every 16th picture is an I picture, while the rest are P
pictures.

The goal is to find moving objects, or foreground objects, with a fixed camera,
so the actual background is assumed to be more or less static and visible over
several different frames. Even when using a moving camera (e.g., pan-tilt-
zoom camera), techniques exist to compensate for the movement and to create
a stabilized image sequence [4,5]. Note that the assumption of a static camera
does not imply that the background is static. Clutter, moving bushes and trees,
noise, etc. can make a highly dynamic background.

We observed that, during encoding, parts of the background can be predicted
very accurately by intra or inter prediction. This results in high compression ra-
tios for these parts, and consequently the encompassing MBs use a low amount
of bits within the encoded bitstream, we will refer to the latter as size of a MB.
This is visualized in Figure 3.1 and Figure 3.2, which show the data size (in
bits) of two different MBs over several consecutive P pictures of the Etri od A
sequence. Figure 3.1(a) shows a MB that contains homogenous background
values. As such, this MB can achieve high compression. In contrast, Fig-
ure 3.2(a) shows a MB that contains a piece of the background with much
detail so it is harder to compress and results in larger bit sizes. A second ob-
servation is that the blocks corresponding with moving objects are harder to
predict. Figure 3.1(b) and 3.2(b) show the influence of a moving object upon
the size of these MBs. A person walks through the scene during frame 92 to
120 for Figure 3.1(b) and frame 71 to 86 for Figure 3.2(b). When parts of the
person occupy the analysed MBs, we see in both graphs a sudden raise in size.
Typically, two peaks appear, corresponding to the edges of the moving object.
The MBs that contain an edge of a moving object are more difficult to com-
press since it is hard to find a good match for this MB. In between the peaks,
a lower MB size is seen, due to the internal region of the object that passes by
the MB. This internal part can be better compressed since it does not change
much over consecutive frames.

If parts of the background are dynamic (e.g., waving trees), they can still be
predicted good if the motion is repetitive. If a foreground object appears, typ-
ically these will be predicted with less accuracy, resulting in larger amounts
of bits. For high bitrates we also see that the MBs corresponding to edges of
these moving objects will have small sub partitions.

A general conclusion is that MBs corresponding to (the edges of) moving ob-
jects will typically contain more bits in the bitstream than those representing
background.
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Figure 3.1: Influence of a passing object (frame 92 to 120) on the size of MB 190
in P pictures of the Etri od A sequence. The MB contains a homogenous part of the
background.
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Figure 3.2: Influence of a passing object (frame 71 to 86) on the size of MB 151 in
P pictures of the Etri od A sequence. The MB contains a part of the background with
much detail.
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3.4 Proposed Algorithm

Our algorithm is based on the observations above and tries to detect the blocks
that correspond to moving objects. P pictures are analysed using a two-step
approach. In the first step, a background model is learned from the scene and
subsequently used to find MBs that correspond with moving objects. This is
explained in the next section. The second step consists of refining the found
16×16 MBs to the 4×4 subMB level by analysing the size of the transform
coefficients within boundary MBs. This is discussed in Section 3.4.2. Finally,
a detection for I pictures is generated based on the found objects within the
surrounding P pictures, which will be discussed in Section 3.4.3. Figure 3.3
depicts the proposed algorithm on the MB level (for analysing P pictures) and
will be referenced in the next sections.

3.4.1 MB Level

Our approach is a background subtraction technique, in which new images are
compared to a background model to yield foreground regions.

From the observations of the previous section, it is clear that by using the size
of a MB over consecutive frames, a distinction can be made between MBs rep-
resenting foreground or background. Additionally, it is shown that different
MBs have different behaviours, so a background model is used that consists
of different values for each MB. During a training phase, in which no mo-
ving objects are present, a background model is constructed by recording, for
each MB, the maximum size it reaches within the bitstream over several con-
secutive frames (denoted as MBmodel,i in Figure 3.3, with i the number of
the MB). The number of frames that are used to create the background model
forms a parameter of our system. Although it might be hard to obtain train-
ing images without moving objects, this is a common technique even in pixel
domain object detection [79]. Furthermore, in environments that consistently
show moving objects, the background model could be created by comparing
the MB sizes within one frame to each other. The lowest ones are then as-
sumed to represent background. Eventually, enough data can be accumulated
over time to create a reliable background model that covers the entire image.
However, this learning phase takes longer and is more error-prone.

After the initial training phase we compare, for each new frame, the size of the
current MB (denoted as MBi) with the corresponding value in the background
model. If the difference between the size of the current MB and the value
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Figure 3.3: Flowchart of the proposed algorithm working on P pictures on the MB
level.
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MB A Skipped MB

MB B MB C

Figure 3.4: P Skip MB and the surrounding MBs that are used to predict a MV.

of the corresponding MB in the model, is larger than a threshold Tmb, it is
considered a foreground MB (FG MB). High values of Tmb result in detection
misses, lower values result in many false positives. Hence, this threshold is
dependent on the video sequence. The influence of this threshold is shown in
the experimental results in Section 3.5.

The combination of the background model and threshold Tmb allows to detect
those MBs with an unusually large size and thus have high probability to cor-
respond with a moving object. However, as shown in Figure 3.2(b), the MBs
corresponding with internal regions of a moving object can have lower sizes.
To detect these, additional processing is needed.

If a moving object is large, P Skip MBs tend to occur within the object, cre-
ating holes in the detection. In case of a P Skip MB, the decoder calculates a
MV based on the surrounding MBs (MB A, B and C in Figure 3.4). The lack
of residual data of such MBs makes it impossible to compare them with the
generated background model. However, during the decoding process a MV is
inferred for these P Skip MBs based on other MBs, so we can assume that the
P Skip MB has the same behaviour as the surrounding ones. Therefore, if all
these MBs were denoted as FG MB in the previous step, the P Skip MB is also
regarded as a FG MB, otherwise the MB is classified as a background MB (BG
MB).

The BG MBs form the input of a spatial filtering phase, as shown in Figure 3.3,
to deal with other MBs (not P Skip MBs) that lie within a moving object. The
spatial filtering consists of a median filter that is applied on an 8-connected
neighbourhood of MBs that are detected as background. So if more than 4
of the neighbouring MBs are foreground, the MB is also considered to be a
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(a) (b) (c)

(d) (e)

Figure 3.5: Output of proposed for (a) Etri od A sequence (frame 680), (b)
PetsD2TeC2 (frame 700), (c) Indoor (frame 1530), (d) Speedway2 (frame 1705), and
(e) Hallmonitor (frame 255).

FG MB. This spatial filtering is iteratively repeated until no more changes
occur. As such, we can deal with MBs that have low residual data because they
lie within an object and generally can be predicted well during the encoding
process.

Using the background model and the spatial filtering allows to detect the mo-
ving objects, but noise in the video that causes the size of a MB to temporally
rise, will also be regarded as foreground. Consequently, temporal information
is needed to deal with these situations. Figure 3.1(b) also shows the temporal
consistency of an object that passes by, the size of the MB is increased over
several consecutive frames. Since the MBs occupy regions of 16 by 16 pixels,
an object that passes by a MB will mostly occupy that region over several con-
secutive frames, so the MB will consistently be detected as foreground. Based
on this observation, a temporal filter is used to remove noisy MBs that only
appear shortly. This filter is kept very simple for fast processing; if a FG MB
is not detected as foreground in the previous or next frame it is rejected and
treated as BG MB (in the figure the decision that was made for that MB in the
previous and next frame is denoted as Dprev,i and Dnext,i, respectively). Note
that this temporal filter introduces a delay of one frame.

The system presented above allows to detect moving objects up to the 16×16
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MB level, each MB of a frame is classified as foreground or background. Fig-
ure 3.5 shows typical detection results of the system on different sequences
containing a variety of objects. From these figures it is clear that the detected
FG MBs have a high probability to be correct, but the 16×16 detection is rather
coarse to accurately detect the arbitrarily shaped objects.

To elaborate on this, we present precision and recall values for the MB level
approach on the PetsD2TeC2 and Indoor sequence in Figure 3.6(a) and Fig-
ure 3.6(b), respectively. These sequences are generally used test sequences,
which contain slow and fast moving objects of small and large sizes [80]. For
both sequences we compare the output of our proposed system against two
different ground-truth annotations, resulting in two graphs. The first, GT pix,
represents the comparison with a pixel-based ground truth that was manually
made for every 50th frame of the sequence. The second graph, denoted as
GT MB, uses a MB-based ground-truth annotation. This MB-based ground
truth is automatically generated from the original pixel-based ground truth.
In this case if one pixel of a MB is considered foreground in the pixel-based
ground truth, all the 16×16 pixels of that MB are denoted as foreground in the
MB-based ground truth.

The actual graphs are constructed as follows. The same definitions as in the
previous chapter hold; a false positive (FP) and false negative (FN) denote a
misclassified background pixel and foreground pixel, respectively. Accord-
ingly, a real foreground pixel or background pixel that is correctly classified is
called a true positive or true negative, respectively. The X-axis shows the re-
call, which defines how many positive samples have been detected among all
positive samples available during the test. In this case, it represents the ratio of
pixels that were correctly considered as foreground, to all the real foreground
pixels:

recall = TPR =
TruePositives

Realpositives
. (3.1)

The precision, shown on the Y-axis, denotes the percentage of the pixels that
are classified as foreground, which actually are real foreground pixels:

precision =
TruePositives

TruePositives + FalsePositives
. (3.2)

The output of the algorithm is compared to the ground-truth annotations to cal-
culate the precision and recall values. Subsequently, these values are summed
for the entire sequence to create one point of a graph. Finally, an entire graph
is constructed by varying the threshold Tmb (0 to 140), and plotting the average
precision and recall value of the entire sequence for each threshold value.
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Figure 3.6: Results of the proposed MB-level algorithm using a pixel-based and MB-
based ground-truth for (a) the PetsD2TeC2 sequence and (b) the Indoor sequence.
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Good systems obtain high precision and recall values. Low values for Tmb

tend to result in higher recall and lower precision values, while higher values
are situated more to the left of the graph. Indeed, if Tmb is set low, many MBs
are detected as foreground, even if they only differ slightly from the BG model.
Hence, noise creates many false positives, which decreases the precision.

The graphs show that, when using a pixel-based ground truth, the precision
is rather low, meaning that many of the pixels that are detected as foreground
by the system actually are background. However, the graphs also show that
the precision of GT MB is much higher than that of GT pix, meaning that the
MBs that are detected have high probability to be correct, but the coarse MB-
based detection causes many pixels to be misdetected. Indeed, within the MBs
that are located at the edges of the objects, there are many pixels that do not
correspond to real foreground, which was also noticeable in the visual results
shown in Figure 3.5. Therefore, an extension of the algorithm to the sub-
macroblock (subMB) level for these boundary MBs promises to increase the
detection performance. This subMB analysis is the topic of the next section.

3.4.2 SubMB Level

Figure 3.7 depicts the subMB level of the proposed algorithm. The subMB
level takes the decisions of the MB level as input and tries to make a decision
for the 4×4 blocks (denoted as subMBj in Figure 3.7) within the MBs. All the
4×4 blocks corresponding to the 16×16 BG MBs are regarded as background
(denoted as BG subMB). Since the MBs that are detected as foreground on
the MB level have high probability to be correct, we restrict ourselves to these
FG MBs for further investigation. Moreover, as can be seen from Figure 3.5
the coarseness of the detection especially causes problems within the MBs
situated at object boundaries. Therefore, the first step is to check if a FG
MB is such a boundary MB and only use these MBs during the subMB level
analysis. In this sense, a FG MB is considered to be a boundary MB if his left,
right, upper, or lower neighbour MB was detected as background during the
MB level analysis. For all other FG MBs, the decision of representing FG is
applied to all the containing 4×4 blocks (resulting in FG subMBs).

Within a MB the transformation of the residual data occurs on 4×4 blocks [81].
Since this is the transformed residual data, the assumption is that 4×4 blocks
with a high amount of bits are those that were the hardest to compress. There-
fore, the proposed algorithm is extended with the following. For each bound-
ary MB, again by simple parsing, the sizes in bits that these transform coef-
ficients use within the bitstream are gathered. These sizes are compared with
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Figure 3.7: Flowchart of the proposed algorithm working on P pictures on the subMB
level.
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the average size of the 4×4 blocks within the current MB. The 4×4 blocks that
have a lower amount of bits than the average are considered to be background,
those with a higher amount are considered to be foreground.

However, this check can be too strict. If a MB is totally covered by a moving
object, the proposed step will still consider the smallest 4×4 blocks within that
MB as background, even though it can have a large size. Hence, a new thresh-
old, Tsubmb, is introduced on subMB level. The resulting algorithm consists
of the following (see Figure 3.7), if a 4×4 block is larger than this threshold
it is immediately regarded as a FG subMB. This way we can prevent that 4×4
blocks of large sizes are falsely regarded as background. If the 4×4 block is
smaller, it is compared with the average size of the 4×4 blocks in the current
MB. Note that, according to our experiments, using the median instead of the
average does not influence the results much.

If Tsubmb is set to 0, all the 4×4 blocks within the boundary MBs are consid-
ered as foreground. In that case, the algorithm detects objects up to the MB
level as discussed above. When applying higher values for Tsubmb, more 4×4
blocks will be compared to the average, so a more fine-grained detection is
possible. This threshold should be adjusted according to the noise (e.g., pho-
ton noise) in the sequence. Sequences with much noise require higher values
for Tsubmb. In all experiments we set Tsubmb to 10, a value that was experi-
mentally determined on test sequences.

3.4.3 I pictures

Until now, only P pictures were considered in the system. However, next to
P pictures, an H.264/AVC bitstream also contains I pictures, for which all in-
cluded MBs are intra predicted. For these MBs the temporal redundancy in
the video can not be exploited. Therefore, sizes of MBs within an I picture are
typically much larger than those within P pictures and these MBs cannot be
evaluated in the same manner as the algorithm did for the P pictures. Hence,
the incorporation of I pictures would result in a background model with high
values for each MB, which makes it not usable in our approach. Consequently,
we present an alternative solution to process the I pictures.

Typically, I pictures are sparse compared to the P pictures in a compressed
video sequence. Therefore, to allow fast processing of an I picture, a simple
interpolation of the detection results of the previous and following P pictures
is used. The interpolation consists of a binary and-operation, so if a MB at a
certain position in the picture was detected as foreground in the previous and
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following picture, it is denoted as foreground in the current I picture.

Note that intra predicted MBs can occur in P pictures too. The difference is
that in that case, the encoder chooses to use intra prediction for a MB if a gain
in compression can be achieved. As such, these can still be evaluated as above.
In contrast, in I pictures, the intra predicted MBs are the only type of MBs that
can be used. As such, these MBs typically result in lower compression.

3.5 Experimental Results

The algorithm explained above allows to detect moving objects up to the 4×4
level. In this section we present an exhaustive evaluation of the proposed sys-
tem. Next, we compare the detection performance with the related work and
give a speed and visual comparison. Finally, we show how different encoder
configurations influence our algorithm. Although the syntax of an H.264/AVC
bitstream is standardized, the configuration of the encoder can result in com-
pletely different bitstreams. As such, we believe this is an important point of
evaluation, which is missing in most of the related work.

Within this section we have chosen to use precision-recall graphs over the
ROC-graphs (used in the previous chapter). The use of precision and recall
to evaluate the system is a common approach in the related work within the
compressed domain analysis. Whereas ROC-graphs are more common in tech-
niques that work in the pixel-domain. Appendix C discusses and compares
these two evaluation methods to show that there is only minor difference. We
believe that the publication of precision and recall values of our system will
encourage other authors to compare their results with ours.

3.5.1 Objective Comparison

In this section we present a comparison of our proposed algorithm with the
work of Zeng et al., a MV-based approach (presented in Section 3.2). Since
they are relying on MVs they can also detect moving objects up to the 4×4
level. As such, to give a fair comparison, we will compare the output of both
systems with a subMB-based ground-truth. In this sense, to create the ground-
truth, a 4×4 block of pixels is regarded as foreground if one of the pixels is
considered foreground in the pixel-based ground-truth. The comparison with
such a subMB-based ground-truth is commonly used in the related work.

Figure 3.8 and Figure 3.9 show the Precision-Recall graphs for the related
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Figure 3.8: Precision-Recall graph of MV-based and proposed for the Etri od A se-
quence.
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Figure 3.9: Precision-Recall graph of MV-based and proposed for (a) the PetsD2TeC2
sequence, and (b) the Indoor sequence.
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Table 3.1: Parameter settings for the MV-based approach for different test sequences.

sequence Thb Thf α β γ η

Etri od A 1 3 4 5 7 6
PetsD2TeC2 1 2 3 3 5 6

Indoor 2 8 4 3 5 2

and proposed approach on different sequences. To create these graphs for the
MV-based approach we vary one of the thresholds (The, a threshold used to
find edge blocks), while the others are set to the optimal values. These values
are shown in Table 3.1 and for an in-depth explanation of the thresholds we
refer to [76]. To find these values we have experimentally determined the
optimal threshold settings for each sequence, since different sequences require
a different configuration. Note that, for our proposed algorithm, TMB is again
varied (0 to 140) and Tsubmb is set to a fixed value of 10 for all sequences.

Figure 3.8 shows the detection results on the Etri od A sequence. As can be
seen, our proposed system has higher precision values, where the related work
has higher recall values. The high precision of our system is due to the two-
step approach; the analysis on the MB level succeeds in removing noisy MBs,
the found FG MBs are then refined in the subMB step. Note that Zeng et
al. published slightly different precision and recall values for this sequence in
their paper (they obtain an average precision of 71.3 % for a recall of 87.2%).
However, to create those values they used a ground truth that was based on the
block structure that was present within the specific encoded sequence. As such,
different encoder configurations yield different versions of the ground truth. In
contrast, our ground truth is fixed and created based on the pixel-based ground
truth, so it can be used for different encoders and configurations. Moreover,
Zeng et al. used only 105 frames of the Etri od A sequence, whereas we make
an evaluation of the entire sequence. Lastly, no information has been given
about the specific settings of the encoder or the parameters of their system.
This explains the difference with their presented results.

Figure 3.9 holds two additional sequences, which are evaluated to see how both
algorithms perform on more challenging examples of real video surveillance
scenarios, which contain noise, shadows, reflections, and changing lighting
conditions [80]. As the figure shows, the MV-based approach, which directly
works on a 4×4 level for the entire image, suffers from the noisy MV field in
the sequences. Since MVs are created from a coding perspective, the noise,
shadows and lighting changes result in several MVs that do not correspond to
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real moving objects, but that are wrongly classified by the MV-based approach.
Using stricter parameter settings to filter out the noise, results in too many false
negatives, since then small or slow moving objects are not detected.

On the other hand, our approach achieves higher precision and recall values.
This is especially due to the low number of false positives in our system. The
initial MB level analysis succeeds in filtering out much of the noise in the data,
while the subMB level analysis refines the detection. As our system only uses
the residual information of the bitstream, it is not affected by the MVs that are
chosen by the encoder. Although noise and shadows do increase the size of
the affected MBs, it is not enough to be regarded as a foreground, hence our
system is more resistant to these situations.

3.5.2 Subjective Examples

Figure 3.10 shows typical results of the MV-based approach and the proposed
system where pixels detected as foreground or background are colored white
or black, respectively. Each column shows the outputs for one image of the
according sequence to visually show the differences of the algorithms. As can
be seen, the MV-based approach is more sensitive to noise, for each image
several FPs are present. Our proposed approach on MB level succeeds in find-
ing the MBs that correspond with moving objects, however the 16×16 size is
coarse (especially when detecting people). The subMB level approach is able
to refine the detected MBs. Note that, in some cases, the refinement leads to
additional false negatives (as shown in Figure 3.10(o)), since some parts of the
boundary MBs are wrongly considered as background.

3.5.3 Execution Times

Table 3.2 shows the execution performance of the algorithms for different se-
quences in frames per second. All measurements were done on an Intel Core
2 Duo 2.13GHz processor with 2GB RAM. These values include the parsing
of the H.264/AVC compressed bitstream and the actual analysis to detect the
moving objects. As shown, our system achieves very high execution speeds,
both when working on the MB level and subMB level. In contrast, the related
work, based on MVs, achieves processing speeds of 30 frames per second for
CIF resolution [76, 78]. In the table we have added a version of the Indoor
sequence, coded with a fixed QP of 8, to show the influence this has on the
execution speed. We noticed that sequences encoded with a very small QP,
tend to have more MVs of different sizes. As a result, the MV-based approach
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Figure 3.10: First row: current frame, second row: ground-truth, third row: output
of MV-based approach, fourth row: output of proposed system on MB-level, fifth
row: output of proposed approach on subMB-level. The columns show the results for
the Etri od A sequence (frame 300), the PetsD2TeC2 sequence (frame 2300) and the
Indoor sequence (frame 50).
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needs to analyse more blocks, resulting in a raise of execution times. This
behaviour is similar to the fact that many moving objects in a scene will slow
down the system, which was reported in their paper. The table shows that our
system is also affected by this different QP setting, however, the loss in speed
is mostly due to the fact that the parsing of the bitstream takes more time. In-
deed, at low QPs (or high bitrates) less Skipped MBs are used and the MBs are
more partitioned, which makes the parsing slower. In the next section, we will
analyse the influence of different QPs on the actual detection results of both
approaches.

Table 3.2: Average execution speeds in frames per second.

sequence MV proposedMB proposedsubMB
avg stdv avg stdv avg stdv

Etri od A (352x240) 28 0.4 662 5.8 613 6.2
PetsD2TeC2 (384x288) 22 0.4 448 7.7 403 7.2

Indoor (340x240) 31 0.6 751 11.1 648 9.8
Indoor QP8 (340x240) 6.5 0.4 425 9.5 389 8.1

3.5.4 Influence of encoder configuration

The configuration of the encoder has a large influence on the resulting bit-
stream. Different settings result in different decisions that are made during the
encoding process. To make a detailed analysis of our system, we tested our
proposed algorithm and the related work to see the influence of different QPs,
bitrates, and used motion estimation methods.

The QP has a strong influence on the amount of compression that is achieved.
The higher the QP, the more the data is compressed. When using a fixed QP,
the visual quality of the video is more or less fixed, but the used bitrate for
each frame can differ a lot. Figure 3.11 shows the precision and recall values
when varying the QP for different sequences. Again, we vary the threshold
Tmb for our algorithm and threshold The for the MV-based approach. These
algorithms are applied to the same sequence encoded at different QP values,
resulting in different graphs (QP8 to QP32 for our algorithm, QP8 MV to
QP32 MV for the MV-based approach).

High QPs result in high compression of the data, so the size of the resulting
MBs decreases. As can be seen, the detection performance of the algorithm
drops in that case. More specifically, the recall decreases since many MBs are
wrongly considered to be background due to the low sizes. Vice versa, low
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Figure 3.11: Precision-Recall graph for fixed QP versions of (a) the PetsD2TeC2
sequence and (b) the Indoor sequence.
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QPs lead to low compression, so MBs containing data that is harder to com-
press (like those corresponding with foreground objects) will have a larger size
than MBs that are easy to compress (like those covering with background). The
graphs show that for different QPs a different threshold yields to the best per-
formance (high precision and high recall), hence, we could make the threshold
dependent on the used QP and choose a high threshold for low QPs and vice
versa.

In many cases an encoder needs to achieve a consistent fixed bit rate for trans-
port purposes. A rate control mechanism within the encoder is responsible
for adapting the QP for each MB to match a given bit rate. Figure 3.12
shows the graphs for different sequences when varying the bit rate (100kbps
to 2000kbps for our algorithm, 100kbps MV to 2000kbps MV for the MV-
based approach). Note that different bit rates influence the performance of the
system. Using a high fixed bit rate generally results in small QPs when encod-
ing the MBs. Hence, the same global behaviour as in Figure 3.11 is visible.

An encoder is free to implement its own method for estimating the motion and
the H.264/AVC reference software contains several methods for this. We cre-
ated sequences using the Uneven Multi-Hexagon Search (UMHex), Simplified
Hexagon Search (SHex), and Enhanced Predictive Zonal Search (EPZS). The
last method uses the default pattern (Extended Diamond). The chosen meth-
ods apply different search patterns to find the best match of a specific MB,
and as such each of these methods have an influence on the speed of encod-
ing and the resulting MVs that are found. Figure 3.13 shows the graphs for
the MV-based and the proposed approach, when using these different motion
estimation methods. It can be seen that the MV-based approach is more de-
pendent on the chosen motion estimation method than the proposed approach.
A different motion estimation method can result in totally different MVs, re-
sulting in a different behaviour of the MV-based object detection. In contrast,
for high thresholds, our system is more or less independent of this parameter.
Although, the different MVs result in different residual data, the system is still
able to accurately detect the MBs that correspond to moving objects.
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Figure 3.12: Precision-Recall graph for fixed bitrate versions of (a) the PetsD2TeC2
sequence and (b) the Indoor sequence.
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Figure 3.13: Precision-Recall graph for different motion estimation methods for (a)
the PetsD2TeC2 sequence and (b) the Indoor sequence.
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3.6 Conclusions

Video compression is and will remain omni-present in video surveillance sys-
tems. Hence, the use of analysis systems that work on the compressed video
directly offer several benefits such as the avoidance of full decoding before
initial decisions can be taken and the re-use of features calculated during the
encoding process. A general approach to detect moving objects in a com-
pressed video stream is to rely on the MVs that were created during the en-
coding. However, these MVs are created from a coding perspective and do not
necesarily represent the actual motion of the objects in a sequence.

Our main contribution in this research area is the introduction of an algorithm
that entirely disregards the MV field. As such, we present the first moving
object detection system in H.264/AVC compressed domain that relies on the
data sizes of the MBs in the compressed video stream.

The proposed method works at high speeds and accurately detects moving ob-
jects in H.264/AVC compressed video surveillance sequences. In contrast to
the related work, that presents MV-based approaches, our system purely re-
lies on the structure of the compressed bitstream. During a training phase, the
numbers of bits that MBs use within a frame are used to create an effective
background model. Subsequently, the MB sizes of new images are compared
to this model to yield possible foreground regions, which are then spatially
and temporally filtered. Additionally, the sizes of the 4×4 transform coeffi-
cients within boundary MBs are incorporated to refine the detection results. A
comparison on challenging sequences shows that our system achieves better
precision and recall values than the related MV-based approaches. Addition-
ally, since the algorithm is restricted to the syntax level, very high execution
speeds are achieved (up to 20 times faster than the MV-based approaches).

The work that was presented in this chapter is currently accepted for publica-
tion in the Journal of Visual Communication and Image Representation:

1. Chris Poppe, Sarah De Bruyne, Tom Paridaens, Peter Lambert, and Rik
Van de Walle. Moving Object Detection in the H.264/AVC Compressed
Domain for Video Surveillance Applications. Visual Communication
and Image Representation

Additionally, work in this domain can be found in following publication:

1. Sarah De Bruyne, Chris Poppe, Steven Verstockt, Peter Lambert, and
Rik Van de Walle. Estimating Motion Reliability to Improve Moving
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Object Detection in the H.264/AVC Domain. In To be published in
Proceedings of The International Conference on Multimedia and Expo
(ICME) 2009, June 2009

Furthermore, our work has been presented as a demo at the 10th European
Conference on Computer Vision (ECCV). Finally, it lead to the best poster
award at the 9th Firw Phd Symposium for following publication:

1. Chris Poppe and Rik Van de Walle. High-speed Moving Object Detec-
tion in H.264/AVC Compressed Domain. In Proceedings 9th FirW Phd
Symposium, pages 204–205, December 2008
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Chapter 4

Metadata: Representing
Detected Objects

Quis cusodiet ipsos custodes? - Who shall guard the guardians?
– Decimus Iunius Iuvenalis - ’Satire VI’ (c. 100)

4.1 Introduction

Until now, we focused on the detection of moving objects, where we presented
approaches in two different domains, being the pixel and the compressed do-
main. The detection results, whether they consist of the foreground pixels or
bounding boxes, are generally regarded as low-level features. To make in-
telligent decisions when an object is detected, more high-level information is
required (e.g., location, timing information, shape or speed of the object).

During the creation of large distributed surveillance systems the need arises
to share these extracted features (both low- and high-level) between different
modules or even between different systems. The features can be regarded as
annotations of the captured video sequences. This information that describes
data is generally called metadata and it has applications in a broad range of
domains within computer science.

During our participation in the research projects DANAE 1 and PECMAN2, we
came in touch with such metadata applications in a different domain than video

1http://danae.rd.francetelecom.com/index.php
2http://www.ibbt.be/en/project/pecman
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surveillance, being (personal) content management. A video surveillance sys-
tem could be seen as specific case of such a content management system, the
main difference is that the metadata is generated by video analytics, whereas
metadata used for personal content is generally user-created (e.g., tags and an-
notations of pictures). Next, we discuss how video surveillance systems use
metadata and what the problems are of using XML-based metadata standards
in this case. Additionally, we introduce the concept of personal content man-
agement and show how the same problems occur. In the rest of this chapter
we present our solutions to these problems in the context of personal content
management systems.

4.1.1 Metadata in Video Surveillance

Black et al. presented a framework for event detection and video content
analysis within a multi-camera surveillance system [83]. They made a data
model suited to describe images, objects (and their motion), and semantic as-
pects. This data model is represented in different layers and was modelled in a
database. Metadata is generated based on the layers to combine all the infor-
mation and to increase the efficiency of querying. The actual metadata format
was not reported, but their future work suggested using a common metadata
standard for cooperation with other surveillance systems.

As the previous example suggests, to make metadata practically usable for
information exchange between two or more modules, a common machine-
readable metadata format is needed. This format describes which metadata
can be used to describe the information of interest and how the metadata is
structured. When using a common metadata format, software tools for auto-
mated manipulation can be created. One popular format of metadata is XML
(eXtensible Markup Language), which allows to structure the information so
that it is machine-parseable. In this case, an XML schema (according to the
XML Schema language [84]) can be used to describe the structure, and the ac-
tual metadata is represented by an XML document or instance that conforms
to the schema.

This approach can already be found in existing video surveillance systems
(e.g., the CANDELA project [85] that uses MPEG-7 [86] to describe the
features). Different metadata formats have been suggested to describe video
surveillance related metadata.

Zerzour et al. presented the VIGILANT system and created a semantic model
for content and event based indexing of surveillance video [87]. It consists of a



4.1. Introduction 87

data model described using constructs from the KL-ONE language (used to ex-
plicitly represent conceptual information as a structured inheritance network).
However, this language is not widely used for describing video surveillance
metadata and disturbs the integration with different systems.

The need for describing video analytics results with a common metadata for-
mat also arises when considering the evaluation (and comparison) of different
video surveillance systems. Young and Ferryman presented a dataset of video
sequences for evaluation of different algorithms and defined a common XML-
based format to describe the detection results [88]. It contains information on
objects and trajectories. The use of the common format allows to automatically
and objectively analyse the performance of different algorithms.

List et al. presented an XML-based Computer Vision Markup Language
(CVML) [89]. Additionally, they offered a free software library called CoreLi-
brary that assists people in handling the language. It has been used to describe
hand-labelled ground truth datasets as part of the CAVIAR project3.

Annesley et al. gave an interesting overview of the usage of MPEG-7 for
video surveillance in general [90]. They presented examples on how MPEG-
7 descriptors can be used. Since MPEG-7 is a large (and complex) metadata
standard, they proposed a video surveillance specific profile to limit the amount
of descriptors that need to be supported. Additionally, they created a Visual
Surveillance XML schema (VS7) that uses some of the MPEG-7 descriptors
and contains new types.

As can be seen, a number of different approaches exist in formatting the meta-
data associated with a video surveillance system. However, there is not one
general metadata standard that is generally accepted, and most likely such a
standard will not be introduced in the near future. Consequently, combining
different metadata schemes with each other seems to be the only solution to
create interoperability between different modules and systems.

However, combining different XML-based formats, created from different per-
spectives, is hard. For example, CVML and VS7 can be used to denote the
same concepts, but the structure and terms used are very different. Mapping
such XML fragments on each other is obviously a cumbersome task. The usage
of eXtensible Stylesheet Language Transformations (XSLT) stylesheets [91],
which were specifically created to transform XML instances, cannot always
encompass the differences between different metadata standards. Addition-
ally, when using XML to describe metadata, it is hard to describe semantic
aspects. XML was mainly created to structure information and in many cases

3http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
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a metadata standard consists of an XML schema to denote the structure and
the metadata fields that can be used, and a complementary textual description
of the actual semantics of the metadata fields.

Recent efforts create languages that allow to explicitly define semantic infor-
mation. An example of this within the context of video surveillance systems
is the Video Event Representation Language (VERL), suggested by Nevatia
et al. [92, 93]. It is used to describe events and relations in video sequences
using an ontology. Additionally, a Video Event Markup Language (VEML)
was created that allows to annotate instances of the events described in VERL.
Initially, VEML was a proprietary language constructed in XML, but in the fi-
nal version, the base format used is the Web Ontology Language (OWL) [12],
designed by the W3C Web Ontology Working Group. However, Nevatia et al.
reported problems for describing the entire VERL ontology with OWL, so not
all constructs are available as OWL instances. Integration with the MPEG-7
standard was proposed as future work but no information was given on how
this could be done.

The issues described here are general problems when trying to combine dif-
ferent metadata standards or formats. Within this dissertation, we tackled this
interoperability problem in a different domain than that of video surveillance
systems. We focused on metadata that is used for annotation of images within
a personal content management system. We propose the use of Semantic Web
technologies to deal with the problem of using diverse metadata standards and
to create a semantic personal content management system. The next section
gives a general introduction to the problem that one faces when creating such
systems.

4.1.2 Personal Content Management Systems (PCMSs)

These days, the amount of multimedia content is increasing considerably. Sev-
eral concurrent trends are making this happen. Current software made creating,
sharing, and editing multimedia resources a common and easy task. Digital
camera sales overtook film-based cameras in 2003 and the numbers keep on
increasing [94]. Online communities that allow sharing of pictures or videos
are blooming and users can easily and rapidly annotate their own or others
content. This increasing amount and diversity of content, metadata, and users,
makes it a hard task to manage, retrieve, and share the multimedia content. In
this sense, Content Management Systems (CMS) have been used for several
years. However, nowadays the user is becoming a producer of content, and
there is a need to manage this personal content as well, hence the introduction
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of a Personal Content Management System (PCMS). In this case, the user cre-
ates, annotates, organizes, and shares his personal content. In this context, the
metadata have never had such an important impact on the capability of PCMSs
to manage, retrieve, and describe content [95]. Nevertheless, creating a PCMS
that can work with different sorts of metadata is a difficult task. Numerous
metadata formats exist and generally their structure is defined in a metadata
scheme (e.g., using XML Schema), while the actual meaning of the metadata
fields is given in plain text [86, 96, 97]. This leads to several interoperabil-
ity issues since there is no formal representation of the underlying semantics.
For example, different MPEG-7 metadata constructs can be used to denote
the same semantic concept [98]. Even in more recent standards, like MPEG-
21, we can see problems by not formally defining the semantics, as we have
shown in [99]. This interoperability problem was the main topic of the W3C
Multimedia Semantics Incubator Group (MMSem) in which we have actively
participated within the photo use case [100]. We adopt the vision of this group
and use semantic web technologies to solve these interoperability issues within
the context of a PCMS.

We introduce a semantic approach to build a PCMS. This work is part of the
PeCMan (PErsonal Content MANagement) project, in which a PCMS is cre-
ated that is completely metadata-driven. We propose a metadata model, repre-
senting system-, security-, and user-related metadata in the context of a PCMS.
The model is used as an upper ontology (expressed by an OWL schema) that
is linked to a set of lower-level metadata ontologies (e.g., formal representa-
tions of MPEG-7, Dublin Core, and DIG35). To show the extensibility of our
system, we create an ontology conform to the DIG35 specification and include
it within the proposed model.

The next section gives related work within the context of using semantic tech-
nologies to align different XML sources. In Section 4.3, we elaborate on
the created PCMS metadata model. Subsequently, in Section 4.4 we discuss
the interoperability issues that we faced when combining existing metadata
schemes with our metadata model. Accordingly, a layered approach is pre-
sented that builds upon and combines formal representations of existing meta-
data schemes. In Section 4.4.3 we elaborate on the DIG35 ontology that we
created and Section 4.4.4 shows the mappings between the different ontolo-
gies. Section 4.5 presents the metadata service that is built around our model
and discusses the used technologies. A use case scenario is shown in Section
4.7 to illustrate our system and, finally, conclusions are drawn in Section 4.8.
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4.2 Related Work

Semantic technology is a vivid area of research and a number of different ap-
proaches exist in creating semantic multimedia management systems. Two
broad categories can be found in the related work, consisting of approaches
that focus on integration of metadata standards and approaches that propose
semantic multimedia systems.

The first category tries to integrate the various multimedia metadata formats
by creating formal representations and/or frameworks to integrate them. The
following paragraphs describe related work that represents this category.

Hunter et al. describe a semantic web architecture in which RDF schema [101]
and XML schema are combined [102]. The RDF schema defines the domain-
specific semantic knowledge by specifying type hierarchies and definitions,
while the XML schema specifies recommended encodings of metadata ele-
ments by defining structures, occurrence constraints, and data types. A global
RDF schema (called MetaNet) is used to merge domain-specific knowledge
and it is combined with XSLT to accomplish semantic, structural, and syntac-
tic mapping. MetaNet is a general thesaurus of common metadata terms that
contains semantic relations (e.g., broader and narrower terms) and is used as
a sort of super ontology. However, to reach its full potential, the super on-
tology should provide more and diverse semantic relations between the com-
monly used metadata terms. Consequently, using MetaNet allows for some
semantic relations but it is not suited to act as a super ontology. The actual
mapping between different ontologies happens through XSLT transformations.
Since XSLT only relies on template matching, it can be used to transform one
XML construct in another, but it is not suited to represent actual semantic
relations between different concepts. Consequently, Hunter reports on the dif-
ficulties that arise due to lexical mismatching of metadata terms. Moreover,
the stylesheets do not make the actual semantic relations publically available
for other ontologies.

The structure of the ontologies in our system is mostly related to the work of
Cruz et al. [103]. They introduce an ontology-based framework for XML se-
mantic integration in which, for each XML source that they integrate, a local
RDF ontology is created and merged in a global RDF-based ontology. During
this mapping, a table is created that is used to translate queries over the RDF
data of the global ontology to queries over the XML sources. The major dif-
ference with their approach is that we make explicit use of OWL to create and
link the ontologies whereas they define a proprietary mapping table and intro-
duce an extension to RDF. Moreover, they assume that every concept in the
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local ontologies is mapped to a concept in the global ontology. In our case, we
have defined the global ontology by analysing the specific needs of a PCMS.
Consequently, not all the concepts present in every included metadata standard
need to be mapped to our upper ontology.

Hunter and Little defined a framework enabling semantic indexing and re-
trieval of multimedia content based on the ABC ontology [104]. As in our
approach, ontologies are manually created based on the XML schemas that are
used. The ontologies are manually linked by using the ABC ontology as a core
ontology [105]. This core ontology offers concepts and relations that allow
to describe knowledge (events, actions, entities, etc.) at a high level. As such,
domain-specific ontologies can use the ABC ontology to map specific concepts
on each other, creating rich semantic representations across domains. How-
ever, the ABC ontology is not suitable to relate different multimedia metadata
formats (which describe multimedia and not that much existing concepts or
events) to each other. Indeed, only one multimedia metadata format (MPEG-7)
is used in combination with two domain-specific ontologies, which are linked
through the ABC ontology. XML schemas are linked to the ontologies through
a proprietary system that extends the given schemas with specific attributes.
Using XPath queries that process these schemes, XML instances are accord-
ingly mapped upon instances of the corresponding ontologies. Rules are used
to deduce additional relations between instances.

Vallet et al. used ontological knowledge to create a personalized content re-
trieval system [106]. They presented ways to learn and predict the interest of
a user for a specific multimedia document to personalize the retrieval process.
More specifically, the system adds a weight to concepts of the available do-
main ontologies and these are adjusted with every query a user does. However,
the way that these concepts are related to the actual multimedia documents is
similar to free-tagging systems. Each multimedia document is associated with
a vector of weighted domain concepts. For example, if a picture is annotated
with the concept Paris it is not possible to decide whether the image depicts
the city of Paris or if the picture is taken in Paris.

Arndt et al. created a well-founded multimedia ontology, called the Core On-
tology for Multimedia (COMM) [98]. The ontology is based on the MPEG-7
standard and uses the Descriptive Ontology for Linguistic and Cognitive En-
gineering (DOLCE) as modelling basis [107]. In this sense they formally de-
scribe MPEG-7 annotations, however mapping other existing metadata formats
onto this model is a cumbersome task.

The second category presents general solutions to make a semantic multimedia
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management system. These include metadata representations and an architec-
ture that allows to reason upon, adapt, and query this information.

Dönderler et al. presented an overview of the design and implementation of
a video database management system [108]. The system allows to create se-
mantic annotations of multimedia (video) by annotation or extraction. For
this purpose a video-annotation tool and a feature extractor were proposed.
The resulting annotations are subsequently used by a query processor to al-
low advanced querying. However, the semantic knowledge is hard-coded as a
database, which makes it hard to change the system.

Shallauer et al. presented a description infrastructure for audiovisual media
processing systems [109]. The system consists of an internal metadata model
and access tools to use it. The model used to describe the audiovisual media is
a self-defined profile of the MPEG-7 standard (called the Detailed Audiovisual
Profile). By defining this profile they discarded the generality and complexity
of the entire MPEG-7 standard. Similar work was done by Annesley et al,
who defined a profile for the use of MPEG-7 within video surveillance sys-
tems, as discussed in Section 4.1. However, semantic constraints within the
Detailed Audiovisual Profile are only described in textual form in the profile
description. Therefore, these constraints need to be enforced (hard-coded) by
the software tools used in the system.

Petridis et al. created a knowledge infrastructure and experimental platform
for semantic annotation of multimedia content [110]. They use DOLCE as
core ontology to link domain-specific ontologies (e.g., describing sport events
like tennis) to multimedia ontologies. The latter consist of the Visual Descrip-
tor Ontology (VDO) [111], an ontology based on MPEG-7’s Visual Part [112]
and a Multimedia Structure Ontology (MSO) using the MPEG-7 Multimedia
Description Scheme [113]. However, their infrastructure is solely made to
semi-automatically combine low-level visual features into semantic descrip-
tions of the multimedia resource. Unfortunately, they do not consider other
relevant metadata (e.g., creation location and human annotations) that is usu-
ally available and can be used to infer semantic information. Moreover, they
do not allow other multimedia metadata schemes in their system.

Asirelli et al. presented an infrastructure for MultiMedia Metadata Manage-
ment (4M) [114]. The infrastructure enables the collection, analysis, and inte-
gration of media for semantic annotation, search, and retrieval. It consists of an
MPEG-7 feature extraction module, an XML database for storage of MPEG-7
features as XML files, an algorithm ontology, an MPEG-7 ontology, and an
integration unit that merges the different modules together. As such, they suc-
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ceed in reasoning about MPEG-7 features and linking different algorithms to
extract MPEG-7 features. However, the restriction of using MPEG-7 XML
files prevents the use of other existing metadata formats.

Garcia and Celma proposed a system architecture to achieve semantic mul-
timedia metadata integration and retrieval by building upon an automati-
cally generated MPEG-7 ontology [115]. They presented an automatic XML
Schema to OWL mapping and apply it to the MPEG-7 standard to create an
OWL Full MPEG-7 ontology. However, this mapping is fully automatic and
can only extract semantics out of the structure of the XML schema. Hence,
semantics not defined within the schema are not present in the resulting on-
tology. A system architecture to achieve semantic multimedia metadata inte-
gration and retrieval is proposed. This system uses the MPEG-7 ontology as
upper ontology to which other ontologies are mapped. An RDF storage system
is used for management and the data is queried using RDQL (RDF Data Query
Language). However, by using the automatically generated MPEG-7 ontology,
the semantic knowledge that can be represented is restricted. Additionally,
MPEG-7 has gained only moderate popularity due to its complexity, and nu-
merous metadata standards exist that work on the same conceptual level [116].
Therefore, building the upper ontology solely out of MPEG-7 concepts is too
restrictive.

As the related work shows, no current architecture allows to incorporate and
combine several different existing metadata formats for use within a PCMS.
The possibility to include and work with different metadata formats is a prereq-
uisite for the creation of a practically useful PCMS. Different metadata stan-
dards exist and instances of these metadata schemes are everywhere. There-
fore, to work with these formats, we need to address the interoperability be-
tween the different standards and cannot rely on one metadata standard alone
(like MPEG-7). Consequently, we present a semantic layered metadata model
and describe a metadata service tailored for a PCMS.
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4.3 PCMS Metadata Model

In this dissertation, when talking about a PCMS, we imagine a metadata-driven
distributed management system where the multimedia content can be placed
on several devices (e.g., desktop PC or cell phone), connected over different
networks. The actual content is indexed in a separate module, called indexer,
that makes intelligent decisions on the technical details of the content storage.
As such, the storage capacities and network traffic can be optimized [117].
The metadata related to the content is managed by a metadata service. The
indexer makes use of this metadata service to decide upon the location of the
content. For this purpose, system-related metadata is created and linked to
the content. As such, an end-user only adds metadata to content, while the
system interprets this to move the content to its best location. Accordingly,
a security service maintains policy rules, based on specific security-related
metadata fields of the content. Lastly, to allow personalized management of
the content and to enforce the community aspect of the content management
system, user-centric metadata is used.

To structure the metadata within the PCMS, we present a metadata model,
which is depicted in Figure 4.1. These metadata fields were defined according
to a number of use cases inherent to a PCMS. These are:

• Registration of a resource.

• Retrieval of a resource.

• Annotation of the resource (to enhance the retrieval of content).

– Manual annotation of the resource. This involves tagging or adding
metadata according to a specific metadata scheme.

– Automatic annotation of the resource. This includes feature extrac-
tion (e.g., face recognition tools) and importing existing metadata
(e.g., reading EXIF header of a picture file).

• Metadata-driven security. This means the possibility to include access
rules based on the metadata of the content.

Figure 4.1 shows the metadata classes that can be regarded as independent of
the actual type of the multimedia document (e.g., image, video, or audio) and
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are discussed in the next section. Metadata that is specific for a certain type is
collected within subclasses of the ManualAnnotation class and is the topic
of Section 4.3.2.

Document

ManualAnnotation

AutomaticAnnotationUserCentric

Security

System

ImageMetadata

IPRExploitation

IPRClaimer

Algorithm

IPR

Feature

Storage

User

Accessibility

FreeTag

Sharing

Changeability

Figure 4.1: PCMS Class Hierarchy.

4.3.1 Content-independent metadata

A resource (e.g., a picture, video, audio file, or textual document) is called
a Document and forms the base of our metadata model. The metadata it-
self reflects the modular architecture of a PCMS and is split up into system-,
security-, and user-related metadata fields.

System Metadata

The system metadata holds the owner, storage info, and accessibility rules.
The owner is a registered user within the PCMS. The user has an ID, login
name, and some additional settings. The storage info holds information about
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the current location of the document. This location is influenced by the ac-
cessibility rules. If the accessibility is set to “online”, the document is placed
on an accessible server. A value of “offline” signifies that the document is
never accessible for other devices connected to the PCMS. The last option is
to set the accessibility to “always available”, which means that the document
is stored both online and on a detachable device.

Security Metadata

The security-related metadata describes the rights that govern the access of
other users concerning a specific document. This access is twofold, it includes
access to the multimedia resource and to the available metadata. We refer to
sharing settings for the former and changeability settings for the latter (the us-
age of the term ’sharing’ is not common for expressing access to metatadata,
hence the term ’changeability’ is used for this purpose). The sharing settings
hold a share level, which states whether the document is shared with some
users, or is private. If the document is shared, specific permission settings can
be used that contain the rights of a user or user group upon the document (e.g.,
view or modify). If the document is not shared, the permissions are ignored.
To manage the access to the metadata, the permissions of a user or user group
concerning the metadata are stored within the changeability settings. Frag-
ment 4.1 shows an XML serialization of the security-related metadata. This
fragment shows that the actual content is private, but the metadata is visible.
This allows to deal with copyright issues so that the content is inaccessible but
the metadata can be browsed.

1 <Security>
<SharingSettings>

<ShareLevel>private</ShareLevel>
</SharingSettings>

5 <ChangeabilitySettings>
<Permissions>tag</Permissions>
<Permissions>see</Permissions>
<User>urn:pecman:user001</User>

</ChangeabilitySettings>
10 </Security>

Fragment 4.1: Example of PCMS metadata fragment expressing copyrighted content,
serialized in XML.



4.3. PCMS Metadata Model 97

User-Centric Metadata

The user-centric metadata contains metadata for describing IPR (Intellectual
Property Rights), automatic, and manual annotations. We split IPR-related
metadata on the security and user level. The security-related metadata as dis-
cussed above is typically only accessible through and within the PCMS. The
subjects of the permissions are consequently the PCMS users. On the other
hand, the IPR-related metadata on the user level is regarded as a global pro-
tection scheme. The owner of the document defines the exploitation rights of
a certain IPR claimer. The latter is a person (which could be a PCMS user)
or organization. The actual exploitation can hold metadata to identify a spe-
cific IPR mechanism (e.g., watermark or registration), metadata to impose re-
strictions upon the use of the document, and metadata to specify obligations
resulting from the use of the document (e.g., a fee for watching a movie). This
IPR mechanism is in line with the IPR systems described in MPEG-21 Rights
Expression Language (REL) and Rights Data Dictionary (RDD) [118]. These
define standardized language constructs that can be used to create a licensing
system that allows a user to define the rights that other persons have upon his
content [119].

Automatic annotation concerns the algorithmic extraction of relevant features
from the multimedia resource. The need for this kind of metadata increases
with the number of multimedia resources that are stored within the PCMS. If
many documents need to be annotated, manual annotation is not an option.
Accordingly, automatic annotations are used that describe the content as accu-
rate as possible. Numerous approaches and algorithms exist that try to bridge
the semantic gap [120]. A generic approach is used to allow a plethora of algo-
rithms. In this approach, the algorithm itself is described on a high level (e.g.,
name and reference) and the result of the algorithm can be stored as features,
consisting of a header and actual data.

The last category of user-centric metadata are the manual annotations. A man-
ual annotation differs from an automatic annotation in the sense that the former
is metadata generated by a human expert, whereas the latter is created by an
algorithm that works on the actual multimedia resource.

One general form of manual annotations is free tagging of multimedia content.
As can be seen from the numerous Web applications that allow tagging content
(e.g., Flickr or Facebook), the popularity and, consequently, necessity of tag-
ging is enormous. However, due to its nature, it is difficult to assign a semantic
meaning to free tagging. Different users assign different keywords or tags to
the same content. Moreover, several different tags can be used to identify the
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same conceptual entity (e.g., house, home, building, or auntie’s place). Fi-
nally, different spellings, languages, or dialects cause even more problems. To
reduce the semantic gap, we introduce a Context field that tries to represent,
on a high level, the semantic meaning of the actual tag. This structuring of free
tags was inspired by MPEG-7. The field can take the values “who”, “what”,
“where”, “when”, or “misc” to refer to a person, a subject, a place, the time,
or something else, respectively. The major advantage of tagging is the degree
of freedom that the user has and the low effort to create a tag. Therefore, we
restrict the context fields to those mentioned above.

In addition to the free tagging scenario, we can have other metadata that de-
scribe the multimedia resource. However, these are mostly dependent on the
actual type of the resource. In this dissertation, we restrict our discussion of the
PCMS metadata model to images (the class ImageMetadata is a subclass of
the ManualAnnotation class), but the metadata structure of other document
types (e.g., audio, video, and textual documents) is similar and some constructs
can be reused.

4.3.2 Image-related Metadata

We have actively participated in the creation of an overview on the state-of-
the-art of multimedia metadata formats within MMSem [121]. This overview
was matched with the general requirements of the PeCMan project to yield the
structure of the image metadata incorporated in our metadata model. In this
sense common metadata concepts in different existing metadata formats were
analysed to see whether they aid in solving the use cases. This image metadata
is split up in basic, creation, and content metadata as shown in Figure 4.2.

The basic image parameters define general information about the content (e.g.,
file name, width and height, and the coding format).

The creational metadata encompasses both general and detailed creation infor-
mation. The general creation information has fields for the creation time, the
image creator, and the image source. This image source field can take the fixed
values “digital camera” or “computer graphics” to denote that the image was
taken by a digital camera or was created using software, respectively. With the
detailed image creation information, one can specify which software or what
camera was used in the creation process.

The third category of image metadata, namely the content descriptive meta-
data, describes the content of an image or a specific region of the image as
described by the Position. By explicitly including this field we can make
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Figure 4.2: Model of image-related metadata.

an annotation about an actual region within an image. This region can be
described as a comment (Comment), as a point (Point), a bounding box
(BoundingBox), or as a region (Region). The latter is defined in terms
Bézier curves, represented as Splines, as shown in Figure 4.3.

Position
Comment[0..1]

Point
x[1] : unsigned int
y[1] : unsigned int

BoundingBox
Width[1] : unsigned int
Heigth[1] : unsigned int
Top-left point[1] : Point

Spline
Control point1[1] : Point
Control point2[1] : Point
End point[1] : Point

Region
Starting Point[1]
Spline[1..*] : Spline

Figure 4.3: Class Diagram of the Position class.

The actual annotation that describes the defined region can be a textual com-
ment, depicted item, depicted event, and rating. The DepictedItem field de-
scribes a tangible Thing (see Figure 4.4) that is depicted; this can be an object
or living thing, but also a person (Person), a group of people (PersonGroup)
or an organization (Organization).

An event is described by an EventDescription and relates to participating
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Family name[0..1] : String
Nickname[0..*] : String
Address[0..1] : Address
Phone[0..*] : PhoneNumber
Email[0..*] : String
Web[0..*] : String
Birth date[0..1] : DateTime
MemberOf[0..*] : Organization
User Reference[0..1] : User

Person
Email[0..*] : String
Web[0..*] : String
Phone[0..*] : PhoneNumber
Address[0..1] : Address

Organization

Comment[0..1] : String
Position

ID[1] : String
Name[1] : String
Comments[0..*] : String
Log[1] : Log

Thing

Name[0..1] : String
Address[1] : String
Zip code[0..1] : String
City[0..1] : String
Country[0..1] : String
Comment[0..1] : String
Log[1] : Log

Address

«datatype»
DateTime

«datatype»
String

Type[1] : String
Number[1] : String
Comment[0..1] : String
Log[1] : Log
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Top-left point[1] : Point
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Control point1[1] : Point
Control point2[1] : Point
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Region

Date & Time[1] : DateTime
Log[1] : Log

LogDateTime
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Group Reference[0..*] : UserGroup

PersonGroup

Figure 4.4: Class Diagram of the Thing class.

things, as shown in Figure 4.5. The field Eventtype specifies the type of
event (e.g., “soccer game” or “wedding party”) and events can be related with
each other through the RelatedEvent field.

The rating is defined by a value or score that is given to the content, and a
minimum and maximum value to denote the range of the score (e.g., the rating
is 3 on a scale from 0 to 5). The possibility to rate each other’s content is
especially interesting in a community context where people can tag other users’
content (e.g., Flickr).

As shown in this section, we have created a metadata model specifically tai-
lored for personal content management systems. The model offers a general
overview of the metadata fields of interest and has a large descriptive poten-
tial, due to the inclusion of automatic annotations, free tagging, and content
descriptive metadata. In the next section, we elaborate on the practical imple-
mentation of this model and show how existing metadata standards are com-
bined with the model to allow the description of the content in various formats.
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ID[1]
Event Type[1]
Description[0..1]
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Time[0..1]
Duration[0..1]
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Log[1]

Event
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Log[1]
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*+participates
*
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Figure 4.5: Class Diagram of the EventDescription class.

4.4 Semantic PCMS

4.4.1 Interoperability Issues

The metadata model, introduced in the previous section, is specifically tailored
to be compact and easy to reuse. Therefore, it is not intended to replace exist-
ing multimedia metadata standards. Based on the metadata model, we created
an XML schema that allows to specify the structure of the metadata used in our
system. To allow the actual end-user to freely annotate content, other existing
standardized metadata schemas need to be included. However, when trying to
match the XML schemas of different standards we face interoperability prob-
lems. These problems were already signalled by the W3C Multimedia Seman-
tics Incubator Group [100]. Although each of the standardized formats intro-
duces interoperability amongst applications that use that standardized meta-
data scheme, issues occur when using different metadata schemes together.
Fragment 4.2 and Fragment 4.3 show two annotations of the same picture but
according to different metadata schemes. Both annotations describe a unique
identifier, the person who created the picture and the software that was used,
the location and time of the creation, and give an identifier used for IPR pur-
poses.

Another example can be found in the context of video surveillance systems.
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1 <METADATA>
<BASIC_IMAGE_PARAM>

<BASIC_IMAGE_INFO>
<IMAGE_ID>

5 <UID>098f2470-bae0-11cd-b579-08002b30bfeb </UID>
<ID_TYPE>http://www.digitalimaging.org/dig35/UUID</

ID_TYPE>
</IMAGE_ID>

</BASIC_IMAGE_INFO>
</BASIC_IMAGE_PARAM>

10 <IMAGE_CREATION>
<IMAGE_CREATOR>

<PERSON_NAME>
<NAME_COMP TYPE="Given">Yoshiaki<NAME_COMP>
<NAME_COMP TYPE="Family">Shibata<NAME_COMP>

15 </PERSON_NAME>
</IMAGE_CREATOR>
<SOFTWARE_CREATION>

<SOFWARE_INFO>
<Model>Wizzo Extracto</MODEL>

20 <VERSION>2</VERSION
</SOFTWARE_INFO>

</SOFTWARE_CREATION>
</IMAGE_CREATION>
<CONTENT_DESCRIPTION>

25 <LOCATION>
<ADDRESS>

<ADDR_COMP TYPE="City">Tokyo</ADDR_COMP>
<COUNTRY>jp</COUNTRY>

</ADDRESS>
30 <CAPTURE_TIME>

<EXACT>2000-10-10T19:45:00+09:00<EXACT>
</CAPTURE_TIME>

</LOCATION>
</CONTENT_DESCRIPTION>

35 <IPR>
<IPR_IDENTIFICATION>

<IPR_IDENTIFIER><IPR_ID>RID#</IPR_ID></IPR_IDENTIFIER
>

</IPR_IDENTIFICATION>
</IPR>

40 </METADATA>

Fragment 4.2: Example of metadata expressed in DIG35-format.
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1 <Mpeg7>
<DescriptionMetadata>

<Confidence>1.0</Confidence>
<Version>1.1</Version>

5 <LastUpdate>2001-09-20T03:20:25+09:00</LastUpdate>
<PublicIdentifier type="UUID">098f2470-bae0-11cd-b579

-08002b30bfeb</PublicIdentifier>
<PrivateIdentifier>completeDescriptionExample</

PrivateIdentifier>
<Creator>

<Role href="creatorCS"><Name>Creator</Name></Role>
10 <Agent xsi:type="PersonType">

<Name>
<GivenName>Yoshiaki</GivenName>
<FamilyName>Shibata</FamilyName>

</Name>
15 </Agent>

</Creator>
<CreationLocation>

<Region>jp</Region>
<AdministrativeUnit>Tokyo</AdministrativeUnit>

20 </CreationLocation>
<CreationTime>2000-10-10T19:45:00+09:00</CreationTime>
<Instrument>

<Tool><Name>Wizzo Extracto ver. 2</Name></Tool>
<Setting name="sensitivity" value="0.5"/>

25 </Instrument>
<Rights><RightsID>RID#</RightsID></Rights>

</DescriptionMetadata>
<Description xsi:type="ContentEntityType">

<MultimediaContent xsi:type="ImageType">
30 <Image>

<!-- more elements here -->
</Image>

</MultimediaContent>
</Description>

35 </Mpeg7>

Fragment 4.3: Example of metadata expressed in MPEG-7 format.
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1 <frame number="50">
<objectlist>

<object id="0">
<orientation>148</orientation>

5 <box xc="77" yc="73" w="21" h="16"/>
<appearance>visible</appearance>
<hypothesislist>

<hypothesis id="1" prev="1.0" evaluation="1.0">
<movement evaluation="1.0">

10 walking
</movement>
<role evaluation="1.0">walker</role>
<context evaluation="1.0">walking</context>
<situation evaluation="1.0">

15 moving
</situation>

</hypothesis>
</hypothesislist>

</object>
20 </objectlist>

</frame>

Fragment 4.4: Example of CVML metadata fragment describing a moving person.

Fragment 4.4 shows a fragment that describes the event of a detected per-
son using CVML constructs [89]. Similarly, Fragment 4.5 shows an XML
description of a detected person using the Visual Surveillance XML schema
(VS7) [90].

These examples illustrate the issues of interoperability created when using
multiple metadata standards. The same concepts are described but in a totally
different format. Note that even when using one single standard (e.g., MPEG-
7) to describe a resource, issues in interoperability can exist due to a lack of
precise semantics [122]. As these examples show, using XML Schema is not
sufficient. Consequently we use Semantic Web technologies to deal with these
issues by creating a semantic metadata model, discussed in the next section.

4.4.2 Semantic Metadata Model

Semantic web technologies allow to alleviate the interoperability issues within
one metadata standard. For example, efforts have been undertaken to translate
MPEG-7 into an ontology and through appropriate frameworks to enable its
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1 <VS7:VS7 xmlns:VS7="xsdVS7" xmlns:mp7="
urn:mpeg:mpeg7:schema:2001" xmlns:xsi="http://www.w3.org
/2001/XMLSchema-instance" xsi:schemaLocation="xsdVS7 vs7
.xsd">

<DescriptionMetadata>
<mp7:Comment>

<mp7:FreeTextAnnotation>
5 A Visual Surveillance Schema (VS7) document

</mp7:FreeTextAnnotation>
</mp7:Comment>

</DescriptionMetadata>
<Media id="A">

10 <MediaInstance>
<mp7:InstanceIdentifier>

Camera1
</mp7:InstanceIdentifier>
<mp7:MediaLocator>

15 <mp7:MediaUri>
file:/K:/camera1.avi

</mp7:MediaUri>
</mp7:MediaLocator>

</MediaInstance>
20 </Media>

<LLID id="LLID1">
<TemporalMask>

<mp7:SubInterval>
<mp7:MediaRelIncrTimePoint mediaTimeUnit="

PT1N25F" mediaTimeBase="../../../Media[0]">
25 1058

</mp7:MediaRelIncrTimePoint>
<mp7:MediaIncrDuration>1</mp7:MediaIncrDuration>

</mp7:SubInterval>
</TemporalMask>

30 <Mask>
<BB mp7:dim="4">187 162 282 409</BB>
<ScalableColor numOfCoeff="16"

numOfBitplanesDiscarded="0">
<mp7:Coeff>

-202 59 27 42 5 11 19 14 6 13 11 22 6 11 16 7
35 </mp7:Coeff>

</ScalableColor>
</Mask>

</LLID>
</VS7>

Fragment 4.5: Example of VS7 metadata fragment describing a detected object.
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integration with other ontologies, thus enhancing interoperability [98,102,115,
122].

To solve interoperability issues inherent to the use of several different metadata
schemes, the ideal scenario would be to create a commonly accepted multime-
dia (metadata) ontology that encompasses all the concepts needed for anno-
tation of multimedia resources. However, this is not feasible as can be seen
by the many different existing metadata standards. Moreover, systems, com-
panies, and communities usually want the freedom to employ very specific
annotations for internal purposes while other annotations may be made public.
Therefore, we chose to create a specific upper ontology, based on our meta-
data model, called the PeCMan ontology, using OWL. Relevant parts of this
ontology are located in Appendix D.

Different multimedia metadata ontologies can be linked to this upper ontol-
ogy. As such, a hierarchical system of two layers is created. The upper layer
contains concepts on the system, security, and user level suited for content
management systems. The lower layer exists of several multimedia ontologies,
which can be used to describe multimedia resources in various application sce-
narios.

The number of existing multimedia metadata standards has shown that there is
not one commonly accepted standard that provides everything. Different stan-
dards are used, whether they are small and simple (PhotoRDF [123]) or broad
and complex (MPEG-7). Conceptually, the multimedia metadata formats are
on the same level, i.e. they all describe content. Consequently, we regard each
metadata format as equally important and will handle the ontologies represent-
ing them as such.

Figure 4.6 shows a layered metadata model consisting of the created PCMS
model and the underlying metadata standards. Between the different ontolo-
gies so called mappings are needed, which consist of mapping ontologies and
inference rules. These define the relations between classes, properties, and
instances of involved ontologies and are discussed in Section 4.4.4.

The way we organize the different metadata schemes allows intelligent rea-
soning on different levels. The combination of the formal representation of
different metadata standards in the lower layer allows broadening the search
space when looking for content based on certain fields of a specific metadata
scheme. The personal content management model that works as an upper on-
tology allows the application of the semantic knowledge to make intelligent
decisions on system level (e.g., make content accessible for the depicted user,
move an image to another storage device based on the size of the resource).
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Figure 4.6: Layered metadata model; the dashed arrows denote mappings between
ontologies in the lower layer, the full arrows denote cross-layer mappings.

4.4.3 Lower layer

The layered approach allows including new and existing ontologies. To show
the extensibility of the system, we add a new metadata ontology based on the
DIG35 metadata format. Since for this standard no formal representation exists
today, we have built a DIG35 ontology.

DIG35 was developed by the DIG35 Initiative Group, which is part of I3A
(not-for-profit International Imaging Industry Association), the largest imag-
ing industry group worldwide. The DIG35 specification includes a standard
set of metadata for digital images, which promotes interoperability and exten-
sibility, as well as a uniform underlying construct to support interoperability
of metadata between various digital imaging devices. The DIG35 Initiative
Group chose for XML as the recommended reference implementation struc-
ture for their metadata scheme (see Fragment 4.2 for an example of DIG35
XML instance data). Although this allows to define the structure of the actual
metadata, it cannot sufficiently describe the underlying semantics. When se-
mantic reasoning is the goal, a formal representation of this metadata schema
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is needed. Therefore, within the context of MMSem, we created the DIG35
ontology using OWL. 4

For the development of the formal representation we have chosen not to use
an automatic conversion like Garcia et al. [115], since, as was the case with
the MPEG-7 standard, DIG35 defines the underlying semantics of the differ-
ent metadata fields within a textual specification. Consequently, we manually
created classes and properties based on the DIG35 specification, which allows
us to define semantic relationships that are not derivable from the provided
XML schema. The final ontology is an OWL DL ontology, consisting of ap-
proximately 150 classes.

According to the different parts that are covered by the metadata specification,
we created different OWL schemas. These consist of image creation, basic im-
age parameters, content description, image history, and IPR ontologies. Note
that the image-related metadata in the PeCMan ontology is similar. Addi-
tionally, a number of fundamental ontologies were created, which actually are
domain-independent and could be reused for different purposes. These ontolo-
gies represent fundamental concepts like addresses, persons, dates and times,
events, locations, and other concepts that are also used in the DIG35 specifi-
cation. These concepts can easily be matched with other existing ontologies
(like FOAF or Dublin Core) through a separate mapping ontology.

4.4.4 Mapping and rules

A mapping ontology typically consists of basic OWL or RDFS constructs
(e.g., owl:equivalentClass and rdfs:subPropertyOf) between concepts of dif-
ferent ontologies. Fragment 4.6 shows an example of a mapping between the
DIG35 ontology and the PeCMan ontology. The figure shows how standard
OWL constructs are used to, for example, map a DIG35 Person class on the
conceptually equivalent PeCMan Person class (line 5).

Note that, for practical implementations, a mapping as presented above is not
sufficient. Rules are needed to create advanced conditional relationships, for
example to declare instance equivalence when certain properties match. Within
a PCMS, one wants to offer content retrieval based on metadata. As such, the
actual instances of this data are sometimes not known beforehand. Hence,
we cannot define relations on them in the pre-determined mapping ontologies.
However, by defining rules we can automatically link new instances to those

4The DIG35 ontology can be found at
http://multimedialab.elis.ugent.be/users/gmartens/ontologies/DIG35
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1 <owl:ObjectProperty rdf:about="../DIG35/PersonDescription.
owl#person">

<rdfs:subPropertyOf rdf:resource="../Pecman/Content.owl#
depictedItem"/>

</owl:ObjectProperty>

5 <owl:Class rdf:about="../DIG35/Person.owl#Person">
<owl:equivalentClass rdf:resource="../Pecman/Person.owl#

Person"/>
</owl:Class>

<owl:Class rdf:about="../DIG35/Content.owl#Content">
10 <owl:equivalentClass rdf:resource="../Pecman/Content.owl#

ImageContentDescription"/>
</owl:Class>

Fragment 4.6: Example of mapping using OWL constructs within the DIG35 to
PeCMan mapping (the namespaces were abbreviated for layout purposes).

that are stored within the system. Fragment 4.7 shows such a rule (we adopt
the informal notation declared in the SWRL (Semantic Web Rule Language)
submission to give a human readable form of the rules [124]). The rule relates
individuals of the class Person within the DIG35 ontology to individuals of
the class Person within the PeCMan ontology. If instances of these classes
have the same values for their corresponding name and family name proper-
ties, they are considered to be equal. This rule makes it possible to match an
instance of a PeCMan Person to an instance of a DIG35 Person based on
their properties.

1 dig35:Person(?x1) ∧ pecman:Person(?x2)
2 ∧ dig35:givenName(?x1,?y1) ∧ pecman:name(?x2,?y2)
3 ∧ dig35:familyName(?x1,?y3) ∧ pecman:familyName(?x2,?y4)
4 ∧ (?y1=?y2) ∧ (?y3=?y4)
5
⇒ owl:sameAs(?x1,?x2)

Fragment 4.7: Rule for mapping PeCMan Person instances to DIG35 Person
instances.

Furthermore, rules are needed to relate certain constructs in different on-
tologies. For example the rule shown in Fragment 4.8 states that if an in-
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stance of the DIG35 Content class x1 is related to an instance x3 through
the contentPersonDescription and person object properties, it can be in-
ferred that x1 is the subject and x3 is the object of the property depictedItem
from the PeCMan ontology (in this example the actual classes of instances x2
and x3, being PersonDescription and Person respectively, can be omitted).
As such we can find depicted persons within the PeCMan ontology, based on
descriptions in the DIG35 ontology.

1 dig35:Content(?x1) ∧ dig35:person(?x2,?x3)
2 ∧ dig35:contentPersonDescription(?x1,?x2)
3 ⇒ pecman:depictedItem(?x1,?x3)

Fragment 4.8: Rule to relate the depictedItem property to a specific construct in
DIG35.

In the context of video surveillance systems, one can follow the same steps for
the creation of a semantic metadata model as discussed above. First, a gen-
eral metadata model for video surveillance needs to be created. Subsequently,
this can be included in a layered model in which the lower layer contains for-
mal representations of existing metadata formats used in video surveillance
(like CVML and VS7). Similarly, rules and mappings are needed as described
above.

The next section discusses some practical aspects of the creation of a semantic
PCMS. More specifically, we elaborate on how it is used within the PeCMan
project.

4.5 Metadata Service

Within the PeCMan project, the metadata service needs to allow the upload,
storage, management, and retrieval of metadata. The underlying framework
for the metadata service is a distributed architecture based on Web services,
from the BRICKS project, which is discussed in the next section [125]. This
framework incorporates the metadata schema as we defined above and allows
to reason on RDF triples based on the present ontologies.
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Figure 4.7: Metadata architecture of Bricks environment.

4.5.1 Metadata Management

BRICKS (Building Resources for Integrated Cultural Knowledge Services)
was a European project, funded by the IST priority in FP65. It aims to es-
tablish the organizational and technological foundations of a digital library,
which refers to a networked system of services over globally available collec-
tions of digital multimedia documents, providing several layers of knowledge
to a variety of users and access methods. The actual infrastructure consists of
integrated, but independent, software units, which are deployed on the nodes
of the architecture. These nodes, called Bnodes, can connect to each other
through a peer-to-peer mechanism and use available resources for content and
metadata management. Each node is characterized by a Web interface giv-
ing access to administration, cataloguing, consultation, annotation, and per-
sonalization of content. Our metadata service is implemented within such a
Bnode. Figure 4.7 shows the internal structure of the metadata service. The
SchemaManagement module stores arbitrary metadata schemas, both stan-
dard and proprietary, which are described in OWL DL. These schemas de-
scribe the actual metadata, denoted as MetadataRecords. The query module

5http://cordis.europa.eu/ist/
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uses Lucene6 for simple text-search querying. Moreover, advanced ontology
queries are expressed in SPARQL (SPARQL Protocol And RDF Query Lan-
guage [126]) and executed by an underlying Jena7 RDF query processor.

An external content manager is used to store and manage object identifiers
that refer to the actual multimedia content. Within PeCMan, the management
of this content is done through a global index that keeps track of the location
of the resources. Consequently, within the metadata service, the metadata is
linked to these object identifiers. The metadata service holds a Web service
giving acces to setters and getters of specific metadata fields. Internally these
are translated to the appropriate operations on the RDF triple store, according
to the OWL schemas.

Within PeCMan, the metadata access happens through a Web service, invoking
methods upon specific metadata fields. However, since many metadata exists
in XML format, we need a way to obtain the actual RDF instances of the dif-
ferent ontologies, as such avoiding the usage of the methods for the insertion
of the metadata. For this purpose, we introduce a generic XML to RDF con-
verter, discussed in Section 4.6, which allows the automatic transformation of
the XML metadata to RDF.

4.6 XML to RDF Conversion

Today, many metadata standards are expressed in XML Schema and there are
numerous multimedia documents with XML-based annotations. Moreover,
several software agents have specific XML-based parsers to interpret multi-
media metadata. Consequently, to make the system practically usable, we al-
low communications expressed in XML format. To implement this within the
PCMS, a conversion tool is needed to automatically generate the RDF triples
out of the XML fragments. For this purpose, two major approaches exist: fixed
XML to RDF mappings and ontology-dependent XML to RDF mappings. The
former uses a mapping based on the XML schema and disregards the actual
ontology [115, 127, 128]. The ontology-dependent mappings specify a XML
to RDF mapping document that is specifically tailored for the actual ontol-
ogy [103, 129–131]. They mostly differ in the way the mapping document is
created. We utilize a generic XML to RDF convertor created in our research
group [131]. This convertor uses an XML document as mapping document
that defines specific mapping rules between an XML instance document and

6http://lucene.apache.org/java/docs/
7http://jena.sourceforge.net/
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Figure 4.8: Working of the XML to RDF tool.

the resulting RDF document. A generic XMLtoRDF tool takes this mapping
document and the used ontology as input and then automatically transforms
corresponding XML documents to RDF instances, as shown in Figure 4.8.

The XML-based mapping document is built from specific elements that form
a mapping language and can be interpreted by the XMLtoRDF tool. This
language allows to create a simple mapping of XML nodes to corresponding
OWL classes or properties. Conditional mappings are available in case a map-
ping not always holds. In that case, a condition can be made of XPATH (XML
Path Language) or SPARQL ASK expressions. Finally, value processing is
included that specifies different ways to infer the value of a resulting OWL
property. These specific language constructs ease the development of such
XML to RDF mappings.
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4.7 Use Case Scenario

We have covered our metadata model, the layered semantic structure, map-
ping and rules, and the architectural design of the metadata service. Subse-
quently, in this section, we present how these technologies could be brought
together to create a semantic PCMS. The evaluation of (semantic) multime-
dia management systems, with respect to retrieval of content, is a difficult
task [132]. However, a common approach used in the field is to present a
use case scenario and show the enhanced feasibility to solve it with the pro-
posed system [98, 106, 108]. In this sense, it is important to present a general
use case scenario, since otherwise a fair comparison cannot be given with re-
lated work. Therefore, this section elaborates on a use case scenario consisting
of the upload of a resource, importing of the existing metadata fields, adding
an annotation according to a different metadata format, and using high-level
metadata to retrieve the content.

In the context of video surveillance, this use case scenario is translated to the
capturing of video data that is inserted into the surveillance system. Different
analysis modules add an annotation to the content (e.g., describing a detected
person). During visualization, high-level metadata can be used to retrieve and
visualize specific video feeds.

4.7.1 Solving the Use Case Scenario with the Proposed System

When a PeCMan user uploads a multimedia document, the related XML-based
metadata is imported. This metadata could be stored in the multimedia file
itself (e.g., JPEG), in which case an extractor retrieves the metadata from the
file, or the XML fragments could be uploaded separately. Consider that a
user has employed a face recognition tool on a picture to create an MPEG-7
annotation as output. The annotation, shown in XML format in Fragment 4.9,
states that a specific person (John Smith) is depicted.

When this picture and its MPEG-7 annotation are uploaded to the system, the
XMLtoRDF tool is used to create corresponding RDF triples. Fragment 4.10
shows the RDF/N3 notation of an instance of the PersonType class within the
MPEG-7 ontology of Garcia et al. [115].

Now consider that a different user utilizes a DIG35 application to annotate
a newly created picture in which he is depicted. The application provides
the end-user with means to select a region in an image and to add an anno-
tation. When the user selects a region, possible DIG35 metadata fields are
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1 <Mpeg7>
<Description xsi:type="ContentEntityType">

<MultimediaContent xsi:type="ImageType">
<Image>

5 <SpatialDecomposition>
<StillRegion>

<Semantic id="FormalAbstractionDescription">
<SemanticBase xsi:type="AgentObjectType">

<Agent xsi:type="PersonType">
10 <Name>

<GivenName>John</GivenName>
<FamilyName>Smith</FamilyName>

</Name>
</Agent>

15 </SemanticBase>
</Semantic>

</StillRegion>
</SpatialDecomposition>

</Image>
20 </MultimediaContent>

</Description>
</Mpeg7>

Fragment 4.9: Example of metadata expressed in MPEG-7 format.

@prefix mpeg7: <http://rhizomik.upf.edu/ontologies/2005/03/
MPEG7-2001.owl#>.

<#mpeg7_0> a mpeg7:PersonType;
mpeg7:Name [mpeg7:GivenName "John", mpeg7:

FamilyName "Smith"] .

Fragment 4.10: RDF/N3 notation of the MPEG-7 description of a person.
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presented and an XML annotation is created (e.g., the XML annotation shown
in Fragment 4.11). Afterwards, the user uploads the content and metadata to
the PCMS, in which the metadata is added to the metadata service.

Within the metadata service, this XML annotation is converted to RDF triples,
by the XMLtoRDF tool, and stored for future retrieval (the RDF/N3 anno-
tation is given in Fragment 4.12).

Finally, the PCMS system offers the user the possibility to search for depicted
persons through a Web interface. When invoked, the user fills in a name and
family name. The Web service interprets this and constructs a SPARQL query
solely based on PeCMan metadata as shown in Fragment 4.13. This is indeed a
normal query that retrieves instances of the ImageContentDescription class
that describe a depicted person with name ”John” and family name ”Smith”.
The actual pictures can be retrieved and shown to the user since the metadata
service internally stores a digital object identifier that relates the annotations
to corresponding multimedia resources.

Since the semantic representations of our PeCMan metadata model and the
underlying MPEG-7 and DIG35 standards are linked together, through the on-
tology mapping and rules as explained in Section 4.4.4, the system retrieves
both pictures. For example, following the mapping and rules, the informa-
tion from the DIG35 annotation of the second picture is linked to PeCMan
triples within the RDF triple-store. The Content class of DIG35 is matched
with the ImageContentDescription class of the PeCMan ontology and the
depictedItem property is deduced from the DIG35 constructs following the
rule shown in Fragment 4.8. As a result, the software agent retrieves the two
pictures depicting the requested person.

The use case presented here can be extended to deliver only those resources for
which a user is granted access, or that are currently stored in some location, etc.
The related work focuses on the (semantic) annotation of multimedia content
and does not include metadata on the security or system level, hence it cannot
enforce such restrictions. However, in the proposed system, all this metadata
is part of the same search space, so metadata relevant for the working of a
PCMS can be combined with the actual multimedia metadata. For example, to
show only those resources that are shared with a user (with id urn : pecman :
someUserID), the query of Fragment 4.13 is extended to check the sharing
settings (see Fragment 4.14). The query finds all resources that are shared and
for which the specific user has been given permission to view the resource.
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1 <METADATA>
<CONTENT_DESCRIPTION>

<PERSON_NAME>
<NAME_COMP type="Given">John</NAME_COMP>

5 <NAME_COMP type="Family">Smith</NAME_COMP>
</PERON_NAME>

</CONTENT_DESCRIPTION>
</METADATA>

Fragment 4.11: Example of DIG35 metadata in XML format. It expresses that the
person John Smith is depicted on the image.

@prefix dig35: <../DIG35/V0.2/DIG35.owl#>.

<#person_0> a dig35:Person;
dig35:givenName "John";
dig35:familyName "Smith".

<#personDescription_0> a dig35:PersonDescription;
dig35:person <#person_0> .

<#content_0> a dig35:Content;
dig35:contentPersonDescription <#

personDescription_0> .
<#metadata_0> a dig35:Metadata;

dig35:imageContent <#content_0> .

Fragment 4.12: Example of DIG35 metadata expressed in RDF/XML-format.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX pecman: <../PecMan/V1.0/PDocument.owl#>

SELECT ?content
5 WHERE { ?content rdf:type pecman:ImageContentDescription.

?content pecman:depictedItem ?person .
?person rdf:type pecman:Person.
?person pecman:name "John" .
?person pecman:familyName "Smith"

10 }

Fragment 4.13: Example of SPARQL query to retrieve.
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1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX pecman: <../PecMan/V1.0/PDocument.owl#>

SELECT ?doc
5 WHERE { ?doc rdf:type pecman:PecmanDocument.

?doc pecman:securityCentric ?security.
?security pecman:share ?shareLevel.
?shareLevel pecman:shareLevel "Shared".

10 ?security pecman:permission ?policy.
?policy pecman:user "urn:pecman:someUserID".
?policy pecman:permission "View".

?doc pecman:userCentric ?userMetadata.
15 ?userMetadata pecman:manualAnnotation ?imageMetadata

?imageMetadata pecman:imageContent ?content.
?content pecman:depictedItem ?person.
?person rdf:type pecman:Person.
?person pecman:name "John" .

20 ?person pecman:familyName "Smith"
}

Fragment 4.14: Example of SPARQL query to retrieve shared content.
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4.7.2 Solving the Use Case Scenario with the Related Work

This section discusses whether the related work could be used to implement
the use case scenario presented above (without the security restrictions). Note
that the use case scenario consists of 2 steps. First resources with metadata,
according to two different formats (MPEG-7 and DIG35), are inserted into
the system. Secondly, by querying the high-level metadata model that is used
within the PCMS, the according resources are retrieved.

Hunter used XSLT transformations to map concepts of different metadata stan-
dards on each other [102]. This means that XML fragments according to
different metadata schemas need to be mapped upon each other using these
transformations for each request. In the proposed system, these mappings are
available as an OWL schema by itself. Hence, the relations between the differ-
ent metadata schemas are part of the search space, so only one query is needed
to retrieve the right results.

Cruz et al. use a proprietary mapping table that links an upper ontology to
local RDF ontologies [103]. A query upon this upper ontology is therefore
first translated, using the mapping table, to different queries on the local RDF
ontologies. Moreover, according to their architecture, these queries are trans-
lated to XML queries that are executed upon the XML sources. This introduces
overhead compared to the proposed system where only one query is executed
on the RDF data to retrieve the same results.

Hunter and Little use the ABC ontology as a core ontology [104]. However, the
ABC ontology is not suitable to relate different multimedia metadata formats
(which describe multimedia and not that much existing concepts or events) to
each other. In contrast, our system allows to relate those formats to each other
by using the general user centric metadata within the top layer. In fact, the
lower layer of our system could include the ABC ontology to link different
domain-specific ontologies. These links can be regarded as a mapping ontol-
ogy, which was described in Section 4.4.4.

If the system of Hunter and Little is applied to find the resources that depict
a person with given name, the following steps are needed. First a reasoner
is used to find concepts within the participating ontologies that represent a
person, or the name of a person. Next, these concepts need to be mapped upon
the XML instances. To accomplish this an XPath query is needed to find the
according XML element defined in the XML schema. Finally, an additional
XPath expression is needed to find the actual value of that element within the
XML instance, so that it can be used for retrieval.
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Dönderler et al. presented a semantic video database management system
[108]. A video annotation tool could be incorporated in their system that takes
MPEG-7 or DIG35 metadata and stores this in the database according to the
semantic model for future querying. A proprietary textual query language,
called BilVideo, has been developed, which allows for example to retrieve
video (fragments) that depict a certain person. Such a query is formulated in
Fragment 4.15. The query is very simple since it is internally translated on
semantic relations, which need to be explicitly defined in the database. More-
over, only relations between instances are possible. As a result, a query that is
looking for all persons cannot be used to retrieve specific individuals.

1 select video from all
where appear(somePerson);

Fragment 4.15: Example of BilVideo query to retrieve a video that depicts a specific
person.

Additionally, since the database has a fixed semantic model to describe multi-
media, including domain-specific ontologies would infer a new database struc-
ture, which makes the system not practical.

Asirelli et al. presented an infrastructure that they are planning to implement,
so details are missing about the actual system [114]. Their system totally relies
on MPEG-7 descriptors, stored in an XML database, no ways for translating
other metadata formats to MPEG-7 descriptors are presented, which is neces-
sary for retrieval across metadata formats. In this sense, their work resembles
that of Petridis et al. [110], meaning they regard MPEG-7 descriptions as low-
level features from which high-level semantic concepts are learned. Accord-
ingly, the latter cannot work with other metadata formats.

Garcia et al. use XSD2OWL to automatically create an ontology based on an
existing XML schema [115]. However, this tool is made to allow the auto-
matic conversion from MPEG-7 XML schema to an OWL ontology (and only
results for MPEG-7 conversions were presented). We noticed that this tool is
not usable for the conversion of the DIG35 XML schema. For example, an
XSD2OWL translation is used that translates an XML sequence to an intersec-
tion of classes (denoted by the OWL : intersectionOf construct). Within the
DIG35 schema the element ContentDescription is defined as a sequence of
different elements (Caption, Location, Person, Thing, Comment, etc.).
Some of these would be translated to owl : Class constructs, others to
owl : DatatypePropery constructs, which would invalidate the intersection.
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Moreover, Garcia et al. did not define ways to map different ontologies on
each other. By using the XSD2OWL conversions, making a mapping would
only be possible if the different metadata schemes use the same names for the
same concepts, which is obviously not the case as can be seen from Fragment
4.2 and Fragment 4.3.

Note that the use case scenario presented here is a very generic case study,
which consists of importing metadata according to different specific multime-
dia metadata formats and using queries upon the proposed metadata model to
retrieve the content. The actual implementation of this use case can vary; we
have presented a use case of retrieving pictures that depict a certain person.
Comparable studies can be made to retrieve content based on other metadata
fields (finding pictures taken in a specific location, retrieve all pictures cre-
ated by a specific person, retrieve pictures that correspond to a given set of
tags, etc.). However, within the related work the same problems will reoccur,
regardless the actual implementation of this use case.

4.8 Conclusions

In this chapter we firstly introduced the usage of metadata in the context of
video surveillance systems. The shift towards distributed multi-camera surveil-
lance systems requires a common format for information exchange between
the different modules. We identified the issues that occur when using different
XML-based metadata standards for this purpose. An overview of the related
work in this field showed that Semantic Web technologies, like RDF or OWL,
are currently considered for the representation of surveillance metadata. We
explained how a surveillance system can be seen as a content management
system, in which the content, being the captured images, is annotated conform
a metadata standard to represent the detected events.

In the rest of the chapter we introduced the different components to create a
semantic metadata service, tailored for personal content management systems.
A layered metadata model has been created for use within this service. An up-
per layer consists of an OWL representation of a PCMS metadata model and
allows for system, security, and user management. This ontology is linked to a
lower layer, containing a pool of multimedia metadata ontologies that represent
commonly accepted metadata formats. The first semantic representation of the
DIG35 metadata standard was created to be included in the lower layer. Sub-
sequently, the usage of mapping ontologies and inference rules was introduced
to integrate this ontology in the layered metadata model. Additionally, the ar-
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chitecture and practical implementation of a semantic metadata service was
outlined. Finally, a general use case scenario of retrieving multimedia content
based on annotations in different metadata formats was presented. This evalua-
tion showed that the proposed architecture is better suited to deal with the case
study than the related work, and that it allows to reduce the interoperability
issues inherent to the use of different metadata standards.

In this field our contributions consist of the definition of an image metadata
ontology representing the DIG35 standard. This work was input for the photo
use case of the W3C Multimedia Semantics Incubator Group (MMSem). Ad-
ditionally, a general ontology was defined suited for (personal) content man-
agement systems. Finally, we created a semantic metadata service. Our work
in this area can be found in following publications:

1. Chris Poppe, Gaëtan Martens, Erik Mannens, and Rik Van de Walle. Per-
sonal Content Management System a Semantic Approach. Visual Com-
munication and Image Representation, 47:131 – 144, February 2009

2. Davy Van Deursen, Chris Poppe, Gaëtan Martens, Erik Mannens, and
Rik Van de Walle. XML to RDF Conversion: a Generic Approach. In
Proceedings of 4th International Conference on Automated Solutions for
Cross Media Content and Multi-channel Distribution (AXMEDIS) 2008,
pages 138 – 144, 2008

Our work in the context of MPEG-21 has formed the base for this research.
Studying MPEG-21, which goal it is to create an entire multimedia framework,
the problems of using an XML-based metadata format became apparant. This
work can be found in the following publications:

1. Davy De Schrijver, Chris Poppe, Sam Lerouge, Wesley De Neve, and
Rik Van de Walle. MPEG-21 Bitstream Syntax Descriptions for Scalable
Video Codecs. Multimedia Systems, 11:403–421, June 2006

2. Chris Poppe, Gaëtan Martens, Peter Lambert, and Rik Van de Walle.
Improved Background Mixture Models for Video Surveillance Appli-
cations. Lecture Notes in Computer Science, 8th Asian Conference on
Computer Vision(ACCV 2007), 4843:251–260, 2007

3. Chris Poppe, Saar De Zutter, Wesley De Neve, and Rik Van de Walle.
Reconfigurable Multimedia: Putting the User in the Middle. In Pro-
ceedings of COST298 conference: the Good, the Bad an the Unexpected,
pages 15–30, May 2007
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4. M. Ransburg, H. Hellwagner, R. Cazoulat, B. Pellan, C. Concolato,
S. De Zutter, C. Poppe, R. Van de Walle, and A Hutter. Dynamic and
Distributed Adaptation of Scalable Multimedia Content in a Context-
Aware Environment. In Proceedings of the WiCon‘06 conference, 2006

5. Chris Poppe, Frederik De Keukelaere, Saar De Zutter, and Rik Van de
Walle. Advanced Multimedia Systems using MPEG-21 Digital Item
Processing. In Proceedings of the Eight IEEE International Symposium
on Multimedia, pages 785–786, San Diego, December 2006

6. Chris Poppe, Ingo Wolf, Sven Wischnowsky, Saar De Zutter, and Rik
Van de Walle. Licensing System in an online MPEG-21 Environment. In
Proceedings of the IADIS international conference WWW/internet 2006,
volume II, pages 315–319, Murcia, October 2006

7. Chris Poppe, Michael Ransburg, Saar De Zutter, and Rik Van de Walle.
Interoperable Affective Context Collection using MPEG-21. In Pro-
ceedings of the International Conference on Wireless Mobile and Mul-
timedia Networks Proceedings, volume II, pages 1603–1606, China,
November 2006

8. Saar De Zutter, Frederik De Keukelaere, Chris Poppe, and Rik Van de
Walle. Performance Analysis of MPEG-21 Technologies on Mobile
Devices. In Proceedings of SPIE-IST Electronic Imaging, Science and
Technology, volume 6074, page 12, San José, January 2006

Additionally, a number of contributions were made to the actual standardiza-
tion of MPEG-21.

1. Chris Poppe, Saar De Zutter, and Rik Van de Walle. ISO/IEC
JTC1/SC29/WG11 m13965, Contribution to Utility Software for
ISO/IEC 21000-10 DIP/AMD 1, MPEG-document, October 2006

2. Saar De Zutter, Chris Poppe, Davy De Schrijver, and Rik Van de Walle.
ISO/IEC JTC1/SC29/WG11 m13979, Update to Reference Software for
Conformance to ISO/IEC 21000-10 DIP/AMD 1, MPEG-document, Oc-
tober 2006

3. Saar De Zutter, Chris Poppe, Frederik De Keukelaere, and Rik Van de
Walle. ISO/IEC JTC1/SC29/WG11 m13593, Contribution to Confor-
mance Reference Software for ISO/IEC 21000-10 DIP AMD/1, MPEG-
document, July 2006
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4. Saar De Zutter, Chris Poppe, Frederik De Keukelaere, and Rik Van de
Walle. ISO/IEC JTC1/SC29/WG11 m13592, Contribution to Confor-
mance for ISO/IEC 21000-10 DIP AMD/1, MPEG-document, July 2006

5. Saar De Zutter, Chris Poppe, Frederik De Keukelaere, and Rik Van de
Walle. ISO/IEC JTC1/SC29/WG11 m12218, Contribution to WD of
Amendment on C++ Binding, MPEG-document, July 2005

Using XML-based metadata standards lead to the problem of not being able to
specifically define the semantics. Hence, our research shifted to the Semantic
Web technologies. Future work in this area consists of an entire implemen-
tation of the semantic architecture, as described above, which would allow to
make an exhaustive evalution of the system in terms of processing speed, mem-
ory consumption, scalability, and so on. Especially when employing such an
architecture in a video surveillance system, the performance in terms of speed
is of great importance. The Semantic Web technologies are still under devel-
opment by the W3C and current research focuses on identification of image
or video fragments, rule languages, refining OWL, etc. [11]. The ongoing ac-
tivities will eventually increase the adoption and tool support of the Semantic
Web technologies, which will benefit our work in this domain.



Chapter 5

Conclusions

All men by nature desire knwoledge.
– Aristotle.

The last decade, we have witnessed an explosion of video surveillance systems.
Surveillance cameras are deployed in- and outdoor, in homes, public buildings
and large industrial sites. It has been shown that human operators have a hard
time to monitor several surveillance feeds over a longer period. Hence, the
need for intelligent video analytics arose and together with the increase of
cameras came the raise of efforts in the domain of automatic video analysis.
This new branch within the computer vision research field has soon become a
large research topic, steered by industrial and governmental funds.

Much research has been done on all aspects of an intelligent video surveillance
system. Algorithms were developed to detect and segment moving objects like
people and cars. Tracking algorithms find the temporal dependencies between
objects in different frames or camera views. Trajectories and body shape are
used to determine and predict the behaviour of detected objects. Face and
licence plate recognition are examples of more advanced techniques working
on the segmented images.

Almost all of the aforementioned use cases require a fast andaccurate initial
segmentation of moving objects. Although this is the first step, it is also one
of the most difficult ones due to it’s dependence on the statistics of the cap-
tured video data. The major problems in accurately detecting and segmenting
moving objects are noise, shadows, lighting changes, background movement
and so on. Additionally, occlusion, differences in size, speed, and shape of the
moving objects, stopped objects or moved background objects make it difficult
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to create a reliable moving object detection system.

When object detection is incorporated in large-scale video surveillance sys-
tems, means are necessary to define how the objects, or other events of in-
terest, can be signalled, communicated and stored. The usage of standardized
(XML-based) metadata has been proposed to create interoperability within one
system. However, when trying to combine different surveillance systems, or
modules of different vendors, the usage of different XML-based standards in-
troduces again interoperability issues. Different standards generally use differ-
ent constructs to represent the same concepts.

Our research is situated within the context of an intelligent surveillance system,
where we focus on moving object detection and the usage of different XML-
based metadata standards. In this dissertation, we presented two novel back-
ground subtraction techniques to detect moving objects when using a static
camera. The first technique works on uncompressed video data, while the
second analyses video sequences compressed according to a recent video stan-
dard (H.264/AVC). In the latter, we use features available in the H.264/AVC-
compressed video stream to detect the moving objects. Lastly, we investigated
the problems that occur when trying to describe these detected objects by using
standardized XML-based metadata formats.

In Chapter 2, we presented a robust moving object detection technique. The
proposed system is a multi-modal spatio-temporal background subtraction
technique that tries to find pixels corresponding to moving objects. The tem-
poral background subtraction system uses a weighted mixture of models and
is combined with a fast spatial image segmentation technique. The models
consist of an average, an upper and lower threshold, a maximum difference
with the last background value, and an illumination allowance based on pho-
ton noise statistics of the image. The problem of gradual illumination changes
is well-known and a number of methods exist in the literature to deal with it,
but at the cost of high additional complexity. By incorporating the difference
with the last background value, we presented a very fast and efficient tech-
nique to deal with the problem of gradual illumination changes. New pixel
values are compared with the models to find a match. Consequently a decision
(classification as foreground or background) is made based on the weights of
the models. The parameters of the models are continuously updated with new
information to follow the dynamics of the surveilled environment. Finally, a
shadow removal scheme has been included to improve the detection results.

The processing speed of video analytics algorithms is very important, espe-
cially in the context of a video surveillance system. Therefore, we presented
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an intelligent analysis mask that allows to reduce the number of pixels that
need to be analysed for each frame. Additionally, a fast image segmentation
is introduced that applies edge detection to find segments in the images. Pho-
ton noise statistics are incorporated to remove noisy edges and holes in the
edges are filled. Lastly, this segmentation is combined with the background
subtraction.

We have presented an extensive evaluation of our system and compared it with
related work in the field. Additionally, we have shown both objective and
subjective results and have shown that our system can be used for real-time
applications.

Most video surveillance systems incorporate an aspect of digital video and
rely on advanced video coding formats for the efficient representation, trans-
mission, and/or storage of digital video content. Hence a decoding step is
needed, before algorithms for video analytics can be applied. Many research
efforts have been done to apply those algorithms directly on the compressed
video sequences. As such, not relying on the pixel information, but on the
features created during the encoding process. In this dissertation, we focused
on the H.264/AVC specification for digital video coding, which has become
the de facto benchmark in the domain of digital video coding with respect to
compression.

H.264/AVC is a rather new video standard, but the first cameras supporting this
video format have already hit the surveillance market. A number of approaches
exist to detect moving objects in the H.264/AVC compressed domain. One
common aspect of these systems is the usage of motion vector information
available in the compressed bitstreams. However, motion vectors are created
from a coding point of view and, hence, do not necessarily represent the actual
motion in a video sequence. As a result, these algorithms spend a large amount
of processing to remove noisy motion vectors.

In Chapter 3, we presented our moving object detection technique, working in
the H.264/AVC compressed domain, which disregards the motion vector in-
formation entirely. The proposed system relies on the degree of compression
that an encoder can achieve for different parts of the images. We made the
assumption that an encoder can compress parts of the background well, while
it has more difficulties to compress parts of moving objects. To show that our
assumption holds, we presented an analysis of the bit usage for different mac-
roblocks in the compressed bitstream. These observations were used to create
a compressed domain technique that finds macroblocks assumed to correspond
with moving objects. During execution, a background model is created based
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on the sizes (in bits) of the macroblocks. For new images, the sizes of the
macroblocks are compared with this model to detect unusual large sizes. The
corresponding macroblocks are assumed to correspond to moving objects and
are spatially and temporally filtered. However, the usage of macroblocks can
be too coarse, since these consist of 16×16 pixels. Consequently, we refined
the algorithm up to blocks of 4×4 pixels by analysing sub-macroblocks of the
detected macroblocks that lie on edges of moving objects.

As in Chapter 2, an extensive comparison was made with related work in this
field. We have shown that our system outperforms other moving object detec-
tion techniques that rely on motion vector information. Different challenging
surveillance sequences were used for this comparison. Additionally, the fea-
tures being used, namely the amount of compression for blocks in a frame, can
be extracted from a compressed video very fast. As a result, we largely out-
perform the related work in terms of execution speeds. We can detect moving
objects up to 20 times faster than the related work in this domain.

Lastly, we evaluated the influence of the encoder configuration on the detec-
tion performance of the algorithm. This is a study that is neglected by most
of the related work in this domain. We showed that different encoder config-
urations, resulting in different compressed video streams, have an influence
on the performance of the algorithm. However, it is shown that the proposed
system is less dependent on different configurations compared to the motion
vector-based approaches.

Future work in the context of the detection of moving objects would exist of
analysing the usability of the presented algorithms on larger datasets. It has
been shown that, compared to related work, our algorithms perform well on
different sequences. However, the actual performance is still very dependent
on the actual sequence. Moreover, the tests are generally performed on short
sequences, which are assumed to be representative for real surveillance sce-
narios. Such short sequences are indeed usefull for comparisons with other
techniques and are commonly used in the domain. Nevertheless, it would be
interesting to see how the algorithms perform when monitoring an environ-
ment for several hours or days.

The presented algorithms detect pixels that are assumed to correspond to mo-
ving objects. To create an entire video surveillance system, other modules need
to be added to group the detected pixels into objects. Additionally, tracking of
these objects is indispensable for most surveillance applications. This is out of
the scope of this dissertation, however it is our belief that these modules could
be used to further enhance the detection of objects. If detected objects are
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tracked over consecutive frames, information can be fused to improve the ac-
curacy of the detection. Moreover, feedback of the user, meaning the operator
of the surveillance system, could also be used to improve the detection algo-
rithms. This feedback, on all levels of the surveillance system, could be used
to increase the detection and to adjust the initial parameters and thresholds.
It is our belief that research on which feedback is usefull and how it can be
used to fine-tune the system would be of great value for the video surveillance
community.

Future work, more specifically for the compressed-domain object detec-
tion, would exist of extending the algorithm to include other profiles of the
H.264/AVC specification. Additionally, it would be interesting to see how our
algorithm would perform on older video formats (MPEG-2 or MPEG-4) and
more recent ones (SVC).

Finally, the combination of pixel-domain and compressed-domain approaches
would also be an interesting research topic. The fast detection in the com-
pressed domain might be used as input of techniques working in the pixel
domain. As such, the block-based detection can be refined to the pixel level.

A last aspect that we have covered in this dissertation is how to deal with inter-
operability issues occurring when using different XML-based metadata stan-
dards. In Chapter 4, we briefly discussed how this problem arises in the context
of video surveillance systems. However, the main topic of the chapter is how
to solve those issues when applied to personal content management systems.
We introduced how these problems are manifested in the context of personal
content management. In order to deal with these issues, we presented a novel
layered architecture based on Semantic Web technologies. Different metadata
standards are combined in the lower layer, while the higher layer consists of
specific ontologies representing metadata that is relevant for personal content
management systems. The metadata standards and relations between them are
represented as OWL ontologies and we have created the first formal represen-
tation (using OWL) of the DIG35 image metadata standard. We showed how it
is incorporated in the framework and how it can be combined with other meta-
data standards, like MPEG-7. For evaluation purposes, we presented a general
use case scenario consisting of the upload of a resource, importing of the ex-
isting metadata fields, adding an annotation according to a different metadata
format, and using high-level metadata to retrieve the content. We showed how
our proposed system is more suitable to solve this use case than related work
in the field.

As explained in Chapter 4, future work in this area consists of an entire imple-
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mentation of the semantic architecture, which would allow to make an exhaus-
tive evalution of the system in terms of processing speed, memory consump-
tion, scalability, and so on. When looking at video surveillance systems, the
practical aspects of such a semantic architecture need to be revised, since the
performance in terms of speed is of greater importance.

To conclude, we have presented novel techniques to detect moving objects,
both in pixel and H.264/AVC-compressed domain, at high speeds and with
good accuracy. Finally, we introduced the usage of Semantic Web technologies
to deal with interoperability issues when using different XML-based metadata
standards and presented the different benefits these have.

We hope to have convinced the reader that our work is relevant for current
and future multimedia systems and can be applied in a wide range of applica-
tions, being video surveillance or content management. It is our belief that
H.264/AVC will become the dominating video codec in video surveillance
systems in the coming years. Additionally, the research in Semantic Web tech-
nologies is only just starting to bloom and a wide-spread adoption and tool
support can be predicted in the near future. As such, we believe that the value
and applicability of our work will only increase in the coming years.



Appendix A

Overview of the H.264/AVC
standard

With the standardization of H.264/AVC by MPEG and VCEG, a new video
codec was introduced to the video surveillance market. This appendix presents
a number of concepts of H.264/AVC that are important in the context of Chap-
ter 3.

Pictures

An H.264/AVC encoded video sequence consists of a sequence of coded pic-
tures. In this chapter we assume the coded picture to represent an entire (pro-
gressive) frame. H.264/AVC uses default the YCbCr (Y for luma, representing
the brightness, Cb and Cr for chroma) color space and applies 4:2:0 sampling
with 8 bits of precision per sample. This means that the chroma components
have one fourth of the number of samples of the luma component, which is
in accordance with the fact that the human visual system is more sensitive to
luma then to chroma. The picture is partitioned into macroblocks (MBs) each
covering a rectangular area of 16×16 samples of the luma component and 8×8
samples of each of the two chroma components.

Slices

Slices are sequences of macroblocks which are processed in raster scan or-
der. A picture may be split into one or several slices as shown in Figure A.1
and is therefore a collection of one or more slices in H.264/AVC. Slices are
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NALU NALU NALUNALU NALU NALUFigure A.1: The concept of slices.

self-contained in the sense that their syntax elements can be parsed from the
bitstream and the values of the samples in the area of the picture that the slice
represents can be correctly decoded without use of data from other slices. All
luma and chroma samples of a MB are either spatially (intra) or temporally
(inter) predicted, and the resulting prediction residual is transform coded. The
ways a MB can be coded depends on the coding type of the slice. A slice
can be coded using different coding types of which the following are the most
common:

I slice A slice in which all macroblocks are coded using intra prediction.

P slice These slices include the coding types of the I slices, alternatively, the
MBs can be temporally predicted. In this case inter prediction is applied
with only one reference picture.

B slice These slices can contain the coding types of the P slices and some MBs
can be inter predicted using one or two reference pictures.

Figure A.2 shows a simplified illustration of the syntax of a slice within a
H.264/AVC encoded bitstream. The slice consists of a header and a series of
coded MBs. A coded MB partly consists of syntax elements (representing e.g.,
the type, partitioning, prediction modes, and information regarding the MVs).
The rest of the MB contains the coded transform coefficients after prediction
and compensation.

In this chapter, we assume that a picture consists of only one slice, containing
the entire picture. Hence we will use the term I, P, and B pictures.
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Table 6.2 Macroblock syntax elements

mb type Determines whether the macroblock is coded in intra or inter (P or B)
mode; determines macroblock partition size (see Section 6.4.2).

mb pred Determines intra prediction modes (intra macroblocks); determines
list 0 and/or list 1 references and differentially coded motion.
vectors for each macroblock partition (inter macroblocks, except for
inter MBs with 8 × 8 macroblock partition size).

sub mb pred (Inter MBs with 8 × 8 macroblock partition size only) Determines
sub-macroblock partition size for each sub-macroblock; list 0 and/or
list 1 references for each macroblock partition; differentially coded motion
vectors for each macroblock sub-partition.

coded block pattern Identifies which 8 × 8 blocks (luma and chroma) contain coded transform
coefficients.

mb qp delta Changes the quantiser parameter (see Section 6.4.8).

residual Coded transform coefficients corresponding to the residual image samples
after prediction (see Section 6.4.8).

slice
header

slice data

MB MB MBskip_run MBMB.....

mb_type mb_pred coded residual

Figure 6.5 Slice syntax

6.4 THE BASELINE PROFILE

6.4.1 Overview

The Baseline Profile supports coded sequences containing I- and P-slices. I-slices contain
intra-coded macroblocks in which each 16 × 16 or 4 × 4 luma region and each 8 × 8 chroma
region is predicted from previously-coded samples in the same slice. P-slices may contain
intra-coded, inter-coded or skipped MBs. Inter-coded MBs in a P slice are predicted from a
number of previously coded pictures, using motion compensation with quarter-sample (luma)
motion vector accuracy.

After prediction, the residual data for each MB is transformed using a 4 × 4 integer
transform (based on the DCT) and quantised. Quantised transform coefficients are reordered
and the syntax elements are entropy coded. In the Baseline Profile, transform coefficients are
entropy coded using a context-adaptive variable length coding scheme (CAVLC) and all other

Figure A.2: Syntax of a slice.

When an I picture is lost, e.g., due to transmission errors, the recon-
structed video quality is very bad as all the subsequent frames are en-
coded depending on the I picture. To reduce the propagated error, it is
possible to randomly insert intra-coded MBs in the bitstream. (In the
H.264/AVC reference software this is denoted by an encoding parame-
ter called RandomIntraMBRefresh). In this dissertation we neglect
the occurrence of errors or frame drops in the video stream. As such,
RandomIntraMBRefresh is set to 0, meaning no random Intra-coded MBs
are inserted in the bitstream.

Intra Prediction

Intra prediction, in H.264/AVC, is conducted in the spatial domain. To predict
a block, neighbouring samples of previously-coded blocks which are to the left
and/or above the block, are used.

Two main types of Intra coding exist: Intra-4×4 and Intra-16×16. When Intra-
4×4 is used, each 4×4 block of luminance samples of a MB is predicted sepa-
rately using one of nine prediction modes. This mode is well suited for coding
parts of pictures with much details. For Intra-16×16, four uniform prediction
modes are defined to predict the luma component of a whole MB. Homoge-
neous areas of a picture are best coded with this mode. Figure A.3 shows the
first four Intra-4×4 prediction modes.
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Figure A.3: Four of the nine Intra-4×4 prediction modes in H.264/AVC.

Inter Prediction

MBs which are inter predicted are assigned a MB type. This type denotes
a specific partitioning of the 16×16 block. The partitions can have a size of
16×16, 16×8, 8×16, or 8×8 pixels. If the latter partitioning is chosen the 8×8
blocks can be further partitioned in partitions of 8×4, 4×8, or 4×4 pixels. For
each partition a motion vector (MV) is created to denote the best match of the
current partition with a block of corresponding size in a reference picture. The
MV components are differentially coded using either median or directional
prediction from neighbouring blocks.

A MB can also be coded as a skipped MB, called a P Skip MB. In this case no
prediction residual is coded, nor a MV or reference picture is signalled. The
MV, used for reconstructing such a P Skip MB, is calculated based on the MVs
of neighbouring blocks. These types of MBs are very useful when large areas
of no change between pictures occur in the sequence, since this can be coded
with very few bits.

Transform and Quantization

H.264/AVC applies transform coding to the prediction residual. The transform
coding happens on 4×4 blocks and consists of a separable integer transform.
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Figure A.4: Profiles in H.264/AVC.

After the transformation, H.264/AVC applies zig-zag scanning, scaling and
rounding as a quantization step. The latter is determined by a quantization
parameter (QP), which influences the amount of compression.

Entropy Coding

For transmitting the quantized transform coefficients, two entropy coding
methods are defined: Context-Adaptive Variable Length Coding (CAVLC) and
Context-based Adaptive Binary Arithmetic Coding (CABAC). Both methods
use statistics about previously coded symbols as a basis for the prediction for
the current symbol (context).

Profiles

As in most other specifications for digital video coding, H.264/AVC uses the
concept of profiles and levels. A profile defines a set of coding tools or al-
gorithms that may be used to generate a compliant bitstream whereas a level
imposes constraints on certain key parameters such as bit rate, resolution, or
frame rate. Three profiles were defined in the first version of the H.264/AVC
specification, each targeting a different range of applications.



136 Overview of the H.264/AVC standard

Baseline Profile The Baseline Profile tries to minimize the complexity of the
coding tools while including many tools for robustness as it is intended
to be used in a broad range of transmission networks where the quality
of service is not guaranteed. It targets wireless communication and low-
delay (interactive) video applications such as video conferencing.

Main Profile This profile focuses on high compression efficiency. The target
applications are in the domain of entertainment such as digital video
broadcast and storage (e.g., on next-generation DVDs).

Extended Profile The Extended Profile is defined to be used in streaming sce-
narios as it adds tools for an enhanced coding efficiency and for better
network robustness to the set of tools of the Baseline Profile. In fact, the
Extended Profile is a superset of the Baseline Profile.

The relationship between these three profiles and the coding tools of
H.264/AVC is shown in Figure A.4.

The first amendment of H.264/AVC (FRExt) defines four additional profiles
which are all supersets of the Main Profile. These four profiles are the High
Profile, the High 10 Profile, the High 4:2:2 Profile, and the High 4:4:4 Profile.
More information about these profiles and the tools they include can be found
in [133, 134].
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Encoder settings

This appendix covers the parameter settings of the codecs used in the tests, as
described in Chapter 3.

H.264/AVC JM 12.4

The parameter values, as processed by the H.264/AVC JM 12.4 encoder, are
described in Table B.1 and Table B.2 . Zero-valued parameters are omitted.

Table B.1: Parameter settings for the H.264/AVC JM 12.4 encoder.

Parameter Value

InputFile “../PetsD2TeC2.yuv”

FramesToBeEncoded 2800

FrameRate 30

SourceWidth 384

SourceHeight 288

TraceFile “trace enc.txt”

ReconFile “PetsD2TeC2 rec.yuv”

OutputFile “PetsD2TeC2 cbr100.264”

ProfileIDC 66

LevelIDC 40

IntraPeriod 16



138 Encoder settings

Table B.2: Parameter settings for the H.264/AVC JM 12.4 encoder.

Parameter Value

AdaptiveIntraPeriod 1

AdaptiveIDRPeriod 1

QPISlice 28

QPPSlice 28

SearchRange 32

MEDistortionHPel 2

MEDistortionQPel 2

MDDistortion 2

ChromaMCBuffer 1

NumberReferenceFrames 5

Log2MaxPOCLsbMinus4 -1

InterSearch16x16 1

InterSearch16x8 1

InterSearch8x16 1

InterSearch8x8 1

InterSearch8x4 1

InterSearch4x8 1

InterSearch4x4 1

EnableIPCM 1

RDPSliceWeightOnly 1

RestrictSearchRange 2

RDOptimization 1

FastCrIntraDecision 1

RateControlEnable 1

Bitrate 100000

BasicUnit 12

AdaptiveRounding 1

SearchMode 1

UMHexDSR 1

UMHexScale 3
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ROC vs. Precision-Recall

In machine learning, current research has shifted away from simply presenting
accuracy results when performing an empirical validation of new algorithms.
This is especially true when evaluating algorithms that output probabilities of
class values. Provost et al. have argued that simply using accuracy results
can be misleading, as one can often use thresholds on the output of an al-
gorithm to alter its performance [135]. They recommended using Receiver
Operator Characteristic (ROC) curves when evaluating binary decision prob-
lems. However, ROC curves can present an overly optimistic view of an algo-
rithm’s performance if there is a large skew in the class distribution. Precision-
Recall curves, often used in Information Retrieval [136], have been cited as
an alternative to ROC curves for tasks with a large skew in the class distribu-
tion [137, 138]. An important difference between ROC space and PR space is
the visual representation of the curves.

When looking at video surveilance systems, more specifically at object de-
tection techniques, the number of negative examples (the pixels representing
background regions) greatly exceeds the number of positives instances (the
pixels representing foreground objects). Consequently, a change in the num-
ber of false positives generally only leads to a small change in the false positive
rate used in ROC analysis. Precision, on the other hand, uses false positives
together with true positives rather than true negatives. As such, a change in the
number of false positives has a larger effect on the performance results of the
algorithms.

Figure C.1 repeats the ROC graphs of Figure 2.9(a) and, additionally, shows
the Precision-Recall curves for the same values.
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Figure C.1: Comparison of ROC (a) and Precision-Recall (b) graph of the output of
pixel-domain algorithms for the PetsD2TeC2 sequence.



141

From this figure it is clear that the relations between the different graphs remain
the same. If one technique works better than another it will be visible in both
ROC and Precision-Recall curves. The superior working of one technique
over another can be seen by looking at the dominance of one curve to another
curve. We use the definition for the term dominance of Provost et al. [135],
saying that one curve dominates another if the latter curve is always equal to
or below the former curve. With this definition Davis and Goadrich evaluated
the relationship between ROC and Precision-Recall graphs [139] and they have
proven the following theorem.

Theorem Curve A dominates curve B in ROC space if and only if curve A
dominates curve B in precision recall space.

This can also be seen in Figure C.1 which repeats the Precision-Recall curves
of Figure 3.12(a) and, additionally, shows the ROC graphs for the same values.

The performances of the algorithms shown in the Precision-Recall graphs ap-
pear to be comparable in ROC space. However, in Precision-Recall space we
can see more variations in the precision values than in the False Positive Rate
in ROC space. The latter is determined according to a fixed number of real
background pixels, hence less variation appears for different thresholds. Nev-
ertheless, this does not stop us to make decisions about how one algorithm
works better than the other. Here we have shown that the usage of ROC curves
and Precision-Recall graphs leads to the same results when comparing differ-
ent algorithms to eachother. Our study of the scientific work in pixel-domain
object detection showed that the usage of ROC curves is omni-present in that
domain. Surprisingly, when looking at compressed-domain object detection
techniques, it was noticed that Precision-Recall curves are preferred. Hence,
in Chapter 1 we use ROC curves for the evaluation of our pixel-domain algo-
rithm, whereas, in Chapter 3, precision and recall are used. It is our believe
that the usage of according evalution methods in each domain will encourage
other authors to compare their system with ours.
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Figure C.2: Comparison of Precision-Recall (a) and ROC (b) graph for fixed bitrate
versions of (a) the PetsD2TeC2 sequence and (b) the Indoor sequence.
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PeCMan OWL schema

This appendix presents the PeCMan ontology. This ontology has been created
as a collection of OWL schemas. Only a number of schemas are incorporated
in this appendix, due to the size of the ontology, the ontology exists of 25 OWL
schemas, each containing numerous classes and properties.

The OWL schema denoting a PeCMan document is given in Listing D.1. The
way that ImageMetadata is related to the PeCMan document can be found in
Listing D.2 and Listing D.3. The latter shows that the ImageMetadata class
is a subclass of ManualAnnotation as explained in Chapter 4. As can be
seen in the listings, different concepts of our metadata model are represented
as OWL classes and the relationships between them are represented as OWL
ObjectProperties.

Fragment D.1: OWL schema describing the PeCMan document.

1 <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF[
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

5 <!ENTITY owl "http://www.w3.org/2002/07/owl#">
<!ENTITY pcms "http://multimedialab.elis.ugent.be/users/gmartens/

Ontologies/Pecman/v1.0/">
<!ENTITY ucentric "&pcms;UserCentric.owl#">
<!ENTITY syscentric "&pcms;SystemCentric.owl#">
<!ENTITY seccentric "&pcms;SecurityCentric.owl#">

10 ]>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="&xsd;"
xmlns:rdfs="&rdfs;"

15 xmlns:owl="&owl;"
xmlns="&pcms;PDocument.owl#"
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xml:base="&pcms;PDocument.owl"
xmlns:ucentric="&ucentric;"
xmlns:syscentric="&syscentric;"

20 xmlns:seccentric="&seccentric;">

<owl:Ontology rdf:about="">
<rdfs:comment xml:lang="en">

Ontology for describing the metadata related to
25 a PeCMan Document

</rdfs:comment>
<owl:imports rdf:resource="&ucentric;"/>
<owl:imports rdf:resource="&syscentric;"/>
<owl:imports rdf:resource="&seccentric;"/>

30 </owl:Ontology>

<!-- *********************************************-->
<!-- Definition of the PecmanDocument class -->
<!-- *********************************************-->

35
<owl:Class rdf:ID="PecmanDocument">
<rdfs:label>Pecman Document</rdfs:label>
<rdfs:subClassOf>

<owl:Restriction>
40 <owl:onProperty rdf:resource="#userCentric"/>

<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">
1

</owl:cardinality>
</owl:Restriction>

45 </rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#systemCentric"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">

50 1
</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

55 <owl:Restriction>
<owl:onProperty rdf:resource="#securityCentric"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">
1

</owl:cardinality>
60 </owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

<!-- ********************************************************-->
65 <!-- Property definitions of the PecmanDocument class -->

<!-- ********************************************************-->

<owl:ObjectProperty rdf:ID="userCentric">
<rdfs:domain rdf:resource="#PecmanDocument"/>

70 <rdfs:range rdf:resource="&ucentric;UserCentric"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="systemCentric">
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<rdfs:domain rdf:resource="#PecmanDocument"/>
75 <rdfs:range rdf:resource="&syscentric;SystemCentric"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="securityCentric">
<rdfs:domain rdf:resource="#PecmanDocument"/>

80 <rdfs:range rdf:resource="&seccentric;SecurityCentric"/>
</owl:ObjectProperty>

</rdf:RDF>

Fragment D.2: OWL schema describing user-centric metadata.

1 <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF[
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

5 <!ENTITY owl "http://www.w3.org/2002/07/owl#">
<!ENTITY pecm "http://multimedialab.elis.ugent.be/users/gmartens/

Ontologies/Pecman/v1.0/">
<!ENTITY log "&pcms;Log.owl#">
<!ENTITY annot "&pcms;Annotation.owl#">
<!ENTITY pdoc "&pcms;PDocument.owl#">

10 ]>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="&xsd;"
xmlns:rdfs="&rdfs;"

15 xmlns:owl="&owl;"
xmlns="&pcms;UserCentric.owl#"
xml:base="&pcms;UserCentric.owl"
xmlns:log="&log;"
xmlns:annot="&annot;"

20 xmlns:pdoc="&pdoc;">

<owl:Ontology rdf:about="">
<rdfs:comment xml:lang="en"> Pecman Ontology for describing

user centric metadata </rdfs:comment>
<owl:versionInfo rdf:datatype="&xsd;string">version 0.1</

owl:versionInfo>
25 <owl:imports rdf:resource="&log;"/>

<owl:imports rdf:resource="&annot;"/>
<owl:imports rdf:resource="&pdoc;"/>

</owl:Ontology>

30 <!-- **************************************-->
<!-- Definition of the UserCentric class -->
<!-- **************************************-->

<owl:Class rdf:ID="UserCentric">
35 <rdfs:label>User centric</rdfs:label>

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#thumbnail"/>
<owl:maxCardinality rdf:datatype="&xsd;

nonNegativeInteger">1</owl:maxCardinality>
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40 </owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#manualAnnotation"/>

45 <owl:cardinality rdf:datatype="&xsd;
nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

50 <!-- ************************************************ -->
<!-- Property definitions of the UserCentric class -->
<!-- ************************************************ -->

<owl:ObjectProperty rdf:ID="thumbnail">
55 <rdfs:domain rdf:resource="#UserCentric"/>

<rdfs:range rdf:resource="&pdoc;PecmanDocument"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="manualAnnotation">
60 <rdfs:domain rdf:resource="#UserCentric"/>

<rdfs:range rdf:resource="&annot;ManualAnnotation"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="automaticAnnotation">
65 <rdfs:domain rdf:resource="#UserCentric"/>

<rdfs:range rdf:resource="&annot;AutomaticAnnotation"/>
</owl:ObjectProperty>

</rdf:RDF>

Fragment D.3: OWL schema describing image metadata.

1 <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF[
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

5 <!ENTITY owl "http://www.w3.org/2002/07/owl#">
<!ENTITY pcms "http://multimedialab.elis.ugent.be/users/gmartens/

Ontologies/Pecman/v1.0/">
<!ENTITY basic "&pcms;BasicImageParam.owl#" >
<!ENTITY creat "&pcms;ImageCreation.owl#" >
<!ENTITY cont "&pcms;Content.owl#">

10 <!ENTITY annot "&pcms;Annotation.owl#">
]>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="&xsd;"

15 xmlns:rdfs="&rdfs;"
xmlns:owl="&owl;"
xmlns:basic="&basic;"
xmlns:creat="&creat;"
xmlns:cont="&cont;"

20 xmlns:annot="&annot;"
xmlns="&pcms;ImageMetadata.owl#"
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xml:base="&pcms;ImageMetadata.owl">

<owl:Ontology rdf:about="">
25 <rdfs:comment xml:lang="en"> Pecman Ontology for describing

metadata for digital images </rdfs:comment>
<owl:versionInfo rdf:datatype="&xsd;string">version 0.2</

owl:versionInfo>
<owl:imports rdf:resource="&basic;"/>
<owl:imports rdf:resource="&creat;"/>
<owl:imports rdf:resource="&cont;"/>

30 <owl:imports rdf:resource="&annot;"/>
</owl:Ontology>

<!-- ***************************************** -->
<!-- Definition of the ImageMetadata class -->

35 <!-- ***************************************** -->

<owl:Class rdf:ID="ImageMetadata">
<rdfs:subClassOf rdf:resource="&annot;ManualAnnotation"/>
<rdfs:subClassOf>

40 <owl:Restriction>
<owl:onProperty rdf:resource="#basicParam"/>
<owl:cardinality rdf:datatype="&xsd;

nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
45 <rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#imageCreation"/>
<owl:maxCardinality rdf:datatype="&xsd;

nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>

50 </rdfs:subClassOf>
</owl:Class>

<!-- ****************************************************-->
<!-- Property definitions of the ImageMetadata class -->

55 <!-- ****************************************************-->

<owl:ObjectProperty rdf:ID="basicParam">
<rdfs:domain rdf:resource="#ImageMetadata"/>
<rdfs:range rdf:resource="&basic;BasicParam"/>

60 </owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="imageCreation">
<rdfs:domain rdf:resource="#ImageMetadata"/>
<rdfs:range rdf:resource="&creat;ImageCreation"/>

65 </owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="imageContent">
<rdfs:domain rdf:resource="#ImageMetadata"/>
<rdfs:range rdf:resource="&cont;ImageContentDescription"/>

70 </owl:ObjectProperty>
</rdf:RDF>
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Listing D.4 holds the OWL schema describing basic image parameters. This
listing shows the usage of OWL DataTypeProperties for image parameters
like the coding format and image width or height.

Fragment D.4: OWL schema holding basic image parameters.

1 <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF[
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

5 <!ENTITY owl "http://www.w3.org/2002/07/owl#">
<!ENTITY pcms "http://multimedialab.elis.ugent.be/users/gmartens/

Ontologies/Pecman/v1.0/">
]>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
10 xmlns:xsd="&xsd;"

xmlns:rdfs="&rdfs;"
xmlns:owl="&owl;"
xml:base="&pcms;BasicImageParam.owl"
xmlns="&pcms;BasicImageParam.owl#">

15
<owl:Ontology rdf:about="">

<rdfs:comment xml:lang="en"> PecMan Basic Image Parameter
Metadata </rdfs:comment>

<owl:versionInfo rdf:datatype="&xsd;string">version 0.1</
owl:versionInfo>

</owl:Ontology>
20

<!-- **************************************** -->
<!-- Definition of the BasicParam class -->
<!-- **************************************** -->

25 <owl:Class rdf:ID="BasicParam">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#fileName"/>
<owl:cardinality rdf:datatype="&xsd;

nonNegativeInteger">
30 1

</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

35 <owl:Restriction>
<owl:onProperty rdf:resource="#codingFormat"/>
<owl:cardinality rdf:datatype="&xsd;

nonNegativeInteger">
1

</owl:cardinality>
40 </owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#imageWidth"/>
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45 <owl:maxCardinality rdf:datatype="&xsd;
nonNegativeInteger"

>1</owl:maxCardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

50 <owl:Restriction>
<owl:onProperty rdf:resource="#imageHeight"/>
<owl:maxCardinality rdf:datatype="&xsd;

nonNegativeInteger"
>1</owl:maxCardinality>

</owl:Restriction>
55 </rdfs:subClassOf>

</owl:Class>

<!-- ****************************************************-->
<!-- Property definitions of the BasicParam class -->

60 <!-- ****************************************************-->

<!-- File and coding format-->
<owl:DatatypeProperty rdf:ID="fileName">

<rdfs:domain rdf:resource="#BasicParam"/>
65 <rdfs:range rdf:resource="&xsd;anyURI"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="codingFormat">
<rdfs:domain rdf:resource="#BasicParam"/>

70 <rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>

<!-- image size properties-->
<owl:DatatypeProperty rdf:ID="imageWidth">

75 <rdfs:comment>image width in pixels</rdfs:comment>
<rdfs:domain rdf:resource="#BasicParam"/>
<rdfs:range rdf:resource="&xsd;positiveInteger"/>

</owl:DatatypeProperty>

80 <owl:DatatypeProperty rdf:ID="imageHeight">
<rdfs:comment>image height in pixels</rdfs:comment>
<rdfs:domain rdf:resource="#BasicParam"/>
<rdfs:range rdf:resource="&xsd;positiveInteger"/>

</owl:DatatypeProperty>
85 </rdf:RDF>

Classes and constructs for describing the content of a image, meaning what is
depicted on the picture, are contained in the Content OWL schema, as shown
in Listing D.5. A Person is a subclass of the Thing class, so through the
depictedItem property we can describe a person that is depicted on an image.
The definition of the Person class can be seen in Listing D.6.

Fragment D.5: OWL schema holding content-related metadata.

1 <?xml version="1.0" encoding="UTF-8"?>
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<!DOCTYPE rdf:RDF[
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

5 <!ENTITY owl "http://www.w3.org/2002/07/owl#">
<!ENTITY pcms "http://multimedialab.elis.ugent.be/users/gmartens/

Ontologies/Pecman/v1.0/">
<!ENTITY ev "&pcms;Event.owl#" >
<!ENTITY tang "&pcms;TangibleThing.owl#">
<!ENTITY log "&pcms;Log.owl#">

10 <!ENTITY rat "&pcms;Rating.owl#">
<!ENTITY pos "&pcms;Position.owl#">
]>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
15 xmlns:xsd="&xsd;"

xmlns:rdfs="&rdfs;"
xmlns:owl="&owl;"
xmlns="&pcms;Content.owl#"
xml:base="&pcms;Content.owl"

20 xmlns:ev="&ev;"
xmlns:tang="&tang;"
xmlns:log="&log;"
xmlns:rat="&rat;"
xmlns:pos="&pos;">

25
<owl:Ontology rdf:about="">

<rdfs:comment xml:lang="en"> Pecman: Ontology for
describing image content </rdfs:comment>

<owl:imports rdf:resource="&ev;"/>
<owl:imports rdf:resource="&pos;"/>

30 <owl:imports rdf:resource="&tang;"/>
<owl:imports rdf:resource="&log;"/>
<owl:imports rdf:resource="&rat;"/>

</owl:Ontology>

35 <!-- ****************************************************** -->
<!-- Definition of the ImageContentDescription class -->
<!-- ****************************************************** -->

<owl:Class rdf:ID="ImageContentDescription">
40 <rdfs:label>Image content description</rdfs:label>

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#position"/>
<owl:maxCardinality rdf:datatype="&xsd;

nonNegativeInteger">
45 1

</owl:maxCardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

50
<!--

***************************************************************
-->

<!-- Property definitions of the ImageContentDescription class
-->
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<!--

***************************************************************
-->

55 <owl:DatatypeProperty rdf:ID="comment">
<rdfs:domain rdf:resource="#ImageContentDescription"/>
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

60 <owl:ObjectProperty rdf:ID="depictedItem">
<rdfs:domain rdf:resource="#ImageContentDescription"/>
<rdfs:range rdf:resource="&tang;TangibleThing"/>

</owl:ObjectProperty>

65 <owl:ObjectProperty rdf:ID="depictedEvent">
<rdfs:domain rdf:resource="#ImageContentDescription"/>
<rdfs:range rdf:resource="&ev;Event"/>

</owl:ObjectProperty>

70 <owl:ObjectProperty rdf:ID="rating">
<rdfs:domain rdf:resource="#ImageContentDescription"/>
<rdfs:range rdf:resource="&rat;Rating"/>

</owl:ObjectProperty>

75 <owl:ObjectProperty rdf:ID="position">
<rdfs:domain rdf:resource="#ImageContentDescription"/>
<rdfs:range rdf:resource="&pos;Position"/>

</owl:ObjectProperty>
</rdf:RDF>

Fragment D.6: OWL schema describing a person.

1 <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF[
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

5 <!ENTITY owl "http://www.w3.org/2002/07/owl#">
<!ENTITY pcms "http://multimedialab.elis.ugent.be/users/gmartens/

Ontologies/Pecman/v1.0/">
<!ENTITY addr "&pcms;Address.owl#" >
<!ENTITY phone "&pcms;PhoneNumber.owl#" >
<!ENTITY org "&pcms;Organization.owl#" >

10 <!ENTITY tang "&pcms;TangibleThing.owl#">
<!ENTITY log "&pcms;Log.owl#">
<!ENTITY ipr "&pcms;IPR.owl#">
<!ENTITY puser "&pcms;PUser.owl#">

15 ]>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="&xsd;"
xmlns:rdfs="&rdfs;"

20 xmlns:owl="&owl;"
xmlns="&pcms;Person.owl#"
xml:base="&pcms;Person.owl"
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xmlns:addr="&addr;"
xmlns:phone="&phone;"

25 xmlns:org="&org;"
xmlns:tang="&tang;"
xmlns:log="&log;"
xmlns:ipr="&ipr;"
xmlns:puser="&puser;">

30
<!-- ============== -->
<!-- PERSON ontology -->
<!-- ============== -->

35 <owl:Ontology rdf:about="">
<rdfs:comment xml:lang="en"> Pecman ontology for describing

a person </rdfs:comment>
<owl:versionInfo rdf:datatype="&xsd;string">version 0.2</

owl:versionInfo>
<owl:imports rdf:resource="&tang;"/>
<owl:imports rdf:resource="&addr;"/>

40 <owl:imports rdf:resource="&org;"/>
<owl:imports rdf:resource="&phone;"/>
<owl:imports rdf:resource="&tang;"/>
<owl:imports rdf:resource="&puser;"/>
<owl:imports rdf:resource="&ipr;"/>

45 </owl:Ontology>

<!-- ********************************** -->
<!-- Definition of the Person class -->
<!-- ********************************** -->

50
<owl:Class rdf:ID="Person">

<rdfs:label>Person</rdfs:label>
<rdfs:subClassOf rdf:resource="&tang;TangibleThing"/>
<rdfs:subClassOf rdf:resource="&ipr;IPRClaimer"/>

55 <rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#birthDate"/>
<owl:maxCardinality rdf:datatype="&xsd;

nonNegativeInteger"
>1</owl:maxCardinality>

60 </owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#organizationMember"/

>
65 <owl:maxCardinality rdf:datatype="&xsd;

nonNegativeInteger"
>1</owl:maxCardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

70 <owl:Restriction>
<owl:onProperty rdf:resource="#address"/>
<owl:maxCardinality rdf:datatype="&xsd;

nonNegativeInteger"
>1</owl:maxCardinality>
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</owl:Restriction>
75 </rdfs:subClassOf>

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#familyName"/>
<owl:maxCardinality rdf:datatype="&xsd;

nonNegativeInteger"
80 >1</owl:maxCardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
85 <owl:onProperty rdf:resource="#userReference"/>

<owl:maxCardinality rdf:datatype="&xsd;
nonNegativeInteger"

>1</owl:maxCardinality>
</owl:Restriction>

</rdfs:subClassOf>
90

</owl:Class>

<!-- ******************************************** -->
<!-- Property definitions of the Person class -->

95 <!-- ******************************************** -->

<!-- name properties -->
<owl:DatatypeProperty rdf:ID="nickName">

<rdfs:domain rdf:resource="#Person"/>
100 <rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="familyName">
<rdfs:domain rdf:resource="#Person"/>

105 <rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>

<!-- contact information -->
<owl:ObjectProperty rdf:ID="address">

110 <rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="&addr;Address"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="phone">
115 <rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="&phone;PhoneNumber"/>
</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="email">
120 <rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="web">
125 <rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
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<!-- birth date -->
130 <owl:DatatypeProperty rdf:ID="birthDate">

<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="&xsd;date"/>
</owl:DatatypeProperty>

135
<!-- organization -->
<owl:ObjectProperty rdf:ID="organizationMember">

<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="&org;Organization"/>

140 </owl:ObjectProperty>

<!-- Pecman-user reference -->
<owl:ObjectProperty rdf:ID="userReference">

<rdfs:domain rdf:resource="#Person"/>
145 <rdfs:range rdf:resource="&puser;PecmanUser"/>

</owl:ObjectProperty>
</rdf:RDF>
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