Multi-modal 3D scene understanding has gained considerable attention due to
its wide applications in many areas, such as autonomous driving and
human-computer interaction. Compared to conventional single-modal 3D
understanding, introducing an additional modality not only elevates the
richness and precision of scene interpretation but also ensures a more robust
and resilient understanding. This becomes especially crucial in varied and
challenging environments where solely relying on 3D data might be inadequate.
While there has been a surge in the development of multi-modal 3D methods over
past three years, especially those integrating multi-camera images (3D+2D) and
textual descriptions (3D+language), a comprehensive and in-depth review is
notably absent. In this article, we present a systematic survey of recent
progress to bridge this gap. We begin by briefly introducing a background that
formally defines various 3D multi-modal tasks and summarizes their inherent
challenges. After that, we present a novel taxonomy that delivers a thorough
categorization of existing methods according to modalities and tasks, exploring
their respective strengths and limitations. Furthermore, comparative results of
recent approaches on several benchmark datasets, together with insightful
analysis, are offered. Finally, we discuss the unresolved issues and provide
several potential avenues for future research