53 research outputs found

    A CO-SIMULATION ENVIRONMENT FOR MIXED SIGNAL, MULTI-DOMAIN SYSTEM LEVEL DESIGN EXPLORATION

    Get PDF
    This thesis presents a system-level co-simulation environment for mixed domain design exploration. By employing shared memory IPC (Inter-Process Communication) and utilizing PDES (Parallel Discrete Event Simulation) techniques, we examine two methods of synchronization, lock-step and dynamic. We then compare the performance of these two methods on a series of test systems as well as real designs using the Chatoyant MOEMS (Micro-Electro Mechanical Systems) simulator and the mixed HDL (Hardware Description Language) simulator from Model Technology, ModelSim. The results collected are used to ascertain which method provides the best overall performance with the least overhead

    Modelling and characterization of small photosensors in advanced CMOS technologies

    Get PDF
    The rapid scaling of CMOS technologies and the development of optimized CIS (CMOS Image Sensor) processes for CMOS vision products has not been met by a similar effort in a comprehensive study of the main physical phenomena dominating the behavior of pixels at these technological nodes. This work provides a study of the behaviour of small photodetectors in advanced CMOS technologies in order to evaluate the impact of the geometry on the pixel photoresponse. Several models were developed paying special attention to the peripheral collection. The results suggest that the largest active area no longer necessarily guarantees the optimum response and show the significance of the lateral contribution for small photodiodes. That is, they establish the need to find a trade-off between the active area and the collecting area surrounding the junction to maximize the response. Based on the solution of the two-dimensional steady-state equation in the surroundings of the junction, an analytical model for uniformly illuminated p-n+ junction photodiodes was proposed. It is compact, general and scalable. In order to be used in Computer Aided Design (CAD) tools, the model was implemented in a Hardware Description Language (HDL) and used for circuit simulations to illustrate the potential of the model for the optimization of the pixel performance

    MEMS DESIGN SIMPLIFICATION WITH VIRTUAL PROTOTYPING

    Get PDF
    MEMS design requires a good understanding of interactions in complex processes and highly specialized interdisciplinary skills. Traditional prototyping is not easy or cheap due to typically needing very expensive manufacturing facilities for its implementation. Progress towards faster, cheaper prototyping has been achieved but, it cannot be applied to MEMS fabrication in general.  This paper analyzes the benefits of Virtual Prototyping for a simplification and aid in MEMS design and proposes the continuation of MEMS Animated Graphic Design Aid (MAGDA) project. Its purpose is to simplify preliminary design stages and make MEMS design more accessible to a wider audience

    Analog System-on-a-Chip with Application to Biosensors

    Get PDF
    This dissertation facilitates the design and fabrication of analog systems-on-a-chip (SoCs). In this work an analog SoC is developed with application to organic fluid analysis. The device contains a built-in self-test method for performing on-chip analysis of analog macros. The analog system-on-a-chip developed in this dissertation can be used to evaluate the properties of fluids for medical diagnoses. The research herein described covers the development of: analog SoC models, an improved set of chemical sensor arrays, a self-contained system-on-a-chip for the determination of fluid properties, and a method of performing on-chip testing of analog SoC sub-blocks

    CMOS optical centroid processor for an integrated Shack-Hartmann wavefront sensor

    Get PDF
    A Shack Hartmann wavefront sensor is used to detect the distortion of light in an optical wavefront. It does this by sampling the wavefront with an array of lenslets and measuring the displacement of focused spots from reference positions. These displacements are linearly related to the local wavefront tilts from which the entire wavefront can be reconstructed. In most Shack Hartmann wavefront sensors, a CCD is used to sample the entire wavefront, typically at a rate of 25 to 60 Hz, and a whole frame of light spots is read out before their positions are processed. This results in a data bottleneck. In this design, parallel processing is achieved by incorporating local centroid processing for each focused spot, thereby requiring only reduced bandwidth data to be transferred off-chip at a high rate. To incorporate centroid processing at the sensor level requires high levels of circuit integration not possible with a CCD technology. Instead a standard 0.7J..lmCMOS technology was used but photodetector structures for this technology are not well characterised. As such characterisation of several common photodiode structures was carried out which showed good responsitivity of the order of 0.3 AIW. Prior to fabrication on-chip, a hardware emulation system using a reprogrammable FPGA was built which implemented the centroiding algorithm successfully. Subsequently, the design was implemented as a single-chip CMOS solution. The fabricated optical centroid processor successfully computed and transmitted the centroids at a rate of more than 2.4 kHz, which when integrated as an array of tilt sensors will allow a data rate that is independent of the number of tilt sensors' employed. Besides removing the data bottleneck present in current systems, the design also offers advantages in terms of power consumption, system size and cost. The design was also shown to be extremely scalable to a complete low cost real time adaptive optics system

    Probabilistic Image Models and their Massively Parallel Architectures : A Seamless Simulation- and VLSI Design-Framework Approach

    Get PDF
    Algorithmic robustness in real-world scenarios and real-time processing capabilities are the two essential and at the same time contradictory requirements modern image-processing systems have to fulfill to go significantly beyond state-of-the-art systems. Without suitable image processing and analysis systems at hand, which comply with the before mentioned contradictory requirements, solutions and devices for the application scenarios of the next generation will not become reality. This issue would eventually lead to a serious restraint of innovation for various branches of industry. This thesis presents a coherent approach to the above mentioned problem. The thesis at first describes a massively parallel architecture template and secondly a seamless simulation- and semiconductor-technology-independent design framework for a class of probabilistic image models, which are formulated on a regular Markovian processing grid. The architecture template is composed of different building blocks, which are rigorously derived from Markov Random Field theory with respect to the constraints of \it massively parallel processing \rm and \it technology independence\rm. This systematic derivation procedure leads to many benefits: it decouples the architecture characteristics from constraints of one specific semiconductor technology; it guarantees that the derived massively parallel architecture is in conformity with theory; and it finally guarantees that the derived architecture will be suitable for VLSI implementations. The simulation-framework addresses the unique hardware-relevant simulation needs of MRF based processing architectures. Furthermore the framework ensures a qualified representation for simulation of the image models and their massively parallel architectures by means of their specific simulation modules. This allows for systematic studies with respect to the combination of numerical, architectural, timing and massively parallel processing constraints to disclose novel insights into MRF models and their hardware architectures. The design-framework rests upon a graph theoretical approach, which offers unique capabilities to fulfill the VLSI demands of massively parallel MRF architectures: the semiconductor technology independence guarantees a technology uncommitted architecture for several design steps without restricting the design space too early; the design entry by means of behavioral descriptions allows for a functional representation without determining the architecture at the outset; and the topology-synthesis simplifies and separates the data- and control-path synthesis. Detailed results discussed in the particular chapters together with several additional results collected in the appendix will further substantiate the claims made in this thesis

    CMOS optical centroid processor for an integrated Shack-Hartmann wavefront sensor

    Get PDF
    A Shack Hartmann wavefront sensor is used to detect the distortion of light in an optical wavefront. It does this by sampling the wavefront with an array of lenslets and measuring the displacement of focused spots from reference positions. These displacements are linearly related to the local wavefront tilts from which the entire wavefront can be reconstructed. In most Shack Hartmann wavefront sensors, a CCD is used to sample the entire wavefront, typically at a rate of 25 to 60 Hz, and a whole frame of light spots is read out before their positions are processed. This results in a data bottleneck. In this design, parallel processing is achieved by incorporating local centroid processing for each focused spot, thereby requiring only reduced bandwidth data to be transferred off-chip at a high rate. To incorporate centroid processing at the sensor level requires high levels of circuit integration not possible with a CCD technology. Instead a standard 0.7J..lmCMOS technology was used but photodetector structures for this technology are not well characterised. As such characterisation of several common photodiode structures was carried out which showed good responsitivity of the order of 0.3 AIW. Prior to fabrication on-chip, a hardware emulation system using a reprogrammable FPGA was built which implemented the centroiding algorithm successfully. Subsequently, the design was implemented as a single-chip CMOS solution. The fabricated optical centroid processor successfully computed and transmitted the centroids at a rate of more than 2.4 kHz, which when integrated as an array of tilt sensors will allow a data rate that is independent of the number of tilt sensors' employed. Besides removing the data bottleneck present in current systems, the design also offers advantages in terms of power consumption, system size and cost. The design was also shown to be extremely scalable to a complete low cost real time adaptive optics system
    corecore