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Samenvatting

Optische verbindingen binnenin computersystemen? Digitale communi-

catie via elektromagnetische-golfgeleiding wordt voornamelijk gedragen door

elektrische en optische verbindingen. De keuze tussen beide wordt bepaald

door de lengte, de overdrachtscapaciteit en de toepassing van de verbinding.

Vanaf het einde van jaren zeventig werden optische verbindingen commercieel

geïntroduceerd voor kilometerslange telecommunicatieverbindingen wegens

hun voortreffelijke bandbreedte- en vermogenseigenschappen: anders dan

bij elektrische verbindingen zijn verliezen essentieel onafhankelijk van de

overdrachtscapaciteit; ze zijn ook veel kleiner. In de tussentijd is het algemeen

gebruik van optische verbindingen steeds kortere afstanden gaan beslaan

(tegenwoordig tot enkele meters). Dit fenomeen wordt voortgedreven door de

stijgende overdrachtscapaciteitseisen van telecommunicatietoepassingen en de

beschikbaarheid van steeds kleinere betaalbare opto-elektronische onderdelen.

Computersystemen bevatten doorgaans enkel elektrische verbindingen omdat

deze de meest natuurlijke koppeling vormen voor elektronische bouwstenen.

De latentietijd van verbindingen vormt vaak een prestatiebeperkende factor

in dergelijke systemen. De lichtsnelheid bevordert een compacte opbouw; de

tijd bestreken door enkel het uitzenden van een gegevenspakket stimuleert

dan weer een grote overdrachtscapaciteit.

Een compact computersysteem begrenst de fysieke doorsnede die elke ver-

binding ter beschikking heeft. Voor een gegeven lengte en vermogenbudget

beperkt de elektrische weerstand van zelfs de beste geleiders de elektrisch

haalbare bandbreedte per eenheid van doorsnede.

In computerchips in complementaire-metaaloxidehalfgeleidertechnologie (Eng.
CMOS) neemt de bereikbare transistordensiteit voortdurend toe. Dit laat een

grotere densiteit en snelheid van berekeningen toe. De overdrachtscapaciteit

en de latentietijd van de elektrische verbindingen kan de ontwikkelingen

echter maar amper volgen. Gedistribueerde algoritmen met sterk verbonden

knopen zijn thans onderhevig aan een verbindingsgerelateerde prestatiegrens.

Parallelle optische korteafstandsverbindingen bieden een mogelijke uitweg

waar de begrenzing van elektrische overdrachtscapaciteit door de verbindings-

densiteit een probleem vormt. Op de schaal van een computersysteem is de
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overdrachtscapaciteit van zelfs nauwe optische verbindingen immers eerder

begrensd door de bandbreedte van actieve componenten dan door verliezen

en dispersie van signalen in het optisch pad.

Tegenwoordig begroot men de evenwichtsafstand waarboven optische verbin-

dingen efficiënter zijn dan elektrische verbindingen op enkele centimeters wat

de overdrachtscapaciteitsbegrenzing per eenheid van doorsnede betreft.

Optische poorten aan het chipoppervlak In dit werk wordt de aanpak van

zeer grootschalige opto-elektronische integratie (Eng. OE-VLSI) beschouwd. Deze

verrijkt een chipoppervlak met optische poorten om elektrische densiteits- en

overdrachtscapaciteitsproblemen in de onmiddelijke chipomgeving te omzei-

len. De OE-VLSI–methode kan overdrachtscapaciteiten opleveren van ettelijke

honderden gigabits per seconde doorheen een meterslange verbinding met

een doorsnede van slechts enkele vierkante millimeter.

Het OE-VLSI–systeem dat hier centraal staat werd ontwikkeld in het project

Interconnect by Optics (IO) van het vijfde kaderprogamma van de Europese

Commissie (EC). De vertaling tussen elektronische en optische signalen wordt

verzorgd door halfgeleiderwafels met een tweedimensionale opstelling van

oppervlakte-uitstralende lasers met verticale caviteit (Eng. VCSELs) of fotodiodes

van het p-i-n–type. Via flip-chipmontage worden de wafels gekoppeld aan

de te verbinden CMOS-chips, die daartoe uitgerust zijn met flip-chipeilandjes

en speciale interfaceschakelingen. Het optisch pad wordt voorzien door een

meeraderige optische vezelbundel via een venster in de chipbehuizing. In het

IO-project werd gebruik gemaakt van wafels met een opstelling van 8 bij 8

opto-elektronische bouwstenen op een onderlinge afstand van 250 µm. Een

overdrachtssnelheid van 2.5 gigabits per seconde per kanaal bleek mogelijk.

Deze thesis Het omzeilen van de overdrachtscapaciteitsproblemen nabij

elektrische chippoorten door een OE-VLSI–benadering neemt niet weg dat

de puur elektrische aanpak relatief gezien veel beter bestudeerd werd en

er gevestigde oplossingen voor bestaan. Daarentegen komen er een aantal

ultramoderne technieken aan te pas bij het enkel operationeel maken van

een hoogparallel OE-VLSI–systeem; de complexiteit van alleen al de fysieke
opbouw van een dergelijk systeem is indrukwekkend.

Dit proefschrift bekijkt de aanwezige complexiteit vanuit een ander oogpunt:

datgene van een systeemontwerper die een OE-VLSI–oplossing in overweging

neemt. De hoofdbedoeling van dit werk is de integratie van een OE-VLSI–

systeem in een digitaal ontwerp te vergemakkelijken. Daartoe worden een

aantal methodologische en operationele aspecten onder de loep genomen.

Computerondersteuning voor OE-VLSI–ontwerp We bespreken een aantal

methodologische kwesties die verband houden met het verlenen van steun
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voor OE-VLSI–systemen in hulpmiddelen voor de automatisering van elektro-

nisch ontwerp (Eng. EDA tools). Verschillende stappen in het ontwerp van

OE-VLSI–systemen kunnen hier voordeel uit halen. We stellen een analyse

van benodigde basisondersteuning voor, bespreken de mogelijke aanpakken

hiertoe en verwijzen naar relevante verwezenlijkingen. Deze basisonder-

steuning behelst het virtueel aanleggen van het syteem, systeemsimulatie,

het afleiden van eigenschappen op systeemniveau en de verkenning van de

ontwerpruimte.

We hebben simulatiemodellen voor OE-VLSI–componenten op elektronische-

schakelingniveau beschreven in de gemengde-signaalabstractietaal Verilog-

AMS en deze geïntegreerd in een bestaand EDA-kader. De verschillende

simulatiemodellen kunnen aan elkaar gekoppeld worden om optische ver-

bindingen te simuleren. De integratieproblematiek voor multidisciplinaire

(elektrische, optische, thermische) en soms slecht geconditioneerde differenti-

aalvergelijkingen (zoals de stromingsvergelijkingen voor de beschrijving van

lasers) in een simulatiesysteem met een historisch puur elektrische toewijding

wordt besproken.

Onze modellering op elektronische-schakelingniveau heeft de fundamenten

geleverd voor twee afstudeerwerken over de verdere karakterisering en de

optimalisatie van de onderdelen van een OE-VLSI–systeem. In de context van

het PICMOS project van de EC over optische verbindingen binnenin chips

hebben we een simulatiemodel voor een miniscule laserdiode beschreven in

Verilog-AMS. Dit model is in dat project verder gebruikt bij de constructie van

een simulatiegebaseerde prestatievoorspeller voor de systematische synthese

van optische verbindingen binnenin chips.

Statistische OE-VLSI–modellering en karakterisering Bij de aanvang van

een digitaal systeemontwerp duiken vele vragen op. De eventuele geschiktheid

van een OE-VLSI–systeem voor een digitaal ontwerp hangt af van een aantal

cruciale eigenschappen. Hoe staat het met het tijdsgedrag en de integriteit van

doorgestuurde signalen? Hoe groot is het latentietijdsverchil tussen synchroon

verstuurde signalen van eenzelfde parallelle verbinding aan diens uitgang?

Vereist de optische verbinding een evenwicht tussen nullen en enen in de

digitale gegevensstroom? Welke overdrachtscapaciteit is bereikbaar? Waar

gaat de energie naartoe en hoeveel vermogen is vereist voor een optimaal

resultaat?

Het antwoord op dergelijke vragen is doorslaggevend voor de aantrekkings-

kracht van het OE-VLSI–systeem en bepaalt de haalbaarheid van verschillende

tijdsmodellen en de nood aan speciale voorzieningen voor signaalcodering.

We hebben de samenhang onderzocht tussen de vele efficiëntie- en nauwkeu-

righeidsaspecten van een complexe OE-VLSI–samenbouw en overkoepelende

verbindingseigenschappen zoals signaalverzwakking, verschuiving, latentie-

tijd, bibber, ruis en de daaruit voortvloeiende bitfoutfrequentie (Eng. BER).
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Hiertoe werd een uitgesproken statistiche modellerings- en karakterisering-

inspanning ondernomen. We hebben praktische stochastische modellen ont-

wikkeld die het gedrag en de uniformiteit in kaart brengen van de verschil-

lende optische verbindingsonderdelen: aanstuurschakeling, VCSEL, optisch

pad en ontvangerschakeling. Deze modellen gaan specifiek over aspecten

van signaalniveaus, tijds- en ruisgedrag. De gebruikte methodiek is algemeen

inzetbaar; kwantitatieve analyses steunen op een grondige meetcampagne

op echte OE-VLSI–hardware (uit het IO-project). Voor een optimaal inzicht

werd in deze meetcampagne de parallelle optische verbinding in zoveel mo-

gelijk stukken verdeeld. Er werd geknipt tussen aanstuurschakelingen en

lasers, voor en achter de uiteinden van de optische vezelbundel en tussenin

fotodiodes en ontvangerschakelingen.

Veel aandacht gaat uit naar de statistische modellering van de rechtstreekse-

koppelingsefficiëntie tussen een laserwafel en het uiteinde van de optische

vezels van een meeraderige optische stekker. Hiertoe hebben we een drieassige

servo-aandrijving gerealiseerd voor een instelbaar verband tussen de positie

van een enkele optische vezel en een OE-VLSI–chipbehuizing. Dit systeem

heeft autonoom het positieafhankelijk gekoppeld vermogen kunnen optekenen

tussen alle 8×8 bouwstenen van een laser- of fotodiodewafel en een optische

vezel.

We hebben de verkregen meetresultaten gebruikt voor de karakterisering

van een eenvoudig stralenmodel voor de te verwachten koppelingsefficiëntie.

Een stochastisch model (dat rekening houdt met procesvariaties) voor het

positieafhankelijke gekoppeld vermogen tussen een VCSEL en een vezel werd

ook gekarakteriseerd.

Wanneer een optische vezelbundel van een stekker wordt voorzien, komen de

relatieve posities van de vezeluiteinden en de fixeerelementen van de stekker

vast te liggen. Bij een OE-VLSI–chipbehuizing waar een stekker insteekt

zijn de verscheidene afwijkingen van het ideale positieverband tussen opto-

elektronische bouwstenen en vezels dan ook sterk gecorreleerd. Wij hebben

onze statistische positieafhankelijke VCSEL-vezelkoppelingskarakterisering

gecombineerd met een stochastisch model van de gezamenlijke onderlinge

positionering van vezeluiteinden en opto-elektronische bouwstenen in een

OE-VLSI–chipbehuizing met ingestoken stekker. Dit laatste model werd

ontwikkeld en gekarakteriseerd voor OE-VLSI–chipbehuizingen en optische

stekkers van het IO-project (een verwezenlijking van collega-onderzoeker

Olivier Rits).

Voor de onderzochte hardware blijken zowel de variabiliteit tussen VCSELs

als de positioneringsonzekerheid significant te zijn. Correlaties tussen aspec-

ten van verschillende kanalen worden teweeggebracht door een substantiële

gezamenlijke positieverschuiving van vezels. De invloed van een gezamen-

lijke draaiing blijkt in het niets te verzinken tegenover de procesvariabiliteit

van VCSELs. Tot slot hebben we een goed hanteerbaar stochastisch model

voor gezamenlijke laser-vezelkoppeling opgesteld en de distributies ervan
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gekarakteriseerd.

Het combineren van de gekarakteriseerde modellen van alle verbindingson-

derdelen liet ons toe om de overkoepelende signaalverzwakking, latentietijds-

verschillen, bibber, ruis en de daaruit voortvloeiende BER te kwantificeren.

Hierbij komt niet enkel een statistische evaluatie van een enkel kanaal aan

bod, maar ook de statische afhankelijkheden tussen verschillende kanalen uit

eenzelfde bundel.

We hebben meteen gebruik gemaakt van de resultaten om na te kijken of

een bronsynchroon tijdsmodel met een toegewijd klokkanaal haalbaar is over

een OE-VLSI–verbinding met een hoog fysiek parallelisme; dit kan kostelijke,

normaal kanaalgebonden hersynchronisatieschakelingen beperken tot één

instantie. Het eventueel toelaten van een langdurig onevenwicht tussen het

aantal enen en nullen in een digitale gegevensstroom werd ook onderzocht.

Voor de hardware uit het IO-project blijkt een gedeelde logische drempel,

een voorziening die het gewenste onevenwicht toelaat, te vaak bitfouten te

introduceren. Een efficiënt bronsynchroon tijdsmodel met een toegewijd

klokkanaal is haalbaar tegen een kleine overdrachtscapaciteitskost.

Substraatruiskoppeling tussen digitale CMOS en OE-VLSI–ontvangers
In een OE-VLSI–systeem komen optische-ontvangerschakelingen op de chip

terecht naast elkaar en frequent schakelende digitale logica. In deze situatie

bestaat de kans dat een doorkoppeling van digitale schakelruis via het sub-

straat tot aan de ontvangerschakelingen de juiste werking van deze laatste

verhindert. Substraatruis is een probleem dat veel verder reikt dan OE-VLSI–

systemen: het duikt op in alle gemengde-signaalabstractieontwerpen waar

gevoelige analoge schakelingen ingebed worden in een vijandige digitale

omgeving.

We hebben het koppelen van plaatselijke CMOS-substraatruis met schake-

lingen in de ogenblikkelijke omgeving onderzocht. Hiertoe werden configu-

reerbare schakelingen voor substraatruisgeneratie en een ruismeetschakeling

gerealiseerd in CMOS-technologie (0.18 µm met hoogresistief substraat) en

geplaatst naast gevoelige optische-ontvangerschakelingen van het IO-project.

Een grote meetbandbreedte voor substraatruis werd waargenomen; deze wordt

verklaard vanuit de gedetailleerde werking van de meetschakeling. Ruispie-

ken met een totale duur van slechts 200 ps werden nauwkeurig opgetekend.

Daarenboven hebben we een benadering uitgewerkt om onnauwkeurigheden

veroorzaakt door een ruizige referentiespanning of bibberende bemonsterings-

tijdstippen weg te werken.

Wanneer men een gedetailleerde simulatie van subtraatruiskoppeling probeert

te verkrijgen, beperkt de enorme hoeveelheid berekeningen die vereist is in

actuele simulatoren sterk de behandelbare grootte van te analyseren schake-

lingen. We hebben simulaties van onze ruisschakelingen kunnen uitvoeren

mits een aantal noodzakelijke vereenvoudigingen, waarbij toch een goede
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overeenkomst tussen metingen en simulaties werd behaald.

De ontvangerschakelingen bleken in voldoende mate afgeschermd tegen plaat-

selijke ruisinjectie. De oorzaak van een toch geobserveerde ruisinkoppeling

kon worden geïdentificeerd als het ontbreken van een afscherming voor de

contacteereilandjes van een delicate instelspanning. Onze resultaten beves-

tigen dat een schermring volstaat om plaatselijke substraatstoringen op te

vangen. Hierdoor beperkt het sustraatruisprobleem zich tot de typische afwij-

king tussen de potentiaal van aardings-/voedingsknopen binnen en buiten de

chip. Dit probleem kwam in alleenstaande ontvangerschakelingen reeds voor

en kan aangepakt worden met gevestigde differentiële ontwerptechnieken.
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Optical interconnections inside the box? Electrical and optical interconnec-

tions are the foremost resources for guided-wave digital communication. The

length, throughput and application of an interconnection are decisive for the

choice between the alternatives.

Optical interconnect has been commercially introduced in the late 1970s for

high-bandwidth multi-km telecommunications due to its vast power and

bandwidth advantages: the attenuation is essentially bandwidth independent

and much lower when compared to electrical interconnect. Since then, the

increasing bandwidth demands of end user applications and the rise of smaller

and cheaper optoelectronics has promoted ever smaller optical link lengths,

presently down to a few meters.

Electrical interconnect is the native interface of logic and memory primitives

inside computational systems. Here, the limiting factor for system perfor-

mance is often the interconnection latency. The light velocity encourages a

spatially dense setup, whereas the time necessary to modulate a data packet

on a link translates again into a bandwidth requisite.

In a dense computational system, the cross-section available to an interconnec-

tion is limited. The resistivity of even the best available conductors limits the

electrically attainable bandwidth through a confined cross-section, given the

distance and power budget.

The transistor density of integrated circuits in complementary metal-oxide–
semiconductor (CMOS) technology continues to rise. Although more calcu-

lations can be performed in the same space and time, the bandwidth and

latency of electrical interconnections can hardly keep pace. Strongly con-

nected distributed algorithms face an actual interconnect-related performance

bottleneck.

Parallel short-range optical interconnections can provide a solution to the

bandwidth density problem. After all, on a system scale, the throughput

of even tight optical interconnections is limited by the bandwidth of active

components rather than the attenuation or dispersion of the optical path.

The break-even distance beyond which optical interconnect can outperform

electrical interconnect, with respect to bandwidth density at a similar power
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budget, is presently estimated in the centimeter range.

Surface-level optical chip access We focus on the optoelectronic very large
scale integration (OE-VLSI) approach, which provides a surface-level optical

chip access to circumvent the bandwidth issues in the escape perimeter of a

dense electrical chip access. In an OE-VLSI approach, the data rate through a

square-millimeter–scale cross-section can reach several hundreds of gigabits

per second for lengths up to a few meters.

The OE-VLSI system being focused on has been developed as a part of the

Interconnect by Optics (IO) project of the European Commission’s (EC’s) Fifth

Framework Programme. Two-dimensional arrays of vertical-cavity surface-
emitting lasers (VCSELs) and positive-intrinsic-negative (p-i-n) photodiodes con-

vert between electrical and optical signals. These arrays are flip-chip bonded

to the CMOS ICs to be linked, which are equipped with flip-chip pads and

special interfacing circuitry. Two-dimensional arrays of optical fibers provide

the optical path through a window in the chip package. In the IO project, 8× 8
arrays were used at a 250–µm device pitch. A 2.5–Gbps/channel signaling

rate was obtained.

This thesis Although the limitations of a dense electrical IC access are

avoided, the intricacies are much better known and solution methodologies

are far more established in the electrical case than in the OE-VLSI case.

The complexity of just the physical assembly of a highly parallel OE-VLSI

manifestation is impressive, as a number of cutting-edge techniques are

required just to make things work.

This dissertation focuses on another kind of complexity—that which is pre-

sented to a system designer considering an OE-VLSI approach. The main

motivation of this work is to facilitate the integration of an OE-VLSI setup

in a digital system, assessing methodological and operational aspects where

possible.

Design automation issues We discuss a number of methodological issues

concerning electronic design automation (EDA) tool support for OE-VLSI

systems. The design of OE-VLSI systems consists of several steps, each

needing some form of EDA support. A breakdown of fundamental design

automation support is presented—design creation, simulation, extraction of

system-level properties and design space exploration—the methodologies

involved and references to relevant realizations.

We have implemented circuit-level simulation models for the components of

an OE-VLSI link in the mixed-signal language Verilog-AMS and integrated

them into an EDA framework. The different simulation models can be chained

together to simulate optical interconnect. The intricacies concerning the

integration of multidisciplinary—electrical, optical, thermal—and sometimes
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badly conditioned differential equations—e.g., laser rate equations—into a

simulation system bearing the marks of an electrical circuit dedication are

discussed.

The circuit-level modeling work performed lies at the basis of two Master’s

theses on the characterization and tuning of OE-VLSI components. In the

context of the EC’s PICMOS project on intra-chip interconnect, we have

implemented a microlaser simulation model in Verilog-AMS, which has been

used in the project for the systematic simulation-based predictive synthesis of

integrated optical interconnect.

Statistical OE-VLSI modeling and characterization At the creation of a

new digital system, several questions need to be addressed. In order to even

bring OE-VLSI into the picture, it is vital to know what one can do with the

parallel optical link provided. What about the signal timing and integrity?

How much skewed are signals of adjoining links at the link exit, if they were

synchronous at the link entrance? Should the optically signaled data be dc-

balanced, as it is in telecommunication applications? What is the attainable

bandwidth? How much power to spend, and where does it go?

Answers to questions like these determine the attractiveness of the system,

and are key to the feasibility of—or need for—different approaches concerning

the encoding of the data and the signal timing approach taken.

We have examined the connection between the many efficiency and accuracy

aspects of a sophisticated OE-VLSI assembly and resulting across-the-board

optical interconnect characteristics such as overall signal attenuation and offset,

latency, jitter, noise and ensuing bit error ratio (BER) figures.

A modeling and characterization approach of a strong statistical nature was

adopted. We have developed simple yet adequate stochastic models to cap-

ture the behavior and uniformity of the different subsystems of the optical

interconnect—driver circuit, VCSEL, optical path, photodiode and receiver

circuit. These models specifically address amplitude, timing and noise behav-

ior. The methodology is generally applicable; for the purpose of quantitative

analyses our models have been characterized based on detailed and extensive

measurements of the actual performance on IO project hardware. In order

to capture as much information as possible, this measurement approach has

been one of dividing the parallel optical link in as many parts as possible—by

cutting in between driver and laser arrays, in front of and behind the fiber

assembly, and in between photodiode and receiver arrays.

Major attention is given to the statistical modeling of the butt coupling ef-

ficiency between a VCSEL array and a multi-fiber connector. To this end, a

3-axis positioning setup for a controllable alignment of an optical fiber and an

OE-VLSI module has been realized. This system was autonomously able to

accurately scan the alignment-dependent coupled power between all devices

of an 8×8 VCSEL (or photodiode) array and a fiber.
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We have used the acquired measurements to characterize a simple ray tracing

model for the expected coupling efficiency on an 8×8 VCSEL array. A stochas-

tic model (taking process variations into account) for the alignment-conditional

power coupling between a VCSEL and a fiber has been characterized as well.

When a fiber bundle is connectorized, the positions of the fiber facets are

mutually fixed relative to each other as well as relative to the alignment

features of the connector. When the connector is plugged into an OE-VLSI

package, the misalignment of device-fiber pairs at different positions of an

O-E array is therefore strongly correlated. We have combined our alignment-

conditional VCSEL-fiber coupling characterization with a stochastic model

of the array-wide alignment of a connectorized fiber bundle to an O-E array.

The latter model was developed and characterized for OE-VLSI packages and

connectors of the IO project (courtesy of fellow researcher Olivier Rits).

On the IO project hardware, it turns out that both the inter-VCSEL variability

and the fiber bundle alignment uncertainty are significant. Effects with array-

wide correlation are produced by significant global translational misalignment,

and the smaller impact of global rotational misalignment turns out to be

dwarfed by the VCSEL process variations. In conclusion, we have derived a

practicable stochastic model for the array-wide laser-fiber coupling and have

characterized its distributions.

By bringing all characterized component models together, we have achieved

the quantification of all-inclusive signal attenuation and offset, latency devia-

tion, jitter, noise and ensuing BER figures, not only including the statistical

evaluation of isolated optical channels, but also capturing the statistical de-

pendencies between different channels juxtapositioned within the same array

or package.

The results obtained have been directly put to work to evaluate the option of

using true source-synchronous signaling (with a dedicated clock channel) over

optical interconnect with a high physical parallelism, reducing the substantial

per-channel clock synchronization circuitry to one instance. We have also

looked into dc-unbalanced signaling to remove the need for data coding.

For the IO project hardware, the usage of a common logic threshold across

all channels, required for dc-unbalanced signaling, appears infeasible after all

models are combined. Efficient true source-synchronous signaling turns out

to be in reach in carefully designed systems.

Substrate noise coupling between digital CMOS and OE-VLSI receivers
In an OE-VLSI approach, optical receiver circuits are integrated in a chip

alongside each other and rapidly switching digital circuits. In this situation,

coupling of digital switching noise through the substrate can compromise the

accurate operation of the receiver circuits. Besides its relevance for OE-VLSI

systems, substrate noise is an important issue in all mixed-signal designs

where sensitive analog circuits are embedded in a hostile digital environment.
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We have researched the intrusion of localized CMOS substrate disturbances

to nearby positions. To this end, we have implemented adjustable substrate

noise generation circuits and a noise measurement circuit next to sensitive

receiver circuits of the IO project in 0.18–µm bulk type CMOS.

We have achieved a large substrate noise measurement bandwidth, which is

explained from the detailed circuit behavior. The accurate wave tracing of

pulses as narrow as 200ps has been demonstrated. Furthermore, we have

devised an approach to mitigate measurement inaccuracies resulting from a

noisy voltage reference or sampling time jitter.

When one tries to simulate noise coupling effects in detail, the computational

overhead of existing substrate noise simulation tools is tremendous for all

but the smallest designs. We have performed such simulations, necessarily

simplified to a certain degree, and a good agreement between measurement

and simulation was obtained.

The receiver circuits turned out to be adequately shielded against localized

substrate disturbances, yet we were able to identify one remaining disruptive

path to the unshielded bond pads of a sensitive bias net. We could confirm that

a guard ring protection of receiver circuits suffices to absorb local substrate

disruptions. This limits the problem of substrate noise coupling to global

supply and ground bounce. This is a problem which had already to be

taken into account in standalone receivers; it can be dealt with through an

established differential circuit design.
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List of symbols

·̂ indicates an estimator

〈·〉 average over all components of a vector

α absorption coefficient in the Urbach region

αm transmission coefficient of a DBR

β spontaneous emission coefficient; decision threshold bias

βd,k k-th sample of the decision threshold bias for array channel d
βauto automatically inferred decision threshold bias

γ damping coefficient

∆AVG
array-wide deviation of the optical modulation amplitude of a

VCSEL array (in dB)

∆AVG
d deviation of the optical modulation amplitude of a VCSEL array at

position d (in dB)

∆I deviation of the VCSEL current from the operating point

∆Iin photocurrent swing

∆N deviation of the number of excited carriers in the active region of a

VCSEL from the operating point

∆OMA
array-wide deviation of the optical modulation amplitude of a

VCSEL array (in dB)

∆OMA
d deviation of the optical modulation amplitude of a VCSEL array at

position d (in dB)

∆S deviation of number of photons confined in a VCSEL from the

operating point

∆t sampling time step

∆Vout output voltage swing of a TIA

δ expectation of Tcd,d
ε gain compression factor; band gap energy

H, η differential VCSEL efficiency

ηv coupling efficiency of the v-th VCSEL given the current and fiber

position

Θ MOSFET threshold mismatch in a current mirror

θ azimuthal component of r
θd MOSFET threshold mismatch in the d-th current mirror

λ wavelength; time constant of a latch comparator



xx List of symbols

µ expected value (often the random variable is written in the

subscript)

ν frequency of electromagnetic radiation

π the ratio of a circle’s circumference to its diameter

ρ correlation between two random variables (indicated in substript or

clear from the context)

σ standard deviation (often the random variable is written in the

subscript)

σall standard deviation of the analog modulation amplitude of an optical

link signal from end to end

σN,d,k k-th sample of the standard deviation of the amplitude noise for

array channel d
τ time constant in general; specifically related to: voltage amplifier;

jitter in an equivalent time measurement

τN carrier lifetime

τS photon lifetime; length of a sampling window

Φ cumulative distribution function of the standard normal distribution

φ phase

φ0 frequency dependent phase response

ω pulsation

ωR relaxation oscillation frequency

A the array-wide VCSEL-fiber alignment

a frequency dependent magnitude response

ak k-th sample of the array-wide VCSEL-fiber alignment

AVG fiber-coupled average optical power over a full VCSEL array

(random variable across VCSEL arrays)

AVGd fiber-coupled average optical power for the VCSEL at a certain

position in an array (random variable across VCSEL arrays)

avgd,k k-th sample of the fiber-coupled average optical power for array

channel d
AVG, avg fiber-coupled average optical power (random variable across

individual VCSELs; specific value)

avgv fiber-coupled average optical power of the v-th VCSEL

B bandwidth of a single electrical link

B0 bandwidth factor [Miller and Özaktaş, 1997]

Bamp voltage amplifier bandwidth

BER bit error ratio

C capacitance in general; specifically: photodiode depletion and input

MOSFET capacitance of a TIA

Ca parasitic capacitance in the active region of a VCSEL

Cdep photodiode depletion capacitance

d serially numbered position in a VCSEL array; serial number of the

physical VCSEL driver circuit being characterized (only in section

4.2.1); substrate thickness of VCSEL and photodiode arrays;

parabola parameter



List of symbols xxi

E expectation

e Euler’s number

fτ pdf of the jitter in an equivalent time measurement

fn pdf of the additive noise in an equivalent time measurement

G gain factor

Gamp voltage amplifier gain

gm transconductance

H amount of information; modulation transfer function

H0 modulation transfer function scale factor

h Planck’s constant

I indicator function

I, i current in general; specifically: injected current in the active region

of a VCSEL; photocurrent

I0, i0 VCSEL off-current; VCSEL current at an operating point

I1, i1 VCSEL on-current

i1,aim targeted VCSEL on-current

i1,d actual on-current measured in the d-th VCSEL driver

Id dark current

Id,c temperature-independent dark current contribution

Idiff difference in drain currents between the sides of a latch comparator

Imod, imod VCSEL modulation current

imod,aim targeted VCSEL modulation current

Ith, ith VCSEL threshold current

J timing jitter

j imaginary unit

K MOSFET transconductance mismatch in a current mirror

k Boltzmann constant

kd MOSFET transconductance mismatch in the d-th current mirror

L actual packet latency of an electrical link; outbound optical power

Ls series inductance of a photodiode

l average length of a VCSEL cavity roundtrip; incident optical power

on a photodiode

lv total output power of the v-th VCSEL given the current

M0, M1 moment (mathematics)

m zero-crossing slope of a waveform signal; frequency of 1s in a

repeated equivalent-time measurement

mv measured optical power of the v-th VCSEL given the current and

fiber position

N number of electron-hole pairs in the active region of a VCSEL;

additive noise signal; normal distribution; number of time steps

N0 number of electron-hole pairs in the active region of a VCSEL at an

operating point

Ne VCSEL diode saturation carrier density

Nk additive noise signal at the output of the k-th TIA
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NRX,k modulation amplitude independent additive TIA noise contribution

at the output of the k-th TIA

NTX modulation amplitude dependent additive TIA noise contibution

factor of oma[mW]

Ntr transparency carrier count

n emission coefficient; additive noise in an equivalent time

measurement

nd number of VCSEL positions in an array; number of parallel data

channels

nv number of VCSELs characterized

OMA fiber-coupled optical modulation amplitude over a full VCSEL array

(random variable across VCSEL arrays)

OMAd fiber-coupled optical modulation amplitude for the VCSEL at a

certain position in an array (random variable across VCSEL arrays)

omad,k k-th sample of the fiber-coupled optical modulation amplitude for

array channel d
OMA, oma fiber-coupled optical modulation amplitude (random variable across

individual VCSELs; specific value)

omav fiber-coupled optical modulation amplitude of the v-th VCSEL

P probability

p parabola

p1–p4 signal waveform of the sequences 010, 011, 110, 111

q elementary charge

q1–q4 signal waveform of the sequences 000, 001, 100, 101

R photodiode responsivity; resistance in general; specifically:

transimpedance

R0 maximal photodiode responsivity

Ra parasitic resistance in the active region of a VCSEL

Rs parasitic series resistance of a VCSEL or photodiode

r fiber misalignment (r, θ, z) relative to the center of a VCSEL

r radial component of r
S number of photons confined in a VCSEL

S0 number of photons confined in a VCSEL at an operating point

S11 input port reflection coefficient (scattering parameter)

S21 forward gain (scattering parameter)

T time of flight + intrinsic delay of a link; temperature;

equivalent-time sampling aperture duration

Tcd,d, tcd,d delay of the d-th receiver circuit plus the clock distribution delay to

the d-th channel

Ts time difference between the sampling epoch and the center of a

signal eye

Ts,d Ts of channel d
t time

ts,µJ expectation of Ts
ttop time at a noise pulse peak
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V voltage (often subscripted with a node name)

Vdiff difference in drain voltages between both input transistors of a latch

comparator

Vin input voltage of a latch comparator

Vref reference voltage of a latch comparator

Vt MOSFET threshold voltage

v serial number of the physical VCSEL being characterized; true

voltage waveform

v0 specific Vref value

v1 bias voltage for VCSEL on-current distribution

vg average photon velocity inside a VCSEL

vmod bias voltage for VCSEL modulation current distribution

vtop height of a noise pulse peak

w0 minimal spot size of a Gaussian beam

z vertical component of r (elevation of the fiber over the array surface)

zref location of the waist of a Gaussian beam below the array surface
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List of abbreviations

AC alternating current

A/D analog to digital

AMS analog and mixed-signal (also: Austria Mikro Systeme)

ASIC application-specific integrated circuit

AVG average

BER bit error ratio

BGA ball grid array

BSC boundary scan cell

cdf cumultive distribution function

CMOS complementary metal–oxide–semiconductor

CV coefficient of variation

DBR distributed Bragg reflector

DC direct current

DDR double data rate

DTA digital technology assessment

EDA electronic design automation

EM electromagnetic

EMI electromagnetic interference

EPI epitaxial

ESD electrostatic discharge

FC/PC ferrule connector / physical contact

FET field-effect transistor

FPGA field programmable gate array

FR-4 flame resistant 4

GI gradient index

HDL hardware description language

HPC high performance computing

IC integrated circuit

III-V groups of the Periodic Table
IO Interconnect by Optics

I/O input/output

IP intellectual property or internet protocol

ITRS International Technology Roadmap for Semiconductors
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JTAG Joint Test Action Group

LED light-emitting diode

LI light–current

LVDS low voltage differential signaling

LVS layout versus schematic

MC Monte Carlo

MCM multi-chip module

MOS metal–oxide–semiconductor

MOSFET metal–oxide–semiconductor field-effect transistor

MPO multipath push-on

MPW multi-project wafer

MQW multiple quantum well

MT mechanically transferable

NA numerical aperture

ODE ordinary differential equation

O-E optical-electrical

OE-VLSI optoelectronic very large scale integration

OIIC Optically Interconnected Integrated Circuits

OMA optical modulation amplitude

OSI Open Systems Interconnection

p-i-n positive–intrinsic–negative

PC personal computer

PCB printed circuit board

PCI Peripheral Component Interconnect

PCIe Peripheral Component Interconnect Express

PDE partial differential equation

pdf probability density function

PGA pin grid array

PICMOS Photonic Interconnect Layer on CMOS by Waferscale Integration

POF plastic optical fiber

PRBS pseudorandom binary sequence

RAM random access memory

RC resistor/capacitor

RCLED resonant-cavity light-emitting diode

RLC resistor/inductor/capacitor

RX receiver, reception

SAV surface abstract view

SEM scanning electron microscope

SiP system-in-a-package

SMP symmetric multiprocessing

SNA Substrate Noise Analyst

SNAP12 name of 12-channel parallel optical connector specification
SPICE Simulation Program with Integrated Circuit Emphasis

SRAM static random access memory

TIA transimpedance amplifier
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TIR total internal reflection

TX transmitter, transmission

UV ultraviolet

VCSEL vertical-cavity surface-emitting laser

VHDL very–high-speed integrated circuit hardware description language

WDM wavelength division multiplexing
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Chapter 1

Introduction

1.1 Digital communication

Digital communication is the transport of digital data—anything which can be

encoded into a binary sequence—between physically separate locations. An

easily imaginable form of digital data and communication are the multime-

dia files and streams—text, audio, graphics, video and suchlike structured

content—which are sent through the Internet in large amounts each day. This

type of communication can span thousands of kilometers. Yet the possible

scale range in communication distances is immense: in contrast to the size of

the Internet, the travel distance of a single bit between two gates in a computer

processor chip can be shorter than 1 µm.

The distance-related categorization of interconnects in electronic systems

based on the smallest physical entity which contains them—an integrated

circuit (IC), (chip) package, printed circuit board (PCB), rack, enclosed system,

or a smaller or larger network—is called the physical interconnect hierarchy
(figure 1.1) [Benner et al., 2005]. Interconnect on different levels can be

very dissimilar—beyond the obvious length difference—in terms of their

application, synchronization protocol, physical implementation, bit rate, link

density, latency and reliability. A high variety of requirements, feasible

solutions and cost tradeoffs between hierarchy levels lies at the basis of this

diversity.

This thesis focuses on interconnect distances from a few centimeter to one

meter, corresponding to the PCB and inter-PCB levels, and an optical intercon-

nect technology to realize spatially very dense high-bandwidth links at these

levels. The specific subject of this thesis is the modeling and integration of

such interconnects. For a suitable situation of this work the following sections

provide a comprehensive introduction to different interconnect realizations in

general, with a focus on the demanding short links to which the scope of the

rest of this text is limited.
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large networks long cables short cables

multi-km 10–300m 1–10m

inter-PCB intra-PCB intra-package intra-chip

0.1–1m 0.1–0.3m 5–100mm 0–20mm

Figure 1.1: The physical interconnect hierarchy: digital interconnections can span

widely different distances. The inter- and intra-PCB (printed circuit board) levels—

indicated in bold—are focused on here. Figures taken from Benner et al. [2005] with

permission.

1.2 Interconnect terminology

Throughout this thesis we refer many times to ‘interconnect’ using a number

of related terms, which are described (or defined) here for clarity. The inter-

changeable terms (inter)connection and link designate the path along which

communication between different parties takes place. According to the Open
Systems Interconnection Basic Reference Model [ISO/IEC 7498-1, 1994], an inter-

connection can be interpreted at various levels of abstraction. Descending this

hierarchy, abstract information to be transmitted over a logical (application-

level) link is being represented as binary data; further on, several protocol

layers and routing points can be involved.

At the lowest level are physical interconnection implementations only providing

the raw transport of bit streams. A physical interconnection is any trans-

mission path for waveforms representing binary data, delimited by active

components other than mere signal waveform regenerators. Signal regener-

ators can amplify a waveform (1R regeneration), some additionally restore

digital levels (2R), and some provide retiming on top of that (3R) . Retiming

provides a full discrete bit stream reinterpretation of received signal wave-

forms before they are transmitted again.

In this thesis, we focus on the implementation of physical interconnections

and the transformation of signal waveforms in between locations where a

discrete binary interpretation is performed. For this reason we silently include

3R regenerators as a delimiter of a physical interconnection. Furthermore,
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from this point on without qualification the term interconnection will refer to a

physical interconnection. In the same way, interconnect is used as the collective

term for physical interconnections.

An interconnection is called parallel when it carries several physical channels—
different signal waveforms that can be distinguished on a spectral or geometric

basis, for instance by using different carrier frequencies or physically parallel

transmission lines or waveguides. Time domain multiplexing does not count

as this is indistinguishable from a bit stream associated with a single logical

connection from a signal waveform perspective.

A physically parallel interconnection can be broken down in simple intercon-

nections: one transmission line or waveguide. The pieces remaining when

a simple interconnection is cut at all signal regenerator positions are called

segments.

1.3 Electromagnetic radiation as an information
carrier

The carrier for all present-day immediate digital communication is electro-

magnetic (EM) radiation due to its vast advantages over any other means of

information transport. It allows communication at the speed of light, and

the motion (or even the existence) of a physical transmission medium is not

required for signals to propagate.

Although the behavior of electric and magnetic fields and their interaction

with matter is always governed by the same Maxwell equations [1865], widely

different approaches are possible to use EM radiation as an information

carrier. The appearance of the implementation and the possible applications

heavily depend on the subset of the EM spectrum (figure 1.2) that is used for

communication, the relative size of the corresponding wavelengths compared

to the segment dimensions, and the choice between a free-space or a guided-

wave approach.

A note on terminology: the term wavelength can refer either to the vacuum
wavelength of EM radiation or to the wavelength inside a certain medium.

When discussing the order of magnitude of an unqualified wavelength com-

pared to something else, either definition will do—the difference between

both is usually less than a factor of 2. Apart from this, the vacuum wavelength
is addressed unless explicitly stated differently.

1.3.1 Free-space approach

In the free-space approach, the propagation of EM waves predominantly

takes place freely inside a vacuum or a homogeneous non-magnetic dielectric

medium (such as air, plastic or glass). Free-space transmission comprises,
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Figure 1.2: Overview of the electromagnetic spectrum. Image courtesy of Keiner

[2007].
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among others, radio and TV broadcast (though generally not digital), wireless

networking and free-space optical links. The communication is of a broadcast

or point-to-point nature depending on the wavelength, the link density and the

emission pattern. When the wavelength is larger than a fraction of the spacing

between links, or when the emission pattern is not sufficiently focused, the

communication medium is shared across multiple peers. In order to separate

different logical communication channels time domain, frequency domain

or spread-spectrum techniques are required. Examples are mobile phone

communication or wireless networking. Broadcasting is usually not an option

for general interconnect on the PCB or inter-PCB levels because the high

density of such links would divide the available communications bandwidth

and the transmitted power of each channel over too many peers to be practical,

let alone the transceiver complexity implied.

Still, point-to-point links are possible in the free-space approach. An example

is point-to-point microwave communication using two parabolic antennae.

For practical free-space point-to-point links on the PCB or inter-PCB level the

wavelength should be shorter than about 4 µm—short wavelength infrared

radiation—to limit the diffraction of directional beams over longer distances

(this figure corresponds to a Gaussian beam traveling 10 cm with a maximal

waist of 0.5mm). The required coherent emission in this optical spectrum

range calls for laser light sources.

In-system free-space optical interconnect has already been successfully demon-

strated on the System-in-a-Package (SiP, also known as MCM—multi-chip
module) level. For an example we refer to Thienpont et al. [2000]; Debaes et al.

[2003]. However successful on the SiP level, free-space optical links are less

suitable on the PCB level: the required directional accuracy at the origin of

a narrow optical beam becomes unfeasibly strict if the interconnect length

exceeds several 10–s of centimeters [Baukens et al., 1999].

1.3.2 Guided-wave approach

In the guided-wave approach, the propagation of EM waves is forced to follow

a designated path. Again there are a number of options, mainly dependent on

the size of wavelengths relative to the longitudinal size of a segment (along

the direction of the information flow) and its transverse dimensions (in a plane

perpendicular to the information flow).

1.3.2.1 Electrical interconnect

Electrical interconnect is guided-wave interconnect using baseband frequencies

from dc to the microwave range (several 10–s of GHz). Characteristic is the

use of two conductors: a ‘single-ended’ signal path and return path, or a

differential conductor pair. As long as the wavelengths in use are about 100

times larger than the segment length and conductor pair spacing, from the
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(a) coaxial cable (b) twisted-pair cable

signal

ground plane ground plane

signal signal

(c) PCB microstrip (d) differential PCB microstrip

ground plane

signal

ground plane

signal signal

ground plane

ground plane

(e) PCB stripline (f) differential PCB stripline

Figure 1.3: Common manifestations of impedance-controlled electrical interconnect.

The items in the left column are single-ended transmission lines; the right column

shows differential solutions.
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viewpoint of wave propagation both conductors look like single points. In

this case, a quasi-stationary treatment is applicable. The geometric realization

of these wires thus does not need to take wave effects into account, which

allows a simple implementation. For instance, a 1–GHz electrical link on one

IC connecting a digital gate output to several gate inputs—implemented by

a simple branched metal path and adequate return path provisions—can be

treated as a wire as long as it spans no more than a few millimeter in all

dimensions.

When the wavelength range becomes comparable to or smaller than the

segment length, yet still much larger than its transverse dimensions, wave

propagation effects become significant. In these circumstances, the electrical in-

terconnection is referred to as a transmission line, modeled by the telegrapher’s

equations [Heaviside, 1887]. To avoid unwanted signal reflections, across the

entire segment length the characteristic impedance must be kept constant—the

ratio of the voltage across the conductors over the current through them as

the signal propagates. This necessitates a careful geometrical layout of the

conductors in an environment with calibrated dielectrics (figure 1.3 shows

some examples). On the PCB level, segments spanning over 10 cm need to be

treated as transmission lines starting from about 30MHz. Major PCB-level

implementations are stripline [Barrett and Barnes, 1951] and microstrip [Grieg

and Engelmann, 1952], where a PCB track is suspended above a ground

plane or sandwiched between two ground planes, respectively. For inter-

PCB interconnections from the MHz range up and for longer links, electrical

transmission line cables are used with a twisted-pair [Bell, 1881] or coaxial

[Espenschied and Affel, 1931] geometry.

1.3.2.2 Waveguides

Communication conduits guiding EM radiation with wavelengths comparable

to or smaller than their transverse dimensions are called waveguides. Waveg-

uides are useful for communication in the microwave and optical spectrum

ranges: other, longer wavelengths would require at least decimeter-range

waveguide widths, which is impractically large on the scale of contemporary

electronic systems.

Waveguides have a non-magnetic dielectric (typically air, plastic, glass) or

semiconductive interior, which is transparent to the range of wavelengths that

should be propagated. This interior medium is surrounded by a conductive

material, a different dielectric material, or even a periodic structure, which

functions as a mirror for certain manifestations of EM radiation (called modes),
effectively confining their propagation to the path laid out by the waveguide.

Digital communication through the waveguide is then possible through the

modulation of one or more modes.

Although two-conductor electrical transmission lines behave as a multimode

waveguide as well at very short wavelengths, we strictly refer to the above
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Figure 1.4: Rendering of a typical hollow metal waveguide

corecladding protection

250 µm

Figure 1.5: Cross-section of an 8-wide fiber ribbon with clearly visible core and

cladding (photo by Nexans).

definition when the term ‘waveguide’ is used.

Waveguides used at microwave wavelengths are typically implemented as

hollow metal rectangular or cylindrical pipes (see figure 1.4) [Lord Rayleigh,

1897]. They can be used at the PCB or rack level for selected very high

bandwidth connections. However, the signal attenuation is sizeable due to

resistive losses in the metallic mirrors. The millimeter-range wavelengths

require corresponding transverse waveguide dimensions, precluding very

dense interconnect or a PCB-integrated approach. The (semi-)rigidity of

the metallic components also makes for a complicated physical waveguide

handling process.

1.3.2.3 Optical interconnect

Waveguides suitable for infrared or shorter wavelengths are called optical
waveguides. Confinement of the EM radiation to the waveguide interior is

classically implemented using the principle of total internal reflection (TIR). To

this end, in a step-index waveguide, the interior waveguide medium (the core) is
surrounded by another optical medium of lower optical density (the cladding;
see figure 1.5). In a graded-index optical waveguide, this high-to-low transition

of the optical density—required for TIR—takes place gradually inside the core

(as illustrated in figure 1.6). TIR is not the only possible radiation confinement

method: photonic crystals—optical wavelength-scale periodic microstructures
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(a) step index fiber

(b) graded-index fiber

Figure 1.6: Meridional ray trajectories in a step index fiber and a graded index fiber.

In the graded-index fiber, the lower optical density at the outside of the core results

in the ray traveling faster (indicated in red) than at the center of the core. This effect

equalizes the time of flight across all possible ray trajectories.

inhibiting the propagation and the absorption of certain wavelengths—can

also be used for this purpose [Yablonovitch, 1987; John, 1987].

Optical waveguides are mass produced in the form of glass or plastic cylindri-

cal optical fibers [Keck et al., 1973; Miller et al., 1973]. In experimental PCB- or

IC-integrated approaches, they are realized with a rectangular or trapezoidal

cross-section. More exotic topologies appear when photonic crystals are used.

Signal propagation in an optical waveguide is typically driven by modulated

near-monochromatic light from a laser or light-emitting diode (LED) being

coupled into the waveguide. The use of a single wavelength prevents the

spreading out of the signal as it propagates due to wavelength-dependent

propagation speeds (chromatic dispersion). This effect would limit the attainable

bandwidth-distance product. Several physical channels—each emitting at a

different wavelength—may be multiplexed over the same optical interconnect

segment to increase the total throughput (this is called wavelength division
multiplexing or WDM) [DeLange, 1970].

When the transverse dimensions of the optical waveguide interior are suf-

ficiently larger than the wavelength, several different EM wave geometries

can satisfy the conditions for propagation imposed by the waveguide—the

modes we mentioned earlier. In such multimode waveguides, different modes

propagate at different speeds. The coupling of light into a waveguide gen-

erally excites several modes, and EM radiation can switch between modes

during propagation as well—an effect called mode mixing—due to material

impurities and geometrical irregularities (e.g., waveguide bends). Again, the

resulting spreading out of the modulated signal as it propagates at varying

speeds—multimode dispersion—limits the attainable bandwidth-distance prod-

uct. This is mitigated by the use of single-mode waveguides, with sufficiently

small transverse dimensions to guide only one mode. Alternatively, inside

graded-index waveguides the transverse optical density arrangement maximally

equalizes the propagation speeds of different modes.
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1.4 Electrical versus optical interconnect

1.4.1 Interconnect demands and typical realizations

In this section, the motivation for the common use of optical links in telecom-

munication systems and electrical links inside computational systems is pre-

sented. The length of the interconnections is the decisive difference. For

telecommunication, the locations of the communication endpoints are non-

negotiable primary design inputs. Conversely, inside computational systems,

precisely the physical location of different elements is optimized towards inter-

connect efficiency. We distinguish interconnect requirements and realizations

starting from this perspective in the following discussion.

1.4.1.1 Telecommunication

Requirements The required bandwidth of a (logical) telecommunication

connection strongly depends on the application: telephone speech takes

up 64 kbps compared to about 20Mbps for high definition video. Physical

interconnection bandwidth needs are highest—up to the Tbps range—at long-

distance physical connections in network backbones as very many logical

connections are multiplexed over them.

Telecommunication applications have to be robust with respect to an in-

escapable latency. The combination of the distance between the communi-

cation endpoints and the speed of light establishes a fundamental minimal

time-of-flight latency between a microsecond and several milliseconds, often

many times the signaling period. In the presence of a sizeable effective time-

of-flight latency across a logical connection, comparatively small additional

delays in intermediate amplification and routing provisions can be tolerated

as well.

Realization The eventually realized bandwidth of long-distance segments

depends on cost figures rather than on physical limitations: if free-space (radio,

microwave, optical) links—which have no medium cost—are insufficient,

guided-wave links can be deployed in as many cables in parallel as deemed

necessary.

Practical guided-wave solutions are electrical transmission lines and optical

waveguides. For new multi-km interconnections, optical fibers have super-

seded electrical solutions beginning in the 1980s due to the associated vast

power and bandwidth advantages, allowing for long distances between subse-

quent signal amplifiers. As for signal power losses, the attenuation of optical

fiber is 0.7 dB/km for contemporary multimode fiber and 0.2–0.3 dB/km for

single-mode fiber [Corning, 2007]. This attenuation is essentially independent

of the bandwidth of the modulation of light (yet it is wavelength dependent).
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By contrast, low-loss coaxial cable exhibits losses already around 10 dB/km at

1MHz rising to 140 dB/km at 1GHz due to the imperfection of even the best

conductors and dielectrics [Belden, 2006].

The maximal bandwidth of a single physical channel in an optical fiber is

dispersion limited. Numerical bandwidth-distance product values are around

5–50MHz · km for step-index multimode fiber, 0.5–5GHz · km for graded-

index multimode fiber, and 100–1000GHz · km for single-mode fiber.

Over several decades, the bandwidth demands of telecommunication appli-

cations between a single pair of endpoints have increased vastly; present

bandwidth-hungry applications are broadband internetting and video on

demand. The introduction of ever smaller and cheaper semiconductor lasers

and LEDs has made optical interconnections possible at increasingly shorter

distances. For instance, in an ordinary present office working environment,

optical links for (multi-)gigabit Ethernet are widespread, spanning distances

as short as a few meter.

1.4.1.2 Computational systems

Requirements When an algorithm is implemented in hardware, the time it

takes just to carry out the necessary calculations and memory lookups by the

hardware provisions establishes a lower bound on its duration. This duration

lengthens whenever a step in the critical path is delayed due to both the

hardware component involved being idle and the input data being available,

but not yet at the right location. Obviously, if the speedy completion of the

algorithm is a goal, significant interconnect delays in the critical path should

be minimized.

Both the bandwidth and the latency requirements of interconnections can be

high here. The available bandwidth of an interconnection between hardware

components is too low when it becomes the limiting factor for the desired

throughput between these components. An example of interconnect stressed in

such a way is between the processor and the video card in a typical personal

computer during graphics-intensive applications (e.g., games), which has

necessitated very high-bandwidth interconnect solutions with a throughput

up to 64Gbps at present [PCI Express, 2004].

The interconnect latency can become a bottleneck as well wherever feedback

occurs in the information flow—a hardware component requiring data from a

distant second component, in its turn dependent on earlier data from the first.

This bottleneck becomes evident when the remote processing time is short

compared to the time it takes for information to travel there and back.

Whereas bandwidth and latency figures are mostly disconnected in telecom-

munication interconnections, both become coupled for computational-system

links where the latency is the most critical. The relation between the actual

latency L, the time of flight T (including the intrinsic latency of signal regen-
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erators), the realized bandwidth B and the amount of information H to be

transmitted in one bundle is as follows:

L = T +
H
B

(1.1)

In this equation, either term can dominate. When T dominates, the link should

be made shorter to reduce the time of flight. Otherwise, one can increase B
beyond the average throughput to reduce the latency.

A notable example where H/B is dominant comes from the world of high-

performance computing (HPC) and is evident as well in fast server hardware.

Symmetric multiprocessing (SMP) systems contain small but fast cache mem-

ories on each processor die to speed up memory requests in the presence of a

high locality of reference. This type of latency optimization is not primarily

interconnect-related, but results from the comparatively longer lookup times

in large dynamic memories. When one processor now reads from the same

memory location that another processor just wrote to, data needs to travel from

the other processor’s cache to the processor performing the read operation.

The intrinsic cache lookup time—presently about 5–8 ns for level 2 caches—is

significantly exceeded by the interconnection overhead—about 130–260 ns for

recent Intel Xeon and AMD Opteron SMPs [AnandTech, 2006], likely holding

up execution at the processor at the reading end. We remark that this latency

is indeed governed by bandwidth limitations rather than the time-of-flight,

in the way that we have just explained: 130 ns per se would suffice for an

information roundtrip over more than 10m; the different processors are orders

of magnitude closer together.

We want to emphasize that this bandwidth/latency example is not limited to

SMP systems in a strict sense. Given enough processors, limitations of shared

memory bandwidth enforces the use of processor-local memory approaches,

where interprocessor communication is taken over by an interconnection

network of which low-latency links no longer constitute a fully connected

topology [Gupta et al., 1990].

The nature of some computational problems enforces algorithm implementa-

tions with a higher degree of interconnectivity between processor nodes than

can be provided by low-latency links of the underlying physical interconnec-

tion network. In this case, latency-induced performance limitations inevitably

arise as data is forced to travel through higher latency paths (e.g., through
multiple network hops) [Collet et al., 2000].

Realization As it is the native interface of present logic and memory primi-

tives, interconnect inside computational systems is normally electrical. In a

quick enumeration this comprises on-chip metal tracks; chip packages with

bond wires, embedded metal connections and leads, pads or solder balls;

intra-PCB short or slower general tracks and longer/faster (single or differ-
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Figure 1.7: Dense electrical routing on the top layer of a common PC motherboard

ential) microstrips and striplines; and inter-PCB slow flat cables and faster

twisted-pair and coaxial cables.

In contrast, optical interconnect always requires rather complex optical-

electrical (O-E) conversion provisions (light sources/modulators and pho-

todetectors) at the optical path endpoints, leading to a result with more

components and additional manufacturing steps. The signal conversion also

adds to the intrinsic latency T, thus rendering optical links unrewarding when

T dominates in equation 1.1 [Neefs, 2000a].

The cost arguments of long telecommunication segments mentioned earlier are

not valid here either. With specific regard to medium and repeater costs, appar-
ently any reasonable bandwidth can be realized with many physically parallel

electrical lines without an overwhelming cost penalty as the interconnection

groun  plane
d

gna
ire

si
l w

i e
g

 = l

w r  len th
A

inter-wire spacing area

Figure 1.8: Illustration of parameters associated with the electrical bandwidth density

limit B ∼ B0 A/l2
from Miller and Özaktaş [1997].
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distances are fairly short.

However, computational systems are implemented as compact as possible to

reduce the time of flight. The limited cross-sectional area available to each

interconnection thus restricts the attainable electrical interconnect parallelism.

1.4.2 Bandwidth limitations of closely packed electrical
links

1.4.2.1 Fundamental bandwidth density limitations

The maximal bandwidth achievable over an electrical segment is limited by

presently inevitable conductor and dielectric material imperfections. Miller

and Özaktaş [1997] have derived a theoretical limit on the information band-

width attainable over a non-repeatered electrical interconnection of a given

length and available cross-sectional area, even when the physical parallelism

realized within this area is optimized. The limit is of the form B ∼ B0 A/l2
,

where B is the bandwidth, A the cross-sectional area, l the interconnection

length and B0 a factor in the range 106
–109

Gbps (dependent on the feasibility

of certain materials, topologies and features at different scales). The physical

density of different interconnections thus limits the attainable throughput.

This (presently still large) theoretical limit is further reduced by the dissipa-

tion in real-world dielectrics [Berger et al., 2003] and the extra spacing or

shielding required to limit crosstalk caused by electromagnetic interference

(EMI) between adjoining segments [Hall et al., 2000; Tummala, 2001]. Practical

considerations eventually determine the realized bandwidth density, e.g., the
realization of interconnections within layered structures like ICs and PCBs

with an upper feasibility limit on the number of interconnection layers.

1.4.2.2 Rising bandwidth density needs

The processing power of single ICs, the core of digital systems, follows a

continued rapidly rising course. The 1965 empirical prediction called Moore’s
law [Moore, 1965]—stating that the most cost-efficient number of transistors

per IC doubles every 2 years—has been upheld until now, and is predicted to

hold for the foreseeable future by the International Technology Roadmap for

Semiconductors [ITRS Overview, 2006]. With the current 65–nm complemen-

tary metal-oxide–semiconductor (CMOS) fabrication technology, the number

of transistors on a single die reaches several 100s of millions.

The boost of the number of transistors per chip is driven by ever-smaller

transistor fabrication technologies and to a lesser extent by an increase of the

chip size, which has doubled ‘only’ every six years [ITRS Overview, 2006]. In

addition, as transistors become smaller they are able to switch faster. Hence

not only the absolute amount, but also the density of IC processing power rises

quickly.
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Some applications drive interconnect demands to extremes when attempting

to fully exploit this massive processing potential. In these cases, established

electrical interconnection approaches fail to supply the bandwidth density

required to take significant advantage of further CMOS technology improve-

ments. The multiprocessing discussion above gives an example of this problem

arising in a computational system. Telecommunication systems can be af-

fected as well: in routing hardware, many high-bandwidth links are brought

together in a confined space. In routers at the Internet backbone (e.g., Juniper
Networks TX Matrix Platform [2004]), the huge bandwidth densities render

an all-electrical interconnect approach problematical.

1.4.2.3 Extending the reach of established approaches

At multiple levels in the physical interconnect hierarchy, diverse technological

or methodological techniques are deployed to extend the bandwidth density

of established electrical interconnection approaches. We will briefly cover such

techniques now.

On-chip On-chip electrical interconnect technology is performing a best

effort to keep pace with transistor improvements, compelling the use of up

to 11 interconnect layers for 65–nm technology, better-conducting copper

instead of aluminum and low-κ dielectrics, reducing parasitic capacitance

[ITRS Interconnect, 2006]. Signaling is typically synchronous with the on-chip

clock, with frequencies reaching to several GHz over interconnects ranging

from single wires to on-chip buses 100s of bits wide [Benner et al., 2005].

Intra-package Compared to general printed circuit board (PCB) facilities,

higher inter-IC bandwidth density as well as lower latency figures can be

achieved by combining the IC dice in the same package. The smaller size

of such Systems-in-a-Package (SiPs) enables higher-resolution manufacturing

techniques and eases the exploitation of the vertical dimension, both resulting

in a far higher link density than general PCBs. The shorter segment lengths

increase the attainable bandwidth density as well [Miller and Özaktaş, 1997].

SiPs strongly interconnect very large dice, dice of different fabrication tech-

nologies and passive components, in a horizontal, vertical or embedded

fashion [ITRS Packaging, 2006]. Realizations driven by bandwidth density

improvement comprise multi-core processor realizations and processor-cache

combinations. For example, the combined packaging of two dual-core dies

in recent Intel Xeon quad-core packages has reduced cache lookup latency

with 30% for different-die same-package lookups when compared to different-

package lookups [AnandTech, 2006].
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On a PCB or backplane-connected system

Transmission lines At the PCB level, the processing accuracy is being im-

proved along with material and maximal layer count enhancements. The

high processing accuracy enables the realization of high-grade differential

striplines, which can be driven at multi-GHz frequencies using low-voltage

differential signaling (LVDS) [2001] and related standards.

Ordinary tracks used as quasi-stationary wires are bandwidth limited by their

length. To improve the bandwidth density, there is a present trend to replace

such tracks by true transmission lines. This changeover alleviates throughput

limitations of pin-limited IC packages as well.

The realization of multipoint-driven buses involving more than two parties

over true transmission lines brings on impeding signal timing and line ter-

mination complications. For this reason, a transition to point-to-point star

topologies is observed, witness the changeover in present PCs of the physically

multipoint-driven PCI bus to the star topology of PCI Express. Here, a mul-

tiple of the highest cost-effective bandwidth achievable over one differential

stripline is realized using parallel lines: in the present standard, a total of 32

parallel lines at 2.5Gbps are supported, yielding a maximal point-to-point

bandwidth of 64Gbps (taking into account a 25% data coding overhead)

[PCI Express, 2004]. Other high-bandwidth low-latency standards like Hy-

perTransport [2001], Parallel RapidIO [1999] and InfiniBand [2000] are of a

similar nature: all of them employ physical point-to-point links over parallel

transmission lines with comparable low-level signaling approaches.

In the rest of this text physically multipoint-driven buses are no further

considered. To avoid confusion, we should mention that multidrop (single-

driver) signal distribution with a branched transmission line path remains

possible and has its applications (e.g., gigabit multidrop serial backplanes

[Esper-Chain et al., 2005]). Besides an increase of transmitted power and

specific implementation aspects of the line branching, multidrop and point-

to-point signaling mechanisms are very similar (and this holds in the optical

domain as well). Implementation aspects of branches are beyond the scope of

this thesis.

Equalization The maximal information bandwidth over a single differential

stripline has increased as well by an improved conditioning of the analog sig-

nal. Higher signal frequencies are selectively amplified to precisely counteract

the frequency-dependent signal attenuation throughout the stripline caused by

the skin effect and dissipative dielectrics. The net result is an attenuated, but

not distorted, signal at the receiver. This signal conditioning is provided at the

segment endpoints by dedicated preemphasis or equalization circuits. Although

not new—developed in the 1920–1930’s for long electrical telecommunication

links [Zobel, 1926; Mayer, 1936; Bode, 1937]—only relatively recently this
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Figure 1.9: Ball grid array (BGA) package with a cavity suitable for wire bonding.

technique is being applied to short digital links [Dally and Poulton, 1997]. In a

present state-of-the-art commercial example, equalization permits a 10.7–Gbps

transmission over a single 75–cm skin effect limited stripline using copper and

standard FR-4 PCB dielectrics [Maxim MAX3805, 2006]. This corresponds to a

path loss of 20 dB at 5GHz: such an extreme line bandwidth exploitation is

consequently coupled with severe power losses.

Chip access/escape perimeter PCB-level bandwidth density problems are

the most critical very close to ICs with demanding throughput requirements.

Strictly spoken, the bandwidth density of a multi-centimeter interconnection

can always be increased by adding—at a cost—extra signal regenerators

in between, thus decreasing segment lengths. Close to a demanding IC

however, some thousand lines converge. The line count and regenerator

size effectively limit the proximity of any signal regenerators to the IC die.

The final millimeters of the interconnection—thus unsupported by active

components—bring on a complex escape perimeter problem stressing PCB

manufacturing, chip packaging as well as assembly methods.

On a PCB, striplines are normally nicely interspaced and spread over multiple

PCB layers. When very many lines are approaching a common IC endpoint,

they all have to emerge and share the PCB surface underneath the IC package,

yet with pads large enough for a reliable package mounting. Manufacturing

techniques for blind/buried vias and microvias allow lines to come to the

surface without perforating the whole PCB or taking up too much area. The

package itself is in charge of the remainder of the downconversion, from the

PCB pad pattern to the IC-scale input/output (I/O) link density.

For bandwidth-critical applications a transition has been made over the last
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two decades from electrical I/O at the perimeter to uniformly spread surface-

based I/O, both concerning the package–PCB interface and the IC–package

interface. Edge-leaded packages are being superseded by pin or ball grid

array (BGA) packages (figure 1.9); flip-chip bonding is chosen over wirebound

ICs.

Using present manufacturing technologies, BGA packages are feasible with

up to about 4000 balls on a 0.65mm pitch, signaling at 5Gbps per differ-

ential pair [ITRS Packaging, 2006]. Further density and size improvements

bring on issues resulting from line impedance changes, crosstalk caused by

electromagnetic interference, current density limitations in the power distribu-

tion, and mechanical strain caused by different thermal expansion coefficients

[Blackshear et al., 2005].

Backplane and cable connectors In rack-based systems, a critical point is

the bandwidth density of card edge connectors, as it is hard to maintain a

high bandwidth density over a complex interface change. High-performance

card edge connectors for backplane- or cable-based interconnect increasingly

abolish single-ended designs in favor of a pure differential approach: in

this way, transmission lines can be brought off-board without jumps of the

characteristic impedance. Present cutting-edge connectors (e.g., FCI Airmax

VS [2003]) support bandwidth densities up to 20Gbps per millimeter card

edge for a card-to-card pitch of 25mm.

1.4.3 Optical interconnect: a superior bandwidth density al-
ternative

1.4.3.1 Justi�able deployment at ever shrinking distances

Short-range optical interconnect has been repeatedly proposed over the last

two decades, as it provides a superior alternative to electrical interconnect

in situations with huge bandwidth density demands [Goodman et al., 1984;

Miller, 2000]. An optical transmission path possesses several desirable proper-

ties, some of which we have already mentioned in section 1.4.1.1. Attenuation

is low (in some cases a fractional dB/km figure is very realistic) and by far

steadier with respect to the EM wave frequency than electrical links: it con-

ceivably remains within the same order of magnitude across several 10s of

THz [Corning, 2007]. Considering the presently used GHz-range modula-

tion of near-monochromatic light, the attenuation is essentially modulation

bandwidth independent. Yet higher modulation rates will therefore not neces-

sitate improved physical optical path characteristics and the ensuing hardware

renewal costs (for instance, optical backplanes can be reused). Combined

with the small cross-section—a typical fiber diameter of 125 µm (determined

by the ease of manipulation; in integrated approaches few-µm waveguide

pitches are feasible as well)—very high bandwidth densities can be achieved.
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Figure 1.10: High density optical connector providing support for 64 fibers in the

indicated 4 mm
2
area, placed on a piece of € 1 for comparison.

Furthermore, the absence of conductors avoids the interaction of free electrons

with the EM field and all associated EMI problems, removing the need for

spacing of shielding in between parallel segments. Figure 1.10 illustrates the

small pitch attainable this way.

Although the bandwidth density of electrical interconnect could be increased

through the spending of even more power, there are situations in which the

associated costs and heat removal issues no longer compensate for the added

complexity of optical link integration. As the previous sections have made

fiber bundle

pac age
k

CMOS s bstrate ( op s e visible)
u  t id

i e sem tt r d e ret cto s

PCB

c
n

to
on ec r

solder balls

Figure 1.11: Artist’s impression of a possible OE-VLSI approach
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clear, for a given cross-section and a constant power budget the achievable

bandwidth strongly decreases with distance in an electrical approach, whereas

it remains essentially constant (on a system scale) when using an optical

transmission path. This gives rise to a break-even distance beyond which

optical bandwidth density outperforms electrical bandwidth density for a

similar power budget, given the state of the art in both approaches.

The introduction of ever faster, smaller and cheaper O-E components—such as

two-dimensional Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays—has

enabled a very tight integration of electronics and optics, and has strongly

reduced this break-even distance to the centimeter range at present [Naeemi

et al., 2004; Cho et al., 2004a; Uhlig and Robertsson, 2006].

Fiber-based rack-to-rack and board-to-board solutions are now commercially

available, and a number of board-to-board and chip-to-chip free-space, fiber-

based or waveguide-based prototypes have been demonstrated [Neefs, 2000b;

Ishii et al., 2003; Bockstaele et al., 2004a; Cho et al., 2004b; Yoon et al., 2004;

Rho et al., 2004; Cho et al., 2005; Schares et al., 2006]. Even on-chip optical

interconnect is actively being investigated [PICMOS, 2006; Roelkens et al.,

2006].

1.4.3.2 OE-VLSI: tight optical interconnect integration

When bandwidth density issues justify the deployment of optical interconnect

between different ICs, the question remains as to how close to implement

the required O-E conversion to both link endpoints. In present commercial

such systems (e.g., using SNAP12 [2002] modules), the O-E conversion oc-

curs in separate packages on the PCB, located at the PCB edge or next to

the bandwidth demanding processing IC(s). Part of the link—between the

processing IC(s) and the O-E module—is thus still electrical in nature, and

the bandwidth density issues concerning the PCB-to-IC access—described in

section 1.4.2.3—continue to hold.

By integrating the processing IC and O-E provisions into the same package,

this extra PCB link is avoided. The tightest form of integration—and the central

perspective in this thesis—is the direct provisioning of the O-E conversion

where the data is needed or generated: on the IC die. Such an approach avoids

the ever aggravating known bandwidth density issues [ITRS Packaging, 2006]

concerning PCB manufacturing, chip packaging and assembly all at once.

The on-chip optical access is particularly interesting when the O-E conversion

is area-based as opposed to linear: the data rate can then reach several

hundreds of gigabits per second while still using GHz-range channels. This

is an improvement similar to the transition from perimeter-based to surface-

based electrical connectivity of ICs and packages (see section 1.4.2.3, paragraph

chip access). Such a surface-normal optical interconnection approach has been

called optoelectronic very large scale integration (OE-VLSI) in [Krishnamoorthy

and Goossen, 1998]; this is the term we will use throughout this document.
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The practical approach towards an OE-VLSI system is the subject of the next

chapter. For the smoothness of the presentation we already mention some

basics of the system under review here. As will be discussed there, emitting

light from CMOS substrates is hard; it is much easier to use wafers of III-V

compound materials for this purpose (this name refers to the columns of

the periodic table of elements involved). The approach taken is one where

optical emitters and detectors are realized in separate III-V wafers, organized

in two-dimensional arrays. These arrays are then integrated with CMOS using

flip-chip bonding. The surface-normal optical emission is coupled into some

kind of optical pathway, which guides the light to one or more detectors. An

artist’s impression of such a system is rendered in figure 1.11.

1.5 This thesis

Although the direct integration of O-E conversion on an IC bypasses a very

complex electrical connection, the associated intricacies of this connection have

been well studied and characterized, and a number of established solution

methodologies are available. By contrast, all complexity associated with

surface-level O-E conversion—involving the heterogeneous integration of III-V

devices—and the integration of an optical path at the package and PCB level

has not nearly as well been explored nor convincingly resolved, although a

number of successful experimental approaches are known (for this we refer to

the next chapter).

The complexity of just the physical assembly of a highly parallel OE-VLSI

manifestation is impressive, as a number of cutting-edge techniques are

required just to make things work.

This dissertation focuses on another kind of complexity—that which is pre-

sented to a system designer considering an OE-VLSI approach. The main

motivation of this work is to facilitate the integration of an OE-VLSI setup

in a digital system, assessing methodological and operational aspects where

possible.

At the creation of a new digital system, several questions need to be addressed.

To begin with, in order to even bring OE-VLSI into the picture, it is vital to

know what one can do with the parallel optical link provided. What about

the signal timing and integrity? How much skewed are signals of adjoining

links at the link exit, if they were synchronous at the link entrance? Should

the optically signaled data be dc-balanced, as it is in telecommunication

applications? What is the attainable bandwidth? How much power to spend,

and where does it go?

Answers to questions like these determine the attractiveness of the system,

and are key to the feasibility of—or need for—different approaches concerning

the encoding of the data and the signal timing approach taken. The answers

can only be supplied by a thorough (statistical) modeling and characterizing
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approach, revealing many operational system aspects. This is the main contri-

bution of this work, presented in chapter 4. We show that source-synchronous

signaling over parallel optical interconnect with concurrent sampling at the

receiving end is possible in carefully designed systems, yet that dc-unbalanced

signaling proves to be impracticable.

Electronic design automation (EDA) tool support is important as well for a

system designer, assisting in the design creation (instantiating and dimen-

sioning different elements of the optical interconnect in a digital system),

design evaluation/verification (simulation of the interconnect together with

the rest of the system) and even design space exploration (to attain an optimal

trade-off between different qualities and costs). This subject is touched upon

in chapter 3 with a methodological discussion and circuit-level simulation

models.

An important operational aspect is the possible interference between analog

OE-VLSI–related circuits on the CMOS—especially receiver circuits—and

directly adjoining digital circuits through the CMOS substrate. We have

been in the position to test a measurement and evaluation approach for such

disturbances; this effort is treated in chapter 5. We could confirm that a guard

ring protection of receiver circuits suffices to absorb local substrate disruptions,

thus limiting the problem of substrate noise coupling to global supply and

ground bounce, which has to be taken into account anyway (yet admittedly

occurring with higher amplitude in an OE-VLSI setup).

This thesis has been performed in the context of the Interconnect by Optics

(IO) project of the European Commission’s Fifth Framework Programme,

which ran from the end of 2001 to early 2005. The main project objective

was to research the industrialization of OE-VLSI systems. All experimental

characterization reported upon in this work concerns hardware prototypes

developed within the IO project. This often involves the principal test chip

of the IO project in 0.35 µm CMOS, going by the name of Digital Technology
Assessment (DTA) IC. The composition of this IC and other relevant hardware

is presented in appendix A.

1.6 Overview of achievements

This section gives an overview of the research work performed for this thesis.

All discussed research items exhibit a major personal contribution; related joint

efforts are acknowledged. Although the most prominent prior publications are

indicated here as well, we refer to the main text for a more detailed discussion.

1.6.1 Circuit-level OE-VLSI component modeling

Our earliest research work addresses the construction of simulation mod-

els for the different components constituting an OE-VLSI interconnect
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implementation—O-E conversion hardware, interfacing circuits and the

optical path—and their implementation in the Verilog-AMS [1998] mixed-

signal hardware description language. The associated objective was to permit

an all-embracing OE-VLSI simulation integrated in an existing electronic

design automation (EDA) framework (which concretized to Cadence Virtuoso

[1987]).

On the one hand, this could be used to predict the behavior of the OE-VLSI

approach after all components had been characterized. On the other hand this

would be a step towards the joint tuning of all OE-VLSI components for an

optimal power, performance and reliability trade-off from an across-the-board

perspective, thus transcending the optimization of OE-VLSI components in

isolation.

We have implemented operational simulation models and achieved a

thorough understanding of the intricacies concerning the integration of

multidisciplinary—electrical, optical, thermal—and sometimes badly condi-

tioned differential equations—e.g., laser rate equations—into a simulation

system bearing the marks of an electrical circuit dedication [De Wilde et al.,

2003b, 2004].

The characterization and tuning work was postponed pending a yet further

progression of the IO project regarding O-E components development and

measurability. Two Master’s theses [De Clerck, 2004; Bhatti, 2006] have tackled

these postponed subjects at a later time, building on the established modeling

research.

In a later project on intra-chip interconnect [PICMOS, 2006], for the modeling

and characterization of µm-sized distributed Bragg reflector (DBR) lasers—

research work of Ph.D. student Joris Van Campenhout—much of the acquired

knowledge could be recycled in a Verilog-AMS model implementation effort

which proved useful in a larger framework on the systematic simulation-based

predictive synthesis of integrated optical interconnect [O’Connor et al., 2007].

The circuit-level modeling research is treated in chapter 3.

Acknowledgements This research effort was performed in close cooperation

with fellow Ph.D. student Olivier Rits, with input from several IO project

partners on the OE-VLSI component of their specialty.

The scientific contribution of this initial research work is limited to method-

ological issues; it concerns model integration rather than the development of

the model equations themselves; references where due are given in chapter 3.

1.6.2 Statistical modeling and characterization of an OE-VLSI
system

We have thoroughly examined the connection between the many efficiency and

accuracy aspects of a sophisticated OE-VLSI assembly and resulting across-
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the-board optical interconnect characteristics such as overall signal attenuation

and offset, latency, jitter, noise and ensuing bit error ratio (BER) figures.

A modeling and characterization approach of a strong statistical nature was

adopted. We have developed simple yet adequate stochastic models to cap-

ture the behavior and uniformity of the different subsystems of the optical

interconnect—driver circuit, VCSEL, optical path, photodiode and receiver

circuit. These models specifically address amplitude, timing and noise behav-

ior. The methodology is generally applicable; for the purpose of quantitative

analyses our models have been characterized based on detailed and extensive

measurements of the actual performance on OE-VLSI hardware from the IO

project (the converter boards presented in appendix A). In order to capture as

much information as possible, this measurement approach has been one of

dividing the parallel optical link in as many parts as possible—by cutting in

between driver and laser arrays, in front of and behind the fiber assembly, and

in between photodiode and receiver arrays.

Major attention is given to the statistical modeling of the butt coupling effi-

ciency between a VCSEL array and a multi-fiber connector. To this end, a 3-axis

positioning setup for a controllable alignment of an optical fiber alignment

and an OE-VLSI module has been realized. This system was autonomously

able to accurately scan the alignment-dependent coupled power between all

devices of an 8×8 VCSEL (or photodiode) array and a fiber.

We have used the acquired measurements to characterize a simple ray tracing

model for the expected coupling efficiency on an 8×8 VCSEL array. A stochas-

tic model (taking process variations into account) for the alignment-conditional

power coupling between a VCSEL and a fiber has been characterized as well.

When a fiber bundle is connectorized, the positions of the fiber facets are

mutually fixed relative to each other as well as relative to the alignment

features of the connector. When the connector is plugged into a package,

the misalignment of laser-fiber pairs at different positions of an O-E array is

therefore strongly correlated. We have combined our alignment-conditional

VCSEL-fiber coupling characterization with a model of the array-wide align-

ment of a connectorized fiber bundle to an O-E array. The latter model was

characterized for OE-VLSI packages and connectors of the IO project (courtesy

of fellow PhD student Olivier Rits; see also [Rits et al., 2004]).

On the IO project hardware, it turns out that both the inter-VCSEL variability

and the fiber bundle alignment uncertainty are significant. Effects with array-

wide correlation are produced by significant global translational misalignment,

and the smaller impact of global rotational misalignment turns out to be

dwarfed by the VCSEL process variations. In conclusion, we have derived a

practicable stochastic model for the array-wide laser-fiber coupling and have

characterized its distributions.

By bringing all characterized component models together, we have achieved

the quantification of all-inclusive signal attenuation and offset, latency devia-

tion, jitter, noise and ensuing bit error ratio (BER) figures, not only including
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the statistical evaluation of isolated optical channels, but also capturing the

statistical dependencies between different channels juxtapositioned within the

same array or package [De Wilde et al., 2007].

The results obtained have been directly put to work to evaluate the option

of using true source-synchronous signaling over optical interconnect with a

high physical parallelism, reducing the substantial per-channel clock synchro-

nization circuitry to one instance. We have also looked into dc-unbalanced

signaling to remove the need for data coding.

For the IO project hardware, the usage of a common logic threshold across

all channels, required for dc-unbalanced signaling, appears infeasible after all

models are combined. Efficient true source-synchronous signaling turns out

to be in reach in carefully designed systems.

The statistical modeling research is presented in chapter 4.

Acknowledgements The alignment-conditional measurements have been

performed in close cooperation with fellow PhD student Olivier Rits, whose

packaging research is kindly acknowledged [Rits et al., 2004]. He has con-

tributed in the ray tracing department as well. All remaining component

modeling work, the array-wide statistical power model and the global inter-

connect parallelism evaluation are personal efforts with support from my

advisor as to the correct application of statistics and a comprehensive notation

solution.

1.6.3 Substrate noise

In an OE-VLSI approach, optical receiver circuits are integrated in a chip

alongside each other and rapidly switching digital circuits. In this situation,

coupling of digital switching noise through the substrate can compromise the

accurate operation of the receiver circuits. Besides its relevance for OE-VLSI

systems, substrate noise is an important issue in all mixed-signal designs

where sensitive analog circuits are embedded in a hostile digital environment.

We have researched the intrusion of localized CMOS substrate disturbances to

nearby positions. To this end, we have implemented customizable substrate

noise generation circuits and a noise measurement circuit next to sensitive

receiver circuits of the IO project in 0.18–µm CMOS (figure A.6 on page 177).

We have assessed whether locally injected substrate noise could influence the

operation of the adjoining receiver circuits.

We have achieved a large substrate noise measurement bandwidth, which

can be explained from the detailed circuit behavior [De Wilde et al., 2006a,b].

The accurate wave tracing of pulses as narrow as 200ps has been demon-

strated. Furthermore, we have devised an approach to mitigate measurement

inaccuracies resulting from a noisy voltage reference or sampling time jitter.
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When one tries to simulate noise coupling effects in detail, the computational

overhead of existing substrate noise simulation tools (e.g., Cadence Substrate

Noise Analyst [2004]) is tremendous for all but the smallest designs. We have

performed such simulations, necessarily simplified to a certain degree, and a

good agreement between measurement and simulation was obtained.

The receiver circuits turned out to be adequately shielded against localized

substrate disturbances, yet we were able to identify one remaining disruptive

path to the unshielded bond pads of a sensitive bias net. We could confirm that

a guard ring protection of receiver circuits suffices to absorb local substrate

disruptions, thus limiting the problem of substrate noise coupling to global

supply and ground bounce, which has to be taken into account anyway.

The substrate noise related research is treated in chapter 5.

Acknowledgements The circuit design and the overall placement decision

have been personal efforts; for the actual CMOS layout colleague Wim Meeus

should be recognized. The evaluation of the noise measurement circuit was a

joint effort with my advisor prof. Jan Van Campenhout.

Our measurement setup was inspired by Nagata et al. [2000]. The approach

is however different from theirs as localized substrate noise is observed here,

involving much higher noise frequencies than the more commonly studied

global substrate noise effects (ground bounce or ringing).

1.7 Structure of the thesis

The organization of the different chapters is as follows. In the next chapter,

the OE-VLSI approach adopted in the IO project is presented. In chapter 3,

design automation issues are addressed. Chapter 4 takes on the statistical

modeling of the components of the optical link, following the natural flow of

data through the interconnect with a respective discussion of the transmitter

side, the optical path and the receiver side. Building on these models, the

question on the feasibility of dc-unbalanced and true source-synchronous

signaling is addressed at the end of the chapter. Chapter 5 discusses our

substrate noise research. Final chapter 6 puts forward concluding remarks.
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Chapter 2

OE-VLSI approach and
prototype realization

In this chapter the components involved in an OE-VLSI setup are discussed.

The first section introduces the problems associated with integrating optics

with CMOS in general, and indicates possible approaches towards a solution.

After this, the different components involved in the OE-VLSI setup of the IO

project are presented, with references to other approaches where relevant. We

start with components for optical signal generation and detection which can

be electrically interfaced. The integration of these components with CMOS

ICs is then addressed, followed by the optically accessible packaging of ICs

and the optical path itself. We complete the link by presenting the CMOS

circuits providing the interface between optoelectric components and general

logic gates.

2.1 Photonics and CMOS

As CMOS is the single dominating IC processing technology, apparently the

most straightforward approach would be the direct integration of optical

emitters and detectors in a CMOS processing flow. However, although silicon

(Si) is an ideal material for transistor realization, it turns out to be far from

straightforward to generate light with silicon. Its indirect band gap is cou-

pled with a far higher probability for electrons and holes to recombine in a

nonradiative rather than a radiative way [Ossicini et al., 2003]. This property

renders silicon badly suitable for LEDs or lasers, which are far easier realized

using direct band gap III-V compounds such as gallium arsenide (GaAs) and

indium phosphide (InP).

The second-most straightforward alternative would then be the integration of

III-V materials into the CMOS processing flow. The obstacle here is the lattice
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constant, which is much higher for common III-V compounds than for Si. The

lattices of the crystal structures are thus incompatible, making it very difficult

to grow III-V compounds on silicon wafers.

The third alternative is the heterogeneous integration (or hybridization) of III-V

devices with CMOS, where the incompatible crystal structures are grown

separately and stuck together by some method. Arguably the simplest OE-

VLSI approach—and the one used in the IO project—is the flip-chip bonding

of a piece of III-V wafer containing O-E devices to the CMOS [Goodwin et al.,

1991]. In this approach, tiny solder balls cater for the electrical connectivity

as well as the alignment and initial cohesion (before underfill) between both

wafers.

All three alternatives have been heavily researched since the 1990s. A tighter

integration than flip-chip bonding is indeed desirable, especially if one wishes

to consider intra-chip optical links instead of the inter- and intra-board links at

issue here. Although silicon photonics approaches towards on-chip interconnect

are beyond the scope of this text, we want to draw attention to some very

recent developments.

Silicon-only lasers have been demonstrated by Rong et al. [2005], reducing

the nonradiative recombination by embedding a reverse-biased p-i-n diode

in a silicon waveguide. A recent example of the second approach is the

development of a multiple quantum well (MQW) modulator exploiting the

quantum-confined Stark effect [Miller et al., 1984] in thin germanium (Ge)

structures which can be grown on silicon [Kuo et al., 2005, 2006]. There have

also been attempts to grow gallium arsenide on silicon with conformal epitaxy

[Neefs, 2000b]. Regarding the third approach, using direct heterogeneous

wafer bonding [Tong and Gösele, 1999]—uniting ultra-flat surfaces through

Van Der Waals forces—III-V devices can be directly coupled to silicon-on-

insulator waveguides [Roelkens et al., 2005]. Heterogeneous bonding with

wafer-scale processing methods permits to realize many devices in a low

number of steps. A very recent development even makes lasers with a hybrid

III-V/Si cavity possible [Paniccia et al., 2006].

2.2 Light generation

2.2.1 Generation or modulation?

Approaches for the generation of a modulated light beam are firstly distin-

guishable in two schools of thought: either the drive of a light source is

adjusted in time, or an invariable external optical beam is modulated.

For chip-to-chip interconnect, the variable-drive method is chiefly embodied

by vertical-cavity surface-emitting lasers (VCSELs) [Soda et al., 1979]. Other

manifestations such as LEDs and resonant-cavity LEDs are popular as well; yet

they cannot attain the near Gaussian-beam directionality of a laser which eases
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Figure 2.1: Essential structure of a bottom-emitting VCSEL (schematic cross-section

not to scale). The curved lines over the active region illustrate transverse intensity

patterns of different modes.

an efficient waveguide coupling. The common workhorse of the modulation

approach are multiple quantum well (MQW) modulators [Boyd et al., 1987].

Both approaches have their own benefits and disadvantages. For instance,

VCSELs benefit from not requiring the complexity of an external light source,

but the disadvantage is the supply, switching and dissipation of larger powers

in the electronic section. MQW modulators can be embedded in silicon, but

traditionally suffer from a worse contrast than VCSELs. A recent comparison

[Cho et al., 2006] suggests that the VCSEL approach is superior to the MQW

approach at relatively high bandwidths or high detector capacitances, and

vice versa in the lower case; still, taking note of the cutting-edge advances on

both fronts mentioned above, it is unclear when either method prevails.

2.2.2 VCSELs

A VCSEL is a laser realized with semiconductor processing methods on a

wafer of III-V material [Soda et al., 1979; Iga et al., 1984; Koyama et al., 1989].

The typical structure is shown in figure 2.1. Like any laser, the operation relies

on a resonant cavity and a gain medium. The resonant cavity is a spatial region

to which certain optical beam manifestations are confined by two opposing

mirrors parallel to the wafer surface. Each mirror is a distributed Bragg

reflector (DBR)—a succession of material layers with alternating different

refractive indices, through interference efficiently reflecting light around the

targeted emission wavelength. A reduced reflectivity of one mirror lets

part of the confined radiation escape, yielding an outbound optical beam
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perpendicular to the wafer surface.

The gain medium is a diode junction in between both DBR mirrors—which are

oppositely doped and electrically contacted—with one or more quantum wells

sandwiched in between. These very thin layers concentrate injected carriers in

energy states that contribute to stimulated emission, a process which amplifies

the confined optical radiation when passing through this active region. Lateral

confinement of carriers and photons is generally enforced by a round aperture

(�2–25 µm) in a buried oxide layer next to the quantum wells. When this

diameter is larger than a few microns, more than one optical standing wave

pattern (a mode) can satisfy the boundary conditions of the resonant cavity; the

VCSEL is then called a multimode VCSEL as opposed to a single-mode VCSEL.

Unlike modes of edge-emitting layers, all modes of a VCSEL exhibit nearly

the same wavelength, as enforced by the DBR mirrors, but show different

transverse intensity patterns. The emission of higher-order modes is more

divergent than the fundamental mode and can even exhibit a minimum in the

center (this effect is called spatial hole burning).
Various factors contribute in positive and negative ways to carrier and photon

concentrations; for an in-depth treatment we refer to Jungo [2003]; Zhang

et al. [2004]; Yu [2003]; Li and Iga [2002]; see also section 3.3.3. The observable

behavior is essentially a proportional relation between the outbound beam

power and the injected current beyond a certain threshold current, generally

in the mA–range. Above threshold, current changes result in optical power

changes with a second order dynamic transient response.

VCSELs have a number of desirable properties for parallel optical interconnect

applications: they are small, efficient and easily realized in two-dimensional

arrays. Furthermore, they can be tested on-wafer, permitting defect detection

before further processing.

2.2.3 Bottom-side emission

The creation of structures on and in a semiconductor wafer generally takes

place at only one side (the ‘top’ side); all but a thin layer remains bulk material

(the ‘substrate’). It is customary to refer to the top or bottom side of a wafer

or die using this frame of reference, rather than referring to the physical

orientation.

Top-emitting 850-nm VCSELs are the standard for data communication, and

are used in one-dimensional parallel optical links. The flip-chip bonding

of VCSELs with CMOS however calls for a special approach. As the metal

contacts are created at the top side, after flip-chip bonding this side will be

facing the CMOS. The VCSELs thus need to be bottom-emitting, involving

beam propagation through the substrate. This is a major problem for 850-nm

VCSELs, as emission at this wavelength is absorbed in the conventional GaAs

substrate within a few micrometers. Clearly, other approaches must be used,

such as the complete removal of the substrate, or the use of electrical vias. We
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Figure 2.2: Photograph of an 8× 8 VCSEL array die from Avalon Photonics—used in

the IO project—and a SEM close-up of one VCSEL.

mention that top-emitting approaches exist as well, with emission through

the CMOS substrate instead of the III-V substrate, where an ultra-thin layer of

silicon is grown on a transparent sapphire substrate to avoid absorption in

silicon [Liu et al., 2003].

2.2.4 Choice of wavelength

In the IO project, a wavelength different from 850 nm is used. The VCSELs are

based on indium gallium arsenide (InGaAs) quantum wells which stimulate

emission in the 960–980 nm range. There is a trade-off involving the precise

wavelength choice. As will be shown in the next section, the detector side

employs a hybridization approach similar to that of the VCSELs, resulting

in substrate-illuminated photodiodes. The emission wavelength should be

Figure 2.3: Photographs of infrared camera monitors showing light being emitted from

the VCSEL array.



36 OE-VLSI approach and prototype realization

sufficiently large, to avoid absorption of the generated light in the indium

phosphide (InP) substrate of the photodiodes when the wavelength approaches

950 nm [Beaudoin et al., 1997], especially at elevated temperatures. The

emission of wavelengths larger than 980 nm however requires a high Indium

content in the active region of the VCSEL, increasing the mechanical stress due

to crystal lattice mismatch. This mechanical stress might limit the lifetime of

the devices. Therefore, a compromise of 970 nm was made as to the emission

wavelength.

VCSELs have been realized in 8× 8 and 16× 16 arrays on a 250–µm pitch. A

large maximal output power level of 5mW was established to enable testing

of optical pathways with up to 10 dB loss. Oxide apertures of 8, 10 and 12 µm

were realized to evaluate the trade-off between the threshold current and the

efficiency. Ultimately, the VCSELs with 12–µm oxide apertures have been used

for the demonstrators as this allowed for the fastest modulation (at the cost of

an increased threshold current). Figure 2.2 shows a photograph of an 8× 8
VCSEL array die and a close-up of one VCSEL.

2.3 Light detection

2.3.1 External or integrated?

Optical detectors can either be realized on a separate III-V wafer—as are our

VCSELs—or directly integrated in CMOS technology; this is much more easily

achieved than in the VCSEL case. In the literature, a lot of work can be found

on the development of high-speed detectors designed and fabricated directly

in CMOS technology; for an overview we refer to Zimmermann [2004].

Integrated photodetectors avoid the cost of flip-chip bonding and external de-

tector manufacturing. External detectors have the advantage of not occupying

CMOS chip area, thus avoiding a trade-off between detector size and receiver

circuit size which restricts the attainable signaling rate. Furthermore, the

960–980 nm emission range at hand is at the high side of the silicon absorption

spectrum, yielding a reduced responsivity for CMOS photodetectors [Simpson

et al., 1999].

2.3.2 p-i-n photodiodes

In the IO project, external photodetector arrays were used. The associated

extra cost is not too high, as the post-processing of the CMOS before flip-chip

bonding is a wafer-scale process required anyway for the VCSEL arrays. A

practical advantage that also accompanies this choice is the full independence

of the CMOS technology as to the realization of O-E conversion devices.

The photodetectors of the IO project are positive-intrinsic-negative (p-i-n)

photodiodes [Watanabe and Nishizawa, 1950]. The typical structure is shown
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Figure 2.4: General structure of a p-i-n photodiode (schematic cross-section not to

scale)

in figure 2.4. Sandwiched between the p-n structure of a diode, an intrinsic

region is realized. The motivation for this is the manifestation of a very large

depleted region when a reverse bias voltage is applied. An incident photon

with a suitable energy can excite a mobile electron, creating an electron-hole

pair. When this occurs in the depleted region, the electron and the hole

quickly separate under the influence of the electrical field there. Incident light

of a suitable wavelength thus gives rise to a proportional electrical current

in addition to the very small saturation current of the diode (in this context

250 µm

80 µm

cathode

anode

Figure 2.5: Photograph of an 8× 8 photodiode array die from Albis Optoelectronics—

used in the IO project—and close-up of one photodiode.
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referred to as the ‘dark current’). The charge depletion gives rise to a sizeable

photodiode capacitance which has to be taken into account in receiver circuit

designs. The incremental capacitance decreases with higher bias voltages.

The active region of the diodes consists of an InGaAs absorbing layer, grown on

an InP substrate. The layer structure is optimized for high speed and maximal

absorption. An important parameter is the diameter of the detector. This

should be sufficiently large to capture all light from the fiber, as light missing

the detector reduces the received signal amplitude and could even eventually

be absorbed in an adjoining device, inducing crosstalk there. The optimal

detector diameter is a trade-off between the fiber core diameter, numerical

aperture and alignment tolerance on the one hand, and the photodiode

capacitance—which increases with device size—on the other. Detectors with

an 80–µm diameter have been used, which should tolerate a wide choice of

fibers. The dark current at room temperature and 2V reverse bias voltage is

6–7 nA; the diode capacitance is 505 fF on average. Uniform 8× 8 and 16× 16
arrays have been realized on a 250–µm pitch. Figure 2.2 shows a photograph

of an 8× 8 photodiode array die and a close-up of one device.

2.4 Flip-chip bonding

The heterogeneous integration of the VCSEL and photodiode arrays with

CMOS is performed using flip-chip bonding. In the IO project, an indium

(In) bump technology has been applied, an approach that has been first

demonstrated for O-E arrays on CMOS by Jahns et al. [1992]. The ductility of

indium decreases the mechanical stresses at ball joints, thereby increasing the

yield and lifetime.

The steps involved are shown in figure 2.6. The CMOS wafers are first

post-processed: solder is deposited on the wafer and reflown. Due to the

self-aligning effect during reflow, the accuracy on the position of the bumps

is better than ±0.5 µm. After the reflow, a polymer underfill is applied to

distribute stresses over the surface rather than acting only on the joints. This

underfill also protects the indium bumps when exposed to subsequent high-

temperature steps in further processing (such as the mounting of the BGA

package on the PCB). The O-E arrays are then thinned from 150 µm to 30 µm

to avoid optical absorption in the substrate and to allow fibers to approach the

O-E devices more closely. Before dicing, an anti-reflective coating is applied

to suppress Fresnel reflection losses. Figure 2.7 displays part of a hybridized

CMOS wafer with O-E arrays before dicing.



2.4 Flip-chip bonding 39

(a)

(b)

(c)

(e)

(f)

(d)

Figure 2.6: Schematic overview of steps involved in the flip-chip bonding process. (a)

CMOS bumping; (b) installation of VCSEL and photodiode arrays; (c) underfill; (d)

thinning; (e) application of anti-reflective coating; (f) dicing.
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Figure 2.7: VCSEL and detector arrays flip-chipped on a digital CMOS wafer containing

DTA ICs. The bumps above and below the O-E arrays (the light grey areas) are for

carrying a silicon block for MT pin alignment (see section 2.5). The outer bump ring is

used for a possible chip-scale packaging approach.
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2.5 Packaging and optical path

The packaging of OE-VLSI modules differs from the packaging of purely

electronic chips. Besides the common electrical, mechanical (IC to PCB) and

thermal (heat sink) interfaces, the package needs to provide an optical interface

from the chip to external optical waveguides as well. The adopted packaging

approach and the realization of optical waveguides have to be considered as a

whole, as the optical features in the package are only there to smoothly mate

with external waveguides.

2.5.1 Optical path: build-up or PCB-integrated?

There is a choice related to the combination of the optical path and the PCB that

carries the OE-VLSI chip: either the waveguides are realized inside the PCB,

or they exist on the outside using some build-up technology. One expects the

integrated approach to yield the most attractive end result. However, a large

amount of technological complexity is involved concerning the manufacturing

and embedding of the waveguides, routing aspects (how to cross over?), and

particularly, the coupling at waveguide endpoints with large two-dimensional

optical arrays of OE-VLSI modules, or optical connectors at the PCB edge. At

the beginning of the IO project, this complexity was still largely untreated

and even now, five years later, there are no embedded solutions addressing all

aspects at once.

Nevertheless, in the mean time there have been a number of successful partial

solutions as well as full systems avoiding crossovers, very large O-E arrays and

PCB edge connectors. Figure 2.8 illustrates the general idea of PCB-embedded

optical interconnect—exact positions of lenses and waveguides may still vary.

For a presentation of a recent full system realization and pointers to other

approaches, we refer to Schares et al. [2006].

2.5.2 MT/MPO-like approach

Although the IO project also targeted a chip-scale packaging approach [Marion

et al., 2004] for opto–PCB integration [Van Steenberge et al., 2006; Straub,

2004], for the main demonstrator a fiber-based build-up technology was

envisaged. The advantage is one of a practical kind: standard PCB technology

is applicable, and even standard pin grid array (PGA) or ball grid array (BGA)

packages are usable, except for the lid of the package which would provide

the optical access.

The interface of the package with the optical path has been inspired by the

mechanically transferable (MT) connector standard [IEC 61754-5] and is close

to the multi-fiber push on (MPO) connector standard [IEC 61754-7]. Figure

2.9 displays a 6× 12 MPO connector. The chief MT/MPO interface features
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Figure 2.8: General idea of the predominant approach adopted in present research on

OE-VLSI systems with PCB-embedded waveguides (cross-section).

Figure 2.9: View into the mating face of a 6× 12 MPO connector (provided by Tyco).
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Figure 2.10: Relevant dimensional features of a MT ferrule (view on the mating face).

The interface positions in green represent the 8× 8 positions used in the IO project;

the positions in red refer to a standardized 6× 12 MPO connector.
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are the following (see figure 2.10). Accurate mechanical alignment between

the two parties involved is provided by two parallel guide pins (�0.7mm)

at a spacing of 4.6mm attached to the mating part of one party, fitting into

corresponding holes at the mating part of the other party. Centralized between

these features, different optical channels terminate in a planar mating surface,

organized in a matrix at a pitch of 250 µm. To avoid row/column confusion,

the established terminology defines a row being parallel to the imaginary

line connecting the alignment pins/holes at the mating surface. Standard

MT defines a single row of 4, 8 or 12 channels; MPO extends this to 2 and 6

12–channel rows. The IO project choice for 8 8-channel rows is historically

driven by the OIIC project and the fact that multirow MPO was not yet well

established at the moment of decision. The exact choice between similar array

sizes is however more of a practical than a fundamental kind, though having

more columns than rows is arguably better to minimize the effect of guide pin

misalignment.

The similarity of this approach to MT/MPO standards and the present devel-

opmental stage of commercial multi-row transceivers add to the applicability

of our coupling efficiency characterization between VCSEL arrays and multi-

fiber connectors, which is discussed in section 4.3.

2.5.3 Package

2.5.3.1 General scheme

The IO packaging approach is applicable to general PGA and BGA packages.

Instead of a general featureless lid sealing the package, a special lid is used

with MT guide pins and a hole which comes above the O-E arrays after

application. Figure 2.11 shows the assembled package for the DTA IC, a

ceramic BGA with 302 balls.

Aiming for simplicity, the coupling of fibers to the O-E arrays is performed

through direct fiber butt coupling. Any connector with standard MT dimen-

sions can mate with the package. Still, for an efficient butt coupling the front

connector surface needs to be closer to the O-E arrays than is possible with

a common flat-front connector, given the thickness of a robust lid and its

minimal distance to the CMOS surface (to cater for bond wires). For this

reason an extra protrusion of 1.5mm of the connector through the hole in the

lid was adopted, yielding a working distance targeted at 50± 40 µm between

the mating surface of the connector and the accessible surface of the O-E

arrays. Figure 2.12 shows different connectors that have been used.

The dice in the experimental packages have remained bare. Encapsulation of

the dice will be required for long-term dust and moisture protection. Tech-

niques involving a transparent glass lid, polymeric encapsulants such as

silicone and parylene, or a microlens array, face plate or fiber array pigtail

glued into the lid could be applied to future packages, admittedly reducing
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Figure 2.11: Photograph of an assembled package with integrated optical access.

Two sets of MT guide pins—one set for the VCSEL array an one for the photodiode

array—are clearly visible (photo by CEA-LETI).

the simplicity of the approach if this involves an extra alignment step. Alter-

natively, the connector could be glued into the lid for a semi-hermetic end

product (yet less flexible).

The position of the lid relative to the hybridized CMOS has to be very accurate,

as this determines the quality of the optical coupling to (and from) the fibers.

For the ease of explanation, we designate position changes parallel to the

CMOS surface as XY-movements, and appoint the normal with the letter Z.

The position of the alignment pins determines the XY alignment; the vertical

position of the lid established the Z alignment.

Two separate packaging approaches have been developed: one using silicon

blocks for precise XY alignment, and one XYZ technique using index alignment

during assembly [Rits et al., 2004, 2006].

2.5.3.2 Silicon bench approach

The silicon bench approach is shown in figure 2.13. Two silicon blocks with

precision holes for the alignment pins are flip-chipped onto the CMOS, next

to the O-E arrays (the solder balls for this operation are also visible in figure

2.7). The precision of the XY alignment is determined by the precision of the

block and of the flip-chip process. This can be very accurate, typically around

1 µm. The alignment pins are glued into the silicon benches. After application
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(a) (b)

(c)

Figure 2.12: (a) an 8× 8 molded ceramic ferrule with POF ribbons (design by FCI).

(b) a commercially available 6× 12-ribbon multimode glass fiber cable with multipath

push-on (MPO) connectors that have been milled at the sides to create the required

protrusion (kindly provided by TYCO). (c) a connector prototype with alignment

features realized by deep proton writing (kindly provided by Michael Vervaeke of

the TONA department of the Vrije Universiteit Brussel; see Debaes et al. [2006] for

information on this technique).
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Figure 2.13: Packaging approach using silicon benches (photos by CEA-LETI)

Figure 2.14: Index alignment packaging approach (photos courtesy of Rits et al. [2004]).

Figure 2.15: 12-wide graded-index glass fiber ribbon with a fiber-to-fiber pitch of

250 µm (cable provided by Tyco).
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of a lid with deliberately oversized holes, the pins are additionally glued into

these holes in order to absorb forces in the lid instead of the benches.

The advantage of this approach is the high XY accuracy of the silicon benches.

No special considerations have to be made in the CMOS design except for

a big enough chip to hold the benches; the solder balls are placed on the

topmost passivation layer.

There are however some disadvantages. The Z alignment is to be provided by

other means. Although the base of the guiding pins is accurately positioned,

if the pins are even slightly off plumb, the XY alignment at the mating face of

the lid is impaired. When a connector is then pushed onto the lid—forcing

the mating face of the connector holes to align with the lid—this will force

the guiding pins upright. The glue in the lid holes will maintain the pin

positions there but cannot absorb the resulting torque, which is transferred to

an equivalent XY force at the base of the pins. The brittle silicon benches are

not resilient to such a force and will easily break.

2.5.3.3 Three-dimensional index alignment approach

The index alignment approach is illustrated in figure 2.14. A coordinate

measurement machine is used to discover the three-dimensional position of

marks on a lid with integrated pins relative to marks on the hybridized CMOS.

Using actuators, the lid is brought to the optimal location in a controlled way.

This optimal alignment is finally made permanent by a UV-curable adhesive.

For more information on this approach we refer to Rits et al. [2004].

The main advantage of this approach is that it is contactless w.r.t. the CMOS,

offering full 3-D alignment of 2 independent objects. The positioning accuracy

is worse than that of the silicon bench approach. It is estimated at ±5 µm,

which will turn out to be sufficient for this application (we refer to section

4.3.5 on the array-wide VCSEL-fiber coupling efficiency).

2.5.4 Optical path

The optical path is provided by graded-index fibers which exhibit excellent

properties; these are discussed in section 4.3.1. A cable for a two-dimensional

array of optical fibers consists of multiple fiber ribbons (figure 2.15) which

are stacked and terminated in a connector. Figure 2.16 shows the insertion of

such a cable into a DTA module.

2.6 O-E interfacing circuits

CMOS logic gates cannot directly modulate VCSELs and do not accept photo-

diode currents; to this end interfacing circuits are required. For each outgoing
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Figure 2.16: Manual insertion of a fiber ribbon stack cable
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Figure 2.17: Driver circuit on the DTA IC (in 0.35–µm CMOS; design courtesy of Helix

AG semiconductors)

signal, a driver circuit converts a CMOS logic input into a corresponding

current suitable for direct VCSEL modulation. At the receiver side, each

photodiode’s photocurrent is converted back into a CMOS logic output.

In a true OE-VLSI design, driver and receiver cells are directly integrated in

CMOS and located directly underneath the O-E arrays. This restricts the size

of the circuits in two dimensions to the pitch of the O-E devices. Hence, the

room for extra amplifier stages and decoupling provisions is limited.
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(a) Essential schematic (b) Current peaking principle

Figure 2.18: Driver circuit used for the 0.18–µm CMOS design (design courtesy of

Helix AG semiconductors). The NMOS transistors are driven in much the same way

as in figure 2.17(a); T3, T5 and T7 are current sources; the switches T2, T4 and T6 are

driven with a temporal dependency on the digital input as indicated on subfigure (b).
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2.6.1 Driver circuit

The basic functionality of a VCSEL driving circuit is switching the laser current

between two levels I0 and I1 as dictated by a digital input. The on-current I1
determines the maximal optical output power. The off-current I0 should be

low for a good contrast, but still well above the VCSEL threshold current Ith
to avoid turn-on delay and a slow dynamic laser response.

In the DTA IC, a simple but adequate topology was used (figure 2.17(a)). The

high-side p-FET T1 drives the constant current I1 into the VCSEL and a shunt

path, which is switchable through n-FET T2, diverting the modulation current

I1 − I0 = Imod away from the VCSEL using constant-current n-FET T3. When

the shunt path is active, the resulting VCSEL current is I1 − (I1 − I0) = I0,

otherwise it remains I1.

Using 0.35–µm CMOS, this approach is fast enough for 1.25Gbps signaling. In

the DTA IC, T1 is able to drive a maximal on-current of 12mA and T3 permits

a maximal modulation current of 8mA. Static power consumption is about

3.3V times the on-current; the additional dynamic dissipation is 2.7mW (at a

1.25Gbps pseudorandom sequence; 1mA/5mA drive). In CMOS technology

with smaller features, faster signaling is possible yet several problems arise

[Annen and Melchior, 2002; Razavi, 2003]:

• VCSEL current and voltage levels do not necessarily scale down at the

same rate as general logic cells. The fast low-voltage CMOS transistors

in 0.13–µm and smaller technologies cannot cope with source-drain volt-

ages larger than 1.5V—about the magnitude of the operational VCSEL

voltage. A solution here is to feed the VCSEL anode from an elevated

supply, and to use only low-side drive circuits. The solution applied for

the IO project’s 0.18–µm CMOS module is to use a slow 3.3–V transis-

tor for T1—this transistor is essentially static anyway—and fast 1.8–V

transistors for T2 (T4, T6) and T3 (T5, T7) (see figure 2.18(a)).

• The intrinsic VCSEL bandwidth does not necessarily scale with the

CMOS switching rate as well. Beyond a certain frequency—about 4–

5GHz for the IO project VCSELs—higher frequencies are attenuated.

This can be mitigated by an equalization approach (see also section 1.4.2.3

which mentions equalization in the context of electrical interconnect).

Figure 2.18 shows the approach adopted in the 0.18–µm CMOS design:

the low-pass effect of the VCSELs is compensated by a short initial

peaking of the current [Annen and Melchior, 2002].

• In a single-ended setup, power and ground noise easily couple into

the transmitted signal, especially at reduced supply voltages. Further-

more, large MOSFETs switching between saturated and non-saturated

regions of operation take considerable time to do so, which can limit

the attainable bandwidth increase. A solution is to apply a differential
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Figure 2.19: Simplified view of the receiver circuit. The transimpedance amplifier is

shown in more detail in figure 2.20.

driver topology, which is robust to power-ground noise and maintains

saturation in all constant-current MOSFETs. We refer to Sialm et al.

[2006] for more information on differential driver design.

2.6.2 Receiver circuit

The purpose of a receiver circuit is the conversion of the photodiode current

signal into a rail-to-rail voltage signal suited to drive CMOS gates. For a recent

in-depth review of CMOS receiver circuits we refer to Emami-Neyestanak

[2004]. The current-to-voltage conversion is performed either by a transimpe-

dance amplifier (TIA) or an integrating front-end circuit. In the TIA approach,

the photocurrent signal is passed through a resistor, yielding a voltage signal

which is amplified further on. In an integrating front-end, the photocurrent

is integrated over a capacitor, the voltage across which is sampled at regular

intervals; successive samples are compared to reconstruct the digital signal.

In the IO project hardware, the more common TIA approach has been applied;

it allows the separation between the reconstruction of an optical signal to

CMOS voltage levels and the temporal interpretation of this signal as a

sequence of bits. A benefit is testability: the uninterpreted signal can be

sampled off-chip if desired, or diagnosed with an oscilloscope. It additionally

allows on-chip per-channel retiming circuits to be placed at a distance, outside

the array. Figure 2.19 shows the building blocks of the circuit used in the

0.35–µm CMOS DTA IC design. We will now briefly discuss the composition

of this setup.

Small current, high capacitance Photocurrents range from a few µA to a

few tens of µA and thus are small. As mentioned above, a photodiode
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Figure 2.20: Transimpedance amplifier of the DTA IC in 0.35–µm CMOS with two

transconductance(gm)-transresistance stages (design courtesy of Helix AG semicon-

ductors).

exhibits a sizeable capacitance (in the IO project about 0.5 pF). If the voltage

across a photodiode changes, ensuing parasitic currents will be added to the

photocurrent signal. For instance, a voltage change of only 10mV over 1 ns

will contribute an average parasitic current of about 5 µA. The combination

of the high transimpedance needed to convert the photocurrent to a sizeable

voltage, and the low input impedance of the receiver required for a steady

voltage across the photodiode, are counteracting constraints.

A transimpedance amplifier (TIA) is a circuit realizing both the low input

impedance and the high transimpedance requirement. Figure 2.20 shows the

TIA architecture used in the DTA IC. Two transconductance-transresistance

stages constitute a voltage amplifier. The sizeable voltage swing at the output

controls a transistor which assimilates the photocurrent; the large voltage

amplification keeps the input voltage much more steady than the output

voltage.

Limiting amplifier and decision control Although the output of the TIA

is a voltage signal, its swing is still rather limited if a high bandwidth is

envisaged. Therefore a second amplifier is put into action which amplifies

its voltage input to a signal adhering to standard CMOS logic levels. An

additional postamplifier protects the limiting amplifier from having to drive

high capacitive loads.

In the DTA IC, the limiting amplifier is simply a CMOS inverter. A low-pass

filter on the output of this amplifier (with a time constant in the µs range)

provides decision level control (see figure 2.19). It controls a photodiode-

shunting current source which strives to bias this inverter around its midpoint.

Hence the decision control loop adapts to an unknown average photocurrent.

This however necessitates dc-balanced signaling to avoid the decision point

running away during otherwise long runs of 0s or 1s. In section 4.5 we

examine whether it is feasible to open the control loop and feed it from
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another channel, thus relieving us from the dc balancing requirement.

Test provisions Besides the components required for correct operation of the

receiver circuit, there are test provisions as well, which allow boundary scan

testing and the functional verification of the operation of the receiver circuit

in itself. We refer to section 3.4 for additional information on this subject.

Bandwidth and sensitivity Although the input voltage is more steady than

the output voltage, it is not entirely constant: if a photocurrent swing ∆Iin
yields an output swing ∆Vout = R · ∆Iin (where R is the transimpedance),

the input voltage will exhibit a voltage swing of ∆Vout/Gamp (where Gamp is

the gain of the gm/gm amplifier). The effective input impedance R/Gamp,

combined with the aggregate capacitance C (photodiode depletion and input

MOSFET), brings on a first-order response with time constant τ = RC/Gamp—

the dominating time constant which limits the bandwidth of the system.

The transimpedance R fixes the minimal sensitivity of the receiver, as the limit-

ing amplifier needs a ∆Vout ≥ 50 mV in order to limit intersymbol interference

to a reasonable amount (as predicted by worst-case simulations for 0.35–µm

CMOS at 1.25Gbps).

The bandwidth Bamp of the gm/gm voltage amplifier has to be high enough:

the associated time constant τamp = 1/
(
2πBamp

)
should not exceed τ/2 to

ensure the stability of the feedback loop of the TIA. This constraint fixes the

minimal tail current of the amplifier stages and hence the power consumption

of the TIA.

The design sensitivity has been established at 40 µA peak-to-peak photocurrent,

which is much higher than the thermal noise level. This choice was made

to minimize the overall link dissipation while allowing up to 7dB loss in

the optical path. The eventual total receiver power consumption amounts

to 10mW. The sensitivity choice additionally assures high resilience against

noise from other channels and digital logic.

0.18–µm CMOS receiver For the receiver design in 0.18–µm CMOS technol-

ogy, the gm/gm amplifier approach used in the DTA IC is suboptimal as

the transistor properties make it difficult to realize a robust gain with this

topology. A differential amplifier circuit was adopted (figure 2.22), with a

cascode configuration to maximize the attainable gain-bandwidth product.

The attainable bandwidth is 2.5Gbps, with a power consumption of 90mW

and a sensitivity of 10 µA peak-to-peak photocurrent.

The differential approach provides resilience against supply noise and ground

bounce as well. The reason for this resilience is the following. As shown in

figure 2.21, the positive input of the TIA is connected to the photodiode, and

the negative input to a capacitor matching the photodiode capacitance. Any
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Figure 2.21: Fully differential topology of the 0.18–µm CMOS receiver circuit. The

transimpedance amplifier is shown in more detail in figure 2.22.
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Figure 2.22: Differential transimpedance amplifier of the 0.18–µm CMOS receiver

circuit (design courtesy of Helix AG semiconductors).
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current injected by a voltage disturbance across the photodiode will thus cause

an identical injection from the capacitor. Both contributions will be subtracted

from each other by the TIA, yielding a zero net effect. In practice there was

a noticeable effect, caused by a higher-than-expected effective photodiode

capacitance due to the high parasitics of the wiring of the metal-on-glass

carrier (shown in section A.3.3).



Chapter 3

Design automation issues

In this chapter we discuss basic electronic design automation (EDA) for OE-

VLSI. The discussion addresses methodological issues. Most efforts reported

upon in this chapter have been performed in 2002, several years before the time

of writing (2007). We have included references to recent scientific publications

where applicable.

The design of OE-VLSI systems consists of several steps, each needing some

form of EDA support. Some major steps related to the O-E aspect are the

following.

1. Design creation
This comprises the necessary EDA tool support at the IC and PCB

level for instantiating and designing different elements of the optical

interconnect: component libraries, interface definitions, and placement

and routing support.

2. Design simulation
After design creation and before production, the designer should be able

to simulate the optical interconnect within the context of a digital system

in order to verify the configuration of the optical interconnect and the

timing closure of the digital system, e.g., at a small set of target operating

points. This requires analog simulation models for the elements of the

optical link that can interface with one another in a circuit-level simulator.

Additionally, mixed-signal simulation of the interconnect with the digital

system should be possible.

3. Extraction of system-level properties
This point deals with the extraction of important system-level properties

of the optical interconnect for a certain interconnect configuration: over-

all feasibility, timing characteristics (delay, jitter, skew, rise/fall times),

reliability (e.g., bit error rate (BER)) and production and operating costs.
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The extracted timing characteristics can be used in a digital timing

analyzer to verify timing closure for a certain digital design without

the need for a mixed-signal simulation. For the extraction of reliability

figures, modeling of different kinds of randomness and uncertainty in

various locations of the interconnect is required.

4. Design space exploration
Design space exploration support assists a system designer to attain the

optimal trade-off between system-level interconnect properties, after a

design-specific specification of boundary conditions and a global cost

function for these properties. This means that the EDA tool should

be able to assess design choices in order to comply with requested

interconnect properties for a given design. To this end, system-level

interconnect properties should be extracted over the design trajectory of

the parallel optical interconnect. An analysis of these data can then be

used to make this estimation.

The succession of the different steps above corresponds to the viewpoint of an

EDA tool developer. It is a bottom-up approach, where the implementation of

latter steps depends on the former ones. A digital system designer will likely

adopt more of a top-down approach. Starting from the boundary conditions of

the system at hand, firstly the design space will be explored (step 4) in search

of an optimal trade-off of predicted system-level properties (step 3). Then the

design will be created (step 1) and simulated (step 2) in order to verify wheter

the predicted system level properties are actually achieved (again step 3).

3.1 Methodological aspects

We now consider a proposed methodology for implementing this support,

and refer to more detailed discussions of realizations made.

3.1.1 Design creation

At the IC level, pads for electrical interconnect are usually provided as library

items that hide the internal complexity of internal buffers and electrostatic

discharge (ESD) protection provisions from the designer. The IC designer

receives an opaque layout view of the pad, where the only marked parts

are the outline, the location of the physical pad, an internal virtual pin to

connect the signal to, and some power tracks. For the driver and receiver

circuits on which the optical arrays are flip-chipped, the same approach can

be followed. Support for interconnect testing after production (boundary scan

testing) could be implemented in a way compatible with standard JTAG (Joint

Test Action Group) provisions (see subsection 3.4).
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At the PCB level, the physical design of the waveguide routing requires a

substantial extension of the functionality of traditional PCB design tools.

Different experimental technologies require different specialized software

support. Ribbon stack and flex approaches—which are build-up technologies

on the PCB—do not interfere with the PCB layout router. PCB placement

tools are only involved in the placement of the OE-VLSI module and possible

optical card edge connectors; only standard package geometry definitions are

involved. The exact location of the involved components can be easily exported

to a file to serve as a set of input boundary conditions for a specialized routing

tool.

In contrast with the build-up approach, a waveguide-embedded approach

requires tight integration with PCB placement and routing tools (e.g., to

avoid collisions with via holes, and to control geometrical aspects such as the

spacing and curvature of the waveguides). Such PCB-level EDA support is

not addressed here because of the high technological specificity of different

experimental embedded-waveguide approaches. An analysis of the techno-

logical characteristics of one approach and the associated implementation of

placement and routing tools would constitute a work by itself.

3.1.2 Pointwise design simulation

For electrical circuits, the established technique for pointwise simulation (i.e.

with deterministic rather than stochastic inputs) requires simulation models

that can be interfaced to other circuits and understood by a circuit simulator.

It is desirable to maintain this methodology for the (co)simulation of optical

interconnect. For the design of individual complex OE-VLSI components, it is

generally beneficial to model all physical aspects in detail, resulting in models

which involve very detailed simulators using partial differential equations

(PDEs). These kind of simulations are very accurate, but require finite-element

spatial discretization, which is far more time-consuming than the simulation

of traditional electronic circuit components.

Hence, we have researched simulation models that trade in some precision

for simulation time, and that could be emdedded into a traditional circuit-

level simulator. This involves finding a way to introduce optics into circuit

simulations, providing compatible interfaces between involved components

and dealing with IP protected models for driver and receiver circuits. Section

3.3 provides a detailed treatment of this subject.

3.1.3 Modeling uncertainty

For the extraction of system-level properties related to timing and reliability,

pointwise simulations alone do not suffice. We have to take various sources

of uncertainty into account. These sources belong to three categories: man-

ufacturing process variations, operational deviations (e.g., optical coupling
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misalignment) and random noise processes. For each contribution to uncer-

tainty, a probability distribution can be assumed. Estimating the effect of

different random contributions can be done in two ways:

• Using Monte Carlo simulations of the circuit-level models, when point-

wise simulations are fast enough

• By mathematical modeling of the distributions involved and their com-

position

In this work, a combination of both techniques is used, with an emphasis on

the second method. It arguably provides more insight into the appearance

of obtained results. In doing this, we have moved away from circuit-level

models—and hence from general EDA tools—towards statistical descriptions

of relevant features. The work on uncertainty modeling is treated in the next

chapter.

3.1.4 Design space exploration

When an optical interconnect system is being conceived for a particular appli-

cation, a large number of design options are available for O-E devices, their

integration with CMOS and associated driving/receiving circuits, systems for

signal encoding and clock recovery, waveguides, connectors and packaging

methods yielding optically accessible chips. The choices to be made range

from decisions on overall architecture to the fine-tuning of parameters such as

the numerical aperture of a fiber.

Many choices have a profound impact on system-level properties of the

interconnect: feasibility, timing characteristics, reliability and production and

operating costs. Exploring the design space and making the right choices is

not a simple task, as multiple objectives are to be optimized simultaneously,

and the effect of individual choices on the combined system is not easily

quantified.

To alleviate the interconnect designer’s work, it would be useful to have a

systematic way of making these design choices, i.e., constructing a design

methodology for parallel guided-wave optical interconnects in an OE-VLSI sys-

tem. The eventual target is to formalize the result of this design methodology

development into a design tool. When the designer states some interconnect

requirements, this design environment should assist her in making decisions

on product and parameter choices. To achieve this goal, a methodology

development program comprising three stages has been envisaged (figure

3.1):

1. To begin with, the combined impact of individual link building block

variations on the properties of the complete interconnect system is
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Figure 3.1: Proposed design methodology development in three stages

investigated. This comprises the development of tools to predict how

system-level link properties will change when certain parameters are

adapted.

2. In a second stage, the design space of optical links is searched for setups

that yield favorable system-level properties. The Pareto-optimal front

is constructed: this is the remaining set of setups after discarding those

that are uniformly worse than others with respect to the system-level

properties. Essentially, this front will result in a multi-objective solution

for optical links, in such a way that, for each solution, no system-level

property can be improved without making some other property worse.

3. In a third stage, using these front data, a design tool is developed that

helps a system designer attain the optimal trade-off between system-level

properties, after a design-specific specification of boundary conditions

and a global cost function for these properties. The tool searches for

the system-level properties corresponding to this optimal trade-off and

maps them onto a design setup expected to yield these properties. In

essence, this is the reverse mapping of what is done in stage 1.

This work was originally planned in 2002. Somewhat later, fellow researchers

from the Lyon Nanotechnology Institute (INL) had realized appropriate EDA

support for the automated optimization of optical links. We refer to Mieyeville

et al. [2004] and Tissafi-Drissi et al. [2004] for a discussion of their modeling

and optimization approach. It focuses on the automated determination of

optimal transistor dimensions for OE-VLSI driver and receiver circuits so as

to optimize the link power and bandwidth according to a given trade-off.

Our attention then shifted to component simulation issues. In a recent project

on intra-chip interconnect [PICMOS, 2006], we have worked together with
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INL on a framework for the systematic simulation-based predictive synthesis

of on-chip optical interconnect [O’Connor et al., 2007]. We have drawn on

the acquired modeling knowledge to develop and characterize a Verilog-

AMS simulation model for a µm-sized distributed Bragg reflector (DBR) laser

(research work of fellow Ph.D. student Joris Van Campenhout). Appendix B.2.2

shows the Verilog-AMS implementation of this model; for more information

we refer to O’Connor et al. [2006c].

The following sections give a more detailed representation of the actual

achievements and concepts.

3.2 Optical link building blocks at the CMOS level

The first occurrence of physical inter-chip interconnect in the design flow is

the instantiation of the external interface when designing an IC. For traditional

electrical interconnect this is the ring of bond pads. In an OE-VLSI system this

is the area on which electro-optical conversion components are to be flip-chip

mounted and where driver and receiver circuits are located (see figure 3.2).

The CMOS-related data of the area underneath the O-E arrays can be delivered

to an IC designer as a design kit library with cells having a symbolic view, a

layout view and a digital and analog simulation view. The difference with

traditional electrical perimeter I/O is the availability of I/O provisions and use

of flip-chip pads at the center of the IC (these pads are clearly visible on figure

2.17(b) on page 48). However, as surface-based electrical interconnect also

makes use of the very same ingredients not much supplementary complexity

is involved for the introduction of OE-VLSI related CMOS cell libraries. The

electrostatic discharge (ESD) protection problem associated with surface-level

I/O pads is even reduced in the OE-VLSI case: in a packaged OE-VLSI module,

all pads are already connected to laser and photodiode arrays, whereas general

surface-level electrical I/O pads are still susceptible to ESD in an unmounted

package.

To protect the intellectual property (IP) of the interfacing circuits, the layout

view can be reduced—much in the same way as is done in standard cell

libraries—and the analog simulation model can be delivered as a precompiled

netlist or a simplified behavioral model. In the latter case, driver and receiver

circuits are broken down into parts, the behavior of which can be approxi-

mated by a simple description in a behavioral language like Verilog-AMS or

VHDL-AMS. In section 3.3.2, this modeling is discussed.

3.3 Design simulation

The most important circuit simulators are the industry-standard analog simu-

lator SPICE and the mixed-signal extensions to the two major hardware de-
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Figure 3.2: DTA IC in 0.35–µm CMOS. The photodiode and VCSEL arrays are to be

flip-chip mounted onto the marked areas. External circuits and power connect to the

driver and receiver circuits through virtual ‘pins’ at the boundary of the areas.
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Figure 3.3: Sample transient simulation of an electrical-optical-electrical link. In this

figure, the VCSEL model is instantiated with parameters exaggerating the second-order

oscillatory response. The time-of-flight is set to zero.

scription languages Verilog-AMS and VHDL-AMS. The latter two languages

are to be preferred over SPICE for optical link modeling as they provide

a much better readable model description, although the intrinsic power of

expression of all three languages is quite similar (for analog simulations). The

analog and mixed-signal (AMS) languages allow for the direct expression of

differential equations, and natively support other physical units than voltage,

electrical current and time. A detailed overview of the differences between

Verilog-AMS and VHDL-AMS, differences between both languages and imple-

mentation intricacies (in this case concentrating on the modeling of an airbag

system) has been made by Pêcheux et al. [2005].

We have implemented circuit-level simulation models for the most important

link components in Verilog-AMS and integrated them into a simulation frame-

work (which concretized to Cadence Virtuoso DFII). The different simulation

models can be chained together to simulate optical interconnect (figure 3.3

shows a simulation example). In the next section, some intricacies associated

with circuit-level modeling of optoelectronic systems are touched. Thereafter

our model implementations are discussed.
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3.3.1 Introducing photonics in circuit simulators

3.3.1.1 Spatially independent models

The determining factor for the high simulation speed attained by electrical

circuit simulators is the limited modeling freedom. Here, models for dynamic

systems are described with systems of ordinary differential equations (ODEs)

containing only time derivatives. Explicit spatial dependencies are forbidden

as these require PDEs and time-consuming finite-element solvers. The result-

ing disadvantage is a reduced accuracy as spatially distributed quantities (e.g.,

photon or carrier distributions in a laser) are necessarily treated in a lumped

way. To mitigate this problem, such distributed quantities are often expressed

as linear combinations of fixed spatial functions, the coefficients of which are

then treated as basic time-dependent node values. Section 3.3.3.2 focuses on

this aspect.

3.3.1.2 How to de�ne light

The analog-enriched hardware description languages (HDL) VHDL-AMS and

Verilog-AMS explicitly support quantities other than voltages and currents.

Different components can be connected through interface ports involving

quantities of virtually any physical unit. There are only two ways to attribute

a quantity to an interface port: either as a potential at the port, or as a flow

through the port. This viewpoint is very suitable for a number of systems; for

instance, a thermal system can be well described with ports and nodes having

temperature as the potential and heat transfer (= power) as the flow.

For light, two choices have to be made: one about the dimension of light, and

one about its classification as a potential or a flow.

The ‘dimension’ of light The petahertz-range oscillatory nature of light

considered as a form of electromagnetic radiation is obviously much too

detailed to be efficient in a time-domain simulation. Furthermore, as discussed

above, spatial variability cannot be handled except for a breakdown in one

‘lumped’ or a few nodes or interface ports (e.g., one port per mode or per

wavelength). For outbound or incoming light, a good choice of dimension

would be the instantaneous power of the beam (or part of it: mode, wavelength,

. . . ), which is a well-acquainted dimension in the electrical domain as well.

A potential or a flow? At first sight, light should be naturally classified as a

flow (an intensive nature). There is a problem though: Kirchhoff’s Current

Law [1845]—enforced by circuit simulators on flow branches—does not apply

to optics. Light can be absorbed in media, and photons traveling in opposite

senses through a waveguide do not compensate for each other like opposite

currents in a wire. For that reason, it is easier to represent the optical power
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as a potential value at an interface port (an extensive nature), and explicitly

provide for light propagation in simulation model descriptions. Also note

that bidirectionally used waveguides require separate interface ports for each

direction.

3.3.2 IP protection of interfacing circuits

VCSEL driver circuits and photodetector receiver circuits are (normal) CMOS

designs, hence their internal operation can be natively simulated by electrical

simulation tools given accurate transistor models.

However, the detailed circuit diagrams are usually not available, as circuit

design corporations want to protect their intellectual property. As mentioned

before, one way to tackle this is to deliver the analog simulation model as a

precompiled netlist (with due encryption). Another solution is the provision

of a simplified behavioral model. This maintains the open accessibility of

simulation models, yet with the trade-off of a less accurate simulation than

can be provided by a transistor-level model.

Figure 3.4 shows a way to represent the driver and receiver circuit of the IO

project as a simplified behavioral model. This methodology is applicable to a

broad range of driver and receiver circuits. The simplified behavioral model

can be looked upon as a parameterized block diagram (such as figure 3.5).

In this block diagram, the different blocks represent circuit subparts that can

be described by equations, the complexity of which is coarse enough to not

reveal the exact circuit design, yet detailed enough for use in a link simula-

tion. In practice, the designer of these circuits in the IO project [Helix AG

semiconductors] represented the behavior of the building blocks as a circuit

of linear electrical components (resistors, capacitors, inductors), transmission

lines, amplifiers, controllable switches and current/voltage limiters. These

elements should suffice to represent the behavior of the great majority of

driver or receiver circuits.

The Verilog-AMS code for the behavioral driver/receiver circuits can be found

in appendix B.1.

Models and parameters in general The actual CMOS design does not re-

quire parameter extraction effort as the characterization of the CMOS prim-

itives being used is the responsibility of the CMOS foundry. Usually this

information is included in the design kit distribution for the technology. The

appearance and parameters of the simplified behavioral model is obtainable by

a managable topological generalization of the design and simulation matching

with the transistor-level description.

We should mention that the reverse mapping—simplified model to transistor-

level description—is not as easy, especially when the performance is pushed

to its limit. Hence, the simplification can be considered a real protection of
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Parameter Description

Cintx driver input capacitance

ts time constant of current switch

IMOD modulation current

IBIAS bias current

Cd driver output capacitance

qCd driver output capacitance proportion to ground

Rd driver output resistance

(a) driver model

Parameter Description

Cinrx receiver input capacitance

qCinrx receiver input capacitance proportion to ground

Cpd photodiode capacitance

A preampli�er gain

fa preampli�er bandwidth

A2 postampli�er gain

f2 postampli�er bandwidth

frollon roll-on corner frequency

Q quality factor

tdelay intrinsic latency

(b) receiver model

Figure 3.4: Schematic representation and parameters of the actual behavioral driver and

receiver circuit model (courtesy of Helix AG semiconductors). The colored background

agrees with the building blocks of figure 3.5.
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transimpedance amplifier postamplifier

decision circuitlimiting amplifier

equalizerphotocurrent input

digital output

Figure 3.5: Building blocks of a photodiode receiver that can be easily modeled in an

analog HDL language

substrate

p-type DBR

n-type DBR

anode

emission

cathodecathode

active region

oxide

region containing
S photons

region containing
N electron-hole pairs

Rs

Ra

Ca

Figure 3.6: Simple VCSEL model with lumped carrier and photon distributions. The

electrical parasitics circuit is indicated.

circuit IP. We refer to Tissafi-Drissi et al. [2004] for the discussion of a platform

addressing the automated dimensioning of interfacing circuits in a whole-link

approach. We furthermore refer to Sialm et al. [2006] for a driver transistor

sizing methodology.

3.3.3 VCSEL model

3.3.3.1 Elementary lumped model

The simplest practicable simulation models for O-E devices are obtained by

treating all spatially distributed phenomena as if they exist uniformly inside a

volume. Such lumped models are necessarily less accurate, yet they can be

more easily characterized than sophisticated models.

Model equations From a lumped-modeling perspective, the essential quan-

tities inside a VCSEL are the number of electron-hole pairs N in the active

region and the number of photons S confined by the DBR mirrors and the
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oxide aperture (this is indicated on figure 3.6). Given the reduced reflectivity

of the bottom mirror, the outbound optical power L is given by

L =
αm · vg · S · hν

l
, (3.1)

(see, e.g., [Jungo, 2003]; we have adapted the notation for simplicity—

regrettably there is no established canonical notation). Here, αm is the

transmission coefficient of the mirror (dimensionless), vg the average photon

velocity (m/s), l the average length of a cavity roundtrip (m) and hν the energy

of one photon (J).
The basic electrical parasitics circuit is indicated on figure 3.6 as well, with

Ra and Ca the parasitics of the active region, and Rs the series resistance

established by both DBR mirrors and the metal-semiconductor contacts. The

dotted diode shape indicates the effectively injected current I in the active

region; the voltage across this ‘intrinsic’ diode can be well approximated

[Jungo, 2003] using an adaptation of the well-known Shockley [1950] relation:

V =
nkT

q
ln
(

N
Ne

+ 1
)

(3.2)

Here, kT/q is the thermal voltage, and n and Ne are fitting parameters.

The dynamic process between carriers and photons has been described for

the first time by Statz and deMars [1960] with several later improvements; see

Jungo [2003]; Zhang et al. [2004]; Yu [2003]; Li and Iga [2002] for an overview.

The quantities N (t) and S (t) are interpreted as reservoirs subject to several

mechanisms influencing their rate of change. A detailed treatment of the

contributions in these rate equations is outside the scope of this text. Suitably

approximated, the rate equations can be written as

dN (t)
dt

= ηi
I (t)

q
− N (t)

τN
− G

N (t)− Ntr

1 + εS (t)
S (t) (3.3)

dS (t)
dt

= β
N (t)

τN
− S (t)

τS
+ G

N (t)− Ntr

1 + εS (t)
S (t) (3.4)

In the right-hand side of both equations, the first term stands for the basic

augmenting mechanism: for N, carriers injected from the outside (with an

efficiency factor ηi; q is the electron charge) and for S, spontaneous emission

resulting from recombining carriers (with a probability factor β). The second

term reflects recombination and loss mechanisms for carriers and photons,

with respective effective time constants. The third term is the mechanism on

which the laser operation relies: stimulated emission—the recombination of

a hole and an electron when a photon passes, yielding another photon with

identical characteristics. The specific rate with which stimulated emission

occurs is proportional to the photon density and the logarithm of the carrier



68 Design automation issues

density, and saturates at elevated photon densities. The expression used in

equations 3.3–3.4 is an approximation linearized for N (t), where Ntr is the

carrier density which must be surpassed to achieve lasing operation, G is a

proportionality factor and ε establishes saturation of stimulated emission at

elevated photon densities.

Steady-state behavior A steady-state solution for equations 3.3–3.4 can be

analytically obtained by setting the left-hand side twice to zero and solving

for N and S. The result for S is required to derive L according to equation 3.1;

the result for N is not that important in this context. After the elimination of

N, a quadratic equation for S appears:

GτN + ε

τS︸       ︷︷       ︸
a

·S2 +
[

1
τS

+ (1− β) GNtr −
ηi I
q

(GτN + βε)
]

︸                                                 ︷︷                                                 ︸
b

·S − ηi I
q

β︸     ︷︷     ︸
c

= 0 (3.5)

The only physically possible solution is the positive root:

S(I) =
−b +

√
b2 − 4ac

2a
(3.6)

It turns out that generally 4ac is numerically much smaller than b2
. As long as

b is positive, S will be negligible. Only above a certain threshold current Ith—at

which b becomes zero—will S become sizeable. S will then be approximately

equal to −b/a and turn out to be proportional to I − Ith. This gives rise to the

following archetypal steady-state model:

L (I) ≈
{

η (I − Ith) if I > Ith

0 otherwise

(3.7)

with these parameters:

Ith =
q
ηi
·

1
τS

+ (1− β) GNtr

GτN + βε
(3.8)

η =
αm · vg · hν

l
· ηi

q
· GτN + βε

GτN + ε
(3.9)

Although Ith and η depend on a good number of material and construction

related parameters, their extraction from measurements is very simple: a trend

line is fitted to LI-measurements above threshold; the intercept and slope of

the trend line yield the sought parameters. Self-heating of the VCSEL disrupts

the linear relation at elevated drive currents (this is discussed below). This

simple model will be applied in section 4.2.2.1 (page 86); LI-curves are also

shown there.
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Small-signal behavior The small-signal behavior of a VCSEL describes how

small (in practice less than about 10%) dynamic deviations of the current

around an operating point I0 translate to changes of the optical emission. In

this case, deviations of all dynamic quantities can be expected to be small:

I (t) = I0 + ∆I (t) (3.10)

N (t) = N0 + ∆N (t) (3.11)

S (t) = S0 + ∆S (t) (3.12)

In this case, equations 3.3–3.4 can be linearized around the operating point:

d∆N (t)
dt

≈ ηi∆I (t)
q

+
[
− 1

τN
− GS0

1 + εS0

]
∆N (t)− G (N0 − Ntr)

(1 + εS0)
2 ∆S (t)

(3.13)

d∆S (t)
dt

≈
[

β

τN
+

GS0

1 + εS0

]
∆N (t) +

[
− 1

τS
+

G (N0 − Ntr)
(1 + εS0)

2

]
∆S (t) (3.14)

In order to eliminate ∆N (t) and d∆N (t) /dt from this linear differential

equation system, equation 3.14 needs to be differentiated once more; after

the elimination a second-order linear ordinary differential equation in ∆S (t)
arises (which we omit here owing to notational complexity). ∆S (t) will exhibit

a (typically underdamped) second-order response to ∆I (t). The intrinsic

modulation transfer function can be written as

H (ω) = H0
ω2

R
ω2

R + jωγ−ω2
, (3.15)

where H0 is a scale factor, ωR is the relaxation oscillation frequency and γ
the damping coefficient, all of them dependent on the operating point (closed

forms for these parameters are very lengthy but easily obtained with symbolic

mathematical manipulation software; we omit them here).

The complete small-signal VCSEL response can be regarded as a composition

of the parasitic elements and this intrinsic response.

For characterization purposes, a vector network analyzer can be connected

with one port to a current-biased test VCSEL and with the other port to a

reverse-biased fast photodiode optically coupled to the VCSEL. It performs a

frequency sweep of the response to a small sinusoidal superimposed VCSEL

current, measuring the magnitude and phase of the ac component of both

the optical output (S21 parameter) and the VCSEL voltage (S11 parameter).

The S11 response at different bias currents can be used (in combination with a

steady-state voltage sweep) to extract element values for the parasitics circuit

(as in figure 3.7(a)). The S21 response can be corrected for these parasitics,

yielding a measurement of only the intrinsic response, to which equation
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Figure 3.7: (a) Simplified small-signal VCSEL parasitics (12–µm oxide aperture) cir-

cuit at 5mA extracted from S11 measurements (courtesy of Avalon Photonics). The

incremental resistance of the intrinsic diode is attributed to Ra here. (b) Measured

and fitted normalized intrinsic S21 response for a single VCSEL at 5mA. The fitting

parameters are ωR = 4.24 GHz and γ = 12.97 GHz.

3.15 can be fitted. Figure 3.7(b) shows a good fit of the intrinsic modulation

transfer function of the VCSELs from the IO project at 5mA bias.

The Master’s Thesis of De Clerck [2004] builds upon this modeling approach

and addresses the lumped-model characterization of VCSELs (specifically, the

VCSELs of the 8× 8 arrays used here) in more detail. We additionally refer to

Sialm et al. [2005] for a comprehensive discussion on how to model a VCSEL

using only steady-state and modulation transfer function measurements.

3.3.3.2 Advanced modeling aspects

Temperature The sizeable power conversion and associated dissipation oc-

curring in VCSELs, combined with the high thermal resistance of the semi-

conductor materials used in their construction, gives rise to a significant

temperature increase in the cavity during continuous-wave operation. The

elevated temperature of high-performance CMOS obviously contributes to the

temperature increase as well.

The behavior of a VCSEL is dependent on this temperature inside the device:

the peak of the gain spectrum inside the quantum wells shifts to longer wave-

lengths with increasing temperature, and the emission wavelength increases

slightly as well [Nakwaski, 1996]. Furthermore, at elevated temperatures,

carriers can leak out of the active region [Scott et al., 1993].

Although very detailed simulation of the temperature distribution in a VCSEL

is feasible (see, e.g., [Sadi et al., 2006]), a lumped model is more suitable for a

behavioral simulation for reasons of efficiency. Figure 3.8 shows the archetypal

thermal model used for this purpose [Bewtra et al., 1995].

The impact of the temperature on the behavior is typically accounted for by

making the gain constant G and the transparency carrier count Ntr functions of



3.3 Design simulation 71

Ptherm

Tinternal

Rtherm
Tambient

Ctherm

Figure 3.8: Simple thermal model adopted for the circuit-level modeling of a VCSEL,

displayed as an equivalent electrical network.

the temperature, and by including a leakage current accounting for thermally-

induced carrier loss [Mena et al., 1999].

The temperature-dependent characterization of the IO demonstrator VCSELs

has been treated in [De Clerck, 2004]. Furthermore, in appendix B.2.2, a fully

characterized laser model is shown which takes thermally dependent gain

and carrier densities into account. For our full description of this model we

refer to O’Connor et al. [2006c].

Multiple modes and spatially distributed carriers We have already men-

tioned above that the limited accuracy of a lumped model can be somewhat

improved by expressing distributed quantities as a linear combination of fixed

spatial functions, the coefficients of which are then treated as basic time-

dependent node values. Such an approach has been extensively researched

for VCSELs [Valle et al., 1995; Morikuni et al., 1999; Mena et al., 1999; Jungo,

2003; Zhang et al., 2004].

The method is as follows. Instead of lumped photon and carrier amounts, the

spatial distributions of the concentrations in the active region are considered.

In this context, ‘spatial’ is actually two-dimensional: as the active layer is very

thin, a lumped approach can still be applied in the longitudinal direction; it

suffices to model the concentrations in a transverse plane. The photon and

carrier concentrations are expressed as excitations of a limited set of basis

functions:

• With respect to the photon concentration, the different optical modes

of the VCSEL are estimated (e.g., linearly polarized modes or Laguerre-

Gaussian modes as suggested by Mena et al. [1999]) or calculated first

(e.g., using one of the approaches discussed by Bienstman et al. [2001]).

The normalized intensity profiles of the modes in the transverse plane

are then treated as basis functions. The number of modes required for an

accurate simulation depends on the VCSEL diameter and the maximal

operating current.

• With respect to the carrier concentration, orthogonal basis functions of

an inner product space over spatial distributions are considered. Here,
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the inner product of two spatial distributions is the integration of their

pointwise product over the plane. Generally only radially symmetric

distributions are considered; a Bessel series expansion of the radial

profile is then an appropriate choice [Moriki et al., 1988].

When spatially dependent rate equations are considered, after some accept-

able simplifications—such as the linearization of the carrier density discussed

above—spatial and temporal integrations can be separated. When the series

expansions of carrier and photon concentrations are introduced, all spatial

integrations can be performed statically, yielding a system of ordinary dif-

ferential equations suitable for circuit-level simulation. The choice of mode

intensity profiles as basis functions for the photon concentration additionally

allows evaluating the coupling efficiency of the beam corresponding to each

mode with an optical fiber [Gholami et al., 2006a,b].

Appendix B.2.1 shows our Verilog-AMS implementation of the model dis-

cussed by Mena et al. [1999]. Although spatiotemporal VCSEL models can be

very accurate, detailed characterization is very involved. For instance, for the

lumped model the optical output can be measured using a photodiode; the

multimode model conversely requires the measurement of the distribution of

the optical output pattern over multiple modes; establishing the approximate

profiles of these modes is not trivial either, as it requires dedicated simulators

and/or specialty measurement techniques. Additionally, if the temperature

dependency is to be taken into account, the complexity increases severely.

Due to limitations of measurement methods available to us, we did not charac-

terize this model for the VCSELS of the IO project. We refer to the concluding

observations of Jungo [2003] for suggestions on a line of attack.

3.3.3.3 Implementation issues

Limitations concerning the order of magnitude of values A problem for

VCSEL descriptions in AMS simulators concerns awkward orders of magni-

tude of dynamic quantities from an electronics viewpoint. In normal use, the

range of values covered by voltages (V) and currents (A) is roughly comprised

between 10−12
and 109

. Smaller values are assumed to be zero by the simula-

tor, whereas larger values yield a ‘blowup’ error, to indicate that something is

wrong—either a connectivity mistake or a convergence problem.

Nevertheless, the photon and carrier densities in a laser, expressed in m−3
,

can readily exceed 1020
. To avoid the above problems, the blowup limit and

the absolute tolerance can be specified when a new nature (dimension) is

declared. However, we noticed that in our Verilog-AMS implementation time

derivatives or integrals of such quantities are again assumed to be in the range

expected for voltage and current changes, without recourse (there is a way to

indicate the dimension and associated ranges of time derivatives and integrals,

yet this seems not widely respected).
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Figure 3.9: Two solutions to the VCSEL rate equations in steady-state. The physically

impossible solution can confuse the simulator if appropriate measures are not taken.

The straightforward workaround, which we have applied, is the introduction

of scale factors until all quantities are in the accepted range; however this

measure harms the readability of the code.

Convergence issues The positive-only nature of carrier and photon densi-

ties/counts can give rise to simulation problems. For a steady-state simulation

or an initial operating point simulation, an initially attempted approach of the

simulator is assuming that all values of time derivatives and integrands of

time integrals are zero, yielding a regular system of equations which is solved

using the Newton-Raphson algorithm. While this method generally works, it

does not take the choice for the positive root in equation 3.6 into account and

can therefore converge to a physically impossible negative output power, as

indicated in figure 3.9. In a steady-state sweep where the previous solution is

used as a starting point for the next time step, this problem will occur around

the threshold current.

A possible solution [Mena et al., 1999] is to represent carrier and photon

densities as the square of another quantity. This can however lead to other

simulation convergence problems due to the ambiguity of the sign of the

quantity being squared.

The time step of the transient simulator is best limited (to about 20ps) as

well to avoid a scenario where the VCSEL current abruptly crosses the thresh-

old. The natural continuation of the correct steady-state solution across the

threshold indeed always ends up with the incorrect solution (as seen in fig-
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Figure 3.10: Simple photodiode circuit model (characterization courtesy of Albis

Optoelectronics). Cdep is the depletion capacitance, the other elements are contact and

wiring parasitics.

ure 3.9); the limitation of the time step allows the derivative of the photon

density/count to change more gradually.

3.3.4 Other models

3.3.4.1 Photodiode

As discussed in section 2.3, a photodiode under reverse voltage bias converts

incident light (in a certain wavelength range) into a proportional electrical

current superposed onto the diode saturation current. Only this ‘dark current’

and the responsivity (slope) are relevant for the steady-state behavior. Both

are a function of the temperature, but self-heating effects are insignificant in

contrast with VCSELs. The values of responsivity and dark current and the

thermal dependencies are treated in our uniformity analysis (section 4.4.1).

The dynamic response is determined by the combination of the depletion

capacitance of the reverse-biased photodiode, some contact and wiring para-

sitics (figure 3.10), and the transit time of carriers depending on the location

of impact of photons in the intrinsic region. In the IO setup, the RC circuit

consisting of the depletion capacitance, the series resistance and the input

impedance of the CMOS receiver dominates carrier diffusion and the simple

model of figure 3.10 suffices. There are published circuit-level modeling solu-

tions in case the transit time is sizeable; for this we refer to Zhang and Conn

[1992] for a basic state-space model and to Jou et al. [2002]; Wang et al. [2003]

for a circuit-level implementation thereof.

3.3.4.2 Optical path

The circuit-level model for the optical path has to connect outgoing mode

excitations of the modeled VCSELs to the optical input terminal of the modeled

photodiodes. The propagation of each VCSEL mode profile through the

entire optical path can be calculated independently of all other VCSEL modes

(different modes are not mutually coherent). At the input port of each modeled
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Figure 3.11: Example of a ‘circuit schematic’ for optical link simulation. The optical

path model here should connect linear combinations of its (delayed and possibly

dispersed) inputs to its outputs.
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Figure 3.12: Boundary-scan cells (BSC) are normally put in between the electrical pad

ring and the internal circuits, daisy-chained and connected to a controller circuit. In

the same way, the boundary scan cells can be positioned in between internal logic and

VCSEL driver arrays or photodiode receiver arrays.
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photodiode, the contributions of each propagated VCSEL mode can therefore

simply be added.

Propagating optical signals are subject to coupling losses and crosstalk, mate-

rial absorption, losses in tight fiber bends (when using POF), time-of-flight

delay and dispersion. Loss factors and crosstalk can be statically estimated;

for coupling losses we refer to section 4.3. When dispersion is negligible (as

when using graded-index fiber), a simple time delay suffices to model the

temporal behavior. When this is not the case (as when using step-index fiber or

integrated waveguides) advanced dispersion modeling is called for. Regarding

this subject we refer to Gerling [2005] who models dispersion as a filter in a

circuit simulator; the step response of the waveguide is hereby approximated

as a sum of a few exponentials, resulting in a compact representation in analog

HDL languages.

3.4 Design for testability of optical links

In pad cells for electrical interconnect special boundary scan cells are typically

used to enable testing of chip logic and PCB interconnect. Driven by a

standardized low-overhead protocol called the Joint Test Action Group (JTAG)

standard [IEEE Std 1149.1, 2001], boundary scan hardware provides a way

to observe the value driven to any JTAG-equipped output or present at any

equipped input, and it can be used to override the actual output state or the

internally observed input value (the idea is rendered in figure 3.12). This

system can also be used to observe/enforce the state of equipped internal

flip-flops or to provide configuration information.

In the IO demonstrator the driver and receiver circuits have been equipped

with boundary scan cells for configuration and testing purposes. Since an

automatic gain control in the receiver circuits requires the optical signal to be

dc-balanced, a test signal which alternates with the test clock is used during

interconnection testing (this is called AC-JTAG); this approach is also required

for electrical interconnect to test ac-coupled differential pairs. The AC-JTAG

used in the DTA IC is a customized extension of IEEE Std 1149.1 [2001]; in the

mean time a similar approach has been standardized by IEEE Std 1149.6 [2003].

Using this approach, testing of optical interconnect can use the same hardware

and follow the same procedure as the testing of electrical interconnect.

The JTAG provisions in the DTA IC have been used extensively to verify the

CMOS integrity after flip-chip bumping; to verify the O-E device connections

after the completed flip-chip bonding; to test the operation of a parallel optical

link (figure 3.13); and for all kinds of configuration and diagnostic purposes.
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Figure 3.13: Illustrative example of what is possible with JTAG support. Here, an

experimental optical cable using 8× 8 connectors with 4× 8 mounted fibers has been

plugged in between two DTA ICs. The JTAG provisions are used to discover the

attained interconnectivity (top screenshot) and to discover potential crosstalk issues

(off-grid positions in the bottom screenshot). The interconnection test takes less than a

second; the crosstalk test takes about a minute.
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3.5 Summary

In this chapter, we have discussed a number of methodological issues con-

cerning EDA support for OE-VLSI systems. The design of OE-VLSI systems

consists of several steps, each needing some form of EDA support. We have

presented a breakdown of fundamental design automation support—design

creation, simulation, extraction of properties and design space exploration—

the methodologies involved and references to relevant realizations.

Circuit-level simulation models for the most important link components have

been implemented in the mixed-signal language Verilog-AMS and integrated

into a simulation framework (which concretized to Cadence Virtuoso DFII).

The different simulation models can be chained together to simulate optical

interconnect. The intricacies concerning the integration of multidisciplinary—

electrical, optical, thermal—and sometimes badly conditioned differential

equations—e.g., laser rate equations—into a simulation system bearing the

marks of an electrical circuit dedication have been discussed as well.

The circuit-level modeling work performed lies at the basis of two Master’s

theses [De Clerck, 2004; Bhatti, 2006] on the characterization and tuning of OE-

VLSI components. Furthermore, in the context of the PICMOS [2006] project

on intra-chip interconnect, a DBR microlaser simulation model has been

implemented in Verilog-AMS [O’Connor et al., 2006c]. This was a joint effort

with the Heterogeneous Microelectronic Design group of the Lyon Nanotechnology
Institute on the systematic simulation-based predictive synthesis of integrated

optical interconnect [O’Connor et al., 2007].



Chapter 4

Statistical OE-VLSI modeling
and characterization

4.1 Introduction

In this chapter, we thoroughly examine the connection between the many

efficiency and accuracy aspects of a sophisticated OE-VLSI assembly and

resulting across-the-board optical interconnect characteristics such as overall

signal attenuation and offset, latency, jitter, noise and ensuing bit error ratio

(BER) figures.

4.1.1 Statistical modeling and characterization approach

A modeling and characterization approach of a necessarily strong statistical

nature is adopted. The reason for this is as follows. The composition of

many different components constituting an OE-VLSI system results in all-

embracing stochastic variables (such as a latency figure) being determined

by a sizeable number of independent uncertainties: various efficiencies and

accuracies of CMOS circuits, O-E conversion devices, optical and mechanical

components. As the odds of a collective extreme statistical outcome exponen-

tially decrease with the number of independent contributions, a conventional

worst/normal/best case examination of all contributions would yield an

unduly broad-ranging aggregate result in this case.

We present simple yet adequate stochastic models to capture the behavior

and uniformity of the different subsystems of the optical interconnect—driver

circuit, VCSEL, optical path, photodiode and receiver circuit. These models

specifically address amplitude, timing and noise behavior. The methodology

is generally applicable. For the purpose of quantitative analyses our models

are characterized based on detailed and extensive measurements of the actual
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performance on OE-VLSI hardware from the IO project (the converter boards
presented in appendix A). In order to capture as much information as possible,

this measurement approach is one of dividing the parallel optical link in as

many parts as possible—by cutting in between driver and laser arrays, in front

of and behind the fiber assembly, and in between photodiode and receiver

arrays.

4.1.2 Optical path characterization

A considerable effort is required to characterize the optical path in a statis-

tically relevant way, when having only a very limited number of properly

connectorized multi-fiber cables at one’s disposal. To this end, we have

built a measurement setup to accurately quantify VCSEL-to-fiber (and fiber-to-

photodiode) coupling efficiencies. An automatic 3-axis fiber-device positioning

setup has been realized with manual control of the remaining 3 (rotational)

degrees of freedom. With the appropriate dedicated programming, this system

is autonomously able to accurately scan the alignment-dependent coupled

power between all devices of an 8×8 VCSEL (or photodiode) array and a fiber.

Using conventional graded-index glass fiber, the dependence of the coupling

efficiency on the alignment in the IO demonstrator turns out to be well

apparent at the VCSEL side but much less so at the photodiode side. This is

understandable as an 80–µm photodiode size was initially chosen to uphold

support for fibers with a high numerical aperture and wider-emitting step

index fibers. Our characterization focus is therefore closer to the VCSEL side,

also because of the relatively larger contribution of VCSEL process variations

to overall nonuniformity.

The acquired measurements are used to characterize a simple ray tracing

model for the expected coupling efficiency on an 8×8 VCSEL array. A stochas-

tic model (taking process variations into account) for the alignment-conditional

power coupling between a VCSEL and a fiber is characterized as well.

When a fiber bundle is connectorized, the positions of the fiber facets are

mutually fixed relative to each other as well as relative to the alignment

features of the connector. When the connector is plugged into a package,

the misalignment of laser-fiber pairs at different positions in the array is

therefore strongly correlated. Translational mismatches cause only uniform

misalignments of laser-fiber pairs as long as the orientation of the fiber facet

array w.r.t. the optical array is constant. However, a rotation of the connector

in the plane of the optical array can introduce severely nonuniform radial

misalignment, and connector tilt causes the fiber facets to be positioned at

different working distances.

The modeling of alignment-inclusive array-wide transmitter-side optical power

coupling is addressed. One ingredient towards this modeling is the alignment-

conditional measurement of the coupled power mentioned above, which
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directly gives a picture of the variability of the amount of optical power and

the directionality of the emission across different VCSELs.

The other ingredient bears upon the uncertainty of the fiber bundle alignment.

Here we have built on the research of others. Approaches in the IO project

for the packaging of an optically equipped IC—in a way that a multi-fiber

connector can be plugged in—constituted a research subject of IO project

partner CEA-LETI [Marion et al., 2004] and the main work of fellow PhD

student Olivier Rits [Rits et al., 2004]. One of his research achievements is a

stochastic model for the misalignments during the packaging and the insertion

of a multi-fiber connector. We have used this process model to generate a

set of representative fiber bundle alignments and combine them with our

alignment-conditional characterization. A stochastic model for the array-wide

laser-fiber coupling has been developed and characterized as a result.

4.1.3 Global interconnect parallelism evaluation

By bringing all characterized component models together, we can achieve the

quantification of all-inclusive signal attenuation and offset, latency deviation,

jitter, noise and ensuing bit error ratio (BER) figures, not only including

the statistical evaluation of isolated optical channels, but also capturing the

statistical dependencies between different channels juxtapositioned within the

same array or package. The results obtained can be directly put in practice to

address the following subject.

As we have discussed in section 1.4, the main motivation for short-range optical

interconnect is the mitigation of bandwidth density issues. Two kinds of

bandwidth density issues could be distinguished: one of raw throughput and

an other where the link bandwidth determines the latency. The throughput

bottleneck occurs for instance when telecommunication links are brought

together for packet-switching or circuit-switching purposes. The latency

bottleneck is commonly occurring inside computational systems (see equation

1.1 on page 12 and the surrounding text). Depending on this distinction, the

relationship between the individual channels in a parallel interconnection is

dissimilar as well.

In long-haul telecommunications, signaling is inherently bit-serial. The dif-

ferent channels of multi-channel links typically represent independent data

streams, brought together for packet-switching or circuit-switching purposes.

The plesiochronous relation or randomly phase-shifted synchronous relation

between the streams necessitates separate clock recovery or resynchronization

in each channel.

In the other (computational-system) situation, it is often interesting to stripe

data packets over different channels, i.e., successive bits or bytes of a data

packet are allotted to different physical channels and simultaneously transmit-

ted. This assures a very low latency for the initial part of a data packet, which

could already suffice to start processing while the rest of the packet comes
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in. The different channels of an interconnection will now carry bit-parallel

clock-synchronous data streams. They have to be treated jointly, and the

timing skew between them has to be kept at an absolute minimum if an

unsophisticated reassembly of the data packet is desired. The uniformity of

the individual channels is key to the viability of different options.

In current, commercially available, short and medium range parallel optical

interconnect systems parallelism is modest, and the uniformity requirements

of the optical channels are still very relaxed. Timing recovery is performed

independently for each channel, tolerating very high skew. This is the case

even in a parallel optical system such as 12x InfiniBand [2000] using SNAP12

[2002] optical modules, where one data stream is striped over different parallel

channels to minimize packet latency. Furthermore, in virtually all current

optical receiver circuits, dc-balanced signal coding is used. The logic threshold

is independently set for each channel, tolerating widely different dynamic

signal ranges.

This kind of tolerance towards nonuniformity comes at a cost: clock recov-

ery circuits require significant chip real estate and power, and dc-balancing

schemes such as 8-b/10-b coding [Widmer and Franaszek, 1983] reduce band-

width and thus introduce extra latency. For OE-VLSI approaches these area

requirements become prohibitive due to the associated two-dimensional real

estate limitations [Venditti and Plant, 2003]. Large-scale parallelism in opti-

cal interconnects at short distances can only be viable when the individual

channels are of minimal complexity.

We therefore address the question as to whether channels of short, highly

parallel optical links can be made sufficiently uniform with respect to timing

and signal amplitude so that a parallel synchronous link can be made without
expensive per-channel adaptation circuitry. Significant gains can be realized if

this is indeed the case.

As for timing, if the inter-channel timing skew is low enough, a simple source-

synchronous signaling scheme could be deployed. In such case, one channel

is sacrificed to carry a source-synchronous clock, from which the sampling

instant for all other channels can be derived. This obviates the need for many

expensive independent clock resynchronization circuits. The feasibility of

source-synchronous optical signaling has already been demonstrated on a

minimal scale—over two optical channels [Gui et al., 2005].

As for signal amplitude, if channels are sufficiently uniform, one dc-balanced

signal—the same clock-dedicated channel—could be used to extract the logic

threshold for all other channels, eliminating the dc-balancing requirement

on these channels. Another approach to achieve this objective is to work

differentially [Venditti et al., 2004], but this has the disadvantage of halving

the achievable bandwidth.

If both uniformity objectives were reached, emerging low-latency high-

bandwidth I/O standards such as HyperTransport, Parallel RapidIO and

POS-PHY Level 4 could be directly applied over the parallel interconnect with
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source-synchronous DDR schemes. We have to remark that the latest specifi-

cations of most such standards provide for per-channel phase adjustment and

often dc-balanced coding as well. This per-channel adjustment is motivated

by inter-channel skew problems to which also electrical interconnect is not

immune at all but the shortest link lengths. The dc-balanced coding permits

the use of ac-coupling approaches. However, the associated complexity and

area penalty remain.

4.1.4 Structure of this chapter

This chapter follows the natural flow of data through the interconnect with a

successive sections on the transmitter side, the optical path and the receiver

side. Building on the developed models, the question on the feasibility of

dc-unbalanced and true source-synchronous signaling is addressed in the final

section.

4.1.5 A note on notation

In this chapter, we consistently adopt the notation style used in probability

theory where random variables are written in upper case and variable values

as well as parameters are written in lower case. This may sometimes look

awkward—e.g., a capital H instead of the lower case η for to indicate a

quantum efficiency—yet it has the advantage of indicating the probability-

related status of the name without additional notational burden.

4.2 From chip to light

4.2.1 Drive current uniformity

The basic functionality of a VCSEL driving circuit is switching the laser current

between two levels i0 and i1 as dictated by a digital input. The on-current i1
determines the maximal optical output power. The off-current i0 should be

low for a good contrast, but still well above the VCSEL threshold current ith
to avoid turn-on delay and a slow dynamic laser response. The topology used

in the DTA IC is shown again in figure 4.1(a). The high-side p-FET T1 drives

the constant current i1 into the VCSEL and a shunt path, which is switchable

through n-FET T2, diverting the modulation current i1 − i0 = imod away from

the VCSEL using constant-current n-FET T3. When the shunt path is active,

the resulting VCSEL current thus becomes i1 − (i1 − i0) = i0, otherwise it

remains i1.
When considering arrays of driver circuits, process variations and device

mismatch may cause nonuniformity between drive currents. Let I1 (i1,aim)



84 Statistical OE-VLSI modeling and characterization

supply

T3

T2

T1

vmod

v1

data

1
2
…

nd

1
2
…

nd

driver
supply

T1

∝ i·,aim

I·

1
2
…

nd

driver
supply

T1

supply

T1

I·

v·

∝ i·,aim

(a) (b) (c)

Figure 4.1: (a) VCSEL driver circuit. (b) Current based reference current distribution.
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and Imod
(
imod,aim

)
represent random variables over different driver circuits,

yielding the actual drive current given the targeted current.

Bias voltages for all constant-current FETs need to be distributed over the array.

Figure 4.1(b) shows a current-based approach, where each driver receives its

own reference currents which are locally scaled to I1 (i1,aim) and Imod
(
imod,aim

)
.

This method is very accurate, but less practical for very large arrays due to

the point-to-point distribution. Bias voltages v1 (i1,aim) and vmod (i1,aim) are

globally distributed instead, as shown in figure 4.1(c) (we ignore mismatch

of the shared mirror-source MOSFET as this can be globally compensated

for). Due to MOSFET threshold and transconductance variations over larger

distances, the actual current will deviate from the requested current in both

approaches. Using the basic quadratic MOSFET model, this goes according to

I1 (i1,aim) ≈
{

K
(
Θ +

√
i1,aim

)2
if Θ > 0 or i1,aim > Θ2

0 otherwise,

(4.1)

The same model applies to Imod
(
imod,aim

)
. The random variables Θ and K

are proportional to respective mismatch of threshold and transconductance

between both sides of the current mirror. We have measured the actual

individual driver currents i1,d by selectively enabling the drivers and mea-

suring the change in supply current and extracted θd and kd each time by

fitting equation 4.1 to the measurement. Figure 4.2 shows the resulting

sample of the joint distribution of Θ and K. The slightly negative sam-

ple correlation coefficient of -0.23 is too close to zero to reject zero corre-

lation between Θ and K at a 95% confidence level; the correlation, if any,

should be very small. A good approximation for the squared coefficient of

variation (the square of CVI1 (i1,aim) = σI1 (i1,aim) /µI1 (i1,aim)), in the region

where i1,aim � σ2
Θ ≈ 43 nA, can be found by working out the variance of

ln (I1 (i1,aim)):

(
CVI1 (i1,aim)

)2 =
σ2

I1
(i1,aim)

µ2
I1

(i1,aim)
≈

σ2
K

µ2
K

+ 4
σ2

Θ(
µΘ +

√
i1,aim

)2 (4.2)

As µK ≈ 1 and µΘ ≈ 0, we can assume µI1 ≈ i1,aim and equation 4.2 reduces to

(
CVI1 (i1,aim)

)2 ≈
σ2

I1
(i1,aim)

i21,aim
≈ σ2

K + 4
σ2

Θ
i1,aim

(4.3)

Figure 4.3 shows the measured coefficient of variation and the match according

to equation 4.3. Our model makes a slight overestimate of the measured CV.

The effect of MOSFET threshold variations is prominent, but only at currents

below the VCSEL threshold (around 1mA). Beyond this value, the relative

deviation quickly decreases below 1%. The on-current I1 (i1,aim) will therefore

be very uniform for any relevant configuration. Small settings for imod,aim,
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Figure 4.4: Measured light-current (LI) curves on a fully processed VCSEL array

however, will result in a nonuniform modulation current, which could be

improved if the more accurate current distribution method (figure 4.1(c)) is

used.

4.2.2 VCSEL array uniformity

4.2.2.1 Static uniformity

Typical threshold currents of the IO project VCSELs are in the order of 0.9mA,

the voltage drop at 5mA is 1.8V, and the wall-plug efficiency is 29.8%. Figure

4.4 shows measured light-current (LI) curves. A good fit of each measured

LI curve can be obtained with a simple linear stochastic model (already
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different oxide apertures (measurement courtesy of Avalon Photonics). The dashed

lines are 2σ bounds of jointly normal distributions with their parameters extracted

from the measurements.

deterministically introduced in section 3.3.3):

L (i) =

{
H (i− Ith) if i > Ith

0 otherwise,

(4.4)

where the threshold current Ith and slope efficiency H (capital η) are random

variables over different lasers. The VCSEL performance depends strongly

on the diameter of the active region. A small diameter typically results in a

small threshold current, but the voltage drop and series resistance is larger,

worsening the high-speed properties. A large diameter results in a large

threshold current, which implies a larger power dissipation. Samples of Ith
and H for VCSELs with different oxide apertures are shown in figure 4.5; a

clear positive correlation is observed. VCSELs with a 12-µm aperture diameter

have been used for the flip-chipped arrays on the DTA samples.

Figure 4.6 shows the measured coefficient of variation of VCSEL output power

over the array versus the applied current. The data shown come from the

same three virgin 8× 8 arrays of figure 4.5, and three 8× 8 samples after

hybridization on CMOS, substrate thinning, application of an antireflective

coating and a PCB mounting step at 230 °C. The uniformity of the wafer-

probed samples is excellent: the CV is around 1–2% when the current is

sufficiently above threshold. Measurements on 16× 16 arrays indicate similar

quality. The fully mounted DTA IC samples, however, exhibit a minimal CV

around 4% at 3mA that worsens to 6–8% with increasing current. Here, a

much broader range for Ith and H could be observed. The source of this

spread remains unknown; tests have shown that neither the hybridization nor

the elevated temperature for PCB mounting are directly responsible.
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Figure 4.6: Coefficient of variation of VCSEL output power over the array. (a) Measure-

ment. (b) Calculated model according to equation 4.5.

The variation of the VCSEL response within an array can be adequately

modeled if we consider the joint distributions of Ith and H with moments µth,

σth, µH and σH , and ρ the correlation between Ith and H. Again by calculating

the variance of ln (L (i)), to a good approximation, the CV can be found to be

(CVL (i))2 =
σ2

L (i)
µ2

L (i)
≈

σ2
H

µ2
H

+
σ2

th

(i− µth)
2 − 2ρ

σHσth
µH (i− µth)

(4.5)

for currents sufficiently above threshold—clamping at the horizontal axis for

i < Ith is not taken into account. As shown in figure 4.6, this simple model

provides a plausible explanation of the variance of the VCSEL output power.

For i > 6 mA, the model and measurement lines for the CMOS samples start

to disagree, due to thermal roll-over in the VCSELs.

4.2.2.2 Dynamic response

The general dynamic VCSEL response has already been discussed in section

3.3.3.

Direct measurement of the inter-channel skew contribution of driver-VCSEL

pairs is not possible in the IO setup, as the central permutation switch (see

figure 4.20 on page 107) introduces nonuniform delay contributions in the

signal paths. However, the response time of a driven VCSEL is several

times shorter than the delay of a photodiode receiver circuit, and variations

of the VCSEL response time (variations of the order of 10 ps) should be
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correspondingly shorter than receiver delay variations (several 10s of ps for

0.35–µm CMOS technology). Therefore the skew contribution of driver-VCSEL

pairs has a minor impact on full link scale. This may no longer be the case

in more advanced CMOS technologies, as the switching speed of currently

available VCSELs is comparatively lower.

We should mention here that the static uniformity of VCSELs can affect the

link skew as well, through the dependence of the receiver delay on the optical

modulation amplitude of the incident beam (figure 4.21).

4.2.2.3 Spectral uniformity

Uniformity of VCSEL spectra is important: chromatic dispersion introduces

skew between fibers, and the wavelength-dependent photodiode responsivity

adds to the divergence of received signal amplitudes. We have measured

the optical spectra of all VCSELs on one DTA IC sample, using a constant

current setting of 6.8mA, with all lasers emitting simultaneously. The average

center wavelength is 967.84 nm with a standard deviation of 0.36 nm and

a total range of 1.59 nm. This is very homogenous given the average rms

linewidth of 0.56 nm. The effect of wavelength variation on the time of flight

is negligible: the range of observed center wavelengths causes less than 100 fs

total skew inside 1m of glass fiber or plastic optical fiber. The change in

photodiode responsivity is present but not significant: at 25 °C, the maximal

relative difference is only 0.3%, increasing to 0.9% at 70 °C.

4.3 Light in �ight

This section treats the modeling and characterization of the optical path, the

essential and most spacious part of an optical link. We focus on an optical path

with common graded-index (GI) multimode fibers, MT-like connectors and

direct fiber butt coupling—the kind of packaging and optical path discussed

in section 2.5.

4.3.1 Sources of nonuniformity in the optical path

By the uniformity of the optical path we refer to differences across channels of

the integrity of optical pulses, the attenuation and the delay. An optical path

based on telecom-grade GI fiber scores high marks on multiple aspects, which

also eases the analysis and reduces it to mainly an evaluation of coupling

efficiencies at fiber ends.

The matched velocities of different same-frequency modes in GI multimode

fibers yield a bandwidth-distance product of about 0.5–5GHz · km in glass

fiber [Corning, 2007] and up to the lower part of this range for plastic optical
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Figure 4.7: Overview of significant effects in a fiber-based optical path

fiber (POF) [Zubia and Arrue, 2001]. Assuming a simple Gaussian response

model, the step response of a 1–m fiber will exhibit a 10–90% rise time between

0.07 and 0.7 ps (on top of a 0.1–ps chromatic dispersion contribution) which is

presently insignificant for all intents and purposes (and further on discarded).

For longer lengths, e.g., up to 100m for fiber-based Ethernet, this is no longer

the case.

With respect to the uniformity of the time-of-flight inside adjoining fibers,

Kanjamala and Levi [1995] have tested 10-wide ribbons made of 62.5 µm (core

diameter)/125 µm (cladding diameter) graded-index glass fiber and found

less than 0.25 ps/m skew. Furthermore, if a parallel optical path is terminated

with a 1–mm accuracy on the length of adjoining fibers or fiber ribbons, only

maximally a 2–3 ps time-of-flight skew is induced. We assume that, given due

care, the skew caused by optical time-of-flight differences can be ignored.

The attenuation in GI glass fiber is of the order of 0.001 dB/m [Corning, 2007].

In POF, a wide range of 0.01–10dB is covered by different materials and at

different wavelengths. POF opacity can thus be sizeable; the possibility of a

larger optical path attenuation is taken into account in the analyses of the next

chapters. This material related attenuation coefficient is generally uniform

and characterized by the manufacturer.

As a result of the above, the chief contribution to the average attenuation in

the optical path and its uniformity is the coupling at both ends of the optical

path and at any intermediate transitions. In a POF-based optical path, tight

fiber bends can affect bandwidth and attenuation figures as well. Macrobend

losses are not that important for glass fiber which mechanically disallows tight

bends; for a discussion on macrobend losses we refer to Winkler et al. [1979];

Ghatak et al. [1988]; Loke and McMullin [1990]; Arrue et al. [2001]; Makino

et al. [2005].

In this chapter, the coupling at the optical path extremities is modeled and

characterized. In the next section a measurement setup on the IO project

hardware is introduced to statistically quantify the coupling between a VCSEL
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and a fiber or a fiber and a photodiode given their relative alignment and the

VCSEL drive current, taking irregular directional emission into account. Two

standard fiber sizes have been considered. In section 4.3.3, a simple ray tracing

model is fitted to the average measured VCSEL-fiber coupling efficiency given

the VCSEL-fiber alignment and the VCSEL current setting.

It turns out that the directional emission pattern of VCSELs and their thresh-

old/efficiency figures are statistically dependent, imposing a joint treatment

for other statistics than the average. Therefore the VCSEL process variations

and coupling efficiency uncertainty are treated together starting from sec-

tion 4.3.4, in which the alignment-conditional measurements are molded into

figures for fiber-coupled optical modulation amplitude and average optical

power. These will turn out to be essential quantities for the derivation of bit

error ratio, receiver delay and logic threshold bias in the next chapter. Finally,

section 4.3.5 discusses the modeling and characterization of the array-wide

coupled power at the VCSEL side when an 8× 8-fiber connector is plugged in.

Here, we specifically target the statistical dependence of optical modulation

amplitude and average optical power, and any dependences across array

positions.

4.3.2 Experimental characterization of �ber coupling ef�-
ciency

4.3.2.1 Measurement setup

We have realized a measurement setup to accurately quantify VCSEL-to-fiber

and fiber-to-photodiode coupling efficiencies. This setup is shown in figure

4.8. A prototype board—an IO project converter board or high-speed (0.18 µm

CMOS) board as shown in section 1.6—is securely attached to an optical

table. Using a setup with three orthogonal Newport 850F linear actuators,

we can position one end of an optical fiber at any location and elevation

over the VCSEL or photodiode arrays with a 1–µm accurate repeatability.

The other fiber end can be connected to another prototype board with an

MPO-like connector, or it is terminated with a FC/PC connector for coupling

to a standalone laser or optical power meter as required.

4.3.2.2 Experimental results

Transmitting side Several papers report on the coupling efficiency of a mul-

timode VCSEL and a butt-coupled fiber, based either on theoretical considera-

tions [Heinrich et al., 1997; Toffano et al., 2003] or measurements [Mohammed

et al., 2004]. However, to the author’s knowledge, no figures are available

accounting for the substantial variations between emission profiles of different

VCSELs. We have performed a large number of measurements on an 8×8
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Figure 4.10: Coupled power between a multimode 62.5 µm/125 µm graded-index glass

fiber and the VCSEL underneath while sweeping the horizontal plane at 50 µm over a

VCSEL array (i = 5.3 mA). The contour plot is locally magnified 3 times around each

VCSEL center.
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VCSEL array on a fully mounted DTA IC in order to construct a stochastic

model for the laser output and coupling efficiency.

Two standard graded-index multimode fibers have been tested: 62.5 µm/125 µm

with a numerical aperture (NA) of 0.275 and 50 µm/125 µm with a NA of 0.200.

For both fibers, the coupled power has been measured for 1m fiber length, 6

VCSEL currents between 2mA and 10mA, 7 elevations between 10 µm and

150 µm over the array surface, and a grid of 17×17 horizontal positions over

each VCSEL, with a height-dependent grid spacing. The result of this sweep

at one working distance is shown in figure 4.10. Provisions were also made for

tilting the fiber, but only an unrealistically large tilt could produce significant

changes. Given the long duration of six days of the automated measurement

for one array and one fiber, only one VCSEL array was considered.

The measured optical powers are expressed in mW and denoted by mv (i, r),
where i is the (actual) VCSEL current, v ∈ {1..nv} (nv = 64) the serial number

of the measured VCSEL according to figure 4.10 and r , (r, θ, z), where r and

θ the radius and azimuth of the fiber misalignment, and z the elevation over

the top array surface. Although our raw measurement data was taken at a

finite set of currents and misalignments, we extend m to a continuous domain

with respect to r and i, with intermediate values determined by interpolation.

This approximation is accurate enough given the density of the sampling

points.

The total VCSEL output power was determined in a separate measurement

with a large area detector and is denoted by lv (i). The coupling efficiency

is written as ηv (i, r) = mv (i, r) /lv (i). The total output power l has been

additionally measured on two other fully mounted arrays, yielding three sets

of samples (one for each array). Sufficiently similar distributions within these

sets are observed to suggest that the m-values of only one array will allow

meaningful statistical processing.

At the nominal working distance z = 50 µm, and in the absence of radial

misalignment, the coupling losses using the 62.5 µm/125 µm fiber are in the

range 0.8–1.1 dB at 2mA VCSEL current, worsening to 1.0–1.4 dB at 5mA. The

50 µm/125 µm fiber exhibits much larger coupling losses from 1.2–2.3 dB at

2mA to 1.6–3.0 dB at 5mA and is not further considered due to this result.

There is no apparent spatial correlation between adjoining VCSELs, and no

preferential azimuthal angle of emission could be observed.

Receiving side As shown in figure 4.11, The coupling efficiency at the re-

ceiver side is very uniform. As long as r < 15 µm and z < 100 µm (at least),

for both kinds of fibers there is no noticeable dependence of the observed

photocurrent on the fiber end position. At nominal working distance, a sig-

nificant decrease of the photocurrent begins to occur beyond 20 µm radial

misalignment. This is not surprising, as the 80–µm detector size was estab-

lished to accommodate a wide choice of fibers, e.g., step index fibers with a

broader emission. The fiber-photodiode coupling efficiency nonuniformity is
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20 µm 250 µm

Figure 4.11: Coupling efficiency between a multimode 62.5 µm/125 µm graded-index

glass fiber and the photodiode underneath while sweeping the horizontal plane at

50 µm over a photodiode array. The contour plot is locally magnified 3 times around

each photodiode’s center. Twelve receiver circuits had provisions for photocurrent

monitoring; one monitor was defective.

further on safely ignored as the contribution at the VCSEL side is much more

pronounced.

4.3.3 Coupling ef�ciency estimation using a ray tracing
model

For given r, z and i, the average of ηv (i, r) over v and θ can be well approxi-

mated by the coupling efficiency resulting from a ray tracing-based simulation.

In this simulation, the VCSEL is represented as a simple Gaussian beam

parameterized by the location of its beam waist below the array surface zref
and minimal spot size w0, which is dependent on the VCSEL current to ac-

count for bundle widening with rising current caused by increasingly excited

higher-order VCSEL modes. The beam parameters zref and w0 are treated

as fitting parameters. Rays are randomly generated according to the beam

profile and classified according to their point of impact and orientation in a

straight piece of parabolic-index fiber. This fiber is given a core radius and

numerical aperture corresponding to the measurement. The behavior of the

ray in the fiber can be determined analytically, yielding a quick classification

into bound, tunneling and refracting ray categories. The programming code

of this model is included in appendix C.

The ratio of the power in the bound rays to the power in all considered rays

yields an estimate of the coupling efficiency. Figure 4.12 shows the measured

and estimated average coupling efficiencies for the 62.5 µm/125 µm fiber at

5.3mA VCSEL current. When the fitting parameters are redetermined for

different VCSEL currents, zref indeed retains a constant value of 24.5 µm,

roughly corresponding to the real location of the (bottom-emitting) VCSELs

below the array surface. The change of the minimal spot size w0 with the
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Figure 4.12: Contour plot of measured coupling efficiencies ηv (5.3 mA, r) for different

(r, z)-misalignments, averaged over v and θ (62.5 µm/125 µm fiber). The dashed lines

represent calculated coupling efficiencies, each resulting from a ray tracing-based

simulation of a Gaussian beam and a parabolic-index fiber.

current translates into a steadily increasing divergence with increasing current.

The resulting Gaussian beam divergence λ/πw0 is 15° at 5mA, with a slope

of 0.56°/mA. At corresponding currents, the measurements for both fiber

sizes are well approximated using the same fitting parameters, suggesting that

this simulation approach can be extended to estimate the average coupling

efficiency for other choices of core radius and numerical aperture.

4.3.4 Misalignment-conditional characterization of VCSEL
process variations

At the nominal fiber position, the coupling efficiency appears uncorrelated

with VCSEL process variations. However, as the radial misalignment increases,

the coupling efficiency decreases much faster for brighter than for darker

VCSELs. For calculations involving variations of the fiber-coupled power,

we therefore have to consider the VCSEL process variations and coupling

efficiency uncertainty together.

The fiber-coupled optical modulation amplitude (OMA) and average optical

power (AVG) are essential quantities for the forthcoming derivation of bit

error ratio, receiver delay and logic threshold bias. We will now examine

the influence of VCSEL process variations on these quantities. Assuming

that there is neither a spatial correlation nor a systematic variation of the

VCSEL properties over the array, all VCSELs are independent samples from a

common distribution. We characterize a VCSEL by its current- and alignment-

conditional fiber-coupled optical modulation amplitude and average optical

power (using the 62.5 µm/125 µm fiber). These powers are written as random

variables OMA (i0, i1, r), AVG (i0, i1, r), where i0 and i1 represent the respective
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Figure 4.13: The continuous lines show the average optical modulation amplitude

(dBm) for a given radial fiber butt misalignment r and elevation z at i0 = 1.6 mA and

i1 = 3 mA. At this current setting, the average total VCSEL output power is 0 dBm.

The dashed contours are isoprobability lines of fiber butt positions, where different

fiber-laser combinations in the array have been taken into account equally. The total

probability inside each contour is indicated.

low and high VCSEL currents, and r is defined in the same way as in our

m-measurements (fiber tilt is again ignored). We represent these quantities

logarithmically (in dBm) so as to transform multiplicative disturbances (e.g.,
slope efficiency and coupling efficiency variations) into additive ones.

Joint sample data of these random variables can be obtained from the mea-

surements:

oma[dBm]
v (i0, i1, r) = 10 log10

[
m[mW]

v (i1, r)−m[mW]
v (i0, r)

]
(4.6)

avg[dBm]
v (i0, i1, r) = 10 log10

[
m[mW]

v (i0, r) + m[mW]
v (i1, r)

2

]
(4.7)

Assuming the absence of preferred azimuthal laser-fiber alignment angles as

observed above, the joint distribution of (OMA, AVG) (i0, i1, r) is independent

of θ. A full working set of sample data for given (i0, i1, r, z) can be constructed

from the nv VCSELs with known coupling data using equations 4.6–4.7 with

sufficiently dense resampling in the θ-direction (typically r · ∆θ ≤ 1 µm).

Distribution tests for different laser currents (above 1.5mA) in the relevant

(r, z)-range (the outermost dashed contour in figure 4.13) justify a joint normal

distribution

(OMA, AVG) (i0, i1, r) ∼ N2

([
µOMA µAVG

]
,[

σ2
OMA ρOMA,AVGσOMAσAVG

ρOMA,AVGσOMAσAVG σ2
AVG

])
, (4.8)
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where all parameters of the normal distribution are functions of (i0, i1, r, z).
Estimates for these parameters can be constructed from the sample data in the

standard way. Figure 4.13 illustrates µ̂OMA (1.6 mA, 3 mA, r, z) for different r
and z.
The results per se are not particularly useful towards system-level interpre-

tation unless they are combined with the stochastic behavior of the fiber

alignment, which is treated in the next section.

4.3.5 Stochastic evaluation of VCSEL-�ber power coupling
in a connectorized package

When a fiber bundle is connectorized, the positions of the fiber facets are

mutually fixed relative to each other as well as relative to the alignment

features of the connector. When the connector is plugged into a package,

the misalignment of laser-fiber pairs at different positions in the array is

therefore strongly correlated. Translational mismatches cause only uniform

misalignments of laser-fiber pairs as long as the orientation of the fiber facet

array w.r.t. the optical array is constant. However, a rotation of the connector

in the plane of the optical array can introduce severely nonuniform radial

misalignment, and connector tilt causes the fiber facets to be positioned at

different working distances.

It turns out that both the inter-VCSEL variability and the fiber bundle align-

ment uncertainty are significant. The variation of fiber-coupled optical mod-

ulation amplitude and average optical power over different fiber-laser pairs

in the array characterizes the array-wide transmitter-side uniformity. We

will now derive a stochastic model for array-wide laser-fiber coupling in a

connectorized package, and determine array-wide power distributions.

We consider packages prepared using the index alignment method (section

2.5.3.3 on page 46), applied to the DTA modules of the IO project (one 8×8

laser and one 8×8 photodiode array). The connectorized fiber bundles use

62.5 µm/125 µm fibers, terminated with the connector design of figure 2.12(a)

(page 44).

We designate the physical position of laser-fiber pairs in the array by a serial

number d ∈ {1..nd} (nd = 64) according to figure 4.10. The letter d is used

instead of v to distinguish between array positions in general (d) and any

particular VCSEL from the measurements (v). The reason of this distinction

will be clear further on as we will apply statistical resampling (bootstrapping)

of the examined VCSELs in order to obtain more robust estimates.

Consider an experiment where one mates a random package with a random

connectorized fiber bundle. The fiber-coupled optical powers of interest are

denoted by nd-dimensional vectors of random variables OMA (i0, i1) and

AVG (i0, i1) (in dBm), with one component for each laser-fiber pair (written

as, e.g., OMAd (i0, i1) for the component corresponding to array position
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d). Given that the drive current nonuniformity will turn out to be almost

always negligible compared with VCSEL process variations and connector

alignment variations, actual low and high VCSEL currents i0 and i1 are used

to parameterize OMA and AVG. Only when imod,aim � 1 mA, drive current

nonuniformity needs to be taken into account (this can be catered for by adding

the deviation of the targeted modulation current, in dB, to OMA (i0, i1)). In
numerical evaluations, i0 is chosen to be twice the laser threshold (around

1.6mA)—this assures i0 > 1.5 Ith array-wide, required for a good BER (see

subsection 4.4.3)—and i1 is swept from i0 to i0 + 7 mA in steps of 0.1mA.

It is our goal to derive the (joint) statistical properties of OMA (i0, i1) and

AVG (i0, i1). To that end, a model for the uncertainties in the VCSEL-fiber

alignment, denoted by A, is combined with the model for laser-fiber coupling

subjected to VCSEL process variations derived above. To derive the probabil-

ity distribution of the joint mechanical alignment, fellow researcher Olivier

Rits has performed accuracy measurements on the prototypes, and different

tolerances that independently contribute to the joint alignment have been

characterized. These tolerances are listed in figure/table 4.14. The combined

effect of these tolerance data leads to an adequate stochastic model of the

alignment.

In appendix D.1, we derive key properties of the joint distribution of the

vectors OMA (i0, i1) and AVG (i0, i1). Only conclusions are mentioned here.

It is observed that the uncertainty of power figures at any array position is

primarily caused by the variation of VCSEL characteristics, rather than by

misalignment. Effects with array-wide correlation are produced by significant

global translational misalignment, and the smaller impact of global rotational

misalignment is dwarfed by the VCSEL process variations. For that reason, we

choose a natural way of decomposing OMA (i0, i1) and AVG (i0, i1) as a sum

of a global alignment-related contribution and component-specific deviations

(caused by VCSEL variability and thus considered i.i.d. across different array

positions):

OMAd (i0, i1) = E [ 〈OMA (i0, i1)〉| A] + ∆OMA
d (i0, i1) (4.9)

AVGd (i0, i1) = E [ 〈AVG (i0, i1)〉| A] + ∆AVG
d (i0, i1) (4.10)

The angular brackets denote an averaging over all vector components (all

array positions). Sample data for the global alignment-related contributions

can be generated using the Monte Carlo method mentioned in appendix

D.1. The correlation between E [ 〈OMA (i0, i1)〉| A] and E [ 〈AVG (i0, i1)〉| A] is
always > 0.99; both are considered identical except for a difference in location

and scale. Their distribution is significantly left-skewed (see figure 4.15).

A statistical dependence between the global alignment-related contribution

and component-specific deviations is present but turns out to be sufficiently

small to be ignored. The component-specific deviations ∆OMA
d (i0, i1) and

∆AVG
d (i0, i1) for a given position d exhibit no significant skew and approxi-
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# feature relative to error type

maximal
deviation

(4.5σ)
distribution

1 each �ber facet connector radial position 2µm 2D normal

2 each �ber facet connector axial position 10µm normal

3 connector protrusion thickness 20µm normal

4 MT pin guide hole connector radial position 1.5µm 2D normal

5 MT pin guide hole diameter 0.5µm normal

6 MT pin �xing hole module lid radial position 2µm 2D normal

7 MT pin �xing hole diameter 1µm normal

8 MT pin diameter 1µm normal

9 optical array surface CMOS surface distance 10µm normal

10 optical array surface CMOS surface radial position �1µm not modeled

11 module lid center CMOS surface distance ±10µm uniform

12 module lid center CMOS surface in-plane position ±2µm 2D uniform

13 module lid CMOS surface rotation ±0.05° uniform

14 module lid CMOS surface tilt ±0.30° uniform
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Figure 4.14: Package and connector tolerances (courtesy of Olivier Rits)



102 Statistical OE-VLSI modeling and characterization

0

500

1000

1500

2000

2500

3000

3500

4000

4500

-1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1

sa
m

pl
e 

co
un

t

fiber-coupled optical modulation amplitude (dBm)

Figure 4.15: Histogram of the array-averaged optical modulation amplitude

E [ 〈OMA (1.6 mA, 3 mA)〉| A] (100000 samples, bin size 0.01 dB). The distribution

is clearly left-skewed.

mately have a position-independent joint normal distribution. This distribu-

tion has zero expectations, standard deviations denoted by σ∆OMA (i0, i1) and

σ∆AVG (i0, i1), and a correlation coefficient ρ∆OMA ,∆AVG (i0, i1).
Figure 4.16 shows estimates of the mean and standard deviations of

E [ 〈OMA (i0, i1)〉| A] and E [ 〈AVG (i0, i1)〉| A], and all ∆-related distribution

parameters, as a function of the modulation current, using fixed i0 = 1.6 mA.

The expected value of the global contribution to OMA, when represented

in mW, corresponds to the modulation power extracted from the average LI

curve, subjected to 1.15 dB coupling loss and an additional loss of 20 µW/mA

with rising modulation current. The standard deviation of the alignment-

related contributions is around 0.05–0.15 dB. The VCSEL process variations

come about in ∆OMA
as a constant standard deviation of 0.30 dB. The course

of σ̂∆AVG and ρ̂∆OMA ,∆AVG is a natural consequence of the positive correlation

between threshold current and slope efficiency across VCSELs, and becomes

apparent when identifying i0 and the different i1 on figure 4.4.

4.4 From light to chip

4.4.1 Photodiode array uniformity

4.4.1.1 Static uniformity

The general photodiode behavior has already been touched upon in section

3.3.4; here, we briefly recapitulate in order to introduce uniformity aspects

more easily.

An optical beam with power l incident on a photodiode induces a current I
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Figure 4.16: Estimated mean and standard deviation of the misalignment-caused

array-averaged fiber-coupled modulation and average power; and parameters of the

joint normal distribution of

(
∆OMA

d , ∆AVG
d

)
, the per-VCSEL power uncertainty caused

by VCSEL process variations. The off-current i0 is fixed at 1.6 mA; the modulation

current i1 − i0 is indicated on the horizontal axis.
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Figure 4.17: Calculated mean photodiode responsivity versus wavelength at different

temperatures.

according to I (l) = Id + R · l, where Id is the dark current and R the responsivity.
Both parameters are interpreted as random variables across photodiodes. The

dark current is a temperature dependent diode saturation current:

Id (T) = Id,ce−ε/kT , (4.11)

where Id,c depends on the geometry, ε ≈ 0.48 eV is the InGaAs band gap

energy, k is the Boltzmann constant, and T represents the immediate ambient

temperature (not treated as a random variable although written in upper

case). At 300K, the measured dark current over one IO project array is 7.3 nA

on average, with a total range of 4.7 nA (measurements courtesy of Albis

Optoelectronics). Even with an extrapolated value of 150 nA at 85 °C, the

contribution of this current to the photocurrent is negligible.

The responsivity R is wavelength and temperature dependent, caused by an

undesirable optical absorption in the InP substrate: the operating wavelength

of 970 nm is coming close to the optical absorption edge around 950 nm.

The intended absorption in the InGaAs layer can be treated as a constant in

comparison. The responsivity can be modeled by

R (λ, T) = R0e−α(λ,T)d, (4.12)

where R0 is the maximal responsivity, d = 30 µm represents the substrate

thickness and α (λ, T) is the absorption coefficient in the Urbach region, as

described in [Beaudoin et al., 1997]. As shown in figure 4.17, the VCSEL center

wavelength uniformity becomes increasingly important for the uniformity of

the responsivity at elevated temperatures. In the IO setup, the excellent VCSEL

wavelength uniformity mentioned above yields an insignificant multiplicative

contribution to the responsivity which can be safely ignored (σ/µ < 0.2 %).
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Figure 4.18: Simplified view of the receiver circuit

At 300K and λ = 970 nm, an average responsivity of 0.67A/W was measured

across devices before thinning (d = 150 µm). The coefficient of variation of

R0 was measured—with the same, physically moved, incident beam—over 11

devices after full processing, using photocurrent monitoring CMOS circuits,

and found to be 2.4%. This result is only an upper bound, as the photocurrent

monitoring circuits serve more as a diagnostic tool than as a precise instrument

and hence contribute to the measured variation as well.

4.4.1.2 Dynamic uniformity

The speed of the receiver circuit is dominated by a RC time constant, where

C is sum of the photodiode capacitance and the receiver input capacitance

and R is the input resistance of the transimpedance amplifier. Variation of C
across devices therefore adds to the signal skew. The sensitivity of the receiver

circuit delay to input capacitance changes was extracted from a simulation and

found to be around 0.5 ps/fF. Photodiode capacitances have been measured

(courtesy of Albis Optoelectronics) on an 8×8 array before hybridization at a

nominal bias of -2V, resulting in an average capacitance 505 fF with a total

range of 7.6 fF (standard deviation 1.8 fF). The impact of a variation this small

on the receiver delay is negligible.

4.4.2 Receiver circuit delay and skew

4.4.2.1 Introduction

Figure 4.18 shows again the scheme of the receiver circuit; it was discussed in

section 2.6.

For characterization purposes, we always consider photodiode-receiver pairs

as a whole as we cannot observe internal signals (e.g., the photocurrent). As
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Figure 4.19: Schematic overview of the receiver skew measurement setup.

the decision threshold adapts itself to the average signal value, the incident

optical modulation amplitude oma is used as a base quantity instead of

the absolute photocurrent. We have set up a measurement to quantify the

effect of oma on the latency and the bit error ratio (BER) of a receiver circuit,

and across receiver circuits. The output skew between different photodiode-

receiver pairs is quantified as well. Figure 4.19 gives a schematic overview

of the measurement setup. An Agilent 81134A pulse generator is used as

the time base for the system. It generates a reference clock of 1.25GHz

and a derived pseudorandom binary sequence (PRBS) signal with period

231 − 1. This PRBS signal is used to modulate one laser of an 8×8 array

between controllable current levels. A multi-fiber bundle is terminated with a

MPO-like connector at one side only and connected to the array. The single

illuminated fiber is isolated from the bundle at the unterminated side, cleaved,

and mounted into our motorized single fiber alignment setup (figure 4.8). This

alignment setup can be controlled to illuminate any of the 8×8 photodiodes

of a prototype board using the same fiber. The on-chip permutation network

can be configured to route the electrical signal output of any chosen receiver

circuit to the same fast differential output pads. The differential output is split

into two ground-referenced signals, one attached to an oscilloscope and the

other to an Advantest D3286 BER tester. Both instruments are triggered by

the 1.25GHz reference clock.

4.4.2.2 Receiver skew

Characterization of absolute latencies is not targeted. We want to measure

only differences between the latencies of several receiver circuits (= skew) or

the variation of the latency of one receiver circuit when oma is varied.



4.4 From light to chip 107

Figure 4.20: Permutation switch of the DTA IC (see also figure A.2 on page 172).

Not all paths through the switch have the same length, which would render skew

measurements at the transmitting side useless.

To compensate for the unknown and route-dependent delays of the permuta-

tion switch (figure 4.20), a low-skew clock signal can be injected right behind

the receiver output. The observed zero crossings of this clock signal estab-

lishes a good timing reference for data measurements. The skew caused

by remaining path length differences from the receiver circuit to the clock

insertion multiplexer was accounted for using an Elmore estimate of the path

delay [Rubinstein et al., 1983].

BER and eye diagram measurements have been performed on 32 receivers with

an 11-step controllable attenuation in the optical path of 12–22dB, yielding

very low power levels, suitable for receiver testing purposes. Measurements

have been performed for 5 laser current configurations, with dc bias currents

between one and two times the VCSEL threshold. The values for oma at

the fiber exit are in the range -10–‌-22 dBm. In total, 32 × 11 × 5 = 1760
configurations were explored. For each configuration, a necessarily short

BER measurement of one minute was performed, allowing accurate BER

quantification above 4 · 10−11
. Simultaneously, an eye diagram containing 221

samples of the PRBS signal was captured and analyzed (figure 4.23 shows an

example).

Figure 4.21 shows the extracted receiver delays—up to a constant common to

all channels—versus oma for one laser configuration and a controllable optical

attenuation. The increase of receiver delays with decreasing oma amounts to

17.5 ps/dB on average and is very uniform across channels (standard deviation
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Figure 4.21: Measurement of receiver delay versus incident optical modulation am-

plitude on 32 photodiode-receiver combinations (laser i0 = 1.2mA and i1 = 2.9mA;

controllable optical attenuation of 12–19 dB). The time origin is arbitrarily chosen.

of 1.8 ps/dB, excluding one outlier). At given oma, the skew exhibits 42 ps

standard deviation and a total range of 175 ps. This figure includes effects

caused by photocurrent variations due to responsivity variations across the

photodiodes, process variations across receiver circuits, clock distribution skew

and residual errors in the compensation of electrical path length differences.

4.4.3 Bit error ratio characterization across photodiode-re-
ceiver pairs

The signal at a TIA output is corrupted by various sources of noise [Pepelju-

goski and Kuchta, 2003]. Part of this noise originates as additive noise at

the laser side, and is attenuated together with the actual signal, before it

arrives at the photodiode input. Hence it can be considered proportional to

oma[mW]
. Different noise contributions between logic high and low signals are

not discernible in our measurements.

Another part of the noise originates in the photodiode and in the TIA itself.

This part is considered independent of the signal amplitude. Hence, we model

the additive noise signal N at output of the k-th TIA as follows:

Nk = oma[mW] · NTX + NRX,k, (4.13)

where NTX and NRX,k (for all k) are independent Gaussian noise processes.

The TIA output signal is fed into a limiting amplifier where it is compared

to the decision threshold. This threshold is based on a long-time signal

average, with a slight constant positive bias to avoid output oscillations in

dark photodiode receivers. If oma decreases below about -22 dBm, the eye

reduces to a baseline signal.
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Figure 4.22: Measurement of bit error ratio versus incident optical modulation am-

plitude on 32 photodiode-receiver pairs (laser i0 = 1.2mA, i1 = 2.9mA; controllable

optical attenuation of 13–18dB). The apparent occurrence of two curve families is an

illusion caused by unavailable BER data for the worst channels at -17 dBm (due to loss

of sync), and for the best channels at -12 dBm (not enough errors observed to extract a

reliable average BER).

The resulting digital signal is fed into the BER tester. As we assume no further

signal degradation in the limiting amplifier and the subsequent digital path,

the observed BER corresponds to the equivalent BER figure at the TIA output,

computed at the sampling instant corresponding to the optimal sampling

point determined by the BER tester.

The BER can be estimated as follows. The variance of each TIA’s output noise

signal is given by

σ2
N =

(
oma[mW]σNTX

)2
+ σ2

NRX
. (4.14)

Letting β denote the decision threshold bias, we find [Maxim AN576, 2001]

BER =
1
2

[
Φ
(

β− oma
2

σN

)
+ Φ

(−β− oma
2

σN

)]
, (4.15)

where β, oma and σN are in milliwatt, a dc-balanced signal is assumed and

Φ denotes the cumulative distribution function (cdf) of the standard normal

distribution. A good fit of the measurements (of figure 4.22) can be obtained

with σNRX ≈ −27.5dBm, σNTX = 0.059 and β ≈ −23.8dBm (towards logical

1).

The residual variation among channels can be attributed to photodiode respon-

sivity variations and variations in the TIA preamplifier gain, among others.

This is modeled as an additional common contribution to OMA[dBm]
and

AVG[dBm]
with a standard deviation of approximately 0.29 dB. When taking

this value, the standard deviation of E [ 〈OMA (i0, i1)〉| A] and σ̂∆OMA into
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account (see figure 4.16 on page 103 for values), the modulation amplitude of

the signal before the limiting amplifier of any interconnect channel will suffer

a combined process variation σall with a standard deviation of 0.44 dB.

The BER curves (versus oma, obtained by a controllable optical attenuation)

essentially coincide across laser current settings as long as the current for

a logic zero is above approximately 1.5 times the VCSEL threshold Ith. At

lower current levels above threshold, the BER can get up to three orders of

magnitude worse than projected. The slower modulation response at low bias

is the probable cause of this effect.

4.4.3.1 Impact of timing jitter and offset on the bit error ratio

The BER figures analyzed so far assume sampling at the optimal sampling

point of the eye diagram. In order to evaluate what happens when the

sampling instant would be derived from a common clock signal, we have to

quantify the degradation of the BER when sampling at other points than the

optimal one.

We approximate the eye diagram at the TIA output by means of eight signals,

corresponding to the bit patterns 000, 001, . . . , 111, where we focus on the

central bit (centered around the time origin). Four of these—p1 (t), . . . , p4 (t)—
correspond to a central bit of 1; the other four are denoted q1 (t), . . . , q4 (t)
and correspond to a low central bit.

The eye diagram is then composed of many superpositions of these curves,

randomly shifted vertically by the additive signal noise N, and randomly

shifted horizontally by the timing jitter J. This jitter is assumed to have

a normal distribution and is caused by a variety of effects, among which

intersymbol interference and clock jitter. The time difference between the

sampling epoch and the center of the eye is denoted Ts. The expected BER

when sampling at the relative sampling time Ts (with expectation ts,µJ and

variance σJ) is then given by

BER =
1
8

[ 4

∑
i=1

∞∫
t=−∞

Φ
(

β− pi (t)
σN

)
dΦ
( t− ts,µJ

σJ

)

+
4

∑
i=1

∞∫
t=−∞

Φ
(
−β + qi (t)

σN

)
dΦ
( t− ts,µJ

σJ

) ]
(4.16)

To evaluate equation 4.16 we need a good estimate of σJ . This can be obtained

from the eye diagrams, where the width of the eye crossing (see figure 4.23)

is determined by the jitter in the first place, but also by the additive noise

on the signals pi (t) and qi (t) through their zero-crossing slope m. The total

apparent jitter at the eye crossing is then

σ2
J + (σN/m)2 . (4.17)
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Figure 4.23: Eye diagram and horizontal histogram around the eye crossing level (laser

i0 = 1.2mA, i1 = 2.9mA; 15dB optical attenuation). This eye has BER = 4 · 10−8
at

the optimal sampling time.

Our measurements can be fitted to σJ ≈ 21.5ps and a zero-crossing slope

m corresponding to a 10–90% rise time of 275ps when approximating the

edges of pi (t) and qi (t) by hyperbolic tangents (as is done, e.g., in [Sabet

and Ilponse, 2001]). At a given oma, the BER can be plotted as a function

of both the mean relative sampling time ts,µJ and the threshold offset β to

assess the impact of timing jitter and offset. Figure 4.24 shows such a plot for

parameters corresponding to oma = −9 dBm. We observe that small changes

of the threshold offset β can already have a profound impact on the BER.

At this oma setting, βauto/oma[mW] ≈ 0.035 when using automatic threshold

detection.

When the mean relative sampling time ts,µJ is sufficiently far from the eye

crossing, the BER is essentially independent of the precise sampling instant in

an interval of several 100s of picoseconds. It turns out that when a given BER

is proposed, the length of the sampling window (denoted τs) in which the

proposed or better BER is attained is relatively insensitive to the exact values

of oma and β, as long as the noise floor given these values is significantly

lower than the proposed BER. For instance, at 1.25Gbps, given a proposed

BER of 10−12
, in the IO receiver circuits τs is 360 ps at oma = −9dBm, rising

to only 410 ps at oma = 0 dBm. For oma < −9 dBm, the noise floor comes too

close to 10−12
and τs shortens significantly.

Given a desired array-wide oma ≥ −9 dBm and a 6σall safety range, an average

oma of −6.4dBm should be targeted. This corresponds to a minimal VCSEL

modulation current of 0.42mA at 20 °C. At an elevated temperature of 70 °C

this value becomes 0.60mA due to the derating of the laser efficiency (−1.3 dB)

and the photodiodes (< −0.25dB). At a nominal current configuration i0 =
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Figure 4.24: Calculated expected BER for oma = −9 dBm at 1.25Gbps as a function of

both the mean relative sampling time ts,µJ and the threshold offset β.

1.6mA/i1 = 3.0mA, the signal modulation amplitude still shows a surplus

of 3.7 dB which can serve to compensate the increased overall noise figure at

higher temperatures.

4.5 Putting things to work

We are now in a position to address the questions formulated at the beginning

of this chapter: (i) can we use a reference channel from which the sampling

instant is derived for all channels, obviating the need for clock recovery

circuitry for each channel; and (ii) can we use a reference channel from which

the decision threshold for all channels can be obtained, obviating the need for

dc-balanced coding?

4.5.1 Common sampling instant

We assume that we keep the per-channel threshold and dc-compensated

channel coding, and employ a circuit architecture where all channels are

transmitting data truly synchronously [Gui et al., 2005]. One channel (channel

number d = 0) is chosen as dedicated clock channel and is used to transmit

a continuous symmetric square wave signal. At the receiver side, one clock

synchronization circuit is used, which phase-locks on the center of the bit

period of the dedicated clock signal. A locally generated clock is distributed

to sample the receiver output of all other channels.

We shall now estimate the probability of attaining a BER of 10−12
over all

data channels simultaneously. We assume a timing jitter σJ comparable to the

value reported in the previous section. We have accounted for this jitter in the
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derivation of the BER curves as a function of the sampling instant (figure 4.24).

The cross-section at a constant threshold offset β has a bathtub shape, the

width of which is virtually independent of β and oma, as long as the latter is

sufficiently big. From the previous section, a value τs = 360 ps is a reasonable

assumption for the length of the sampling window in which the BER < 10−12

when the noise floor is sufficiently below this limit.

The individual (jitter-free) sample times Ts,d in each of the nd− 1 data channels

can be written as

Ts,d = Tcd,d − Tcd,0, (4.18)

where Tcd,d is composed of the delay of the d-th receiver circuit as well as

the clock distribution delay from a common clock node. We assume that

the feedback path in the clock recovery circuit has a similar delay as the

distribution path to the data receivers.

The delays Tcd,d can be considered i.i.d. with a normal distribution N
(
δ, σ2

s
)
.

Note that the independence assumption is not valid for e.g. clock distribution

trees, but it puts us on the safe side in the following derivation. The skew

figure of 42 ps extracted from the data of figure 4.21 provides an estimate

for σs; we use 60ps in our calculations to account for an equal amount of

transmitter-side skew (again erring on the safe side as the skew contribution at

the transmitter side is likely lower than at the receiver side). The dependence

of Tcd,d on the exact optical modulation amplitude can be safely ignored: the

all-inclusive standard deviation σall of OMA[dB]
of about 0.44 dB causes only

7.7 ps skew according to the 17.5 ps/dB receiver delay sensitivity on the optical

modulation amplitude extracted above.

The sought probability is given by

P
[
−τs

2
< all Ts,d ≤

τs

2

]
= E

[
P
[
−τs

2
< all Ts,d ≤

τs

2

∣∣∣ Tcd,0

]]
= E

[(
P
[
−τs

2
< Tcd,1 − Tcd,0 ≤

τs

2

∣∣∣ Tcd,0

])nd−1
]

=
∞∫

tcd,0=−∞

[
Φ
( τs

2 + tcd,0 − δ

σs

)
−Φ

(− τs
2 + tcd,0 − δ

σs

)]nd−1

dΦ
(

tcd,0 − δ

σs

)
(4.19)

In the IO project setup with per-channel resynchronization, an array-wide

BER < 10−12
can be obtained on all 64 channels. When using a common

sampling instant, the substitution of our experimental data into equation 4.19

evaluates to a yield of 56% for 64 channels at 1.25Gbps. The bitrate can

however be lowered to attain a higher yield. Figure 4.25 shows the maximal

bitrate as a function of the number of channels nd if a 99.9% yield of a given
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Figure 4.25: Maximal synchronous bitrate as a function of the number of channels nd
if a 99.9% yield of a given array-wide BER is required.

array-wide BER is required. For the extrapolation to bitrates lower than

1.25Gbps the random jitter σJ was (pessimistically) chosen to scale with the

bit period. It is clear that the maximal bitrate initially falls quickly at very

small nd (< 20), but the decrease is much slower as nd increases further. This

result indicates that efficient source-synchronous parallel optical interconnect

is well in reach of well-crafted systems optimized for this mode of operation.

4.5.2 Common logic threshold

Here we assume that the logic threshold derived from the average photocur-

rent of one dedicated channel—transmitting a continuous symmetric square

wave—is used as a logic threshold in all other channels. The signal sampling

times are now considered to be near the center of the eye where the noise

behavior is stationary.

Again we will estimate the probability of attaining a BER figure of 10−12

over all data channels simultaneously. The logic threshold extracted from the

dedicated channel (at channel number d = 0) is written as AVG0; the global

connector alignment is denoted A. Conditionally on A and AVG0, the events

of different data channels attaining a BER < 10−12
are independent. Hence

the joint probability can be expressed as a product:

P
[
BER of (nd − 1) channels < 10−12

]
= E

[
P
[
BER of (nd − 1) channels < 10−12

∣∣∣ A, AVG0

]]
= E

[(
P
[
BER of 1 channel < 10−12

∣∣∣ A, AVG0

])nd−1
]

(4.20)
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Figure 4.26: Probability of attaining the indicated BER array-wide as a function of the

number of channels nd, at a logic ’0’ VCSEL current i0 = 1.6 mA and i1 currents 3mA

and 5mA.

The stochastic model of equations 4.9 and 4.10 is used as a model for

OMA (i0, i1) and AVG (i0, i1). To account for photodiode responsivity and

receiver amplification variations, an additional per-channel normal deviation

0.29 dB (extracted in section 4.4.3) is implicitly added jointly to OMA[dBm]
d and

AVG[dBm]
d . Equation 4.20 is evaluated using a Monte Carlo method; this is

treated in appendix D.2.

At VCSEL currents i0 = 1.6mA and i1 = 3.0mA and without inserted op-

tical attenuation, the probability of a BER < 10−12
on one channel using a

threshold dictated by another channel is only 43%. The standard deviation

of β/oma[mW]
is around 14%. These figures still ignore process variations

of limiting amplifier operating points—a bias effect which is automatically

compensated when per-channel threshold feedback is used. At a fixed laser

bias i0, higher modulation amplitudes yield higher probabilities as the mod-

ulation current increases faster than the threshold error, especially when

OMA is small compared to AVG. Figure 4.26 shows the array-wide yield as

a function of the number of channels nd at different desired BER limits and

modulation currents. It is clear that, for the characteristics extracted from the

IO project setup, for any decent number of channels the usage of a common

logic threshold is infeasible.
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Chapter 5

Measurement and
evaluation of direct

substrate noise

As discussed in section 2.6.2, optical receiver circuits need to amplify pho-

tocurrents in the µA–range to rail-to-rail voltage swings. The large parasitic

capacitance of photodiodes translates voltage noise across them into current

noise which can overwhelm the communication signal. Although a differ-

ential circuit approach can mitigate this problem, the circuit itself must be

adequately protected as well against unbalanced disruptions. When optical

receiver circuits are integrated in a chip alongside each other and rapidly

switching digital circuits—as is the case in OE-VLSI interconnect—coupling

of digital switching noise through the substrate can severely compromise

the accurate operation of the receiver circuits. Besides possible OE-VLSI is-

sues, substrate noise is an important issue in all mixed-signal designs where

sensitive analog circuits are embedded in a hostile digital environment.

In this chapter we present an experimental environment to characterize the

sensitivity of embedded analog circuits to digitally generated substrate noise.

Our measurement technique is based on equivalent-time substrate voltage

sampling and uses a simple differential latch comparator without explicit

input sample-and-hold. A surprisingly large measurement bandwidth is

observed, which is explained from the detailed circuit behavior. On the IO

project receiver IC in 0.18–µm CMOS, we have demonstrated that our system

allows to wave trace pulses as narrow as 200ps accurately. It turns out that

the protection of the receiver circuits by a guard ring approach—surrounding

the circuits with a dense succession of interconnected substrate contacts—is

adequate to absorb locally generated substrate disruptions.

Additionally, the extraction of precise measurement data from observations
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that are excessively corrupted by additive noise and timing jitter is addressed.

We present simple yet very effective methods to accurately reconstruct pulse

waveform features without the use of delicate deconvolution operations.

5.1 Introduction

Mixed-signal designs often need to embed sensitive analog circuits in between

fast digital circuits. Coupling of digital switching noise through the substrate

can then severely compromise the analog behavior. Careful separation of

both circuits at the circuit and layout levels—using highly decoupled separate

power and ground nets and a layout with minimal coupling between sensitive

metal tracks—leaves only coupling through the conductive substrate as the

remaining noise mechanism. Unless costly triple-well CMOS technology is

applied, this coupling cannot be eliminated completely. The prediction of

substrate currents and the resulting bulk potential variations and ground

bounce, and the design of noise-tolerant circuits are active research topics

[Nagata et al., 2001; Donnay and Gielen, 2003; Badaroglu et al., 2004; Owens

et al., 2005; Badaroglu et al., 2006].

In this chapter, we report on a measurement technique for very fast periodic

bulk potential variations in bulk-type CMOS. The approach was applied on

the 0.18 µm receiver test IC of the IO project (see appendix A), where we

need to quantify the robustness of sensitive optical receiver circuits to locally

injected substrate noise. To this end, we have designed controllable substrate

noise generation circuits and modeled the substrate coupling using Cadence’s

Substrate Noise Analyst (SNA) software [2004]. Our measurement circuit for

fast substrate noise has been integrated alongside the noise generation circuits

as a means to validate the substrate model through direct measurement. The

measurement circuit is analyzed and a surprisingly small sampling window

with a correspondingly large effective bandwidth are observed. Furthermore,

a new and efficient technique was developed to accurately extract pulse

widths and heights from measurement data deeply buried in jitter noise.

The proposed technique is simple and does not require numerically delicate

deconvolution operations.

Our approach is based on the equivalent time measurement technique [Makie-

Fukuda et al., 1996; Ho et al., 1998; Nagata et al., 2000; Casper et al., 2003]

and hence is applicable when the generated noise is periodic. Here, the

substrate signal is sampled at different phases in subsequent periods. Each

sample is compared to an adjustable reference voltage using a latch com-

parator. By adapting the reference voltage for each value of the sampling

delay, the waveform of the signal can be reconstructed. The result of the

comparison is observable at a standard digital I/O pad, obviating the need for

high-bandwidth analog I/O. The repetitive sampling principle has far wider

applicability than substrate noise measurements, and most results will apply
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to the measurement of any reproducible signal.

We have compared our substrate noise measurements to circuit-level sim-

ulations. To this end, we have used SNA to extract a three-dimensional

RC-network as a simulation model for the substrate. For simulation purposes,

the substrate model was then coupled to the IC schematic, which has been

specially modified to bring all significant substrate connections—CMOS de-

vice backsides and explicit substrate connections—outside as pins. A good

match between simulations and measurements was obtained.

This chapter is structured as follows. In section 5.2, we briefly discuss the

causes and effects of substrate noise, the noise measurement principle, pre-

vious work and the original contributions. Next, the measurement circuit is

presented. The following sections take a closer look at the properties of the

latch comparator. In section 5.3, the dynamic behavior of the circuit is studied,

and in section 5.4 we investigate measurement inaccuracies resulting from

a noisy voltage reference or sampling time jitter. Finally, in section 5.6, we

report on the good agreement between measured and simulated substrate

disturbances, the observed impact of direct substrate noise on the receiver

circuits, and on the performance of our noise elimination technique.

5.2 Problem De�nition and Previous Work

5.2.1 Substrate noise

The term substrate noise comprises all effects caused by the switching of digital

circuit nodes, which change the bulk potential underneath sensitive devices of

the analog circuit, or inject current into substrate contacts. There are several

sources of substrate noise. The most important reported direct causes [Su

et al., 1993; Donnay and Gielen, 2003; Badaroglu et al., 2004] are capacitive

coupling from MOSFET source and drain nodes and impact ionization from

the MOSFET channel—a carrier generation process where highly energetic

carriers collide with the crystal lattice—which inject current into the substrate.

The effect on the substrate is characterized by short, sharp pulses occurring

nearly simultaneously with the switching events that cause them. Substrate

voltage transients have very specific properties: the voltages typically take

values in an interval of only some tens of mV around the off-chip reference

ground, and the output impedance of a floating bulk contact is relatively high

[Su et al., 1993]. The bulk voltage instantaneously affects the threshold voltage

of the involved MOSFETs, and capacitive coupling with various circuit nodes

is omnipresent.

A major indirect cause of substrate disturbances originates from the power

supply system and is known as ringing. When an external point on a PCB

ground plane close to the IC is used as a common reference for the separate

analog and digital power distribution, the digital on-chip power and ground
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Figure 5.1: Observed direct and indirect substrate disturbance waveforms. Note the

large bandwidth differences between both effects.

lines will exhibit voltage oscillations with respect to this point, and hence

with respect to the analog ground system. These oscillations are caused by

the sharp supply and ground current fluctuations injected into the power

system. This system consists of an RLC resonator composed of the on-chip

decoupling capacitance, and the inductance and resistance of the digital power

and ground lines (bond wires). Even when digital and analog ground lines

are kept fully separate on-chip, there exists a relatively low-impedance path

between them through the substrate, because they contact the same p-bulk

in many places—e.g., at least once in each digital cell. Hence, the ringing of

the digital power system is coupled to the on-chip analog ground reference,

disturbing the analog circuitry. The frequency behavior of ringing is quite

distinct from the effects from the direct causes (figure 5.1), in that the observed

frequencies range between 50 and 500MHz whereas direct substrate noise has

frequency components in the GHz range. In the literature, most attention goes

to the effects of ringing. Indeed, the ringing effect is larger in amplitude and

time scale than the direct effect and considerable effort has been invested in

neutralizing its effects [Donnay and Gielen, 2003]. The ringing effect is much

less apparent when packaging parasitics are reduced, for instance when the

IC is being flip-chipped instead of wire bonded [Owens et al., 2005]. Here

we address the direct substrate disturbances, which are far more difficult

to measure than the effects caused by ringing because they require a much

higher measurement bandwidth.

We consider bulk-type (lowly doped) substrates, which are quite common

in modern technologies. They have fairly high resistivity and cannot be

considered equipotential; hence they must be modeled as a three-dimensional

RC network. They provide better noise isolation than EPI substrates, as guard

ring structures are far more effective [Su et al., 1993].
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Several tools exist for the extraction and simplification of the equivalent RC

network; we have used the SNA software for this purpose. The extraction

and simplification of the equivalent network from a digital circuit with many

substrate connections is a tedious and computationally complex task, which

quickly runs into long computation times as circuit complexity increases. In

this respect, the availability of small embedded measurement circuitry is a use-

ful complement to pure simulation. In an attempt to predict the experimental

results to validate the measurement technique, we have simultaneously mod-

eled a configurable noise generation circuit together with our measurement

circuit.

5.2.2 Measuring fast substrate signals

Substrate voltage wave tracing has never been straightforward: direct electrical

on-chip probing is generally impossible, and in addition the inductance and

large capacitive load of a single-ended external probe disrupt the signal. In an

indirect approach, substrate noise has been measured through its impact on

the threshold voltage of a single MOSFET [Su et al., 1993]. The bandwidth

of this method is severely limited by probing parasitics. Integration of a fast

wideband analog amplifier and bonding out the amplifier output is another

technique [Donnay and Gielen, 2003; Owens et al., 2005], which however

requires the use of very high-bandwidth analog output pads.

On-chip real-time sampling of signals that vary with the achievable speed

of the used IC technology is infeasible with circuits of the same technology:

either the sampling circuits need to take samples impossibly fast, or a very

large number of parallel sampling circuits would be required. Furthermore, a

very large bandwidth to store the measurement data or to bring them off-chip

is required. However, if the longer acquisition time is no problem and if

the signals are periodic, equivalent time sampling measurements using on-chip

voltage comparators constitute a simple and low-cost alternative. Sampling

can be done over subsequent instances of the signal, with only one sampling

circuit. The phase between the periodic waveform and the sampling time is

made adjustable by on-chip or external means, in order to gather samples

throughout the whole signal period. Repetitive sampling also eliminates

the need for analog-to-digital conversion as a simple, but repeated on-chip

comparison with an externally provided analog voltage will suffice. The result

of the comparison is a low-bandwidth binary signal. There is no restriction

on the complexity or duration of the repetitive experiment as long as the

repetitions are accurate and deterministic (see Casper et al. [2003] who used a

full pseudorandom digital pattern as stimulus in one repetitive experiment).

Makie-Fukuda et al. have used chopper-type single-ended voltage comparators

[Makie-Fukuda et al., 1996] to sample substrate voltages in equivalent time.

The single-ended nature of this circuit makes the comparison itself vulnerable

to MOSFET threshold variations and power supply ringing. A differential and
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more robust approach was taken by Nagata et al. [2000] where differential

latch comparators are employed. A latch comparator is a circuit that performs a

clocked comparison of two voltages. Such circuits are widely deployed in A/D

converters [Yuwaka, 1985; Cho and Gray, 1995; De Maeyer et al., 2004] and

dynamic RAM circuits [Montanaro et al., 1996]. Latch comparators have also

been applied successfully for on-chip sampling of other signals for diagnostic

purposes, e.g., to verify the timing of a SRAM circuit [Ho et al., 1998] or to

monitor the eye diagram of a communication link [Casper et al., 2003].

Our experimental setup was inspired by Nagata et al. [2000]. However,

our approach is different from theirs as we aim at observing the fast direct

substrate noise effect instead of the ringing. Where there was plenty of

measurement bandwidth for the observation of ringing, now the bandwidth

of the examined signals becomes much higher. Hence analyses of the intrinsic

measurement bandwidth and the effects of additive noise and jitter were

considered essential. Observing the direct substrate noise in high-resistive

substrates also requires full control over the relative location of noise sources

and detectors, while in EPI-type substrates, distances of more than about 4

times the thickness of the epitaxial layer are considered to exhibit equal noise

coupling [Su et al., 1993]. Our noise generation circuit provides very localized

substrate noise sources, and the location of our detector circuit is judiciously

chosen. The detector itself is very simple: it requires only one comparison

voltage and only one measurement trigger clock. Figure 5.2 shows the circuit

diagram. The measurement bandwidth is surprisingly large and does not, as
is commonly believed, depend on the time constant of the regenerative latch.

The latch comparator is modeled after the sense amplifier design for the

memory cells of the StrongArm microcontroller [Montanaro et al., 1996]. It

essentially consists of a bistable cross-coupled latch (transistors T4 to T7) fed

by a differential stage consisting of transistors T1 to T3. When sampling, the

latch is released from its metastable state with an initial imbalance resulting

from the differential stage. This imbalance reflects the difference between the

reference voltage and the substrate signal; the sign of the difference will cause

the latch to move to the corresponding stable state.

5.3 Estimating bandwidth and linearity of the
latch comparator

Let us now take a closer look at the behavior of the latch comparator aiming at

a more precise characterization of its bandwidth properties. In equivalent time

sampling measurements, usually a sample/hold circuit is used to capture the

signal to be measured. The sampling circuits used are linear circuits with very

good approximation, and their equivalent bandwidth is determined by their

aperture time, i.e., the time window T during which the signal is observed

and somehow averaged to provide a single sample value.
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Figure 5.2: Circuit diagram of the latch comparator used in our measurement circuit.
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Figure 5.3: Substrate and reference connections of the measurement circuit, simplified

for our empirical analysis.
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Figure 5.4: Simulated operation of the latch comparator. The voltage Vref was chosen

such that the latch was released very close to its metastable equilibrium point. Note

that the voltage VG2 undergoes a marked voltage drop during the measurement, due

to capacitive voltage kickback from node N1 into the finite substrate impedance. The

actual substrate signal to be measured is superposed onto VG2 and is not discernable

on the scale of the figure.

In our system, no explicit sample/hold circuit is deployed. However, it is

obvious that during a brief period immediately following a positive clock

transition, the input signal is observed and compared to the reference value,

causing the latch to move to its final state. Consequently, a sampling function

similar to the explicit ones found in traditional circuits must be present. It is

much less obvious to find out whether the ensuing sampling action can be

considered a linear operation, and if so, to determine its equivalent bandwidth.

Indeed, during operation, all transistors operate in their large signal regime,

where there exists no simple linear relationship between e.g. the gate voltage

and drain current of a FET. Hence a more detailed analysis is called for.

5.3.1 Bandwidth

Figure 5.4 shows the simulated operation of the circuit when an input voltage

is sampled, and where the reference voltage is set to a value that releases the

latch very close to its metastable operating point. This is the situation we

achieve in noise-free conditions when the measurement outcome contains 50%

1s and 50% 0s. From the time behavior of the circuit, the sampling operation

can be inferred. Initially, when the clock input is still low, transistor T1 is

switched off, and the drains of transistors T2 and T3 are all pulled high. Node

N1 assumes an intermediate voltage slightly below VG2. When the clock signal

rises above threshold (epoch t0), T1 starts conducting, pulling the common

source node N1 low. At the same time, the negative transition on node N1
induces a negative transition on VG2 due to capacitive coupling and the fact
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that the gate of T2 is coupled to the high-ohmic substrate (voltage kickback).

In our case, we assume that this kickback effect is signal-independent and

hence will result in an overall offset.

At time t1, when node N1 has dropped Vt below the gate voltages of T2 and

T3, respectively, a drain current starts to flow in these transistors. This current

discharges the respective drain nodes N2 and N3, bringing them low. The

discharge rates are proportional to the respective drain currents, which, in

turn depend on the instantaneous gate-to-source voltages of the transistors T2
and T3.

Due to the differences between the gate voltages of T2 and T3, the nodes

N2 and N3 are discharged at a different rate, and a voltage difference builds

up between them. At time t2, when both nodes have dropped sufficiently

low, the transistors T4, T5, and later T6, T7 start conducting, activating the

positive feedback loop of the latch, which will exponentially move to a stable

state corresponding to the initial voltage difference on nodes N2 and N3.
As already mentioned, during actual measurements the reference voltage is

adjusted until this initial voltage difference is as small as possible, releasing

the latch as close as possible to its metastable operating point.

Hence, the measurement value is the specific value of the reference voltage

which leads to as small as possible a voltage difference between nodes N2
and N3 at time t2, and the actual buildup of this difference (i.e., the period

during which the input and the reference are compared) takes place between

t1 and t2. This results in a sampling period T = t2 − t1, which determines

the equivalent bandwidth of the measurement. As can be seen in figure 5.4,

this sampling window can be much smaller than the regeneration time of the

latch.

5.3.2 Linearity

The question remains as to whether the equivalent relationship between

the input voltage and the measurement result is linear or sufficiently close

to linear, so that accurate waveform measurements can be performed. To

investigate this question, we use a semi-empirical approach, inspired by the

simulation of figure 5.4. Hereto, we determine the incremental effect of the

small substrate signal when observed during the measurement operation.

We model the difference in the drain currents Idiff of T2 and T3 during the

sampling of a sinusoidal waveform Vin = V1 sin (ωt + φ), which represents

the net incremental effect of the substrate voltage onto the gate of T2. V1 is a

small amplitude (e.g., 10mV), typical of direct substrate disturbances. We set
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the time origin to epoch t1 and approximate the relevant node voltages by

VG2 = V0 + Vin + V2e−λt
(5.1)

VG3 = Vref (5.2)

VN1 =
(

Vref −Vt

)
e−λt, (5.3)

where V0 is the DC-bias of the gate of T2 and the last term in equation 5.1

approximately represents the voltage kickback onto the gate of T2, clearly
visible in figure 5.4. Equation 5.3 approximates the downward transition

of the common source voltage at node N1 from the point where T3 starts

conducting. The rate λ represents the time constant in the transition of

node N1 and was extracted from the simulation result of figure 5.4. These

waveforms are simple approximations, but are chosen such that they allow

symbolic manipulation of the equations. For our analysis we assume a simple

transistor model, in which the drain current of a FET in its saturation region

is proportional to (VGS −Vt)2
. The results of our analysis are essentially

independent of the detailed FET characteristics or the precise waveforms of

VG2, VG3 and VN1 because we only need to consider small deviations from the

actual voltage trajectories rather than the trajectories themselves. Therefore,

any more sophisticated model will lead to the same qualitative conclusions.

Using these definitions and assumptions, we obtain

Idiff ∝ (VG2 −VN1 −Vt)2 − (VG3 −VN1 −Vt)2 , (5.4)

and the resulting voltage difference between N2 and N3 at time t2 is propor-

tional to

Vdiff ∝
∫ t2

t1

Idiff dt. (5.5)

We now set Vdiff = 0 in equation 5.5, and solve this equation for Vref sym-

bolically
1
. The complicated expression for Vref thus obtained represents

the measurement outcome, and its dependence on the amplitude V1, fre-

quency ω and phase φ of the input signal will reflect the linearity or the lack

thereof. A perfectly linear response should result in Vref having the form

Vref = a (ω) sin (ωt + φ− φ0 (ω)). The value of ω where a (ω) = V1/
√

2 is

the equivalent -3–dB bandwidth of the circuit. The actual expression obtained

is however much more complicated.

To estimate the degree of nonlinearity, we have expanded Vref into a Taylor

series w.r.t. V1, and for each value of ω we have computed the maximal

value of the second order term for varying φ. Numerical values were chosen

according to figure 5.4: V0 = 900 mV, Vt = 500 mV, V2 = 200 mV, 1/λ = 7.5 ps,

and T = t2− t1 = 20 ps. Fig. 5.5(a) shows a Bode plot of a(ω) and the maximal

1
This was done using Maplesoft’s Maple 9.5 suite. Although results were obtained in closed

form, they are far too complex to be shown explicitly.
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Figure 5.5: The amplitude response of the latch comparator. (a) The response and

its second order term based on our empirical analysis (V1 = 0.1Volt). (b) Obtained

through simulation of the circuit with sinusoidal input.
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value of the second order term, for a signal amplitude V1 = 10mV. The −3-
dB bandwidth is roughly 25GHz, and the second-order term initially stays

more than 70dB below the signal, reducing to 38dB at 25GHz. The circuit’s

frequency response was also directly obtained from a simulation run. To this

end, transient simulations were performed with a sinusoidal input with a

10–mV amplitude. For each frequency, the sampling phase was set to five

equally spaced values in the period and the metastable Vref was determined.

Through the five Vref results, a sine wave was fitted, yielding the amplitude

and the phase of the response. The resulting Bode plot is shown in fig. 5.5(b).

As both the bandwidth and the first notch depend on the sampling time,

we can conclude that the estimate of T from our empirical circuit analysis

provides a very good fit. Furthermore, even at input amplitudes as large as

100mV, the second-order term is still 18 dB below the first order term over the

entire bandwidth. Hence we can conclude that our circuit, despite the lack

of sample/hold circuits, is linear with good approximation in the amplitude

range for our purpose and has excellent bandwidth.

5.4 Measuring in the presence of jitter and addi-
tive noise

We now address the problem where we intend to measure the sharp, isolated

pulses caused by capacitively coupled substrate events, but where the horizon-

tal time base is subject to significant time jitter. It is well known that timing

jitter can drastically obscure the real pulse shape in equivalent time mea-

surements, and should be eliminated. Several authors [Gans, 1983; Souders

et al., 1990; Verspecht, 1994; Coakley et al., 2003] have presented methods to

eliminate both the jitter and additive-noise effects from measurements, under

various hypotheses about the true waveform and the statistical properties of

the noise components. However, all approaches assume that the raw measure-

ment result is an analog value, corrupted by both noise components, for each

sampling instant.

In our measurement system, raw measurement data are binary (1s and 0s),

and indicate the result of the individual comparisons of the substrate signal

with the analog voltage Vref . As indicated in the previous section, when we

want to measure the instantaneous signal value, we set Vref to a value which

yields a 50–50% result on the comparison; this value then represents the

analog value of the measurement. Setting other values for Vref will yield other

relative outcomes of the comparison. In noise-free conditions, the change-over

from a 0–100% to a 100–0% is immediate, while in our test setup, in nearly

noise-free conditions, the change-over occurs in a very narrow interval (less

than one mV). In these conditions, with sharp transitions, a fast simple time

scan with adjustment of Vref to a 50–50% outcome (e.g., using successive

approximations) will provide an accurate measurement result.



5.4 Measuring in the presence of jitter and additive noise 129

In the presence of both timing jitter and additive noise, the change-over

interval broadens and the 50% percentile is no longer a good approximation

of the true waveform. Performing a repeated measurement at time delay

t, with a fixed value of Vref yields a fraction of 1s denoted m
(

t, Vref

)
. This

fraction is an unbiased estimate of the probability that the instantaneous

substrate signal value is larger than the fixed Vref . Collecting m
(

t, Vref

)
over a relevant range of values of t and Vref would allow the application of

published deconvolution techniques [Lucy, 1974; Richardson, 1972] to extract

the original uncorrupted waveform. However, the complete measurement is

very time-consuming, in particular when not the entire waveform is required,

but only its main characteristic features such as pulse position, height and

width. Furthermore, deconvolution techniques are notably unstable in ill-

conditioned situations. We shall now describe a new approach aimed at

identifying the true relevant pulse features without having to collect the entire

dataset and without having to identify the jitter distribution and deconvolve

it from the measurements. It is based on collecting a small number of time

scans of m
(

t, Vref

)
at well-chosen fixed values of Vref , based on an initial 50%

percentile scan.

We use the following notation. Let v (t) denote the true voltage waveform,

representing an isolated, sharp pulse. The random variable τ represents the

jitter, and is assumed to have a probability density function (pdf) fτ (t). The
additive noise n present during each individual sample is assumed the be

drawn independently from a zero-mean distribution, and is assumed to have

a standard deviation that is significantly smaller than the signal peak value.

We shall first perform our analysis with zero additive noise (which may be a

valid approximation in many cases).

Let t1 (v0) and t2 (v0) denote the time instants of the rising and falling crossing

of the level v0 by v (t), respectively. With these assumptions, the expected

result of a horizontal scan with Vref = v0 can be written as follows:

E [m (t, v0)] = P {v (t− τ) > v0} (5.6)

=
∫ +∞

−∞
fτ (u) P {v (t− u) > v0} du (5.7)

=
∫ +∞

−∞
fτ (u) I[t1(v0),t2(v0)] (t− u) du, (5.8)

where E denotes expectation and where I[x,y] (t) is the indicator function of

the interval [x, y] taking on the value 1 iff x ≤ t ≤ y, and 0 otherwise.

Equation 5.8 represents a convolution of the jitter distribution fτ and the

(deterministic) indicator function of the true pulse width at level v0. From this

convolution, one can extract the pulse position and width with good precision,

using Fourier techniques. As indicated, whenever the Fourier transform of
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fτ (t) vanishes in the region of interest, its removal by deconvolution is not

as straightforward as it looks. A much simpler approach in the time domain

consists in simply integrating equation 5.8. Assuming we are considering one

single pulse, we obtain

M0 (v0)

=
∫ +∞

−∞
E [m (t, v0)] dt (5.9)

=
∫ +∞

−∞
dt
∫ +∞

−∞
fτ (u) I[t1(v0),t2(v0)] (t− u) du (5.10)

=
∫ +∞

−∞
fτ (u) du

∫ +∞

−∞
dt[t1(v0),t2(v0)] (t− u) (5.11)

= (t2 (v0)− t1 (v0))
∫ +∞

−∞
fτ (u) du (5.12)

= t2 (v0)− t1 (v0) . (5.13)

Computing the first moment in the time domain, we find

M1 (v0)

=
∫ +∞

−∞
t E [m (t, v0)] dt (5.14)

=
∫ +∞

−∞
t dt

∫ +∞

−∞
fτ (u) I[t1(v0),t2(v0)] (t− u) du (5.15)

=
∫ +∞

−∞
fτ (u) du

∫ +∞

−∞
tI[t1(v0),t2(v0)] (t− u) dt (5.16)

=
∫ +∞

−∞
fτ (u) du

(t2 (v0) + u)2 − (t1 (v0) + u)2

2
(5.17)

= (t2 (v0)− t1 (v0))
t2 (v0) + t1 (v0)

2
, (5.18)

where we have assumed that the jitter distribution has zero mean. Both

results jointly provide us with position and width estimates of the pulse at

voltage level v0. In view of the large number of samples taken (more than 106

per combination of t and v0), the observed value of m (t, v0) is a very good

unbiased estimate of its expected value. The values of M0 (v0) and M1 (v0)
can hence be estimated as follows:

M̂0 (v0) = ∆t
N

∑
i=1

m (ti, v0) (5.19)

M̂1 (v0) = ∆t
N

∑
i=1

tim (ti, v0) , (5.20)
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where ∆t is the sampling time step and N is the number of time steps. Then,

the pulse width and position are estimated as

pulse width ≈ M̂0 (v0) (5.21)

pulse position ≈ M̂1 (v0)
M̂0 (v0)

. (5.22)

Let us now analyze how additive noise enters the picture. We extend equation

5.6 considering the noise n additive to v0, and take expectations with respect

to its distribution:

E [m (t, v0)]

=
∫ +∞

−∞
fn (x) dx P {v (t− τ) > v0 + x} (5.23)

=
∫ +∞

−∞
fτ (u)

∫ +∞

−∞
fn (x) dx P {v (t− u) > v0 + x} du (5.24)

Recalculating the time integrals in equations 5.10 and 5.15, we obtain the

following results:

M0 (v0)

=
∫ +∞

−∞
E [m (t, v0)] dt (5.25)

=
∫ +∞

−∞
fn (x) (t2 (v0 + x)− t1 (v0 + x)) dx (5.26)

M1(v0)

=
∫ +∞

−∞
t E [m (t, v0)] dt (5.27)

=
∫ +∞

−∞
fn (x)

t2
2 (v0 + x)− t2

1 (v0 + x)
2

dx. (5.28)

At first sight, these equations do not allow to directly extract the pulse width

and position at a certain v0 as prior knowledge of the full pulse waveform

v (t) would be required. In our approach, we solve this problem by locally

approximating the pulse by its series expansion. We distinguish two important

cases.

Firstly, we set v0 to half the pulse height. Here, the curvature of the pulse’s

edges is small, and the edge can be well-approximated by its tangent:

ti (v0 + x) = ti (v0) + t′i (v0) x + O
(

x2)
, where the prime denotes taking

derivatives. In this case, the integral of equation 5.26 collapses to equation

5.13, hence equation 5.21 is still valid. Equation 5.28 reduces to

M1 (v0) = (t2 (v0)− t1 (v0))
t2 (v0) + t1 (v0)

2

+ σ2
(

2
2 (v0)− 2

1 (v0)
)

+ O
(

E[n3]
)

, (5.29)
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where σ2
denotes the variance of n. Obviously, equation 5.22 now gives an

asymptotically biased estimation of the pulse position. For small values of σ
(for example, for the value of 1mV we have observed in our experiments), it

turns out that the resulting bias term is negligible (≈ 0.1 ps for a pulse width

of 160 ps), and we can safely ignore it. For larger values of σ, a correction is

needed. A procedure for this is provided in appendix D.3.

Secondly, we may want to estimate the pulse height vtop. To this end, we

approximate the pulse near the peak. Here, the pulse waveform v (t) may be

approximated by a parabola p (t):

p (t) = vtop − d2 (t− ttop
)2 , (5.30)

where ttop and d represent the characteristic parameters, which we can deter-

mine from a least-squares fit with the measurement data. This is described in

appendix D.4.

5.5 Simulation setup

Circuit-level simulation of direct substrate noise is performed by replacing

the idealized substrate model—one equipotential ground net—by one incor-

porating resistive and capacitive effects. We have used SNA (SNA 3.2/Sub-

strateStorm A3.6b) to extract such a three-dimensional distributed RC model

of the substrate. Figure 5.6 illustrates the procedure.

Technology characterization The SNA/SubstrateStorm software has to be

calibrated for the CMOS technology being used. At the very least, knowledge

of resistivity or—equivalently—doping concentration is required throughout

vertical cross-sections of several regions: p-bulk and n-well below field oxide,

below gate oxide and below contacts. Using the technology characterization

tool, a number (5–15) of depths below the CMOS surface is fixed. The

resistivities of the different region cross-sections between the discretized

depths are then calculated from the resistivity (or doping concentration)

profiles. The specific junction capacitance at the bottom of n-wells is deduced

as well. The results are stored in a technology description file.

Adaptation of layout and schematics We need to move away from the single-

node substrate model. New nodes are created for the backside substrate

connection of transistors. To this end, in the schematic, the ‘fourth’ MOS

terminals are disconnected from the ground or supply net and brought outside

as pins. In the layout, corresponding labels for the new nodes are placed on

p-bulk and n-well node-labeling layers that are specifically created for this

purpose. In order to logically isolate different nodes in the p-bulk or n-wells,
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a special well separation layer is declared. The outlines of shapes in this layer

then represent the boundaries between the nodes.

For reasons of computational complexity, we do not want substrate modeling

for small or quiet transistors or those that are far from the region of interest.

An obvious first step is limiting the layout area to be analyzed. Additionally,

a new device property layer is declared for labels that are placed on transistor

gates with the text ‘extract=value’. In a later stage, substrate modeling can

be selectively enabled or disabled for transistors depending on this attached

value.

Substrate contacts generally need no special attention and automatically

transfer nodal connectivity from the metal net that they connect to to the

substrate. Only when a substrate contact is used as a kind of probe—as in our

noise measurement circuit—should the metal track that the contact connects

to be labeled with a new node name instead of the ground node, both in the

schematic and in the layout.

Layout extraction The next step is the generation of an extracted layout

view. This is a layout view where devices (transistors, resistors, capacitors,

. . . ) are identified in the layout and interconnecting shapes on the same layout

layer are merged. Additionally, all device terminals and layout shapes are

associated with node names that are derived from node labels in the layout

and a set of rules for inter-layer connectivity. Devices having a label on them

in the device property layer, are associated with the attributed value for the

extract property.

We have used Cadence Assura layout-versus-schematic (LVS) for the gener-

ation of the extracted view. The extraction script from the design kit was

modified to take the new node-labeling, well separation, and device property

layers into account. Another modification was the inclusion of substrate con-

tacts in the extracted view—they are normally removed from an extracted

view. In this technology, substrate contacts correspond to very dense arrays of

micron-sized squares. In the extracted view, these arrays are replaced by their

envelope.

Substrate view generation The extracted view will now be used to gen-

erate the surface abstract view (SAV). This is a layout view, generated by

SubstrateStorm, where only wells, substrate contacts and device gates are

indicated. Each point within the SAV then corresponds to one of the verti-

cal region cross-sections as defined in the technology characterization stage.

Three new layers need to be created for the SAV: a region layer for n-wells, an

access port layer for contacts and gates, and a special macro layer to indicate

parts of the layout that need not be modeled very accurately. In the access

port layer, all shapes are associated with their node names and port types

(contact or gate). A configuration file is used to indicate layer correspondence
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between extracted view and SAV, and to select the devices taking part in the

substrate modeling based on their extract property.

3D RC network extraction The SubstrateStorm extraction tool now gen-

erates a mesh to make a two-dimensional ‘horizontal’ discretization of the

CMOS. In a piece of layout covered by a macro layer shape, this discretiza-

tion always remains coarse and different substrate contacts with the same

node name may be treated as one contact. Combined with the vertical dis-

cretization of the technology description file, a 3D finite element model of

the substrate is constructed. The resistivities and capacitances stored in the

technology description file are used with the finite element model to generate

a three-dimensional RC network as substrate model.

RC network reduction The 3D RC network typically contains far too many

nodes for a feasible circuit-level simulation. Even in the simple case of the

single inverter of figure 5.6, the network already consists of 2085 nodes, 4506

resistors and 338 capacitors. The SubstrateStorm RC reduction tool performs

a reduction of the number of internal nodes based on a pole analysis of the 3D

RC network. The reduction technique [Kerns and Yang, 1997] retains all poles

from DC to a specified upper-frequency limit. For the simple inverter, the

network reduces to 69 nodes, 64 resistors and 246 capacitors at a 5–GHz setting

(the simplified network in figure 5.6 is even more reduced). The reduced

network is written out as a spice netlist.

Joining schematics and substrate model In a top-level schematic, a substrate-

enhanced symbol for the adapted design schematic is coupled with a symbol

representing the substrate model. In the simulation environment, the reduced

RC network model needs to be included by the main simulation netlist. At

this stage, a substrate-aware circuit-level simulation can be performed.

5.6 Experimental Results

5.6.1 Measurement setup

Figure 5.7 shows an overview of our measurement setup. The 0.18–µm CMOS

IO project receiver IC (containing twelve optical receivers) is augmented with

a noise generation and measurement circuit at the top and bottom. Two

delay-locked clock inputs can be separately configured to drive either noise

generation or measurement circuit. Pulses were generated by an Agilent

81134A generator exhibiting very low jitter (1.5 ps typical), and brought on-

chip via differential signaling. The repetition rate of the measurements is of

the order of 30MHz and essentially depends on the speed of the digital control
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receiver circuit

circuitry (the latch comparator is definitely not the speed-limiting factor and

could be used at frequencies well over 500MHz). Acquisition times are of the

order of 30 s for an entire percentile curve or a fixed-voltage cut. Note that

each point results from over 106
comparisons, which could safely be reduced.

A full characterization of m (t, v0) takes several hours at this level of precision.

A dominant factor in the total measurement time is the communication and

settling time of the pulse generator when the delay is changed.

Figure 5.8 shows the noise generation circuit in detail. It has a matrix-based

layout with 8 rows of 32 noise cells. The input clock of the noise generation

circuit propagates from row to row with an adjustable delay and drives all cells

within a row simultaneously. The delay is produced by current-starved invert-

ers, with separate control voltages for rising and falling transitions. A noise

cell consists of 30 digital inverters, each driving a capacitance to the substrate

of 15 fF. Every cell can be individually programmed to switch its inverters

with the clock, with the inverted clock, or not at all. This approach yields

a highly customizable noise source in terms of noise location, magnitude,

injected current direction and timing.

The connection of our substrate noise measurement circuit is shown in figure

5.9. The very low substrate voltage levels prohibit direct gate drive of n-

channel MOSFETs, as they would operate below threshold. Either a slower

p-channel input device is used [Nagata et al., 2000], or a capacitive coupling

with an n-channel device gate, biased above threshold, is applied [Donnay and

Gielen, 2003]. Following the latter approach, we use a simple RC high-pass

circuit (R1 = 158kΩ poly resistor, C1 = 20pF coupling capacitor) to couple

a substrate ‘probe’ contact to one latch comparator input. The lower -3-dB

cut-off frequency of 50 kHz is far below that of any substrate phenomena. The
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coupling bandwidth with the substrate source depends on the gate capacitance

of transistor T2 and the equivalent resistivity of the substrate. Transistors

T2 and T3 were sized to minimize the sampling time. A -3-dB coupling

bandwidth of approximately 15GHz was observed through simulation, and

offers a good compromise with the 25-GHz intrinsic measurement bandwidth

of the latch comparator.

For the adjustable comparison voltage, a similar RC circuit is used, which

serves as a low-pass filter of an externally applied voltage against a local refer-

ence ground net. Strongly connected on-chip metal can be considered nearly

equipotential in the frequency range of ringing (50–500MHz). The on-chip

digital metal ground is a good ground net reference for our measurements, as

this choice yields nearly equal ground-bounce distortion at both latch inputs.

This way, it is guaranteed that only the fast substrate effects are measured

without being blurred by the effect of ringing.

5.6.2 Substrate noise evaluation

Figure 5.10(a) illustrates the kind of results obtained using the system in

low-noise conditions, allowing the use of the 50% percentile for waveform

estimation. The labels identifying the pulses correspond to the locations of

single noise cells in column 32 of the array as shown in figure 5.8. Cells were

fired individually to assess the impact of their distance to the measurement

circuit. This dependency is illustrated in figure 5.11, where it is clearly

observed that increased distance leads to less noise, as could be expected (cells

E32-H32). Additionally, a shielding effect can be observed. This is due to the

fact that the grounding capacitor is surrounded by a guard ring. This ring is

in between some of the noise cells and the substrate sensing capacitor (cells

A32-D32; see figure 5.8).

By simulation, predictions for the measured waveforms were obtained (figure

5.10(b)). The predicted substrate voltage waveforms are compared to effec-

tively observed waveforms. The precise peak values show differences of less

than ±10%, and observed pulse waveforms tend to be slightly wider than the

predicted ones. Overall, this level of correspondence is deemed very well in

view of a number of simplifications required to render the simulation compu-

tationally feasible. The most intensive task is the required RC reduction step,

which took several hours on a 64-bit machine with 4GiB of memory. Figure

5.12 illustrates the simplifications made. They include limiting the layout area

to be analyzed, joining physically separate but very closely related substrate

contacts, choosing not to model the substrate interaction of quiet or small

transistors, and indicating complex substrate contact patterns that may be

simplified to one large contact (by using the macro layer). We found that there

was a limit to these reductions beyond which simulation accuracy significantly

degrades—for instance, considering all substrate connections within one noise

cell as equipotential would have been too much of a simplification. Our noise
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Figure 5.10: A comparison of simulated and effectively measured direct substrate noise
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simplified
substrate
view

layout
view

Figure 5.12: An excerpt of the IC layout (see figure 5.7) illustrating the differences

between the full layout and the SAV being used for substrate coupling analysis. In

the SAV, black boxes represent substrate contacts, rectangles are n-wells and some

hatched areas (on the macro layer) indicate complex substrate contact patterns that may

be simplified to one large contact.
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measurement effectively assisted here to calibrate our substrate model in order

to achieve reliable results from the substrate analysis software.

As outlined previously, the measurement circuits were embedded alongside

photodiode receiver circuits. We expected that the direct impact of the noise

cells on the receiver circuits would be small, due to a thorough differential

design and a p+ guard ring absorbing most direct substrate noise. Neverthe-

less, we could notice receiver signal degradation dependent on the precise

location of the enabled noise cells. We have identified the innermost noise

cells in column 1 of both noise matrices to cause problems, regardless of the

location of the observed optical channel. This eliminated direct coupling of

noise with receiver circuits through the substrate as an explanation. Figures

5.13–5.14 show the reason: a very sensitive biasing node (to bias the photodi-

odes; see figure 2.21 on page 53) was brought on-chip using ordinary standard

cell library pads. The power ring was deliberately interrupted to eliminate

noise coupling through supply and ground nets. This, however, resulted in

floating substrate contacts in each pad’s protective structures. It provided an

unhindered capacitive coupling between the substrate and the pads through

the protective diodes. Nearby noise cells could therefore directly inject current

into the pads and hence into the receiver circuit inputs. The effects were

observed at the output of the receiver circuits. Simulations with our calibrated

substrate model have confirmed this coupling mechanism. The observed

sensitivity can be eliminated either by removing the protective diodes or by

adding an extra ground-connected guard ring. In summary, here, the noise

cells have provided a good diagnostic for a very real direct substrate noise

coupling threat that otherwise would have remained unnoticed.

Other than through the unprotected pads, no other direct substrate noise

coupling could be established. This is good news for OE-VLSI integration: it

confirms the effectiveness of the guard ring approach to absorb local substrate

disruptions, thus limiting the problem of substrate noise coupling to global

supply and ground bounce, which has to be taken into account anyway (yet

admittedly occurring with higher amplitude in an OE-VLSI setup).

5.6.3 Pulse reconstruction

An expanded view of positive pulse F of figure 5.10 is shown in figure 5.15(a).

As observed from the figure, the time resolution is excellent and allows

pulses as narrow as 200 ps to be measured accurately. This measurement was

done with a pulse generator with extremely low jitter. However, even in the

presence of a significant amount of jitter, our pulse reconstruction technique

of section 5.4 can accurately reconstruct major pulse characteristics with few

measurements, or even the full pulse waveform when m (t, v0) is measured

over the full range of t and v0. To demonstrate the pulse reconstruction

technique, we have deliberately added a sine-modulated jitter term in the

measurement clock (pk-pk amplitude of 100 ps) and redone the measurement.
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individual contribution to this disturbance. The location of this piece of layout on the

IC is indicated on figure 5.14.
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maximum was obtained without additive-noise correction; the location of the peak was

determined by parabolic fit. Percentiles for raw measurement data are shown in thin

solid line. Note that the median (50% curve) is not a good estimate of the true pulse.
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The resulting percentile curves are shown in figure 5.15(b) together with the

result of the waveform reconstruction from equations 5.21 and 5.22. As the

jitter-free measurement intrinsically has a (small) amount of additive noise,

we are now faced with extracting the true pulse shape from the measurements

with both noise components present. The figure shows how well the estimates

at half the pulse height vm fit the true value, which demonstrates that the error

term of equation 5.29 introduced by the additive noise was negligible. It is

also clearly shown that when trying to estimate the pulse peak this way, severe

errors are made. As shown in figure 5.15(b), naive application of equations

5.21 and 5.22 leads to an onion-shaped estimate, extending several mV above

the true value (a small multiple of σ). Furthermore, near the top, the width is

systematically underestimated as a result of curvature. To further improve the

accuracy in this jittered case, the parabolic fitting procedure of appendix D.4

has been applied. The result is shown in 5.15(c) and agrees very well with the

jitter-free measurement. This way, accurate measurements can be performed

even in situations with relatively high jitter.

5.7 Conclusion

We have presented an experimental environment to characterize the sensi-

tivity of embedded analog circuits—such as photodiode receiver circuits—to

digitally generated very localized substrate noise. The method is based on

equivalent-time sampling of periodic noise signals, using a simple latch com-

parator circuit. This latch circuit was demonstrated to have a large measure-

ment bandwidth. This way, the technique allows accurate on-chip measure-

ment of small but fast voltage changes without the need for high-bandwidth

analog output. On our 0.18–µm CMOS test chip, we have demonstrated

that our system allows to wave trace pulses as narrow as 200ps accurately.

Hence, it is capable to measure both the direct and indirect substrate noise

signals. The substrate was modeled for circuit-level simulation using Ca-

dence’s Substrate Noise Analyst and good correspondence between measured

and simulated substrate voltage waveforms was observed. Our measurement

circuit showed to be a suitable means to find the balance, with respect to the

allowable amount of substrate model simplification, between reliable results

and feasible computation times.

Additionally, a new method, not requiring any deconvolution operations, was

presented to extract accurate waveform properties from the raw measurement

data, even in the presence of significant timing jitter.

On the 0.18 µm receiver IC of the IO project, other than through some un-

guarded pads, no other direct substrate noise coupling could be established.

This is good news for OE-VLSI integration: it confirms the effectiveness of

guard ring protection to absorb local substrate disruptions, thus limiting the

problem of substrate noise coupling to global supply and ground bounce,
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which has to be taken into account anyway (yet admittedly occurring with

higher amplitude in an OE-VLSI setup).



Chapter 6

Overall conclusions and
perspectives

Short-range parallel optical interconnect provides a solution to actual band-

width density problems concerning electrical interconnect at the (inter-)PCB

level. We have focused on the optoelectronic very large scale integration (OE-VLSI)

approach, in which optical access is provided right at the surface of CMOS

ICs. Two-dimensional arrays of lasers and photodetectors are flip-chip bonded

to the CMOS and physically interconnected using dense arrays of optical

waveguides. We have discussed the constituents of such a system, the actual

OE-VLSI realization in the Interconnect by Optics project, and references to

other work.

The direct integration of optical-electrical conversion provisions on an IC

bypasses the electrical PCB-to-IC interconnect, which can be very sophisticated

when a high bandwidth density is envisaged. However, the intricacies of this

chip access level are much better known and solution methodologies are far

more established in the electrical case than in the OE-VLSI case.

In this dissertation, we have focused on a number of concerns of a digital

system designer considering an OE-VLSI approach.

6.1 Design automation integration

The design of OE-VLSI systems consists of several steps, each needing some

form of electronic design automation (EDA) support. We have presented

a breakdown of fundamental design automation support—design creation,

simulation, extraction of properties and design space exploration—the method-

ologies involved and references to relevant realizations.

Circuit-level simulation models for the most important link components have
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been implemented in the mixed-signal language Verilog-AMS and integrated

into a simulation framework (which concretized to Cadence Virtuoso DFII).

The different simulation models can be chained together to simulate optical

interconnect. The intricacies concerning the integration of multidisciplinary—

electrical, optical, thermal—and sometimes badly conditioned differential

equations—e.g., laser rate equations—into a simulation system bearing the

marks of an electrical circuit dedication have been discussed as well.

6.2 Statistical modeling of uniformity

We have developed stochastic models for the inter-channel uniformity of

different subsystems of an OE-VLSI setup, in order to examine the unifor-

mity between complete channels. This modeling effort addresses laser drive

currents, VCSEL and photodiode process variations, VCSEL-fiber coupling

efficiencies caused by fiber misalignment, coupling efficiencies between a

VCSEL array and a multi-fiber connector, receiver circuit delays, and link bit

error ratios.

For quantitative results, we have examined the converter boards of the IO

project, a parallel optical inter-chip interconnect realization with 64 channels

at 1.25Gbps/channel. The most important signal amplitude nonuniformity

contribution can be attributed to variations of the fiber-coupled power at the

transmitting side, mainly due to VCSEL process variations, and to a lesser

extent caused by global multi-fiber connector misalignment. The alignment

at the receiving side is not nearly as critical given the standard fibers that

have been considered. Overall, the signal before the limiting amplifier of

any interconnect channel will suffer a combined process variation σall with a

standard deviation of 0.44 dB.

The principal application of the combined stochastic models was to make a

statement on the feasibility of using one dedicated clock channel as a clocking

or logic threshold basis for all other channels. When using source-synchronous

signaling—a common clocking basis for all channels—the substantial per-

channel clock synchronization circuitry reduces to one instance. If a common

logic threshold basis can be assumed, the requirement of dc-balanced data

coding is removed.

It turns out that, for the characteristics extracted from the IO project setup,

for any decent number of channels the usage of a common logic threshold is

infeasible. The bit error ratio is just too dependent on an accurate threshold.

Source-synchronous signaling should be feasible if the clock distribution skew

and the signal skew between channels are small enough, and the duration

of the acceptable sampling interval in the signal eye is sufficiently long. The

dependence of the channel delay on the optical modulation amplitude is

apparent (17.5 ps/dB). However, this turns out to be only a minor contributor

to the total inter-channel skew (σ ≈ 60 ps) due to a sufficiently uniform optical
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modulation amplitude. Using source-synchronous signaling, the yield of an

array-wide BER < 10−12
is estimated at 56%. When the synchronous bitrate

is reduced to about 0.8GHz, this yield figure increases to 99.9%. Even though

our setup was not designed towards source-synchronous operation, our results

indicate that efficient source-synchronous parallel optical interconnect is well

in reach of well-crafted systems optimized for this mode of operation.

6.3 Substrate noise

We have researched the possible problem of noise coupling between sensitive

photodiode receiver circuit embedded in a hostile digital environment. We

have focused on direct noise coupling—attacking only part of a circuit—rather

than supply and ground bounce. To this end, dedicated noise generation and

measurement circuits have been implemented and characterized.

On the 0.18–µm CMOS receiver IC of the IO project, other than through

some unguarded pads, no different direct substrate noise coupling path could

be observed. This is good news for OE-VLSI integration: it confirms the

effectiveness of guard ring protection to absorb local substrate disruptions,

thus limiting the problem of substrate noise coupling to global supply and

ground bounce, which has to be taken into account anyway (yet admittedly

occurring with higher amplitude in an OE-VLSI setup).

6.4 Future work and outlook

The statistical modeling and characterization effort presented in this work has

enabled us to perform a number of interesting system-level analyses. Nev-

ertheless, the characterization has been necessarily limited to only a sample

of only one OE-VLSI realization. It would be interesting if a wide choice of

possible link components could be properly statistically characterized, so as

to allow the evaluation of different optical interconnect constitutions. The

modeling of the dynamic uniformity at the transmitter side deserves more at-

tention; this was not possible with the IO project hardware. Furthermore, one

should get closer to the bottom of the underlying fundamental mechanisms

of variability (in our case especially w.r.t. VCSELs). If the connection between

process variations of individual manufacturing steps and the resulting device

behavior would be clear, the prediction of the distribution of observable but

amalgamated quantities should be possible and could be used, instead of

having to rely on opaque measurements of these distributions.

Regarding interconnect modeling in the case of smaller-featured CMOS tech-

nologies and correspondingly higher signaling rates, dynamic effects (and

their uniformity) at different locations in the link can become significant and

should be taken into account. The relaxation oscillation frequency of VCSELs
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and the impact-related transit time in a larger photodiode come to mind; when

less ideal optical waveguides (than graded-index fibers) are considered—such

as PCB-embedded waveguides—dispersion can become significant as well.

The modeling and design automation support for PCB-embedded waveguides

is an exercise remaining for when the technology becomes more univocal and

mature.

A final word on the commercial introduction of inter-chip optical interconnect,

as looked upon from a personal perspective. At present, the physical assem-

bly methods of all experimentally validated inter-chip optical interconnect

solutions are just too sophisticated or demanding w.r.t. mechanical accuracy

to be commercially viable when compared to electrical interconnect solutions.

In the past few years there has been a trend among research teams to focus on

even shorter link lengths, with major research efforts concentrating on on-chip
optical interconnect. Although there certainly are benefits associated with

on-chip optical interconnect, the need for a more practical high-density optical

transition between an IC and the outside world remains. Wishful thinking

leads to a candidate envisaged ‘perfect solution’ where optical waveguides

can be seamlessly integrated into a general printed circuit board in multiple

layers (with inter-layer vias), and where surface-mountable hermetically sealed

OE-VLSI chip packages adhere to the same mounting alignment requirements

as purely electrical packages. Although several partial solutions exist (we

refer to Schares et al. [2006] for an overview), optical inter-chip interconnect

will not emerge in practice before a practical all-embracing solution has been

validated.

At the side of demands, the driving force towards higher bandwidth densities

is currently very much present with the move towards an ever increasing

number of processor cores even in common personal computers. The in-

terconnect bandwidth between different processors is the bottleneck for the

execution speed of strongly connected distributed algorithms and will need to

be addressed in due time. In our opinion, highly parallel optical interconnect

provides a nice escape route from bandwidth density problems of electrical

interconnect. Looking forward to the materialization of huge interconnect

demands in the coming years, we hope for the contributions of this thesis to

carry through to the interconnect solutions of the future.
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Appendix A

Project background

A.1 Introduction

This thesis has been performed in the context of the Interconnect by Optics (IO)

project of the European Commission’s Fifth Framework Programme, which

ran from the end of 2001 to early 2005. We start by giving due credit to its

ancestral project (1996-2000): the Optically Interconnected ICs (OIIC) project

of the European Commission’s Esprit Programme.

A.2 OIIC project

The OIIC project was defined as a rather broad OE-VLSI exploration project,

with the following official objectives (the references indicated are ensuing PhD

dissertations):

• (summarizing objective) to identify solutions for the interconnect bottle-

neck expected in future generation CMOS ICs

• to establish key technologies to implement two-dimensional optical

interconnects [Verschaffelt, 2000; Bockstaele, 2001; Baukens, 2001; Annen,

2002; Ottevaere, 2003; Debaes, 2003; Coosemans, 2006]

• to assess cost effectiveness and manufacturability of the proposed inter-

connect scheme and compare this to other approaches

• to identify new processing architectures exploiting the benefits of OE-

VLSI interconnect [Neefs, 2000a; Bui Viet, 2004]

Discussing all results here would lead us too far; we limit ourselves to an ac-

count of the technological outcome. The technological effort of the OIIC project
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Figure A.1: Guided-wave OE-VLSI demonstrator of the OIIC project. The 4×8 VCSEL

and photodiode arrays are clearly discernible on the inset.

has led to the exploration and realization of several OE-VLSI approaches. The

optical path effort has resulted in several intra-package free-space interconnect

realizations [Thienpont et al., 2000; Baukens, 2001; Debaes, 2003] and an inter-

package link technology employing plastic optical fiber (POF) connectorized

bundles (see figure A.1) [Jöhnck et al., 1998; Coosemans, 2006]. Regarding

optical emitters, links using VCSELS [King et al., 1998] and Resonant Cavity

Light Emitting Diodes (RCLEDs) [Bockstaele et al., 1999; Bockstaele, 2001]

have been demonstrated, and efficient nonresonant cavity LEDs have been

realized as well [Windisch et al., 2000].

The main demonstrator employed optical emitters and detectors organized

in two-dimensional arrays on a 250–µm device pitch, flip-chip bonded onto

a dedicated CMOS field-programmable gate array (FPGA) [Brunfaut et al.,

2001]. Channel bitrates of about 100Mbps have been achieved using 4×8

VCSEL arrays, up to 250Mbps using 8×8 RCLED arrays, and up to 622Mbps

on a high-speed 2×8-parallel VCSEL array demonstrator.

A.2.1 IO project

Supported by the OIIC project experience, the IO project emerged in 2001

as an industrialization project for chip-to-chip interconnect. The partners

involved were IMEC (demonstrator design and OE-VLSI packaging), Avalon

Photonics (lasers), Optospeed/Albis Optoelectronics AG (photodiodes), Helix

AG (driver/receiver circuits), CEA-LETI (flip-chip hybridization and OE-VLSI

packaging), FCI (connectors), Nexans (POF), RCI (POF wiring), PPC Electron-

ics AG (PCB-integrated waveguides) and Alcatel Bell (Xantium router)/Alcatel

CIT (deployment study).

The main objectives of this inter-chip optical interconnect project were
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• to improve performance-wise by increasing the channel bit rate to the

multi-Gbps range and the number of parallel channels to 16×16

• to develop an industrially viable manufacturing methodology—originally

including the tight integration of the optical path in PCBs and rack-based

setups, besides the package-level integration obviously required

• to demonstrate the viability of the developed optical interconnect

methodology by its integration into the Alcatel Xantium system, a

prominent terabit IP core router of that time

The IO project did reach the intended bit rate and parallelism increase [Rits

et al., 2006]. The O-E conversion arrays and their integration with CMOS

ICs into optically accessible packages have produced OE-VLSI modules with

high yield and electrical, optical and mechanical performances meeting the

requirements for a reliable interconnect.

A.3 Relevant IO project developments

In this section we present hardware system developments of the IO project

relevant for this work (note that not nearly all project developments are

mentioned here).

A.3.1 DTA IC

The first move of the IO project was the establishment of the main demon-

strator architecture and the development of the main demonstrator IC. Direct

OE-VLSI integration on the Xantium core routing chip proved to be no option

as its 0.25–µm CMOS (ST foundry) technology was not available to the project.

The test chip in 0.35–µm CMOS (AMS foundry)—named Digital Technology
Assessment (DTA) IC—would instead be placed next to the Xantium chip

and primarily perform a 16–channel O-E conversion in two directions at a

1.25Gbps line rate.

This DTA IC (represented in picture A.2) evidently employed a true OE-VLSI

construction, harboring a 8×8-channel driver circuit array (at a 250–µm pitch)

and a similar receiver circuit array on its 12-by-12mm surface, onto which

VCSEL and photodiode arrays were to be flip-chip bonded. Besides the O-E

interfacing circuits, the DTA CMOS implemented 48–channel bitstream resyn-

chronization and test pattern generation provisions, an adaptable permutation

network linking optical and electrical inputs to outputs alike, and an on-chip

bit error ratio (BER) tester. This approach per se permitted the parallel techno-

logical testing of all 64 optical channels (in each direction) between two DTA

ICs in the presence of only 16 external electrical inputs and outputs per DTA.
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Figure A.2: Photograph and main architecture of the 0.35–µm CMOS demonstrator

chip, going by the name of Digital Technology Assessment (DTA) IC
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For clarity’s sake we emphasize that there is no net (de)serialization: one

external electrical input is converted to one optical output and backwards;

just only maximally 16 out of 64 optical links could carry live external data

while the others would be silent or transmitting test patterns.

A.3.2 Demonstrator PCBs

Three PCB designs were developed for the system demonstrator of the IO

project with three PCB designs: a backplane with pluggable ‘converter’ boards

and ‘switch’ boards.

The original intent is rendered in figure A.3. On a converter board (figure

A.4), 16 electrical front side inputs can be directed to 64 optical outputs of one

DTA IC (which should be further optically routed to the backplane), with a

similar connection in the reverse direction.

The switch board was planned to contain 2 DTA ICs, each directing 64 optical

backplane inputs and outputs to a single Xantium router chip over 16 electrical

input and as many output lanes. The Xantium chip would then demonstrate

its routing functionality between the connections of both DTA ICs.

The backplane was appointed to implement—besides power and control

provisioning—the optical path connection over cables or fiber-embedding

flexible foils: either between two converter boards mutually, or between two

converter boards and a switch board.

A powerful test and measurement interface has been implemented in firmware

on FPGAs dedicated to each DTA IC, mutually communicating over the

backplane, and linked with a host computer running in-house test software

through a serial connection.

The development of the switch board was discontinued after the whole Xan-

tium IP router project was shut down by Alcatel Bell. The other boards were

finished as planned. The backplanes and associated racks are shown in figure

A.5; however most testing has been performed on and between the DTA con-

verter boards which could also operate without a backplane. Tests performed

on three experimental DTA converter boards lie at the basis of the stochastic

system modeling and characterization research effort of chapter 4.

A.3.3 High-speed design in 0.18�µm CMOS

Besides the IO system demonstrator PCBs and DTA modules, the project

objectives also envisaged the implementation of 2.5Gbps line rates and 16×16

array sizes. However, the excessive cost of a full CMOS run in a state-of-the-art

technology excluded the possibility of a new OE-VLSI design.

To cope with this issue, a clever solution was devised: the separation of the

objectives (implantation on actual CMOS, 2.5Gbps line rate and 16×16 array

size) in different demonstrations, together much less expensive than a new
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CMOS run. The actual OE-VLSI combination was already catered for by the

DTA IC; therefore the other demonstrations employed an inexpensive metal-

on-glass substrate approach. In this way, the successful 16×16 demonstration

amounted to a simple probe-based testing of the operation and the substrate

connectivity of each device in the O-E device arrays.

For the 2.5Gbps line rate demonstration, fast CMOS was obviously inevitable.

This problem has been addressed through a smart combination of the metal-

on-glass method and an affordable 5-by-5mm multi-project wafer (MPW)

reticle in 0.18–µm CMOS (UMC foundry) technology.

Figure A.6 shows the approach: an oblong metal-on-glass carrier was used to

hold 8×8–sized VCSEL and photodiode arrays, of which the 12 most aptly

positioned devices were routed to bond pads at the long edge. This carrier

was placed in the original DTA IC package, properly fixing the array locations

to ensure compatibility with the original DTA packaging approach. Finally,

through the wire-bonding of the carrier and the package to two small CMOS

ICs cut from the reticle—one carrying 12 VCSEL high-speed driver circuits and

the other as many photodiode receiver circuits—the required O-E interfacing

circuits and the external electrical interface were implemented.

The single-dimensional adjacency of the driver and receiver circuits admittedly

allowed larger—and therefore more complex or better isolated—circuit designs

than a true two-dimensional OE-VLSI scheme; nonetheless the higher mod-

ulation capability of the O-E conversion devices was actually demonstrated

this way.
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Figure A.5: Rack with visible backplane and one converter board. The holes in the

converter board and the backplane are features for a possible build-up optical path.
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Figure A.6: View into the package of the 0.18–µm CMOS demonstrator setup.
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Verilog-AMS simulation
models

B.1 Simpli�ed interfacing circuits

The following code fragment corresponds to the simplified driver/receiver

models discussed in section 3.3.2.

‘include "constants.vams"
‘include "disciplines.vams"

module driver(in,out,vdd,gnd);
inout in,out,vdd,gnd;
electrical in,out,vdd,gnd;

/* the effective parameter values are overridden by the environment */
parameter real Cintx=0; /* driver input capacitance */
parameter real ts=0; /* time constant of current switch */
parameter real IMOD=0; /* modulation current */
parameter real IBIAS=0; /* bias current */
parameter real Cd=0; /* driver output capacitance */
parameter real qCd=0; /* -> proportion to ground */
parameter real Rd=0; /* driver output resistance */
parameter real Vd=0; /* expected average VCSEL voltage */

/* -> the operating voltage over C4 */

/* internal nodes */
real lowpass_signal;

analog begin
/* input capacitance */
I(in,gnd) <+ Cintx*ddt(V(in,gnd));

/* intrinsic frequency response of the driver */
lowpass_signal = laplace_zp(V(in,gnd)/V(vdd,gnd),{},{-1/ts,0});
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/* output current */
I(vdd,out) <+ IBIAS + IMOD + (Vd-V(out,gnd))/Rd;

+ (1-qCd)*Cd*ddt(V(vdd,out));
I(out,gnd) <+ (1-lowpass_signal)*IMOD + qCd*Cd*ddt(V(out,gnd));

/* I(vdd,gnd) could be added to model extra internal dissipation */
end

endmodule

module receiver(in,out,vdd,gnd);
inout in,out,vdd,gnd;
electrical in,out,vdd,gnd;

/* the effective parameter values are overridden by the environment */
parameter real Cinrx=0; /* receiver input capacitance */
parameter real qCinrx=0; /* -> proportion to ground */
parameter real Cpd=0; /* photodiode capacitance */
parameter real A=0; /* preamplifier gain */
parameter real fa=0; /* preamplifier bandwidth */
parameter real A2=0; /* postamplifier gain */
parameter real f2=0; /* postamplifier bandwidth */
parameter real frollon=0; /* roll-on corner frequency */
parameter real Qf=0; /* quality factor (the f was added

to avoid a name conflict) */
parameter real tdelay=0; /* intrinsic latency

(for an improved accuracy this can be
made to depend on the pk-pk
photocurrent amplitude) */

parameter real Rout=0; /* output resistance (R4 and R5) */
parameter real Vt_initial=0; /* dc starting point for C3 */

/* internally calculated parameter */
parameter real preamp_res=(1+A)/(Qf*‘M_TWO_PI*fa*(Cpd+Cinrx));

/* internal nodes */
voltage preamp, postamp, postamp_delayed, threshold;
real unclipped_signal, clipped_signal;

analog begin
@(initial_step) begin
V(postamp_delayed) <+ Vt_initial;

end

/* input capacitance */
I(in,vdd) <+ (1-qCinrx)*Cinrx*ddt(V(in,vdd));
I(in,gnd) <+ qCinrx*Cinrx*ddt(V(in,gnd));

/* preamplifier */
V(preamp,gnd) <+ A*laplace_zp(V(in,gnd),{},{-‘M_TWO_PI*fa,0});
I(in,gnd) <+ (V(in,gnd)+V(preamp,gnd))/preamp_res;

/* postamplifier */
V(postamp,gnd) <+ A2*laplace_zp(V(preamp,gnd),{},{-‘M_TWO_PI*f2,0});
V(postamp_delayed) <+ absdelay(V(postamp,gnd),tdelay);
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/* adaptive threshold */
V(threshold,gnd) <+ laplace_zp(V(postamp_delayed,gnd),{},

{-‘M_TWO_PI*frollon,0});

/* comparison */
unclipped_signal = 2*(V(postamp_delayed,threshold))+I(out,gnd);

/* limiting amplifier */
case (1)
(Rout*unclipped_signal > V(vdd,gnd)):
clipped_signal = 0;

(Rout*unclipped_signal < -V(vdd,gnd)):
clipped_signal = V(vdd,gnd);

default
clipped_signal = (V(vdd,gnd)-Rout*unclipped_signal)/2;

endcase

V(out,gnd) <+ clipped_signal;

/* I(vdd,gnd) could be added to model extra internal dissipation */
end

endmodule

B.2 VCSEL

Here Verilog-AMS code fragments for VCSEL simulation are displayed. VC-

SEL modeling for behavioral simulation is discussed in section 3.3.3.

B.2.1 Multimode linear laser model

The following code is a straight implementation of the multimode VCSEL

model described by Mena et al. [1999]. Here, a spatial distribution of carriers

is implemented using a three-term series expansion; two modes have been

considered.

‘include "constants.vams"
‘include "disciplines.vams"

/* NATURES & DISCIPLINES */

discipline power
potential Power;

enddiscipline

discipline temp
potential Temperature;

enddiscipline

nature Count
units = "#";
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access = Cnt;
abstol = 1E-6;

endnature

nature Differ
units = "";
access = Diff;
abstol = 1E3;

endnature

discipline count
potential Count;

enddiscipline

nature Gain
units = "";
access = Gn;
abstol = 1E-3;

endnature

discipline gain
potential Gain;

enddiscipline

nature Fitter
units = "";
access = Fit;
abstol = 1E-6;

endnature

discipline fitter
potential Fitter;
flow Differ;

enddiscipline

module vcsel_2_modes(anode, cathode, out);
/* TERMINALS */
/* electrical terminals */
inout anode, cathode;
electrical anode, cathode;
/* optical terminals */
output [0:1] out;
power [0:1] out;

/* PARAMETERS */
/* gain-constant parameters */
parameter real G_0=0, a_g0=0, a_g1=0, a_g2=0, b_g0=0, b_g1=0, b_g2=0;
/* transparency-number parameters */
parameter real N_to=0, c_n0=0, c_n1=0, c_n2=0;
/* leakage parameters */
parameter real I_lo=0, a_0=0, a_1=0, a_2=0, a_3=0;
/* overlap integral values gamma_ki, lambda_ki */
parameter real gamma_00=0, gamma_01=0, gamma_02=0;
parameter real gamma_10=0, gamma_11=0, gamma_12=0;
parameter real lambda_00=0, lambda_01=0, lambda_02=0;
parameter real lambda_10=0, lambda_11=0, lambda_12=0;



B.2 VCSEL 183

/* overlap integram values phi_jki */
parameter real phi_100=0, phi_101=0, phi_102=0;
parameter real phi_110=0, phi_111=0, phi_112=0;
parameter real phi_200=0, phi_201=0, phi_202=0;
parameter real phi_210=0, phi_211=0, phi_212=0;
/* electrical parameters */
parameter real V_T=0, I_s=0, R_s=0, R_c=0, C_ox=0;
/* convergence parameters:
* P_k = (v_mk+delta_m)^2
* N_0 = z_n*(v_n0+delta_n)^2
* N_j = z_n*v_nj
*/
parameter real delta_m=0, delta_n=0, z_m=0, z_n=0;
parameter real n_to_m=z_n/z_m;
/* other parameters */
parameter real h_1=0, h_2=0, zeta_1=0, zeta_2=0, eta_i=0;
parameter real tau_n=0, tau_p0=0, tau_p1=0;
parameter real k_f0=0, k_f1=0, beta_0=0, beta_1=0;
parameter real b_0=0, b_1=0, b_2=0;
parameter real epsilon_00=0, epsilon_01=0, epsilon_10=0, epsilon_11=0;
parameter real R_th=0, tau_th=0;

/* INTERNAL NODES */
current I_l,I_o;
voltage V_o;

temp Ti;
power Pi;

power P_0,P_1;
count N_0z, N_1z, N_2z, N_tz;
count S_0z, S_1z;
gain G_ifo_T;

fitter v_n0, v_n1, v_n2, v_m0, v_m1;
/* DIFFERENTIAL EQUATIONS */
analog begin
/* optical behavior */
Cnt(N_0z) <+ pow(Fit(v_n0)+delta_n,2);
Cnt(N_1z) <+ Fit(v_n1);
Cnt(N_2z) <+ Fit(v_n2);

Pwr(P_0) <+ pow(Fit(v_m0)+delta_m,2);
Pwr(out[0]) <+ Pwr(P_0);
Pwr(P_1) <+ pow(Fit(v_m1)+delta_m,2);
Pwr(out[1]) <+ Pwr(P_1);

Cnt(S_0z) <+ Pwr(P_0)/(k_f0*z_m);
Cnt(S_1z) <+ Pwr(P_1)/(k_f1*z_m);

Gn(G_ifo_T) <+ G_0 * ((a_g0+Temp(Ti)*(a_g1+Temp(Ti)*a_g2))
/(b_g0+Temp(Ti)*(b_g1+Temp(Ti)*b_g2)));

Cnt(N_tz) <+ N_to*(c_n0+Temp(Ti)*(c_n1+Temp(Ti)*c_n2))/z_n;

if ((Cnt(N_0z)<1E-1/z_n) || (Temp(Ti)<0.01))
I(I_l) <+ 0;
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else
I(I_l) <+ I_lo*exp((-a_0 + z_n*Cnt(N_0z)*(a_1+a_2*Temp(Ti))

- a_3/(z_n*Cnt(N_0z)) )/(Temp(Ti)));

/* The following code is admittedly ugly *
* yet we had no choice but to fully expand matrix products */

Diff(v_n0) <+ - ddt(Cnt(N_0z))
+ (eta_i*I(I_o)-I(I_l))/(z_n*‘P_Q) - Cnt(N_0z)/tau_n
- Gn(G_ifo_T) * (((gamma_00*(Cnt(N_0z)-Cnt(N_tz))
- gamma_01*Cnt(N_1z) - gamma_02*Cnt(N_2z))*Cnt(S_0z)
/ (1/z_m + epsilon_00*Cnt(S_0z) + epsilon_10*Cnt(S_1z)))
+ ((gamma_10*(Cnt(N_0z)-Cnt(N_tz)) - gamma_11*Cnt(N_1z)
- gamma_12*Cnt(N_2z))*Cnt(S_1z)/(1/z_m + epsilon_01*Cnt(S_0z)
+ epsilon_11*Cnt(S_1z))));

Diff(v_n1) <+ - ddt(Cnt(N_1z))
- eta_i*zeta_1*I(I_o)/(z_n*‘P_Q) - (1+h_1)*Cnt(N_1z)/tau_n
+ Gn(G_ifo_T) * (((phi_100*(Cnt(N_0z)-Cnt(N_tz))
- phi_101*Cnt(N_1z) - phi_102*Cnt(N_2z))*Cnt(S_0z)
/ (1/z_m + epsilon_00*Cnt(S_0z) + epsilon_10*Cnt(S_1z)))
+ ((phi_110*(Cnt(N_0z)-Cnt(N_tz)) - phi_111*Cnt(N_1z)
- phi_112*Cnt(N_2z))*Cnt(S_1z)/(1/z_m + epsilon_01*Cnt(S_0z)
+ epsilon_11*Cnt(S_1z))));

Diff(v_n2) <+ - ddt(Cnt(N_2z))
- eta_i*zeta_2*I(I_o)/(z_n*‘P_Q) - (1+h_2)*Cnt(N_2z)/tau_n
+ Gn(G_ifo_T) * (((phi_200*(Cnt(N_0z)-Cnt(N_tz))
- phi_201*Cnt(N_1z) - phi_202*Cnt(N_2z))*Cnt(S_0z)
/ (1/z_m + epsilon_00*Cnt(S_0z) + epsilon_10*Cnt(S_1z)))
+ ((phi_210*(Cnt(N_0z)-Cnt(N_tz)) - phi_211*Cnt(N_1z)
- phi_212*Cnt(N_2z))* Cnt(S_1z)/(1/z_m + epsilon_01*Cnt(S_0z)
+ epsilon_11*Cnt(S_1z))));

Diff(v_m0) <+ - ddt(Cnt(S_0z))
- Cnt(S_0z)/tau_p0 + (b_0*Cnt(N_0z) - b_1*Cnt(N_1z)
- b_2*Cnt(N_2z))*n_to_m*beta_0/tau_n + n_to_m*Gn(G_ifo_T)
* ((lambda_00*(Cnt(N_0z)-Cnt(N_tz)) - lambda_01*Cnt(N_1z)
- lambda_02*Cnt(N_2z))*Cnt(S_0z)/(1/z_m + epsilon_00*Cnt(S_0z)
+ epsilon_10*Cnt(S_1z)) );

Diff(v_m1) <+ - ddt(Cnt(S_1z))
- Cnt(S_1z)/tau_p1 + (b_0*Cnt(N_0z) - b_1*Cnt(N_1z)
- b_2*Cnt(N_2z))*n_to_m*beta_1/tau_n + n_to_m * Gn(G_ifo_T)
* ((lambda_10*(Cnt(N_0z)-Cnt(N_tz)) - lambda_11*Cnt(N_1z)
- lambda_12*Cnt(N_2z))*Cnt(S_1z)/(1/z_m + epsilon_01*Cnt(S_0z)
+ epsilon_11*Cnt(S_1z)) );

/* thermal behavior */
Pwr(Pi) <+ V(V_o)*I(I_o)+R_c*pow(I(anode,cathode),2)

-Pwr(P_0)-Pwr(P_1);
Temp(Ti) <+ $temperature+R_th*laplace_zp(Pwr(Pi),{},{-1/tau_th,0});

/* electrical behavior */
V(V_o) <+ V_T*ln((I(I_o)/I_s)+1)+I(I_o)*R_s;
I(I_o) <+ I(anode,cathode) - C_ox*ddt(V(V_o));
V(anode,cathode) <+ V(V_o) + R_c*I(anode,cathode);

end
endmodule
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B.2.2 Lumped nonlinear laser model

This code describes a lumped laser model using a nonlinear yet more accurate

gain description and including self-heating. It models a distributed Bragg re-

flector (DBR) microlaser rather than a VCSEL, yet the behavior, equations and

implementation challenges are very similar. We include the implementation

code here as it is specially crafted for convergence in the steady-state case, the

transient case as well as the periodic steady-state case. This model is fully

described in [O’Connor et al., 2006c].

‘include "constants.vams"
‘include "disciplines.vams"

discipline power
potential Power;

enddiscipline

discipline charge
potential Charge;

enddiscipline

discipline temp
potential Temperature;

enddiscipline

module DBR_usource(light, anode, cathode);
output light;
power light;
inout anode, cathode;
electrical anode, cathode;

/**** QUANTITIES ****/
power INT_LIGHT;
charge INT_C;
temp INT_T;
voltage INT_Va;
voltage INT_Vp;

/**** INPUT PARAMETERS ****/
/* DIMENSIONS */

/* active region depth, length and width (m) */
parameter real d=20e-9, L=18e-6, W=4e-6;

/* ELECTRO-OPTICAL INTERACTION MODEL */

/* laser mode frequency (Hz) */
parameter real nu=200E12;

/* photon group velocity (m/s) */
parameter real v_g=88E6;

/* surface recombination velocity (m/s) */
parameter real v_s=500;
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/* Shockley-Read-Hall recombination coefficient (1/s) */
parameter real A=100E6;

/* spontaneous radiative recombination coefficient (m^3/s) */
parameter real B=0.2E-15;

/* Auger recombination coefficient (m^6/s) */
parameter real C0=1.76E-39;

/* activation energy for Auger recombination (J) */
parameter real Ea=9.61E-21;

/* spontaneous emission factor */
parameter real beta=0.01;

/* confinement factor */
parameter real Gamma=0.05;

/* internal optical absorption per unit length (1/m) */
parameter real alpha_i=3.5E3;

/* injection efficiency */
parameter real eta_i=0.7;

/* additional coupling efficiency */
parameter real eta_c=0.79;

/* thermal slope of characteristic carrier density (1/(m^3*K)) */
parameter real n_Ts=7.5E21;

/* intercept of characteristic carrier density at 0 K (1/m^3) */
parameter real n_T0=-899E21;

/* thermal slope of characteristic material gain (1/(m*K)) */
parameter real G_Ts=-37.15;

/* intercept of characteristic material gain at 0K (1/m) */
parameter real G_T0=195.7E3;

/* DBR mirror reflectivity */
parameter real R_DBR=0.95;

/* reflectivity modulation depth */
parameter real r_wg=0.031;

/* coupling length (m) */
parameter real Lc=2.63e-6;

/* length offset (m) */
parameter real phi_L=2.40e-6;

/* ELECTRICAL MODEL */

/* diode saturation carrier density (1/m^3)*/
parameter real ne_diode=1e12;
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/* diode emission coefficient */
parameter real N_diode=2;

/* active region unit resistance (Ohm*m) */
parameter real Ra_u=45E-3;

/* active region unit capacitance (F/m) */
parameter real Ca_u=180E-12;

/* contact series unit resistance (Ohm*m^2) */
parameter real Rs_u=4.5e-9;

/* pad parasitics unit resistance (Ohm*m) */
parameter real Rp_u=1.4;

/* pad parasitics unit capacitance (F/m) */
parameter real Cp_u=130E-12;

/* THERMAL MODEL */

/* temperature of the outside of the device (K) */
parameter real T_ambient=300;

/* operating point temperature (K) */
parameter real T_op=0;

/* thermal unit resistance (K*m/W) */
parameter real R_therm_u=3.6;

/* thermal time constant (s) */
parameter real tau_therm=1E-6;

/**** CALCULATED PARAMETERS ****/
/* DIMENSIONS */

/* active volume (m^3) */
parameter real Vol=d*L*W;

/* active surface */
parameter real S=2*(L+W)*d;

/* ELECTRO-OPTICAL INTERACTION MODEL */

/* effective reflectivity */
parameter real R_eff=R_DBR

*(1-r_wg*cos(‘M_PI_2*(L-phi_L)/Lc)*cos(‘M_PI_2*(L-phi_L)/Lc));

/* threshold material gain (1/m) */
parameter real Gth=(alpha_i+ln(1/R_eff)/L)/Gamma;

/* extraction efficiency */
parameter real eta_extr=eta_c*ln(1/(1-r_wg*(cos(‘M_PI_2*(L-phi_L)/Lc)

*cos(‘M_PI_2*(L-phi_L)/Lc))))/(Gamma*L*Gth);

/* optical absorption in mirrors per unit length (1/m) */
parameter real alpha_m=ln(1/R_eff/R_eff)/(2*L);
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/* total optical absorption per unit length (1/m) */
parameter real alpha=alpha_i+alpha_m;

/* photon recombination rate (1/s) */
parameter real Rph=alpha*v_g;

/* mode coupling factor (W*m^3) */
parameter real k=eta_extr*‘P_H*nu*Vol/Gamma*Rph;

/* ELECTRICAL MODEL */

/* active region resistance (Ohm) */
parameter real Ra=Ra_u*d/(L*W);

/* active region capacitance (F) */
parameter real Ca=Ca_u*L*W/d;

/* contact series resistance (Ohm) */
parameter real Rs=Rs_u/(L*W);

/* pad parasitic resistance (Ohm) */
parameter real Rp=Rp_u*d/(L*W);

/* pad parasitic capacitance (F) */
parameter real Cp=Cp_u*L*W/d;

/* THERMAL MODEL */

/* thermal resistance (K/W) */
parameter real R_therm=R_therm_u*d/(L*W);

/* INTERMEDIATE CALCULATIONS */

parameter real Ce_diode=ne_diode*‘P_Q*Vol;
parameter real c1=A+v_s*S/Vol;
parameter real c2=B/(‘P_Q*Vol);
parameter real c30=C0/(‘P_Q*Vol)/(‘P_Q*Vol);
parameter real c_LIGHT=(‘P_Q*Vol);
parameter real l_LIGHT=k;
parameter real l_C=B*beta*Gamma*k/(‘P_Q*Vol)/(‘P_Q*Vol);

/**** VARIABLES ****/
real TMP_LIGHT, TMP_C, TMP_T, TMP_Va, TMP_Vp, TMP_I;
real RESULT_LIGHT, RESULT_C, RESULT_T, RESULT_Va, RESULT_Vp, RESULT_V;

real V_diode, I_diode, Ia, Ip, dissipation, n0, G0, c3, G, Cn0;
real R_thermZ, T_ambientZ;

/**** EQUATIONS ****/
analog begin
$bound_step(20p);

TMP_I = I(anode,cathode);

TMP_LIGHT = Pwr(INT_LIGHT);



B.2 VCSEL 189

TMP_C = Q(INT_C);

if (TMP_LIGHT<0)
TMP_LIGHT=0;

if (TMP_C<0)
TMP_C=0;

if (analysis("static") && T_op>=200) begin
TMP_T = T_op;
R_thermZ = 0;
T_ambientZ = T_op;

end
else begin
R_thermZ = R_therm;
T_ambientZ = T_ambient;
if (Temp(INT_T)<200)
TMP_T = 200;

else
TMP_T = Temp(INT_T);

end

V_diode = N_diode*$vt(TMP_T)*ln(TMP_C/Ce_diode+1);

if (analysis("static")) begin
TMP_Va = V_diode+TMP_I*Ra;
TMP_Vp = TMP_Va+TMP_I*Rs;

I_diode = TMP_I;

Ia = TMP_I;
Ip = 0;

RESULT_Va = TMP_Va;
RESULT_Vp = TMP_Vp;

end
else begin
TMP_Va = V(INT_Va);
TMP_Vp = V(INT_Vp);

I_diode = (TMP_Va-V_diode)/Ra;

Ia = (TMP_I*Rp+TMP_Vp-TMP_Va)/(Rp+Rs);
Ip = (TMP_I*Rs+TMP_Va-TMP_Vp)/(Rp+Rs);

RESULT_Va = idt((Ia-I_diode)/Ca,TMP_Va);
RESULT_Vp = idt(Ip/Cp,TMP_Vp);

end

dissipation = Rs*Ia*Ia+(V_diode+Ra*I_diode)*I_diode-TMP_LIGHT;

if (analysis("static"))
if (T_op<200)
RESULT_T = T_ambient+dissipation*R_therm;

else
RESULT_T = T_op;

else



190 Verilog-AMS simulation models

RESULT_T = idt((T_ambientZ+dissipation*R_thermZ-TMP_T)
/tau_therm,TMP_T);

c3 = c30*limexp(-Ea/(‘P_K*TMP_T));

/* QW characteristic carrier density (1/m^3) */
n0 = n_Ts*TMP_T + n_T0;
/* QW characteristic material gain (1/m) */
G0 = G_Ts*TMP_T + G_T0;
/* characteristic carrier charge */
Cn0 = n0*‘P_Q*Vol;

if (TMP_C<Cn0)
G = v_g*G0*(abs(TMP_C/(n0*‘P_Q*Vol))-1)/k;

else
G = v_g*G0*ln(abs(TMP_C/(n0*‘P_Q*Vol)))/k;

if (analysis("static"))
RESULT_LIGHT = l_C*TMP_C*TMP_C/(Rph-Gamma*l_LIGHT*G);

else
RESULT_LIGHT = idt(Gamma*l_LIGHT*G*TMP_LIGHT-Rph*TMP_LIGHT

+l_C*TMP_C*TMP_C,TMP_LIGHT);

RESULT_C = idt(eta_i*I_diode-((c3*TMP_C+c2)*TMP_C+c1)*TMP_C
-c_LIGHT*G*TMP_LIGHT);

RESULT_V = TMP_Va+Ia*Rs;

if (analysis("static")) begin
if (RESULT_C<0 || RESULT_LIGHT<0) begin
RESULT_C=2*Cn0;
RESULT_LIGHT=1e-6;

end
end

Pwr(INT_LIGHT) <+ abs(RESULT_LIGHT);
Q(INT_C) <+ abs(RESULT_C);
Temp(INT_T) <+ RESULT_T;
V(INT_Va) <+ RESULT_Va;
V(INT_Vp) <+ RESULT_Vp;

Pwr(light) <+ RESULT_LIGHT;
V(anode,cathode) <+ RESULT_V;

if (!analysis("static"))
@(final_step) begin
$strobe("Final photon density = %fE21/m^3", RESULT_LIGHT

/(1E21*k));
$strobe("Final carrier density = %fE21/m^3", RESULT_C

/(1E21*‘P_Q*Vol));
$strobe("Final active region temperature = %f K", RESULT_T);
$strobe("Final active region voltage = %f V", RESULT_Va);
$strobe("Final parasitics voltage = %f V", RESULT_Vp);

end
end

endmodule



Appendix C

Ray tracing code

This is C language code of the simple ray tracing model discussed in section

4.3.3.

#include <math.h>

/* Random number generation is performed by the MT19937 algorithm.
* See [Matsumoto and Nishimura, 1998]
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
*/
#include "sfmt19937.h"

/* These are the first six Laguerre polynomials */
static double LaguerreL(unsigned int n, double x) {
switch (n) {
case 0:
return 1;
break;

case 1:
return -x+1;
break;

case 2:
return ((x-4)*x+2)/2;
break;

case 3:
return (((-x+9)*x-18)*x+6)/6;
break;

case 4:
return ((((x-16)*x+72)*x-96)*x+24)/24;
break;

case 5:
return (((((-x+25)*x-200)*x+600)*x-600)*x+120)/120;
break;

case 6:
return ((((((x-36)*x+450)*x-2400)*x+5400)*x-4320)*x+720)/720;
break;

default:
return 0; /* higher orders unsupported */
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break;
}

}

/* This function calculates the coupling efficiency between a
* Laguerre-Gaussian beam LG(n,m) and a graded-index fiber. The minimal
* beam waist (at a perpendicular distance z from the fiber butt) is w0 and
* the wave number is k. The beam and fiber axes are assumed to be parallel,
* but misaligned by a distance r. The fiber core radius is rcore, with a
* central core refractive index ncore. The numerical aperture at the center
* of the fiber is NA. The parameter "resolution" is the required absolute
* accuracy of the result.
* The parameter "filterlevel" determines which rays to accept:
* 1: accept all rays entering the core
* 2: same as 1, but reject refracting rays
* 3: same as 2, but additionally reject tunneling rays
*
* The refraction of rays at the core entry is included, but the associated
* reflection loss is not taken into account (this can be catered for by a
* global scale factor).
*/
double LaguerreGaussianGrinCoupling(double w0, double k,

unsigned int n, unsigned int m,
double rcore, double ncore, double NA,
double r, double z,
double resolution, unsigned int filterlevel) {

unsigned long tests=0;
double Nt=0, St=0;
double sigma_r=0.5*w0;
double sigma_t=1/(k*w0);

double f0_xy=2.0/(w0*w0);
double f0_st=0.5*(k*k)*(w0*w0);
double f1_ct=2*k;

double rcoreSQ=rcore*rcore;
double n0SQg=(ncore*rcore/NA)*(ncore*rcore/NA);
double directionalscaling=1/ncore;
double resfac=4.0/(resolution*resolution);
unsigned long resmod=((unsigned long)(10.0/resolution));

double fac,rsq,v1,v2;
double rx,ry,tx,ty;
double f0, f1, weight;

double rxSQ, rySQ, txSQ, tySQ;
double tnormal;
double AxSQ_tnormal, AySQ_tnormal, AxSQ_AySQ;
double sin_phi_yx_over_k_Ax_Ay;

double p;

/* initialize the random number generator */
init_gen_rand(4357); /* we have fixed the seed for determinism */

while (1) {
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/* Here we generate rays with initial position (rx,ry)
* and initial direction (tx,ty) (these are tangents).
*
* We apply the Wigner-transformed representation of Laguerre-Gaussian
* bundles to generate rays. For more information, we refer to
* Gase [1995]; Simon and Agarwal [2000]; Bastiaans and Alieva [2006].
*
* In practice, we always generate rays which result in a Gaussian beam
* profile if their weights are equal. By attributing unequal weights to
* the rays, any Laguerre-Gaussian profile can be generated.
*/

/* generate tx and ty using Box-Muller [1958] */
do {
v1=2.0*genrand_real3()-1.0; /* genrand_real3 is random in (0,1) */
v2=2.0*genrand_real3()-1.0;
rsq=v1*v1+v2*v2;

} while (rsq >= 1.0 || rsq == 0.0);
fac=sqrt(-2.0*log(rsq)/rsq);
tx=sigma_t*v1*fac;
ty=sigma_t*v2*fac;
/* generate rx and ry using Box-Muller */
do {
v1=2.0*genrand_real3()-1.0;
v2=2.0*genrand_real3()-1.0;
rsq=v1*v1+v2*v2;

} while (rsq >= 1.0 || rsq == 0.0);
fac=sqrt(-2.0*log(rsq)/rsq);
rx=sigma_r*v1*fac;
ry=sigma_r*v2*fac;
/* calculate weight of ray */
if (n==0 && m==0)
weight=1.0;

else {
f0=f0_xy*(rx*rx+ry*ry)+f0_st*(tx*tx+ty*ty);
f1=f1_ct*(rx*ty-ry*tx);
weight=LaguerreL(n,f0+f1)*LaguerreL(m,f0-f1);

}

/* incorporate height and displacement */
rx=rx+z*tx-r;
ry=ry+z*ty;
/* increment number of tests */
tests++;
Nt+=weight;
/* test core containment */
rxSQ = rx*rx;
rySQ = ry*ry;
if (rxSQ+rySQ<=rcoreSQ) {
if (filterlevel==1)
St+=weight; /* accept all rays entering the core */

else {
/* core entry occurs; apply Snellius */
tx=directionalscaling*tx;
txSQ = tx*tx;
ty=directionalscaling*ty;
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tySQ = ty*ty;
/* check angular acceptance in fiber */
tnormal = txSQ+tySQ+1;
AxSQ_tnormal = ((n0SQg-rySQ)*txSQ+rxSQ*(1+tySQ));
AySQ_tnormal = ((n0SQg-rxSQ)*tySQ+rySQ*(1+txSQ));

AxSQ_AySQ = (AxSQ_tnormal+AySQ_tnormal)/tnormal;

switch (filterlevel) {
/* for the mathematics supporting classification of rays, we refer to
Ankiewicz and Pask [1977] */

case 2:
/* discard only refracting rays */
sin_phi_yx_over_k_Ax_Ay=ry*tx-rx*ty;
if (rcoreSQ*rcoreSQ-(AxSQ_AySQ)*rcoreSQ

+(n0SQg-AxSQ_AySQ)*(sin_phi_yx_over_k_Ax_Ay
*sin_phi_yx_over_k_Ax_Ay) >= 0)

St+=weight;
break;

case 3:
/* discard refracting and tunneling rays */
if (AxSQ_AySQ<=rcoreSQ)
St+=weight;

break;
default:
break;

}
}

}

/* stopping criterion */
if (tests%resmod==0) {
p=St/Nt;
if (((double)tests)-resfac*p*(1.0-p) >= 0)
return p;

}
}

}
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Calculation details

D.1 Derivation of a stochastic model for array-wide
�ber-coupled power

This section complements the discussion of the array-wide statistical modeling

of VCSEL-fiber coupled power of section 4.3.5.

We will now explore the joint distribution of OMA (i0, i1) and AVG (i0, i1)
by evaluating the mean and/or (co)variance of expressions containing these

variables. In some expressions appearing below (e.g., in equation D.1), this is

done in two stages.

A first step is to express all (co)variances in terms of expected values, e.g.,
var

[
·
]

= E
[
·2
]
− E

[
·
]2

. Unconditional expectations are then evaluated

through an intermediate conditioning on A, as follows: E [·] = E [E [·|A]].
In this stage, random variables can only appear within an expression of the

form E [E [·|A]]. The innermost conditional expectation results in a random

variable which is a function of the alignment A. It can be directly calculated

from the distribution parameters of equation 4.8. Note that the components

of OMA (i0, i1) and AVG (i0, i1) are alignment-conditionally independent for

different array positions.

The unconditional outermost expected value is estimated using a Monte Carlo

approach: nMC (typically 104
–105

) subsequent joint mechanical alignments

are generated by collectively sampling the distributions shown in figure 4.14

on page 101. In the k-th Monte Carlo sample, the mechanical alignment is

translated into the vectors r1,k, . . . , rnd ,k—yielding numerical values for the

misalignment of each fiber-laser pair—and the conditional expectation E [·|A]
is calculated given these vectors. The averaged outcome of this calculation

over all nMC samples then yields the required estimate.

Now we will look into the behavior of the individual components of
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OMA (i0, i1) and AVG (i0, i1) and the occurrence of statistical dependences

across different array positions. The expected intra-VCSEL variance at a given

array position d, ignoring misalignment uncertainty, is given by

E [var [OMAd (i0, i1)| A]] , (D.1)

with a similar equation for AVGd. It evaluates in the ranges 0.077 to 0.087 for

OMA and 0.025 to 0.35 for AVG (heavily dependent on the current setting).

The following expression is also a quadratic measure. It represents the devia-

tion of the coupled optical modulation power at the given position d from the

array average, ignoring VCSEL process variations:

E
[
(E [OMAd (i0, i1)− 〈OMA (i0, i1)〉| A])2

]
, (D.2)

where the angular brackets denote an averaging over all array positions. It

evaluates to 9.2 · 10−4
to 0.0049 for OMA and 9.5 · 10−5

to 0.0039 for AVG,

both heavily dependent on the considered array position.

We remark that even the highest observed value for equation D.2 (caused only

by global rotational misalignment and small fiber true position errors) is an

order of magnitude smaller than the lowest observed intra-VCSEL variance

(caused only by VCSEL variability). This means that the effect of nonuniform

misalignment is dwarfed by VCSEL process variations. Based on this obser-

vation, we can ignore any global rotational misalignment without affecting

accuracy much; the notion of global translational misalignment is preserved.

This yields a natural way of decomposing OMA (i0, i1) and AVG (i0, i1) as a

sum of a global alignment-related contribution and component-specific devia-

tions (caused by VCSEL variability and thus considered i.i.d. across different

array positions). A discussion on the distributions of the components of this

decomposition is in the main text, from equation 4.9 (page 100) onward.

D.2 Calculation of the yield of an array-wide low
BER when using a common logic threshold

In theis section, the expectation over the distribution of A and AVG0 in

equation 4.20 (page 114) is evaluated using a Monte Carlo method. In the

k-th iteration, a sample ak of A is drawn first, fixing the array-wide alignment-

related components in equations 4.9 and 4.10 (page 100). Given ak, a sample

avg0,k of the distribution of AVG0 is drawn next, representing the array-wide

derived logic threshold.

Given ak and avg0,k, we can now evaluate

P
[
BER of 1 channel < 10−12

∣∣∣ A = ak, AVG0 = avg0,k

]
. (D.3)
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Again we apply a Monte Carlo method by generating and examining a very

large number (� nd) of data channels. In the d-th iteration of the k-th top-

level iteration, a joint sample

(
omad,k, avgd,k

)
of the conditional distribution

of (OMAd, AVGd) on A = ak is drawn. Equation 4.14 (page 109) is now used

to derive a value for the amplitude noise σN,d,k given omad,k. The threshold

bias β
[mW]
d,k is calculated as avg[mW]

0,k − avg[mW]
d,k Substituting omad,k, σN,d,k and

βd,k into equation 4.15 (page 109) yields the estimated BER. After sufficient

iterations of the innermost Monte Carlo method, the ratio of the channels

where BER < 10−12
to the total number of channels considered, raised to the

power nd − 1, provides a value for the k-th top-level Monte Carlo iteration.

Averaging all such values then yields the desired yield value.

D.3 Improved pulse position estimate

When the variance σ2
of the additive noise is not negligible, equation 5.22

yields an asymptotically biased estimate of the pulse position. Here, we

describe a procedure to remove this bias. Firstly, σ2
is estimated. To this

end, the density fn (x) is estimated by performing a vertical scan at a time

instant where the signal is constant over a sufficiently wide time interval;

σ2
can be calculated from the estimation. Instead of making a cut at single

voltage v0, we now make two cuts at nearby voltages v1 and v2 so that

t′i (v1) ≈ t′i (v2) ≈ (ti (v2))− ti (v1)) / (v2 − v1). Equations 5.26 and 5.29 at v1
and v2 then lead to a system with four equations and four unknowns ti

(
vj
)
,

assuming that σ2
is known. After solving these equations, all the parameters

in equation 5.22 are known, and hence more accurate values for the pulse

position can be obtained. This gives the following result:

t1 (v1) + t2 (v1)
2

≈ M̂1 (v1) + C
M̂0 (v1)

(D.4)

t1 (v2) + t2 (v2)
2

≈ M̂1 (v2) + C
M̂0 (v2)

, (D.5)

with

C =
σ2∆M̂0

[
M̂1 (v1) M̂0 (v2)− M̂1 (v2) M̂0 (v1)

]
M̂0 (v1) M̂0 (v2) (∆v)2 − σ2

(
∆M̂0

)2 , (D.6)

and where ∆ denotes the difference of a quantity between v2 and v1.
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D.4 Pulse width and position estimate around the
peak

To estimate the pulse peak in the presence of both jitter and additive noise, it is

approximated by the parabola p (t) (equation 5.30). We solve this equation for

t1 (v) and t2 (v) and substitute the results into the right-hand side of equations

5.26 and 5.28. The additive-noise density fn (x) can be replaced either by the

observed empirical distribution or approximately by a Gaussian density with

the same variance. These equations concretize to:

M̂0 (v0, t)

≈
∫ ∞

−∞
fn (x)

2
√

vtop − v0 − x
d

dx (D.7)

M̂1 (v0, t)

≈
∫ ∞

−∞
fn (x)

(
ttop +

√
vtop−v0−x

d

)2

2
dx

−
∫ ∞

−∞
fn (x)

(
ttop −

√
vtop−v0−x

d

)2

2
dx (D.8)

= ttop

∫ ∞

−∞
fn (x)

2
√

vtop − v0 − x
d

dx (D.9)

≈ ttop M̂0 (v0, t) (D.10)

We again perform two cuts at two different heights v1 and v2 near the top,

which yields a set of four equations. This set is redundant, as both cuts should

yield the same location of the interval midpoint, because the parabola has a

vertical axis of symmetry. Three of the equations can be numerically solved

for ttop, vtop and d. An accurate estimate of the precise pulse peak follows.
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