502 research outputs found

    A critical analysis of mobility management related issues of wireless sensor networks in cyber physical systems

    Get PDF
    Mobility management has been a long-standing issue in mobile wireless sensor networks and especially in the context of cyber physical systems; its implications are immense. This paper presents a critical analysis of the current approaches to mobility management by evaluating them against a set of criteria which are essentially inherent characteristics of such systems on which these approaches are expected to provide acceptable performance. We summarize these characteristics by using a quadruple set of metrics. Additionally, using this set we classify the various approaches to mobility management that are discussed in this paper. Finally, the paper concludes by reviewing the main findings and providing suggestions that will be helpful to guide future research efforts in the area

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    A Review of Various Swarm Intelligence Based Routing Protocols for Iot

    Get PDF
    The paper provides insight into various swarm intelligence based routing protocols for Internet of Things (IoT), which are currently available for the Mobile Ad-hoc networks (MANETs) and wireless sensor networks (WSNs). There are several issues which are limiting the growth of Internet of Things. These include the reliability, link failures, routing, heterogeneity etc. The MANETs and WSNs routing issues impose almost same requirements for IoT routing mechanism. The recent work of the worldwide researchers is focused on this area. protocols are based on the principles of swarm intelligence. The swarm intelligence is applied to achieve the optimality and the efficiency in solving the complex, multi-hop and dynamic requirements of the wireless networks. The application of the ACO technique tries to provide answers to many routing issues. Using the swarm intelligence and ant colony optimization principles, it has been seen that, the protocols’ efficiency definitely increases and also provides more scope for the development of more robust, reliable and efficient routing protocols for the IoT. As the various standard protocols available for MANETs and WSNs are not reliable enough, the paper finds the need of some efficient routing algorithms for IoT

    A Survey on Underwater Acoustic Sensor Network Routing Protocols

    Full text link
    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research

    The Application of Ant Colony Optimization

    Get PDF
    The application of advanced analytics in science and technology is rapidly expanding, and developing optimization technics is critical to this expansion. Instead of relying on dated procedures, researchers can reap greater rewards by utilizing cutting-edge optimization techniques like population-based metaheuristic models, which can quickly generate a solution with acceptable quality. Ant Colony Optimization (ACO) is one the most critical and widely used models among heuristics and meta-heuristics. This book discusses ACO applications in Hybrid Electric Vehicles (HEVs), multi-robot systems, wireless multi-hop networks, and preventive, predictive maintenance

    Energy efficient chaotic whale optimization technique for data gathering in wireless sensor network

    Get PDF
    A Wireless Sensor Network includes the distributed sensor nodes using limited energy, to monitor the physical environments and forward to the sink node. Energy is the major resource in WSN for increasing the network lifetime. Several works have been done in this field but the energy efficient data gathering is still not improved. In order to amend the data gathering with minimal energy consumption, an efficient technique called chaotic whale metaheuristic energy optimized data gathering (CWMEODG) is introduced. The mathematical model called Chaotic tent map is applied to the parameters used in the CWMEODG technique for finding the global optimum solution and fast convergence rate. Simulation of the proposed CWMEODG technique is performed with different parameters such as energy consumption, data packet delivery ratio, data packet loss ratio and delay with deference to dedicated quantity of sensor nodes and number of packets. The consequences discussion shows that the CWMEODG technique progresses the data gathering and network lifetime with minimum delay as well as packet loss than the state-of-the-art methods

    Survey on Faulty Node Detection and Recovery Algorithm for WSN

    Get PDF
    In Faulty Node Detection and Recovery Algorithm for WNS critical problems like fault tolerance created. Earlier fault tolerance mechanism consume significant extra energy to detect and recover from the failure or having additional hardware and software resources. .Lifetime of sensor node is enhanced because of using diffusion algorithm combined with the genetic algorithm. When some node get faulty in network then this algorithm is useful to avoid performance related data transfer. Wireless sensor networks are having tendency to fail of sensor, due to the energy depletion, failure of hardware’s, conditions of network environment. We sure that that type of algorithm used then result is replacements of sensor nodes and more reused routing paths. Time for data transfer is depend on active nodes that’s why we detect a routing path with faulty node. Power consumption is affect the hierarchy of active nodes that’s why data is not transferred surely. In this proposed algorithm reduces the rate of data loss by approximately 98.8%, and reduces the rate of energy consumption by approximately 31.1%. DOI: 10.17762/ijritcc2321-8169.150310

    Multipath Ant Colony Optimization Algorithm (MBEEACO) to Improve the Life Time of MANET

    Get PDF
    MANET selects a path with least number of intermediate nodes to reach the destination node. As the distance between each node increases, the quantity of transmission control increases. The power level of nodes affects the simplicity with which a route is constituted between a couple of nodes. This research paper utilizes the swarm intelligence technique through the artificial bee colony (ABC) algorithm to optimize the energy consumption in a dynamic source routing (DSR) protocol in MANET. The ABC algorithm is used to identify the optimal path from the source to the destination to overcome energy problems. The performance of the proposed MBEEACO algorithm is compared with DSR and bee-inspired protocols. The comparison was conducted based on average energy consumption, average throughput, average end-to-end delay, routing overhead, and packet delivery ratio performance metrics, varying the node speed and packet size. The proposed MBEEACO algorithm is superior in performance than other protocols in terms of energy conservation and delay degradation relating to node speed and packet size

    A Review on Swarm Intelligence Based Routing Approaches

    Get PDF
    The principles of bio-inspired or swarm intelligence algorithms can be effectively used to achieve optimal solutions in routing for complex and dynamic wireless sensor networks or body area networks. As the name indicates, it is a field that is inspired by natural living beings like ants, bees, fishes, etc. Studies have proved that the routing protocols based on such bio-inspired methods perform better in terms of energy efficiency, reliability, adaptivity, scalability, and robustness. The general classification of routing protocols is classical-based and swarm-based routing protocols, where both the protocols were specifically categorized as data-centric, location-aware, hierarchical and network flow, and QoS aware protocols. In this paper, an evocative taxonomy and comparison of various swarm-based routing algorithms are presented. A brief discussion about the sensor network design and the major factors that influence the routing is also discussed. The comparative analysis of the selected swarm-based protocols is also done with respect to routing characteristics like query based, route selection, energy efficiency, and path selection. From the review, it is observed that the selection of a routing protocol is application dependent. This paper will be helpful to the researchers as a reference on bio-inspired algorithms for new protocol designs and also for the proper selection of routing protocols according to the type of applications
    • …
    corecore