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Preface

Advanced analytics in both science and technology is growing rapidly, and 
optimization is essential for this growth. Applying innovative optimization 
approaches such as population-based metaheuristic models instead of using 
traditional models can help researchers obtain more benefits. In many fields and 
different domains of human activity, optimization problems are encountered 
frequently. As a result, we must find optimal or near-optimal solutions for specific 
issues to meet certain constraints. More specifically, optimization is concerned 
with the development of efficient and reliable computing infrastructures, which 
will be used, among other things, to accelerate meta-heuristic techniques by 
significantly improving their performance. Numerous heuristic algorithms have 
been developed to find faster, near-optimal solutions to reduce time to market.

Moreover, heuristic algorithms can quickly generate a solution with acceptable quality. 
Ant Colony Optimization (ACO) is one the most critical and widely used models 
among heuristics and meta-heuristics, including genetic algorithms, Simulated 
Annealing, and Gray Wolf Optimization. This book provides an overview of ACO 
applications in various fields as well as their technical details.

Structure of the book

This book discusses four ACO technic applications in different industries. Practical 
examples and scientific details support all the information. The chapters contain 
enough information for beginners to familiarize themselves with the high technology 
and science application to solve business problems and more detailed technical 
information for advanced readers.

Chapter 1 provides a background of ACO analytical model application to help 
industries make better decisions to optimize processes and reduce costs.

Chapter 2 discusses the application of ACO for the integrated design of Hybrid 
Electric Vehicles (HEVs). It examines the actual application of continuous ACO 
for integrated sizing and control design of HEVs to minimize drivetrain cost 
fuel consumption and address control objectives. The chapter provides valuable 
information for designers and automotive engineers related to incorporating soft 
computing, modeling, and simulation concepts into the optimization-based  
design of HEVs.

The authors of Chapter 3 are members of a research group at the Department of 
Information Technology Convergence Engineering, School of Electronic Engineering, 
Kumoh National Institute of Technology, Korea. The researchers for multi-robot 
systems investigated merging grid maps with ACO. Multi-robot systems have recently 
come into the spotlight due to their efficiency in performing tasks in a collaborative 
environment. However, if there is no map in the working environment, each robot 
must complete SLAM, which is a process that simultaneously performs localization 
and mapping of the surrounding environment. To operate the multi-robot systems 
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efficiently, the individual maps must be merged into a collective map that is accurate 
and complete. When the initial correspondences between the robots are unknown or 
uncertain, the map merging task becomes more challenging to complete. This chapter 
describes a novel approach to successfully and efficiently conducting grid-map 
merging with ACO, one of the well-known sampling-based optimization algorithms. 
This method was tested with one of the existing grid maps combining algorithms. 
The results showed that the ACO increased the accuracy of grid-map merging by 
approximately 20 percent.

In Chapter 4, the authors focus on ACO application for routing in wireless multi-hop  
networks. Wireless Mesh Networks (WMNs) and Mobile Ad-Hoc Networks 
(MANETs) are applied in situations where there is no predefined network structure 
consisting of routers and a base station or where the network is dynamic due to a 
growing number of nodes or mobile nodes moving into areas that a base station has 
not previously covered. This chapter introduces Wireless Multi-Hop Networks, their 
specific challenges, and an overview of the ACO application for routing in such 
networks.

Chapter 5 is written by an IT manager from IBM Singapore who has worked in 
advanced analytics applications in different industries for many years. The chapter 
focuses on preventive, predictive maintenance using ACO. The presented study 
results of using ACO to reduce maintenance costs in the mining industry can be a 
compelling case for the researchers who are thinking about a successful example of 
using advanced analytics to reduce maintenance costs.

We hope this book helps readers, including industry professionals and researchers, 
better understand ACO model applications in different areas. The chapters in 
this book present the state of the art of critical topics in ACO. Furthermore, each 
section’s breadth of coverage and depth make it a helpful resource for all managers 
and engineers interested in the new generation of data analytics applications. Above 
all, the editor hopes that this volume will spur further discussions on all aspects of 
ACO application in different industries.

Dr. Ali Soofastaei
Artificial Intelligence Center,

Vale, Brisbane, Australia
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Chapter 1

Introductory Chapter: Ant Colony 
Optimization
Ali Soofastaei

1. Introduction

Optimization challenges arise in a wide range of fields and sectors of human 
activity, where we must discover optimal or near-optimal solutions to specific 
problems while staying within certain constraints. Optimization issues are essential 
in both scientific and industrial fields. Timetable scheduling, traveling salesman 
problems, nurse time supply planning, railway programming, space planning, 
vehicle routing problems, Group-shop organizing problems, portfolio improve-
ment, and so on are a number of real-world illustrations of optimization opportu-
nities. For this reason, many optimization algorithms are created [1].

Optimization focuses on establishing efficient and reliable computational 
infrastructures that will be used, among other things, to improve the performance 
of meta-heuristic techniques dramatically. As a result, numerous heuristic algo-
rithms for identifying speedier near-optimal solutions have been created. Moreover, 
heuristic algorithms can solve with acceptable quality in a short amount of time [2].

Scientists have devoted a great deal of work to understand the complex social 
habits of ants, and computer scientists are now learning that these patterns can be 
exploited to tackle complex combinatorial improvement challenges. Ant colony 
optimization (ACO), the most successful and generally recognized algorithmic 
technique based on ant behavior, results from an effort to design algorithms 
motivated by one element of ant behavior, the capability to locate what computer 
scientists would term shortest pathways. ACO is a population-based metaheuristic 
for resolving complex optimization challenges. This method is a probabilistic 
optimization procedure used to solve computational issues and discover the best 
path using graphs. Artificial ants in ACO seek software agents for possible answers 
to a particular improvement issue. The optimization challenge is the challenge of 
discovering the optimum path on a weighted diagram to use the ACO. The artificial 
ants (hence referred to as ants) then incrementally create solutions by traveling 
along the graph. Using the pheromone model, a set of parameters associated with 
graph components (nodes or edges) whose values are updated at runtime by the 
ants, the solution construction process is skewed in one direction [3].

ACO is a well-known bio-inspired combinatorial optimization approach. Marco 
Dorigo proposed ACO in his Ph.D. thesis in the early 1990s to solve the optimal 
path issue in a graph [4]. It was first used to resolve the well-known dilemma of the 
traveling salesman, and it has since become widely used. After that, it’s used to solve 
various complex optimization problems of several types. A great deal of time has 
been spent studying the complex social habits of ants, and computer scientists are 
now discovering that similar patterns can be exploited to solve complex combinato-
rial optimization problems, which represents a significant advance in the field. 
Each cycle begins with a departure from the nest, searching for a food source, and 
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ends with a return to the nest. Each ant leaves a chemical known as pheromone on 
the path they walk during the journey. The pheromone concentration on each path 
is determined by the path’s length and the quality of the accessible food supply. 
Because the concentration of pheromones present on a path affects ant selection, 
the higher the pheromone concentration, the more likely it is that ants will select 
the path. Using pheromone concentration and some heuristic value, such as the 
objective function value, each ant chooses a path in a probabilistic manner based on 
their environment [5].

Consider the following illustration. Let us consider the following scenario: there 
are two options for obtaining food from the colony. At first, there is no pheromone 
to be found on the ground. Consequently, the probability of choosing either of 
these two paths is equal, or 50 percent. For example, consider two ants who decide 
two alternative routes to obtain food, each with a fifty-fifty chance of success  
(see Figure 1(a)).

A significant amount of distance separates these two routes. Therefore, the ant 
who takes the shortest path to the food will be the first to reach it (see Figure 1(b)).

It returns to the colony after locating food and carrying some food with it. It 
leaves pheromone on the ground as it follows the returning path. The ant that takes 
the shortest route will arrive at the colony first (see Figure 1(c)).

As soon as the third ant decides to go out in search of food, it will choose the path 
that will take it the shortest distance, determined by the level of pheromones on the 
ground. A shorter road contains more pheromones than a longer path (see Figure 1(d)). 
The third ant will choose the shorter path because it is more convenient.

Upon returning to the colony, it was discovered that more ants had already trav-
eled the path with higher pheromone levels than the ant who had taken the longer 
route. Therefore, when another ant tries to reach the colony’s goal (food), it will 
discover that each trail has the same level of pheromones as the previous one. As a 
result, it selects one at random from the list. Figure 1(e) depicts an example of the 
option described above.

After several repetitions of this process, the shorter path has a higher pheromone 
level than the others and is more likely to be followed by the animal. As a result, all 
ants will take the shorter route the next time (see Figure 1(f )).

Figure 1. 
Ant Colony optimization – A simple schematic view (a to f) [6].
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An ACO is based on the technique known as Swarm Intelligence, which is a com-
ponent of Artificial Intelligence (AI) methodologies for solving technical problems 
in the industrial sector [7].

2. Swarm intelligence

Amorphous computing comprises a large number of interconnected computers 
with low processing power, memory, and intercommunication modules. Amorphous 
computing is also referred to as distributed computing. Swarms are the collective 
name for these collections of electronic devices. When the individual agents interact 
locally, the computer’s desired coherent global behavior results from the computer’s 
local interactions. Although there are only a small number of misbehaving agents, 
and the environment is noisy and threatening, the global behavior of these enormous 
numbers of faulty agents is long-lasting. Therefore, randomness, repulsion, and 
unpredictability among agents can be used to derive Swarm Intelligence (SI), which 
can then be used to generate multiple solutions for a single problem. On the other 
hand, there are no established criteria for evaluating the performance of SIs [8].

On the other hand, SI is based on simple principles that allow it to solve complex 
problems with only a few simple agents. An SI feature causes coherent functional 
global patterns to emerge from the collective behaviors of (unsophisticated) agents 
interacting with their environment on a local level. SI provides a foundation for 
investigating collaborative (or dispersed) problem-solving approaches that do 
not rely on centralized control or an overarching model. SI refers to the natural or 
artificial behavior of decentralized, self-organized collective systems that operate 
on their initiative. The concept is commonly used in AI research and development. 
Since the early 1990s, a significant amount of effort has been expended on the solu-
tion of ‘toy’ and real-world problems using algorithms inspired by social insects [9].

Despite the fact that many studies on SI have been presented, there are no 
standard criteria for evaluating the performance of a SI system. As indexes, fault 
tolerance and local superiority are proposed. They used simulation to compare two 
SI systems in terms of these two indexes. There is a pressing need for additional 
analytical research.

According to the researchers, “continuum models” for swarm behavior should 
be based on nonlocal interactions found in biology. First, they discovered that 
when the density dependency of the repulsion term is greater than the density 
dependency of the attraction term, the swarm has a constant inner density with 
sharp edges, similar to what is observed in biological examples. Following that, they 
looked for linear stability at the swarm’s borders [10].

2.1 Swarm intelligence: the fundamental principles

The following are the fundamental principles of swarm intelligence [11]:

1. Self-Organization is based on

• positive feedback;

• negative feedback;

• amplification of fluctuations; and

• multiple interactions.
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2. Stigmergy- Indirect interaction through communication with the 
 environment.

The purpose of this engagement is to provide a comprehensive review of the 
current state of the art in Swarm Intelligence, with a particular emphasis on the role 
of stigmergy in distributed problem-solving. The scope of this engagement is broad 
and includes a variety of topics. However, to proceed, it is necessary to provide 
working definitions and the essential properties of swarm-capable systems, such 
as the fact that problem-solving is an emergent property of a system of primary 
agents. The stigmergy concept states that simple agents can interact with one 
another over a common channel without a centralized control system. As a result of 
applying this concept, they are querying individual agents reveals little or nothing 
about the system’s emergent characteristics [12].

Consequently, simulation is frequently used to understand better the emergent 
dynamics of stigmergic systems and their interactions. Individual acts in stigmer-
gic systems are frequently selected from a restricted behavioral repertoire in a 
probabilistic manner. It is the activities of the various agents that cause changes in 
the environment, for example, the deposit of a volatile chemical known as a phero-
mone. Other agents are alerted to the presence of this chemical signal, which results 
in a shift in the probabilistic selection of future actions.

The advantages of a system like this are self-evident. Generally speaking, the 
activity of a single agent is less important in a system where the actions of several 
agents are required for a solution to emerge. Stigmaria systems are resilient to the 
failure of individual agents while also responding exceptionally well to dynami-
cally changing contexts, as demonstrated in the following example. When devel-
oping algorithms, they are making the most efficient use of available resources 
is usually a significant consideration. One other type of stigmaria system, the 
raid army ant model, uses pheromone-based signaling to forage for food and 
survive efficiently. Agents in an army ant system establish a forage front covering 
a large area, resulting in extraordinarily successful food discovery. This model 
has military value because it could be used to develop a system for searching for 
land mines, which is a problem that is all too common in some parts of the world 
and that this model could help solve. This model of military interest is the third 
stigmaria model of military interest, characterized by flocking or aggregation. 
Many simple agents can be programmed to travel across an environment filled with 
obstacles (and potentially dangerous threats) without the need for centralized 
control or supervision. The agents’ positions and velocities serve as cues to the 
environment they are operating.

2.2 Swarm intelligence advantages and disadvantages

There are several advantages of swarm Intelligence. In the following, some of 
them have been mentioned (Table 1) [13].

• Agents are simple, having little memory and behavior.

• Agents are not goal-oriented; rather than planning exhaustively, they respond.

• There is no central repository of information in the system, and control is 
dispersed.

• Agents are capable of reacting to rapidly changing settings.
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• Individual agent failure is permitted, and emergent behavior is resilient to 
individual failure.

• It is not necessary to communicate with the agents directly.

Swarm intelligence does have some drawbacks. They are as follows (Table 2) [14].

• Individual agent behavior cannot be used to infer collective behavior. This 
means that watching solitary agents will not always lead to the selection of 
swarm-defeating behavior. (From an aggressive standpoint, this can be seen as 
a benefit.)

• Because action selection is stochastic, individual behavior appears to be noise.

• Swarm-based systems are challenging to design. For design, there are essen-
tially no analytical mechanisms.

• Various factors influence the formation (or non-formation) of collective 
behavior differently.

3. Why is ants’ behavior used for optimization?

What makes ants so fascinating?

• Ants use simple local methods to complete complex jobs.

• Ant’s production exceeds the sum of their actions.

• Ants are experts at finding and exploiting resources.

Which ant mechanism is superior?

Behavior Individual rules are challenging to predict collective behavior.

Knowledge Interrogate one of the participants; it will not reveal anything about the group’s function.

Sensitivity Minor modifications in the rules result in a shift in group behavior.

Action Individual action appears to be random: how can you spot threats?

Table 2. 
Disadvantages of swarm intelligence [14].

Adaptable The colony reacts to both internal and exterior disturbances.

Strong Even though some individuals fail, tasks get completed.

Scalable From a handful of individuals to tens of thousands of people

Distributed In the colony, there is no such thing as a central controller.

Self-Organized Paths to solutions are emergent rather than predefined

Table 1. 
Advantages of swarm intelligence [13].
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• Cooperation and division of labor are two terms that come to mind when 
discussing cooperation and labor.

• Adaptive job assignment.

• Cultivation stimulates work.

• Pheromones.

4. Applications of ACO

An increasing number of complex combinatorial optimization problems, such as 
quadratic assignment, fold protein folding, and vehicle routing, have been success-
fully solved with the aid of ACO algorithms in the past. Dynamic problems with 
real-world variables, stochastic problems, multiple targets, and parallel imple-
mentations have all been addressed by derived methods in various settings. It has 
also been employed to search for near-optimal solutions to the traveling salesman’s 
problem. It is advantageous to use the ant colony algorithm when the graph changes 
dynamically because it can be performed continuously and adapt to real-time 
changes instead of simulated annealing and genetic algorithm techniques. This is 
relevant in network routing and urban transportation systems, among other areas.

Using ant colony optimization techniques, for example, it has been possible to 
find nearly optimal solutions to the traveling salesman problem. The Ant system, 
the world’s first ACO algorithm, was created to solve the traveling salesman prob-
lem, which entails finding out which route is the most efficient between a set of 
locations. Essentially, the method is built around ants, who each embark on one of 
the numerous roundtrips while also visiting the various towns and cities. The ant 
decides how to travel from one city to another based on a set of guidelines that are 
followed at each stage [15]:

• Each city must be visited exactly once.

• A faraway city has a lower likelihood of being chosen (the visibility).

• The more intensive the pheromone trail laid out on the boundary between two 
cities, the more likely that edge will be chosen.

• If the travel is brief, the ant leaves more pheromones on all of the edges it 
passes through.

• Pheromone trails dissipate with each iteration.

In terms of applications, one of the hottest topics right now is the use of ACO 
to solve dynamic, stochastic, multi-objective, uninterrupted, and mixed-variable 
optimization problems and the development of parallel implementations that can 
make use of the latest similar technology.

ACO can be used to identify the best solution to various optimization challenges. 
Here are a few examples:

• Capacitated vehicle routing problem

• Permutation flow shop problem
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• The issue of stochastic vehicle routing

• There is a problem with the vehicle routing for both pick-up and delivery

• Group-shop scheduling problem

• Traveling salesman problem

• The scheduling of nursing time is a complex problem

• Frequency assignment challenge

• Redundancy allocation problem

The application of ACO in different industries is growing very fast. In the near 
future, many newly developed ACP-based applications will be used in industries to 
improve the operational process.

5. Future of ACO

From this overview, it should be evident that the ACO metaheuristic is a robust 
foundation for tackling complicated combinatorial issues. Traveling Salesman 
Problem (TSP), Dynamic Traveling Salesman Problem (DTSP), Quadratic 
Assignment Problem (QAP), and other optimization challenges are particularly 
well suited to Ant Systems (AS). Compared to different powerful approaches, their 
superiority is undeniable, and the time savings (produced tours) paired with a high 
level of optimality cannot be overlooked in this context.

Ant System has a competitive advantage over highly communicative multi-
agent systems thanks to reinforcement learning and greedy searching concepts. 
Simultaneously, the capacity to self-train fast enables light and agile installations. 
Finally, by separating individual swarm agents from one another, AS can process 
massive data volumes with far less waste than competing algorithms.

ACO is a new area that combines straightforward functions with profound 
conceptualizations. There’s not much doubt that further research will yield exciting 
results that could provide answers to currently unsolvable combinatorial problems 
in the future. Alternatively, AS and ACO have been shown to be effective in various 
TSP permutations.

New research can provide better solutions by increasing effectiveness while 
decreasing restrictions by studying the ACO and PSO to make future improve-
ments. More options for dynamically determining the optimal destination can be 
developed through ACO. For example, a plan to equip PSO with fitness sharing 
technology is being tested to see if it can help improve performance. In the future, 
rather than relying solely on the current iteration, each individual’s velocity will be 
updated by combining the best elements from all previous iterations.
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Chapter 2

Application of Ant Colony
Optimization for Co-Design of
Hybrid Electric Vehicles
Majid Vafaeipour, Dai-Duong Tran,Thomas Geury,
Mohamed El Baghdadi and Omar Hegazy

Abstract

One key subject matter for effective use of Hybrid Electric Vehicles (HEVs) is
searching for drivetrains which their component dimensions and control parameters
are co-optimally designed for a desired performance. This makes the design challenge
as a problem, which needs to be addressed in a holistic way meeting various con-
straints. Along this line, the strong coupling between components sizes of a drivetrain
and parameters of its controllers turns the optimal sizing and control design of HEVs
into a Bi-level optimization problem. In this chapter, an important application of
continuous Ant Colony Optimization (ACOR) for integrated sizing and control design
of HEVs is thoroughly discussed for minimizing the drivetrain cost, minimizing the
fuel consumption and addressing the control objectives at the meantime. The out-
come of this chapter provides useful information related to incorporation of soft-
computing, modeling and simulation concepts into optimization-based design of
HEVs from all respects for designers and automotive engineers. It brings opportuni-
ties to the readers for understanding the criteria, constraints, and objective functions
required for the optimal design of HEVs. Via introducing a two-folded iterative
framework, fuel consumption and component sizing minimizations are of the main
goals to be simultaneously addressed in this chapter using ACOR.

Keywords: Hybrid Electric Vehicles, Continuous Ant Colony Optimization,
Integrated Design, Modeling and Simulation, Parallel HEV, Energy Management
Strategy

1. Introduction

With the advent of hybridization concepts into the automotive field, searching
for drivetrains which their component dimensions and control parameters are
simultaneously designed for optimal objectives has been attained huge attention
from the researchers. The hybrid drivetrains comprise several energy sources and
components such as electric motors, batteries, power electronics converters and
Internal Combustion Engine (ICE). Hence, making concrete design decisions for
their topologies is significantly complicated compared to conventional ones in terms
of sizing. Furthermore, the design space becomes larger considering complexities
caused by indispensable power control parameters and consequently high degrees
of freedom due to presence of multiple power sources [1, 2]. This produces a large
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search space making it sophisticated for achieving objectives which are often
counteracting, but equally important, e.g. satisfactory charge maintenance and fuel
consumption minimization [3–6].

Due to their inevitable interrelations, the design levels of drivetrains cannot be
performed independently or through standalone sequential framework as it leads
one to suboptimal results. This makes the design challenge as a problem, which
needs to be addressed in a holistic way meeting various constraints. Along this line,
the strong coupling between components sizes of a drivetrain and parameters of its
controllers turns the optimal sizing and control design of HEVs into a Bi-level
optimization problem. For obtaining an optimal system design, the drivetrain com-
ponents dimensions and the vehicle energy management strategy (EMS) should be
designed in an interconnected and cohesive manner called integrated optimal
design or co-design leading to minimum drivetrain cost and minimum fuel con-
sumption as main objectives. There are several optimization algorithms and
sequences available for integrated design of HEVs such as stochastic, gradient-
based, deterministic, and derivative-free optimization methods [7]. The algorithm
selection for integrated design of hybrid drivetrains depends on design targets.
However, among variety of existing approaches, the metaheuristic algorithms e.g.
Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Simulated Annealing
(SA) etc., owing to their derivative-free features, could bring great potential and
flexibility toward handling the non-monotonic, non-linear, and highly dynamic
nature of HEV design.

In this chapter, an application of continuous Ant Colony Optimization (ACO) as
a relatively recent nature-inspired algorithm is presented for integrated design of
HEVs focusing on minimization of drivetrain costs besides fuel consumption at the
meantime. The design variables include power rating of the components (i.e. bat-
tery, ICE, electric motors) and control parameters dealing with power sharing
through the components. Various equality and inequality constraints involve in the
optimization procedure related to components power sharing limitations, initial and
final battery state-of-charge (SoC), maximum and minimum allowable SoC bound-
aries, and charging rate limitations. To this end, first there is a need to establish a
full vehicle model and its corresponding energy management strategy (EMS) which
will be performed in Simulink® environment. A modeled passenger vehicle will be
coupled into an ACO algorithm scripted in MATLAB to work in tandem for the
optimization purpose. The developed framework triggers the integrated design
objectives via minimizing sizing and control objective functions while satisfying the
design constraints to be eventually compared with an initial non-optimal case. The
optimization includes two iterative nested parts linked into each other through an
inner loop to consider the optimization objective and constraints for component
sizing and control in an integrated and iterative manner as simplified in Figure 1.

The present chapter is organized as follows. Section 2 presents the drivetrain
architecture of the studied passenger HEV. In Section 3, individual modeling of the
vehicle’s components, EMS and corresponding descriptions will be elaborated.
Section 4 reviews the principles of the used ACO algorithm. Section 5 narrows down

Figure 1.
Coordination of the nested integrated design.
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the objective functions, optimization constraints and the integration of the simula-
tion into optimization process for the studied application. Section 6 discusses and
compares the attained results, and finally Section 7 recapitulates the conclusions.
The outcome of this chapter provides useful information related to incorporation of
soft-computing, modeling and simulation concepts into optimization-based design
of HEVs from all respects for designers and automotive engineers.

2. Drivetrain architecture

In general, the HEVs are a combination of conventional and full-electric vehicles
using both ICE and electric motor/generator for propulsion. Various topology of
HEVs (e.g. series, parallel, series–parallel) exist depending on how the comprising
power sources and components are connected through the vehicle structure. The
parallel architecture for a passenger HEV is considered for the drivetrain topology
of this study. The parallel drivetrain utilizes more than one direct power source in
its architecture to provide energy for the propulsion system. The ICE and electric
motor (EM) in such a topology can be coupled/decoupled to the wheels when
required which brings more degree of freedoms (DoFs) of operating the vehicle in
different modes. Hence, the traction force can be provided by means of both ICE
and EM or either of them independently leading to lower number of energy con-
versions and consequently lower losses in such a topology compared to the series
HEVs [8]. In a parallel drivetrain the wheels can receive the generated power from
the EM plus the one received from ICE. Since the EM can operate as an electric
generator in such a topology, the battery pack can be charged during regenerative
braking or when the ICE output power is greater than the required power at the
wheels. Figure 2 illustrates a schematic of the considered parallel HEV architecture.

3. Modeling of the vehicle subsystems

Three main approaches exist for modeling and simulation of electric vehicles
topologies:

1. the kinematic (backward-facing) approach,

2.the quasi static (forward-facing), and

3.the dynamic approaches.

Figure 2.
Schematic of a parallel HEV topology.

13

Application of Ant Colony Optimization for Co-Design of Hybrid Electric Vehicles
DOI: http://dx.doi.org/10.5772/intechopen.97559



The backward-facing and forward-facing approaches are also known as “effect-
cause” and “cause-effect”, respectively. Since a backward methodology carries out
significant advantages such as simplicity and low computational cost in model-in--
the-loop applications it is the most ideal testbed for integration into optimization
algorithms requiring iterative operations [9]. Therefore, the backward-facing
method is used for drivetrain modeling and simulation phase of this study. In
principle, the backward facing calculation starts from the driving cycle velocity
inputs to calculate the required tractive force at the wheel for propulsion. The
required power, the translated torque and rotational speed will be calculated in a
backward direction distributed through the components considering the power-
split control block defined in an EMS subsystem. In this regard, Figure 3 illustrates
the calculation direction of a backward-facing model in a simplified way. The
detailed modeling process of the subsystems are provided as follows.

The driving cycles are velocity time series representing a driving pattern; bring
the road to a computer simulation and provide the profile that a vehicle requires to
follow. The use of driving cycles assists modeling the drivetrain and the required
performance to be considered for an appropriate design [8]. The standard New
European Driving Cycle (NEDC), as represented in Figure 4, as the time-
dependent dynamic input of simulation process is used in this chapter.

A vehicle simulation model is required to be linked into the optimization algo-
rithm for optimized integrated design and evaluation of the vehicle performance
over the considered driving cycle. Hence, an energetic vehicle model based on the
longitudinal dynamic motion laws is developed in MATLAB/Simulink® in this
study. The vehicle longitudinal dynamic model uses speed and acceleration
timeseries of a driving cycle to calculate the required tractive forces considering the

Figure 3.
Calculations direction in a generic backward-looking modeling.

Figure 4.
Standard NEDC driving cycle, velocity profile [10].
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drag resistance force, the rolling resistance force, the gradient resistance force, and
the inertia force:

FT ¼ 1
2
ρv2CDAþ Crmg cos aþmg sin aþmCJ

dv
dt

(1)

where its constant values are described and given in Table 1.
Consequently, the torque Tw and the rotational speed ωw required to be supplied

can be modeled. Along this line, by knowing the wheels radius Rw one can readily
have the output of vehicle dynamic model to be fed into transmission subsystem
model:

Tw ¼ FTRw (2)

ωw ¼ v
Rw

(3)

In general, the vehicle components can be modeled using physical equations,
analytical models (i.e. equivalent circuit) or considering related efficiency maps,
which relate torque-speed or voltage–current pairs to their corresponding efficiency
[11]. Using the obtained input torque and rotational speed values, the efficiency
map defined in a look-up-table (LUT), power flow through the Electric Motor (EM)
can mathematically be expressed as:

TG ¼ TwGrη
β (4)

ωG ¼ ωwGr (5)

It is notable that the efficiency term in Eqs. (4) and (5) must be treated con-
trarily for motoring and regenerating braking modes having positive and negative
power flows, respectively. To this end, the efficiency operators β = �1 for the
motoring mode (P > 0), and β = 1 for the braking mode (P < 0) are considered in
the modeling process.

Figure 5 represents the efficiency map of the 75kw EM considered for the
present study stored in EM LUT which can be scaled by torque and consequently
power as an EM sizing decision variable in the optimization procedure.

P ¼ TEMωEMη
β TEM,ωEMð Þ (6)

Description Parameter (unit) Quantity

Mass m (kg) 1350

Drag coefficient CD 0.24

Rolling resistance coefficient Cr 0.009

Rotational inertia coefficient CJ 1.075

Frontal area A (m2) 1.74

Wheel radius Rw (m) 0.287

Air Density ρ (kg/m3) 1.2

Gravitational acceleration g (m/s2) 9.8

Road slope a (degree) 0

Table 1.
Constants of vehicle dynamic calculation.

15

Application of Ant Colony Optimization for Co-Design of Hybrid Electric Vehicles
DOI: http://dx.doi.org/10.5772/intechopen.97559



Similarly, the core functionality of the ICE subsystem used in this study is based
on an input–output approach using torque-speeds pairs corresponded to the effi-
ciency and fuel rate map stored into LUTs in the vehicle model. Having the output
fuel consumption rates data and the fuel density, the consumed fuel in liter can be
modeled in fuel tank subsystem as given in Eq. (7), where _m represents the fuel
consumption rate and ρ f is the fuel density [13]. Figure 6 represents the efficiency
map of the 41 kW engine considered for the present study which can be scaled by
torque and consequently power as a sizing variable in the optimization procedure.

Fuel ¼
ðt

0

_m
ρ f

dt (7)

A lithium-ion battery pack based on a semi-empirical first order Thevenin
equivalent circuit is modeled in the battery subsystem. The elements of the battery
model can be identified by using the experimental data [14] for open circuit voltage
(Voc), the internal resistance (Rint), the polarization capacitance (Cp), and the
polarization resistance (Rp), which are stored in the LUTs of the corresponding
subsystem. The terminal voltage of the pack Vbatt and SoC can be expressed as:

Ibatt ¼ Iload
NBatt

(8)

Figure 5.
75 kW EM efficiency map [12].

Figure 6.
41 kW ICE efficiency map [12].
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dVcp

dt
¼ �Vcp

CpRp
þ IBatt

Cp
(9)

VBatt ¼ NBatts Voc � IBattRint � Vcp
� �

(10)

SoC ¼ SoC0 þ 1
3600

ð
IBatt
Cb

dt (11)

Table 2 provides the specification of LiFePO4 (LFP) battery cells used for
modeling while number of cells are considered as the battery power sizing decision
variable in the optimization procedure.

The output of power converters is modeled considering the power flow calcula-
tion direction and the components efficiency are used in their corresponding LUTs.
The operators β =�1, and β = 1 are considered for the motoring mode (while P > 0),
and the braking mode (while P < 0), respectively.

Pout ¼ Pinη
β (12)

The main role of the energy management strategy (EMS) subsystem in HEVs is
to define power sharing control principles satisfying set of required control objec-
tives. The control strategies are mainly categorized into rule-based (RB) and
optimization-based (OB) ones. The RB strategies as they are structurally working
under If-Then rules, may handle trivial control objectives (e.g. HEV battery charge-
sustaining), however, they are highly fragile in leading to optimal results when it
comes to fuel consumption minimization. Hence, there is a need for coupling RB
strategies into OB strategies to form a robust control framework as considered in
the context of the present chapter. To this end, a RB strategy considering different
vehicle operation modes is linked to a Low Pass Filter (LPF) OB strategy in the EMS
block of the modeled vehicle to satisfy control optimization constraints and objec-
tives. The RB control part updates the operating modes through the simulation
considering the requested load, speed, accessible power from energy sources, bat-
tery state-of-charge (SoC) and power split control variables. The operating modes
considering these objectives can be categorized as follows:

• Pure electric mode;

• Hybrid-traction mode;

• Engine traction and battery charging mode;

Parameter (unit) Quantity

Rated capacity (Ah) 14

Nominal voltage (V) 3.6 V

Max discharging current (A) 100 A

SoC0 (%) 80%

Min Voltage (V) 2.5

Max Voltage (V) 4.15

C_rate limit while charging �3

Table 2.
LiFePO4 battery cell parameters.
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• Hybrid battery charging by both ICE and regenerative breaking;

• Regenerative braking mode.

However, the fuel consumption is significantly depended not only on the
defined operating rules, but also on the OB power-split method used, specifically
for the hybrid operating modes for improving efficiency and control robustness.
Hence, an optimized Low Pass Filter (LPF) strategy will be introduced to the
optimization algorithm to optimize the power-split control part by finding the best
sharing control variable of LPF strategy satisfying power sharing objectives and
constraints. In this regard, the considered OB-LPF strategy optimizes power sharing
between the supplying components (i.e. battery and ICE) to provide required
driving power while minimizing fuel consumption. Through using a filter-based
transfer function, the filtered component of the required power passes to be sup-
plied by the ICE while its difference with the total demand will be supplied by the
battery subsystem [15]. The standard transfer function defined in the energy man-
agement subsystem and optimization process is considered as below. Here the LPF
denominator (τ) is the control variable to be searched through optimization routine
toward having the control objectives and constraints satisfied:

f LPF ¼
1

τ:sþ 1
(13)

The elaborated subsystems are integrated in the Simulink® environment to
form the whole vehicle model to work in tandem with a MATLAB-based ANT
Colony (ACOR) algorithm for component sizing and control optimization.

4. ACOR algorithm

The metaheuristic Ant Colony Optimization (ACO) system, inspired by foraging
behavior of ants, was first developed by Dorigo et al. [16] for discrete optimization
problems. In the discrete ACO the ants represent stochastic procedures toward
establishing set of candidate solutions in presence of a pheromone model. The pher-
omone model encompasses numerical values as pheromones being updated in itera-
tions leading ants to promising solution regions of the search space. Hence, in the
discrete ACO, pheromone information is used in a sampling process to construct a
discrete probability function based on the sorted solutions. Later on for solving
continuous domains, Socha and Dorigo [17] developed the continuous ACO (ACOR)
which can utilize continuous multimodal probability functions such as weighted
Gaussian functions over the search space to solve a non-linear function optimization
problem as Min f xð Þ : a≤ x≤b where vector x ¼ x1, … , xnð Þ represents the decision
variables having vectors a and b as the lower and upper search space boundaries,
respectively [18]. To this end, it produces a probability density function for each
iteration using solution archives as an explicit memory of the search history in the
pheromone model. Accordingly, the ACOR used in this study includes three main
phases as:

• Pheromone representation;

• Probabilistic solution construction;

• Pheromone update.
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In this regard, first in pheromone representation stage the algorithm uniformly
and in a random manner initializes the solution archive of k solutions where each
solution is a D-dimensional vector for xi ∈ xmin, xmax½ � where i ¼ 1, 2, … ,D: The
archived solutions are sorted based on their quality (best to worth). In the probabi-
listic construction stage a solution (i.e. S j) for jth solution will be selected consider-
ing the choosing probability p j defined by a Gaussian probability function where
each solution S j is corresponded to its weight wj, mathematically expressed as
follows [19, 20]:

wj ¼ 1
qk

ffiffiffiffiffi
2π
p exp

� rank jð Þ � 1ð Þ2
2q2k2

 !
(14)

p j ¼
wjPk
a¼1wa

(15)

In this regard, the better solutions would get higher choosing chances. Corre-
spondingly, rank jð Þ is the rank of sorted solution S j, and the intensification factor
(selection pressure factor), q, is a modifiable algorithm parameter dealing with
uniformity of the probability function while larger q values make the probability
function more uniform. A solution would be chosen based on the probabilistic
approach and new candidate solutions are generated as the algorithm samples neigh-
borhood of ith decision variable, Siguide, using the Gaussian function G (see Figure 7)

with mean μiguide ¼ Siguide and standard deviation σiguide values as follows [21]:

σiguide ¼ ξ
Xk
r¼1

Sir � Siguide
���

���
k� 1

(16)

It calculates the average distance value of the ith component of Sguide and the
values of the ith components of solutions in the archive. Here the multiplier ξ>0 is

Figure 7.
The solution archive and the Gaussian functions used in ACOR [21].
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the user-specified pheromone evaporation rate parameter affecting the conver-
gence while lower ξ values lead to lower convergence speed.

In the phoremone update phase, the process repeates for Na (number of ants)
times while appending the new generated solutions to the k solutions of the archive,
to incrementally sort kþNa solutions and remove the worst solutions. Therefore,
before a next iteration starts, the algorithm updates the archive keeping only the
best k solution and discarding the worst ones having the archive size unchanged.
For a considered number of itterations, the algorithm runs till reaching a stoping

Figure 8.
General flowchart of the algorithm for the inner loops of the nested framework [22].
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criteria to eventually select the best solution among the the evaluated positions.
Figure 8 provides the algorithm flowchart for the elaborated procedures.

5. Incorporation of the vehicle model into the optimization procedure,
objectives and constraints

The established Simulink® model previously explained in this chapter is inte-
grated to the MATLAB-based ACO script to iteratively work in tandem for the
optimization purpose. The framework considers set of defined control and compo-
nent sizing constraints and objectives. The co-design optimization process includes
two iterative phases linked into each other through an outer loop to consider finding
optimized EMS and component sizes at the meantime as simplified in Figure 9.

Two objective functions corresponding to the fuel consumption and components
cost are considered for control and sizing optimizations, respectively. For the con-
trol parameter optimization, the decision variable would be the previously intro-
duced LPF denominator (τ). Therefore, for the EMS optimization the algorithm
aims to search for the power sharing variable which minimizes the fuel consump-
tion (FC) while satisfying the constraints.

min FCð Þ ¼ min J1 ¼ min
ðt

0

_mdt (17)

On the other hand, another objective function is used for the component sizing
formed based on the cost of powertrain components considering their prices per

Figure 9.
Coordination architecture of the co-design and variables interrelations.
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power unit. In other words, for the optimal sizing, the algorithm searches for the
sizes which minimize the powertrain cost while satisfying the constraints. In this
regard, the following formulation can be readily expressed for this objective
function:

min Costpowertrain
� � ¼ min J ¼ argmin

sizes
€CICE þ €CEM þ €Cinv þ €CBatt þ €Cconvð Þ

(18)

where the cost, €, for each component is considered in Euros and can be calcu-
lated based on per-power unit price, Qcomp, of each component considering its size:

€Ccomp ¼ Qcomp

� �
sizecomp
� �

(19)

The used per power unit price are given in Table 3 for the ICE, the battery and
the DC-DC converter while the inverter cost can be directly included based on the
following equation.

€Cinv ¼ 13:26 Pð Þ1:1718 (20)

For minimization of the objective functions, the charge sustaining HEV is
subjected to the following inequality constrains:

∣SoC f � SoCi∣< ε0 (21)

SoCmin � ε< SoC tð Þ< SoCmax þ ε (22)

C_Rate tð Þ≥ � 3;Negative sign stands for charging (23)

where the sizes of components are bounded between the considered minimum
and maximum values of the search space. Regarding the SoC, constraint in Eq. (21)
indicates the charge sustaining requirement, and Eq. (22) stands for the allowable
limits of the SoC over the total driving cycle. The constraint in Eq. (23) is consid-
ered based on LiFePO4 battery type chemistry to avoid sudden charges, to avoid
fast aging of the battery pack, and to improve battery’s lifetime and performance. It
is notable that some constraints must be incorporated into the objective function as
penalties to penalize the cost via adding (in minimization problems) or deducting
(in maximization problems) a big enough penalty value when the constraint(s) is
violated. This technique is useful to consider the inequality constraints which
cannot be directly involved in the formulations of the objective function. As the
optimization problem for both objectives are both minimization type here, the
added penalty is considered.

Component Q Unit

QICE 80 €/kW

QBatt 200 €/kWh

QDC-DC 100 €/kW

QEM 90 €/kW

Table 3.
Per-power unit prices used in cost objective function.
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6. Results and discussion

To investigate the effectiveness of the proposed framework, simulation and
optimization over NEDC driving cycle are performed and the results are provided
in this section. The comparisons are considered for an initial non-optimized case
(before integrated design) versus optimized cases (after integrated design). The
main objective of the integrated design is to minimize component sizes and as a
result the cost of powertrain besides achieving optimized fuel consumption while
satisfying the constraints through the developed nested iterative framework. For
achieving close enough values of the initial and final SoC, ε0 ¼ 0:3%, and for
providing slight degree of freedom on allowable SoCmin and SoCmax, small ε allow-
able sliding value as 4%, were all considered in the formulations of the optimization
constraints. Figure 10 presents the power sharing between the battery and the ICE
satisfying driving power. In addition, evolution of the battery SoC and C-Rate for
the studied driving cycle after the integrated design are plotted in the same figure.
As can be seen, the regulated EMS could successfully recover the SoC to achieve
close values for initial and final SoC over the full cycle (SoC f ≃ SoC f ) having the
ICE charging the battery when needed while considering the defined C_Rate tð Þ
violation limit at the meantime. In addition, the SoC allowable minimum and
maximum boundary is satisfied through the desired window range for the whole
cycle. Consequently, Table 4 provides detailed evaluations in terms of control
constraints satisfaction related to triggered EMS goals.

Correspondingly, Table 5 summarizes the design parameters before and after
optimal integrated design while fuel consumption besides powertrain cost

Figure 10.
Power distribution (kW), SoC (%) recovery, and C-rate results.

Considered features Before After

∣SoC f � SoCi∣<0:3 ✘ ✓

SoCmin � ε< SoC tð Þ< SoCmax þ ε ✘ ✓

Driving power needs ✓ ✓

C_Rate tð Þ< � 3 ✓ ✓

All EMS objectives satisfied? ✘ ✓

Table 4.
Control goals satisfaction.
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improvements for the studied cases are provided in Table 6. The sizes of the
decision variable values attained after integrated design indicates that the algorithm
could efficiently downsize the component sizes and consequently the powertrain
costs. It can be observed that improvements are achieved in the fuel consumption
and cost of powertrain components after the co-design design by 5% and 17%,
respectively as illustrated in Figure 11.

7. Chapter conclusions

This chapter investigated a combination of optimization-based and rule-based
energy management strategies to perform an integrated design approach for a
passenger hybrid electric vehicle use-case. The modeling procedure of the compo-
nents were presented, and the corresponding Simulink® model was developed and
linked to an ACOR algorithm to work iteratively for the co-design design purpose.
To check the performance of the proposed framework, simulations and optimiza-
tions were carried out over the NEDC driving cycle. The detailed results through

Design
variable

Description Lower
bound

Upper
bound

Initial
value

Optimal design
value

PICE (kW) ICE size 30 120 84 75

CapBatt
(kWh)

Battery pack size 3 20 9 7

EM (kW) Electric motor
size

50 120 97 80

Table 5.
Component sizes before and after integrated design.

Objectives Before integrated design After integrated design

Fuel Consumption (L/100 km) 5.1 4.8

Improvement (%) — 5

Powertrain Cost (Euros) 28100 23200

Improvement (%) — 17

Table 6.
Fuel consumption and powertrain cost improvements.

Figure 11.
Fuel consumption and powertrain cost comparisons.
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the cycle for power splitting, battery SoC values, battery Crate values, fuel con-
sumption and powertrain costs were obtained and compared for before and after
applying the approach. The results indicated that the proposed framework not only
was able to provide an acceptable management regarding the battery SoC and Crate,
but also was competent of bringing significant added values in terms of the fuel
consumption and powertrain cost reduction. The outcome of the present study
paves the path for experimental Hardware-in-the-Loop and Vehicle-in-the-Loop
validations.

Acknowledgements

The authors are grateful to Flanders Make (FM) for supporting our research
group in the current work.

Conflict of interest

The authors declare no conflict of interest.

Author details

Majid Vafaeipour1,2*, Dai-Duong Tran1,2, Thomas Geury1,2,
Mohamed El Baghdadi1,2 and Omar Hegazy1,2*

1 ETEC Department and MOBI Research Group, Vrije Universiteit Brussel (VUB),
Brussel, Belgium

2 Flanders Make, Heverlee, Belgium

*Address all correspondence to: majid.vafaeipour@vub.be and
omar.hegazy@vub.be

©2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

25

Application of Ant Colony Optimization for Co-Design of Hybrid Electric Vehicles
DOI: http://dx.doi.org/10.5772/intechopen.97559



References

[1] VafaeipourM, El BaghdadiM,
Verbelen F, Sergeant P, VanMierlo J,
HegazyO. Experimental implementation
of power-split control strategies in a
versatile hardware-in-the-loop laboratory
test bench for hybrid electric vehicles
equippedwith electrical variable
transmission. Applied Sciences 2020;10:
4253.

[2] Verbelen F, Lhomme W, Vinot E,
Stuyts J, Vafaeipour M, Hegazy O, et al.
Comparison of an optimized electrical
variable transmission with the Toyota
Hybrid System. Applied Energy 2020;
278:115616.

[3] Neffati A, Caux S, Fadel M. Fuzzy
switching of fuzzy rules for energy
management in HEV. IFAC Proceedings
Volumes 2012;45:663.

[4] Wei Z, Xu J, Halim D. HEV power
management control strategy for urban
driving. Applied Energy 2017;194:705.

[5]Wei Z, Xu Z, Halim D. Study of HEV
power management control strategy
based on driving pattern recognition.
Energy Procedia 2016;88:847.

[6] Wu J, Peng J, He H, Luo J.
Comparative analysis on the rule-based
control strategy of two typical hybrid
electric vehicle powertrain. Energy
Procedia 2016;104:384.

[7] Tran D-D, Vafaeipour M, El
Baghdadi M, Barrero R, Van Mierlo J,
Hegazy O. Thorough state-of-the-art
analysis of electric and hybrid vehicle
powertrains: Topologies and integrated
energy management strategies.
Renewable and Sustainable Energy
Reviews 2020;119:109596.

[8] VafaeipourM, El BaghdadiM,
Verbelen F, Sergeant P, VanMierlo J,
StockmanK, et al. Technical assessment of
utilizing an electrical variable transmission
system in hybrid electric vehicles. 2018

IEEE Transportation Electrification
Conference and Expo, Asia-Pacific (ITEC
Asia-Pacific): IEEE; 2018, p. 1.

[9] Millo F, Rolando L, Andreata M.
Numerical simulation for vehicle
powertrain development. Numerical
Analysis-Theory and Application:
IntechOpen; 2011.

[10] www.unece.org. Accesible 2021.

[11] Vafaeipour M, El Baghdadi M, Van
Mierlo J, Hegazy O, Verbelen F,
Sergeant P. An ECMS-based approach
for energy management of a HEV
equipped with an electrical variable
transmission. 2019 Fourteenth
International Conference on Ecological
Vehicles and Renewable Energies
(EVER): IEEE; 2019, p. 1.

[12] Advisor, NREL. Accesible 2021.

[13] Vafaeipour M, Tran D-D, El
Baghdadi M, Verbelen F, Sergeant P,
Stockman K, et al. Optimized energy
management strategy for a HEV
equipped with an electrical variable
transmission system. 32nd Electric
Vehicle Symposium (EVS32); 2019.

[14] Hegazy O, Barrero R, Van Mierlo J,
Lataire P, Omar N, Coosemans T. An
advanced power electronics interface
for electric vehicles applications. IEEE
transactions on power electronics 2013;
28:5508.

[15] Vafaeipour M, El Baghdadi M, Tran
D-D, Van Mierlo J, Hegazy O,
Verbelen F, et al. Energy Management
Strategy Optimization for Application
of an Electrical Variable Transmission
System in a Hybrid Electric City Bus.
2020 Fifteenth International Conference
on Ecological Vehicles and Renewable
Energies (EVER): IEEE; 2020, p. 1.

[16] Dorigo M, Maniezzo V, Colorni A.
Ant system: optimization by a colony of

26

The Application of Ant Colony Optimization



cooperating agents. IEEE Transactions
on Systems, Man, and Cybernetics, Part
B (Cybernetics) 1996;26:29.

[17] Socha K, Dorigo M. Ant colony
optimization for continuous domains.
European journal of operational
research 2008;185:1155.

[18] Mathur M, Karale SB, Priye S,
Jayaraman V, Kulkarni B. Ant colony
approach to continuous function
optimization. Industrial & engineering
chemistry research 2000;39:3814.

[19] Blum C. Ant colony optimization:
Introduction and recent trends. Physics
of Life Reviews 2005;2:353.

[20] Omran MGH, Al-Sharhan S.
Improved continuous Ant Colony
Optimization algorithms for real-world
engineering optimization problems.
Engineering Applications of Artificial
Intelligence 2019;85:818.

[21] Liao T, Stützle T, Montes de
Oca MA, Dorigo M. A unified ant colony
optimization algorithm for continuous
optimization. European Journal of
Operational Research 2014;234:597.

[22] Khanna A, Mishra A, Tiwari V,
Gupta P. A literature-based survey on
swarm intelligence inspired
optimization technique. J Adv Technol
Eng Sci 2015;3:452.

27

Application of Ant Colony Optimization for Co-Design of Hybrid Electric Vehicles
DOI: http://dx.doi.org/10.5772/intechopen.97559





Chapter 3

Grid Map Merging with Ant
Colony Optimization for
Multi-Robot Systems
Heoncheol Lee

Abstract

Multi-robot systems have recently been in the spotlight in terms of efficiency in
performing tasks. However, if there is no map in the working environment, each
robot must perform SLAM which simultaneously performs localization and map-
ping the surrounding environments. To operate the multi-robot systems efficiently,
the individual maps should be accurately merged into a collective map. If the initial
correspondences among the robots are unknown or uncertain, the map merging
task becomes challenging. This chapter presents a new approach to accurately
conducting grid map merging with the Ant Colony Optimization (ACO) which is
one of the well-known sampling-based optimization algorithms. The presented
method was tested with one of the existing grid map merging algorithms and
showed that the accuracy of grid map merging was improved by the ACO.

Keywords: Ant Colony Optimization, Intelligent Robot, Grid Map Merging, SLAM,
Multi-Robot Systems

1. Introduction

Multi-robot systems [1] have recently been in the spotlight because of the
advantage that it can perform a given task more efficiently than a single robot
system and can perform several tasks at the same time. For the design and
construction of such a multi-robot system, various algorithms which are not
required in a single robot system are required. If a multi-robot system is operated in
unknown environments, it needs to conduct multi-robot simultaneous localization
and mapping (SLAM) [2] to acquire the poses of multiple robots and a collective
map for operating the give task cooperatively without collisions. An example of a
multi-robot system for multi-robot SLAM in unknown environments is shown in
Figure 1. The cooperation module which conducts global multiple path planning,
relative robot pose estimation, and multiple map merging can be placed on the
leader robot or a central control system. The wireless router can be located in the
leader robot or another place to cover the operation area of multiple robots. The
bandwidth for the wireless communication depends on the size of the operation
area and the map representation method. To conduct SLAM, each robot needs
sensors to acquire environmental data. Based on the SLAM result, each robot can
plan a local path and move toward its own goal safely.

The most frequently used sensor for SLAM is a light detection and ranging
(LiDAR) [3] which measures ranges by targeting an object with a laser and
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measuring the time for the reflected light to return to the receiver. LiDAR can also
be used to make digital three-dimensional representations of areas on the earth’s
surface and ocean bottom, due to differences in laser return times, and by varying
laser wavelengths. Because a LiDAR can provide a lot of information about the
surrounding environment, it has been used widely for SLAM. An example of using a
LiDAR for a mobile robot is as shown in Figure 2(a). If SLAM is conducted with a
LiDAR, a map is generally represented by an occupancy grid map as shown in
Figure 2(b). The white, black and gray grids represent empty, occupied and
unknown areas, respectively. The size of grids can be adjusted according to the
resolution of the LiDAR and the memory size in the embedded system.

The key algorithm in multi-robot SLAM is the grid map merging algorithm in
the cooperation module in Figure 1 which accurately aligns and fuses the individual

Figure 1.
An example of a multi-robot system in unknown environments.

Figure 2.
Occupancy grid map built by a mobile robot with a LiDAR sensor. (a) Mobile robot with a LiDAR sensor
(b) Occupancy grid map.
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grid maps of multiple robots. Many grid map merging algorithms have been devel-
oped, and they have their own advantages over others. However, for the more
accurate grid map merging, all the algorithms need an optimization method to align
the individual grid maps more precisely. In this work, we propose a new approach
based on a sampling-based optimization method for grid map merging. The pro-
posed approach was successfully conducted with other grid map matching algo-
rithms and updated the map transformation matrix between robots more
accurately.

The remainder of this paper is organized as follows. In Section 2, multi-robot
SLAM is briefly described. In Section 3, the definition and classification of grid map
merging are described. In Section 4, the proposed approach which is a grid map
merging with ACO is presented. Section 5 shows and analyzes the experimental
results of the proposed approach. Finally, conclusions are given.

2. Multi-robot SLAM

SLAM is to concurrently conduct two processes which are called localization and
mapping, respectively. Mapping is to acquire a map of its surrounding environ-
ments to plan a path to its own goal without collisions with structures. Localization
is to estimate its own pose within the acquired map. Unfortunately, SLAM is not
easy because the two processes in SLAM depend on each other. In other words, the
localization process requires a map as a reference to estimate its own pose, and the
mapping process requires a pose which consists of location and orientation as a
reference point to represent a map. Many researches have been conducted to con-
duct SLAM efficiently, and several nice solutions have been recently proposed.
However, SLAM is still an open problem in the context of accuracy, reliability, and
computational cost.

Multi-robot SLAM is to conduct the SLAM task using multiple robots for the
sake of completing localization and mapping more efficiently. An example of
configuring a two-robot SLAM is shown in Figure 3. Each robot conducts SLAM
with its own sensors. Based on the multiple SLAM results gathered through the
communication modules, the global state has been updated.

Figure 3.
An example of configuring a two-robot SLAM.
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Due to the errors in sensors for multi-robot SLAM, the global state estimation is
generally conducted with probabilistic formulations. The estimation of the
two-robot SLAM state in Figure 3 can be formulated as follows:

P x11:t, x
2
1:t,Mjz11:t, u10:t�1, x10, z2s:t, u2s:t�1,Δ21

s

� �

¼ P Mjx11:t, z11:t, x2s:t, z2s:t
� �

P x11:tjz11:t, u10:t�1, x10
� �

P x2s:tjz2s:t, u2s:t�1, x1s ,Δ21
s

� � (1)

where xik:t is the trajectory for robot i at times k, kþ 1,⋯, t, and M is the merged
map, and uik�1:t�1 is the sequence of actions executed by robot i, and zik:t is the
sequence of observations from robot i, and Δ21

s is the relative pose between two
robots at time s . Extended Kalman filters (EKF) [4] and Rao-Blackwellized particle
filters (RBPF) [5] have been widely used as estimation methods for the probabilistic
formulation. At the beginning of the estimation, the uncertainty of the state is large.
But, as time goes, the uncertainty of the state has been gradually reduced if the
observation measurements are acquired consistently, and data association is
conducted properly. Especially, whenever loop closures [6] are conducted, the
uncertainty of the state can be significantly reduced.

3. Grid map merging

The key algorithm to ensure the performance of multi-robot SLAM with LiDAR
sensors is the grid map merging algorithm because even if the performance of the
SLAM results of individual robots are good, the performance of multi-robot SLAM
depends on the quality of the map transformation between robots. The concept of
the grid map merging in multi-robot SLAM with LiDAR sensors is shown in
Figure 4. Quantitatively, the grid map merging can be performed by acquiring a
map transformation matrix T (MTM) which consists of translation amounts and a
rotation angle between robots as follows:

T Δx,Δy,Δθ

� � ¼
cosΔθ � sinΔθ Δx

sinΔθ cosΔθ Δy

0 0 1

2
64

3
75 (2)

Figure 4.
The concept of the grid map merging in multi-robot SLAM with LiDAR sensors.
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where Δx,Δy and Δθ are the translation amounts and a rotation angle between
robots, respectively.

The method to find the MTM can be categorized into direct map merging and
indirect map merging according to the existence of the direct sensor measurements
between robots or common objects. The direct map merging is to directly acquire
the map transformation matrix by obtaining the inter-robot measurements which
consist of relative distance and orientation between robots, which can be performed
under a rendezvous. The indirect map merging acquires the map transformation
matrix by finding and matching the overlapping areas of the individual maps of
robots, which is called map matching. The detailed categorization of them and the
brief descriptions of the previous works are summarized in [7, 8]. They have their
own advantages, but they require commonly an optimization method to update the
MTM more accurately regardless of the type of map merging.

4. Ant colony optimization for grid map merging

Given an MTM T, the objective functionΦ to evaluate how two individual maps
M1 and M2 are well overlapped for the merged map optimization can be defined as
follows:

Φ M1,M2,Tð Þ ¼
Xa2
x¼a1

Xb2
y¼b1

M1 x, yð Þ � T M2 x, yð Þ½ � (3)

where a1 ≤ x≤ a2 and b1 ≤ y≤ b2 are the whole ranges of the x and y coordinates
of M1 and M2. Because T includes sinusoidal functions for map rotation, the
objective function Φ has nonlinearity and thus is hard to be solved in a closed form.

Therefore, the optimization of Φ for grid map merging needs to be considered
with sampling-based optimization such as MCO (Monte-Carlo Optimization) [9],
PSO (Particle Swarm Optimization) [10] and ACO (Ant-Colony Optimization)
[11]. They require commonly much computation due to their own iterative prop-
erty. Instead, they are easy to implement regardless of the complexity or
nonlinearity of the objective function. Thus, it is a reasonable approach to apply
sampling-based optimization methods to the merged map optimization. This paper
applies the ACO to the merged map optimization because the ACO requires the
relatively smaller number of samples than the MCO and the PSO in the case of the
merged map optimization. The ACO is a probabilistic technique for solving com-
putational problems which can be reduced to finding good paths through graphs.
Artificial ants locate optimal solutions by moving through a parameter space
representing all possible solutions. Real ants lay down pheromones directing each
other to resources while exploring their environment. The simulated ants similarly
record their positions and the quality of their solutions, so that in later simulation
iterations more ants locate better solutions [12].

The ACO needs to be modified to be applied to the merged map optimization.
Because an even slight variation in the rotation angle causes a largely different map
merging result in grid map merging, the concept of pheromones in the ACO cannot
be properly applied to finding the optimal rotation angle. Therefore, each sample in
a search space consists of x and y translations except for a rotation angle. Besides,
since the search space for x and y translations may be largely different, the search
space for the ACO for grid map merging needs to be divided into two areas which
contains the possible configurations of x and y translations respectively as shown in
Figure 5.
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In general, the i-th ant moves from state q to r with probability as follows:

piqr ¼
τqr
� �α

ηqr

� �β

P
z∈ allowed q τqz

� �α
ηqz

� �β (4)

where τqr is the amount of pheromone deposited for transition from state q to r.
0≤ α is a parameter to control the influence of τqr, which was set to 1 in this
work. ηqr is the desirability of state transition qr, which is typically set to the
reciprocal value of the distance. 1≤ β is a parameter to control the influence of ηqr.
τqz and ηqz represent the trail level and attractiveness for the other possible state
transitions.

In the original ACO, the distance is the Euclidean distance between states. But, it
needs to be redefined for grid map merging. In other words, the distance is not the
Euclidean distance between the nodes but a new metric to evaluate how two
individual grid maps are well overlapped. For a candidate tour of the i-th ant,

Λi ¼ qij, r
i
k

n o
where qij and rik are respectively the j-th and the k-th sample in the

areas for x and y translations, the new metric Ψ is defined similarly to Eq. (3) as
follows:

Ψ Λið Þ ¼ 1
P~a2

x¼~a1
P~b2

y¼~b1M1 x, yð Þ � T qij, r
i
k, 0

� �
~M2 x, yÞð �

h (5)

where ~M2 is the transformed M2 by a direct or indirect grid map merging
algorithm. ~a1 ≤ x≤ ~a2 and ~b1 ≤ y≤ ~b2 are the whole ranges of the x and y coordinates
of M1 and ~M2 after conducting the grid map merging algorithm. In this work, since
the rotation angle is not a target of the merged map optimization with the ACO, the
rotation angle in T is set to 0.

The global pheromone is updated as follows:

Figure 5.
The modified search space for the ACO for grid map merging.
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τqr  1� ρð Þτqr þ
XNant

i

Δτiqr (6)

where τqr is the amount of pheromone deposited for a state transition qr . ρ is the
pheromone evaporation coefficient. Nant is the number of ants. Δτiqr is the amount
of pheromone deposited by the i-th ant, which was set to 1=Ψ Λið Þ.

5. Experimental results

Before applying the proposed ACO to grid map merging, the spectra-based map
merging (SMM) [13] algorithm was applied to find a coarse MTM. The SMM is a
well-known indirect grid map merging algorithm which extracts spectral informa-
tion from grid maps by the Hough transform and finds an MTM by matching the
spectral information based on the cross-correlations. The individual grid maps in a
multi-robot system were as shown in Figure 6. To reduce the computation time,
each grid map was represented by a binary image with occupied (white) and
unoccupied (black) grids.

Firstly, the rotation angle was coarsely estimated by the SMM. The Hough
spectra and the cross-correlation between them are shown in Figure 7. The SMM
estimates the rotation angle by taking the angle corresponding the maximum cross-
correlation value. After rotating one of the individual grid maps by the estimated
rotation angle, the SMM estimates the x and y translation amounts by taking the
amounts corresponding the maximum x and y cross-correlation value. The x spectra
and the x cross-correlations between them are shown in the top of Figure 8.
Similarly, the y spectra and the y cross-correlations between them are shown in the
bottom of Figure 8. The merged map by the rotation angle and the translation
amounts estimated by the SMM is shown in Figure 9. The two individual grid maps
were properly merged. But, they needs to be merged more accurately.

The proposed ACO for grid map merging was implemented based on an open
source [14]. The settings for the ACO for grid map merging were as follow. The
number of iterations was set to 50. The number of samples was set to 30. The
number of ants Nant was set to 100. The graphical results of the ACO for grid map
merging are shown in Figure 10, which indicates that the pheromones were prop-
erly updated as time goes and found the optimal configuration of x and y translation
amounts. In other word, the proposed method was successfully conducted and
found the best x and y translation amounts. By the best x and y translation amounts
and the rotation angle estimated by the SMM, the two individual grid maps were

Figure 6.
Individual grid maps in a multi-robot system. (a) Individual grid map 1, M1 (b) Individual grid map 2, M2:

35

Grid Map Merging with Ant Colony Optimization for Multi-Robot Systems
DOI: http://dx.doi.org/10.5772/intechopen.98223



merged more accurately as shown in Figure 11. Comparing with Figure 9, we can
say that the error in the merged grid map was reduced.

The quantitative evaluation of the accuracy of grid map merging can be
conducted with the following measure:

Accuracy index ¼
Pâ2

x¼â1 
Pb̂2

y¼b̂1 M1 x, yð Þ � M̂2 x, yð Þ
Noverlap

(7)

whereNoverlap is the number of commonly occupied grids in the overlapped areas
when two individual grid maps are maximally overlapped, which is a global true

Figure 7.
Rotation angle estimation by the SMM.

Figure 8.
Translation amounts estimation by the SMM.
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value and not given to robots. M̂2 is the transformedM2 by the ACO. â1 ≤ x≤ â2 and
b̂1 ≤ y≤ b̂2 are the whole ranges of the x and y coordinates of M1 and M̂2.

The map merging results of the proposed grid map merging method which
uses both the SMM and the ACO was quantitatively compared with those
of the only SMM-based grid map merging as shown in Figure 12. Because
the performance of the ACO depends on the number of ants Nant, the accuracy
indices of the proposed method were analyzed with various Nant. As
expected, the ACO improved the accuracy of grid map merging with the SMM.

Figure 9.
The merged map by the SMM. The map 2 (green) was transformed by the SMM, and the transformed map 2
(red) was properly merged into map 1 (blue). However, they need to be merged more accurately.

Figure 10.
ACO results for grid map merging. The red circles represent states in x and y areas. The left image represents the
whole tours at each iteration. The middle image represents the best tour (the queen). The right image represents
the pheromones along the tours.
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Although the accuracy index of the proposed method increases according to Nant,
the differences were not significant.

6. Conclusions

This chapter described how the ACO can be applied to the problem of grid map
merging and analyzed how much the ACO improves the accuracy of grid map
merging. The ACO needed to be modified to be applied to the merged map
optimization. The search space for the ACO for grid map merging needs to be
divided into two areas which contains the possible configurations of x and y trans-
lations respectively. The proposed method with the ACO was tested with the SMM
which is a well-known indirect grid map matching algorithm. The ACO improved
the accuracy of the SMM. The improved amounts increased slightly according to the
number of ants in the ACO. Consequently, the modified ACO can be successfully
applied to the problem of grid map merging and improve the accuracy of grid map
merging.

Figure 11.
The updated merged map by the ACO. The two individual maps were merged more accurately.

Figure 12.
The improved accuracy of the grid map merging with the ACO.
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Chapter 4

Ant Algorithms for Routing in
Wireless Multi-Hop Networks
Martina Umlauft and Wilfried Elmenreich

Abstract

Wireless Multi-Hop Networks (such as Mobile Ad hoc Networks, Wireless
Sensor Networks, and Wireless Mesh Networks) promise improved flexibility,
reliability, and performance compared to conventional Wireless Local Area
Networks (WLAN) or sensor installations. They can be deployed quickly to provide
network connectivity in areas without existing backbone/back-haul infrastructure,
such as disaster areas, impassable terrain, or underserved communities. Due to their
distributed nature, routing algorithms for these types of networks have to be self-
organized. Ant routing is a bio-inspired self-organized method for routing, which is
a promising approach for routing in such Wireless Multi-Hop Networks. This
chapter provides an introduction to Wireless Multi-Hop Networks, their specific
challenges, and an overview of the ant algorithms available for routing in such
networks.

Keywords: ant algorithms, wireless networks, ad hoc networks, mesh networks,
wireless sensor networks, multi-hop

1. Introduction

Wireless Mesh Networks (WMNs) and Mobile Ad-Hoc Networks (MANETs)
are applied in situations where there is no predefined network structure consisting
of routers and base station or where the network is dynamic due to a growing
number of nodes or mobile nodes moving into areas that have not been previously
covered by a base station. Examples for such networks are Wireless Sensor Net-
works (WSNs) [1], vehicle ad-hoc networks [2], Wireless Senthe OLPC mesh net-
work for children’s computer in developing countries [3], and open grassroots
initiatives to support free computer networks such as the Freifunk initiative in
Germany [4] or the Funkfeuer initiative in Austria [5].

Routing of messages is a major challenge in such networks due to the dynamic or
not a priori known network structure. Besides the problem of finding an optimum
(or acceptable route) for a message, there is also a mutual influence of a used route
on other routes. This calls for a self-organizing approach [6] of choosing routes that
are near-optimal on a global level with a decision based on local information.

Artificial ant algorithms give a promising approach for such algorithms. Artifi-
cial ant algorithms are bio-inspired algorithms based on real ants’ foraging behavior
using a local gradient-following search strategy with pheromone trails. There are
different ways how an ant-inspired algorithm can be implemented in Wireless
Multi-Hop Networks, for example, by representing ants via network packets and
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the pheromone by values assigned to the network nodes. Besides the mapping of
biological properties into a computer network, Algorithms differ in how route
discovery and maintenance are implemented. This chapter investigates different
ant algorithms and discusses their applicability to routing in wireless multi-hop
networks.

The following section gives an introduction to ant-inspired emergence and self-
organization. In Section 2, three forms of Wireless Multi-Hop Networks are intro-
duced (MANET, WSN, or WMN). Section 3 describes first the seminal ant routing
algorithm developed for routing in such networks, AntHocNet, followed by an
overview of algorithms which build upon this algorithm. Section 4 provides a
summary and concluding remarks.

2. Wireless Multi-Hop Networks

Recent advances in wireless communications have enabled the development of
Wireless Multi-Hop Networks. Often also called Wireless Ad-Hoc Networks we will
in the following use the term Wireless Multi-Hop Network to avoid confusion with
(Mobile) Ad-Hoc Networks described in the next section. A Wireless Multi-Hop
Network is a network where nodes communicate via several hops of wireless trans-
missions over equivalent nodes instead of a central base station. In this chapter we
distinguish between (Mobile) Ad-Hoc Networks, Sensor Networks and Wireless
Mesh Networks, which are described in the following.

2.1 (Mobile) Ad-Hoc Networks

An Ad-Hoc Network is defined as a network where all nodes communicate with
one another on an ad-hoc basis without a central base station [7]. While sometimes
the term is used in literature to denote a Wireless Multi-Hop Network, we use it
here to denote a wireless network that does not differentiate between client nodes
and dedicated routing nodes. The typical node is a somewhat powerful device such
as a (ruggedized) laptop, smartphone, first-responder communication device, or a
device that is integrated in a vehicle, all of which are possibly mobile (see Figure 1).
In this case, the network is called a Mobile Ad-Hoc NETwork (MANET). These
networks were originally developed for military use to enable troop communica-
tions in areas where no communications infrastructure was previously deployed.
MANETs are also envisioned for emergency and disaster networking where the
borders between MANETs and WMNs (see below) are flowing [8].

Several “classical” routing algorithms have been developed for MANETs, the
most prominent being:

DSR: Dynamic Source Routing Protocol was developed in 1994 by David B.
Johnson [9]. It is a reactive protocol which means that the protocol only builds
routes on-demand. This is advantageous in highly volatile networks where it
makes no sense to invest routing overhead to build and maintain routes that
might go stale before they are used. On the other hand, traffic incurs a route-
setup delay because the route is not built in advance. DSR is being
standardized by the IETF [10],

DSDV: Destination-Sequenced Distance-Vector Protocol was developed by
Charles Perkins and Pravin Bhagwat in 1994 [11]. It is a pro-active routing
protocol, which means that routes are built in advance. This avoids the route-
setup delay incurred by reactive protocols but, in highly volatile networks, a
lot of routing overhead might be spent to set up and maintain routes that break
before they can be used,
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AODV: Ad hoc On-Demand Distance Vector Routing [12] developed 1999 by
Charles Perkins and Elizabeth Royer which is a reactive routing protocol, and

OLSR: Optimized Link State Routing Protocol [13] which was developed by
Jacquet et al. in 2001. It is a proactive routing protocol and has been
standardized by the IETF as experimental RFC 3626 [14].

2.2 Sensor Networks

A Sensor Network (or Wireless Sensor Network, WSN) is a wireless network that
consists of many sensor nodes which are spatially deployed to cooperatively moni-
tor physical or environmental conditions (see Figure 2). WSNs were initially devel-
oped for the military for applications such as battlefield surveillance. However,
WSNs are now used in civilian application areas like environmental monitoring
[15–17]. In contrast to MANETs sensor nodes are typically tiny (so-called “motes”)
and deployed densely in huge numbers, often on inaccessible terrain. Therefore,
sensor network protocols must be self-organizing.

One of the major problems in sensor networks is the limited power as each
sensor only has a small battery. While some sensors use technologies like solar cells
to refresh their batteries, routing protocols for sensor networks typically try to
optimize for power efficiency [18]. InWSNs, typically the sink initializes routing by
issuing a query for measurement data. Sensor nodes answer the query by sending
their data back to the sink. To save energy, data may be aggregated along the way
(data-centric routing). To facilitate this, the sensor field is often divided into clusters
or subnets. All nodes of a cluster first send their data to the respective cluster head,
which then processes and routes the data to the sink. If the sensors are equipped
with location finding devices like GPS (Global Positioning System), knowledge of
the position can be used to ease cluster formation or perform geo-routing. Well
known non-ant routing protocols for WSNs include:

Gossiping is an early approach derived from flooding [19],
SPIN: Sensor Protocols for Information via Negotiation is a family of protocols
based on data-centric routing, developed by Heinzelman et al. in 1999 [20],

Figure 1.
MANET architecture. Nodes connect on an ad-hoc basis without dedicated routers or base stations.
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GPSR: Greedy Perimeter Stateless Routing in Wireless Networks, a geo-routing
algorithm developed by Brad Karp in 2000 [21, 22],

LEACH: Low-Energy Adaptive Clustering Hierarchy developed by Heinzelman
et al. in 2000 [23] which is a clustering-based protocol that minimizes energy
dissipation,

SAR: Sequential Assignment Routing is an algorithm which selects paths based
on energy resources, a QoS metric, and the packet’s priority level. SAR was
developed by Sohrabi et al. in 2000 [24] as part of a protocol suite for WSNs,
and

Directed Diffusion, an approach using data-centric dissemination,
reinforcement-based adaptation to the empirically best path, and in-network
data aggregation and caching. Directed Diffusion was developed by
Intanagonwiwat et al. in 2000 [25].

2.3 Wireless Mesh Networks

A Wireless Mesh Network (WMN) is a wireless networking architecture in which
nodes are connected via a wireless backbone [26]. In contrast to MANETs, though,
the wireless backbone in a WMN is typically fixed. Iow. a WMN consists of non-
moving wireless mesh router nodes which constitute the wireless backbone and
(potentially mobile) client nodes (see Figure 3). Router nodes can be mesh routers
only (so-called Mesh Points, MP [27]) or act as combined WLAN Mesh Access
Points (MAPs)/routers.

WMNs can be used as access networks to the Internet, where one or several
Mesh Portal Points (MPP) connect the mesh to the Internet. They can also be used
in disaster areas, for emergency response teams, and for the military. The boundary
towards MANETs is somewhat fluid in these cases [8]. Consider, for example, a
rescue operation where wireless routers are installed on top of firetrucks. When the
firetrucks arrive at the scene, they stop and provide the wireless backbone for the
firefighters’ communication devices. This scenario can be seen as aWMN as well as
as a MANET.

Even with a stationary wireless backbone, the characteristics of wireless chan-
nels and the interaction of the MAC layer with the higher layers in the network

Figure 2.
WSN architecture. Sensor nodes are deployed in a sensor field and deliver their measurements through a sink to
the Internet.
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stack make routing in WMNs a hard problem. Wireless links vary over time and
problems like the hidden node problem or the exposed node problem influence
routing algorithm’s performance. Therefore, a “wireless-aware” routing algorithm is
necessary.

WMNs have slightly different constraints and pose different problems than
MANETs and sensor networks. For example, the power constraint which is very
prominent in sensor networks typically does not exist in WMNs [8]. When WMNs
are used as access networks to the Internet “normal internet traffic” has to be
assumed. This means application traffic like streaming, web browsing, VoIP (Voice
over IP) and video conference traffic, or email, which use the standard TCP (or
UDP) protocol stack. Routing algorithms forWMNs have mostly been adapted from
the (Mobile) Ad-Hoc Networking Community.

3. Ant Colony Optimization and Ant-Routing Algorithms

Ant algorithms are inspired by the natural foraging behavior of certain species of
ants. Based on the famous double bridge experiment, reported on by Goss, Aron,
Denebourg and Pasteels in 1989 [28], ant-inspired optimization was then codified
into an Ant Colony Optimization metaheuristic [29] which was originally
implemented in algorithms such as Ant System [30] and Ant Colony System [31].

In general, algorithms using the Ant Colony Optimization metaheuristic work as
follows: an optimization problem is transformed into a graph G ¼ V,Eð Þ, ants travel
along the graph using pheromones (if present) to choose a path stochastically and
after the ants have finished their travel, the pheromone values in the graph are
updated according to the “goodness” of the solutions found by the ants. Many
algorithm variants, also improve their results with a local search phase that is
applied before updating the pheromone values. Besides other combinatorial

Figure 3.
WMN architecture. Client nodes connect via a wireless backbone. MP, Mesh Point; MAP, Mesh Access Point;
MPP, Mesh Portal Point.
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optimization problems, these algorithms have been shown to be able to solve the
traveling salesman problem. In Ant System, the first algorithm to implement the Ant
Colony Optimization metaheuristic, the ants choose their path according to Eq. (1):

pkij ¼
ταijη

β
ijP

cil ∈N spð Þτ
α
ilη

β
il

if cij ∈N spð Þ,

0 otherwise

8><
>:

(1)

where an ant k in a city i chooses the next city j with probability pkij with sp the
partial solution constructed so far and N spð the set of possible edges leading only to
cities not visited so far. The parameters α and β balance the importance of
pheromone versus the local heuristic ηij ¼ 1=dij with dij the distance between city i
and city j.

Pheromones are updated using the update rule in Eq. (2):

τij  1� ρð Þ � τij þ
Xm

k¼1
Δτkij: (2)

with ρ the evaporation rate, m the number of ants and Δτkij proportional to the
inverse of the lenght of the tour ant k took if that link was chosen (0 otherwise).

A variant aimed specifically at (wired) networks is AntNet [32]. These algo-
rithms were not developed with Wireless Multi-Hop Networks in mind, though. As
described above, Wireless Multi-Hop Networks have their own challenges in addi-
tion to the challenges of routing in a fixed network.

In the following, we will describe the seminal ant routing algorithm developed
for Wireless Multi-Hop Networks, AntHocNet [33], and then give an overview of
the typical features of other ant routing algorithms for these types of networks.

3.1 AntHocNet

AntHocNet [33], 2005, by Di Caro, Ducatelle, and Gambardella is the seminal ant
algorithm developed for mobile ad-hoc networks. It addresses the special challenges
that such wireless networks pose: bandwidth is typically less than in fixed networks,
and links can change their quality or break. Therefore, AntHocNet is realized as a
hybrid algorithm that combines features from pro-active and reactive routing pro-
tocols. In this way, it does not waste resources to set up paths before any packet is
sent, which might not exist anymore by the time they are eventually needed.

Like all wireless routing algorithms, nodes running AntHocNet need to deter-
mine which other nodes are reachable by wireless transmission (iow. the one-hop
neighborhood). AntHocNet nodes do this by broadcasting very short “hello” mes-
sages at regular intervals. Receiving nodes then set up these neighboring nodes in
their respective routing tables, but without any routing information yet. These
“hello” messages are also used to detect link failures.

When a new data packet is to be sent from a source node s to a destination node
d, the algorithm enters its reactive path setup phase. There exist two possibilities:
either there already exists routing information for a path between s and d (after the
protocol has run for a while and packets have already been sent) or not. Depending
on whether routing information already exists or not, AntHocNet sends so-called
“forward ants” either by broadcasting them (if no routing information for the
required route exists yet) or by unicasting them stochastically along one of the
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already known routes. For unicasting, the pheromone routing tables at the inter-
mediate nodes are exploited and the next hop n towards the destination d is chosen
stochastically with a probability Pnd according to Eq. (3):

Pnd ¼
T i

nd

� �β
P

j∈N i
d
T i

jd

� �β , β≥ 1: (3)

with i the current node, n the next hop, T the respecitve pheromone value, N i
d

the set of possible neighbors and a coefficient β that controls how explorative the
algorithm behavior is.

If there is no pheromone information available yet, the forward ant is broad-
casted. To avoid flooding the network with too much traffic, these broadcast ants
are restricted in several ways: 1) after a number of hops, they are killed, 2) when a
node receives several ants stemming from the same broadcast (that took different
paths to reach this node), it will only pass on those ants which came via sufficiently
good paths (using the number of hops and travel time as metrics). The threshold for
this can be set by a parameter α1. In this way, several parallel paths can be explored
while the worst paths are quickly excluded and overhead (which is always of special
concern in wireless networks) is kept at a reasonable level. A second parameter α2 is
used to spread paths more widely among the network: broadcast ants which took a
different first hop than previous ants stemming from the same broadcast, this less
restrictive parameter α2 is applied instead of α1.

Ants memorize the path they travel and when a forward ant has reached the
destination node, a so-called backward ant is created which travels back the path
P ¼ s! n1 ! n2 ! … ! d it came. This backward ant then updates all the phero-
mone information along the path according to Eq. (4):

T i
nd ¼ γT i

nd þ 1� γð Þτid, γ ∈ 0, 1½ �: (4)

where τid is an expression of the “goodness” of the path, based on an estimate of
the average time to send a packet over the path P calculated from measurements at
each node’s MAC layer.

After one or several path(s) has been found and while a data session is running,
AntHocNet forwards the data packets stochastically along all the available paths
using the same Eq. (3) as the forward ants but with a higher value of β. This means
that data packets have a more exploitative behavior than ant packets which explore
more.

During a data session, AntHocNet enters its pro-active phase and sends forward
ants in addition to the data packets. These again use Eq. (3) but have a small
probability of being broadcast instead. The ants that follow the existing path via
Eq. (3) update the current quality of the existing path while those ants that are
broadcast can potentially find new, better paths which will then be immediately
used as potential paths to route data. Due to the way paths are determined and
updated during the pro-active phase and due to the stochastic nature of the data
routing, data packets are sent in an automatically load-balanced way through the
network which expecially helps with wireless transmission as two parallel paths use
the same transmission medium and therefore can potentially greatly influence each
other.

AntHocNet also addresses link failures, which occur much more frequently in the
wireless domain. As mentioned before, link failure can be detected via “hello”
messages – if there has not been an “hello” message for a certain amount of time
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(several times the regular sending interval), a link to a node will be considered
broken. A link is also considered broken if a unicast message to a node fails. The
algorithm then enters its local path repair mode where it broadcasts so-called “path
repair ants” that work just like the forward ants in reactive mode, except that they
are more limited in their maximum number of allowed broadcasts. If a path can be
repaired within a certain amount of time, the data packets (which will have been
buffered in the meantime) will be sent to the destination node. If the path can not
be re-established within a reasonable time limit, the data is discarded and link
failure notifications are broadcasted to the surrounding nodes.

3.2 ARA

ARA (Ant-Colony-based Routing Algorithm) was proposed for MANETs by
Güne s, Sorges and Bouazizi in 2002 [34]. ARA is based on a version of Ant Colony
Optimization which the authors call “Simple ACO”. Its main goal is to reduce the
overhead of routing as compared to classical routing algorithms. The algorithm
consists of three phases: route discovery, route maintenance, and route failure
handling. It uses routing tables at each node ni which consist of records of the form
nd, nn,φi,n
� �

where nd is the destination node, nn the next hop node and φi,n the
pheromone value for this link and destination. Ants carry a sequence number and
the source address they originated from.

The transition rule looks very much like that of AntHocNet (cf. also Eq. (3)) with
a coefficient of β1 ¼ 1:

pi,n ¼
φi,nP
j∈Ni

φi,j
n∈Ni

0 n ∉ Ni

8><
>:

(5)

where pi,n is the transition probability of going from the current node ni to node
nn and Ni is the set of one-hop neighbors of ni.

In contrast to AntHocNet, though, ants are used differently as follows:

• During route discovery, forward ants do not follow the transition rule but are
broadcasted instead. Duplicate forward ants can be detected by their sequence
number and source address and are not forwarded.

• On its way through the network, the forward ant immediately updates the
pheromone tables at the nodes – for the way back to the source. The forward
ant is interpreted similarly to backward ants in AntHocNet. When a forward
ant arrives at a node, the routing table entry where nd equals the source address
in the ant and nn equals the last hop the ant took is updated. Backward ants are
used analogously and establish the path to the destination node as usual.

The pheromone update rule in ARA is quite simple; an ant changes the phero-
mone value moving from node ni to nn by a constant amount:

φi,n ≔φi,n þ Δφ: (6)

Güneş et al. suggest that the number of hops an ant has traveled to the current
node could also be included in the calculation of the new amount of pheromone.
Pheromone is evaporated in regular intervals according to the evaporation rule
shown in Eq. (7). The authors suggest that the link quality measurements should be
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incorporated into the evaporation rule rather than into the pheromone update rule
as usual. This has the advantage that nodes can update local changes of link quality
much more quickly. On the other hand, the disadvantage of this method is that the
quality reflected by the amount of pheromone reflects local link quality only instead
of end-to-end path quality.

φi,n ≔ 1� qð Þ � φi,n, q∈ 0, 1ð � (7)

Route maintenance is done by observing the traffic flowing through the net-
work. Traffic does not have to be encapsulated in ant packets; rather, nodes auton-
omously update the pheromone tables according to the pheromone update rule
already shown in Eq. (6). For each packet of traffic observed by the node, the
pheromone value is increased by the constant amount Δφ. This has the advantage
that route reinforcement happens “automatically” without the need for extra ant
packets.

To prevent the creation of loops, ARA implements a simple loop avoidance
mechanism. When a node recognizes the duplicate reception of a data packet
(identifiable by sequence number and address), it sets an error flag and sends the
packet back to the previous node which removes the link from its routing table.

Route failures are recognized by missing acknowledgements. When a link fails,
a node first checks whether it has another route to the required destination in its
routing table. If this is the case, it sends the packet via this alternative link. If not,
the node informs its neighbors anticipating that they can relay the packet. Failing
this, the mechanism tracks back until it arrives back at the source node. In that case,
a new route discovery phase has to be initiated by the source node.

3.3 ARAMA

Ant Routing Algorithm for Mobile Ad-hoc networks (ARAMA) was published
by Hussein, Saadawi and Lee in 2005 [35]. It is targeted at MANETs and WSNs and
focuses on fair resource usage – esp. node energy – across the network. To achieve
this, the forward ants carry not only source and destination address and intermedi-
ate node IDs but also quality information about the path. To prevent ants from
growing too big, the path information is calculated as a normalized local index and
computed into a cumulative path index as shown in Eqs. (8) and (9) below. The ant
only carries the path index. This novel path index is the main contribution of the
paper.

Let pi,m node i’s normalized optimization parameter m with 0< pi,m < 1. This can
be the number of hops, battery power, delay, bandwidth, etc. Then the local nor-
malized index Ii for node i is

Ii ¼
X
m

ampi,m (8)

where am is the weight of this parameter with
P

mam ¼ 1. This leads to 0≤ Ii ≤ 1.
As the forward ant passes a node it updates the path information it carries by
calculating the path index Ipath as follows:

Ipath ¼
Y
i

Ii: (9)

Since 0≤ Ii ≤ 1 also 0≤ Ipath ≤ 1. A bottleneck link on the path correctly influ-
ences the overall path index as the value of Ipath is smaller than the smallest Ii along
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the path. When the forward ant reaches the destination, the path grade ρ is
computed as

ρ ¼ f Ipath, Ipath,best
� �

(10)

where Ipath,best is the best Ipath received in the last W number of ants (W a
suitable window size).

With d the destination node, i the current node, and n the next hop node the
transition rule used by ARAMA is given as

pd,i,n ¼
fun τd,i,n, ηi,n
� �

P
j∈Ni

fun τd,i,j, ηi,j
� � , n∈Ni

0 n ∉ Ni

8>>><
>>>:

(11)

where τd,i,n is the pheromone value for going from current node i to destination d
via next neighbor n and ηi,n is the local heuristic value of the link i, nð Þ. Function
fun τd,i,n, ηi,n
� �

is chosen to give a high function value when τd,i,n and ηi,n are high; eg.
as in the transition rule of AntHocNet.

When the backward ant traverses the network back to the source, the phero-
mones are updated with the pheromone update rule:

τd,i,n ≔
f evap ρdð Þτd,i,nÞ þ genf ρdð Þ if n∈Path

f evap ρdð Þτd,i,nÞ if n ∉ Path

(
(12)

with f evapðÞ the evaporation function, genf the enforcement function, and ρd the
path grade for this path calculated from the information in the forward ant as
shown above.

The authors also propose two very interesting extensions to the algorithm:
Negative Backward Ants are sent if a forward ant dies due to running out of
TTL (time-to-live) or loop detection. In this case, a negative backward ant is
sent which deemphasizes the path by decreasing its pheromone levels.

Destination Trail Ants implement the RARE (Receiver Assisted Routing
Enhancement) concept by the same group (Abdelmalek, Hussein, and
Saadawi [36]). With this technique, destination nodes send so called
“destination trail ants” into the network which randomly mark paths leading
to the destination. When forward ants search for this destination there is a
probability that they will hit a destination trail left behind by a destination trail
ant. This helps to speed up connection setup time.

3.4 AMQR

Ant colony based Multi-path QoS-aware Routing (AMQR) was developed for
MANETs by Liu and Feng in 2005 [37]. It is based on ARA (introduced in Section
3.2). In contrast to ARA it supports link-disjoint multi-path routing.

Like ARA it uses the transistion rule from AntHocNet with a factor β1 ¼ 1
(cf. Eq. (3)).

pi,n ¼
φi,nP
j∈Ni

φi,j
, if n∈Ni

0 if n ∉ Ni

8<
: (13)
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with pi,n the probability to go from node ni to nn and Ni the set of neighbors of ni
in dependence of the pheromone value φi,n.

As in ARA, forward ants mark the trail back to the source as they move while
backward ants update the trail to the destination. The pheromone values are
updated as follows:

φi,n ≔ 1� αð Þ � φi,n þ Δφi,n (14)

with α the pheromone decay parameter and Δφi,n calculated as

Δφi, n ¼ q�mh�n (15)

where q is the delay time and h the hop count experienced by the ant so far. The
parameters m and n are the weights that determine the relative importance of time
delay and hop count.

Forward ants use a frame format of ns, nd, SeqN,HopC, PasN,ArrTð Þ, :, :ð Þ, …½ �h i.
where ns is the ID of the source node, nd the ID of the destination node, and SeqN and
HopC the sequence number and hop count of the ant respectively. The list
PasN,ArrTð Þ, …½ � contains the IDs of the nodes PasN passed by the ant and the

relevant arrival times ArrT. Backward ants use the same frame format as forward
ants but without SeqN and HopC.

The routing table has the usual entries nd, nn,φi,n
� �

with nd the destination, nn
the next hop and φi,n the pheromone value for this link.

During route discovery, a source node first sends hello packets to determine its
neighbors and then broadcasts a forward ant. Therefore, there is more than one
copy of the forward ant in the system. When an intermediate node receives a
forward ant more than once and the ant’s hop count HopCnew ≤HopCold þ Δhops
another entry is made in the routing table to record this alternative path. Parameter
Δhops is the threshold for an acceptable additional path length to avoid overly long
alternative paths. Backward ants always choose the best path back to the source.

Nodes exchange routing information by additional communication and build
their own view of the topology, and only link-disjoint routes are used. The same
concept is used in PPRA shown later (see Section 3.6). Load balancing and route
failures are handled as in ARA.

To support QoS, nodes monitor their state and the delay recorded in the ants
they receive. If the delay in an ant exceeds a certain limit, the pheromone for the
respective link is set to 0 and the other pheromone values in the routing table are
adjusted to eliminate this high-delay link. If the node itself is overloaded, it initiates
a new backward ant to the source to change the route.

3.5 Scalable Ant-based Routing

Ohtaki et al. [38] focus on the scalability of ant-based routing for MANETs.
Their algorithm is based on uniform ant routing [39] and borrows the TTL-limiting
technique from HSLS (Hazy Sighted Link State) routing [40].

As in uniform ant routing, a probability routing table is kept at each node. For
each entry d, nð Þ there exists a value pdn which gives the probability of routing a
packet destined for node d via neighboring node n. Nodes send periodic control
messages (ants) of the form hs, c, TTLh i which wander the network randomly.
Here, hs is the source address, c the cost of all links traversed so far, and TTL the
remaining time-to-live. Whenever a node receives such a control message from a
neighboring node l it updates its routing table as follows
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pdn ¼
pdn þ Δp
1þ Δp

, if n ¼ l

pdn
1þ Δp

if n 6¼ l

8>><
>>:

(16)

with n∈Ni the set of neighbors of the current node i and Δp given by

Δp ¼ k
f cð Þ , k>0ð Þ (17)

where f cð Þ is a function of the total cost c and k the so-called learning rate of the
algorithm. It defines the weight of one ant and is generally less than 0.1.

As the number of nodes in the network increases, the number of ants goes up
and becomes a burden on the network. To improve scalability, the Scalable Ant-
based Routing algorithm borrows a technique from HSLS [40] to limit the TTL of
the control packets. The TTL Tk of the k-th ant is calculated as

Tk ¼ 2xkþ1 (18)

where

xk ¼ min xmax, max xjk � 0 mod2xð Þð Þð Þ: (19)

The authors suggest that xmax should be set to half the number of nodes in the
network.

Another improvement of this algorithm is the novel ant migration scheme.
Instead of a purely random walk, ants try to move as far away from the source as
possible. The idea is that ants should not “waste” their TTL in the neighborhood but
rather try to cover the whole network. They can find the “direction away from the
source” by following those links which have a low probability as a way to the source
in the routing table. Iow. when an ant originated from source s was received from
node m the probability q j that node j will be chosen as next-hop node among all
neighboring nodes except m is calculated as

q j ¼
1
psjPn

k¼1
1
psk
� 1

psm

(20)

to find the next link in direction away from the source. In this way, they use
their TTL most efficiently to reach nodes as far away from the source as possible
and get good coverage of the network.

3.6 PPRA

PPRA Prioritized Pheromone Aided Routing Algorithm was published by Jeon
and Kesidis in 2005 [41]. It is a multipath routing algorithm that considers both
energy and latency and supports dual-priority traffic. It is aimed at sensor
networks (WSNs) and MANETs with battery constraints and based on ARA [34]
(see also Section 3.2). Multipath routes are used to guard against route failures;
in case of a route breaking, the already set-up backup route can be used without
waiting for another route discovery phase. The multiple paths are also used for
load balancing. As the primary path’s pheromones degrade, traffic switches to the
alternate routes.
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The routing tables at each node ni consist of entries of the form
nd, nn, δi d, nð Þ, ei d, nð Þ� �

or nd, nn, ∂i d, nð Þ, ei d, nð Þ� �
where nd is the destination

node, nn the next hop node, δi d, nð Þ the TTL-pheromone or ∂i d, nð Þ the Delay-
pheromone respectively, and ei d, nð Þ the Energy-pheromone described later.

During route discovery the forward ants are broadcasted. Like in source
routing, they carry the source address and record all node addresses along the way.
Duplicate forward ants are not discarded as in single path algorithms. Instead, they
are used to set up alternative routes. Note that out of the paths found by the
duplicate ants only those which are link-disjoint are kept. Once a forward ant
reaches the destination, a backward ant is created, which takes the path found by
the forward ant back to the source. For the measurement of energy and delay,
periodic control packets are sent in addition to route discovery ants.

Pheromone types: There are three kinds of pheromones in PPRA: TTL-
pheromone (δ), Delay-pheromone (∂), and Energy-pheromone (e). The algorithm
has two variants. Variant 1 uses TTL-pheromone and Energy-pheromone, while
Variant 2 uses Delay-pheromone and Energy-pheromone.

TTL-pheromone is used to express the distance in hops (iow. the time-to-live a
packet traveling this path will use) and is calculated as

δi d, nð Þ≔ δi d, nð Þ þ β1 � TTL d, nð Þ (21)

with β1 a scaling constant and TTL d, nð Þ the number of hops between node d and
node n. Evaporation for TTL-pheromone is calculated as

δi d, nð Þ≔ δi d, nð Þ � β2 with 0< β2 < 1: (22)

For highly volatile networks a higher value of β2 can be used to decay stale routes
faster.
Energy-pheromone represents the battery status of the nodes in the path.
Similar to Eq. (21) it is calculated as

ei d, nð Þ≔ ei d, nð Þ þ α1 � Emin d, nð Þ (23)

with α1 a scaling constant. Emin represents the energy bottleneck on the path, i.e.
the lowest battery level encountered in a node along the path. Evaporation for
Energy-pheromone is calculated as

ei d, nð Þ≔ ei d, nð Þ � α2 with 0< α2 < 1: (24)

Delay-pheromone marks the cumulative queuing delay experienced along a
path. It is calculated analogously to TTL-pheromone as

∂
i d, nð Þ≔ ∂

i d, nð Þ þ γ1 �D d, nð Þ (25)

with γ1 a scaling constant and D d, nð Þ the cumulative queuing delay between
node d and node n. Evaporation for Delay-pheromone is calculated as

∂
i d, nð Þ≔ ∂

i d, nð Þ � γ2 with γ2 > 1: (26)

The algorithm distinguishes between latency-critical and non-critical traffic.
For latency-critical traffic, it always uses both pheromone levels (Energy- and
TTL-pheromone or Energy- and Delay-pheromone respectively) to determine the
route, for non-critical traffic only Energy-pheromone is considered.
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The transition rule for non-critical traffic is given in Eq. (27).

pie d, nð Þ ¼ ei d, nð ÞP
j∈Ni

ei d, jð Þ (27)

where Ni the set of neighboring nodes of i.
The transition rule for latency-critical traffic is calculated by combining

Energy-pheromone and TTL-pheromone (algorithm variant 1) or Energy-
pheromone and Delay-pheromone (algorithm variant 2) as shown in Eqs. (28)–(31)
respectively.

Variant 1 : pilat d, nð Þ ¼ θ � pie d, nð Þ þ piδ d, nð ÞP
j∈Ni

θ � pie d, jð Þ þ piδ d, jÞð �� (28)

where

pxδ w, zð Þ ¼ δx w, zð ÞP
j∈Nx

δx w, jð Þ (29)

and Nx the set of neighboring nodes of x.

Variant 2 : pilat d, nð Þ ¼ θ � pie d, nð Þ þ piδ d, nð ÞP
j∈Ni

θ � pie d, jð Þ þ piδ d, jÞð �� (30)

where

pi
∂
d, nð Þ ¼ 1=∂i d, nð ÞP

j∈Ni
1=∂i d, jð Þ (31)

and Ni the set of neighboring nodes of i.

3.7 EEABR

Energy-Efficient Ant-Based Routing (EEABR) is a routing algorithm based on
the Ant Colony Optimization metaheuristic. It was developed for WSNs by Camilo
et al. in 2006 [42]. The major goal of this algorithm is to increase energy
efficiency. The authors propose three algorithms, basic, improved, and
energy-efficient ant routing.

pk r, sð Þ ¼
τ r, sð Þ½ �α E sð Þ½ �βP

u ∉ Mk
τ r, uð Þ½ �α E uð Þ½ �β , if s ∉ Mk

0 if otherwise

8>>><
>>>:

(32)

where an ant k chooses with probability pk r, sð Þ to move from node r to node s,
τ r, sð Þ the amount of pheromone for link r, sð Þ, and E sð Þ being the factor η in the Ant
Colony Optimization metaheuristic. In this case, E sð Þ is calculated from the initial
energy level of the nodes C and es the actual energy level of the node by

E sð Þ ¼ 1
C� es

: (33)
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The backward ant of forward ant k drops pheromone according to the
pheromone update rule given in Eq. (34).

τk r, sð Þ≔ 1� ρð Þ � τk r, sð Þ þ Δτk: (34)

Here, 1� ρð Þ represents the evaporation and Δτk is calculated from the total
number of nodes N and the distance Fdk traveled by forward ant k as

Δτk ¼ 1
N � Fdk

: (35)

The first improvement of this basic algorithm uses a refined function for calcu-
lating τk where the ant carries an energy vector. From this, the average energy level
of the path is calculated when the backward ant is created. While this makes it
possible to better monitor the energy level on the path it can lead to quite big
forward ants. Since in WSNs communication costs much more energy than local
calculation, the authors propose to save ant size by storing only the average (Eavgk)
and minimum energy (E min k) found on the path so far in the forward ant. The
pheromone update rule in the final EEABR algorithm is then given as:

τk r, sð Þ≔ 1� ρð Þ � τk r, sð Þ þ Δτk
φBdk

� �
(36)

where φ is a coefficient, Bdk the traveled distance of the backward ant in
hops and

Δτk ¼ 1

C� E min k�Fdk
E avgk�Fdk

h i : (37)

Through factors φ and Bdk the backward ant loses part of its pheromone strength
while it travels back to the source – thereby giving shorter paths an advantage in the
routing table.

The authors also reduce the memory Mk of already visited nodes in the forward
ant to just the last two nodes visited. This means no full path information is stored
in the ant anymore, further reducing its size to achieve a so-called “light-weight”
ant. The tasks of loop detection and remembering the path back to the source now
fall to the nodes themselves. Nodes keep track of the forward ants using a structure
np, ns, antID, t
� �

where np is the previous node, ns the next (forward) node, antID the
ID of the ant and t a timeout value.

When a forward ant is received, a node checks the table whether this ant has
been received before. If yes, the ant is discarded as a loop was detected. If no, the
ant is forwarded according to the transition rule. When the backward ant returns to
the node, it looks up the way back to the source in this same table. The timeout
timer t controls how long the node keeps the entry in the table. This also determines
the maximum time a backward ant may take to come back via this node.

3.8 DDCHA

The Distributed, Data-Centric, Hierarchical Ant algorithm (DDCHA) is a com-
bination of a data-centric protocol with ants developed for WSNs. To aggregate
data, the sensor field is divided into subnets where the biggest distance between
nodes is still within communication range. Nodes are location-aware and join a
subnet based on their location relative to the sink. In each subnet, a core head and a
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gateway are chosen with the Distributed Energy-Core Generating Algorithm
(DECGA) described in the same paper as follows:

1.Initially, the sink node is the core head, and all sensor nodes are member
nodes.

2.Every node exchanges information about its function (core head, gateway,
member) and energy level with its neighbors periodically.

3. In every period, every node p computes its new state

• If there is no core head in a subnet, then the node with the largest surplus
energy becomes the core head.

• If p is neither a core head nor gateway but neighbor with at least one node
of a different subnet then p becomes a gateway.

The authors prove that this generates an energy-core Ψ in the network graph.
Routing is done with theDDCHA ant algorithm on top of this network structure

as follows: initially, all pheromone values are 0. Every core head can be seen as an
ant nest (source) which sends forward ants towards the sink of the WSN. Forward
and backward ants both mark their path with pheromones immediately. Unlike
ARA (and closer to ant behavior in nature), the ants do not mark the path back to
the source/destination but simply drop a fixed amount þΔ of pheromone on the
forward path. Ants also do not follow a probabilistic routing table but choose the
path with the highest amount of pheromone. If an ant can not move on anymore
(i.e., it got caught in a loop) it backtracks its path, decreasing the amount of
pheromone by �Δ on the way until it finds a new path. Loop detection is achieved
by keeping a forbidden-list of already visited nodes in the ant. Each member node
sends its data to the core head first which aggregates the data. The core head then
sends the data onto the sink of the WSN.

3.9 Approaches using colored pheromones

Several algorithms are known which make use of “colored pheromones”. This
means that trails can be distinguished not only by the amount of pheromone
dropped but also by the “color” of the pheromone. In the following, we introduce
three approaches for MANETs, WSNs, and WMNs respectively.

3.9.1 MACO

The original Ant Colony Optimization metaheuristic has some drawbacks in
terms of stagnation and adaptiveness. Stagnation occurs when a network reaches
convergence, and an optimal path is found and chosen by all ants. This, in turn,
reinforces this path so much that the probability of selecting other paths becomes
very low, which can lead to congestion on the “optimal” path. Adaptiveness
describes the ability of an algorithm to react to changes in the network. MACO
(Multiple Ant Colony Optimization) was developed to mitigate these problems in
MANETs by Sim and Sun in 2002 [43].

MACO uses several ant colonies in parallel, which each use their own color of
pheromone. The colonies are entirely separated and cannot sense pheromone other
than that of their own color.
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Similar to nature, the forward ants immediately drop pheromone on the paths
they take. I.e., a “red” forward ant Ar will drop þτr on the forward direction of a
link it chooses. The backward ant inherits the color from the forward ant and
chooses the path back to the source with the highest amount of pheromone in its
respective color. Backward ants also drop additional pheromone on the link on their
way back.

Depending on the number of ant colonies used in parallel, several paths from the
source to the sink can be found. These paths can then be used as alternative routes
for load-balancing. Consider the following example with two ant colonies, “red”
and “blue”. Lets assume that there are three paths through the network, one long
route R1 and two similarly short (=good) ones R2,R3 with R1 >R2 ≈R3. With just
one ant colony, the true minimum route would be chosen as the optimal path. With
two ant colonies, there is a possibility that one colony will find R2 as the shortest
path and the other colony R3. In this case, two alternative paths of similar quality
were found. Therefore, MACO increases the probability of exploring alternatives.

3.9.2 Division of labour in SANETS

Wireless SANETs (Sensor/Actuator Networks) are a form of WSN which also
contains actuators (eg. robots). The same energy constraints as in WSNs apply.

Labella and Dressler develop in [44] an ant-based algorithm for division of
labour and the routing of the respective traffic in SANETs. In their model, nodes can
perform different tasks (measurement of temperature, recording of sound, record-
ing of video, and movement). The goal is to distribute the tasks evenly in the
network to get good measurement coverage and not overload single paths with
high-load communications (video and audio transmissions).

Nodes choose tasks by employing the AntHocNet transition rule. The probability
for a node to choose task i from the task list Tagent is

P ið Þ ¼ τβtaskiP
k∈Tagent

τβtaskk

: (38)

Pheromones are updated depending whether the task could be completed suc-
cessfully or not by

τi ≔ min τmax, τi þ Δτ (39)

if successful and

τi ≔ max τmin, τi � Δτ (40)

if not.
Since tasks are inherently linked with the traffic they generate (simple

temperature values, sound, video, or command traffic for movements) tasks imply
traffic classes. To deal with these different classes, the authors employ colored
pheromones.

Each node i keeps separate routing tables cRi for each color c. Each entry cRi
nd for

going from node i via node n to destination d is of the form t, h, e, s,m, vh i where t is
an estimation of the transmission time, h the number of hops in the route, e the
energy required for transmission, s the minimal signal-to-noise ratio on the path,
and m and v are flags that indicate whether a node is mobile and still valid for
routing.
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The transition rule is taken from AntHocNet and evaluated for each color:

Pi
nd ¼

r cRi
nd

� �β
P

j∈Ni
d
r cRi

nd

� �β (41)

whereNi
d is the set of neighbors for which a path to d is known. A different value

for β is used during route discovery and data routing. r �ð Þ is a function r : R! þ

which evaluates the link statistics.
The algorithm also employs an elaborate probabilistic scheme to filter packets

and deliberately drop them to avoid congestion (eg. if a measurement value did not
change).

3.10 Other Ant-based Algorithms and Techniques

Other ant-based algorithms for Wireless Multi-Hop Networks include the
following:

AARAI: Ant Colony Algorithm with Adaptive Improvement was developed by
Zeng and He in 2005 [45]. It is targeted at MANETs, based on Ant Colony
Optimization and implements multipath routing.

IAQR: Improved Ant colony QoS Routing, developed by Liu et al. in 2007 [46]
is based on Ant Colony System [31] and has the goal to improve QoS routing in
MANETs. The transition rule is taken from AntHocNet. It measures each link
delay, bandwidth, jitter, and cost and for each node queueing delay, packet
loss, jitter, and cost. It uses a global update rule for QoS optimization which
changes the decay factor of the pheromone to account for link quality.

Ant-AODV: Ant-Ad Hoc On-Demand Distance Vector Routing by
Marwaha et al. [47] combines AODV [12] with ants. It is targeted atMANETs.
Ants are used during the route discovery phase to reduce route discovery
latency.

Zhang, Kuhn, and Fromherz [48] introduce three new ant routing algorithms
for WSNs: Sensor-driven and Cost-aware ant routing (SC), Flooded Forward
ant routing (FF), and Flooded Piggybacked ant routing (FP). In SC, they
introduce the concept of “sensing ants” which can “smell” other nodes from
afar. This is facilitated by exchange of cost estimates from neighboring nodes
via HELLO-messages. In FF, forward ants are flooded using the broadcast
channel of theWSN and in FP forward ants and data ants are combined to save
communications overhead.

Other techniques use ants not directly to perform routing but to support the
actual routing algorithm. Examples of these are described in the following.

GPSAL: GPS/Ant-Like Routing Algorithm by Câmara and Loureiro [49, 50] is a
location based routing algorithm designed for MANETs and WMNs. Its goal is
to use location information to reduce the number of routing messages and
speed up route recovery. The assumption is that nodes are equipped with
location finding devices like GPS (Global Positioning System). Nodes ni keep
routing tables which contain nd, loccurr dð Þ, locprev dð Þ,TTL locprev dð Þ� �

, type dð Þ� �
where nd is the destination node, loccurr dð Þ the current location of nd, locprev dð Þ
the previous location of nd, TTL locprev dð Þ� �

the time-to-live of the previous
location of nd, and type dð Þ the mobility type (mobile, stationary) of nd. Ants
are only used to collect and seminate location information to the routing tables
of the nodes. The actual routing is then calculated on the location entries using
a shortest-path algorithm.
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T-ANT was developed in 2006 by Selvakennedy et al. [51]. It uses ants for
cluster head election inWSNs. The algorithm uses elements from Scalable Ant-
based Routing [38] described before (see Section 3.5). The actual routing is
performed using a greedy routing scheme.

Ant-aggregation was developed by Misra and Mandal in 2006 [52] for use in
WSNs. Here, ants are not used for routing but to determine the optimal in-
network data-aggregation points (the optimal nodes for data-aggregation in
the WSN). The algorithm is based on Ant Colony Optimization.

4. Conclusions

The versatile and dynamic nature of Wireless Multi-Hop Networks requires
routing algorithms that are robust, adaptable, and scalable. Ant Algorithms are
inspired from the self-organizing foraging behavior of natural ants, which show an
incredible ability for robustness, adaptation and scalability despite being based on a
set of simple mechanisms. In this chapter, we have first reviewed the seminal ant
routing algorithm developed for routing in such networks, AntHocNet. In the fol-
lowing, we investigate more specific algorithms: ARA is a simple version of an ant
colony optimization approach for routing in MANETs. ARAMA is targeted at
MANETs and WSNs and focuses on fair energy use between the nodes of the
network. EEABR is another algorithm focusing on energy efficiency, providing a
more fine-grained selection of routing mechanisms. DDCHA is a data-centric pro-
tocol which divides a sensor field into subnets of nodes within communication
range. AMQR is a routing algorithm for MANETs that extends upon ARA. A con-
cept for dual-priority traffic, together with a notion of energy and latency con-
straints, is reported in the PPRA algorithm. To match requirements of different
traffic types, we have also reviewed approaches using colored pheromones – here
the colored pheromones form separate routing layers representing different route
properties such as latency, jitter, or bandwidth. Two representatives of this class of
algorithms are MACO and SANETs have been reviewed in this chapter.

Ant-inspired algorithms can be successfully applied for routing in Wireless
Multi-Hop Networks, but due to the difficulty of the problem and different
requirements priorities among Wireless Multi-Hop Networks, they have not con-
verged into s single solution. Instead, we are facing an increasing number of algo-
rithms and protocols following this idea. A short insight into this is given in the
section on other ant-based algorithms for Wireless Multi-Hop Networks. Consider-
ing the constant change of sensor network hardware and software together with
probably slightly different requirements, we are expecting this trend to continue
and foresee new ant routing algorithms in the future.
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Chapter 5

An Innovative Maintenance
Scheduling Framework for
Preventive, Predictive
Maintenance Using Ant Colony
Optimization
Abhishek Kaul

Abstract

The fourth industrial revelation has brought exponential technologies in the area
of digitization, internet of things (IOT), artificial intelligence (AI), and optimization
which has helped mining companies to increase the availability and utilization of
equipment’s. As mining companies implement predictive maintenance technologies,
to improve overall equipment availability, there is more value to be unearthed if
predictive maintenance is optimized with the production schedules. Ant colony opti-
mization (ACO) is a metaheuristic that is inspired from the behavior of real ants to
solve combinatorial optimization problems. This chapter describes an innovative
maintenance scheduling framework in the context of optimizing schedules for pre-
ventive maintenance and predictive maintenance, with multiple constraints for opti-
mized dynamic schedule to reduce the maintenance time, and production losses.

Keywords: ant colony optimization, predictive maintenance, preventive
maintenance, mining, schedule, optimizing mining equipment schedule

1. Introduction

The high and volatile commodity prices are caused by unanticipated changes
demand and supply [1]. These volatile prices put cost pressure on mining organiza-
tion to optimize operations. The availability and utilization of mining equipment’s,
is the major contributor for an organization to manage costs and supply disruptions.

Traditionally, maintenance activity for mining equipment, relies on a series of time
based or equipment running hours based checks for schedulingmaintenance activities.
The fourth industrial revolution provide organizations with a balanced approach to
reduce costs with safety. As new technologies get deployed, the operations andmain-
tenance landscape is continually being digitized by mechanization, automation, indus-
trial internet of things (IIoT) and IT-OT (information technology – operational
technology) integration. These technologies provide visibility to real time operations
data. Analysing the data with artificial intelligence (AI) adds the ability to predict and
respond to operational disruptions, for example – predict the next failure date of the
asset and provide perspective guidance for maintenance. Further, optimization adds
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the capability to synchronizing the scheduled, predicted maintenance activity with
production schedule to minimize themaintenance costs and production losses.

Ant colony optimization (ACO) [2, 3] is a metaheuristic for solving hard combi-
natorial optimization problems. This was proposed by Dorigo et al., inspired from the
behaviour of real ants, which use pheromones as a communication medium to find
the shortest path to food from the colony. Analogous to the biological example, ACO
is based on indirect communication within a colony of simple agents, called (artifi-
cial) ants, mediated by (artificial) pheromone trails. In ACO algorithms there are
several generations of artificial ants which search for good solutions. In each genera-
tion, each ants find a solution by going step by step through many probabilistic
decision till a solution is found. Ants that found good solutions put some amount of
pheromone on the edges of path to mark their path. This will help attract the next
generation of ants to find solutions near the good space. Generally pheromone values
of ants are guided by the specific heuristic that is used for evaluating decisions.

In this chapter, we will focus on the framework for optimizing the preventive
maintenance, predictive maintenance and production schedule. The first section
will cover the maintenance strategies and framework. The second section will give a
brief overview of the ACO. The third section will cover the maintenance solution
framework for mining equipment’s. In the last section we will conclude our recom-
mendations for mine equipment maintenance scheduling.

2. Maintenance strategies and framework

The systematic, optimally sequenced activities and framework, throughwhich
mining companies can sustainablymanage their equipment, its performance, risks and
operating expenses over their entire life cycle, for the purpose of achieving its organi-
zational objectives and plan, can be defined as an enterprise assetmanagement.Mining
equipmentmaintenance requires series of checks by the equipment operator, for better
diligence apart from unscheduled fixes. The frequency is dependent on the combina-
tion of equipment performance and the running hours in a specified time interval.

Maintenance costs can be upto 30% of direct costs [4] andmore in terms of opera-
tions disruptions. To controlmaintenance costs,mining organization have centred their
efforts on areas such as optimizing scheduledmaintenance operations, deferring non-
essential maintenance, reducingmaintenancemanpower, controlling inventories of
spare parts evenmore adequately, and using contract maintenance support [5]. Below
all themaintenance types, which are performed by themaintenance team at varied
frequency depending on the nature of inputs from various sources are described

2.1 Regular maintenance—Type I

The first daily checks and safety practices are mandated by the OEM and occur
the start of every shift or during operator changes. These proactive checks involve
the inspection of all major system parameters such as engine temperature, tyre
pressures, oil levels and control surfaces and are performed at the mine site itself.
These checks can be part of the total productive maintenance (TPM) strategy and
incorporates activities and actions performed by equipment operators with the
intention of to ensure failure-free operations, fewer breakdowns and efficiency [6].

2.2 Preventive maintenance—Type II

Routine planned maintenance is about avoiding, reducing or eliminating the
consequences of failures. The frequency of performance-based maintenance is done
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primarily on performance (running hours, KM run) of the equipment, time based
(weekly, monthly, quarterly, yearly, and multiple of years) or as recommended by
OEM and updated time to time.

The determination of inspection intervals is based on the reliability level to
prevent potential catastrophic failures that augments extensive maintenance and
increased downtime costs. The insights are considered to develop a preventive
maintenance plan that is based on the deterioration of equipment key components
and renewed life after repair [7]. The mechanical parts deterioration factors depend
on multiple factors which are wear and tear, corrosion, operational fatigue and
weather, and operator skills. This deterioration is a continuous process which is
time and usage dependent [8].

2.3 Breakdown or corrective maintenance—Type III

The unscheduled breakdown has a major impact in both – production and
expedited maintenance costs. Furthermore, the ability to fix it right first time is
fundamental to ensure equipment is back to operation quickly. The core objective
for repairing the equipment is in less time, with higher accuracy and support
maintenance technicians to diagnose the failure properly is key for improved utili-
zation. The breakdown and corrective maintenance require timely availability of
spares and management of spares just in time is one of the main challenges of delay
in maintaining of the equipment.

Condition based maintenance (CBM) provides the insights of the equipment
component, either real time or at a specific frequency to analyse the condition for
effective decision making for dynamic corrective maintenance schedule for resto-
ration. CBM insights can be utilized either for preventive or corrective maintenance
depending on the organizational maintenance strategy [9].

2.4 Overhaul and shutdown maintenance—Type IV

This type of maintenance is mostly capital in nature and performed at relatively
large intervals. It may be done for several reasons due to severe break- down, acci-
dent or to overhaul the entire equipment to enhance the useful life of the equipment.
This overhaul or shutdown maintenance is managed as a project with procurement of
spare parts and maintenance activities are scheduled and synchronized as per the
timeline agreed upon. Overhaul is complete check and review of the mining equip-
ment and depends on the performance of the equipment or between the mid to end
of useful life to enhance the useful life of the equipment. This type of maintenance is
performed mostly on the large equipment for example, dragline and shovels. This
maintenance can run up-to multiple months and are managed as a project with a
sequence of activities and schedules, to minimize equipment downtime.

2.5 Predictive maintenance—Type V

This type of maintenance is performed based on accurate prediction when an
equipment or any of its components are going to fail. If the prediction attribute is
derived themaintenance can be executed just before such failure is predicted to occur.

There are systems like vehicle health monitoring system (VHMS) which pro-
vide, frequency-based sample data about the equipment performance for example,
running hours, speed, rpm, load, engine temperature, payload so on and so forth.
Similarly, weather related data is collected through weather application program-
ming interface (API), which helps to understand the impact of ambient tempera-
ture, precipitation, humidity etc. on the equipment performance. The main idea

67

An Innovative Maintenance Scheduling Framework for Preventive, Predictive Maintenance…
DOI: http://dx.doi.org/10.5772/intechopen.103094



behind the IIoT is to connect computers, devices, sensors, and industrial equipment
and applications within an organization and to continually collect data, such as
system errors and machine telemetry, from all of these with the aim of analysing
and acting on this data in order to optimize operational efficiencies. Predictive
maintenance is more effective than performing preventive maintenance at frequent
intervals, which could also be costlier because unnecessary maintenance may be
applied on equipment.

The above types of maintenance strategies help organization to develop a com-
prehensive maintenance framework to maximize value and realise benefits. Specif-
ically for mining equipment, the maintenance planning can be done at

• Workshop—typically for moving equipment like dump trucks, haulers, dozers,
graders, and wheel loaders

• Onsite at mine—typically for large slowly/non-movable, equipment like
dragline, large shovels

2.6 Strategies and framework

Overall, maintenance affects, all aspects of business efficacy, safety, environ-
mental impact, energy efficiency, product quality, customer service, plant avail-
ability and cost. Many times scheduled maintenance activity is seldom integrated
with the production [10] which leads to unplanned production losses due to plan-
ning of scheduled and preventive maintenance activities.

Therefore, the selection of the right maintenance framework plays a significant
role in preserving the functions of the equipment and supporting mining organiza-
tion value drivers:

• Improve revenue—increased asset availability and greater reliability in line
with production schedule i.e. grow more revenue from the same asset base

• Reduce operating costs and expenses—more timely and precise interventions,
increase asset life, less downtime, high utilization

In order to achieve these benefits, efficient combination of preventive (Type II)
and predictive maintenance (Type V) with production schedule is required to
reduce the overall maintenance execution time and maximize production.

3. Understanding ant colony optimization

Ant colony optimization (ACO) was inspired by the observation of the behav-
iour of real ants. Real ants, which use pheromones as a communication medium to
find the shortest path to food from the colony [11]. As in the case of real ants, the
problem is to find the food, in the case of artificial ants, it is to find a good solution
to a given optimization problem.

One ant (either a real or an artificial one) can find a solution to its problem, but
only cooperation among many individual ants through stigmergy enables them to
find good solutions [12]. In real ants stigmergic communication happens via the
pheromone that ants deposit on the ground. Artificial ants live in a virtual world,
hence they only modify numeric values (called for analogy artificial pheromones)
associated with problem states they visit while building solutions to the optimiza-
tion problem. Real ants simply walk, choosing a direction based on local pheromone
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concentrations and a stochastic decision policy. Artificial ants also create solutions
step by step, moving through available problem states and making stochastic deci-
sions at each step.

The ACO metaheuristics has an initialization step and then a loop over three
basic components. In one iteration of the loop, there are steps to construct the
solution by all ants, improve (optional) the solutions with local search also and then
an update of the pheromones.

Algorithm for ant colony optimization metaheuristic

In the next section ACO is explained using travelling salesman problem example.

3.1 Example: the traveling salesman problem

Travelling salesman problem (TSP) can be easily applied to the Ant colony
optimization. In this problem, there are a set of locations (cities) where the travel-
ling salesman has to visit. The key constraints are to visit each location and visit only
once. The distance between cities (locations) are given and the objective is to find
the shortest distance between them.

In the example below, there are four cities, c1, c2, c3 and c4. The lengths of the
edges between vertices is proportional to the distance between cities i.e. c13 is the
distance between city 1 and city 3.

Set initial values and initialize pheromone trails

while

termination conditions not met do

Construct Ant Solutions

Apply Local Search {optional}

Update Pheromones

end while
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The pheromone is associated with the edges of the graph. Each ant starts from a
randomly selected city and then at each construction step it moves along the edges
of the graph. An ant chooses probabilistically the edge to follow among the available
ones (those that lead to yet unvisited vertices).

3.1.1 Sample equation for implementation

p cijjspð Þ ¼ λαij � η cij
� �β

P
cij∈N spð Þ

λαij � η cij
� �βc

,∀cij ∈N spð Þ: (1)

where pheromone value associated with the component cij is λij. Function that assigns
at each construction step a heuristic value to each feasible solution component cij∈ N(sp)
is η(�) which is commonly called heuristic information. Positive parameters, whose values
determine the relative importance of pheromone versus heuristic information are α and β.

The solution is constructed once the ant has visited all the vertices of the graph. When
all the ants have constructed the solutions by visiting the vertices of the graph, pheromone
levels on the edges are updated positively for good solutions and reduced for the bad
solutions. The update function, typically does two things one is to increase the pheromone
values for set of good solutions and second is to reduce the pheromone value by
implementing an evaporation function. This helps to avoid rapid convergence of the
algorithm and helps in the exploration of new areas.

3.1.2 Sample equation for pheromone update

λij  1� ρð Þτij þ ρ
X

s∈ Supd∣cij ∈ s

F sð Þ (2)

where set of solution that are used for update are Supd , the parameter that is called for
evaporation rate is ρ ∈ (0,1], and F : S! R+0 a function such that f(s) < f(s0) => F(s)
≥ F(s0),∀s 6¼ s0 ∈ S. F(�) is commonly called the fitness function.

Ant colony optimization has been shown to perform quite well on the TSP [13].

3.2 Other applications of ACO: Scheduling problems

ACO has been used for many applications including scheduling problem, vehicle
routing problem, assignment problem, set problem, device sizing problem in
nanoelectronics physical design, antennas optimization and synthesis, image
processing. In this chapter our focus is on the scheduling problems.

In scheduling problems, jobs have to be processed on one or many machines
such that some objective function is optimized. For these problems the following is
true (a) the processing time of jobs is known beforehand and (b) processes of jobs
cannot be interrupted. Typically the construction graph for scheduling problems is
represented by the set of jobs (for single-machine problems). Some of the key
research papers published for scheduling problems are:

• Group-shop scheduling problem (GSP) [14]

• Sequential ordering problem (SOP) [15]

• Job-shop scheduling problem (JSP) [16]
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• Multistage flowshop scheduling problem (MFSP) with sequence dependent
setup/changeover times [17]

• Permutation flow shop problem (PFSP) [18]

• Open-shop scheduling problem (OSP) [19, 20]

• Single-machine total tardiness problem with sequence dependent setup times
(SMTTPDST) [21]

• Single machine total tardiness problem (SMTTP) [22]

• Resource-constrained project scheduling problem (RCPSP) [23]

• Single machine total weighted tardiness problem (SMTWTP) [24–26]

Out of the above scheduling applications, the SMTWTP has the best application
for our maintenance schedule. In the subsequent sections, SMTWTP is described in
greater detail for developing the optimal schedule for maintenance of mining
equipment’s.

4. Maintenance solution framework

The optimized maintenance scheduling framework is recommended to be built
using ant colony optimization model using structured content found in a typical
maintenance ecosystem.

The first step is to predict the failure based on survival analysis, with certain
confidence level before its occurrence. The next step is to combine the predictive
maintenance and preventative maintenance schedule using optimization model.
This optimization model determines which equipment should be assigned to which
day in the maintenance workshop bay for minimizing waiting time, maximizing
production and ultimately increase the availability.

In the solution framework, two types of maintenance activities are considered:
first preventive maintenance which is based on the recommendation of OEM. The
second maintenance is predictive maintenance which is based on probabilistic fail-
ure. The next section will cover the derivation of predictive maintenance schedule.

4.1 Predictive maintenance schedule

The predictive maintenance schedule is derived from Cox regression model
which gives survival probability distribution function. The Cox regression model is
shown in below
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H tð Þ ¼ H0 tð Þ exp β1Y1þ β2Y2þ⋯þ βnYnð (3)

Where the expected hazard is H(t) at time t, the baseline hazard is H0(t) and it
represents the hazard when all of the independent variables) Y1,Y2,...Yn when they
are equal to zero. Based on the collected data the model estimates β1,β2,...βn.

The expected hazard function increases as the days progress. This function is
converted to survival days and remaining useful life (RUL). RUL is defined as the
duration left for the occurrence of breakdown based on the probability threshold of
failure i.e. how many days when the cumulative probability falls below 60%. The
RUL has been extensively used in calculating the reliability-based research in the
mine system to derive the occurrence of the failure, so the appropriate action can be
taken proactively

This survival data (predictive failure day) is used in combination with the
preventive maintenance, production schedule and other constraints to optimizing
the maintenance schedule.

4.2 Optimization of maintenance schedule

The optimization of maintenance schedule requires to determine the optimal
maintenance day for each truck in a time horizon so that the maintenance time,
production loss is minimised while meeting the preventative maintenance schedule
requirements and minimizing the probability of failure (predictive maintenance –
survival days). In the above sections we discussed on the application of ACO in the
context of SMTWTP.

In order to formulate the problem using SMTWTP, it is assumed that there is
one workshop and it has one bay for carrying out maintenance activities (single
machine). One truck is represented as one job and a fleet has n trucks which need to
be scheduled for maintenance. Based on historical analysis, the time for each job i.e.
time for carrying out maintenance activities is available (processing time pj). The
due date (dj) of processing is provided by the preventive maintenance schedule for
each job (truck). The completion time of job j is defined as Cj. The earliness of job is
defined as Ej, if the job is completed early and the tardiness of job is defined as Tj, if
the job is completed late. The probability of failure (fj) at Cj is provided by the
predictive maintenance schedule (RUL). The cost functions (w) for earliness and
lateness take the probability of failure (fj) into consideration.
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The objective is to find the truck fleet maintenance scheduling sequence that
minimizes the function as below.

1∣d j∣
X

w
_ j
E j þ �w jT j (4)

where
d j – due date of job (preventative maintenance scheduled day for truck)
w
_ j

– unit cost of earliness i.e. cost of maintenance too early based

E j = max{0,dj�Cj}; earliness of job
T j = max{0,Cj�dj}; tardiness of job
�w j – unit cost of tardiness i.e. cost of lost production if failure before mainte-

nance (fj)
N = {1,...,n}; n trucks (jobs) have to be sequentially processed (1 job = 1 truck

maintenance activities) at workshop (1 bay)
This function can be modelled to minimizes the total weighted earliness

tardiness (z) as below

z ¼ min
X
j∈N

w
_ j
E j þ �w jT j (5)

Mainly there are three key requirements of the ACO algorithm.

• A construction graph – The construction graph consist of C components for the
n jobs that need to be assigned at the optimal positions. In the graph each
points is connected by L arcs.

• Problem constraints – The main constraint is that all the jobs have to be
scheduled and scheduled only once.

• Update pheromone trails – This refer to the attractiveness of scheduling or
assigning the job j to position i.

Applying the ACO algorithm, in the initialization step, a colony A of m ants is
generated, where each ant corresponds to a random feasible solution. The next is
the iterative step where the acquired knowledge (pheromone level) is fetched and
job assignment attractiveness is calculated. Next the ant generations are merged and
only the best ants are retained for the optimal solution. Lastly pheromone evapora-
tion and deposit are updated and the process continues till the maximum number of
Generations are reached.

ACO pseudo code
Input parameters

• N, is a set of n trucks (jobs that need to be processed in workshop)

• C, the number of colonies

• n, the number of ants in the colony (i.e. size)

Output solution
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• A (near) global optimum S* of cost za ∗

Steps

1. Setup

1. Initialize the generation counter g=0

2.Create an initial colony A of size n

3. Set the best solution S* to the ant a ∈ A with the least weighted earliness tardiness

4. Initialize the pheromone level ρ(0) using a subset of the colony A, and set ρ(1) =ρ (0)

2.Loop Step

1.Set g=g+1

2.Build colony of ants while taking into account for knowledge acquiredρ (g) and
attractivenessη (g), and apply a dynamic visibility function

3.Merge colonies of generations g and (g�1), and retain the best n ants

4.Update optimal solution S*

5.Update the pheromone level ρ(g+1) by accounting for the evaporation and deposit

3. Stopping Criterion

1. If g<C, then go-to Step 2.

At the end of step 2.3 to further enhance quality of the solution i.e. the retained n
ants and speed up the convergence towards near optimal solution, a local search
criteria can be applied. Hybrid approaches with local search criterial include beam
search [20], scatter search, tabu search [27], threshold accepting [28], and
neighbourhood search [29]. These search criteria help to efficiently guide the ants
movements towards global optima. In the paper by M’Hallah and Alhajraf [30] ant
colony systems for the single-machine total weighted earliness tardiness scheduling
problem, they provide empirical evidence of using variable neighbourhood search
(VNS) to improve the overall quality of the retained ants and converge towards a
near global optimum.

By applying ACO to SMTWTP, the total cost for early or late maintenance is
reduced by optimally assigning the truck to the workshop for maintenance activities
based on the preventive maintenance schedule and predicted maintenance (RUL).

5. Conclusion

In this chapter, the importance of optimally planning maintenance activities for
mining organization was discussed. A solution framework for optimizing the pre-
ventive maintenance, predictive maintenance and production schedule was pro-
posed using ant colony optimization. Many mining organization can benefit by
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using this solution framework to reduce the overall maintenance costs and
production losses.

As mining companies adopt and implement Industry 4.0, this maintenance
solution framework has the potential to evolve beyond maintenance schedules to
allocation of ore to customer demand, planning truck routing, and even to mine
planning. ACO as part of the wider Swarm intelligence algorithms presents the
capacity to achieve Industry 4.0 vision, where individual machines cooperate
through self-organization, that is, without any form of central control to achieve the
organization KPIs.
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