2,194 research outputs found

    Experimental harvesting of fish populations drives genetically based shifts in body size and maturation

    Get PDF
    Size-selective harvesting in commercial fisheries can induce rapid changes in biological traits. While experimental and wild harvested populations often exhibit clear shifts in body size and maturation associated with fishing pressure, the relative contributions of genetic and environmental factors to these shifts remain uncertain and have been much debated. To date, observations of so-called fisheries-induced evolution (FIE) have been based solely on phenotypic measures, such as size data. Genetic data are hitherto lacking. Here, we quantify genetic versus environmental change in response to size-selective harvesting for small and large body size in guppies (Poecilia reticulata) across three generations of selection. We document for the first time significant changes at individual genetic loci, some of which have previously been associated with body size. In contrast, variation at neutral microsatellite markers was unaffected by selection, providing direct genetic evidence for rapid evolution induced by size-selective harvesting. These findings demonstrate FIE in an experimental system, with major implications for the sustainability of harvested populations, as well as impacts on size-structured communities and ecosystem processes. These findings highlight the need for scientists and managers to reconsider the capacity of harvested stocks to adapt to, and recover from, harvesting and predation. © 2013 The Ecological Society of America

    MolabIS: A Labs Backbone for Storing, Managing and Evaluating Molecular Genetics Data

    Get PDF
    Using paper lab books and spreadsheets to store and manage growing datasets in a file system is inefficient, time consuming and error-prone. Therefore, the overall purpose of this study is to develop an integrated information system for small laboratories conducting Sanger sequencing and microsatellite genotyping projects. To address this, the thesis has investigated the following three issues. First, we proposed a uniform solution using the workflow approach to efficiently collect and store data items in different labs. The outcome is the design of the formalized data framework which is the basic to create a general data model for biodiversity studies. Second, we designed and implemented a web-based information system (MolabIS) allowing lab people to store all original data at each step of their workflow. MolabIS provides essential tools to import, store, organize, search, modify, report and export relevant data. Finally, we conducted a case study to evaluate the performance of MolabIS with typical operations in a production mode. Consequently, we can propose the use of virtual appliance as an efficient solution for the deployment of complex open-source information systems like MolabIS. The major result of this study, along with the publications, is the MolabIS software which is freely released under GPL license at http://www.molabis.org. With its general data model, easy installation process and additional tools for data migration, MolabIS can be used in a wide range of molecular genetics labs

    The characterisation of microsatellite markers reveals tetraploidy in the Greater Water Parsnip, Sium latifolium (Apiaceae).

    Get PDF
    BACKGROUND: The Greater Water Parsnip, Sium latifolium (Apiaceae), is a marginal aquatic perennial currently endangered in England and consequently the focus of a number of conservation translocation projects. Microsatellite markers were developed for S. latifolium to facilitate comparison of genetic diversity and composition between natural and introduced populations. RESULTS: We selected 65 S. latifolium microsatellite (MiSeq) sequences and designed primer pairs for these. Primer sets were tested in 32 individuals. We found 15 polymorphic loci that amplified consistently. For the selected 15 loci, the number of alleles per locus ranged from 8 to 17. For all loci, S. latifolium individuals displayed up to four alleles indicating polyploidy in this species. CONCLUSIONS: These are the first microsatellite loci developed for S. latifolium and each individual displayed 1-4 alleles per locus, suggesting polyploidy in this species. These markers provide a valuable resource in evaluating the population genetic composition of this endangered species and thus will be useful for guiding conservation and future translocations of the species

    Genetic Basis of Self-Incompatibility in the Lichen-Forming Fungus Lobaria pulmonaria and Skewed Frequency Distribution of Mating-Type Idiomorphs: Implications for Conservation

    Get PDF
    Fungal populations that reproduce sexually are likely to be genetically more diverse and have a higher adaptive potential than asexually reproducing populations. Mating systems of fungal species can be self-incompatible, requiring the presence of isolates of different mating-type genes for sexual reproduction to occur, or self-compatible, requiring only one. Understanding the distribution of mating-type genes in populations can help to assess the potential of self-incompatible species to reproduce sexually. In the locally threatened epiphytic lichen-forming fungus Lobaria pulmonaria (L.) Hoffm., low frequency of sexual reproduction is likely to limit the potential of populations to adapt to changing environmental conditions. Our study provides direct evidence of self-incompatibility (heterothallism) in L. pulmonaria. It can thus be hypothesized that sexual reproduction in small populations might be limited by an unbalanced distribution of mating-type genes. We therefore assessed neutral genetic diversity (using microsatellites) and mating-type ratio in 27 lichen populations (933 individuals). We found significant differences in the frequency of the two mating types in 13 populations, indicating a lower likelihood of sexual reproduction in these populations. This suggests that conservation translocation activities aiming at maximizing genetic heterogeneity in threatened and declining populations should take into account not only presence of fruiting bodies in transplanted individuals, but also the identity and balanced representation of mating-type genes

    Comparing RADseq and microsatellites for estimating genetic diversity and relatedness - Implications for brown trout conservation

    Get PDF
    The conservation and management of endangered species requires information on their genetic diversity, relatedness and population structure. The main genetic markers applied for these questions are microsatellites and single nucleotide polymorphisms (SNPs), the latter of which remain the more resource demanding approach in most cases. Here, we compare the performance of two approaches, SNPs obtained by restriction-site-associated DNA sequencing (RADseq) and 16 DNA microsatellite loci, for estimating genetic diversity, relatedness and genetic differentiation of three, small, geographically close wild brown trout (Salmo trutta) populations and a regionally used hatchery strain. The genetic differentiation, quantified as F-ST, was similar when measured using 16 microsatellites and 4,876 SNPs. Based on both marker types, each brown trout population represented a distinct gene pool with a low level of interbreeding. Analysis of SNPs identified half- and full-siblings with a higher probability than the analysis based on microsatellites, and SNPs outperformed microsatellites in estimating individual-level multilocus heterozygosity. Overall, the results indicated that moderately polymorphic microsatellites and SNPs from RADseq agreed on estimates of population genetic structure in moderately diverged, small populations, but RADseq outperformed microsatellites for applications that required individual-level genotype information, such as quantifying relatedness and individual-level heterozygosity. The results can be applied to other small populations with low or moderate levels of genetic diversity.Peer reviewe

    Populations genetically rifting within a complex geological system: the case of strong structure and low genetic diversity in the migratory freshwater catfish, Bagrus docmak, in East Africa

    Get PDF
    The complex geological history of East Africa has been a driving factor in the rapid evolution of teleost biodiversity. While there is some understanding of how macroevolutionary drivers have shaped teleost speciation in East Africa, there is a paucity of research into how the same biogeographical factors have affected microevolutionary processes within lakes and rivers. To address this deficiency, population genetic diversity, demography, and structure were investigated in a widely distributed and migratory (potamodromous) African teleost species, Ssemutundu (Bagrus docmak). Samples were acquired from five geographical locations in East Africa within two major drainage basins; the Albertine Rift and Lake Victoria Basin. Individuals (N = 175) were genotyped at 12 microsatellite loci and 93 individuals sequenced at the mitochondrial DNA control region. Results suggested populations from Lakes Edward and Victoria had undergone a severe historic bottleneck resulting in very low nucleotide diversity (π = 0.004 and 0.006, respectively) and negatively significant Fu values (−3.769 and −5.049; p < .05). Heterozygosity deficiencies and restricted effective population size (NeLD) suggested contemporary exposure of these populations to stress, consistent with reports of the species decline in the East African Region. High genetic structuring between drainages was detected at both historical (ɸST = 0.62 for mtDNA; p < .001) and contemporary (microsatellite FST = 0.460; p < .001) levels. Patterns of low genetic diversity and strong population structure revealed are consistent with speciation patterns that have been linked to the complex biogeography of East Africa, suggesting that these biogeographical features have operated as both macro- and micro-evolutionary forces in the formation of the East African teleost fauna

    Developments in Next-Generation Sequencing and Bioinformatics for Ecological Genetics

    Get PDF
    This thesis investigates the applications of next-generation sequencing to ecological studies by interrogating the power of high-throughput sequence data and developing resources to better understand the capabilities and limitations. In Chapter two, I use microsatellite detection methods to develop new markers for Raja undulata and show that after the production of the first captive generation, this small population shows no evidence of inbreeding depression or effects of genetic clustering by aquarium. I demonstrate the population has retained high genetic diversity throughout and highlight the importance of genetic management of ex situ populations. In Chapter three, I develop a novel in silico microsatellite marker design method. This new method allows the automated removal of markers likely to show elevated rates of null alleles, allelic dropout or cryptic fragment length altering mutations which invalidate the assumptions of mutation at a microsatellite locus. Furthermore, the method enables the automatic selection of likely polymorphic loci, thus removing many of the inefficiencies of marker design. In Chapter four, I perform parallel microsatellite and single nucleotide polymorphism (SNP) analysis to compare the application and relative power of each marker type in the analysis of the population structure of the larval dispersing decapod, (Homarus gammarus). Neither marker detects any genetic structuring in the fisheries of the UK and Ireland implying that genetic mixing is extremely high. SNP analysis is the preferred method due to quicker generation of data and results. In Chapter five, I conduct an investigation into the biases involved when selecting a metabarcoding marker for analysis of plant communities in mixed pollen samples collected from honey bee hives. I find high rates of false-positive identifications and 8 highly contrasting descriptions of plant communities, indicating low confidence in the data generated by each individual marker. I conclude that for plant metabarcoding, multiple parallel markers are required to improve confidence in individual taxa calls, and to broaden the detection range; important where highly cultivated gardens are accessed as well as the native flora. Finally, I conclude the thesis with a general discussion of the methods and findings of the previous chapters and discuss the merits and drawbacks of the methods employed

    Conservation Genetics for Management of Threatened Plant and Animal Species

    Get PDF
    This book focuses on conservation genetic (and genomic) papers that demonstrate applied outcomes that inform practical threatened species management. We cover a broad range of species and genetic approaches, but focus on how conservation genetic information is used to underpin management actions for species recovery. Through the exposition of a diversity of approaches, we aim to demonstrate to conservation managers and researchers how conservation genetics can inform on-ground species management

    Evaluation of Population Structure and the Interspecific Relationship of Striped Marlin (Kajikia Audax) and White Marlin (K. Albida) Based on Traditional or Genome-Wide Molecular Markers

    Get PDF
    The istiophorid billfishes (marlins, spearfishes, and sailfish) are highly migratory pelagic fishes exhibiting broad and continuous spatial distributions in the Atlantic, Pacific, and Indian oceans. These species are targeted by a number of recreational, commercial, artisanal, and subsistence fisheries worldwide, and are also caught as bycatch in pelagic longline fisheries targeting tunas and swordfish. Though stock assessments have not been conducted for all istiophorids, assessments available for some species indicate that many istiophorid stocks are overfished and/or experiencing overfishing. However, the development of stock-specific recovery efforts is often impeded by a lack of information on basic species biology, including stock structure. The species status of some istiophorids is also uncertain, further complicating management efforts as well as strategies to conserve genetic diversity characteristic of distinct evolutionary lineages. In this dissertation, a molecular approach is used to address questions currently contributing uncertainty to the conservation and management of two istiophorid billfishes, white marlin (Kajikia albida) and striped marlin (K. audax). These closely related sister species are distributed in the Atlantic and Indo-Pacific oceans, respectively. Previous assessment of genetic population structure for white marlin based on mitochondrial (mt) DNA and five nuclear microsatellite markers suggested the possibility of population structuring for this species; however, results from the evaluation of mtDNA and 24 microsatellites across a larger number of samples, including a collection of larvae, are consistent with the presence of a single genetic stock (Chapter II). This result highlights the importance of analyses based on large numbers of molecular markers and samples, as well as a biologically informed sampling design, for studies of population structure in highly migratory pelagic species. Compared to the apparent lack of genetic population structure for white marlin, analysis of nearly 4,000 single nucleotide polymorphism (SNP) molecular markers across collections of striped marlin from the Pacific and, for the first time, Indian oceans resolved multiple genetically distinct populations (Chapter III). These populations correspond with striped marlin sampled from the western Indian Ocean, Oceania, North Pacific Ocean, and eastern central Pacific Ocean. Results from individual-based cluster analyses also suggest the presence of a second genetically distinct population in the North Pacific Ocean. Comparisons of replicate sample collections for some regions demonstrate the stability of allele frequencies across multiple generations. Finally, the uncertain species status of striped marlin and white marlin was evaluated using over 12,000 genome-wide SNPs surveyed across large numbers of exemplars per species (white marlin: n = 75, striped marlin: n = 250; Chapter IV). Results from individual-based cluster and maximum likelihood phylogenetic analyses suggest the presence of distinct evolutionary lineages for striped marlin and white marlin. This result is consistent with levels of genetic differentiation between striped marlin and white marlin which are an order of magnitude higher than those calculated between populations of striped marlin. Collectively, results of this dissertation provide practical insights for improving the conservation and management of white marlin and striped marlin, including revised stock structures which should be recognized in assessment and management plans for striped marlin. Future genomic studies should focus on addressing uncertainties regarding rangewide stock structure and species relationships for other istiophorids. Additionally, studies which continue to improve the genomic resources available for istiophorid billfishes and other large pelagic fishes may ultimately facilitate the evaluation of questions previously unexplored for the pelagic marine environment, such as localized adaptation and speciation
    • …
    corecore