194 research outputs found

    Ultra Local Nonlinear Unknown Input Observers for Robust Fault Reconstruction

    Get PDF
    In this paper, we present a methodology for actuator and sensor fault estimation in nonlinear systems. The method consists in augmenting the system dynamics with an approximated ultra-local model (a finite chain of integrators) for the fault vector and constructing a Nonlinear Unknown Input Observer (NUIO) for the augmented dynamics. Then, fault reconstruction is reformulated as a robust state estimation problem in the augmented state (true state plus fault-related state). We provide sufficient conditions that guarantee the existence of the observer and stability of the estimation error dynamics (asymptotic stability of the origin in the absence of faults and ISS guarantees in the faulty case). Then, we cast the synthesis of observer gains as a semidefinite program where we minimize the L2-gain from the model mismatch induced by the approximated fault model to the fault estimation error. Finally, simulations are given to illustrate the performance of the proposed methodology

    Predictive control approaches to fault tolerant control of wind turbines

    Get PDF
    This thesis focuses on active fault tolerant control (AFTC) of wind turbine systems. Faults in wind turbine systems can be in the form of sensor faults, actuator faults, or component faults. These faults can occur in different locations, such as the wind speed sensor, the generator system, drive train system or pitch system. In this thesis, some AFTC schemes are proposed for wind turbine faults in the above locations. Model predictive control (MPC) is used in these schemes to design the wind turbine controller such that system constraints and dual control goals of the wind turbine are considered. In order to deal with the nonlinearity in the turbine model, MPC is combined with Takagi-Sugeno (T-S) fuzzy modelling. Different fault diagnosis methods are also proposed in different AFTC schemes to isolate or estimate wind turbine faults.The main contributions of the thesis are summarized as follows:A new effective wind speed (EWS) estimation method via least-squares support vector machines (LSSVM) is proposed. Measurements from the wind turbine rotor speed sensor and the generator speed sensor are utilized by LSSVM to estimate the EWS. Following the EWS estimation, a wind speed sensor fault isolation scheme via LSSVM is proposed.A robust predictive controller is designed to consider the EWS estimation error. This predictive controller serves as the baseline controller for the wind turbine system operating in the region below rated wind speed.T-S fuzzy MPC combining MPC and T-S fuzzy modelling is proposed to design the wind turbine controller. MPC can deal with wind turbine system constraints externally. On the other hand, T-S fuzzy modelling can approximate the nonlinear wind turbine system with a linear time varying (LTV) model such that controller design can be based on this LTV model. Therefore, the advantages of MPC and T-S fuzzy modelling are both preserved in the proposed T-S fuzzy MPC.A T-S fuzzy observer, based on online eigenvalue assignment, is proposed as the sensor fault isolation scheme for the wind turbine system. In this approach, the fuzzy observer is proposed to deal with the nonlinearity in the wind turbine system and estimate system states. Furthermore, the residual signal generated from this fuzzy observer is used to isolate the faulty sensor.A sensor fault diagnosis strategy utilizing both analytical and hardware redundancies is proposed for wind turbine systems. This approach is proposed due to the fact that in the real application scenario, both analytical and hardware redundancies of wind turbines are available for designing AFTC systems.An actuator fault estimation method based on moving horizon estimation (MHE) is proposed for wind turbine systems. The estimated fault by MHE is then compensated by a T-S fuzzy predictive controller. The fault estimation unit and the T-S fuzzy predictive controller are combined to form an AFTC scheme for wind turbine actuator faults

    Robust model-based fault estimation and fault-tolerant control : towards an integration

    Get PDF
    To maintain robustly acceptable system performance, fault estimation (FE) is adopted to reconstruct fault signals and a fault-tolerant control (FTC) controller is employed to compensate for the fault effects. The inevitably existing system and estimation uncertainties result in the so-called bi-directional robustness interactions defined in this work between the FE and FTC functions, which gives rise to an important and challenging yet open integrated FE/FTC design problem concerned in this thesis. An example of fault-tolerant wind turbine pitch control is provided as a practical motivation for integrated FE/FTC design.To achieve the integrated FE/FTC design for linear systems, two strategies are proposed. A H∞ optimization based approach is first proposed for linear systems with differentiable matched faults, using augmented state unknown input observer FE and adaptive sliding mode FTC. The integrated design is converted into an observer-based robust control problem solved via a single-step linear matrix inequality formulation.With the purpose of an integrated design with more freedom and also applicable for a range of general fault scenarios, a decoupling approach is further proposed. This approach can estimate and compensate unmatched non-differentiable faults and perturbations by combined adaptive sliding mode augmented state unknown input observer and backstepping FTC controller. The observer structure renders a recovery of the Separation Principle and allows great freedom for the FE/FTC designs.Integrated FE/FTC design strategies are also developed for Takagi-Sugeno fuzzy modelling nonlinear systems, Lipschitz nonlinear systems, and large-scale interconnected systems, based on extensions of the H∞ optimization approach for linear systems.Tutorial examples are used to illustrate the design strategies for each approach. Physical systems, a 3-DOF (degree-of-freedom) helicopter and a 3-machine power system, are used to provide further evaluation of the proposed integrated FE/FTC strategies. Future research on this subject is also outlined

    Wind Turbine Active Fault Tolerant Control Based on Backstepping Active Disturbance Rejection Control and a Neurofuzzy Detector

    Get PDF
    © 2023 The Author(s). Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Wind energy conversion systems have become an important part of renewable energy history due to their accessibility and cost-effectiveness. Offshore wind farms are seen as the future of wind energy, but they can be very expensive to maintain if faults occur. To achieve a reliable and consistent performance, modern wind turbines require advanced fault detection and diagnosis methods. The current research introduces a proposed active fault-tolerant control (AFTC) system that uses backstepping active disturbance rejection theory (BADRC) and an adaptive neurofuzzy system (ANFIS) detector in combination with principal component analysis (PCA) to compensate for system disturbances and maintain performance even when a generator actuator fault occurs. The simulation outcomes demonstrate that the suggested method successfully addresses the actuator generator torque failure problem by isolating the faulty actuator, providing a reliable and robust solution to prevent further damage. The neurofuzzy detector demonstrates outstanding performance in detecting false data in torque, achieving a precision of 90.20% for real data and 100%, for false data. With a recall of 100%, no false negatives were observed. The overall accuracy of 95.10% highlights the detector’s ability to reliably classify data as true or false. These findings underscore the robustness of the detector in detecting false data, ensuring the accuracy and reliability of the application presented. Overall, the study concludes that BADRC and ANFIS detection and isolation can improve the reliability of offshore wind farms and address the issue of actuator generator torque failure.Peer reviewe

    Observer-based Fault Detection and Isolation for Nonlinear Systems

    Get PDF

    Fault Tolerant Control Systems:a Development Method and Real-Life Case Study

    Get PDF

    Wind Turbine Reliability Improvement by Fault Tolerant Control

    Get PDF
    This thesis investigates wind turbine reliability improvement, utilizing model-based fault tolerant control, so that the wind turbine continues to operate satisfactorily with the same performance index in the presence of faults as in fault-free situations. Numerical simulations are conducted on the wind turbine bench mark model associated with the considered faults and comparison is made between the performance of the proposed controllers and industrial controllers illustrating the superiority of the proposed ones

    Fault detection and fault tolerant control in wind turbines

    Get PDF
    Renewable energy is an important sustainable energy in the world. Up to now, as an essential part of low emissions energy in a lot of countries, renewable energy has been important to the national energy security, and played a significant role in reducing carbon emissions. It comes from natural resources, such as wind, solar, rain, tides, biomass, and geothermal heat. Among them, wind energy is rapidly emerging as a low carbon, resource efficient, cost effective sustainable technology in the world. Due to the demand of higher power production installations with less environmental impacts, the continuous increase in size of wind turbines and the recently developed offshore (floating) technologies have led to new challenges in the wind turbine systems.Wind turbines (WTs) are complex systems with large flexible structures that work under very turbulent and unpredictable environmental conditions for a variable electrical grid. The maximization of wind energy conversion systems, load reduction strategies, mechanical fatigue minimization problems, costs per kilowatt hour reduction strategies, reliability matters, stability problems, and availability (sustainability) aspects demand the use of advanced (multivariable and multiobjective) cooperative control systems to regulate variables such as pitch, torque, power, rotor speed, power factors of every wind turbine, etc. Meanwhile, with increasing demands for efficiency and product quality and progressing integration of automatic control systems in high-cost and safety-critical processes, the fields of fault detection and isolation (FDI) and fault tolerant control (FTC) play an important role. This thesis covers the theoretical development and also the implementation of different FDI and FTC techniques in WTs. The purpose of wind turbine FDI systems is to detect and locate degradations and failures in the operation of WT components as early as possible, so that maintenance operations can be performed in due time (e.g., during time periods with low wind speed). Therefore, the number of costly corrective maintenance actions can be reduced and consequently the loss of wind power production due to maintenance operations is minimized. The objective of FTC is to design appropriate controllers such that the resulting closed-loop system can tolerate abnormal operations of specific control components and retain overall system stability with acceptable system performance. Different FDI and FTC contributions are presented in this thesis and published in different JCR-indexed journals and international conference proceedings. These contributions embrace a wide range of realistic WTs faults as well as different WTs types (onshore, fixed offshore, and floating). In the first main contribution, the normalized gradient method is used to estimate the pitch actuator parameters to be able to detect faults in it. In this case, an onshore WT is used for the simulations. Second contribution involves not only to detect faults but also to isolate them in the pitch actuator system. To achieve this, a discrete-time domain disturbance compensator with a controller to detect and isolate pitch actuator faults is designed. Third main contribution designs a super-twisting controller by using feedback of the fore-aft and side-to-side acceleration signals of the WT tower to provide fault tolerance capabilities to the WT and improve the overall performance of the system. In this instance, a fixed-jacket offshore WT is used. Throughout the aforementioned research, it was observed that some faults induce to saturation of the control signal leading to system instability. To preclude that problem, the fourth contribution of this thesis designs a dynamic reference trajectory based on hysteresis. Finally, the fifth and last contribution is related to floating-barge WTs and the challenges that this WTs face. The performance of the proposed contributions are tested in simulations with the aero-elastic code FAST.La energía renovable es una energía sustentable importante en el mundo. Hasta ahora, como parte esencial de la energía de bajas emisiones en muchos países, la energía renovable ha sido importante para la seguridad energética nacional, y jugó un papel importante en la reducción de las emisiones de carbono. Proviene de recursos naturales, como el viento, la energía solar, la lluvia, las mareas, la biomasa y el calor geotérmico. Entre ellos, la energía eólica está emergiendo rápidamente como una tecnología sostenible de bajo carbono, eficiente en el uso de los recursos y rentable en el mundo. Debido a la demanda de instalaciones de producción de mayor potencia con menos impactos ambientales, el aumento continuo en el tamaño de las turbinas eólicas y las tecnologías offshore (flotantes) recientemente desarrolladas han llevado a nuevos desafíos en los sistemas de turbinas eólicas. Las turbinas eólicas son sistemas complejos con grandes estructuras flexibles que funcionan en condiciones ambientales muy turbulentas e impredecibles para una red eléctrica variable. La maximización de los sistemas de conversión de energía eólica, los problemas de minimización de la fatiga mecánica, los costos por kilovatios-hora de estrategias de reducción, cuestiones de confiabilidad, problemas de estabilidad y disponibilidad (sostenibilidad) exigen el uso de sistemas avanzados de control cooperativo (multivariable y multiobjetivo) para regular variables tales como paso, par, potencia, velocidad del rotor, factores de potencia de cada aerogenerador, etc. Mientras tanto, con las crecientes demandas de eficiencia y calidad del producto y la progresiva integración de los sistemas de control automático en los procesos de alto costo y de seguridad crítica, los campos de detección y aislamiento de fallos (FDI) y control tolerante a fallos (FTC) juegan un papel importante. Esta tesis cubre el desarrollo teórico y también la implementación de diferentes técnicas de FDI y FTC en turbinas eólicas. El propósito de los sistemas FDI es detectar y ubicar las degradaciones y fallos en la operación de los componentes tan pronto como sea posible, de modo que las operaciones de mantenimiento puedan realizarse a su debido tiempo (por ejemplo, durante periodos con baja velocidad del viento). Por lo tanto, se puede reducir el número de costosas acciones de mantenimiento correctivo y, en consecuencia, se reduce al mínimo la pérdida de producción de energía eólica debido a las operaciones de mantenimiento. El objetivo de la FTC es diseñar controladores apropiados de modo que el sistema de bucle cerrado resultante pueda tolerar operaciones anormales de componentes de control específicos y retener la estabilidad general del sistema con un rendimiento aceptable del sistema. Diferentes contribuciones de FDI y FTC se presentan en esta tesis y se publican en diferentes revistas indexadas a JCR y en congresos internacionales. Estas contribuciones abarcan una amplia gama de fallos WTs realistas, así como diferentes tipos de turbinas (en tierra, en alta mar ancladas al fondo del mar y flotantes). El rendimiento de las contribuciones propuestas se prueba en simulaciones con el código aeroelástico FAST.Postprint (published version
    corecore