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SUMMARY

This paper presents a robust actuator fault reconstruction scheme for linear uncertain systems using sliding
mode observers. In existing work, fault reconstruction via sliding mode observers is limited to either linear
certain systems subject to unknown inputs, relative degree one systems or a specific class of relative degree
two systems. This paper presents a new method that is applicable to a wider class of systems with relative
degree higher than one, and can also be used for systems with more unknown inputs than outputs. The
method uses two sliding mode observers in cascade. Signals from the first observer are processed and used
to drive the second observer. Overall, this results in actuator fault reconstruction being feasible for a wider
class of systems than using existing methods. A simulation example verifies the claims made in this paper.
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1. INTRODUCTION

Fault detection and isolation (FDI) is an important area of research activity. A fault is deemed
to occur when the system being monitored is subject to an abnormal condition, such as
a malfunction [1]. The fundamental purpose of an FDI scheme is to generate an alarm when
a fault occurs (detection) and also to identify the nature and location of the fault (isolation).
Survey papers that give overviews of work in this area are available in [2–4]. The
most commonly used FDI methods are observer based where the measured plant output is
compared to the output of an observer designed from a model of the system, and the
discrepancy is used to form a residual [5–7]. Using this residual signal, a decision is made
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as to whether a fault condition is present and also an attempt is made to determine its
location.

A useful alternative to residual generation is fault reconstruction [8–10], which not only
detects and isolates the fault, but also provides an estimate of the fault so that its shape and
magnitude can be better understood and more precise corrective action can be taken.
However, a fault reconstruction scheme is usually designed about a model of the system.
This model usually does not perfectly represent the system, as certain dynamics are either
unknown or do not fit exactly into the framework of the model. These dynamics are
usually represented as a class of disturbances within the model [11]. The disturbances
corrupt the reconstruction, and could produce a non-zero reconstruction when there are no
faults, or worse, mask the effect of a fault, producing a ‘zero’ reconstruction in the presence of
faults. Therefore, the scheme needs to be designed so that the reconstruction is robust to
disturbances.

Edwards et al. [8, 9] used a sliding mode observer [12] to reconstruct faults, but there
was no explicit consideration of the disturbances. Tan and Edwards [13] built on the
work in [8, 9] and presented a design algorithm for the observer, using linear matrix in-
equalities (LMIs) [14], such that the L2 gain from the disturbances to the fault reconstruction is
minimized. Saif and Guan [10] aggregated the faults and disturbances to form a new
‘fault’ vector and used a linear observer to reconstruct the new ‘fault’ vector. One of the
necessary conditions in [8–10, 13] is that the transfer function from the faults to the output has a
relative degree of one. This limits the class of systems where the schemes [8–10, 13] are
applicable.

Recently, there have been developments in the area of fault reconstruction for systems with
relative degree greater than one. Floquet and Barbot [15] transformed the system into an ‘output
information’ form such that existing sliding mode observer techniques could be implemented
to perfectly estimate the states in finite time and reconstruct faults. However, their algorithm
does not consider disturbances (unless as in [10] the unknown inputs (faults) are augmented
with the disturbances). Furthermore, the class of systems for which the transformation is feasible
is not known, and it is not easy for the designer to immediately recognize whether the algorithm is
suitable for the system under consideration. Davila et al. [16] developed a second-order sliding mode
observer for nonlinear mechanical systems, i.e. second-order differential equations, arising from
Newton’s laws where only position (and not velocity) is measured. The work in [16] could be easily
extended to the case of robust fault reconstruction for actuator faults occurring in the acceleration
equation. However, it is applicable only to a limited class of systems as it requires that all position
signals are measurable.

This paper presents a robust fault reconstruction method for a class of systems whose
relative degree with respect to the fault is higher than one, relaxing the condition required by the
previous work [8, 9, 13]. The method in this paper essentially uses two sliding mode observers [12] in
cascade. Suitable processing of the equivalent output error injection in the first observer yields the
measurable output of a ‘fictitious’ system that is relative degree one. This means the robust fault
reconstruction method in [13] is applicable to the fictitious system and a second observer is
implemented on the fictitious system to generate a reconstruction of the fault that is robust to the
disturbances. This approach is applicable to a wider class of systems for which the methods in [8, 9, 13]
are not applicable. Furthermore, this paper considers robustness against disturbances (as opposed to
the method in [15]), and the scheme may be feasible for systems for which the method in [16] is not
applicable.
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This paper is organized as follows: Section 2 introduces the system and states the main
result, whilst Section 3 sets up the framework for the proposed method together with
existence conditions. An example to demonstrate the effectiveness of the scheme is
given in Section 4 and finally Section 5 makes some conclusions. The notation used throu-
ghout this paper is quite standard; in particular, jj:jj represents the Euclidean norm for
vectors and the induced spectral norm for matrices, whilst lð:Þ denotes the spectrum of a square
matrix.

2. PRELIMINARIES AND STATEMENT OF THE MAIN RESULT

Consider a system

’*xðtÞ ¼ *A *xðtÞ þ *BuðtÞ þ *Mf ðtÞ þ *Q*xðtÞ ð1Þ

yðtÞ ¼ *C *xðtÞ ð2Þ

where *x 2 R
*n; y 2 Rp; u 2 Rm are the states, outputs and inputs respectively, with *n5p: The

vector f 2 Rq is an unknown fault and *x 2 Rh is an unknown disturbance, which encapsulates all
nonlinearities and unknowns in the system [1]. Assume without loss of generality that rank
ð *MÞ ¼ q; rankð *QÞ ¼ h; rankð *CÞ ¼ p and suppose that rankð *C *MÞ ¼ r5q5p: Also assume that
ð *A; *CÞ is observable.

The objective is to reconstruct the fault f whilst being robust to *x: Edwards et al. [8, 9] have
reconstructed the fault f for the case when *x ¼ 0: Tan and Edwards [13] built on this early work
and presented a method that minimizes the L2 gain from *x to the fault reconstruction. In
[8, 9, 13], the fault reconstruction scheme is feasible if and only if the following conditions are
satisfied:

A1. rankð *C *MÞ ¼ rankð *MÞ ¼ q:
A2. The invariant zeros of ð *A; *M; *CÞ (if any) are stable.

Condition A1 implies that the system is relative degree one, and condition A2 implies that the
system is minimum phase. These conditions are also often assumed if unknown input observers
(UIOs) are employed for fault reconstruction [10, 17]. This paper proposes a method to robustly
reconstruct the fault when condition A1 is not satisfied.

Assume that the disturbance *x is piecewise continuous [10] such that

’*xðtÞ ¼ AO
*xðtÞ þ BOxðtÞ ð3Þ

where x 2 Rh and AO 2 Rh�h is stable and BO 2 Rh�h: This is not an unreasonable assump-
tion provided the frequency content of *x is known. If *x is known to be a signal in the
frequency region o15o5o2; then system (3) can be taken to be first-order filters with cut-off
frequency o2:

Theorem 1
For the case when A1 is not satisfied, i.e. r ¼ rankð *C *MÞ5rankð *MÞ ¼ q; then the fault f
can be reconstructed by the scheme given in Figure 1 such that the L2 gain from x to the fault
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reconstruction will be bounded if and only if

B1.

rank
*C *A *M *C *M

*C *M 0

" #
¼ rankð *C *MÞ þ rankð *MÞ

B2. The invariant zeros of ð *A; *M; *CÞ (if any) must be stable.

In the scheme in Figure 1 #f is the reconstruction of the fault f ; whilst v and %y are intermediate
signals that will be defined later.

Comparing Conditions B1 and A1, it is clear that B1 is less restrictive than A1, i.e. if A1 is
satisfied then B1 will also be satisfied, but the converse is not necessarily true. In the case when
A1 is satisfied, the method proposed in this paper is also applicable since #f can be calculated
directly from the output of the primary observer in Figure 1. In practice, however, the simpler
scheme in [13] would be used in preference.

The next section will provide a constructive proof of Theorem 1.

3. ROBUST FAULT RECONSTRUCTION

Firstly, four lemmas will be introduced to provide a canonical form which underpins the scheme
that will be developed. The first is concerned with the system in (1)–(2) and imposes specific
structures on the output and fault distribution matrices.

Lemma 1
There exist appropriately dimensioned non-singular linear transformations *x/T1 *x; f/T2f
such that the triple *A; *M; *C from (1) to (2) in the new co-ordinates are given by

*A ¼
*A1

*A2

*A3
*A4

" #
; *C ¼ ½0 *T �; *M ¼

*M1

*M2

" #
ð4Þ

where *A1 2 Rð
*n�pÞ�ð*n�pÞ; *M2 2 Rp�q and *T 2 Rp�p is orthogonal. Furthermore, the matrices

*M1; *M2 can be partitioned to have the form

*M1 ¼

$
q�r

$r

0 0

M11 0

" #
l *n� p� qþ r

l q� r
; *M2 ¼

$
q�r

$r

0 0

0 M22

" #
l p� r

l r
ð5Þ

where M11;M22 are invertible. In this co-ordinate system, f/T2f ¼ colðf1; f2Þ where f2 2 Rr:

Figure 1. Schematic diagram of the scheme proposed in this paper.

NEW RESULTS IN ROBUST FAULT RECONSTRUCTION 1297

Copyright # 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2007; 17:1294–1319

DOI: 10.1002/rnc



Proof
See Section A.1 in the Appendix.

In the co-ordinate system of (4)–(5), further partition *A and *Q (generally) as

*A ¼
*A1

*A2

*A3
*A4

" #
¼

*A11
*A12

*A13
*A14

*A21
*A22

*A23
*A24

*A31
*A32

*A33
*A34

*A41
*A42

*A43
*A44

2
6666664

3
7777775;

*Q ¼

*Q11

*Q12

*Q21

*Q22

2
6666664

3
7777775

l *n� p� qþ r

l q� r

l p� r

l r

ð6Þ

Now the system equations (1)–(2) and the uncertainty/disturbance model from (3) will be
augmented to form the system which will be studied in the remainder of the paper. Combine (1)–
(2) and (3) to obtain the following augmented system of order n :¼ *nþ h:

’*x

’*x

� �
|{z}

’x

¼
AO 0

*Q *A

� �
|fflffl{zfflffl}

A

*x

*x

� �
|{z}

x

þ
0

*B

h i
|{z}
B

uþ
0

*M

h i
|{z}
M

f þ
BO

0

h i
|ffl{zffl}

Q

x ð7Þ

y ¼ 0 *C½ �|ffl{zffl}
C

*x

*x

� �
|{z}

x

ð8Þ

Now expand the matrices in (7)–(8) as in (4)–(5) to obtain

A ¼

AO 0 0 0 0

*Q11
*A11

*A12
*A13

*A14

*Q12
*A21

*A22
*A23

*A24

*Q21
*A31

*A32
*A33

*A34

*Q22
*A41

*A42
*A43

*A44

2
6666666664

3
7777777775

l h

l n� p� qþ r� h

l q� r

l p� r

l r

ð9Þ

M ¼

0 0

0 0

M11 0

0 0

0 M22

2
666666664

3
777777775
; Q ¼

BO

0

0

0

0

2
666666664

3
777777775
; C ¼ ½0 *T � ð10Þ
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Lemma 2
The augmented pair ðA;CÞ from (7) to (8) is detectable.

Proof
See Section A.2 in the Appendix.

Lemma 3
Condition B1 from the statement of Theorem 1 is satisfied if and only if *A32 from (6) has full
column rank q� r:

Proof
See Section A.3 in the Appendix.

Define %p :¼ rank½ *Q21
*A31

*A32� þ r: It follows that %p� r4minfp� r; n� pg and therefore

%p4p: Since condition B1 implies that *A32 has full column rank, then %p� r5q� r which implies
that %p5q:

Lemma 4
There exists a non-singular linear change of co-ordinates such that x! T5x and the matrices
A;M;Q;C from (9) to (10) when partitioned have the structure

A ¼
A1 A2

A3 A4

" #
¼

A11 A12 A13 A14 A15

A21 A22 A23 A24 A25

A31 A32 A33 A34 A35

0 A42 A43 A44 A45

A51 A52 A53 A54 A55

2
666666664

3
777777775

l n� %pþ r� p

l %p� q

l q� r

l p� r

l r

ð11Þ

M ¼
M1

M2

" #
¼

0 0

0 0

M11 0

0 0

0 M22

2
666666664

3
777777775
; Q ¼

Q1

0

" #
¼

Q11

Q12

Q13

0

0

2
666666664

3
777777775
; C ¼ ½0 T � ð12Þ

where ½A42 A43� 2 Rðp�rÞ�ð%p�rÞ which can be further partitioned to have the form

$
%p�q

$
q�r

½A42 A43�

$
%p�q

$
q�r

¼
0 0

A0
42 A0

43

" #
l p� %p

l %p� r

ð13Þ

where ½A0
42 A0

43� is square and invertible and rankð *A32Þ ¼ rankðA0
43Þ: Furthermore the matrix

T 2 Rp�p from (12) is orthogonal.
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Proof
See Section A.4 in the Appendix.

The canonical form in (11)–(12) associated with Lemma 4 is the basis for the proof of
Theorem 1 which will be developed in the next section. Also, partition A3 2 Rp�ðn�pÞ from
(11) as

A3 ¼
A311

A312

" #
l p� %p

l %p� r
) A311 ¼ ½0 A42 A43�; A312 ¼ ½A51 A52 A53� ð14Þ

Assume that the unknown signals f ðtÞ; xðtÞ are norm bounded by known scalars a;b so that

jj f ðtÞjj5a; jjxðtÞjj5b

The remainder of this section develops a fault estimation scheme for f ðtÞ based on a pair of
sliding mode observers as illustrated in Figure 1.

3.1. A fault reconstruction scheme (Proof of Theorem 1)

A sliding mode observer [12] for system (7)–(8) (which fulfils the role of the primary observer in
Figure 1) is

’#xðtÞ ¼ A #xðtÞ þ BuðtÞ � GleyðtÞ þ Gn� ð15Þ

#yðtÞ ¼ C #xðtÞ ð16Þ

where #x 2 Rn is the estimate of the state x and ey ¼ #y� y is the output estimation error. The
matrices Gl ;Gn 2 Rn�p are observer gains that are to be designed. In particular, Gn has the
structure

Gn ¼
�LTT

TT

" #
P�10 ð17Þ

where P0 2 Rp�p is a symmetric positive definite (s.p.d.) matrix and L 2 Rðn�pÞ�p is such that
A1 þ LA3 is stable, where the pair ðA1;A3Þ is defined in (11). The matrix T is the orthogonal
sub-block from (12). The term � is a nonlinear discontinuous term defined by

�� r
ey

jjeyjj
; ey=0 ð18Þ

where r is a positive scalar.
Define e :¼ #x� x as the state estimation error, and combine (7), (8), (15) and (16) to obtain

the error system

’eðtÞ ¼ ðA� GlCÞeðtÞ þ Gn��Mf ðtÞ �QxðtÞ ð19Þ

Then, it can be shown that for an appropriate choice of Gl and for a large enough choice of r;
an ideal sliding motion takes place on S ¼ fe : Ce ¼ 0g in finite time. Furthermore, the sliding
motion dynamics are governed by the system matrix A1 þ LA3: Since from Lemma 2 the pair
ðA;CÞ is detectable, using the Popov–Hautus–Rosenbrock (PHR) test [18], it can be shown that
ðA1;A3Þ is detectable and so an L can always be found to make A1 þ LA3 stable. Details of the
design process will be given in Section 3.2.
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Introduce a new change of co-ordinates x/TLx where

TL ¼
In�p L

0 T

" #

Then, the matrices in (11)–(12) are transformed to be

TLAT
�1
L ¼

A1 þ LA3 *

TA3 *

" #
; TLM ¼

M1 þ LM2

TM2

" #
; CT�1L ¼ ½0 Ip� ð20Þ

TLQ ¼
Q1

0

" #
; TLGn ¼

0

P�10

" #
; TLx ¼

x1

y

" #
ð21Þ

where x1 2 Rn�p are the ‘non-output’ states, and ðnÞ are matrices that play no role in the analysis
that follows. Partition the error system (19) according to (20) and (21), and let e1 be the
estimation error of x1: Assume that an ideal sliding motion has taken place on S so that
ey ¼ ’ey ¼ 0 [8, 9, 12], then the error system (19) can be partitioned and re-arranged as

’e1ðtÞ ¼ ðA1 þ LA3Þe1ðtÞ � ðM1 þ LM2Þf ðtÞ �Q1xðtÞ ð22Þ

TTP�10 �eq ¼ �A3e1ðtÞ þM2f ðtÞ ð23Þ

where �eq is the equivalent output error injection required to maintain a sliding motion [8, 9] and
can be approximated to any degree of accuracy [8] by replacing � with

� ¼ �r
ey

jjeyjj þ d
ð24Þ

where d is a small positive scalar. As the term ey is a measurable signal, the signal �eq is
computable online. For full details, see [8, 9].

Define v in Figure 1 as v :¼ TTP�10 �eq and partition v ¼ colðv1; v2Þ where v2 2 Rr: The contents
of the scaling and filter block from Figure 1 will now be described to extract the signal %y from v:
Partition (23) conformably according to (14) as

v1ðtÞ ¼ �A311e1ðtÞ ð25Þ

v2ðtÞ ¼ �A312e1ðtÞ þM22f2ðtÞ ð26Þ

where f2 is a partition of f in Lemma 1. Then, define a matrix Z 2 Rð%p�rÞ�ðp�rÞ as Z ¼ ½0 I%p�r� and
multiply (25) by Z to get

%v1ðtÞ :¼ Zv1ðtÞ ¼ �ZA311e1ðtÞ ð27Þ

From (13) and the partitions of A311 in (14) it is clear that ZA311 ¼ ½0 A0
42 A0

43� which has full row
rank %p� r as deduced from Lemma 4.

Now low-pass filter v2 to produce vf according to

’vf ðtÞ ¼ �Af vf ðtÞ þ Af v2ðtÞ ¼ �Af vf ðtÞ � AfA312e1ðtÞ þ AfM22f2ðtÞ ð28Þ
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where �Af 2 Rr�r is a stable design matrix, and combine (22), (28) and (27) to get the following
system of order %n :¼ n� pþ r

’e1ðtÞ

’vf ðtÞ

" #
¼

A1 þ LA3 0

�AfA312 � Af

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

e1ðtÞ

vf ðtÞ

� �
|fflfflffl{zfflfflffl}

z

þ
�ðM1 þ LM2Þ

½0 AfM22�

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

M

f ðtÞ þ
�Q1

0

� �
|fflfflffl{zfflfflffl}

Q

xðtÞ ð29Þ

%v1ðtÞ

vf ðtÞ

� �
|fflfflffl{zfflfflffl}
%yðtÞ

¼
�ZA311 0

0 Ir

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

C

e1ðtÞ

vf ðtÞ

� �
|fflfflffl{zfflfflffl}

z

ð30Þ

Define a non-singular transformation matrix T 2 R%n�%n so that %x ¼Tz where

T ¼
I%n�r *LA�1f

0 Ir

" #

where *L represents the last r columns of L: Then, the matrices A;M;C;Q from (29) to (30) are
transformed ( %A ¼TAT�1; %M ¼TM; %C ¼ CT�1; %Q ¼TQ) to be

%A ¼

A11 * * *

A21 * * *

A31 * * *

�AfA51 * * *

2
666664

3
777775 ¼

$
%n�%p

$
%p

%A1 %A2

%A3 %A4

" #
l %n� %p

l %p

; %M ¼

0 0

0 0

�M11 0

0 AfM22

2
666664

3
777775 ¼

0

%M2

" #
ð31Þ

%C ¼
0 A0

42 A0
43 *

0 0 0 Ir

" #
¼ ½0 %T �; %Q ¼

Q11

Q12

Q13

0

2
666664

3
777775 ¼

%Q1

%Q2

" #
ð32Þ

where ðnÞ are terms that play no role in the subsequent analysis. Clearly, the matrix %T 2 R%p�%p is
invertible since ½A0

42 A0
43� is square and invertible. Define %M0 to be the bottom q rows of %M2;

therefore, %M0 is square and invertible. From (31) and (32) it is easy to verify

%C %M ¼
�A0

43M11 *

0 AfM22

" #

By construction, M11 and M22 are invertible, and from Lemma 4, rankðA0
43Þ ¼ rankð *A32Þ. It is

shown in Lemma 3 that condition B1 implies that rankð *A32Þ ¼ q� r and hence %C %M is full rank.
It is shown in Lemma 5 in Section A.5 in the Appendix that the invariant zeros of ð %A; %M; %CÞ are
given by the invariant zeros of the original system ð *A; *M; *CÞ from (1) to (2) together with lðAOÞ:
Since from B2 it is assumed that ð *A; *M; *CÞ has stable invariant zeros, the system ð %A; %M; %CÞ has
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stable invariant zeros. So by construction the system in (29)–(30) meets the necessary and
sufficient conditions of the reconstruction method in [13], if and only if conditions B1 and B2 are
satisfied.

Since the signal %y defined in (30) is measurable, the approach from [13] will be used to design
the secondary sliding mode observer from Figure 1 based on (29)–(30) to reconstruct the fault f
whilst being robust to x: From (31) and (32), note that %M22; %T are both invertible. Therefore, the
triple ð %A; %M; %CÞ is already in the co-ordinates in which the robustness analysis in [13] is carried
out, hence no further co-ordinate transformations are required.z The proposed observer
for system (29)–(30) (the secondary sliding mode observer in Figure 1) in the co-ordinates of
(31)–(32) is

’#%xðtÞ ¼ %A #%xðtÞ � %Gl %eyðtÞ þ %Gn%� ð33Þ

#%yðtÞ ¼ %C #%xðtÞ ð34Þ

where %ey :¼ #%y� %y: As before, the matrices %Gl ; %Gn 2 R%n�%p are observer gains to be designed, and
in particular, %Gn has the structure (in the co-ordinates of (31) and (32))

%Gn ¼
� %L %T�1

%T�1

" #
%P�10 ; %L ¼ ½ %L1 0� ð35Þ

where %P0 2 R%p�%p is a s.p.d. matrix, %L 2 Rð%n�%pÞ�%p and %L1 2 Rð%n�%pÞ�ð%p�qÞ: The term %� is a nonlinear
discontinuous term defined by

%� ¼ � %r
%ey

jj%eyjj
ð36Þ

where %r is a positive scalar.
For an appropriate choice of %Gl and a large enough choice of %r; it can be shown that an ideal

sliding motion takes place on %S ¼ f%e : %C%e ¼ 0g in finite time where %e :¼ #%x� %x: A detailed
discussion on the design aspects is given in Section 3.2.

Let the fault reconstruction #f in Figure 1 be defined as

#f ðtÞ :¼ %W %T�1 %P�10 %�eq ð37Þ

where %W :¼ ½ %W1 %M�10 � with %W1 2 Rq�ð%p�qÞ and %�eq is the equivalent output error injection
required to maintain the sliding motion. The term %�eq can be calculated online in the same way
that �eq in (24) is computed. When a sliding mode motion has taken place on %S; from [13] and
the definition of #f in (37), it can be shown that #f can be expressed as

#f ðtÞ ¼ f ðtÞ þ GðsÞxðtÞ where GðsÞ :¼ %W %A3ðsI � ð %A1 þ %L %A3ÞÞ
�1
ð %Q1 þ %L %Q2Þ þ %W %Q2 ð38Þ

Therefore, it is clear that #f will capture f as well as a dynamic function of x: The approach in
[13] seeks to minimize a measure of GðsÞ so that the effect of x on #f will be minimized. If there is
no uncertainty then %Q1 ¼ %Q2 ¼ 0 and so GðsÞ ¼ 0 and perfect reconstruction of f by #f is
obtained.

zHowever, there is a slight difference in that %T is invertible but not necessarily orthogonal as in [13]. This is of no major
consequence as will be shown in the proceeding analysis.
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3.2. Design of observers

This section discusses the design of the gains of the two observers from Figure 1. In this paper,
the observers will be designed using the LMI control toolbox [19], which is a commonly
available commercial software package.

For the design of the primary observer (15)–(16), Gl needs to be calculated such that the
following inequality is satisfied:

PðA� GlCÞ þ ðA� GlCÞ
TP50 ð39Þ

where P has the structure

P ¼
P1 P1L

LTP1 TTP0T þ LTP1L

" #
; P1 2 Rðn�pÞ�ðn�pÞ is s:p:d: ð40Þ

so that a stable sliding motion can take place on S: Then, the matrices L and P0 can be
calculated from P; and subsequently Gn can be calculated from (17).

Key observation: Note that GðsÞ in (38) is not affected by the elements of L because of the
structures of the partitions in (31)–(32). This means the transfer function GðsÞ is unaffected by
the design parameters of the primary observer, which therefore can be designed using any
method as long as P and Gl satisfy (39) and (40).

In this paper, the primary observer will be designed using the method in [20]. Define the
following decision variable:

PLMI ¼
P11 P12

PT
12 P22

" #
> 0

where P11 2 Rðn�pÞ�ðn�pÞ and P22 2 Rp�p are s.p.d. matrices. Note that PLMI has the same
structure as P in (40). Define another symmetric decision variable X 2 Rn�n: The algorithm in
[20] can be summarized as: minimize traceðXÞ subject to the following inequalities:

PLMIAþ ATPLMI � CTV�12 C PLMI

PLMI �V�11

" #
50 ð41Þ

�PLMI In

In �X

" #
50 ð42Þ

where V1 2 Rn�n;V2 2 Rp�p are s.p.d. weighting matrices to be chosen by the designer to tune
the observer gains. The LMI toolbox will return values for the decision variables PLMI and X ;
and the following observer parameters can be calculated:

Gl ¼ P�1LMIC
TV�12 ; L ¼ P�111 P12; P0 ¼ TTðP22 � PT

12P
�1
11 P12ÞT ð43Þ

and Gn can be calculated as in (17). The choice of Gl in (43) together with (41) ensures (39) is
satisfied. Then, choosing the scalar r from (18) as

r52jjP0TA3jjm1ðaþ bÞ=m0

where

m0 ¼ �lmaxðPðA� GlCÞ þ ðA� GlCÞ
TPÞ; m1 ¼ jjP½Q M�jj
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ensures the sliding surface S is reached in finite time and that a stable sliding mode is
maintained [13]. For full details about the observer design and its motivation, see [20].

Remark
The observer (15)–(17) is slightly different to the one in [12, 13], in that here the matrix L is
unconstrained. In [12, 13], the matrix L is forced to have a special structure. The observer (15)–
(16) in this paper treats all the unknown signals colðx; f Þ as an ‘unmatched’ disturbance, because
in general the distribution matrices M and Q are not matched to Gn; i.e. rank½Gn M Q� >
rankðGnÞ: As L is unconstrained, the observer (15)–(17) can be considered to be a modified
Utkin observer [21] with the additional term Gley:

The secondary observer in (33)–(34) is designed to satisfy

%Pð %A� %Gl %CÞ þ ð %A� %Gl %CÞ
T %P50 ð44Þ

where %P is s.p.d. and has the structure

%P ¼
%P1 %P1 %L

%LT %P1 %TT %P0 %T þ %LT %P1 %L

" #
ð45Þ

where %L is given in (35) in order to achieve a sliding motion on %S: In particular, the design
algorithm in [13] will be used, where the objective is to minimize the L2 gain of GðsÞ: The design
of the secondary observer is crucial to the quality of the reconstruction. Again an LMI method will
be used.

Define the following symmetric decision variable:

%PLMI ¼
%P11 %P12

%PT
12

%P22

" #
; %P12 ¼ ½ %P121 0�

where %P11 2 Rð%n�%pÞ�ð%n�%pÞ; %P22 2 R%p�%p; %P121 2 Rð%n�%pÞ�ð%p�qÞ: Also, define other decision variables %g 2
R and %W1 2 Rq�ð%p�qÞ: Note that the structure of %P12 causes %PLMI to have the same structure as %P
in (45).

The design in [13] can be summarized as follows: minimize %g subject to the following
inequalities:

%P11 %A1 þ %AT
1
%P11 þ %P12 %A3 þ %AT

3
%PT
12 * *

�ð %P11 %Q1 þ %P12 %Q2Þ
T

�%gIh *

� %W %A3 %W %Q2 �%gIq

2
664

3
77550 ð46Þ

%PLMI %Aþ %AT %PLMI � %g0 %CTð %Dd %D
T
d Þ
�1 %C * *

� %BT
d
%P �%g0I%pþh *

%E %H �%g0Iq

2
664

3
77550 ð47Þ

%PLMI > 0 ð48Þ
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where ðnÞ are terms that make (46)–(47) symmetric. The fixed matrices are %Bd :¼ ½0 %Q�; %Dd :¼
½ %D1 0� whilst %H ¼ ½0 %W %Q2� where %D1 2 R%p�%p and %g0 are user-specified parameters to tune the
gains %Gl ; %Gn: After the LMI solver returns the values of %W and %P; the gain %Gl can be calculated
as %Gl ¼ %g�10

%P�1LMI
%CTð %Dd %D

T
d Þ
�1 and %Gn as in (35). This algorithm ensures inequality (44) is satisfied

and the L2 gain from x to #f is bounded by %g: Then choosing the gain from (36) as

%r > 2jj %P0 %T %A3jj%m1b= %m0 þ jj %P0 %T %Q2jjbþ jj %P0 %T %M2jja

where

%m0 ¼ �lmaxð %Pð %A� %Gl %CÞ þ ð %A� %Gl %CÞ
T %PÞ; %m1 ¼ jj %P %Qjj

ensures a sliding motion of the secondary observer on %S: For full details, see [13]. The
secondary observer now treats the fault vector f as the matched fault (in the sense that its
distribution matrix is ‘matched’ to %Gn; i.e. rank½ %Gn %M� ¼ rankð %GnÞ) and x as the unmatched
disturbance.

Remark
The matrix in condition B1 is formed from Markov parameters and is system realization
independent. (It is also a sub-block of the Hankel matrix [22].) Intuitively, it is related to the
system ð *A; *M; *CÞ having relative degree two since for example if

*A ¼
0 1

0 0

" #
; *M ¼

0

1

" #
; *C ¼ ½1 0�

(i.e. a double integrator realization) then B1 is satisfied although *C *M ¼ 0:

3.3. Design algorithm summary

The design algorithm for the method in this paper can be summarized as follows:

1. Preliminary checks and co-ordinate transformations:

(a) Check that rankð *C *MÞ5rankð *MÞ: Otherwise, stop, and the existing methods of [13] for
example can be used. Then, ensure that Conditions B1 and B2 are satisfied. If not, the
method in this paper is not applicable.

(b) From the knowledge of the frequency of *x; select the matrices AO and BO:
(c) Find the co-ordinate transformations T1; T2; following the steps shown in the proof of

Lemma 1 in Section A.1 in the Appendix. Then, apply the co-ordinate transformation
to *A; *M; *C and *Q: The matrices *C and *M will then have the special structures shown in
(4) and (5) so that the analysis of the observer in (22)–(23) and (25)–(26) is simplified
without loss of generality.

(d) Use the matrices obtained in the previous step to form the matrices A;M;Q;C of the
augmented system in (7) and (8).

(e) Find the co-ordinate transformation T5; following the steps shown in the proof of
Lemma 4 in Section A.4 in the Appendix. Then, apply the co-ordinate transformation
to the matrices A;M;C and Q; which then have the structures in (11)–(13). Obtain the
partitions in Lemma 4 and Equation (14). The purpose of the co-ordinate
transformation T5 is to give the matrix A the special structure in (11) and (13) so
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that the analysis of the secondary observer in (31)–(32) can be simplified without loss
of generality.

2. Design observers

(a) Design the primary observer using the method in Section 3.2 (although in fact any
method of choice can be used). Full details of this design method are available in [20].
The design method will yield the gains Gl ;Gn;L and the matrix P0: Note that other
methods can be used to design the primary observer, as long as the designed
parameters satisfy (39).

(b) Define a stable matrix �Af as in (28). Then, obtain the matrices for the system in (29)–
(30), in particular A;M;Q and C:

(c) Perform the co-ordinate transformation T on A;M;Q;C to obtain %A; %M; %Q; %C as in
(31)–(32). The purpose of the co-ordinate transformation T is to make the system in
(29)–(30) have the canonical observer structure from [13] as described in (31)–(32).

(d) Design the secondary observer using the method in Section 3.2, in particular from (46)
to (48). Full details of this design method are available in [13]. This design method will
synthesize the gains %Gl ; %Gn; %W and also minimize the L2 gain from x to #f :

3. Implement the observers and generate the fault reconstruction as shown in Figure 1.

(a) Implement the primary observer (15)–(16) on the original system (1)–(2). The observer
will generate the signal v as in (24).

(b) Process the signal v as in (27)–(28) to generate the output %y:
(c) Implement the secondary observer (33)–(34) on the fictitious system (29)–(30), using the

(measurable) signal %y as the driving signal.
(d) Generate the fault reconstruction as in (37) from %�eq:

4. AN EXAMPLE

The method proposed in this paper will now be demonstrated by an example, which is a seventh-
order model of an aircraft [23]. In the notation of (1)–(2), the matrices that describe the system
are as follows:

*A ¼

0 0 1:0000 0 0 0 0

0 �0:1540 �0:0042 1:5400 0 �0:7440 �0:0320

0 0:2490 �1:0000 �5:2000 0 0:3370 �1:1200

0:0386 �0:9960 �0:0003 �2:1170 0 0:0200 0

0 0:5000 0 0 �4:0000 0 0

0 0 0 0 0 �20:0000 0

0 0 0 0 0 0 �25:0000

2
666666666666664

3
777777777777775

where the states are the bank angle, yaw rate, roll rate, sideslip angle, washed-out filter state,
rudder deflection, aileron deflection, and the inputs are the rudder command and the aileron
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command. Assume that the bank angle, yaw rate and sideslip angle are measurable, and that the
first actuator is faulty. Therefore, the matrices *C and *M are

*C ¼

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0

2
664

3
775; *M ¼

0

0

0

0

0

20

0

2
666666666666664

3
777777777777775

Suppose that the matrix *A is imprecisely known and that there exists parametric uncertainty.
Therefore, the state equation of the system becomes

’*x ¼ ð *Aþ D *AÞxþ *Buþ *Mf ð49Þ

where D *A is the discrepancy between the known matrix *A and its actual value. For simplicity let
u � 0: Note that the first, fifth, sixth and seventh rows of the matrix *A do not contain any
uncertainty due to the nature of the state equations. Hence, any parametric uncertainty will
appear in the second, third and fourth rows of *A: Let the actual value of the system matrix be

*Aþ D *A ¼

0 0 1:0000 0 0 0 0

0 �0:1600 �0:0042 1:6600 0 �0:7440 �0:0500

0 0:2490 �1:0000 �5:1600 0 0:4000 �1:2400

0:0386 �0:9960 �0:0003 �2:2300 0 0:0230 0

0 0:5000 0 0 �4:0000 0 0

0 0 0 0 0 �20:0000 0

0 0 0 0 0 0 �25:0000

2
666666666666664

3
777777777777775

Equation (49) can be placed in the same framework as (1) by writing

4 *A *x ¼ *Q*x ¼

0 0 0

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

2
666664

3
777775

|fflfflfflfflffl{zfflfflfflfflffl}
*Q

0 �0:0060 0 0:1200 0 0 �0:0180

0 0 0 0:0400 0 0:0630 �0:1200
0 0 0 �0:1130 0 0:0030 0

� �
*x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

*x

The disturbance *x will be generated by the states *x; which is in turn generated by the fault f :
Assuming f is bounded, then *x and *x will also be bounded since *Aþ4 *A is stable. Note that the
method in [15] cannot be used on this system as there is no consideration of the disturbance *x: If
the signals f and *x are augmented to form a new ‘fault’ vector, as in [10], this would result in the
new ‘fault’ having four components. The number of outputs in this system is only three, resulting in a
‘more faults than outputs’ scenario, and hence the method in [15] would still be not applicable.
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The FDI literature based on UIOs is also not applicable here (because assumptions A1 and A2 are
typically required [10, 24–26]). Note that all faults and disturbances appear in states 2, 3, 4 and 6. For
the method in [16] to be applicable, the integral of the states 2, 3, 4 and 6 would need to be measurable,
which means that the yaw and roll angles need to be measurable, together with the integrals of the
sideslip angle and rudder deflection. In this system, of the four states, only the sideslip angle is
measured. The rest are not measured and hence the method in [16] is not applicable for this system.
Also note that *C *M ¼ 0) r ¼ 05q; and hence the existing sliding mode methods [8, 13] cannot be
used to reconstruct the fault.

4.1. Observer design

It can be easily verified that conditions B1 and B2 are satisfied. Hence, the method proposed in
this paper can be used.

The disturbance *x is assumed to have a frequency content o510 rad=s; and therefore the filter
(3) will have the Bode plot as shown in Figure 2, resulting in AO ¼ �10I3;BO ¼ 10I3:

Performing the co-ordinate transformation in Lemma 1 yields the following matrices:

T1 ¼

0 0 0 0 0 0 1

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 �1 0

0 0 0 1 0 0 0

0 1 0 0 0 0 0

1 0 0 0 0 0 0

2
666666666666664

3
777777777777775
; T2 ¼ 1; *T ¼

0 0 1

0 1 0

1 0 0

2
664

3
775

M11 ¼ � 20; M22 ¼ f ðthe empty matrixÞ
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Figure 2. The gain plot of the filter (3).
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with

*A ¼

�25:0000 0 0 0 0 0 0

�1:1200 �1:0000 0 �0:3370 �5:2000 0:2490 0

0 0 �4:0000 0 0 0:5000 0

0 0 0 �20:0000 0 0 0

0 �0:0003 0 �0:0200 �2:1170 �0:9960 0:0386

�0:0320 �0:0042 0 0:7440 1:5400 �0:1540 0

0 1:0000 0 0 0 0 0

2
666666666666664

3
777777777777775

*Q ¼

0 0 0

0 1 0

0 0 0

0 0 0

0 0 1

1 0 0

0 0 0

2
666666666666664

3
777777777777775

which shows that *A32 is full rank, and Condition C1 is fulfilled. Furthermore, rank½ *Q21
*A31

*A32� ¼ 3; which means that %p ¼ 3:
Augmenting the system as in (7)–(8) yields a 10th order system. Performing the co-ordinate

transformation in Lemma 4 gives

T5 ¼

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 �0:0335 0:0334 0:9989 0 0 0

0 0 0 0 0:9994 0:0045 0:0334 0 0 0

0 0 0 0 �0:0034 0:9994 �0:0335 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

2
666666666666666666666664

3
777777777777777777777775

½A0
42 A0

43� ¼

�0:0331 0:9995 0

0:9991 0:0334 �0:0335

0:0267 0:0051 1:2465

2
664

3
775
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The algorithm in Section 3.2 has been implemented to design the primary observer. In designing
the primary observer, V1 ¼ 100I10;V2 ¼ I3 were chosen. The following gain matrices were
obtained:

Gl ¼ Gn ¼

�0:0163 �0:0391 0:0031

0:0005 0:3498 �0:0230

0:0150 �0:0302 0:0026

�0:0019 0:0006 0:0001

�0:1520 �0:0133 �0:1248

4:5838 �0:3234 �3:6522

0:0008 �0:1192 0:0081

10:4474 �0:0274 �0:1554

0:1554 �0:1322 �8:1133

0:0274 �9:8817 �0:1322

2
666666666666666666666664

3
777777777777777777777775

; P0 ¼

0:0957 0:0002 0:0018

0:0002 0:1012 �0:0016

0:0018 �0:0016 0:1233

2
664

3
775

The secondary observer was designed using the second algorithm in Section 3.2. The
user-defined matrices were specified to be %D1 ¼ 10I3; %g0 ¼ 100 and the following gains were
obtained:

%Gl ¼ %Gn ¼

0:1191 0:0019 �0:1074

0:0003 0:0000 �0:0002

0:1580 0:0021 �0:1425

0:0013 0:0001 �0:0012

0:0058 �0:0745 �0:0051

�0:1310 �0:0043 0:1182

0:0953 0:0695 �2:5613

2
666666666666664

3
777777777777775
; %P0 ¼

7:8917 0:1416 0:2962

0:1416 13:4004 0:3605

0:2962 0:3605 0:3338

2
664

3
775

%W %T�1 %P�10 ¼ ½0:0505 � 0:0050 0:1618�

The gains above provide an L2 bound of %g ¼ 1:2241:

4.2. Simulation results

In the simulations that follow, the parameters associated with � for the primary observer were
chosen as r ¼ 100; d ¼ 10�5 while for the secondary observer they were chosen as %r ¼ 100;
%d ¼ 10�5: A fault was induced in the first actuator. Figure 3 shows the states that will affect *x;
i.e. the second, fourth, sixth and seventh states. Figure 4 shows the fault and its reconstruction,
where the left subfigure is the fault and the right subfigure is the reconstruction. It can be clearly
seen that the reconstruction signal #f provides a good estimate of the fault f ; despite the
parameter variation 4 *A that causes a disturbance that could corrupt the reconstruction. The
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design algorithm has calculated the observer gains such that the reconstruction is least affected
by the disturbances in an L2 sense.

5. CONCLUSION

This paper has proposed a new scheme for robust fault reconstruction in uncertain systems
which is applicable to a wider class of systems than existing work. Early results were applicable
only to systems which are relative degree one and minimum phase with respect to the effect of
faults on the measured outputs. Recent work has relaxed these conditions by either considering
a specific class of nonlinear systems (relative degree two plants arising from models of
mechanical systems) or by considering linear (certain) systems subject to a class of unknown
inputs (which could be an aggregation of faults and uncertainty). The method proposed in this
paper uses two sliding mode observers in cascade; the equivalent output error injection term of
the first observer is processed to form the measurable output of a fictitious system. Then a
secondary observer is implemented for the fictitious system such that the fault can be
reconstructed using existing methods. An aircraft model has demonstrated the validity of the
proposed scheme.

0 5 10 15 20 25 30

0

0.05

−0.05

−0.1

0.1

0.15

Figure 3. The components of *x that generate *x; namely the second, fourth, sixth and
seventh components of *x:
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Figure 4. The left subfigure is the fault, the right subfigure is its reconstruction.
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APPENDIX A: PROOFS

A.1. Proof of Lemma 1

Since *C has full row rank, there exists an invertible change of co-ordinates Ta ¼
Nc

*C

� �
where

NT
c spans the null space of *C; such that

Ma :¼ Ta
*M ¼

Ma;1

Ma;2

" #
; Ca :¼ *CT�1a ¼ ½0 Ip�

where Ma;2 2 Rp�q: Since rankð *C *MÞ ¼ r; then rankðMa;2Þ ¼ r: Hence, there exist orthogonal
matrices *T 2 Rp�p;T2 2 Rq�q such that

*TTMa;2T
T
2 ¼

0 0

0 M22

" #

where M22 2 Rr�r is invertible. Partition Ma;1T
T
2 ¼ ½Ma;11 Ma;12� where Ma;12 has r columns.

Then, let X1 be an orthogonal matrix such that

X1Ma;11 ¼
0

M11

" #

where M11 2 Rðq�rÞ�ðq�rÞ is invertible. Define X2 ¼ ½0 � X1Ma;12M
�1
22 �

*TT: Then, apply the
change of co-ordinates T1 to Ma and Ca where

T1 ¼
X1 X2

0 *TT

" #

and post-multiply Ma by TT
2 to get

M ¼ T1MaT
T
2 ¼

0 0

M11 0

0 0

0 M22

2
666664

3
777775; C ¼ CaT

�1
1 ¼ ½0

*T �

and the co-ordinate transformation is complete.

A.2. Proof of Lemma 2

Let the matrices ðA;CÞ be in the partitions of (9)–(10). By performing the Popov–Hautus–
Rosenbrock (PHR) rank test [18] on the pair ðA;CÞ and using the fact that ð *A; *CÞ is observable if
and only if

rank
sI � *A1

*A3

" #
¼ *n� p

for all s 2 C; it is clear that the unobservable modes of ðA;CÞ are given by lðAOÞ: By assumption,
AO is a stable matrix and therefore ðA;CÞ is detectable.
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A.3. Proof of Lemma 3

Define

H :¼
*C *A *M *C *M

*C *M 0

" #
ðA1Þ

Therefore, from (4) to (5),

H ¼
*T 0

0 *T

" #
*A3

*M1 þ *A4
*M2

*M2

*M2 0

" #

¼

*T 0

0 *T

" # *A32M11
*A34M22 0 0

*A42M11
*A44M22 0 M22

0 0 0 0

0 M22 0 0

2
666664

3
777775

It is clear that rankðHÞ ¼ rankðM22Þ þ rankðM22Þ þ rankð *A32M11Þ: Then, it follows that
rankðHÞ ¼ rþ rþ rankð *A32Þ ¼ rankð *C *MÞ þ rþ rankð *A32Þ since M11;M22 are square and
invertible. It is then straightforward to see that as rankð *MÞ ¼ q; condition B1 holds if and
only if rankð *A32Þ ¼ q� r:

A.4. Proof of Lemma 4

In the co-ordinates of (9)–(10), define

R1 ¼ ½ *Q21
*A31

*A32�; R2 ¼

0

0

M11

2
664

3
775
l h

l n� h� p� qþ r

l q� r

ðA2Þ

Therefore, M in (10) is

R2 0

0 0

0 M22

2
664

3
775
l n� p

l p� r

l r

Recall that by definition rankðR1Þ ¼ %p� r and that *A32 has full column rank q� r: Let X3 2

Rðn�pÞ�ðn�pÞ and X4 2 Rðp�rÞ�ðp�rÞ be orthogonal matrices such that

X4R1X
T
3 ¼ ½0 Aa;42 Aa;43� ¼

0 0

0 U

" #
ðA3Þ
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where U 2 Rð%p�rÞ�ð%p�rÞ is invertible. Then define a non-singular change of co-ordinates T3 2 Rn�n

where

T3 ¼

X3 0 0

0 X4 0

0 0 Ir

2
664

3
775

Apply the change of co-ordinates T3 to A;M;Q;C in (9)–(10) to obtain

Aa ¼
Aa;1 Aa;2

Aa;3 Aa;4

" #
; Ma ¼

Ma;1

Ma;2

" #
; Qa ¼

Qa;1

0

" #
; Ca ¼ ½0 Ta� ðA4Þ

where Aa :¼ T3AT
�1
3 ;Ma :¼ T3M;Qa :¼ T3Q;Ca :¼ CT�13 : Further partition

Aa;1 ¼

Aa;11 Aa;12 Aa;13

Aa;21 Aa;22 Aa;23

Aa;31 Aa;32 Aa;33

2
664

3
775
l n� %pþ r� p

l %p� q

l q� r

; Aa;3 ¼
0 Aa;42 Aa;43

Aa;51 Aa;52 Aa;53

" #
l p� r

l r
ðA5Þ

Qa;1 ¼

Qa;11

Qa;12

Qa;13

2
664

3
775; Ma;1 ¼

Ma;11 0

Ma;12 0

Ma;13 0

2
664

3
775; Ma;2 ¼

0 0

0 M22

" #
ðA6Þ

where Ta in (A4) is still orthogonal. It is straightforward to show that R1R2 ¼ *A32M11: Since the
matrix *A32 has full column rank q� r and detðM11Þ=0; then rankðR1R2Þ ¼ q� r: Clearly,
R1R2 ¼ R1X

�1
3 X3R2; which from (A3) can be expanded to be

X�14 ½0 Aa;42 Aa;43�|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
R1X

�1
3

Ma;11

Ma;12

Ma;13

2
64

3
75

|fflfflfflfflffl{zfflfflfflfflffl}
X3R2

¼ X�14 ½Aa;42 Aa;43�
Ma;12

Ma;13

" #
¼ X�14

0

U

" #
Ma;12

Ma;13

" #

Since X4 is orthogonal and %p > q; it follows that

rankð *A32Þ ¼ q� r) rankðR1R2Þ ¼ q� r) rank
Ma;12

Ma;13

" #
¼ q� r

Define two matrices X5 2 Rðq�rÞ�ð%p�rÞ and X6 2 Rð%p�rÞ�ð%p�rÞ so that

X5

Ma;12

Ma;13

" #
¼ Iq�r; X6

Ma;12

Ma;13

" #
¼

0

M11

" #
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Then introduce the final change of co-ordinates

T4 ¼

In�%pþr�p �Ma;11X5 0

0 X6 0

0 0 Ip

2
664

3
775

so that Aa;Ma;Qa;Ca are transformed to be

Ab ¼
Ab;1 Ab;2

Ab;3 Ab;4

" #
; Mb ¼

Mb;1

Mb;2

" #
; Cb ¼ ½0 Ta�; Qb ¼

Qb;1

0

" #
ðA7Þ

where

Ab;3 ¼
0 Ab;42 Ab;43

Ab;51 Ab;52 Ab;53

" #
l p� r

l r
; Mb;1 ¼

0 0

0 0

M11 0

2
664

3
775
l n� p� %pþ r

l %p� q

l q� r

; Mb;2 ¼
0 0

0 M22

" #
l p� r

l r

and from (A3)

½Ab;42 Ab;43� ¼
0

UX�16

" #
l p� %p

l %p� r

By defining the non-singular transformation matrix T5 :¼ T4T3 and partitioning

UX�16 ¼ ½A
0
42 A0

43� ðA8Þ

where A0
43 2 Rð%p�rÞ�ðq�rÞ; the matrices Ab;Mb;Qb;Cb and their partitions are now in the same

form as the matrices A;M;Q;C in (11)–(12) in the statement of Lemma 4. To prove that
rankðA0

43Þ ¼ rankð *A32Þ; define

X7 ¼
In�%p�pþr �Ma;11X5

0 X6

" #

From the co-ordinate transformations T3;T4 and by observing the structure of Ab and Mb; it is
clear from (A3) and (A8) that

X4R1X
�1
3 X�17 ¼

0 0 0

0 A0
42 A0

43

" #
; X7X3R2 ¼

0

0

M11

2
664

3
775) X4R1R2 ¼

0

A0
43M11

" #

Recalling that rankðR1R2Þ ¼ rankð *A32Þ ¼ q� r; and using the fact that X4 and M11 are
invertible, it follows that rankðA0

43Þ ¼ rankð *A32Þ:

K. Y. NG ET AL.1316

Copyright # 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2007; 17:1294–1319

DOI: 10.1002/rnc



A.5. Lemma 5 and its Proof

Lemma 5
The invariant zeros of ð %A; %M; %CÞ are identical to the invariant zeros of ð *A; *M; *CÞ together with
the eigenvalues of AO:

Proof
The Rosenbrock system matrix [18] of ð %A; %M; %CÞ is given by

Ea;1ðsÞ ¼
sI � %A %M

%C 0

" #

and the invariant zeros of a system are the values of s that cause its Rosenbrock matrix to lose
normal rank. From (31) to (32), Ea;1ðsÞ can be expanded to be

Ea;1ðsÞ ¼

sI � %A1 � %A2 0

� %A3 sI � %A4 %M2

0 %T 0

2
664

3
775

Since %T has full rank, it is clear that Ea;1ðsÞ loses rank if and only if the following matrix loses
rank

Ea;2ðsÞ :¼
sI � %A1 0

� %A3 %M2

" #

Substituting for %A1; %A3; %M2 from (31) to (32), Ea;2ðsÞ can be expanded to be

Ea;2ðsÞ ¼

sI � A11 0 0

�A21 0 0

�A31 �M11 0

AfA51 0 AfM22

2
666664

3
777775

It is then obvious to see that Ea;2ðsÞ loses rank if and only if Ea;3ðsÞ loses rank where

Ea;3ðsÞ :¼
sI � A11

�A21

" #

From the PHR rank test [18], the values of s that make Ea;3ðsÞ lose rank are the unobservable
modes of ðA11;A21Þ:

The invariant zeros of ðA;M;CÞ are given by the values of s that cause the following matrix to
lose rank:

Eb;1ðsÞ ¼
sI � A M

C 0

" #
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From (11) to (12), Eb;1ðsÞ is

Eb;1ðsÞ ¼

sI � A1 �A2 M1

�A3 sI � A4 M2

0 T 0

2
664

3
775

Since T is orthogonal, then Eb;1ðsÞ loses rank if and only if Eb;2ðsÞ loses rank where

Eb;2ðsÞ ¼
sI � A1 M1

�A3 M2

" #

Substituting for A1;A3;M1;M2 from (11) to (12), Eb;2ðsÞ becomes

Eb;2ðsÞ ¼

sI � A11 �A12 �A13 0 0

�A21 sI � A22 �A23 0 0

�A31 �A32 sI � A33 M11 0

0 �A42 �A43 0 0

�A51 �A52 �A53 0 M22

2
666666664

3
777777775

From Lemma 4, ½A42 A43� has a special structure which together with the fact that M11;M22 are
square and invertible, means Eb;2ðsÞ loses rank if and only if Eb;3ðsÞ loses rank where

Eb;3ðsÞ ¼
sI � A11

�A21

" #

which loses rank if and only if s is an unobservable mode of ðA11;A21Þ: This shows that ð %A; %M; %CÞ
and ðA;M;CÞ have the same invariant zeros.

By using the partitions of ðA;M;CÞ in (9)–(10), it can be easily shown the Rosenbrock matrix
of ðA;M;CÞ loses rank if and only if the following matrix Ec;1ðsÞ loses rank

Ec;1ðsÞ ¼

sI � AO 0 0

� *Q11 sI � *A11 � *A12

� *Q21 � *A31 � *A32

2
664

3
775

It is clear that Ec;1ðsÞ loses rank when s ¼ lðAOÞ or when s is an invariant zero of ð *A11; *A12;
*A31; *A32Þ: Then, by finding the Rosenbrock matrix of ð *A; *M; *CÞ using the partitions in (4)–(6), it
can be proven that the invariant zeros of ð *A; *M; *CÞ are the invariant zeros of ð *A11; *A12; *A31; *A32Þ:

Hence, it is proven that the invariant zeros of ð %A; %M; %CÞ are the invariant zeros of ð *A; *M; *CÞ
and lðAOÞ:
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