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Abstract
Wind Turbine Reliability Improvement by Fault Tolerant Control

by Hamed Habibi

This thesis investigates the improvement that can be achieved to wind turbine relia-
bility with aid of model-based fault detection and fault tolerant control designs, so
that the wind turbine continues to operate satisfactorily with the same performance
index in the presence of faults as in fault-free situations. In this regard, a compre-
hensive review is initially given to understand and appraise the directions and out-
comes of the current research. Accordingly, the wind turbine bench mark model as-
sociated with the considered faults is introduced, on which the proposed controllers
are designed. Also, the available industrial baseline controllers are adopted, with
which the performance of the proposed controllers are compared, using the numer-
ical criteria. Also, these baseline controllers are initially improved, with adaptive
gains, using a fuzzy inference system in the low speed region, and PID-like con-
troller with Nussbaum-type function in the high speed region. These modifications
give an intuitive motivation for the rest of this research. The different operational
regions of the wind turbine are considered with corresponding fault sources and,
consequently, the controllers are designed to satisfy the corresponding operational
objectives. Also, the considered fault information is generated, using different suit-
able approaches, which can be useful for maintenance purposes. The numerical sim-
ulations are conducted to investigate the performance of the proposed controllers.
In this regard, firstly in the low speed region, a nonlinear FTC is proposed with
adaptive laws, to keep the wind turbine operating with maximum efficiency, in the
presence of pitch actuator and generator faults. Also, the unknown desired trajec-
tory is reconstructed using a Gaussian radial basis function neural network. So, it
is shown that the captured power is maximized. On the other hand, for high wind
speed region, the constrained fault tolerant controller is designed to guarantee that
the wind turbine speed will not violate the predefined and safe-to-operate limit,
and consequently, keep the wind turbine structurally safe with less engagement of
the mechanical brakes, in the presence of wind speed variation and faults. The
Nussbaum-type function is utilized to tackle the unknown control direction prob-
lem. The unknown aerodynamic torque is approximated using the Gaussian radial
basis function neural network. In a separate approach, the sensors fault detection
is achieved via design of a novel unknown input observer with the calculated fault
probability. The baseline controller is adopted in both fault-free and faulty situa-
tions, which leads to the less complicated and more industrially-acceptable scheme.
Finally, conclusions of this research are summarized.
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1 Introduction

Reliability improvement of modern offshore wind turbines can provide significant
impetus to turn wind power generation into one of the main power sources to re-
spond to the world energy demands. The likelihood of failure of wind turbine com-
ponents is inevitably high, especially for offshore, large and complex modern wind
turbines, operating in harsh environments. Accordingly, the maintenance need in-
creases due to unanticipated faults, which in turn, leads to higher power cost and
less reliable power generation. In this regard, the Fault Detection and Isolation
(FDI) and Fault Tolerant Control (FTC) designs have been extensively exploited in
the last decade, as one of the most reliable solutions to have wind power generation
in faulty situations, achieving the same performance index as for the fault-free case.
Accordingly, in this chapter, the motivation of the current research is given. Also,
the wind turbine operational control and FTC are conceptualized. Consequently,
the thesis purpose and structure are summarized. Finally, the contribution of each
chapter is given.

1.1 Thesis Motivation

Ever increasing energy demand is considered as one of the key factors which moti-
vates the current energy research trends. The decrease in exploitable energy sources,
significant and harmful environmental pollution, high energy price and poor avail-
ability index, are most of the commonly reported problems with fossil fuels, being
the most traditional energy source. These issues have motivated researchers to seek
the new energy sources. As the result, the renewable energy technologies have been
considered as appropriate alternatives to the traditional energy sources, as they are
abundant, and can have near zero operational greenhouse gas emissions (Hau et al.,
2003; Tchakoua et al., 2014).

Among all renewable energy sources, the wind energy has demonstrated out-
standing characteristics and has attracted the world’s attention; from researchers to
industrial points of view, and consequently has been entitled as “the world’s fastest
growing renewable energy source” with 30% growth annually on average through-
out the last two decades (Sloth et al., 2010; Lu et al., 2009). During this time period,
the planned capacity of wind farms has increased significantly on the world wide
scale to provide more share of energy demand from wind energy. In Figure 1.1,
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global wind power installations are illustrated, which clearly depicts the growth of
captured wind power (Simani, 2015). The predicted future wind energy extraction

FIGURE 1.1: Global wind power installation capacity (Simani,
2015).

of some countries has been summarized in Table 1.1, in which it is evident that
globally the focus will be to capture more energy from the wind. The captured
energy and corresponding energy cost are two of the main considerable factors for
any wind turbine farm, providing motivation for researchers to increase the cap-
tured energy while keeping the total cost at a reasonable level (Bakka et al., 2013;
Sloth et al., 2011). This approach has led to two significant considerations which
are the size and location of wind turbines. Indeed, implementing larger wind tur-
bines in size, i.e. with longer blades, will cover more space, interact with more
wind and, consequently, harvest more energy, and meanwhile, installing so-called
offshore wind turbines in remote places, e.g. in the oceans, provides higher wind
speeds and more uniform wind with more available energy to be extracted, due to
lack of obstacles. Accordingly, the modern wind turbines are designed to be larger
with longer blades, i.e. to increase the swept area, have higher towers and are also
located in remote offshore places to encounter higher wind speeds, to increase the
captured power e.g. from 75 kW to 20 MW (Amirat et al., 2009), as illustrated in
Table 1.2 (Simani, 2015). Despite having the opportunity for extracting more en-
ergy, the operation of large offshore wind turbines, in harsh environments and in the
presence of highly variable stochastic loads, is prone to be downgraded, due to fault
occurrence, and more frequent maintenance operations will be needed (Byon et al.,
2010). In fact, by operating in remote harsh environments, wind turbines are more
likely to suffer from critical component faults (Sloth et al., 2011). This leads to one
major challenge which is lower reliability and availability, cumulatively resulting in
less sustainable power generation (Luo et al., 2014).

More maintenance has double negative effects; i.e. increased maintenance cost
and also, less generated power due to increased downtime (Feng et al., 2012; Wei
et al., 2011). Also, because of the difficulty in reachability and access of offshore
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TABLE 1.1: The predicted wind energy extraction of some countries
(Simani, 2015).

Country Wind en-
ergy share of
whole power

Expected
year

Reference

United States 30% (300
GW )

2030 (Lu et al., 2009; Simani,
2015)

European Union
12% to 14% 2020

(Kabir et al., 2015)
25% 2030

China 15% 2020 (Lu et al., 2009; Kabir et al.,
2015; Amirat et al., 2009)

Denmark, Portu-
gal, Spain, France,
Germany, Ireland,
Sweden

9% to 21% 2015 (Zaher et al., 2009; Simani,
2015; Amirat et al., 2009)

TABLE 1.2: The wind turbines size growth (Simani, 2015).

Blade
length (m)

Tower
height (m)

Nominal
power (kW )

Usage year Location

8.5 30 75 1980-1990 Onshore
15 45 300 1990-1995 Onshore
25 60 750 1995-2000 Onshore
35 70 1500 2000-2005 Onshore
40 95 1800 2005-2010 Onshore
50 100 3000 2010-Present Onshore
62.5 130 5000 2010-Present Offshore
75 160 10000 Future Onshore
125 220 20000 Future Offshore
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wind turbines, the maintenance cost is prone to increase significantly, which is in
direct contrast to the aim of utilizing remote and larger wind turbines, which aims
to keep the energy cost at reasonable levels. Accordingly, the cost of the generated
power is generally increased and, consequently, the wind turbine generated power
is not competitive with other traditional sources. For example, the maintenance cost
of offshore wind turbines is estimated to be 20% to 25% of the total income (Simani
et al., 2015a) and 10% to 15% for an onshore farm over the 20 years of operating
life (Musial et al., 2006). In (Faulstich et al., 2011) wind turbine failure rates have
been considered and it is indicated that electrical subsystems are more often likely
to fail while mechanical component failure leads to longer downtime, as illustrated
in Figure 1.2. So, it is beneficial to keep maintenance costs as low as possible,
improving sustainability and decreasing downtime, ensuring that the wind turbines
continue to work effectively and, consequently increase their captured power, de-
spite the presence of faults in the wind turbine system, until the next scheduled
maintenance operation can be performed (Entezami et al., 2012).

FDI and FTC are one of the best methods to improve reliability and reduce down-
time and maintenance costs of wind turbines. These methods can also help the wind
turbines to avoid vulnerability in dangerous wind situations. Equipping the vital
components with physical or model-based identical counterparts, leads to fulfilling
FDI (Ding, 2008). Indeed, the duplicated signal from redundant components can be
compared to the main one to generate the so-called residual signal. Significant de-
viation of the residual from zero, or a predefined threshold, can be used to indicate
the presence of a fault.

FIGURE 1.2: Wind turbine components failure rate and downtime
(Faulstich et al., 2011).

The fault information captured from FDI units, can be used to optimize the main-
tenance procedures via remote diagnosis. On the other hand, FTC is robust against
the considered faults and, consequently, keeps the wind turbines performance at
their desired level, despite the presence of faults. Also, in case of the total failure of
the main component, it can be replaced with the redundant one. Consequently, the
maintenance need and downtime are decreased, and the reliability will be improved.



1.2. Wind Turbine Control System and Strategy 5

Therefore, the final energy cost is kept as cheap as possible. As a result, premature
wind turbine breakdown can be avoided (Odgaard et al., 2009a).

1.2 Wind Turbine Control System and Strategy

Wind turbines are inherently nonlinear time varying dynamic systems. Also, the
modern industrial wind turbines are equipped with longer blades, higher towers and
are installed in remote locations. These issues require the need for modern control
strategies to be considered to increase the harvested wind energy whilst keeping
the structural load at a desirable level to decrease maintenance costs (Sloth et al.,
2011). The wind energy is transferred to the wind turbine by rotating the wind tur-
bine blades which are coupled to the generator shaft. Generally, the wind turbine
is highly nonlinear due to its aerodynamic characteristics which can be represented
as a function of blade pitch angle, rotor rotational speed, tower oscillation and wind
speed. The rotational speed of the generator is increased by utilizing a high speed
ratio drive train (Bianchi et al., 2007). The effective wind speed at the rotor plane
varies in space and time from the expected nominal wind speed. So, the accurate
wind speed measurement, using anemometers located at the top of the turbine hub,
is not possible because of the temporal and spatial distribution of the wind speed
over the blade plane. Accordingly, the wind speed across the rotor plane is consid-
ered as the disturbance in control design.

In terms of control objectives, there are two distinguishable wind turbine op-
erational regions, i.e. so-called partial load and full load regions. In partial load,
it is aimed to extract as much energy as possible from the wind, while in the full
load region, despite the higher available energy content in the wind, it is required to
keep the generated power at its nominal value to protect the wind turbine structure
from catastrophic operation that will induce more stress on the structure and conse-
quently, may damage it (Bianchi et al., 2007). The control variable in partial load
operation is the generator electrical load torque, which enables the variable speed
operational mode of wind turbines. On the other hand, in the full load region, the
blade pitch angle is the main control variable, which adds the variable pitch angle
characteristic of wind turbines. The fixed speed and fixed pitch wind turbines are
less expensive initially, but the lack of controllability leads to less economical wind
turbines. So, the variable-speed variable-pitch wind turbines are dominating the
wind energy industry.

In partial load operation, it is theoretically proven that the maximum wind power
extraction is 59% of the wind power, which is called the Betz Limit (Bianchi et
al., 2007). So, the control aim in partial load operation is to keep the efficiency
as close as possible to the maximum one of the given wind turbine model. The
most commonly used controller in the partial load region is known as the reference
controller, in which the control law is obtained by excluding the wind speed in the
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aerodynamic torque equation. This controller is designed for the nonlinear model,
but it is assumed that the wind turbine is operating on the desired operation trajec-
tory. To resolve this issue, some modern linear controllers have been applied on
linearized wind turbine models (Sloth et al., 2011). Also, it has been shown that up
to 5% modeling error may lead to 1% to 3% energy loss which is a significant loss
(Fingersh et al., 1998). Accordingly, improvements to modern controller scheme
designs has been sought over the last two decades, e.g. adaptive methods (Johnson
et al., 2006), Fuzzy Inference System (FIS) (Aissaoui et al., 2013), neural networks
(Shamshirband et al., 2014) and nonlinear control (Boukhezzar et al., 2011). The
power regulation is crucial in full load operation to prevent the wind turbine from
over speeding. Otherwise, if the rotor speed violates the predefined limit, the me-
chanical brakes will be activated, leading to reduction in generated structural loads
(Tiwari et al., 2016). Also, this aim should not be met in a manner that reduces
the generated power considerably less than the rated power. The most commonly
adopted controller in full load region is the linear Proportional, Integral and Deriva-
tive (PID) controller to adjust the pitch angle (Lan et al., 2018). To improve the
controller performance on the whole nonlinear model of the wind turbine, the PID
controller is equipped with FIS in (Badihi et al., 2014). On the other hand, different
modern controllers have been adopted for the full load operation, such as, Linear
Parameter Varying (LPV) control (Sloth et al., 2011), gain scheduling (Bianchi et
al., 2012), robust control (Kim, 2016), fuzzy logic system (Simani et al., 2015b),
adaptive nonlinear control (Jafarnejadsani et al., 2013), optimal control (Giger et
al., 2017) and evolutionary algorithms (Jaramillo-Lopez et al., 2016).

1.3 Wind Turbines FTC Design

Reliability improvement of wind turbines is the key issue that can turn the wind
power into one of the main power source to respond to the world energy demands.
The likelihood of fault occurrence on wind turbine components is unavoidable, es-
pecially for large rotor modern wind turbines, operating in harsh offshore envi-
ronments. The fault presence on the system is defined as an “unpermitted devia-
tion of at least one characteristic system parameter and property from the accept-
able/usual/standard condition” (Gao et al., 2015). For example, blocking of an actu-
ator, loss of a sensor and disconnection of a system component are some sources of
faults. Accordingly, the faults can be categorized as actuator faults, sensor faults and
system faults, which may lead to performance degradation or even system break-
down. It is obvious that if the fault is not detected and handled, the maintenance
cost is prone to be increased and the safe operation may be violated, especially in
the offshore wind turbine case, in which reachability is a major and costly issue.
Accordingly, the maintenance need increases due to unanticipated faults, which in
turn, leads to higher energy conversion cost and less reliable power generation. So,
it is paramount to detect and identify potential faults as early as possible.
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One of the most suitable solutions for the above mentioned problems is FTC,
whose application to wind turbines has recently emerged (Odgaard et al., 2013b).
In FTC schemes, a baseline controller is designed which tolerates the presence of
certain faults to ensure adequate system control, so the final system will continue
to operate satisfactorily, the same as for the previous fault-free situation. The first
step in FTC, is Fault Detection (FD) which is to detect whether a fault has occurred
and then, via Fault Isolation and Identification (FII), the component where the fault
is present, and the size and type of fault, are determined, respectively. Finally,
after detecting the fault and its location and size, the Fault Accommodation (FA) or
Controller Reconfiguration (CR) is considered so that the effect of the fault on the
overall system performance will be removed. If FA is used, the baseline controller
will be the same as the previous fault-free one. However, if CR is utilised after the
fault is detected, the whole or part of the baseline controller will be switched off,
and a new controller inserted which is tolerant towards the detected faults.

One of the easiest methods for FTC is in using the concept of hardware redun-
dancy in which the critical system components are equipped with multiple sets of
similar structures and signals, such that these redundant components will produce
duplicated signals which are similar in essence in the fault-free situation and yet
will have differences or residuals between them in faulty situations. Accordingly,
by installing identical counterparts for the main components and subtracting these
two signals, which are expected to be similar in fault-free situations, the so-called
residual signal can be constructed. So, the residual signal, i.e. the difference be-
tween the main and duplicated signals, can be used to detect and locate the faults
in particular components, neglecting differences in noise contents and disturbances.
Faults can then be detected and isolated in any component by considering the de-
viation of the corresponding residual signal from zero. Similarly, the fault size can
be estimated using these two signals. On the other hand, if the fault effect cannot
be identified and removed from the component by FA, the main component will be
replaced by a redundant one which leads to CR.

Increasing the total cost of systems equipped with FTC, occupying too much
space in the final design, and developing heavier systems with more complicated
data acquisition schemes, are some of the most reported problems of FTC us-
ing hardware redundancy. Software redundancy or so-called Model-Based FTC
(MBFTC) is one suitable alternative to hardware-based redundancy, where instead
of using physical duplication of components, a mathematical model of the system is
designed to be compared to the physical one and the need for duplicated hardware
components is eliminated. So, the entire mathematical model of the system should
be known precisely and be fed with the same inputs as the real system, i.e. the
inputs for the system are control signals and disturbances which includes exoge-
nous uncontrollable inputs and noises, such that in fault-free situations and when
using the same input, the system and model will produce exactly the same outputs.
Accordingly, the residual signal is constructed by comparing the outputs from the
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system and the model that can subsequently be used for FD and FII.

In terms of FTC, the controller is designed to operate satisfactorily in the fault-
free situation as well as to remove the fault effects from the overall system perfor-
mance to keep it as close as possible to the fault-free one, until the next prescheduled
maintenance activity can be performed (Gao et al., 2015). Also, it is advantageous
to determine the fault information, including the fault time, period, size and lo-
cation, either for supervisory control or to be used in the maintenance procedure.
Robustness of the overall FTC scheme against system noise, model uncertainty and
unmeasured exogenous disturbances, is challenging for complicated systems with
different sources of noise and disturbance, such as wind turbines. Indeed, system
noise and disturbance can mistakenly be seen as faults on the FCT scheme (Sloth
et al., 2011).

There are two different schemes for MBFTC, including active and passive MBFTC.
In active MBFTC, the first step to design the FTC is FD. Indeed, the information
gathered from FD and FII will be used in FTC. On the other hand, in passive
MBFTC, the baseline controller is basically designed such that this controller is
robust to some given faults. So, in passive MBFTC there is no need for FD and
FII, which are two challenging considerations for complicated systems. It can be
concluded that the passive MBFTC is conservative compared to the active MBFTC
because the anticipated faults are considered in the baseline controller design. In
the active MBFTC, the residual signal is used to detect the fault and accordingly,
the location and size of faults are determined. Using this information, the effect of
the faults is removed from the overall system performance either by FA, i.e. cor-
recting the generated signals from the faulty components via the Virtual Sensor and
Actuator (VSA) module, and using the baseline controller the same as the previ-
ous fault-free one, or by CR, i.e. whole or part of the baseline controller will be
switched off, and a new controller inserted which is tolerant towards the detected
faults. On the other hand, for passive MBFTC, the baseline controller is basically
designed such that this controller is robust to some given faults. The passive and
active MBFTC schemes both have one step in common, which is the design of the
baseline controller, prior to FTC. In other words, the baseline controller should be
designed for the fault-free system to operate at its desired trajectory (Blanke et al.,
2006). Also, it should be noted that the FA or CR should be considered in the
design of the baseline controller such that accommodating any possible faults or
reconfiguring the whole/part of the baseline controller should be seen prior to the
FTC design. In terms of cost and reliability, the FA, due to lack of existence of
extra components, is more desirable than CR, because in FA the baseline controller,
itself, is used for removing the fault effect, while in CR, a new controller will be
used, such that except for the cost of the final design, the stability and performance
of the new controller should be considered. Additionally, switching from one con-
troller to another one may cause instability. In Figure 1.3, the schematic diagram
of active MBFTC including FA and CR, for wind turbine system associated with
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faults, is illustrated.

FIGURE 1.3: Wind turbine baseline control (dark line) and active
MBFTC (grey line).

As stated earlier, for active MBFTC the accurate mathematical model of the wind
turbine should be known as a priori and also, the model should be fed with the same
signal as the system, which is not possible for noises and disturbances. Also, using
sensor measurements to construct the residual signals, which are contaminated by
noise, leads to residual signals which may be different from zero in fault-free sit-
uations. In fact, because the sensor noises and exogenous disturbances, i.e. wind
speed, are not measurable to be fed into the mathematical model, it can be expected
that the residual deviates from zero in fault-free conditions. Consequently, it can
be seen that the noise or disturbance can be translated into faults. So, a threshold
can be chosen from which if the residual signals deviate then the fault is detected.
Missed faults or false alarms are two of the most commonly reported problems in
the case of too large or too small thresholds, which have led to the design of adap-
tive thresholds, which is challenging for complicated systems with different sources
of noise and disturbance, such as wind turbines. Also, the CR approach may lead
to the chattering control phenomenon and instability which is undesirable for wind
turbines because it induces more stress on mechanical parts. The identification of
fault size, using purely the noisy sensor measurements, will lead to downgraded
system performance, because this inaccurately identified fault size is subsequently
utilised in the FA and CR steps.

Remark 1.1. A brief and accurate introduction to MBFTC and associated ap-
proaches for detection of faults and removing their effects from overall system per-
formance were given in this section. However, a comprehensive literature review
on the FDI and MBFTC designs for wind turbine systems, is given in Chapter 2 to
enlighten the research direction and also, to signify the contributions which have
been made in this thesis in the field of wind turbine MBFTC design. This literature
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review has been separated from this chapter for ease of readability of the rest of this
chapter and to avoid readers’ confusion.

1.4 Thesis Objectives

In this section overall objectives of this research are briefly outlined. However, goals
of each chapter are appropriately introduced at the beginning of the corresponding
chapter.

The first and the main objective is to comply with the industrial wind turbine op-
erational specifications. As stated earlier, the wind turbines operation, in terms of
system control, is divided into two distinguishable ones including partial load and
full load regions. The operational objective in partial load region is to maximize the
captured energy from the wind while in the full load region, despite the higher avail-
able energy content in the wind, the operational objective is to retain the produced
power at its nominal value. Accordingly, in this thesis, it is aimed to design the con-
troller for both operational regions, separately, satisfying the operational objectives.
In fact, each designed controller is active in its corresponding operation region to
achieve the operational objectives. It should be noted that, the performance of the
final design is quantified considering these operational objectives.

The nonlinear dynamical behaviour of wind turbines has increased the need for
more accurate and modern control designs. Otherwise, a set of linearized models
should be used to take advantage of the linear controller. However, the linearized
model does not ensure the accurate behavior of the wind turbine. So, in this thesis
it is aimed to utilize the whole nonlinear model of the wind turbine, on which ba-
sis the controller is designed to increase the performance and practicality. On the
other hand, the wind speed is highly stochastic and its accurate measurement, using
anemometers located at the top of turbine hub, is not possible because of the tempo-
ral and spatial distribution of the wind speed over the blade plane. Accordingly, the
wind speed can be considered as an uncontrollable exogenous disturbance acting on
the wind turbine. So, in the entire thesis, the wind speed is not used in the designed
controller. Instead, an appropriately-designed estimator is adopted, e.g. Gaussian
Radial Basis Function Neural Networks (GRBFNN) or modified Kalman filter, to
estimate the wind speed to be utilized into the designed controllers.

Considering the operational region of the wind turbine, the possible faults are
considered, including sensor faults, actuator faults and system faults. Indeed, to
have an accurate and effective control design, the faults on the active components
of wind turbines in each operational region are studied, to improve the readability
of the thesis and avoid confusion. The fault effects are removed by adoption of
MBFTC design, i.e. either this feature can be integrated into the designed controller
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or a separate scheme can be proposed to be implemented on the available baseline
controller. On the other hand, different approaches are proposed, considering the
characteristics of each given fault to be accurately accommodated. Also, the reason
for consideration of the various faults are given.

Finally, it is aimed to use the available baseline industrial controllers, separately,
with which to compare the performance of the proposed controllers. Indeed, it
is aimed to demonstrate the deficiency of the baseline industrial controllers in the
presence of the considered faults and meanwhile, to highlight the superiority of the
proposed controllers.

Remark 1.2. The theoretical materials in each chapter are presented in the order
of appearance. Indeed, the structure of each chapter is self-contained. This is done
to keep the main focus of this thesis on the wind turbine operation aspects and also,
to let each chapter be independently effective and readable. For the same reason,
the proof of the given theorems separately are given in Appendix A.

1.5 Thesis Structure and Contribution

In this section, the current thesis structure and organization is given. Also, all con-
tributions are outlined appropriately.

To accurately evaluate the state of the art in the FDI and FTC design of wind
turbines, an extensive review is needed. So, in Chapter 2, a comprehensive review
of the available FDI and MBFTC designs for wind turbines is presented, focusing
on the advantages, capabilities and limitations. This chapter is captured and reorga-
nized from the following paper.

• Hamed Habibi, Ian Howard, and Silvio Simani, “Reliability Improvement
of Wind Turbine Power Generation using Model-based Fault Detection and
Fault Tolerant Control: a review”, Renewable Energy, Vol. 135, pp. 877-896,
2019.

To initiate the controller design, the accurate wind turbine model is needed. So,
in Chapter 3, the wind turbine nonlinear model, including all possible faults, is ex-
plained. Also, the desired operational modes of available industrial wind turbines
are introduced, on which basis the numerical criteria are given to evaluate the perfor-
mance of wind turbines. The wind turbine model parameters are given in Appendix
B.

In each chapter, to evaluate the proposed scheme, a comparison between per-
formance of the proposed and the available industrial baseline controllers are con-
ducted. So, it is needed to elaborate the baseline controller which is currently uti-
lized in the industry. This is fulfilled in Chapter 4. Also, some initial modifications
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are applied to the baseline controller. In partial load operation the baseline con-
troller is modified with a proposed FIS to increase the captured energy. This section
is captured and reorganized from the following paper.

• Hamed Habibi, Aghil Yousefi Koma, and Ian Howard, “Power Improvement
of Non-Linear Wind Turbines during Partial Load Operation using Fuzzy In-
ference Control”, Control Engineering and Applied Informatics, Vol. 19, No.
2, pp. 31-42, 2017.

On the other hand, in the full load region, the baseline PID controller is modified
with introduction of Nussbaum adaptive control to let the wind turbine be passively,
robust against pitch actuator faults. This section is captured and reorganized from
the following paper.

• Hamed Habibi, Hamed Rahimi Nohooji, and Ian Howard, “Adaptive PID
Control of Wind Turbines for Power Regulation with Unknown Control Di-
rection and Actuator Faults”, IEEE Access, Vol. 6, pp. 37464-37479, 2018.

In Chapter 5, the partial load region of wind turbine, FTC design is tackled to
keep the power generation efficiency as close as possible to the maximum one, con-
sidering the generator torque bias, pitch actuator dynamic change and bias. Also,
the wind speed is estimated using GRBFNN, as a part of the proposed controller.
The considered faults are estimated adaptively, which can be used to optimize the
maintenance plans. This chapter is captured and reorganized from the following
papers.

• Hamed Habibi, Hamed Rahimi Nohooji, and Ian Howard, “Optimum effi-
ciency control of a wind turbine with unknown desired trajectory and actua-
tor faults”, Journal of Renewable and Sustainable Energy, Vol. 9, No. 6, p.
063305, 2017.

• Hamed Habibi, Hamed Rahimi Nohooji, and Ian Howard, “Power maximiza-
tion of variable-speed variable-pitch wind turbines using passive adaptive
neural fault tolerant control”, Frontiers of Mechanical Engineering, Vol. 12,
No. 3, pp. 377-388, 2017.

• Hamed Habibi, Hamed Rahimi Nohooji, and Ian Howard, “A neuro-adaptive
maximum power tracking control of variable speed wind turbines with actu-
ator faults”, proceedings of Australian and New Zealand Control Conference
(ANZCC), pp. 63-68, 2017.

In Chapter 6, the constrained FTC design of wind turbines in the full load oper-
ation is introduced for the first time, to keep the generated power within the prede-
fined limit and, to compensate the pitch actuator dynamic change, effectiveness loss,
bias and blade debris build-up. The constrained control is introduced to lessen the
mechanical brake engagement, which is inevitable for highly variable wind speed
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variation. The considered faults are estimated adaptively, which can be used to op-
timize the maintenance plans. This chapter is captured and reorganized from the
following papers.

• Hamed Habibi, Hamed Rahimi Nohooji, and Ian Howard “Backstepping Nuss-
baum Gain Dynamic Surface Control for a Class of Input and State Con-
strained Systems with Actuator Faults”, Information Sciences, Vol. 482, pp.
27-46, 2019.

• Hamed Habibi, Hamed Rahimi Nohooji, and Ian Howard, “Constrained con-
trol of wind turbines for power regulation in full load operation”, proceedings
of 11th Asian Control Conference (ASCC), pp. 2813-2818, 2017.

In Chapter 7, using a novel unknown input observer and Kalman filter, the faults
in the rotor and generator sensors are shown to be detected, isolated, identified
and accommodated. Additionally, with the Bayesian setting, the fault probability is
calculated which will be used for fault detection and isolation. Also, via an auxiliary
signal and by checking the updated residual and fault probability, the isolation of
the fault in each sensor is accomplished without the need for any redundant sensor.
This chapter is captured and reorganized from the following papers.

• Hamed Habibi, Ian Howard, and Reza Habibi, “Bayesian Fault Probability
Estimation; Application in Wind Turbine Drive train Sensor Fault Detection”,
Asian Journal of Control, In Press, 2020.

• Hamed Habibi, Ian Howard, and Reza Habibi, “Bayesian Sensor Fault Detec-
tion in a Markov Jump System”, Asian Journal of Control, Vol. 19, No. 4,
pp. 1465-1481, 2017.

Finally, the concluding remarks, discussions and an outlook on possible future
work are all given in Chapter 8. It should be noted that the co-authors’ attribution
statements are clearly pointed out in Appendix C.
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2 Literature Review on Wind
Turbines FDI and FTC design

FDI and FTC design of wind turbines has been significantly developed over the last
decade. Most of the works in this fields have been motivated from the competitions
conducted by KK-electronic a/c and MathWorks (Odgaard et al., 2009a). Accord-
ingly, the number of researches and consequent publications has been increased
considerably. In Figure 2.1, SCOPUS results have been presented to signify the
rapid growth by considering the published journal papers in the field of wind tur-
bine FDI and FTC design, which implies it is currently the subject of intensive
worldwide research (Badihi et al., 2015). However, there are only a few available
review studies in this field (Kabir et al., 2015; Odgaard et al., 2013b; Badihi et al.,
2013; Hameed et al., 2009; Márquez et al., 2012; Pourmohammad et al., 2011).
So, it is beneficial to have a well-organized comprehensive overview on the status
of recent developments of FDI and FTC design of wind turbines to make a frame-
work for the next chapters of this thesis. This chapter is focused on Horizontal Axis
Wind Turbines (HAWT) with upwind rotor placement, due to their dominancy on
utility-scale wind turbines (Spinato et al., 2009).1

FIGURE 2.1: SCOPUS-indexed published journal papers in FDI and
FTC design of wind turbines.

1This chapter is captured and reorganized from the paper “Reliability Improvement of Wind
Turbine Power Generation using Model-based Fault Detection and Fault Tolerant Control: a review”.
The authors’ attribution on this paper are given in Appendix C.
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2.1 Wind Turbines FDI Design

The wind turbine FDI design can be utilized as a fully/partly automatic scheme
to detect and locate the possibly occurring faults on the wind turbine to optimize
the required maintenance procedures, reduce downtime, and to avoid catastrophic
failure. As a result, the requisite maintenance is reduced to either of the following
approaches (Tchakoua et al., 2014).

• Systematic maintenance, i.e. pre-scheduled maintenance plans.

• Proactive maintenance, i.e. current parameter-based condition maintenance.

• Corrective (reactive) maintenance, i.e. after the fault is automatically and
evidently detected.

• Predictive maintenance, i.e. the maintenance is conducted to prevent the fault
progressing into system failure after the potential fault is forecasted.

• Preventive maintenance (condition-based), i.e. planning annually scheduled
maintenance based on previously collected fault information.

Obviously, for all maintenance approaches, except Systematic maintenance meth-
ods, fewer maintenance plans are conducted using the fault information. The mod-
ern generation of maintenance strategies aims to reduce human intervention by im-
plementing hardware or software redundancy on the wind turbines to automatically
detect the faults based on collected and analyzed data and, consequently, to re-
duce/remove the fault effects.

Hardware redundancy involves equipping the components such as sensors and
actuators, with physically identical counterparts to generate the so-called residual
which contains the possible fault information. This approach increases weight,
occupied space, data acquisition complexity and, consequently, final design cost.
These issues are very problematic for offshore wind turbines. In contrast, software
redundancy or MBFDI techniques have been developed on wind turbines during
the last decade to overcome the aforementioned problems (Chen et al., 2011b), in
which instead of implementation of extra costly physical components, the model of
the operational wind turbine is used to generate the duplicated signals and, accord-
ingly, residuals. The inaccurate measurement of wind speed variation, consequent
unknown aerodynamic torque, high noise contents on sensors and non-stationary
operational dynamic behavior, are the main challenges of MBFDI of wind turbines
(Zhang et al., 2011; Tang et al., 2014). So, in this section, the MBFDI techniques,
which have already been applied on the wind turbines, are reviewed, for the faults
summarized in Tables 2.1 and 2.2.

Remark 2.1. There exist other faults in the wind turbine structure which are not
mentioned in Table 2.1. For instance, degradation of drive train lubrication oil
which leads to high bearing temperature and, consequently, lubrication oil aging.
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TABLE 2.1: The wind turbines fault characteristics.

Components Symptoms Category Severity

Pitch sensor
Biased, gained,
fixed, and no output

Sensor fault LowRotor Sensor
Generator Sensor
Generator and con-
verter

Offset generator
torque bias

Actuator fault Medium

Pitch actuator Pitch angle bias
Generator and con-
verter

Increased time delay

System fault

High

Pitch actuator Pump wear High
Pitch actuator High air content in

oil
Medium

Pitch actuator Hydraulic leakage High
Drive train Wear and tear Medium
Blade aerodynamics Debris build up Medium

TABLE 2.2: The wind turbines fault consequences.

Components Consequence Deviation time

Pitch sensor Poor power optimization
and regulation in partial load and
full load regions, respectively.

MediumRotor Sensor
Generator Sensor
Generator and con-
verter

Non-optimum power production.
Fast

Pitch actuator
Poor power regulation,
uneven aerodynamic torque,
and excited structural load.

Generator and con-
verter

Slow generator torque control
and non-optimal power production. Fast

Pitch actuator
Slow pitch angle adjustment and
consequently poor power regulation.

Medium
Pitch actuator Slow
Pitch actuator Medium
Drive train Increased vibrations of drive train. Very slow

Blade aerodynamics

Out of designed aerodynamic.
relation (Non-optimal
power production, poor
power regulation).

Very slow
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Also, due to wind gusts and consequent temporary misalignment of rotor and gen-
erator shafts, the bearings and gears are damaged. Blade cracks, bearing wear and
spalls, gear teeth cracks, generator winding damage and overheating, are some
other reported wind turbine faults. Condition monitoring methods based on Super-
visory Control and Data Acquisition (SCADA), structural health monitoring tech-
niques, frequency spectrum analysis and vibration signal processing are the main
approaches to detect these aforementioned faults (Zaher et al., 2009). Fourier trans-
formation analysis (Zhang et al., 2012), wavelet method (Lu et al., 2012), manifold
learning (Tang et al., 2014), support vector machines (Wenyi et al., 2013), ther-
mography, strain measurements and acoustic monitoring (Hameed et al., 2009) are
some examples of condition monitoring techniques. All these methods can be cate-
gorized as signal-based FDI and there are rich reviews on applying these methods
on wind turbines (Hameed et al., 2009). So these methods are not repeated here.
On the other hand, yaw actuator faults, whether actuator malfunction or a stuck
brake is not considered, because the yaw mechanism is mostly considered as an
on/off actuator and, accordingly, inactive (Odgaard et al., 2013a).

The most challenging issue, which should be considered in wind turbines FDI
schemes, is that the wind speed is poorly measured by the anemometer and, actually
wind speed can be considered as the disturbance. On the other hand, the aerody-
namic nonlinearities of wind turbines should be taken into consideration (Odgaard
et al., 2009a). Also, FDI schemes should be robust against the considerable noise
content of sensor measurements. Finally, fault severity should be taken into account
to design the FDI schemes in such a manner to be more sensitive to the more severe
faults. Accordingly, the predefined detection time (DT) is given. In (Odgaard et al.,
2009a), for different fault sources of wind turbines DT is stated as, sensor faults DT
should be less than 10 sampling times. For converter faults DT should be less than
5 sampling times. For the pitch actuator dropped pump pressure DT should be less
than 8 sampling times, and for pitch actuator high air content DT should be less
than 100 sampling times. No given DT is required for increased drive train friction,
as it just has to be detected. Finally, the other specifications of FDI schemes include
the reduction of false detection and missed (not detected) faults, which need to be
kept at a reasonable level (Odgaard et al., 2013b).

There are many MBFDI methods implemented on wind turbines in the last decade
to detect a variety of faults. Accordingly, to have a comprehensive and fruitful re-
view, initially the FDI methods are categorized systematically. In this regard, the
first and most important step is the mathematical description of the wind turbine
which then determines appropriate FDI schemes. It is beneficial to consider the
whole nonlinear model of the wind turbine, but it leads to more complicated FDI
structures. On the other hand, the linearized model is not completely consistent with
the nonlinear one. Accordingly, other modelling approaches are proposed to cope
with the nonlinearity and take advantage of linear FDI methods, including LPV and
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fuzzy Takagi-Sugeno (TS) modellings, which have shown significant characteris-
tics. Consequently, different FDI schemes have been adopted for the modelling on
which basis this section is structured, which are summarized in Figure 2.2. Ac-
cordingly, the most applicable FDI methods of wind turbines are reviewed in this
section. Thereafter, to consider FDI methods from the wind turbine point of view,
the reviewed methods are categorized and summarized for each of the wind turbine
components.

FIGURE 2.2: FDI methods applied on wind turbines.

2.1.1 Wind turbine model representation for MBFDI purposes

The modeling framework of wind turbines leads to different applied FDI methods.
The whole nonlinear model of the wind turbine including faults, provides the best
framework, on which basis, the FDI methods can be developed. This nonlinear
model is precisely given in Chapter 3. Indeed, the nonlinear model is able to ac-
curately represent the wind turbine behavior (Badihi et al., 2017). However, as
the MBFDI methods have been mostly developed for linear models, the linearized



20 Chapter 2. Literature Review on Wind Turbines FDI and FTC design

model of the wind turbine has dominated the recent research scope (Odgaard et al.,
2013a). Nevertheless, inconsistency between behaviors of the linearized model and
the highly nonlinear wind turbine, is significant, which may be seen mistakenly as
the faults. So, to have more accurate model representation as well as to take ad-
vantage of already developed FDI methods, two modern wind turbine modelling
frameworks have been recently proposed, which are briefly introduced here.

LPV modelling

LPV framework to model the wind turbine has emerged in the last decade (Sloth
et al., 2010). In this framework, the wind turbine model is linearized around several
operational points. Accordingly, throughout the operation, a set of linearized mod-
els is adopted and, according to the estimated operational point, the proper model
is chosen. Indeed, as wind speed varies, aerodynamic torque is variable, which
leads to variation to the state space model representation. So, for different wind
speeds, different linearized models are obtained. Consequently, having all possible
linearized models as the feasible dynamic descriptor set, leads to LPV wind turbine
model representation. This provides proper design freedom to achieve robust FDI
performance.

Fuzzy TS modelling

In this approach, to avoid the complex nonlinear mathematical description, mul-
tiple linearized models are used (Simani et al., 2015a). Then, fuzzy if-then rules
are defined based on the expert’s knowledge which combine all the linear models,
utilizing the TS prototype to take the uncertain and time-varying operating range
of the wind turbine, into consideration. The wind turbine measurements are used
to estimate fuzzy TS prototypes parameters. Also, in this approach, regarding FDI
design, the residual generators can be designed as fuzzy prototypes. On the other
hand, different controller design or FDI methods can be sought in this framework.

Remark 2.2. As the LPV and fuzzy TS modelings lead to linear models with com-
putationally complicated structures, in this thesis the whole nonlinear model of
wind turbine is used to have most similarity to the real industrial wind turbines and
meanwhile, avoid any extra complicated procedures.

2.1.2 Applied MBFDI methods on wind turbines

In this section wind turbines FDI methods with different fault sources are briefly
introduced.
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Residual-based wind turbines FDI

The most commonly adopted model-based residual generation for FDI purpose are
observer design and parity relation methods (Odgaard et al., 2009b), in which the
faults with different sources are detected. In these methods, despite physical redun-
dancy techniques, the duplicated signal can be obtained via mathematical models
of the wind turbine, eliminating the need for any redundant physical components.
Consequently, the residual signal is constructed, by comparing the original mea-
sured signal and the extra duplicated one, which carries any probable fault informa-
tion. Accordingly, by adopting an appropriate residual signal evaluation, the fault
is detected (Wei et al., 2010). It should be noted that using mathematical models
is also known as analytical redundancy relations which are obtained by structural
analysis. The widely-exploited residual evaluation methods are simple geometric
logic (e.g. threshold check), statistical scheme (e.g. statistical feature extraction),
and Bayesian approaches. In the first approach, an adaptive or fixed threshold is
selected, from which if violate the faults are detected. The high noise contents of
wind turbine measurements, operating in harsh remote environments, may lead to
false detection. Indeed, the disturbance contents on the constructed residual signal
may cause the residual signal to increase above the designed threshold, while no
faults have occurred (Odgaard et al., 2012c). On the other hand, selecting too large
a threshold to avoid false detection, some faults with small effect of the residual are
not detected, which may yet cause major operational deficiency of the wind turbine,
which yields the missed detection problem. So, statistical features of the residual
signal can be considered to provide more accurate fault evaluation. Generalized
likelihood ratio test, cumulative variance index and the use of up and down coun-
ters, are some of the most utilized methods to extract fault information from the
residuals. Bayesian inference method, as another residual evaluation scheme, will
be introduced, separately.

Parity space approach

The parity residual generation approach is one of the most obvious and, accord-
ingly, applicable methods, adopted on the whole or part of the wind turbine to fulfill
FDI requirements. In this approach, the wind turbine is equipped with the identi-
cal mathematical model, implemented as a computer simulation. This model is fed
with the same inputs as the wind turbine. In the fault-free case, both the wind tur-
bine and the model, generate the same outputs. Accordingly, comparing these two
outputs, the residual signal is constructed, which deviates considerably from zero
in the case of fault occurrence. This approach is illustrated schematically in Figure
2.3. In (Pisu et al., 2011) the parity equations are utilized to detect and isolate faults
in the blade pitch actuator and drive train. Considering the highly nonlinear wind
turbine dynamic behavior and variable operation points, it is very difficult to ac-
curately implement the whole wind turbine mathematical model. Also, the design
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FIGURE 2.3: Parity based residual generation approach.

of different models for each well-known subsystem may increase the complexity
of the final scheme. The wind speed is not accurately measurable. In Figure 2.3,
it is obvious that the wind speed is one input to the wind turbine, which should
be identically fed into the wind turbine model to have an accurate residual vector,
which is only sensitive to the faults. So, the wind speed should be either accu-
rately measured or estimated. Different measurement or estimation of wind speed
approaches have been reviewed in (Jena et al., 2015) and are not presented here.
On the other hand, in the case of offshore wind turbines, the unmeasurable sensor
noise and environmental disturbances are considerable and inevitable. So, in (Pisu
et al., 2011) an appropriate filter was designed to make the residual robust against
noise and disturbances, while yet being sensitive to the considered faults. Also, in
(Agarwal et al., 2014) an adaptive threshold was designed to accurately evaluate the
constructed residual signal of the wind turbine to eliminate false detection due to
noise content on the residual.

Observer design approach

The accurate residual construction can be done by design of an appropriate observer
to be just sensitive to the considered faults. Indeed, in this approach the residual sig-
nal is decoupled from the unknown inputs, whether wind speed or noises (Wei et al.,
2008). So far, reviewing the literature, the applied observer design of the wind tur-
bine includes various types of Kalman filter design (Dey et al., 2015) and unknown
input observer (UIO) design (Odgaard et al., 2009b). The observer design of the
wind turbine, similar to any other dynamic system, comprises a parallel dynamic
system alongside of the wind turbine to estimate the whole/part of the wind turbine
states. In contrast to the parity approach, in the observer design, the observation
error is fed back into the dynamic system to reduce the error, adopting a proper
observation gain. For example, using the Kalman filter, as the optimal observer, the
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reduction of wind turbine sensor noise on the observed states, is guaranteed, opti-
mally (Dey et al., 2015). Consequently, using the observed states, the residual signal
is constructed. This approach is depicted in Figure 2.4, in which it is still needed to
have an estimation of wind speed. It should be noted that the Kalman filter approach
is used in Chapter 7 for the drive train sensors FDI. The main disadvantage of the
observer-based FDI methods is that the whole linearized model of the wind turbine
should be used to take advantage of well-developed linear observer design theories
(Shi et al., 2015). Recently the sliding mode observer has shown some promis-
ing results to be implemented on the whole nonlinear model of the wind turbine
(Pöschke et al., 2014). In (Chen et al., 2013) the observer design is conducted on

FIGURE 2.4: Observer-based residual generation approach.

the LPV model of the wind turbine to have more similarity to the nonlinear model,
which shows acceptable FDI performance for different fault scenarios. In (Shi et al.,
2015), an extended observer on LPV model of wind turbine was designed to esti-
mate system states and fault signals simultaneously. Also, via H∞ optimization the
robustness of the observer was improved against additive disturbance. Similarly,
in (Chen et al., 2011b), for disturbance decoupling and, meanwhile, to generate
the optimal residual signal with respect to sensor noise, the Kalman filter was aug-
mented as the observers. A bank of several observers was proposed in (Odgaard
et al., 2012b), each of them being sensitive to only one fault and robust against the
other faults. So, for the fault signature analysis on the observers, the FD as well
as isolation are fulfilled at the same time. In (Dey et al., 2015) the performance of
Kalman filter, bank of observers and parity based residual generation, are compared.
It should be noted in (Sanchez et al., 2015; Casau et al., 2015) that a new observer
design scheme is proposed for wind turbine FD, known as interval observer design,
for a set of valid models using the so-called set-membership approach.

UIO is an improvement of the ordinary observer scheme to eliminate the need for
wind speed estimation. In UIO, the observer dynamic system is totally decoupled
from external unknown disturbances, i.e. wind speed, by adopting proper adaptive
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observer gain, as shown in Figure 2.4. In this scheme, the wind turbine states are
observed optimally, and accordingly, the disturbance effect on the residual signal is
minimized. In (Odgaard et al., 2009b), the wind turbine sensor faults are detected
with the UIO based approach.

Fault estimation

In this approach, a designated estimator of faults is used to detect and identify fault
occurrence. Also, an estimator bank can be designed to isolate the faults with dif-
ferent sources. Each isolation estimator is designed for a specific fault. Despite
the observer approach, in the estimation techniques, the fault information is directly
extracted. The main step in the estimator design is the selection of design param-
eters. Indeed, in the case of proper design parameter selection, the need for the
threshold is eliminated (Zhang et al., 2011). In Figure 2.5, the fault estimation is il-
lustrated schematically. The estimator structure is designed as a dynamic system or
static estimator such as the least squares filter (Shi et al., 2015). It should be noted
that considering the nonlinear dynamics of wind turbines and different disturbance
sources, the adaptive dynamic type estimators are dominating most recent studies
(Georg et al., 2014). So, this approach is used in this thesis to estimate the faults
in Chapters 5 and 6. The advantage of the adaptive estimator is that the robust-
ness of FDI against the noises and disturbance is theoretically guaranteed, which is
a promising characteristic to reduce the false detection rate (Simani et al., 2014).
The most recent fault estimator design is the fuzzy sliding mode estimator, whose
application of the wind turbines FDI is studied in (Schulte et al., 2015).

FIGURE 2.5: Fault estimation diagram.
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Evolutionary algorithms and artificial intelligence

Evolutionary algorithms and artificial intelligence for wind turbines FDI design, are
mainly categorized in two different approaches, including, input-output representa-
tion, and fault feature generator (classifiers), which are briefly introduced here.

Input-output representation:

Neural networks provide one of the best frameworks to represent the nonlinear
and disturbed behaviour of wind turbines (Simani et al., 2012b). This approach
is illustrated in Figure 2.6, in which the designed neural network is fed with ac-
tual/estimated inputs, the same as the wind turbine, to generate the duplicated out-
puts. It should be noted that the wind speed can be estimated in the neural network
as well as the duplicated outputs. The neural network can be either designed for a
whole wind turbine or dedicated to only one subsystem. The multi-layer perceptron
networks and GFRFNN are the most commonly adopted ones for FDI purpose. The
main step in this approach is the off-line training of the neural network to tune the
neuron weights to the optimal ones. Also, an online fast learning adaptive train-
ing approach can be conducted, which is called ANFIS that takes advantage of the
neural network’s robustness, learning and training, and FIS interpretability. In both
offline and online schemes, a properly large enough fault-free dataset should be
available as a priori knowledge to train the network for the fault-free case. Accord-
ingly, in some researches, this approach is called the data-driven learning algorithm.
Finally, any significant incompatibility between wind turbine output and the corre-
sponding one from the neural network, is interpreted as a fault. The application
of this approach on wind turbines FDI has recently emerged (Qiu et al., 2012) and
applied on different wind turbine components e.g. gearbox and generator faults
(Garcia et al., 2006) and pitch faults (Chen et al., 2011a).

Fault signature generator:

In contrast to the previous approach, the fault information is directly extracted
or inferred in this approach, with the design of an accurate priori knowledge-based
network, e.g. ANFIS or FIS, as illustrated in Figure 2.7. Accordingly, the expert’s
knowledge is needed to be implemented in the design, whether as the numerical
rules or fuzzy if-then linguistic rules. For example, the rule “If generated power
is high at low wind speed region, it may imply possible sensor fault” can be used.
These rules are also called the classifiers (Simani et al., 2011b). One of the best
advantages of fuzzy rules is that due to the fuzzy membership representation, the
rough measurement of wind speed, made by the anemometer, can be used in the
design. In (Giebhardt, 2006), classification methods and evolutionary algorithms
are utilized for rotor imbalance/aerodynamic asymmetry classification detection.
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FIGURE 2.6: Neural network input-output based FDI.

Set-membership approach

In this approach, a set of mathematical models of a wind turbine is utilized to check
the system consistency. The benefit of this approach compared to residual-based
FDI approaches, is that a set of valid models of the wind turbine is being utilized.
In this approach, model uncertainties and noises are assumed to be unknowns, with
an upper bound, known as a priori. Due to unmolded dynamics, noise and uncer-
tainty on the wind turbine, it is possible that the input/output data is consistent with
more than one model (Tabatabaeipour et al., 2012). So, an active model diagnosis is
adopted in which, at each time step taking the model falsification concept into con-
sideration, an auxiliary input signal is fed into both the wind turbine and models set,
to find the correct model out of the predefined set. This concept of auxiliary signal
is used in Chapter 5. Then, the consistency of the current input/output data and the
model is checked to detect the possible faults (Blesa et al., 2011). This approach
guarantees that the valid model of the wind turbine is never falsified. Additionally,
instead of the whole wind turbine, the set-membership approach can be used only
for one subsystem to check only one parameter, i.e. the feasible parameter set is
defined instead of the valid model set (Rotondo et al., 2012). An advantage of the
set-membership approach is that the need for the threshold is eliminated while the
false alarm and missed alarm are avoided (Casau et al., 2015). The conservatism
of this approach, because of uncertainty propagation and over-approximations re-
quired in the set computations, is the main drawback. This approach is illustrated



2.1. Wind Turbines FDI Design 27

FIGURE 2.7: Fuzzy fault feature generation diagram.

in Figure 2.8. The combination of set-membership approach and observer design
emerges as a new and promising approach for wind turbine FDI (Sanchez et al.,
2015).

Bayesian approach

This approach is recently formulated as a model-based wind turbine FDI design
(Chen et al., 2012), in contrast to its traditional application in signal-based condi-
tion monitoring. In this regard, in the Bayesian framework, the residual signal is
evaluated to detect the faults. By taking advantage of Bayesian reasoning, the ex-
pert knowledge about the wind turbine structure can be directly augmented into the
FD scheme (Fernández-Cantí et al., 2013). Indeed, the evaluation of the generated
residual signal is done as the fault probability extraction in the Bayesian framework.
The fault probability is adopted to detect the sensor faults in Chapter 7. Accord-
ingly, the need for threshold evaluation of the residual signal is eliminated. Also,
using the valid measurement, the fault can be predicted considering Bayesian fault
probability, e.g. wind turbine bearing fault prediction (Herp et al., 2018). As a re-
cent and promising approach for the highly stochastic system, in (Fernández-Cantí
et al., 2013), the wind turbine set-membership FDI is reformulated in a Bayesian
framework, for feasible parameter set determination.
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FIGURE 2.8: Set-membership FDI approach.

2.1.3 Wind turbine components FDI design review

In this section, the methods which have been introduced in section 2.1.2, are cate-
gorized based on their application on different components of the wind turbine. The
aim is to critically review the methods to enable the readers to choose appropriate
methods for further study.

Wind turbine sensor FDI

The most commonly applied FDI methods are focused on the wind turbine sensors.
Especially, in the case of the offshore wind turbines operating in harsh environment,
it is more likely that the sensor measurements are corrupted with faults (Wei et al.,
2010). On the other hand, as the sensor outputs are mostly utilized in the feedback
controller scheme, the whole wind turbine performance may be downgraded from
the desired one, if there is a fault on the corresponding sensor (Wei et al., 2008).
So, in this section the FDI methods of wind turbine sensors are reviewed.

The pitch sensor FDI is studied in (Wei et al., 2008), as the pitch angle control
is a vital scheme for power regulation of wind turbines. The residual signal is gen-
erated using the physical redundant sensors and evaluated by considering mean and
variance changes. In the parallel loop, the model-based pitch sensor is utilized to
enable parity relation construction to isolate the detected sensor fault. Indeed, it is
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aimed to identify which pitch sensor is faulty. Although, the combination of avail-
able physically redundant sensors and MBFDI approaches have shown promising
results, but to remove the need of any extra sensor, the observer-based FDI design
is one of the best alternatives (Rothenhagen et al., 2009). It should be noted that the
major problem in observer design for wind turbines is the considerable noise con-
tent of sensors and the poor measurement of wind speed. The former one reduces
the observer accuracy (Shi et al., 2015), while the latter one is needed for drive train
observer design(Odgaard et al., 2009b). To increase the observation performance,
in (Liu et al., 2008; Wei et al., 2008) H−/H∞ optimization is addressed to mini-
mize the noise effect. On the other hand, the application of the Kalman filter, as
the optimal observer, has been considered on wind turbine sensors, in which it is
guaranteed that the noise effect is minimized. In (Wei et al., 2010), the Kalman
filter is designed to detect and isolate pitch sensor faults. Similarly, (Chen et al.,
2011b), the Kalman filter is used for the residual generation which is evaluated with
the generalized likelihood ratio test and used for pitch and drive train sensors, while
the redundant sensor is needed for fault isolation. Also, the applied aerodynamic
torque is considered as a disturbance and the designed Kalman filter has proven to
be robust against wind speed variation. The observer design has been sought in
different modelling frameworks. For example in (Negre et al., 2011), the power
sensor and generator speed sensors are considered and the observer is designed for
the LPV wind turbine model, but the sensor noise is not considered. In (Shi et al.,
2015), the extended observer for the whole wind turbine model is designed in the
LPV framework to estimate the states as well as faults at the same time for pitch and
drive train sensor faults using Linear Matrix Inequality (LMI). So, this approach can
be considered as an estimation method. Also, the wind speed is considered as an
unknown disturbance and the proposed observer is insensitive to it. The fuzzy TS
framework has been considered in several papers to design the sensor FD methods.
In (Kamal et al., 2013) for low wind speed regions and in (Simani et al., 2014)
for high-speed wind regions, the generator current sensor fault is detected via an
observer design in the fuzzy TS framework. Similarly, in (Kamal et al., 2014a;
Badihi et al., 2014; Kamal et al., 2014b), the generator voltage sensor, pitch sensor
and generator speed/power sensors, respectively, are considered and fuzzy TS fault
observers are designed.

Regarding the unknown wind speed variation, UIO design is an appropriate
choice to remove the need for wind speed estimation, especially considering drive
train sensor FD (Odgaard et al., 2012b). In this approach, the wind speed variation
is decoupled from the designed observer. For example, in (Odgaard et al., 2010;
Odgaard et al., 2009a; Odgaard et al., 2009b) UIO is designed for drive train sensor
FDI including rotor speed and generator speed sensors. Observer bank design is
a suitable approach to detect and isolate the sensor faults at the same time. Each
observer is designed so as to be sensitive only to one given fault and robust to other
faults. In (Odgaard et al., 2012b), the UIO bank is designed for a set of sensor faults
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including rotor speed, generator speed and wind speed sensors. Finally, more accu-
rate evaluation of the residual signal to detect sensor faults can be conducted with
set-membership check or Bayesian inference. In (Tabatabaeipour et al., 2012), the
pitch and rotor sensor faults are considered and, utilizing the set-membership ap-
proach, the need for threshold checking is removed and also, no positive false alarm
is produced. In (Chen et al., 2012) the relationship between wind turbine failure
root causes and symptoms are used with a Bayesian Network for pitch sensor faults
using SCADA data to reduce false alarms and missed fault rates.

Pitch actuator FDI

The power regulation of wind turbines is essential for high wind speed situations,
i.e. to retain the generated power at nominal power, by adjusting the blade pitch an-
gle to control the applied aerodynamic torque and consequently, rotor speed (Vidal
et al., 2015). Also, it is aimed to feather the wind turbine by pitching the blades into
the desired orientation to bring the wind turbine to a stop, in dangerous wind speed
situations. So, the pitch actuator plays a vital role to accurately tune the blade pitch
angle. Accordingly, the presence of faults on the pitch actuator leads to deviation
of pitch angle. Pitch bias, effectiveness loss and dynamic change are considered as
the most common pitch actuator faults. In this section the considered FDI methods
of the pitch actuator are reviewed.

As the pitch actuator fault-free dynamic behavior is a linear and known equation,
the parity relation can be used to generate the residual. As the measured pitch angle,
to be used in the parity equation, is contaminated with measurement noise, in (Wu
et al., 2016) the least square residual evaluation with sliding data window is used
to evaluate the residual signal and detect dynamic change while minimizing noise
effects. On the other hand, dynamic change can be considered as the model uncer-
tainty and accordingly, in (Pisu et al., 2011) the robust residual filtering and parity
equations, are combined to accurately detect the pitch actuator dynamic change for
each blade. Also, the pitch sensor fault effect is distinguished from dynamic change,
by considering the fault-end-effect, i.e. fault signature.

The pitch sensor noise, dynamic change and bias are challenging to be separated
at the same time, which directs the recent pitch actuator FDI studies. In this regard,
observer design is a potentially suitable approach. In (Donders et al., 2002) the
Kalman filter observer is designed to detect the pitch actuator bias. Also, in (Qiao
et al., 2008), the H−/H∞ optimization method is augmented in the observer design
to generate the optimal residual. Regarding the noise effects, in (Chen et al., 2013)
the observer is designed with adaptive gains to detect dynamic change with sensor
noise and fault. It is shown that the adaptive observer is only sensitive to dynamic
change by attenuating noise and removing the sensor fault effect. In a similar man-
ner, in (Lan et al., 2018), the sliding mode observer is designed to detect dynamic
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change with an adaptive hierarchical method to facilitate the real-time implemen-
tation. Also, in (Georg et al., 2014) the sliding mode observer is designed for the
wind turbine fuzzy TS model to detect any increased time delay in the electrical
pitch actuator.

The application of artificial intelligence and soft computing using SCADA data
to detect pitch actuator faults have shown promising results to avoid the overly
complicated FDI method. In (Chen et al., 2011a) using neural networks, a pat-
tern recognition structure is proposed to detect pitch actuator faults. On the other
hand, in (Qiu et al., 2012) the Bayesian fault probability is obtained to evaluate the
SCADA alarm data and detect potential pitch actuator dynamic change.

Generator and converter FDI

The maximum power point tracking of variable speed wind turbines is achieved by
regulating the electrical generator torque using converter current control. The gen-
erator torque control leads to adjusting the generator and rotor speeds to the desired
values such that consequently, the power coefficient is maintained at the maximum
possible one. Accordingly, the generator faults including bias and dynamic change
cause the deviation of operation from the intended one. So, it is vital to detect and
isolate the generator faults. The large variety of wind turbine manufacturers in-
evitably result in different manufacturer-specific wind turbine generator technology
(Abuaisha, 2014). Accordingly, it is fruitful to consider the generator FDI methods
in the system control level, for the various different electrical generator topologies,
as outlined in this section. It should be noted that, in most of the literature the
generator fault is modelled as an additive bias.

In (Negre et al., 2011), a wind turbine LPV model including uncertainty, uses an
LPV observer to generate the residual and adopting the adaptive threshold method,
the generator torque bias is detected. In (Dey et al., 2015) three different genera-
tor FDI schemes are stated. In the first scheme a cascade of two Kalman filters is
utilized for alleviation of the nonlinear aerodynamic torque effect. In the second
scheme, a bank of dedicated observers is used. The third scheme is designed us-
ing a H∞ filter, with parity equations by considering the nonlinearity as a bounded
disturbance. Also, in (Blesa et al., 2014), by adopting interval observers and con-
sidering the noise and modelling errors as bounded unknowns, the generator fault is
detected using online analysis of observed fault signatures and comparing them with
the theoretical ones obtained using structural analysis. The fault size is estimated
based on the batch least squares approach. The parity relation, using analytical
redundancy relations and interval observers, for unknown and bounded uncertain
wind turbine model, is developed in (Sanchez et al., 2015). On this basis, using the
set-membership approach, the generator bias is accurately detected. Similarly, in
(Tabatabaeipour et al., 2012), a consistent set with measurements is generate using
the set-membership approach. Model uncertainties, noise, and uncertainties on the
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torque coefficient and generator fault are included in the wind turbine model. An
effective wind speed estimator is proposed. For representing the consistent set of
models with measurements, a matrix zonotope is used, which results in a compu-
tationally efficient scheme. The results confirm the effectiveness of the proposed
method compared to other methods for the same fault scenario. The approach does
not need to use threshold design, which is an outstanding advantage of the proposed
method. In (Simani et al., 2015a), the approximation of uncertain models and man-
agement of noisy data are accomplished using fuzzy theory. The residual signal,
which is only sensitive to generator faults, are generated using fuzzy TS prototypes.
The data-driven diagnosis strategy, based on fuzzy TS prototypes is proposed in
(Simani et al., 2011a) for converter FDI with actuator and sensor faults. The gener-
ator torque reliable regulation, including both generator uncertainties and faults is
studied in (Badihi et al., 2015), and two different schemes are presented for this aim.
Firstly, a FIS is proposed for parameter adaptation, without any prior knowledge of
the generator faults. In the second approach fuzzy TS identification is exploited, to
develop an integrated FDI scheme to detect potential generator faults in online diag-
nostic information. The adaptive fault estimation is exploited in (Zhang et al., 2011)
for generator and converter FDI. Also, in (Simani et al., 2014) a two-dimensional
polynomial is suggested to estimate the power coefficient in an analytical form.
Consequently, the adaptive filter is obtained via the nonlinear geometrical approach
to detect the generator faults.

Drive train FDI

The drive train dynamic change may happen very slowly but it leads to undesirable
oscillation which may advance into total breakdown which causes long and costly
downtime (Odgaard et al., 2009a). So, it is very beneficial to detect this fault in
time. It should be noted that the most of the developed FDI methods applied to
the drive train are categorized as the signal-based ones (Chen et al., 2011a), where
several significant literature reviews can be found in (Kabir et al., 2015; Odgaard
et al., 2013b; Badihi et al., 2013; Hameed et al., 2010; Márquez et al., 2012; Pour-
mohammad et al., 2011). Accordingly, in this section only the model-based FDI
methods are considered.

In (Pisu et al., 2011) the parity relation is designed on the drive train to generate
the residual signal and, via robust filtering the residual signal is evaluated to detect
drive train dynamic change. Also, the wind speed is used in the structure of parity
relation assuming that the wind speed estimation is separately available, and it is not
affected by the fault occurrence which is generally not true. On the other hand, the
measurement noise is not considered. Accordingly, in (Cao et al., 2016) the Kalman
filter is utilized to minimize the noise effect and detect the drive train efficiency loss
due to wear and increased gear friction. The dynamic change may be considered as
the change in the resonance frequency and damping ratio of the drive train. In this
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regard, in (Odgaard et al., 2014), this change is detected by designing a filter and
using only the generator speed measurement. The uncertainties on the drive train
dynamic response, i.e. unknown aerodynamic torque, and high sensor noise, have
led to the development of more advanced FDI methods on the drive train. In (Garcia
et al., 2006), an artificial neural network was designed for drive train FDI by train-
ing the network with a large amount of fault-free data to attenuate uncertainty and
noise effects. Also, in (Schulte et al., 2015; Kamal et al., 2012) utilizing fuzzy TS
prototype modelling, the drive train fault was detected by designing a sliding mode
observer with adaptive gain. Also, the fault size was identified using an equivalent
output injection method.

Aerodynamic characteristic change

Debris build-up and blade erosion reduce the blade aerodynamic efficiency. As a
result, the captured aerodynamic torque and power are decreased. Also, the uneven
oscillation of blades is a reported issue of this change (Johnson et al., 2006). On the
other hand, the power regulation by pitch adjustment of the blades is not satisfacto-
rily conducted due to the changed aerodynamic profile of the blades. So, it is very
important to foresee the aerodynamic characteristic change in the controller design
and to detect this potential change, which is considered in Chapter 6. It should be
noted that this change is difficult to detect because it is challenging to determine if
the blade’s debris/erosion is the reason for the reduced power generation or simply
the wind speed is lower than the measured/estimated one (Borcehrsen et al., 2014).
On the other hand, as debris build-up happens slowly on the blades, it is mostly
assumed that this change lies within the annual maintenance/inspection of wind tur-
bines and the blades can be simply cleaned/replaced. So, the literature focusing
on this change is still limited. In (Tabatabaeipour et al., 2012), the blade’s aerody-
namic change is modelled as the uncertainty on the torque coefficient. Accordingly,
a consistent set of models is generated using measurements and the available wind
turbine model, which includes uncertainties and noise, and by means of the set-
membership approach. This set represents all possible states in which the system
can exist if it is not faulty. If the current measurement is not consistent with this
set, a fault is detected. Also, it is stated that when the torque coefficient change is
introduced, some faults are not detectable. Consequently, in (Badihi et al., 2017)
instead of the individual wind turbine FDI, the blade debris build-up and erosion are
detected at the wind turbine farm level and it is shown that this change is easier to be
detected and accommodated at this scale. This is achieved by comparing the output
powers of the wind turbine operating under almost the same wind conditions. The
nonlinear wind turbine model is obtained by fuzzy TS modelling. Also, the FDI
scheme comprises a rule-based threshold test technique for residual evaluation.
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2.2 Wind Turbines FTC design

FTC schemes are designed to maintain acceptable performance and stability of the
wind turbines as close as possible to the fault-free conditions when faults occur, and
to avoid the need for extra costly maintenance and unwanted shut downs. In fact,
FTC aims to remove the fault effects and keep the performance objectives at their
desirable intended levels, despite the presence of either a fault, wind speed varia-
tion or uncertainty. It should be noted that the fault tolerant capability can be either
designed as an additive feature to the baseline controller or integrated into the base-
line controller design. The former approach is adopted in Chapter 7 and latter one is
adopted in Chapters 5 and 6. FTC techniques are normally divided into two different
schemes, i.e. active and passive. The main difference between these two schemes
is that active FTC needs the timely and accurate FDI information to be fed into the
controller structure, i.e. to adjust the available baseline controller to the current state
of faults to compensate fault effects completely and maintain system stability and
keep the performance objectives level as for the fault-free case. Also, FDI informa-
tion can be used in subsequent prescheduled maintenance plans. However, it may
introduce some delayed detection time and the risk of false/missed detected faults.
In contrast, in passive FTC the baseline controller is predetermined and designed
for both fault-free and faulty conditions. Indeed, the baseline controller is designed
to be optimally robust against a class of presumed faults, considered as the system
uncertainties. The benefit of passive schemes is that the baseline controller is fixed
and neither FD nor CR are needed, which increases the final system robustness.
Even though, it introduces some performance degradation in faulty conditions and
it has limited fault tolerant capability. Stability is not necessarily guaranteed for
the faults other than the considered class of presumed faults (Vidal et al., 2015).
The design of the baseline controller needs to be determined, on which basis the
fault tolerant capability is augmented. Also, the operational objectives are defined
to evaluate the designed FTC performance.

2.2.1 Wind turbines passive FTC

In passive wind turbine FTC design, the risk of false/missed detection is removed.
Nevertheless, this method is not an optimal one and a conservatism is introduced
into the design of the baseline controller. Also, the closed-loop system is not neces-
sarily stable for faults outside of the presumed ones. Indeed, the baseline controller
is optimized for the fault-free case and some degraded performance is guaranteed
when some presumed faults occur.

In (Sloth et al., 2010; Sloth et al., 2011), a wind turbine LPV model is used
in the full load region and utilizing LMI, the baseline controller is proposed to be
robust against model parameter variations, caused by nonlinear aerodynamics and,
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against pitch actuator faults. Also, it is shown that the designed passive FTC has
better performance than an industrial PID controller. The fuzzy TS multimodel is an
appropriate framework, representing the nonlinear behaviour of the wind turbine,
to design the baseline controller which is robust against faults. In (Simani et al.,
2012b) a fuzzy-based framework including if-then rules, is presented to regulate
both pitch angle and generator torque while adding fault tolerance features to the
wind turbine in a passive way, considering pitch and generator sensor faults, pitch
dynamic change and generator torque bias. Also, the proposed controller is easily
implementable, compared to different available strategies. It should be noted that
passive FTC approach is adopted in section 4.4 to improve baseline industrial PID
control in full load region.

2.2.2 Wind turbines active FTC

Active FTC, applied to the wind turbines, can be grouped as the VSA approach and
the CR approach. In VSA the fault information, identified from the FDI scheme,
is fed into a virtual (software) sensor/actuator module, which is placed between the
actual sensor/actuator and the baseline controller, for fault effects compensation in
the sensor/actuator. This can be seen as signal correction in the VSA such that the
effect of the fault is mitigated. This approach is interesting industrially because
the existing the baseline controller needs no modification and thus, can be used in
both fault-free and faulty situations (Rotondo et al., 2012). It should be noted that
this approach is adopted in Chapter 7. For some faults, e.g. system faults in Table
2.1, the fault effects cannot be accommodated via VSA. Accordingly, in the CR
approach the whole/part of the baseline controller is reconfigured to an alternative
controller to guarantee stability and a satisfactory performance. This alternative
controller is obtained by either modification of the current baseline controller pa-
rameters, switching a new controller into the system, or using the available hard-
ware/software redundant components (Simani et al., 2012a; Sami et al., 2012a). It
should be noted that this approach is adopted in Chapters 5 and 6. Accordingly, in
this approach, all available components should be considered in the baseline con-
troller design. This approach shows promising performance for the severe faults.
The VSA for FA and CR on the wind turbine are illustrated schematically in Figure
1.3.

Wind turbines VSA FA

In this section, the VSA FA techniques of wind turbines, are reviewed. It should be
noted that this technique is also known as the signal correction method, as the sig-
nal from the corresponding sensor/actuator fault source is corrected before feeding
into the closed-loop wind turbine system. On the other hand, this FTC technique is
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mostly applied to the sensors of a wind turbine, because the actuator signal correc-
tion may lead to instability, due to inaccurate fault size identification (Blesa et al.,
2014). Also, it is easier to implement the virtual sensor module in practice.

In (Odgaard et al., 2012a) this technique is used to remove the sensor bias faults,
originated in drive train sensors, using UIO to detect the faults. It is illustrated that
these fault effects on the wind turbine operation are severe, as the drive train sen-
sors are fed back into the controller. Also, it is shown that the fault effects can be
completely removed, if the fault size is identified accurately. Similarly, in (Rotondo
et al., 2012), VSA is used for pitch and drive train sensor faults, including both
biased and gained sensor outputs, in which the set-membership approach is used
to detect faults. Also, the generator torque bias as an actuator fault, is accommo-
dated. In (Casau et al., 2012) using a similar approach, in addition to the mentioned
faults, the drive train decreased efficiency due to dynamic change, is detected and
accommodated. The fuzzy TS framework can be used to have more accurate fault
size identification which is used in the implemented VSA module. In (Badihi et
al., 2014) the gained generator speed and biased pitch angle sensors are detected
using the residual signal generated via fuzzy TS modelling and residual evaluation
by adaptive threshold checking. The pitch angle and generator speed are corrected
before the corresponding controllers using the VSA module. Also, in (McMillan
et al., 2007), for wider fault categories, including fixed pitch and gained pitch angle
sensor, drive train sensors, generator torque offset, drive train changed dynamic and
pitch actuator dynamic change, the VSA FA is conducted by correction of the pitch
angle sensor, generator sensor, pitch actuator angle and generator torque signals.
The FD is achieved using a fixed threshold residual evaluation. In (Schulte et al.,
2015), a fuzzy TS sliding mode observer is designed to estimate and consequently
compensate for the actuator faults by modifying the controller output via the vir-
tual actuator. In (Shi et al., 2015) the pitch sensor fault and pitch actuator dynamic
change are estimated through the design of an adaptive extended state observer for
an LPV wind turbine model using LMI. The PID industrial controller is used as the
baseline controller and its output is corrected with the estimated fault information.
Also, the robustness against wind speed variation and model uncertainty, is guaran-
teed by H∞ optimization. In (Sami et al., 2012b), the fuzzy TS wind turbine model
is used and through the design of an extended state observer, the drive train sensor
bias is detected and accommodated by correction of the baseline controller. The
corrected signal is fed into a TS fuzzy dynamic output feedback controller to keep
the performance at the desirable one. In (Simani et al., 2014) the proposed scheme
exploits a robust actuator fault estimation approach based on adaptive filters. The
considered faults are pitch actuator dynamic change, bias and generator torque bias.
Accordingly, the output of the PID controller, adopted as the baseline controller, is
corrected based on the estimated fault information. Finally, in (Badihi et al., 2017),
a very interesting idea is proposed to detect the debris build-up on blades at the wind
farm level. Indeed, through the use of expert-generated fuzzy if-then rules, the gen-
erated power of each wind turbine in the farm is evaluated to detect the possible
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debris build-up. Accordingly, the generated torque is corrected in the VSA module
to compensate for the debris build-up effect and to keep the generated power at the
desirable value. It is worth noting that in the VSA the sensor faults are reasonably
accommodated better than the system and actuator faults (Odgaard et al., 2015).
Also, this scheme has industrial acceptability because of ease of implementation.

Wind turbines CR FTC design

In this section, the CR techniques for wind turbine are reviewed, considering re-
search methods which state that the process and actuator faults are better accom-
modated. Different approaches are categorized as CR, in which, it is aimed to re-
configure whole/part of the baseline controller to compensate for the fault effects.
This reconfiguration is obtained either by adaption of controller parameters, switch-
ing a new controller into the controller structure, or the other available redundant
hardware/software components are used.

In (Yang et al., 2012) a group of model predictive controllers are designed to
accommodate the pitch actuator dynamic change. A Kalman filter is used to iden-
tify the faults and based on the detected fault, an alternative predefined controller
is used to compensate for the fault effect. In (Simani et al., 2012a), modified
Ziegler- Nichols rules are applied to the online adaptive controller, relying on the
least square method with adaptive directional forgetting factor, to adjust the PID
controller parameters of the baseline controller to remove both generator and pitch
actuator faults. In (Fan et al., 2012), a FTC scheme is proposed as a combination of
model reference adaptive control with neural network compensation. Although, the
fault is considered as a bounded additive actuation signal, however, no physically
meaningful fault is considered. In (Sami et al., 2012a), an observer is designed
in the fuzzy TS framework to estimate the generator sensor faults. Also, a robust
estimation of effective wind speed is given. These estimations are used to compen-
sate for the fault effects using a fuzzy TS dynamic output feedback controller. In
(Kamal et al., 2014b; Kamal et al., 2012), by deploying a robust fuzzy scheduler
and multi fuzzy observers, a nonlinear wind turbine controller is design to attenuate
the sensor faults, actuator faults and parameter uncertainties on the overall perfor-
mance. It is desirable to reconstruct and compensate several actuator faults with
one observer. The sliding mode controller design technique is advantageous in this
regard. An adaptive sliding mode observer is designed in (Lan et al., 2018) to esti-
mate the pitch actuator dynamic change and to modify the traditional PID baseline
controller for fault effect compensation. In (Vidal et al., 2015) by combining a dis-
turbance compensator with a controller in the discrete-time domain, pitch actuator
FTC is developed. Fault estimation and discrete-time controller designs are simul-
taneously fulfilled using the disturbance compensator. In (Sloth et al., 2009), the
additional redundant pitch, rotor and generator sensors are considered in the pro-
posed controller, to be deployed when fixed/no corresponding sensor outputs are
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detected. It should be noted that generally the CR techniques are more efficient in
actuator faults than VSA (Odgaard et al., 2015). Recently, the adaptive control is
used to deal with the faults, as a category of the active/passive combination method.
Although, it may be dangerous practically, since this method may mistakenly ac-
commodate faults, for example in critical fault situations, which requires a safety
stop of the wind turbine. Accordingly, if the adaption laws are designed accurately
using expert’s knowledge, the need for CR is removed to have a simple practical
controller similar to passive FTC, and meanwhile, the FDI information is obtained
which can be used to improve the maintenance schedules. On the other hand, no
presumed fixed fault sets are needed, similar to active FTC. In (Habibi et al., 2017c)
adaptive laws are defined as a part of the proposed controller to be used in the
controller structure and compensate actuator fault effects, including pitch actuator
dynamic change, pitch bias and generator torque bias are considered. The adaptive
laws for fault estimation are utilized in Chapters 5 and 6.

In this chapter, the motivation for the available and applied FDI and FTC tech-
niques on the wind turbines were considered and consequently reviewed, focusing
on the need for more reliable wind power generation and lower operational cost.
Indeed, these techniques can assist the wind turbine operation to have desirable per-
formance in both fault-free and faulty situations. The different FDI methods, which
have been already applied to wind turbines, were introduced conceptually. On this
basis, the application of the introduced FDI methods on the FD of different wind
turbine components, was investigated. Consequently, FTC methods were reviewed,
as the second step to fulfil the fault tolerance feature. Accordingly, the techniques
which are used in the rest of this thesis are motivated.
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3 Wind Turbine Operational
Modelling

In this chapter, the theoretical model of the horizontal axis wind turbine is described,
and all subsystems are explained, separately. The possible faults are introduced
which may have different sources, including the sensor, actuator and system faults.
Also, the general operational strategy of the wind turbine is stated, which is to be
achieved using the system controller. Finally, the numerical operation criteria are
introduced to quantify the wind turbine performance. It should be noted that a wind
turbine benchmark model has been proposed in (Odgaard et al., 2009a) including
both faults for which the wind turbine should be reconfigured to continue operation,
as well as for very severe faults which should result in a safe and fast shut down.
This benchmark model has initiated several recent FTC designs, which is used in
this thesis and the model parameters are given in Appendix B, Section B.1.

3.1 Wind Turbine Components

In this section the physical components of a generic HAWT with three-blade model
is introduced, on which basis the system model and operation are described. Ac-
cordingly, in terms of control system level, the HAWT is broken down into subsys-
tems. In Figure 3.1 the typical HAWT components are illustrated and furthermore
the detail of how the components are interconnected (Odgaard et al., 2015) is also
shown.

The nacelle which is located at the top of tower, contains the rotor blade shafts,
i.e. low speed shaft, gear box, high speed shaft, generator and the brake which
acts on the low speed shaft. The blades encounter the wind and rotate the low
speed shaft. Rotor speed is normally increased via a gear box and fed into the
generator, which produces the electrical energy. It should be noted that the hub also
incorporates the pitch actuators. The yaw mechanism, which is located below the
nacelle, consists of an electrical motor to rotate the nacelle and, consequently, to
keep the rotor plane perpendicular to the wind direction, determined by the wind
vane. Also, the anemometer which is located on the nacelle behind the rotor blades,
measures the wind speed roughly (Odgaard et al., 2013b).
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FIGURE 3.1: Wind turbine components (Sloth et al., 2009).

From the control system view point, the HAWT can readily be modelled as a
number of interconnected subsystems. The incoming wind speed encounters the
hub rotor blades, which are responsible for transferring the kinetic energy available
in the wind into the mechanical energy of the rotor shaft. Indeed, the aerodynamic
profile of the rotor blades is the main characteristic of the blades generating energy
from the wind speed. This allows the hub and rotor blades to be combined as the
aerodynamic model, in which the aerodynamic torque and thrust are developed and
applied on the rotor. On the other hand, the drive train model, which connects the
low speed shaft to the high speed shaft and includes the gearbox and bearings, is
used to increase the angular shaft speed, allowing connection to the generator.

In the generator model, incorporating the power system, electrical controllers
and convertor, the mechanical energy is converted into electrical energy which is
then transferred into the grid. Also, it is assumed that the electrical load on the
generator, which is translated as an electrical load torque, is controllable, deploying
an appropriate generator, such as a doubly fed induction machine. The tower model
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is considered as an elastic structure, which is swaying back and forth, i.e. having
bending-wise oscillation, due to the applied aerodynamic thrust on the rotor. In fact,
the tower oscillation changes the relative wind speed, acting on the rotor plane.
Finally, the pitch actuator model is considered to control the pitch angle of the
blades to regulate the applied aerodynamic torque.

In this section, the wind turbine model structure has been illustrated and intro-
duced briefly. Also, the control system subsystems of the HAWT have been de-
scribed, which are formulated in the following sections. In the next section the
wind model is introduced.

3.2 Wind Model

In this section the characteristics of wind speed, as the main driving force of HAWT,
are stated. The wind motion is created because of temperature gradients of the air,
due to uneven heating of the atmosphere by the sun. The wind speed is known to be
a highly stochastic process which has a mean term and a turbulence component. The
mean value of wind speed is reported for different wind turbine farms, averaged over
monthly or daily scales. So, there can be a rough estimation of mean wind speed,
considering wind turbine location as well as yearly date of operation (Bianchi et al.,
2007).

The turbulence component includes all higher frequency fluctuations of the wind
speed around mean values and has a significant impact on aerodynamic loads on the
wind turbine. Although, there have been considerable studies to propose statistical
models for the turbulence components of the wind speed, it is apparent that some
assumptions are still necessary which are not correct in general at each point in
time.

The obstacles in front of each wind turbine, including building, mountains or
even the other wind turbines, reduce the effective wind speed. Also, the ground
friction has a major reduction on wind speed, which has led to increase the modern
wind turbine heights to attenuate this so-called wind shear effect. The result is that
through each rotation of the blades, the effective wind speed varies with the height
of each blade element. There is an accurate mathematical model of wind shear to
embed this effect into the wind speed model. Also, when each blade passes in front
of the tower, the aerodynamic torque is reduced, because the tower can be seen as an
obstacle behind the blade which changes the air flow and consequently, the torque.
This phenomenon is called tower shadow (Odgaard et al., 2015).

The anemometer, located behind the rotor blades at the top of the nacelle, is
measuring the wind speed at that location. It can be concluded then that the rough
wind speed measurement, made by the anemometer, is not an accurate estimation
of wind speed at the rotor plane, acting on each blade. This is because of the above
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mentioned issues and also the temporal and spatial distribution of the wind speed
on the rotor plane. So, in this thesis, the wind speed is considered as an external
and unmeasurable disturbance acting on the wind turbine. This is incorporated into
the design of the controller which does not use the wind speed measurement in the
proposed controller structure.

In this section, the wind speed characteristics have been briefly outlined for the
development of the aerodynamic torque and thrust on the wind turbine. The aero-
dynamic behavior of the wind turbine is modelled in the next section.

3.3 Aerodynamic Model

The aerodynamic profile is the main feature of the blades, which leads to the aerody-
namic torque and thrust acting on the wind turbine and is formulated in this section.
The available kinetic energy in the wind is transferred in to the blades and the low
speed shaft, which are rotating at angular speed ωr. Then the aerodynamic torque,
Ta, applied on the low speed shaft is as,

Ta = 0.5ρaARV
2
r Cq, (3.1)

where, ρa, A, R, Vr and Cq are air density, blade swept area, blade length, effective
wind speed at rotor plane and torque coefficient, respectively. Also, A = πR2. The
aerodynamic thrust on the wind turbine, Ft, which causes the tower to sway back
and forth, is given as,

Ft = 0.5ρaAV
2
r Ct, (3.2)

where, Ct is the thrust coefficient. Torque and thrust coefficients can be formulated
as functions of blade pitch angle, i.e. β, and tip speed ratio (TSR), i.e. λ, as,
Cq(β, λ) and Ct(β, λ), respectively (Odgaard et al., 2015). Also, λ is defined as,

λ =
Rωr
Vr

. (3.3)

The wind power induced to the wind turbine, Pa, is stated as,

Pa = PwCp(β, λ), (3.4)

where, Pw is the available power in the wind and Cp is the power coefficient, which
is a function of pitch angle and TSP. Also, Pw is as,

Pw = 0.5ρaAV
3
r . (3.5)
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The torque coefficient, can be stated in terms of the power coefficient, as,

Cq =
Cp
λ
. (3.6)

Considering (3.1) and (3.6), the aerodynamic torque can be rewritten as,

Ta =
0.5ρaAV

3
r Cp

ωr
. (3.7)

In (Habibi et al., 2017c), the power coefficient, Cp, is proposed as an empirical
equation as a function of β and λ. This equation is used in this thesis to model the
aerodynamic behavior of the wind turbine, which can be written as,

Cp(β, λ) = C1(
C2

λi
− C3β − C4)e

−C5
λi + C6λ,

1

λi
=

1

λ+ 0.08β
− 0.035

β3 + 1
,

(3.8)

where, C1 = 0.5176, C2 = 116, C3 = 0.4, C4 = 5, C5 = 21 and C6 = 0.0068.
Also, an equation to approximate the thrust coefficient, Ct, is adopted from (Georg
et al., 2012), which is given as,

Ct(β, λ) = 0.5C̃t(1 + sign(C̃t)),

C̃t = a1 + a2(λ− a3β)e−a4β + a5λ
2e−a6β + a7λ

3e−a8β,
(3.9)

where, a1 = 0.006, a2 = 0.095, a3 = −4.15, a4 = 2.75, a5 = 0.001, a6 = 7.8,
a7 = −0.00016 and a8 = −8.88. The thrust and power coefficients, (3.8) and (3.9),
are illustrated in Figures 3.2 and 3.3.

In this section, the aerodynamic torque, thrust and power, transferred from the
wind into the wind turbine, have been introduced, which causes the angular speed
of the low speed shaft. In the next section the drive train, which transfers the me-
chanical energy from the low speed shaft to the high speed one, is modelled.

3.4 Drive Train Model

The rotor shaft speed is increased via the gearbox and transferred into the generator
shaft with higher speed. The drive train model is derived in this section which in-
cludes the gearbox, gears, low speed shaft, i.e. rotor, high speed shaft, i.e. generator,
and shaft bearings.

The drive train dynamic behavior is most simply modelled as a two degree of
freedom rotational system as illustrated in Figure 3.4, in which ωr and ωg represent
the angular velocities of the rotor shaft and generator shaft, whose inertia are Jr
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FIGURE 3.2: Power coefficient surface.

and Jg, respectively. The rotor and generator shaft bearings are modelled as angu-
lar viscous friction components with coefficients of Br and Bg, respectively. The
gearbox speed ratio is Ng. Also the torsional stiffness, Kdt, and damping, Bdt, are
combined into the gearbox, to have a realistic model, which leads to a torsional an-
gle of twist on the gears, i.e. θ∆. The gearbox efficiency, in terms of torque transfer
is considered as ηdt. It should be noted that the aerodynamic torque on the rotor,
Ta, is considered as the driving torque and, on the other hand, the generator torque,
Tg, is considered as the load torque. Also, Tl and Th are rotor and generator shaft
loads and driving torques, respectively. The rotor shaft dynamic equation of motion,
considering Figure 3.4, is given as,

Jrω̇r(t) = Ta(t)−Brωr(t)− Tl(t). (3.10)

Also, the generator shaft dynamic equation of motion can be written as,

Jgω̇g(t) = Th(t)−Bgωg(t)− Tg(t). (3.11)

Considering the gearbox ratio and efficiency leads to,

Th(t) =
ηdtTl(t)

Ng

. (3.12)

On the other hand, taking the stiffness and damping of the gearbox into account
leads to,

Tl(t) = Kdtθ∆(t) +Bdtθ̇∆(t), (3.13)
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FIGURE 3.4: Drive train model.

where, θ∆ is the torsional angle of twist, defined as,

θ∆(t) = θr(t)−
θg(t)

Ng

, (3.14)

where, θr and θg are rotation angles of the rotor and generator shafts, respectively.

Now, combining (3.10)-(3.14), the resulting drive train model can be stated as,

Jrω̇r(t) =Ta(t)−Kdtθ∆(t)− (Br +Bdt)ωr(t) +
Bdtωg(t)

Ng

,

Jgω̇g(t) =
ηdtKdtθ∆(t)

Ng

+
ηdtBdtωr(t)

Ng

− (
ηdtBdt

Ng
2 +Bg)ωg(t)− Tg(t),

θ̇∆(t) =ωr(t)−
ωg(t)

Ng

.

(3.15)

In this section the drive train model has been developed as a two degree of free-
dom rotational system and its combined dynamic equations of motion were derived.
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In the next section the elastic tower behavior is considered.

3.5 Tower Model

In this section the bending oscillation of the wind turbine tower due to the wind
thrust forces (3.2), is modelled.

The tower is considered as an elastic structure, such that the applied aerodynamic
thrust causes a fore aft motion of the nacelle. The tower can then be seen as a spring-
damper mechanism on which the nacelle, as the inertia, is oscillating. This model
is illustrated in Figure 3.5. It should be noted that the nacelle displacement from its
vertical equilibrium point, i.e. xt, is exaggerated. In Figure 3.5,Bt andKt represent
the damping ratio and elasticity coefficient of the tower, respectively. Also, Vw is
the free wind speed, before encountering the wind turbine blades. Accordingly, the
dynamic behavior of the tower fore aft motion is modelled as,

Mtẍt(t) = Ft −Btẋt(t)−Ktxt(t), (3.16)

where, Mt is the mass of the nacelle. As it is obvious in Figure 3.5, the fore aft

FIGURE 3.5: Elastic Tower model and its equivalent spring-damper
model.

displacement of the nacelle, which holds the wind turbine blades, creates a relative
speed between the free wind speed, Vw and the effective wind speed at the rotor
plane, Vr, which is repeatedly used in Section 3.3. The effective wind speed at
the rotor can then be expressed as a function of the free wind speed and nacelle
displacement as,

Vr = Vw − ẋt(t). (3.17)

In this section, the tower model and nacelle displacement have been modelled
and, consequently the effective wind speed at the rotor plane was derived from the
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free wind speed. In the next section the generator model, in which the mechanical
energy is converted to electrical energy, is described.

3.6 Generator and Converter Model

In this section the generator and converter, which together can be considered as the
power system, are modelled.

The generator shaft kinetic energy is converted into electrical energy in the gen-
erator. On the other hand, because the grid frequency is fixed, it can be induced that
the generator shaft should have a given rotational speed to generate electricity with
frequency the same as the grid. So, to let the wind turbine operate with different
rotational speed, which is mostly the case in practice to increase wind turbine effi-
ciency, a converter is located between the generator and grid to adjust the generated
power frequency. Indeed, the current in the generator is controlled utilizing an in-
ternal electronic power controller in the converter. Control of demand current in the
generator leads to regulation of the torque load on the generator. It should be noted
that generator torque and power are of interest in this research. In fact, it is assumed
that the generator current control is seen as the generator torque control.

In this thesis, the converter is modelled as a first order system with time delay as,

Ṫg(t) = −agTg(t) + agTg,ref (t− tg,d), (3.18)

where, Tg,ref is the reference generator torque load, which is requested from the
generator by controlling its current, and tg,d is the communication delay. Also,
ag = 1/τg, where τg is the system time constant.

The response of the internal electronic power controller of the wind turbine is
much faster than the slow mechanical dynamic behavior. Accordingly, the gen-
erated electrical power in the generator, Pg, can then be approximated as a static
relation considering the generator efficiency, i.e. ηg, as,

Pg(t) = ηgωg(t)Tg(t). (3.19)

In the generator system, to have a practical wind turbine model, maximum and
minimum achievable torques with bounded possible slew rate are considered, as,

Tg,min ≤Tg ≤ Tg,max,

Ṫg,min ≤Ṫg ≤ Ṫg,max,
(3.20)

where, Xmin and Xmax denote the minimum and maximum value of variable X,
respectively.
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In this section, the generator and converter systems have been modelled, in which
the electrical power is produced and also, the generator torque is controlled to en-
able variable speed operation of wind turbine. In the next section, the pitch mecha-
nism which changes the pitch angle of the blades, is modelled.

3.7 Pitch Mechanism Model

The pitch mechanism, which changes the pitch angle of blades, is described in this
section. The blade pitch angles form an important aerodynamic characteristic of
the wind turbine, as is obvious in (3.8). Indeed, changes to the blade’s angle of
attack leads to different aerodynamic torque to the wind turbine rotor. The pitch
mechanism is a hydraulic mechanism, implemented on each blade at the rotor hub,
to change the pitch angle of blades, either individually or collectively, to follow the
reference value of the pitch angle, βref , which is commanded from the controller.
In fact, in each individual blade pitch control, there is a separate hydraulic actuator
on each blade including the controller, while in the collective one, there is only one
set of actuator and controller for all blades (Odgaard et al., 2015). An individual hy-
draulic pitch mechanism is illustrated in Figure 3.6. The hydraulic pitch mechanism

FIGURE 3.6: Hydraulic pitch mechanism (Sloth et al., 2009).

can be modelled as a second order system with communication delay as,

β̈ = −ωn2β − 2ωnξβ̇ + ωn
2βref (t− tp,d), (3.21)

where, ωn, ξ and tp,d are natural frequency, damping ratio and communication de-
lay, respectively. Also, βref is the reference pitch angle, generated by the pitch
controller and it is desirable to be followed by the pitch angle, β. However, the
pitch actuator can be modelled including a limited slew rate and limited operational
range, as

βmin ≤β ≤ βmax,

β̇min ≤β̇ ≤ β̇max.
(3.22)
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In this section the pitch mechanism has been considered, which along with the
generator model forms the wind turbine actuators. In the next section the compo-
nents of the wind turbine dynamics which have been ignored throughout the mod-
elling so far, are summarized.

3.8 Neglected Dynamics and Modelling Assumptions

The assumptions which have been made in the modelling of the wind turbine, are
outlined in this section. In fact, these assumptions have been taken to limit the
extent of the modelling effort.

Generally, the dominant dynamic behaviour of the wind turbine is considered,
and the higher frequency modes are ignored. Also, it is correctly assumed that
the mechanical dynamic response of the wind turbine, due to the large rotor iner-
tia, is considerably slower that the electrical counterparts, so the generated power
is modelled as a static relation as (3.19). The yaw mechanism, which is used to
change orientation of the hub, is ignored. Indeed, it is assumed that wind speed
direction is always perpendicular to the plane of the blades. In practice, to avoid
huge gyroscopic forces, the allowable yaw angle change rate is very small. So, the
yaw mechanism can be ignored. Also, the hub gravitational force is left out. The
blades are considered as stiff elements and blade bending modes are ignored, i.e.
the edge-wise and flap-wise oscillations of blades are not considered. Also, it is as-
sumed that all three blades are pitched identically and have the same pitch actuator
dynamic behaviour.

In real wind turbines, the blade and rotor symmetry, i.e. non-homogeneous char-
acteristics, is hard to be perfectly achieved. So, under wind speed actuation, the
blade imperfection leads to periodic actuations in mechanical loads, with frequency
of one per rotor period, i.e. 1P. On the other hand, the wind shear and tower shadow
effects, mentioned in Section 3.2, are periodic with 3P frequency, as there are three
blades. In this regard, the 1P and 3P frequency periodic effects are ignored. In fact,
the wind speed is totally considered as an uncontrollable and unmeasurable distur-
bance and it is not going to be utilized in the control structure. This eliminates the
modelling of the wind speed periodic effects, (Odgaard et al., 2015).

In this section some assumptions have been made which are going to be taken
into accounts when studying the wind turbine behaviours. Using each subsystem
models and the above-mentioned assumptions, the integrated nonlinear model of
the wind turbine is constituted in the next section. It should be noted that in this
thesis no model linearization is made.
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3.9 Combined Wind Turbine Model

In this section the whole of the wind turbine subsystems, which have been described
in previous sections, are combined to form the overall model of the wind turbine.

The free wind speed, Vw, encounters the wind turbine blades, which have trans-
verse linear speed ẋt and angular speed ωr. The resultant relative wind speed, Vr,
applies an aerodynamic torque, Ta, and thrust, Ft, on the wind turbine. From one
control input, the reference pitch angle, βref , is adjusted using the pitch controller,
which leads to the new pitch angle of the blades, β, through the pitch actuator. On
the other hand, the reference generator torque load, Tg,ref , is tuned using the gen-
erator torque controller which causes the generator torque, Tg, to be produced via
the converter current control. ωr is fed into the drive train to have the shaft speed
increased. In this regard, the mechanical dynamic response of the wind turbine is
dominated by the drive train dynamic response. Consequently, the generator shaft
angular speed, ωg, is changed (Bianchi et al., 2012).

State space representation of the wind turbine dynamic model can be written as,

ẋwt = Awtxwt + Bwtuwt + dwt, (3.23)

where, xwt =
[
ωr ωg θ∆ β β̇ Tg xt ẋt

]T
, Bwt =

[
0 0 0 0 ωn

2 0 0 0
0 0 0 0 0 ag 0 0

]T
,

uwt =
[
βref (t− tp,d) Tg,ref (t− tg,d)

]T , dwt =
[
Ta/Jr 0 0 0 0 0 0 Ft/Mt

]T
and also,

Awt =



− (Br+Bdt)
Jr

Bdt
NgJr

−Kdt
Jr

0 0 0 0 0
ηdtBdt
NgJg

−(Bg
Jg

+ ηdtBdt
Ng2Jg

) ηdtKdt

NgJg
0 0 − 1

Jg
0 0

1 1
Ng

0 0 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 −ωn2 −2ωnξ 0 0 0
0 0 0 0 0 −ag 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −Kt

Mt
− Bt
Mt


.

Signal flow of the resulting wind turbine model is illustrated in Figure 3.7, where
it should be noted that the reference signals for the pitch angle and generator load
torque, are generated from the controllers.

In this section, the wind turbine combined model, including all subsystems, has
been introduced and the state space model has been derived. Also, the schematic
wind turbine model diagram was illustrated. In the next section, the available mea-
surements of the wind turbine are considered.
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FIGURE 3.7: Wind turbine signal flow.

3.10 Measurements

In this section the available sensor measurements of the wind turbine are explained.

Generally, the sensors are modelled as static components, because they respond
considerably faster than the wind turbine dynamic behaviour. However, the wind
speed anemometer can be modelled as a first order low pass filter with time constant
0.5 second. The anemometer is located on the top of the nacelle behind the blades,
where it gives a single point measurement, disturbed by the turbulence from the
rotor blades. It is known that the anemometer does not provide an accurate wind
speed indication at the rotor plane, however it does give a rough measurement which
can be used for turning the wind turbine on/off. Consequently, it is not profitable
for anemometer measurement to be used for control purposes. In this regard, it is
aimed not to consider the anemometer measurement in the structure of the proposed
controller and the wind speed is considered as an uncontrollable measurement dis-
turbance.

In numerical simulation studies, the sensors are assumed equal to the correspond-
ing state, which is going to be measured. On the other hand, to have a practical
model, sensor noise is inevitable. So, the noises are added to the sensor measure-
ments in the simulation. The noises are modelled as Gaussian white noise with zero
mean and given standard deviation. The standard deviations are captured from prac-
tical studies which can be found in (Sloth et al., 2009; Sloth et al., 2011; Sanchez
et al., 2015). Due to the different locations of each sensor, some sensors are much
noisier than others. For example, rotor shaft speed, because of the huge aerody-
namic torque applied to the rotor shaft, has considerable oscillation which induces
significant noise on the rotor speed sensor.
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The pitch angle sensors are located on the pitch actuator cylinders. Also, modern
industrial wind turbines are equipped with two different pitch sensors for FDI pur-
poses. The generator torque can be estimated from magnetic flux and current and
on the other hand, the electrical power can be estimated from voltage and current.
So, it is true to assume that electrical torque and power are correlated and that a
sensor fault in each of them leads to a fault on the other one. In this regard, the
generated power is calculated as (3.19) and there is no sensor used for generated
power in this thesis. It should be noted that in industrial feedback control schemes
of wind turbines using sensor measurements, notch or band-pass filters can be used
to smoothen the measurement noises (Bossanyi, 2003).

The wind turbine measurements, used in this thesis, are as,

βs = β + νβ, β̇s = β̇ + νβ̇,

β̈s = β̈ + ν̈β, Tg,s = Tg + νTg ,

ωr,s = ωr + νωr , ω̇r,s = ω̇r + νω̇r ,

ωg,s = ωg + νωg , ω̇g,s = ω̇g + νω̇g ,

(3.24)

where, Xs denotes the measured state variable of X and νX represents measurement
noise, modelled as white noise with Gaussian probability distribution function, as,

νX ∼ N(0, σ2
X), (3.25)

where, N(0, σ2) is a normal distribution random number with zero mean, standard
deviation σ and variance σ2.

The measurement sensors of the wind turbine have been described in this section.
The common possible faults, which are going to be considered in this thesis, are
modelled in the next section.

3.11 Considered Fault Types

This section introduces the possible realistic wind turbine faults which are going to
be considered and accommodated via controller design in this research. All consid-
ered faults of the wind turbine are categorized into either system, actuator or sensor
faults and, accordingly, are introduced here.

As discussed earlier in Sections 3.6 and 3.7, the generator/converter and pitch
mechanism are the actuators of the wind turbine. Long term operation of wind tur-
bines in harsh remote offshore locations, i.e. with limited and difficult maintenance
procedures, may lead to actuator faults. The pitch actuator in this situation is prone
to suffer from bias and effectiveness loss. Regarding the system faults on the pitch
mechanism which has been modelled as a hydraulic system in Section 3.7, wear
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TABLE 3.1: Pitch actuator parameters in dynamic change situations.

Situation Natural Frequency
(rad/s)

Damping Ratio Fault Indicator

Normal ωn,N = 11.11 ξN = 0.6 αf1= αf2 = 0
Pump Wear ωn,PW = 7.27 ξPW = 0.75 αf1 = 0.63, αf2 =

0.30
Hydraulic
Leak

ωn,HL = 3.42 ξHL = 0.9 αf1 = 1, αf2 = 0.88

High Air
Content

ωn,HAC = 5.73 ξHAC = 0.45 αf1 = 0.81, αf2 = 1

of pump gears, hydraulic leak from oil tank, valves or pipes, and high air content
in the hydraulic oil, are the most reported system faults. These faults are consid-
ered as changes to the pitch actuator dynamic behaviour, resulting changes to the
natural frequency and damping ratio of the pitch mechanism from the correspond-
ing undamaged systems. The mentioned dynamic changes leads to slower response
speeds of the pitch actuator and, consequently, poor power regulation of the wind
turbine. The natural frequency and damping ratio of each pitch actuator dynamic
change for the benchmark model are summarized in Table 3.1 (Sloth et al., 2011).

It should be noted that in Table 3.1, N , PW , HL and HAC stand for normal,
pump wear, hydraulic leaks and high air content situations, respectively. ωn,X and ξX

are natural frequency and damping ratio, respectively, in the situation X. Also, αf1
and αf2 are fault indicators. Also, in Figure 3.8 the effect of pump wear, hydraulic
leak and high air content are illustrated, in which the initial pitch angle is set to 5◦

and the reference pitch angle is commanded as 0◦, considering (3.21). It is obvious
that the settling time for all dynamic change situations are slower than the normal
one.

The pitch actuator faults are considered as effectiveness loss, which can be con-
sidered as a multiplicative and bias fault on the regulated pitch angle of the blades.
The effectiveness loss and bias of the pitch actuator can be modelled as,

βu(t) = ρ(t)βref (t) + Φ(t), (3.26)

where, Φ(t) represents the uncontrollable pitch actuator bias that causes an unbal-
anced rotor rotation which increases the drive train fatigue probability (Badihi et al.,
2014). Also, ρ(t) is the unknown effectiveness of the actuator which is in the range
of 0 < ρ(t) ≤ 1, where ρ(t) = 1 indicates a healthy pitch actuator and ρ(t) = 0
indicates a total loss of pitch actuation .

The pitch mechanism faults, i.e. effectiveness loss, bias and dynamic change,
should be considered in the pitch actuator model. The dynamic change is modelled
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FIGURE 3.8: Effect of pitch actuator dynamic change on the re-
sponse speed.

as a convex function of fault-free value of natural frequency and damping ratio
(Lan et al., 2018). Also, the reference pitch angle in (3.21) is replaced with βu(t) to
augment the possible effectiveness loss. So, the pitch mechanism (3.21) is rewritten
as,

β̈ = −ωn,N 2β − 2ωn,NξN β̇ + ωn,N
2(ρ(t)βref + Φ(t)) + ∆f̃PAD, (3.27)

where, ∆f̃PAD = −αf1∆(ω̃n
2)β−2αf2∆

(
ω̃nξ̃
)
β̇+αf1∆(ω̃n

2)βref , ω̃2
n = ωn,N

2+

αf1∆(ω̃n
2),∆(ω̃n

2) = ωn,HL
2−ωn,N 2, ω̃nξ̃ = ωn,NξN+αf2∆

(
ω̃nξ̃
)

and ∆
(
ω̃nξ̃
)

=

ωn,HACξHAC − ωn,NξN .

The converter system faults can be considered as the increase in the time constant
τg in (3.18), as τg + ∆τg. Also, due to the converter electrical malfunction, the
reference generator torque is biased as (Sanchez et al., 2015),

Tg,u = Tg,ref + fTg , (3.28)

where, fTg is the generator torque bias, considered as an actuator fault, which is
effective in power optimization as well as power regulation of the wind turbine. So,
combining the converter dynamic response with the mentioned fault, (3.18) can be
rewritten as,

Ṫg = −agTg + agTg,ref + ∆fGC , (3.29)

where, it is assumed that ag is changed to ag + ∆ag due to the internal generator
fault, i.e. ∆τg (Sanchez et al., 2015), as ∆ag = −∆τg/ (τg (τg + ∆τg)) and also
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∆fGC = ∆ag(−T g + Tg,ref ) + agfTg (Tabatabaeipour et al., 2012). It should also
be noted again that because of the fast response of the converter compared to the
mechanical subsystems, the change in the time constant of the converter, ∆τg, is not
too disturbing on the overall wind turbine behavior. On the other hand, the internal
electrical converter controller is reported to be able to remove the effect of ∆τg
much faster than the slow mechanical response of the wind turbine (Dalei et al.,
2016).

Considering Cq = Cp/λ, the torque coefficient can be stated in terms of power
coefficient, which is represented as a function of pitch angle and TSR, as (3.8). It
has been pointed out that due to rain, icing, dust and debris on the wind turbine
blades, the power coefficient is reduced both in magnitude as well as the considered
relation with respect to pitch angle and TSR. Indeed, the location of the optimum
power point tracking on the power coefficient surface, Figure 3.2, happens on a
different pair of (β, λ) after several years of use, compared to the corresponding
pair for new and clean blades. Also, the magnitude of the power coefficient may
be reduced. So, this type of system fault is considered in this thesis so as to have a
practical controller for long term use on wind turbines.

In this thesis sensor faults are modelled as measurement coefficient changes.
Considering the sensor measurement of variable X, this can be modelled as,

Xs(t) = αX(t)X(t) + νX, (3.30)

where, νX is measurement noise and αX is the measurement coefficient, modelled
as,

αX(t) =

{
1, t < tf ,

αf , t ≥ tf ,
(3.31)

where, tf is the unknown fault time and αf is the unknown measurement coefficient
after the fault occurs. Indeed, this type of sensor fault can be considered as the
multiplicative fault. Also, the other types of sensor faults, including sensor bias and
sensor fixed output, are considered via (3.30), as well. The considered sensor faults
of the wind turbine model, which are going to be detected and identified, are rotor
speed, generator speed, pitch angle and generator torque sensors. As a summary,
the faults which are going to be considered in this thesis, are stated in Table 3.2.

In this section all fault types, sources and reasons of wind turbine faults which
are going to be accommodated via proposed controller, have been described. In the
next section, the wind turbine desired operational mode is described, on which basis
numerical control criteria are stated.
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TABLE 3.2: Considered wind turbine faults.

Fault Reason Fault type Considered in

Pitch actuator bias
and effectiveness loss

Pitch actuator
fault

Actuator
fault Chapters 4, 5 and 6

Hydraulic leak
Pitch actuator
dynamic change

System
fault

Chapters 4, 5 and 6Pump wear
High air content

Generator torque
bias

Generator fault
Actuator
fault Chapter 5

Power coefficient
change

Blades debris
build-up

System
fault Chapter 6

Generator and rotor
sensor faults

Sensor bias,
coefficient change
and fixed output

Sensor
fault Chapter 7

3.12 Wind Turbine Desired Operation Mode

In this section the operation mode and also the desirable performance of the wind
turbine are introduced.

The wind turbine operation can be distinguished based on available actuators of
the model. As described earlier, pitch actuator and generator electrical load torque
are the main control inputs to control the operation of wind turbines. The gener-
ator torque control enables operation with variable speed to keep the wind turbine
operating optimally at different wind speeds. Otherwise, the so-called fixed speed
wind turbines achieves its optimal power extraction only at a given wind speed. On
the other hand, pitch angle control leads to adjustment of the induced aerodynamic
torque on the wind turbine. Consequently, the captured power can be attained at a
given pitch setting. This leads to the variable pitch wind turbine type.

Generally, the wind turbine operation can be stated as power generation with
respect to wind speed that should be as close as possible to the so-called ideal power
curve, as illustrated in Figure 3.9. It is obvious that the wind turbine is only in
operation between cut in wind speed, i.e. Vr,cut−in, and cut out wind speed, i.e.
Vr,cut−out. For wind speeds below Vr,cut−in, the potential wind energy is not enough
to cover the operation cost and accordingly power generation is not economically
satisfying. Also, for wind speeds greater than Vr,cut−out, despite higher available
wind energy, the operation causes too much structural load on the wind turbine and
may lead to catastrophic damage. So, it is not safe to allow the wind turbine to
operate above Vr,cut−out and accordingly, the wind turbine is pitched-to-feather or
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braked to protect it structurally and avoid catastrophic operation, despite the high
available wind energy.

In Figure 3.9, Vr is the effective wind speed at the rotor plane. Also, the wind
turbine produces its nominal power Pa,N at the nominal wind speed Vr,N . The oper-
ation is divided in two different regions; namely partial load and full load. In partial

FIGURE 3.9: Ideal power curve.

load operation, which is considered from Vr,cut−in to Vr,N , it is aimed to maximize
the generated power. In fact, as mentioned earlier, the available wind energy is not
that much to drive the wind turbine to hazardous operation. So, it is desirable to cap-
ture as much wind power as possible in partial load operation. Considering (3.4),
it can be concluded that to maximize the produced power, Cp (β, λ) should be kept
at its maximum value. Also, according to (3.8), the maximum value of the power
coefficient is Cp,max = 0.48 which occurs at βopt = 0◦ and λopt = 8.1 (Habibi
et al., 2017c). So, the pitch angle of the blades should be simply kept at 0◦ via
the setting βref = 0◦. On the other hand, TSR should be kept at 8.1, despite wind
speed variation, as considering (3.3), it is obvious that wind speed affects TSR. So,
rotor speed ωr should be controlled such that it satisfies the mentioned requirement.
In this regard, by controlling the generator reference torque Tg,ref , the generator
torque Tg and generator speed ωg are tuned, and consequently, considering (3.15),
ωr is desirably adjusted. So, the main control loop in partial load operation is to
control Tg,ref and keep the power coefficient at its maximum value.

In full load operation, which is considered from Vr,N to Vr,cut−out, it is aimed to
keep the generated power at its nominal value, Pa,N . Considering (3.19), it can be
seen that to have nominal power produced, Tg and ωg should be kept at their nominal
values, i.e. Tg,N and ωg,N , respectively. The former requirement is easily met via
setting Tg,ref = Tg,N . On the other hand, to keep ωg at ωg,N , the aerodynamic torque
is to be tuned via pitch angle control. In fact, by adjusting βref , the blade pitch angle
is varied and consequently, considering (3.1), Ta and ωa are tuned which directly
vary ωg via the drive train model (3.15), to maintain its value at ωg,N (Sanchez et al.,
2015).

The drive train torsion angle variation θ̇∆ induces stress on the drive train. For
both partial load and full load operation regions, it is desirable to keep θ̇∆ as small as
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possible, which, consequently, leads to lower stress on the drive train. Considering
(3.15), it is obvious that Ngωr = ωg results in θ̇∆ = 0. Accordingly, in this thesis
the controller is designed on the desirable operational mode of the wind turbine in
which both ωr and ωg are being kept proportional to the gear box ratio to lessen the
drive train stress (Boukhezzar et al., 2011).

The wind turbine desired operation mode is summarized as,

1. The wind turbine is shut down for wind speeds less than Vr,cut−in and higher
than Vr,cut−out.

2. In partial load operation the reference pitch angle is set as βref = 0◦ and
generator reference torque Tg,ref is controlled to keep the power coefficient at
Cp,max = 0.48.

3. In full load region the generator reference torque is set as Tg,ref = Tg,N and
reference pitch angle βref is controlled to keep generator rotor speed at ωg,N .

4. In all active operational regions of the wind turbine, it is aimed to satisfy
θ̇∆ = 0 to reduce drive train torsional stress.

Remark 3.1. In addition to the above mentioned operation objectives, a scheme
is needed for bumpless switching between the controllers in the partial load and
full load regions, due to probable inconsistency between controllers signal mag-
nitude at the switching time. Otherwise, a bump in the control signal may cause
oscillations between the two controllers and consequently, make the wind turbine
unstable. It should be noted that, due to large rotor inertia, consequent slow re-
sponse of variation of power generation, and inaccurate wind speed measurement,
the generator speed is usually used as the switching condition to design the bump-
less switching scheme. It should be noted that, as the controller design is separately
fulfilled for each operational region, the switching scheme is not considered in this
thesis. The reason for the approach of this thesis of considering the operational
regions, is that there are still some fixed-pitch or fixed-speed industrial wind tur-
bines in operation. So, to let the proposed controller be applicable for those wind
turbines, this approach is adopted in this thesis. However, the proposed controllers
can be integrated for whole operational regions, by using a simple bumpless switch-
ing scheme. On the other hand, in the design of the controller, it is very useful to
implement a drive train/tower stress damper module to dampen drive train/tower
oscillations and reduce structural stress. For example, the filtered generator speed
and power can be added to the generator torque and the pitch angle, respectively, to
filter out the resonant frequency of the drive train/tower (Badihi et al., 2015). As the
main purpose of this thesis is FTC design of wind turbines, the reduced structural
load does not lie within research objectives. However, once the FTC controller is
designed, the corresponding induced drive train torsional stress is compared to the
baseline controller, to consider its applicability.
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In this section variable speed and variable pitch operation mode of wind turbine and
the reasons for this type of operation have been described. In the next section some
numerical operation criteria are introduced to quantify the performance of the wind
turbine and enable a comparison context for all designed controllers.

3.13 Wind Turbine Numerical Performance Criteria

In this section the operation control criteria are stated which are used to quantify the
performance of the wind turbine and enable the numeric comparison under different
situations. The criteria for partial load and full load operation regions are summa-
rized in Table 3.3. The criterion CC1 in partial load represents the total extracted
energy that is aimed to be maximized in order to increase captured energy. Also,
this criterion in the full load region is aimed to be as close as possible to guarantee
that the produced power is kept at the nominal value. texe represents the execution
time. Also, in partial load region, the efficiency is calculated as, Efficiency =∫ texe

0
Pa(τ)dτ/

∫ texe
0

Pmaximum(τ)dτ , where Pmaximum = 0.5Cp,maxρaπR
2V 3

r . The
second criterion is the applied stress on the drive train, defined as the total twist
angle of the drive train, which is desirable to be kept as small as possible (Habibi et
al., 2017c). The third and fourth criteria are only used in the full load region, which
considers the deviation of the generator speed from the nominal value and the max-
imum deviation of the generated power from the nominal value, respectively. The
fifth criterion is considered to keep the control variation into consideration, which
may lead to actuator rate saturation and failure. It is expected to keep CC5 crite-
rion at a reasonable level compared to the practical value. For the same reasons,
the maximum and standard deviation of actuators are stated as criterion CC6, CC7
and CC8 (Boukhezzar et al., 2011). Throughout this thesis the defined criteria are
used wherever they apply appropriately. The practical values of these criteria are
obtained by using the baseline industrial controllers, and compared to the proposed
controller ones, appropriately, throughout this thesis.

In this chapter, the HAWT model has been described considering all subsystems
and also, the whole nonlinear model has been stated. On the other hand, the fault
types, which are going to be considered throughout this thesis have been modelled.
The wind turbine desired operation trajectory was defined, which is to be tracked
using an appropriate controller. Finally, the numerical operation criteria have been
introduced to quantify wind turbine performance. It should be noted that the numer-
ical values of the considered benchmark wind turbine model are given in Appendix
B.
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TABLE 3.3: Performance criteria.

Partial load region Full load region

CC1
∫ texe

0
Pa(τ)dτ

∫ texe
0

(Pg(τ)− Pa,N)2 dτ

CC2
∫ texe

0
θ̇2

∆(τ)dτ
∫ texe

0
θ̇2

∆(τ)dτ

CC3 -
∫ texe

0
(wg(τ)− wg,N)2 dτ

CC4 - max(P g(t)− Pa,N)

CC5
∫ texe

0

∣∣∣Ṫg(τ)
∣∣∣ dτ ∫ texe

0

∣∣∣β̇(τ)
∣∣∣ dτ

CC6 max (Tg(t)) max (β(t))
CC7 STD (Tg(t)) STD (β(t))

CC8 max
(
Ṫg(t)

)
max

(
β̇(t)

)
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4 Improvements of Baseline
Industrial Wind Turbines Controllers

In this chapter, the baseline wind turbine controllers that are commonly used in both
partial load and full load regions are introduced and their performance on the wind
turbine are investigated. Also, the shortcomings of these controllers are discussed,
on which basis an initial improvement on the baseline controllers is proposed. Ac-
cordingly, in the partial load region a FIS is designed to tune the controller gain.
On the other hand, in the full load region, a PID-like controller is designed with
adaptive gains, to take advantage of structural simplicity, while providing a better
performance, compared to the baseline one, with actuator faults. It should be noted
that the values of controller parameters are given in Section B.2.

4.1 Partial Load Baseline Controller

In this section, the operation of the wind turbine in the partial load region is con-
sidered and the baseline industrial controller is explained. This controller has been
widely used in installed wind turbines, due to its ease of implementation as well as
its simple structure. Accordingly, the performance of the modified controller on the
wind turbine is compared to the baseline one.

As stated in Section 3.2, measuring accurate wind speed at the blade plane is
not possible, so the wind speed cannot be considered in the controller structure to
design the desired trajectory to make the wind turbine track the ideal power curve,
Figure 3.9. One of the most commonly used controllers for partial load operation
is a nonlinear controller designed by excluding the wind speed from aerodynamic
torque. This controller is also known as the constant gain controller (Johnson et al.,
2006). Also, satisfying the operation of wind turbines using this controller leads to
verifying the wind turbine model, which is used in this thesis, as well as to make
the baseline controller to be compared to the proposed controller results. Moreover,
the control objectives in this operational region can be translated as keeping the
extracted power as close as possible to the ideal case. Indeed, the maximum point
on the power coefficient curve should always be reached. The maximum value of
the power coefficient is Cp,max = 0.48 which occurs at βopt = 0◦ and λopt = 8.1,
as it is obvious in Figure 3.2. The variation in wind speed only affects TSR, λ,
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accordingly, the pitch angle is fixed at the optimal value as βopt = 0◦. On the
other hand, TSR is to be kept at 8.1 which depends on wind speed as well as rotor
speed. The wind speed is not controllable and is considered as a disturbance so
that the rotor speed is to be controlled. This aim can be achieved by controlling the
generator torque to modify the generator speed and, consequently, rotor speed. In
partial load operation, to track the optimum point of the Cp (β, λ), the speed of the
generator is controlled by regulating the electrical torque demand on the generator
through the generator torque controller. The control law determines the appropriate
generator torque by excluding the wind speed from aerodynamic torque (Sloth et
al., 2009).

Consider the aerodynamic torque (3.1) and TSR (3.3). Accordingly, replacing
Vr in (3.1) by Vr = ωrR/λ, leads to,

Ta = 0.5ρaA(
ωrR

λ
)3Cp
ωr
⇒

Ta = 0.5ρaA(
R

λ
)3Cpω

2
r .

(4.1)

Considering the drive train dynamic behavior operating on the desired mode, causes
the aerodynamic and generator torques to be related as,

Tg =
ηdtTa
Ng

. (4.2)

Also, the rotor and generator speeds are proportional as,

ωr =
ωg
Ng

. (4.3)

Consequently, using (4.1) and (4.2), the generator torque is stated as,

Tg = 0.5ηdtρaAR
3Cp

ω2
g

(Ngλ)3 . (4.4)

On the other hand, for operation on the desired trajectory, assuming maximum
power generation leads to,

λ = λopt = 8.1,

Cp = Cp,max = 0.48.
(4.5)

Replacing (4.5) into (4.4), yields,
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Tg,desired = 0.5ηdtρaAR
3Cp,max

ω2
g

(Ngλopt)
3 . (4.6)

So, it is desired to keep Tg at Tg,desired, which is only a function of ωg. It should
be noted that ωg is measurable. Also, considering the fast dynamic response of
the generator/converter model (3.18), the reference generator torque Tg,ref is set
to Tg,desired to satisfy the aim of maximum power generation. Accordingly, the
constant gain control of the wind turbine in partial load operation is summarized as
(Boukhezzar et al., 2011),

Tg,ref = Kcω
2
g,s, βref = 0◦, (4.7)

where, Kc = 0.5ηdtρaAR
3Cp,max/(Ngλopt)

3 and Kc

(
Nm/(rad/s)2) represents

the constant gain of the partial load baseline controller (Sloth et al., 2011). It should
be noted that the stability of the baseline controller 4.7 has already been guaranteed
(Johnson et al., 2006), which is not repeated here. Also, a low pass filter can be
utilized to prevent amplifying the noise content of ωg,s in (4.7) (Badihi et al., 2014).
The baseline controller of the wind turbine in the partial load region is illustrated in
Figure 4.1.

FIGURE 4.1: Partial load baseline controller diagram.

The performance of the baseline controller in the partial load region, (4.7), can be
evaluated. The wind speed profile for the current analysis is shown in Figure 4.2 and
the results of the controller are illustrated in Figures 4.3-4.5. The TSR is illustrated
in Figure 4.3. It is obvious that TSR is tracking the optimum one, consequently,
the power coefficient, depicted in Figure 4.4, is kept at the maximum one, despite
the wind speed variation, after the initial transient response period. It should be
noted as shown in Figure 4.5, that sometimes, the generated power is more than the
theoretical maximum one available at that wind speed. Considering Figure 4.2, it is
obvious that whenever the wind speed decreases significantly after a higher value,
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FIGURE 4.2: Wind speed profile in partial load region (Habibi et al.,
2017d).
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FIGURE 4.3: Actual TSR (blue solid line) and optimal one (red
dashed line).

this contradiction happens. Indeed, due to the large inertia of the rotor and blades, at
high wind speed values, the rotor speeds up and after the wind speed decreases, the
rotor still has considerable kinetic energy which leads the rotor to rotate at a high
speed and generate power more than the maximum available at that wind speed. In
other words, the extracted kinetic energy of the rotor will be converted to electrical
power after the wind speed drops. This phenomenon will be used to modify the
baseline controller (4.7) to increase the extracted power. The performance criteria
including the extracted power and drive train induced torsion angle, are shown in
Table 4.1. Finally, it should be noted that when considering the results in Figures
4.3-4.5 and the expected results, the wind turbine model can be verified and, thus,
this model can be utilized to evaluate the proposed controllers and FTC schemes in
next chapters.

In this section, the baseline controller in partial load operation of the wind tur-
bine has been described and evaluated. In the next section the full load region is
considered, and the baseline control of this region is introduced.
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FIGURE 4.5: Generated power (blue line) and maximum extractable
wind power (red dashed line).

4.2 Full Load Baseline Controller

In this section the industrial baseline controller in the full load region of operation of
the wind turbine is explained, on which basis the proposed controller is evaluated.

As described in the Section 3.12, the control objective in the full load region
is to keep the generated power at the nominal one Pa,N . In fact, the available wind
energy, in this region, is higher than the wind turbine nominal one, but to prevent the
wind turbine from over speeding and consequent breakdown, Pa,N is just demanded.
In this regard, considering (3.19), (i) Tg is to be fixed at the rated value Tg,N , and (ii)
ωg is to be maintained at the nominal value ωg,N to ensure nominal power generation

TABLE 4.1: Performance criteria values of partial load baseline con-
troller.

Performance criteria Value

CC1 2.888 (GJ)

CC2 12.09 (nrad2/s)
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as (Sloth et al., 2011),

Pg = ηgT gωg = ηgTg,Nωg,N = Pa,N . (4.8)

The objective (i) is simply achieved via setting the generator reference torque, i.e.
Tg,ref , at Tg,N and due to the fast dynamic response of the generator, this leads Tg
to follow Tg,ref , rapidly.

The objective (ii) is attained via regulating the blade pitch angle via the pitch
actuator to vary the applied aerodynamic torque, and consequently, rotor speed.
Accordingly, this leads to regulating the generator speed via the drive train model.
In fact, considering variations of the applied aerodynamic torque with respect to
pitch angle as function of the wind speed, as shown in Figure 4.6, it is obvious that
with appropriate regulation of the pitch angle, the aerodynamic torque and conse-
quently the rotor speed, are decreased, as wind speed increases. In this regard, it is
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FIGURE 4.6: ∂Ta/∂β diagram in full load operation.

assumed that in the vicinity of any triple pair (Vr, ωr, β) in the operational range
of the wind turbine, Ta is not a singular function. Also, there is a given β∗ for any
pair of (Vr, ωr), such that it steers the wind turbine to the rated power generation,
via adjusting the pitch angle as β = β∗ (Jafarnejadsani et al., 2013). Accordingly,
as the wind speed varies, β∗ will take the corresponding value to satisfy the con-
trol objective. A diagram of β∗ for the considered wind turbine benchmark model
in the full load region is illustrated in Figure 4.7 (Sloth et al., 2011). It should be
noted that, as wind speed is considered as an unmeasurable and uncontrollable dis-
turbance, accordingly, β∗ is an unknown parameter. For this reason, the wind speed
variation is not considered in the controller structure. The most commonly adopted
industrial controller for power regulation of wind turbines in full load operation is
the PID controller, due to its simplified implementation and effectiveness (Lan et
al., 2018). In this thesis, this controller is also used for performance comparison of
the proposed controller. The PID controller regulates the pitch angle based on the
generator speed tracking error, which is defined as,

eωg(t) = ωg,s(t)− ωg,N . (4.9)
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FIGURE 4.7: Profile of β∗.

Accordingly, the PID controller to adjust the reference pitch angle is fulfilled as,

βref (t) = KP eωg (t) +KI

∫ t

0

eωg (τ) dτ +KDėωg(t), (4.10)

where, KP , KI and KD are proportional and integral and derivative gains of the
controller, respectively, to be set using traditional methods, to ensure system stabil-
ity as well as satisfying performance. KP ,KI andKD are mostly chosen as constant
gains for the whole operational region, although in some research, different gains
have been selected for narrower operational regions (Sloth et al., 2011). The wind
turbine baseline controller in the full load region is illustrated in Figure 4.8.

FIGURE 4.8: Full load baseline controller diagram.

The performance of the baseline controller in the full load region, (4.10), can
be further evaluated. The wind speed profile for the current analysis is shown in
Figure 4.9 and the results of the controller are illustrated in Figures 4.10 and 4.11,
including generator speed and generated power, respectively. It is obvious that
the baseline controller kept the generator speed and generated power close to their
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FIGURE 4.9: Wind speed profile in full load region (Habibi et al.,
2017b).
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FIGURE 4.10: Generator speed using industrial baseline full load
controller (blue line) and nominal generator speed (dashed red line).

nominal values. The performance criteria of the full load baseline controller are
summarized in Table 4.2.

In this section the baseline controller of wind turbine in full load region has been
described and evaluated via simulation. In the next section the improvement of the
partial load baseline controller is introduced, and the results are compared with the
baseline ones.

TABLE 4.2: Performance criteria values of the full load baseline
controller.

Performance criteria Value

CC1 2819 (GW 2s)

CC2 2.103 (mrad2/s)

CC3 2967 (rad2/s)



4.3. Improvement of Partial Load Baseline Controller 69

T ime (s)
0 500 1000 1500

P
g
(M

W
)

4.7

4.8

4.9

5

5.1

FIGURE 4.11: Generated power using industrial baseline full load
controller (blue line) and nominal power (dashed red line).

4.3 Improvement of Partial Load Baseline Controller

In this section the wind turbine baseline industrial control for partial load operation
(4.7) is improved taking the drive train friction into consideration and using a FIS,
implemented into the controller structure to tune the constant gain Kc.1 Firstly, the
wind speed is considered as a disturbance, although it will be estimated as part of
proposed the FDI schemes. However, after a fault has occurred, this estimation
will not be accurate anymore, so if the controller is designed based on wind speed
to design the desired trajectory, i.e. ωr,desired = λoptVr/R, it will not be working
satisfactorily after fault occurrence. For this reason, the wind speed is not used for
improvement of the baseline controller. One improvement of the controller com-
pared to the baseline one, is the consideration of drive train friction and the speed
ratio in determining the generator torque (Sloth et al., 2009). Assuming that the
wind turbine is operating at its desired steady-state trajectory, i.e. where the pitch
angle and TSR are held at their optimal values, the time derivative of these variables
will be zero. Accordingly, considering the drive train model (3.15), leads to,

0 = Ta −Kdtθ∆ − (Br +Bdt)ωr +
Bdt

Ng

ωg,

0 =
ηdtKdt

Ng

θ∆ +
ηdtBdt

Ng

ωr −
(
Bg +

ηdtBdt

Ng
2

)
ωg − Tg,

0 = ωr −
1

Ng

ωg ⇒ Ta =
NgT g
ηdt

+

(
BgNg

ηdt
+
Br

Ng

)
ωg

⇒ 0.5ρaA

(
R

λ

)3

Cp

(
ωg
Ng

) 2

=
NgT g
ηdt

+

(
BgNg

ηdt
+
Br

Ng

)
ωg.

(4.11)

1This section is captured and reorganized from the paper “Power Improvement of Non-Linear
Wind Turbines during Partial Load Operation using Fuzzy Inference Control”. The authors’ attribu-
tion on this paper are given in Appendix C.
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Now, assuming operation at the optimal point, it can be shown that,

NgT g
ηdt

= 0.5ρaA
R3

N2
gλ

3
opt

Cp,maxωg
2 −

(
BgNg

ηdt
+
Br

Ng

)
ωg ⇒

Tg = Kcω
2
g,s +K2ωg,s.

(4.12)

where, Kc = 0.5ηdtρaAR
3Cp,max/(Ngλopt)

3 is the same as the baseline controller
gain and K2 = −

(
Bg + ηdtBr/N

2
g

)
, where K2(Nm/(rad/s)) is the drive train

friction compensation gain. It is obvious that the friction term has reduced the
generator torque, where all friction values are constant and in this regard, no as-
sumptions are made. On the other hand, for Kc, it is assumed that the wind turbine
is operating at its desired trajectory despite wind speed variation, which is not the
case in real situations.

Considering Figures 4.2 and 4.5, it is obvious that the available power in the
wind and consequently, the aerodynamic torque, decreases when the wind speed
decreases and vice versa. However, because of the slow dynamic response of the
wind turbine, the rotor and generator speeds can be high while the wind speed is
decreasing with a considerable rate, accordingly, the controller law given in (4.7),
still increases the generator torque, whereas the available wind power is decreasing
and so the wind turbine will consequently operate at a TSR other than the opti-
mal value. Simulations show that reducing the magnitude of Kc by 20% improves
power capture for a wind turbine with large rotor inertia (Hand et al., 2004). On
the other hand, when the wind speed is increasing from a lower value, with re-
duced magnitude of Kc, the control law commands a small generator torque which
leads to a reduction in harvested power even though the available power in the wind
speed is increasing. So, the fixed magnitude of Kc, will cause the wind turbine to
operate outside of its optimal trajectory. It is obvious that the gain Kc, should be
tuned with respect to the wind speed variation, without measuring the wind speed
accurately. So, it is proposed to use the generator speed and its time derivative as
representatives of wind speed variation. In fact, the wind speed value and variation
will cause proportional variation of the generator speed. It should be noted that a
low pass filter can be utilized to prevent amplifying the noise content in the process.
Now, using the generator speed and its time derivative, a FIS can be constructed to
generate an appropriate controller gain Kc.

A FIS is a nonlinear mapping from inputs to outputs using some qualitative (lin-
guistic) variables and particular logical rules, which are developed based on expert’s
knowledge. In fact, to define the rules, the real system behavior should be investi-
gated by conducting considerable amount of experimentation or simulation. In this
thesis, a FIS is used to calculate the controller gain Kc according to the appropriate
rules, generator speed and its time derivative, as illustrated in Figure 4.12. The gen-
erator speed and its time derivative are being fed into the FIS which contains fuzzy
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rules and fuzzy membership functions and the controller gain KFIS will being ob-
tained and fed into the controller structure. So, in 4.12, the gain Kc is replaced by
KFIS .

It should be noted that an abrupt change in controller gains leads to similar
changes in the reference generator torque and this can induce high stresses onto
the drive train. So, the fuzzy membership functions of controller gain and gener-
ator speed and its derivatives are designed such that the controller gain is changed
smoothly by utilizing the Gaussian membership functions (Passino et al., 1998).
The Gaussian membership function is defined as,

FIGURE 4.12: Baseline partial load controller improvement using
FIS.

µF (xF , σF , cf ) = e
− (xF−cF )2

2σ2
F , (4.13)

where µF , xF , σF and cF are the membership function percentage, range of vari-
able, shape parameter and center of membership functions, respectively. The inputs
to the FIS are generator speed and its derivative and the output of the FIS is the
controller gain KFIS . It should be noted that only the sign of the generator speed
derivative, i.e. ω̇g,s, is of interest to consider the generator speed variation. There-
fore, the ω̇g,s membership functions are designed to be small to represent only the
sign by selecting small σF in the Gaussian membership function (Passino et al.,
1998). For ωg,s and KFIS , to cover the whole range appropriately, five member-
ship functions are used. The membership function parameter values of KFIS , ωg,s
and ω̇g,s are shown in Tables 4.3-4.5. The range of KFIS is, as stated earlier, in
KFIS = [0.8, 1]Kc, which leads to 0.9887 ≤ KFIS ≤ 1.2359(Nm/(rad/s)2).

On the other hand, the ranges of ωg,s and ω̇g,s are found based on the behaviour
of the wind turbine model in which different values of generator speed and its time
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derivative can be obtained. Indeed, via numerous amounts of simulations and con-
sidering the wind turbine as a slow mechanism and the model limitations, these
ranges have been set up to cover the whole behaviour of the wind turbine operation
(Badihi et al., 2014), as 0 ≤ ωg,s ≤ 200 (rad/s) and −60 ≤ ω̇g,s ≤ 60(rad/s2).
These ranges should be as wide as possible, so as not to let the inputs to the FIS
violate the limits, where in this case, the designed FIS will not work properly and
the KFIS gain will not be tuned logically. On the other hand, if these ranges are too
wide, then the accuracy of the final FIS will reduce considerably. The simulation
studies have been accomplished to find these appropriate ranges. Also, a numerical
optimization process can be conducted to find the best membership function values,
for a given number of membership functions (Habibi et al., 2017d).

The linguistic fuzzy rules can be defined as, “Rule i: if ωg,s is Ai and ω̇g,s is
Bi, then KFIS is Ci”, where Ai, Bi and Ci, are ωg,s, ω̇g,s and KFIS membership
functions, respectively, which are shown in Figures 4.13, 4.14 and 4.15, and their
parameters are given in Tables 4.3, 4.4 and 4.5. The fuzzy rules are defined with
respect to the idea of adjusting the controller gains based on wind speed variation.
On the other hand, the wind speed variation can be found out by monitoring ωg,s
and ω̇g,s variations and with an expert’s knowledge. Then the controller gain KFIS

can be tuned. This idea is obtained from the wind turbine behavior as a high inertia
mechanism. This behavior can be summarized as follows. Whenever the wind
speed has an increasing high value, the ωg,s will be high and ω̇g,s will be positive
and vice versa.

ω̇g,s
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FIGURE 4.13: ω̇g,s membership functions.

On the other hand, ωg,s and ω̇g,s similarly can picture the behavior of wind speed.
Accordingly, whenever ωg,s is high and ω̇g,s is positive, this implies that the wind
speed is an increasing high value, there is high power content and the wind tur-
bine should extract as much power as possible. This can be done by increasing the
controller gain KFIS that leads to increasing Tg,ref which means demanding more
power from the wind turbine. Similarly, for all other membership functions the
fuzzy rules can be defined. The fuzzy rules are summarized in Table 4.6, where the
KFIS membership functions are in bold face. To finalize the FIS, the Mamdani in-
ference engine was utilized which is one of the most appropriate engines for control
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TABLE 4.3: Membership functions for ωg,s.

Membership function Parameters

Too Small cF = 0, σF = 17
Small cF = 50, σF = 17
Medium cF = 100, σF = 17
Big cF = 150, σF = 17
Too Big cF = 200, σF = 17

TABLE 4.4: Membership functions for KFIS .

Membership function Parameters

Too Small cF = 0.9887, σF = 0.0206
Small cF = 1.05495, σF = 0.0206
Medium cF = 1.11229, σF = 0.0206
Big cF = 1.174085, σF = 0.0206
Too Big cF = 1.2359, σF = 0.0206

TABLE 4.5: Membership functions for ω̇g,s.

Membership function Parameters

Negative cF = −60, σF = 20
Zero cF = 0, σF = 2
Positive cF = 60, σF = 20

TABLE 4.6: Fuzzy rules.

ωg,s membership functions
Too
Small

Small Medium Big Too Big

ω̇g,s
membership

functions

Negative Too
Small

Small Small Medium Big

Zero Small Medium Medium Big Too Big
Positive Medium Big Big Too Big Too Big
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FIGURE 4.14: ωg,s membership functions.
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FIGURE 4.15: KFIS membership functions.

processes (Passino et al., 1998). Minimum is used for “And method” and “Implica-
tion” while maximum is used for “Or method” and “Aggregation”. The centroid is
used for “Deffuzification”. The corresponding FIS surface using these Fuzzy rules,
is shown in Figure 4.16.
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FIGURE 4.16: FIS surface.

Remark 4.1. In this section it is assumed that the sensor measurements, which
are used in the structure of the controller, are fault-free. In Chapter 7, the drive
train sensor faults are detected and removed, in a separate manner from the control
structure. Indeed, the sensor FDI scheme is designed to remove the fault effect
before feeding the sensor measurements into the controller structure.
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TABLE 4.7: Performance criteria values of the improved baseline
partial load controller.

Performance criteria Value

CC1 2.924 (GJ)

CC2 16.78 (nrad2/s)

TABLE 4.8: Performance criteria values of the baseline partial load
controller and the improved one for real wind speed.

Performance criteria Baseline controller Improved controller

CC1 1.93 (GJ) 1.952 (GJ)

CC2 5.92 (µrad2/s) 6.27 (µrad2/s)

Now, using the designed FIS and the control structure as given in Figure 4.12, the
generated power for wind speed shown in Figure 4.2, is illustrated in Figure 4.18.
It should be noted that the generated power with the baseline controller, Figure 4.5,
is also depicted to compare the results. It is obvious that the extracted power has in-
creased considerably during the initial transient response which is due to including
the drive train friction in the controller (4.12). On the other hand, during the steady
state response, the use of the FIS has improved the extracted power. Additionally,
to compare the overall performance of the proposed controller, the control criteria
are also summarized in Table 4.7. It can be concluded that the generated power,
in comparison to Table 4.1, has increased about 1.24% while the total induced tor-
sional angle is still of very small magnitude.
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FIGURE 4.17: Comparison between performances of improved (red
line) and baseline (blue line) partial load controllers.

Now, to consider the applicability of the proposed controller, a real measured
wind speed (Odgaard et al., 2015), shown in Figure 4.18, is used as a disturbance
on the nonlinear model of the wind turbine. The results of baseline partial load
controller 4.7 and improved one are summarized in Table 4.8.
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FIGURE 4.18: Real Wind speed profile (Odgaard et al., 2015).

It is obvious that with the improved controller, for the real wind speed, the ex-
tracted energy is increased about 1.14% with a consequential 6% increase in total
drive train stress. These results show the effectiveness of using the fuzzy logic
method to increase the extracted energy and drive train stress in partial load opera-
tion.

In this section the baseline partial load controller has been improved using FIS
and the performance of both controllers have been compared. In this next, the
baseline PID full load controller is improved.

4.4 Improvement of Full Load Baseline Controller

In this section, the baseline full load controller is improved to precisely regulate
pitch angle and maintaining the nominal rotor speed, in the presence of wind speed
variation and to attenuate model uncertainty, disturbance, and pitch actuator faults.
It is aimed to utilize the PID baseline full load controller structure with automatic
adaptive gain tuning. Nussbaum type functions were augmented in the adaptive
laws to take the unknown control direction into consideration. Finally, stability of
the wind turbine model augmented with the proposed controller in the presence of
wind speed variation is proved analytically.2 It should be noted that the proposed
controller in this section can be seen as passive FTC. However, the active one will be
proposed in Chapter 6. Considering the wind turbine operation, as stated in Chapter
3, it is desirable to keep the drive train torsion angle variation θ̇∆ as close as possible
to zero, which, consequently, leads to reduction in drive train stress. Accordingly,
θ̇∆ = 0 leads to Ngωr = ωg. So, it is desirable to keep the rotor and generator
speeds proportional at the drive train ratio (Tiwari et al., 2016). On the other hand,
as generator speed is aimed to be maintained at ωg,N , rotor speed is to be maintained

2This section is captured and reorganized from the paper “Adaptive PID Control of Wind Tur-
bines for Power Regulation with Unknown Control Direction and Actuator Faults”. The authors’
attribution on this paper are given in Appendix C.
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at ωg,N/Ng (Boukhezzar et al., 2011). Considering θ̇∆ = 0 with zero initial drive
train torsion angle, leads to θ∆ = 0 as the reduced drive train stress trajectory.

The desirable operational mode of the wind turbine operating at the desired tra-
jectory with reduced drive train stress is as ,

ω̇r = a1ωr + a2ωg + a3Ta,

ω̇g = b1ωr + b2ωg + b3Tg,
(4.14)

where, a1 = −(Bdt + Br)/Jr, a2 = Bdt/NgJr, a3 = 1/Jr, b1 = ηdtBdt/NgJg,
b2 =

(
−ηdtBdt/Ng

2 −Bg

)
/Jg, b3 = −1/Jg. Accordingly,

ω̈r = c1ωr + c2ωg + c3Ta + c4Tg + a3Ṫa, (4.15)

where, c1 = a1
2 + a2b1, c2 = a1a2 + a2b2, c3 = a1a3, c4 = a2b3, forms the

combined rotor dynamic behaviour. Considering (4.15), it is obvious that the ro-
tor speed and generator speed, are controlled by regulation of the pitch angle and
consequent aerodynamic torque. Also, Ta is a non-affine function of pitch angle
(Jafarnejadsani et al., 2013). One obvious solution is model linearization, which
leads to model inaccuracies. So, this problem is solved in this research by utilizing
the mean value theorem. As stated earlier, Ta is not a singular function for any triple
pair (Vr, ωr, β) in the operational range of the wind turbine. So, according to the
mean value theorem, for any given pair of (Vr, ωr), there exists Ξ ∈ [0, 1] such
that,

Ta (Vr, ωr, β) = Ta (Vr, ωr, β
∗) + ( β − β∗) ∂Ta

∂β

∣∣∣∣
(Vr, ωr, βk)

, (4.16)

where, βk = Ξβ + (1− Ξ) β∗.

Assumption 4.1. In this section, it is assumed that the blade aerodynamic charac-
teristics are not varied due to the environmental effect such as debris, ice or dust
on the blades. So, Ta (Vr, ωr, β

∗) and β∗ for any given pair (Vr, ωr), are con-
stant through time. Also, in the case of any potential change, it would be very slow
which lies within the yearly scheduled maintenance procedure of the wind turbine
and then its effects will be removed soon enough before the occurrence of any sig-
nificant change. This change will be considered in Chapter 6.

Remark 4.2. In Figure 4.6, it is obvious that −L ≤ ∂Ta/∂β ≤ −U < 0, where,
0 < U < L, which implies that, as wind speed increases, with increasing pitch an-
gle, the aerodynamic torque will decrease, to prevent the rotor from over speeding.

Considering Assumption 4.1, the time derivative of (4.16) leads to,
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Ṫa (Vw, ωr, β) = β̇
∂Ta
∂β

= β̇ Ta)β . (4.17)

Now, replacing (4.17) into (4.15), one can obtain,

ω̈r = c1ωr + c2ωg + c3Ta + c4Tg + a3β̇ Ta)β . (4.18)

Consider pitch actuator dynamic response with dynamic change and actuator fault
(3.27). In this section, the wind turbine dynamic states of interest are the vector
x1 = [ωr, ωg, β, Tg]

T . Using (4.18) and (3.27) leads to,

ω̈r = F (x1, t) +G(x1, t)
(
ρ (t) βref + Φ (t)

)
+D(x1, t) (4.19)

where, F = c1ωr + c2ωg + c3Ta + c4Tg − ωn,Na3Ta)ββ/2ξN − a3Ta)ββ̈/2ωn,NξN ,
G = ωn,Na3Ta)β/2ξN and D = a3Ta)∆f̃PAD/2ωn,NξN .

It is important to be mentioned that in (4.19), the control direction of G is an
unknown function, due to existence of Ta)β which depends on wind speed. So,
this issue motivates use of the Nussbaum function, which is a well-known tool to
cope with unknown control direction issues. F is not completely known, because of
the existence of the Ta)β term and noise contents of variable measurements which
appear in F . Finally, D is the unknown pitch actuator model uncertainty.

Remark 4.3. Considering Figure 4.6 and Remark 4.2, it is obvious that G =
ωn,Na3Ta)β/2ξN takes value in −ωn,Na3L/2ξN ≤ G ≤ −ωn,Na3U/2ξN and also
G 6= 0 for any triple pair (Vr, ωr, β).

Assumption 4.2. Considering the bounded achievable pitch angle and it is al-
lowable variation rate 3.22, it is assumed |Φ| ≤ Φ̄ ≤ ∞, |ρ̇| ≤ Cρ̇ ≤ ∞ and
|Φ̇| ≤ CΦ̇ ≤ ∞, where Φ̄, Cρ̇ and CΦ̇ are positive unknown constants (Song et al.,
2017).

Assumption 4.3. Considering information extraction from system nonlinearities
(Song et al., 2016), there is an unknown non-negative constant af and computable
non-negative functionϕf (x1) such that it satisfies |F (x1, t) + Φ (t)G (x1, t) +D (x1, t)| ≤
afϕf (x1) (Song et al., 2017).

Now, to construct the proposed controller, the rotor tracking error and its first-
time derivative are defined as,

eωr(t) = ωr,s(t)− ωr,N ,
ėωr(t) = ω̇r,s(t)− ω̇r,N .

(4.20)
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As the nominal values of the wind turbine are assumed constant, so, ω̇r,N = 0. Tak-
ing the second time derivative of eωr , takes the combined rotor dynamic response
(4.19) into consideration, as,

ëωr = F +G(ρβref + Φ) +D. (4.21)

To proceed, the tracking error filter is defined as,

Z (t) = 2λ1eωr(t) + λ2
1

∫ t

0

eωr (τ) dτ + ėωr(t), (4.22)

where, λ1 is a positive design parameter such that the transfer function s2+2λ1s+λ
2
1

is Hurwitz. Considering (4.21) and (4.22), it can be easily shown that,

Ż = H(x1, t) +B (x1, t) βref , (4.23)

where, B (x1, t) = ρ (t)G (x1, t) and H (x1, t) = 2λ1ėωr(t) +λ2
1eωr(t) +F (x1, t) +

Φ (t)G (x1, t) +D (x1, t) + λ2
1νωr + 2λ1νω̇r .

Assumption 4.4. In this section the measurement noise on the variable of Y , i.e. νY ,
is considered bounded by an unknown bound d̄Y , which is a practical assumption
(Tabatabaeipour et al., 2012).

Now, considering Assumptions 4.3 and 4.4, H is upper bounded as,

|H| = 2λ1|ėωr |+ λ2
1|eωr |+ afϕf (x1) + λ2

1d̄ωr + 2λ1d̄ω̇r ≤ aϕ(x1), (4.24)

where, a = max{af , 2λ1, λ
2
1, λ

2
1d̄ωr , 2λ1d̄ω̇r} is an unknown positive constant and

ϕ (x1) = ϕf (x1)+|ėωr |+|eωr |+1. It should be noted ϕ (x1) is called a core-function
and is a computable scalar function (Song et al., 2017).

It can be proved that boundedness ofZ leads to boundedness of eωr ,
∫ t

0
eωr (τ) dτ

and ėωr . So, the controller is designed to ensureZ is Uniformly Ultimately Bounded
(UUB) (Khalil, 1996). In this regard, the following definitions and lemma are stated,
on which basis the controller is proposed, and its stability is proved.

Definition 4.1. The solution of a system x(t) is UUB if, there exists a number
T (K, x (t0)), and a K > 0 such that for any compact set S and all x (t0) ∈ S ,
||x(t)|| ≤ K, for all t ≥ t0 + T .

Definition 4.2. Any smooth continuous even function N (ξ (t)) is called a Nuss-
baum type function, if limr→∞ sup 1

r

∫ r
0
N (ξ) dξ = +∞ and limr→∞ inf 1

r

∫ r
0
N (ξ) dξ =

−∞ (Song et al., 2017).
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Lemma 4.1. Assume V (t) > 0 and ξ(t) are smooth defined functions defined on
the time interval [0 tf ). Also, N (ξ(t)) is a selected Nussbaum type function. Then,
for any t ∈ [0 tf ), if V (t) < c0 + e−c1t

∫ t
0

(g (τ)N (ξ (τ)) + 1) ξ̇ec1τdτ holds true,
where c0 and c1 are positive constants, and g (τ) represents a time-varying param-
eter, which takes values in the unknown closed intervals L ∈ [l+, l−] with 0 /∈ L,
then V (t), ξ(t) and

∫ t
0
g (τ)N (ξ (τ)) ξ̇ec1τ must be bounded on [0 tf ) (Song et al.,

2017).

Now, considering (4.23), a PID-like pitch angle controller is proposed as,

βref = (λD0 + λD)N(ξ)Z (t) , (4.25)

where, λD0 is a positive design parameter, with the following adaptive laws,

λD = âϕ2,

ξ̇ = (λD0 + λD)Z2,

˙̂a = −σ0â+ σ1ϕ
2Z2,

(4.26)

where, σ0 and σ1 are positive design parameters, and â is an estimation of a.

Remark 4.4. The proposed controller (4.25) can be seen as a combination of two
parts, i.e. Z (t) and (λD0 + λD)N(ξ). Considering (4.22), it is obvious that Z (t)
is a PID-like filter of the tracking error and on the other hand, (λD0 + λD)N(ξ)
is auto-updating the gains of Z (t). This is the reason the proposed controller is
called a PID-like controller.

The stability of the wind turbine model using the proposed controller (4.25) is
proved via the following theorem.

Theorem 4.1. Consider the combined rotor dynamic behaviour (4.18), including
the presence of a pitch actuator fault and uncertainty. Under Assumptions 4.1-4.4
and the unmeasured wind speed variation, using the proposed pitch angle controller
(4.25) with adaptive law (4.26), then,

(i) Pitch angle controller signal is smooth everywhere,

(ii) All the internal signals are UUB

(iii) The rated rotor speed tracking error is guaranteed to be UUB

The proof of this theorem is given in A.1.

Now, the modified baseline full load controller (4.25) is evaluated via numeri-
cal simulations and also, the results are compared to those from the baseline full
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load controller (4.10) to demonstrate the performance advantages of the proposed
controller with both fault-free and faulty situations.

Although it has been proposed to filter the generator sensor, before feeding it
into the baseline controller (4.10) to remove noise content and avoid amplification of
noise via controller gain, however, it is obvious that, in the structure of the controller
(4.10), the sensor noise ωg,s is not necessarily attenuated and may be amplified.
Also, the pitch actuator uncertainty, i.e. ∆f̃PAD, is not analytically attenuated in
this controller. On the other hand, any possible loss of effectiveness or bias, i.e. ρ (t)
and Φ (t) in (3.27), is not assured to be accommodated. So, it is aimed to improve
the baseline full load controller, which has industrial acceptability, to satisfy the
desired performance despite the presence of disturbances, uncertainties and faults.
This motivates the development of the proposed controller (4.25).

Considering the adaptive laws (4.26), and inequality (4.24), the function ϕf
should be selected appropriately. In this regard, considering (4.19) and Assump-
tion 4.3, the ϕf is selected as,

ϕf = |c1ωr|+
∣∣c2ωg

∣∣+ c3

(
NgT g,max

ηdt

)
+ |c4Tg|+

∣∣∣∣ωn,Na3Uβ

2ξN

∣∣∣∣+∣∣∣∣∣ a3Uβ̈

2ωn,NξN

∣∣∣∣∣+

∣∣∣∣ωn,Na3U

2ξN

∣∣∣∣+

∣∣∣∣∣∣
a3U∆

(
ω̃nξ̃
)
β̇

ωn,NξN

∣∣∣∣∣∣+∣∣∣∣a3U∆(ω̃2
n) (βmax − βmin)

2ωn,NξN

∣∣∣∣ ,
(4.27)

which is obviously a computable scalar function, as a part of the controller struc-
ture. Also, in Assumption 4.3, af = max{1 ,Φ, αf1 , αf2}, which is unknown and
estimated, considering (4.24) and (4.26). On the other hand, the Nussbaum type
function, used in (4.25), is selected as,

N (ξ) = ξ2 cos(ξ), (4.28)

which satisfies Definition 4.2 conditions.

Firstly, the performance of both controllers in normal situations, i.e. without
pitch actuator effectiveness loss, bias or dynamic change, are carried out. Then,
for each mentioned situation, the wind turbine operation is studied and also, the
performance criteria are compared.

The performance of the wind turbine in normal actuation situations using the
baseline and improved controllers, under wind speed profile Figure 4.9 are demon-
strated and compared in Figures 4.19-4.22. Faults and uncertainty in the pitch actua-
tor are considered as, αf1= αf2 = 0 and consequently ∆f̃PAD = 0. Also, ρ = 1 and



82 Chapter 4. Improvements of Baseline Industrial Wind Turbines Controllers

Φ = 0. The numerical performance criteria are summarized in Table 4.9. The first
three criteria are significantly decreased compared to the baseline controller, which
demonstrates better nominal generator speed and nominal power tracking perfor-
mance. This result is obvious in Figures 4.19 and 4.20. Also, considering Figure
4.22, the induced drive train torsion angles are similar using both controllers. On
the other hand, considering Figure 4.21, which shows the pitch variation using the
improved controller, i.e. last two criteria, is increased, which is expected.
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FIGURE 4.19: Generator speed in full load operation using base-
line controller (blue line) and improved one (red line), and nominal

generator speed (green line).
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FIGURE 4.20: Generated power in full load operation using base-
line controller (blue line) and improved one (red line), and nominal

generator speed (green line).

Now, under different pitch actuator faults and dynamic changes, the performance
of the wind turbine using both controllers are considered. It should be noted that,
to study the effect of each fault accurately, the pitch actuator faults and dynamic
changes are considered separately. The pitch actuator bias and effectiveness loss
are applied as, {

Φ = 15◦, 200 (s) ≤ t ≤ 600(s),

ρ = 0.6, 900 (s) ≤ t ≤ 1300(s).
(4.29)

The generator speed for different time periods, mentioned in (4.29), using the base-
line and improved controllers are shown in Figures 4.23-4.26. In Figure 4.23, the
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FIGURE 4.21: Pitch angle using baseline controller (blue line) and
improved one (red line).
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FIGURE 4.22: Drive train torsion angle using baseline controller
(blue line) and improved one (red line).

generator speed using the baseline controller in the normal situation and for the
pitch bias case, are compared. It is obvious that the pitch bias deviates the genera-
tor speed from the nominal one, more so than the normal case. Indeed, the baseline
controller is not able to remove the pitch bias effect and operate the same as the nor-
mal situation. The same result can be obtained considering Figure 4.24, in which
the effective loss of the pitch actuator is applied. Comparing Figure 4.23 and 4.24,
it can be seen that the effectiveness loss effect is more severe than the pitch bias. In
Figures 4.25 and 4.26, the corresponding improved controller results are illustrated,
in which the generator speed with pitch bias and effectiveness loss is obviously kept
the same level as the normal one. Also, comparing Figures 4.23 and 4.25 implies
that the improved controller, in the pitch bias case, is operating more satisfactorily
than the baseline controller. A similar result is obtained by comparing Figures 4.24
and 4.26, in the effectiveness loss case. To verify this outcome, the performance
criteria are summarized in Table 4.10.

Now, the effects of the dynamic change in the pitch actuator are considered. To
this end, the dynamic changes are applied as,
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TABLE 4.9: Performance criteria in normal situation in full load
operation using baseline controller and improved one

Performance criteria Improved controller Baseline controller

CC1 620.1 (GW 2s) 2819 (GW 2s)
CC2 2.110 (mrad2/s) 2.103 (mrad2/s)
CC3 270.1 (rad2/s) 2967 (rad2/s)
CC4 0.0517 (MW ) 0.1437 (MW )
CC6 29.05 (◦) 28.42 (◦)
CC8 9.95 (◦/s) 8.53 (◦/s)

TABLE 4.10: Performance criteria in pitch bias and effectiveness
loss in full load operation using baseline controller and improved

one

Performance criteria Improved controller Baseline controller

CC1 643.5 (GW 2s) 4304 (GW 2s)
CC2 2.112 (mrad2/s) 2.105 (mrad2/s)
CC3 274.8 (rad2/s) 4669 (rad2/s)
CC4 0.0776 (MW ) 0.2087 (MW )
CC6 29.45 (◦) 28.34 (◦)
CC8 10 (◦/s) 9.05 (◦/s)



4.4. Improvement of Full Load Baseline Controller 85

T ime (s)
200 250 300 350 400 450 500 550 600

ω
g
(r
a
d
/
s)

158

160

162

164

166

168

FIGURE 4.23: Generator speed using baseline controller in normal
actuation case (blue line) and pitch actuator bias case (red line), and

rated generator speed (green line).
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FIGURE 4.24: Generator speed using baseline controller in normal
actuation case (blue line) and effectiveness loss case (red line), and

rated generator speed (green line).


Pump wear, 400 (s) ≤ t ≤ 600(s),

Hydraulic leak, 700 (s) ≤ t ≤ 900(s),

High air content, 1000 (s) ≤ t ≤ 1200(s).

(4.30)

Considering Figure 3.8, it is obvious that all the dynamic changes make the pitch
actuator about one second slower. This slower time is not obvious in the time span
of numerical simulation. So, the difference of the pitch angle between the fault-free
case and the pitch angle in the dynamic change case, is considered as the indicator
to accurately study the dynamic change effects, defined as,

∆β = βdc − βnormal, (4.31)

where, βdc represents the pitch angle in the dynamic change case, using the given
controller and βnormal is the pitch angle in the normal situation using the same con-
troller. Obviously, as long as this indicator is closer to zero, it means that the con-
sidered controller is able to compensate for the dynamic change effects and keep
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FIGURE 4.25: Generator speed using improved controller in normal
actuation case (blue line) and pitch actuator bias case (red line), and

rated generator speed (green line).
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FIGURE 4.26: Generator speed using improved controller in normal
actuation case (blue line) and effectiveness loss case (red line), and

rated generator speed (green line).

the pitch angle close to the corresponding one in the normal situation. The pitch
angle difference using both controllers, with and without the above mentioned dy-
namic changes (4.31), are demonstrated in Figures 4.27-4.29. It is obvious in each
dynamic change case that the pitch difference is closer to zero using the proposed
controller than the baseline controller. This means that the proposed controller is
able to compensate for the dynamic change in the pitch actuator satisfactorily. Fi-
nally, the performance criteria are summarized in Table 4.11, which confirms the
aforementioned results, numerically.

In this chapter the baseline controllers of wind turbine operating in both par-
tial and full load regions have been investigated. The performance of the baseline
controllers has been considered and, accordingly, the improvements have been de-
veloped. In the partial load region, a FIS has been designed to adjust the baseline
controller gain based on generator speed variation. The baseline controller aug-
mented with the FIS captured more power compared to the baseline controller. In
the full load region, the baseline controller has been improved using adaptive gains
to accommodate pitch actuator faults. Also, using the Nussbaum type function, the
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FIGURE 4.27: Pitch angle difference using baseline controller (blue
line) and improved one (red line) in pump wear case.
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FIGURE 4.28: Pitch angle difference using baseline controller (blue
line) and improved one (red line) in hydraulic leak case.

unknown controller problem has been solved. The numerical simulation confirmed
that the improved baseline controller was able to handle pitch actuator dynamic
change, effectiveness loss and additive bias. It should be noted that, the improved
baseline controller partial load is obviously not tolerant against generator actuator
faults as well as generator sensor faults. So, in Chapter 5, a new FTC controller is
proposed to be tolerant against the generator actuator faults. On the other hand, in
Chapter 7, a FDI scheme is proposed to detect and isolate the sensor faults, which
can be used alongside the baseline controller. In addition, even though the improved
baseline controller full load is able to remove pitch actuator faults, but no fault in-
formation is gathered via this controller. In this regard, a new FTC controller is
proposed in Chapter 6.
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FIGURE 4.29: Pitch angle difference using baseline controller (blue
line) and improved one (red line) in high air content case.

TABLE 4.11: Performance criteria in pitch actuator dynamic change
case in full load operation using baseline controller and improved

one

Performance criteria Improved controller Baseline controller

CC1 634.8 (GW 2s) 2955 (GW 2s)
CC2 2.103 (mrad2/s) 2.103 (mrad2/s)
CC3 272.1 (rad2/s) 3257 (rad2/s)
CC4 0.0714 (MW ) 0.1720 (MW )
CC6 29.18 (◦) 28.51 (◦)
CC8 10 (◦/s) 9.01 (◦/s)
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5 Optimum Efficiency Control with
Unknown Desired Trajectory and
Actuator Faults

A nonlinear controller is proposed in this chapter to make the wind turbine operate
effectively despite the presence of the actuator faults, similar to the fault-free case
in partial load operation.1 The considered actuator faults are pitch and generator
actuator biases as well as pitch actuator dynamic change, including, pump wear,
hydraulic leakage and high air content in the oil. Also, the wind speed is assumed
as an unmeasurable disturbance, and accordingly using GRBFNN, the unknown
desired trajectory is reconstructed, so that the captured power is maximized. The
proposed controller is shown to be able to keep the wind turbine tracking the re-
constructed desired trajectory with sufficient accuracy. Using Lyapunov analysis,
the boundedness of the closed-loop system with the proposed controller, is proved.
The designed controller is verified via numerical simulations. In comparison with
the baseline industrial controller (4.7) results, the effectiveness of the proposed con-
troller is evaluated. It should be noted that the values of controller parameters are
given in Section B.3.

Considering the generated power, i.e. Pa = Pw.Cp (β, λ) and that the effective
wind speed Vr is considered as a disturbance, it can be concluded that if the power
coefficient, Cp, is maximized, it will lead to harvesting the most available power
from the wind. According to Figure 3.2, it can be seen that Cp,max = 0.48 which
is at βopt = 0 and λopt = 8.1. On the other hand, to keep the power coefficient
at its maximum value, the TSR, λ, should be kept at λopt = 8.1. Considering
λ = Rωr/Vr, the desired rotor speed, i.e. ωr,desired, can be stated as a function of
wind speed as, ωr,desired = λoptVr/R. Considering the presence of Vr in ωr,desired,
it is obvious that the desired trajectory is not available. So in this chapter it is
reconstructed utilizing GRBFNN. To fulfill the control objective, the load generator
torque, Tg,ref , is controlled such that, via the drive train dynamics, the rotor speed
tracks ωr,desired.

1This chapter is captured and reorganized from the papers “Optimum efficiency control of a wind
turbine with unknown desired trajectory and actuator faults”, “Power maximization of variable-speed
variable-pitch wind turbines using passive adaptive neural fault tolerant control”, and “A neuro-
adaptive maximum power tracking control of variable speed wind turbines with actuator faults”.
The authors’ attribution on these papers are given in Appendix C.
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There may be an operational scheme where the pitch actuator is not active in
the partial load operation and the pitch angle has to be fixed at the optimal value,
i.e βopt = 0◦, e.g. (4.7) and (4.12). Consequently, there is no need for the pitch
controller to be designed. In this regard, it should be noted that the wind speed is a
randomly varying disturbance and it cannot be guaranteed that the wind turbine is
only operating in the partial load region. The wind turbine operational region can
rapidly and continuously vary from the partial to full load region and vice versa.
So, it is important to guarantee, regardless of the operation region, that the pitch
actuator follows the desired pitch angle accurately, whose dynamic behavior might
have changed. Also, due to this excessive operational range variation, a pitch bias
may be added into the pitch actuator. So, it is aimed to propose a controller such
that, despite the presence of pitch actuator faults, it keeps the pitch angle at the
requested value, which is either zero in the partial load region or should be tuned
in the full load region, in which a simple industrial PID controller, i.e. (4.10) can
be implemented, as studied in Section 4.2. In fact, the proposed pitch controller is
readily designed to be used in the full load region, as an extension of this chapter,
and so just the desired pitch angle should be constructed, separately.

Now, some technical lemmas are introduced to be used in considering the stabil-
ity of the proposed controller.

Lemma 5.1. The state vector of a dynamic system x is UUB for bounded initial
condition if there exists a positive definite Lyapunov function V (x, t) satisfying
a1(‖x‖) ≤ V (x, t) ≤ a2(‖x‖), such that dV/dt < −b1V + b2 where b1 and b2

are positive constants and a1 and a2 are class K-functions. As the time goes by,
V (x, t) stays in the set Ω = {V |V ≤ b2/b1}.

The proof of this lemma is given in A.2.

Lemma 5.2. Define variable ã, as ã = â− a, then −2σdãâ ≤ −σdã2 + σda
2 holds

true for any positive constant σd.

The proof of this lemma is given in A.3.

Lemma 5.3. 0 ≤ |ξ|−ξ2/
√
ξ2 + γ2 < γ holds true, for any variable ξ and positive

constant γ.

The proof of this lemma is given in A.4.

In the next section the unknown desired trajectory is constructed via implement-
ing the GRBFNN technique.
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5.1 Unknown Desired Trajectory Construction

In this section, the unknown desired trajectory is reconstructed using GRBFNN on
which basis, then, the generator torque controller is designed.

As stated earlier, the effective wind speed at the rotor plane, Vr, is not measurable
accurately using the anemometer placed at the top of the nacelle, and meanwhile the
desired rotor speed, to capture the most possible energy, is stated in terms of wind
speed as,

ωr,desired =
λoptVr
R

,

ωg,desired = Ngωr,desired.
(5.1)

So, the desired trajectory is not known a priori. Accordingly, in this section, exploit-
ing the universal approximation capabilities of GRBFNN, the desired trajectory is
reconstructed (Song et al., 2017). Considering well-developed approximation the-
ory, the approximated desired trajectory, ω∗g,d is expressed as a continuous function
as,

ω∗g,d = Ψ∗T (t)ϕ(t) + %(t), (5.2)

where, Ψ∗, ϕ∈ R$×1 and % ∈ R are unknown time varying optimal weights, known
basis bounded functions and unknown approximation error, respectively. Also, $
is the number of neurons in the neural network. Because Ψ∗ and % are unknown, it
is obvious that ω∗g,d is still not utilizable in the controller design procedure. So, the
approximated desired trajectory, ω̂g,d, is computed as,

ω̂g,d = Ψ̂T (t)ϕ(t), (5.3)

where, Ψ̂ is the estimation of Ψ∗ with the estimation error as, Ψ̃ = Ψ∗ − Ψ̂.

Assumption 5.1. It is assumed that |%| ≤ %1, |%̇| ≤ %2, Ψ∗ ≤ ψ1 and Ψ̇∗ ≤ ψ2

where 0 < %1, %2,ψ1, ψ2 < ∞ are unknown constants (Song et al., 2017), and ‖‖
denotes the Euclidean norm operator for vectors.

The tracking error and its time derivative, which will be used in the next section
to design the generator controller, are defined as, eωg = ω̂g,d − ωg,s and ėωg =
˙̂ωg,d − ω̇g,s, where ωg,s and ω̇g,s are the measured generator speed and its derivative
sensors, respectively. Also, ˙̂ωg,d is obtained considering (5.3) as,

˙̂ωg,d =
˙̂
ΨT (t)ϕ(t) + Ψ̂T (t)ϕ̇(t). (5.4)
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Now, the adaption law for Ψ̂ is proposed as,

˙̂
Ψ = −σΨ̂(t) + Λη(eωg), (5.5)

where, σ and Λ are positive design parameters, satisfying σ > Λ+1, and η(eωg)∈ R$×1

is an arbitrarily selected bounded function, as ‖η(eωg)‖ ≤ η1 where η1 is an un-
known positive constant. Considering (5.5), it can easily be shown that,

¨̂
Ψ = σ2Ψ̂(t)− σΛη(eωg) + Λη̇(eωg), (5.6)

where, η̇(eωg) = (∂η/∂eωg)ėωg and ‖∂η/∂ωg‖ is bounded.

Theorem 5.1. Considering the adaption law (5.5), Ψ̂ and ˙̂
Ψ are UUB.

The proof of this theorem is given in A.5.

The desired trajectory construction diagram is illustrated in Figure 5.1. Now,

FIGURE 5.1: Desired trajectory construction.

after estimation of the unknown desired trajectory, ω̂g,d, the exact tracking error and
its time derivative, i.e. e∗ωg and ė∗ωg , respectively, are defined as,

e∗ωg = ω∗g,d − ωg,s,
ė∗ωg = ω̇∗g,d − ω̇g,s.

(5.7)

Taking eωg = ω̂g,d − ωg,s and ėωg = ˙̂ωg,d − ω̇g,s into consideration, e∗ωg and ė∗ωg can
be rewritten as,

e∗ωg = ω∗g,d − ω̂g,d + eωg = Ψ̃T (t)ϕ(t) + %(t) + eωg ,

ė∗ωg = ˙̃ΨT (t)ϕ(t) + Ψ̃T (t)ϕ̇(t) + %̇(t) + ėωg .
(5.8)

Therefore, considering Theorem 5.1 and Assumption 5.1, it can be concluded that
boundedness of eωg and ėωg leads to boundedness of e∗ωg and ė∗ωg , respectively. So, in
the next section, it is aimed to design Tg,ref such that ωg,s tracks as close as possible
the estimated desired one, ω̂g,d, such that eωg and ėωg are bounded.
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5.2 Generator Torque Controller Design

In this section, the design of the generator torque controller, Tg,ref , to track the
maximum power point, i.e. λopt = 8.1, is done based on reducing the tracking error
eωg = ω̂g,d − ωg,s. In order to reduce the torsional angle of twist that may lead to
drive train failure, it is desired to keep the generator and rotor speed proportional to
each other through the gearbox ratio, accordingly, it is advantageous that θ̇∆ = 0.
So, the controller is designed on the desirable operational mode of the wind turbine
in which ωg = Ngωr. On this basis, considering (4.14), the second time derivative
of generator speed including generator torque bias (3.29) and noises can be obtained
as,

ω̈g = c1ωr + c2ωg + c3Tg + c4Ta + c5Tg,ref + d1 + f1, (5.9)

where, c1 = b1a1 + b2b1, c2 = b1a2 + b2
2, c3 = b2b3−agb3, c4 = b1a3, c5 = b3ag,

d1 = c1νωr + c2νωg + c3νTg,s and f1 = b3agfTg .

Assumption 5.2. It is assumed that the accumulative fault f1 is bounded such that
|f1| ≤ f̄1, where f̄1 ∈ R+ is an unknown constant (Lan et al., 2018). Indeed, taking
into account the maximum possible generator torque, i.e. (3.20), it is assumed that
the generator bias, i.e. fTg , is bounded, before the total failure of the generator
in which case the maintenance procedure is inevitable (Sloth et al., 2011). On the
other hand, the time derivative of the fault is assumed to be bounded, i.e. |ḟ1| ≤
ρḟ1 where ρḟ1 ∈ R+ is an unknown constant (Lan et al., 2018). Regarding the
accumulative disturbance, i.e.d1, it is assumed that |d1| ≤ d̄1 where d̄1 ∈ R+ is
an unknown constant which is a reasonable practical issue (Tabatabaeipour et al.,
2012).

Considering (5.9), it is obvious that the aerodynamic torque is contributing to the
generator dynamic behaviour. On the other hand the wind speed is not measurable
accurately, on which basis it is difficult to obtain the aerodynamic torque. Although
using (5.1) and (5.3), an estimation of wind speed and, consequently, aerodynamic
torque, can be reconstructed, but, in this section to avoid computational complex-
ity, a separate aerodynamic torque estimator is implemented. So, in this chapter,
the GRBFNN as a class of linearly parameterized neural networks are employed to
approximate a smooth and continuous function of aerodynamic torque. In the liter-
ature on adaptive control of nonlinear systems, due to their approximation property
and the learning capability, neural networks are extensively used for approximation
of unknown nonlinearities.

The GRBFNN input vector is selected as, Z = [Tg, ωg, β]T ∈ ΩZ and accord-
ingly, the aerodynamic torque is given as,

Ta(Z) = θ∗
T

h (Z) + ε,

Ta,NN(Z) = θTh (Z) ,
(5.10)
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where, Ta,NN is a GRBFNN approximation of Ta, θ∗ ∈ Rs is an unknown optimal
weight, h(Z) = [h1(Z), h2(Z), ..., hs(Z)]T ∈ Rs, with s > 1 being the neural
network node number and hi(Z) is selected as a Gaussian function given by,

hi(Z) = e
−(Z−ϑi)

T (Z−ϑi)
2ϕ2
c,i , (5.11)

where, ϑi = [ϑi,Tg , ϑi,ωg , ϑi,β]T is the center of the ith input andϕc = [ϕc,1, ..., ϕc,s]
T ∈

Rs is the width of the ith Gaussian function. θ∗ is defined as,

θ∗ = argminθ∈Rs [supZ∈ΩZ |Ta(Z)− Ta,NN(Z)|], (5.12)

and also ε ∈ R is an estimation error which is bounded with an unknown bound
ε̄ > 0, such that, |ε| ≤ ε̄ (Jafarnejadsani et al., 2013).

Now, to design the generator torque controller, a backstepping technique is uti-
lized. A positive definite Lyapunov function is chosen as,

V
Tg

1 =
1

2
e2
ωg , (5.13)

where, its time derivative can be written as, V̇ Tg
1 = eωg ėωg . A variable transfor-

mation is defined as, e2,ωg = αωg − ω̇g,s, where αωg is the virtual control signal,
designed as,

αωg = ˙̂ωg,d + k1,ωgeωg , (5.14)

where, k1,ωg is a positive design parameter. Also, ˙̂ωg,d is obtained using (5.5).

To reduce tracking error of generator speed, the generator torque controller is
proposed as,

Tg,ref =
1

c5

g1 − c4T̂a − f̂1 +
e2,ωg√

e2
2,ωg + η2

d1

d̂1 + k2,ωge2,ωg

 , (5.15)

where, ηd1 and k2,ωg are positive design parameters, and f̂1 and d̂1 are estimations

of f1 and d1, respectively. Also, g1 = eωg+α̇ωg − c1ωr,s− c2ωg,s− c3Tg,s, T̂a = θ̂
T
h

and θ̂ is the estimated weight of θ∗. Also, the adaptive laws are defined as,

˙̂
d1 =

e2
2,ωg√

e2
2,ωg + η2

d1

− σd1 d̂1,

˙̂
θ = Γ

(
−c4e2,ωgh− σcθ̂

)
,

˙̂
f 1 = −e2,ωg − σf1 f̂1,

˙̂ρf̃1 = −σf̃1 ρ̂f̃1 ,

(5.16)
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where, σd1 , σc, σf1 and σf̃1 are positive design parameters. Γ ∈ Rs×s is the design
matrix such that Γ = ΓT > 0. NN weight and disturbance estimation errors are as,

θ̃ = θ̂ − θ∗,
d̃1 = d̂1 −D,

(5.17)

respectively, where D is a positive unknown constant satisfying 0 < c4ε̄+ d̄1 ≤ D.
Fault estimation error is given as,

f̃1 = f̂1 − f1, (5.18)

which is assumed to be bounded as
∣∣∣f̃1

∣∣∣ < ρf̃1 where ρf̃1 is a positive unknown
constant (Lan et al., 2018). So, estimation of ρf̃1 is defined as ρ̂f̃1 and its estimation
error is as,

ρ̃f̃1 = ρ̂f̃1 − ρf̃1 . (5.19)

The stability and boundedness of the wind turbine equipped with a generator torque
controller (5.15), is considered in the following theorem.

Theorem 5.2. Consider the wind turbine model (3.23) and the proposed generator
torque controller (5.15) with adaption laws (5.16). Let the initial conditions of
the drive train and generator dynamics be bounded. Then for all pitch angles,
generator speed tracking error, i.e. eωg , and its time derivative, i.e. ėωg , are UUB.

The proof of this theorem is given in A.6.

In Figure 5.2, a schematic diagram of the proposed generator torque controller is
illustrated. Note that, considering (5.15), larger controller design parameters, leads
to higher drive train torsion angle and generator torque variation, which can be seen
as negative effects. So, the design parameters are selected in such a way to keep
the drive train torsion angle and generator torque variation at a reasonable level
compared to the baseline controller values.

5.2.1 Generator torque bias estimation

Considering f1 = b3agfTg , and the estimated fault in (5.16), f̂1, the generator bias
can be obtained as,

f̂Tg =
f̂1

b3ag
, (5.20)

where, f̂Tg is the estimated generator torque bias. Indeed, the benefit of the pro-
posed controller is that the fault effect is handled and no controller reconfiguration
is needed. On the other hand, the estimated fault signal is generated which can be
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FIGURE 5.2: Generator torque controller diagram.

used for many purposes, such as supervisory condition monitoring schemes as well
as in the manual maintenance procedures.

In this section, the generator torque controller has been proposed to accommo-
date the generator torque bias and also, to steer the wind turbine toward the desired
trajectory. Also, the generator torque bias has been estimated which might be used
for maintenance purposes. In the next section the pitch actuator controller is de-
signed.

5.3 Pitch Actuator Controller Design

The pitch controller is designed in this section to fulfil the next control objective,
i.e. keeping the pitch angle close to zero despite the presence of pitch actuator
bias. Also, an estimation of pitch actuator dynamic change, is obtained which can
be implemented on the well-known baseline controller in the full load region, (Lan
et al., 2018) to remove fault effects. The pitch tracking error is constructed as,
eβ = βd − βs, where βd is the desired pitch angle. Considering (3.27), the pitch
actuator dynamic behavior can be rewritten as,

β̈ = −ωn,N 2β − 2ωn,NξN β̇ + ωn,N
2βref + f2 + d2, (5.21)

where, d2 = −ωn,N 2νβ − 2ωn,NξNνβ̇ and f2 = ∆f̃PAD + ωn,N
2Φ. βd is zero in

the partial load operation. Also, βd is variable and should be tuned in the full load
region, in which a simple industrial baseline controller, i.e. (4.10), can be used.
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It should be noted that, in this chapter the pitch actuator effectiveness loss is not
considered, because for the case of βd = 0◦, the effectiveness loss is not effective at
all. This fault will be considered in Chapter 6.

Assumption 5.3. The accumulative fault, f2, is assumed to be bounded such that
|f2| ≤ f̄2 where f̄2 ∈ R+ is an unknown constant. In fact, Φ is considered as a
constant, or slowly varying additive step applied at the unknown fault time, i.e. tΦ.
On the other hand, ∆f̃PAD, with respect to the limited actuator input and achievable
states, is bounded (Schulte et al., 2015). Also, the time derivative of the fault is
assumed to be bounded, i.e.

∣∣∣ḟ2

∣∣∣ ≤ ρḟ2 (Lan et al., 2018), where ρḟ2 ∈ R+ is

unknown. Also, with the accumulative disturbance, d2, it is assumed that |d2| ≤ d̄2

where d̄2 is an unknown constant (Tabatabaeipour et al., 2012).

Now, to design the pitch actuator controller, a positive definite Lyapunov func-
tion is chosen as,

V β
1 =

1

2
e2
β, (5.22)

where, its time derivative can be written as, V̇ β
1 = eβ ėβ . A variable transformation

can be defined as, e2,β = αβ − β̇s, where αβ is the virtual control signal which is
chosen as,

αβ = β̇d + k1,βeβ, (5.23)

where, k1,β is a positive constant design parameter. Now, the pitch actuator con-
troller is designed as,

βref =
1

ωn,N 2

g2 − f̂2 +
e2,β√

e2
2,β + η2

d2

d̂2 + k2,βe2,β

 , (5.24)

where, ηd2 and k2,β are positive constant design parameters, and f̂2 and d̂2 are esti-
mations of f2 and d2, respectively. Also, g2 = eβ + α̇β +ωn,N

2βs + 2ωn,NξN β̇s and
the adaptive laws are defined as,

˙̂
d2 =

e2
2,β√

e2
2,β + η2

d2

− σd2 d̂2,

˙̂
f 2 = −e2,β − σf2 f̂2,

˙̂ρf̃2 = −σf̃2 ρ̂f̃2 ,

(5.25)

where, σd2 , σf2 and σf̃2 are positive constant design parameters. The estimation
errors are defined as,

d̃2 = d̂2 − d̄2,

f̃2 = f̂2 − f2.
(5.26)
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Also it is assumed that
∣∣∣f̃2

∣∣∣ < ρf̃2 (Lan et al., 2018) with unknown ρf̃2 ∈ R+.
Estimation of ρf̃2 is defined as ρ̂f̃2 and its estimation error as,

ρ̃f̃2 = ρ̂f̃2 − ρf̃2 . (5.27)

The stability and boundedness of the pitch actuator equipped with the pitch angle
controller (5.24), is considered in the following theorem.

Theorem 5.3. Consider the pitch actuator (5.21) and proposed pitch controller
(5.24) with adaptive laws (5.25). Let the initial conditions of the pitch actuator be
bounded. Then, for all generator torque, eβ and ėβ are UUB.

The proof of this theorem is given in A.7.

In Figure 5.3, the schematic diagram of the proposed pitch angle controller is
illustrated.

FIGURE 5.3: Pitch angle controller diagram.

5.3.1 Pitch actuator bias and dynamic change estimation

Now, the pitch actuator bias and dynamic change are going to be approximated. The
auxiliary signals for different cases of pitch actuator dynamic change are calculated
and compared with the estimated fault f̂2 to detect and isolate dynamic change.
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Considering (3.27) and Table 3.1, the auxiliary signals are calculated as,

fauxiliary, fault free = 0∆(ω̃n
2)βs − 0∆

(
ω̃nξ̃
)
β̇s + 0∆(ω̃n

2)βref

= 0,

fauxiliary, pump wear = −0.6316∆(ω̃n
2)βs − 0.59376∆

(
ω̃nξ̃
)
β̇s

+ 0.6316∆(ω̃n
2)βref ,

fauxiliary, hydraulic leak = −∆(ω̃n
2)βs − 1.75706∆

(
ω̃nξ̃
)
β̇s

+ ∆(ω̃n
2)βref ,

fauxiliary, high air = −0.81083∆(ω̃n
2)βs − 2∆

(
ω̃nξ̃
)
β̇s

+ 0.81083∆(ω̃n
2)βref ,

(5.28)

where, in fauxiliary, X , X represents the dynamic change type and is replaced with
either fault-free, pump wear, hydraulic leakage or high air content. Also, βs and β̇s
are measured pitch angle and its rate, respectively, and βref is defined in (5.24). The
other parameters are defined in (3.27). To proceed with fault estimation of the pitch
actuator, first, the dynamic change case is indicated and it is assumed that there is no
pitch actuator bias. Considering f2 = ∆f̃PAD + ωn,N

2Φ, in the absence of Φ, it can
be seen that f2 = ∆f̃PAD. So, using all auxiliary signals fauxiliary, X , as (5.28), the
most similar one to the estimated accumulative fault, f̂2, is selected as the dynamic
change case. So, similarity indices are utilized on which basis the fault isolation
is conducted. The Root Mean Squared Error (RMSE) and the Variance Accounted
For (VAF) indices are used in this paper, which are defined as,

RMSEX =

√
1

texe

∫ texe

0

(
fauxiliary,X − f̂2

)2

dt,

V AFX =

1−
var

(
fauxiliary,X − f̂2

)
var (fauxiliary,X)

× 100

(5.29)

where, X represents the dynamic change type and texe is the execution time. In the
ideal fault detection case, RMSE and VAF should be zero and 100%, respectively.
Indeed, using (5.29), the case X which leads to RMSE and VAF indices close to
zero and 100%, respectively, is selected as the corresponding dynamic change case,
i.e. X̂ . It should be noted that pitch bias Φ is considered as an added constant on
the accumulative fault. So, even in the presence of pitch bias with dynamic change,
only RMSE index deviates significantly from zero, but the VAF index still indicates
the correct dynamic change properly. Now, after indicating X̂ , the pitch actuator
bias is estimated. Considering f2 = fauxiliary,X̂ + ωn,N

2Φ, where fauxiliary,X̂ is
the calculated auxiliary signal using (5.29) for the indicated dynamic change X̂ , the
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estimation of pitch actuator bias, Φ̂, is as,

Φ̂ =
fauxiliary,X̂ − f̂2

ωn,N 2
. (5.30)

In this section, the pitch actuator controller has been proposed to accommodate
the pitch actuator bias and dynamic change, to guarantee that the pitch angle tracks
the desired pitch angle. Also, the pitch angle bias and dynamic change have been
estimated which might be used for maintenance purposes. In the next section the
numerical results, using both proposed generator torque and pitch angle controllers,
are investigated.

5.4 Numerical Evaluation

In this section, the proposed controllers, (5.15) and (5.24), are evaluated and the
results are compared to baseline controller (4.7) values. It should be noted that
more accurate desired trajectory tracking, taking wind speed variation into account,
leads to increasing drive train torsion angle of twist. So, there should be a trade-off
between efficiency and drive train torsion angle, accordingly, in this chapter it is
expected to increase efficiency while keeping drive train torsion angle at a reason-
able level compared to baseline controller values, which has industrial acceptabil-
ity. Firstly, the fault-free situation is studied using both the proposed controller and
baseline controller via considering various control criteria. Then, the fault detection
of the proposed controller for the pitch mechanism is evaluated and also, its fault
tolerant capability is considered. The generator controller response, including fault
detection and fault effect removal, is studied. The effectiveness of the proposed
controller for a real wind speed profile is evaluated. Finally, the simulation results
are discussed.

5.4.1 Fault-free situation

The simulation results of the generated power augmented with the baseline con-
troller and the proposed controller, using wind speed shown in Figure 5.4, are illus-
trated in Figure 5.5. It is assumed that there is no dynamic change or pitch bias in
the pitch mechanisms and no torque bias in the generator. Figure 5.5 shows that at
some times, where the wind speed reduces after a high value, the generated power
is more than the optimal one, because the stored kinetic energy is being converted
to electrical energy. Also, power coefficients using both controllers are shown in
Figure 5.6. It is obvious that the initial response using the proposed controller is
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faster than the corresponding one from the baseline controller. Considering the ef-
fect of this variation on the wind turbine, the induced drive train torsion angle, θ̇∆,
is shown in Figure 5.7, for both controllers. It is obvious that the induced gearbox
torsion angle for both controllers is in the same order. It also confirms the assump-
tion which was made in keeping θ̇∆ as close to zero as possible, in the generator
torque control design. The tracking error and generator torque for both controllers
are shown in Figures 5.8 and 5.9, respectively. Finally, the estimated wind speed is
calculated using (5.1) and (5.3), which is shown in Figure 5.10. High variation of
produced power using the proposed controller, as illustrated in Figure 5.5, is due to
the desired trajectory construction and the aerodynamic torque estimation based on
GRBFNN. Indeed, considering Figure 5.10, the fluctuation of the estimated wind
speed around the actual one is obvious. The desired trajectory has been constructed
using (5.3), in which radial basis functions form the basis functions. Accordingly,
using (5.1), the wind speed is estimated. Both the constructed desired trajectory and
estimated aerodynamic torque have been utilized in the generator torque controller,
see (5.15). So, the fluctuation of the constructed desired trajectory and estimated
aerodynamic torque, leads to high variation of generator torque and consequently,
considering the produced power, i.e. Pa = ηgT gωg, causes high variation of power.
So, reconsidering Figure 5.5, the produced power has fluctuated in the same manner
as the estimated wind speed. To compare the results of the two controllers, the val-
ues of the control criteria are compared in Table 5.1. It can be seen that more power
is extracted using the proposed controller compared to the reference one, although,
this is not the main purpose of the proposed controller, which is its FTC capabilities,
considered in the next section.
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FIGURE 5.4: Wind speed profile in partial load region.

5.4.2 FTC evaluation

The FTC capabilities of the proposed controllers, are evaluated in this section. Also,
the faults are augmented in the baseline controller to show the effect of the consid-
ered faults, and the results are compared with those from the proposed controller.
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FIGURE 5.5: Generated power using the proposed controller (red
line) and baseline controller (blue line), and optimal extractable wind

power (green dashed line).
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FIGURE 5.6: Power coefficient using the proposed controller (red
line) and baseline controller (blue line).

Pitch actuator fault detection

In this section, the fault detection of the pitch actuator system is considered using
the proposed controller, (5.24). In this regard, firstly the dynamic change of the
pitch actuator is considered. To avoid a trivial response, an abrupt nonzero time
varying input is applied to the pitch system for a small time interval to study its
behaviour. For 6 seconds a sinusoidal wave is used as βd = 1sin(t) (Casau et
al., 2015). The pitch sensor output for the fault-free case, pump wear, high air
content and hydraulic leak cases are shown in Figure 5.11. It is obvious that the
pitch actuator response is very similar in all situations which is the case in Figure
3.7, where the time delay for each case changes by 0.5 seconds at the most. Also,
in each case, the estimated fault and calculated auxiliary signals are shown, on
which basis the detection indices, (5.29), are calculated and shown in Table 5.2.
According to Table 5.2, for each fault case, using the estimated accumulated fault,
f̂2, and comparing the indices for each auxiliary signal, it is expected that RMSE
and VAF values would be close to zero and 100, respectively. So, comparing all
calculated indices, the auxiliary signal which leads to smallest RMSE and closest
VAF to 100, is selected as the detected dynamic change case of the pitch actuator. In
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FIGURE 5.7: Torsion angle of drive train using the proposed con-
troller (red line) and baseline controller (blue line).
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FIGURE 5.8: Tracking error using the proposed controller (red line)
and baseline controller (blue line).

the last column of Table 5.2, the detected fault is represented, which shows that the
proposed fault detection accurately detects all pitch actuator dynamic change cases.
Now to evaluate the detection of pitch actuator bias, Φ = 10, is added to the pitch
dynamic response and using (5.28), the estimated pitch bias, Φ̂, is shown in Figure
5.12. The reference pitch angle is set to βref = 1 sin (t), the same as the dynamic
change detection. In Figure 5.12 it is obvious that Φ is accurately estimated.

Pitch actuator FTC

Firstly, the proposed pitch actuator controller, (5.24), is evaluated, where the dy-
namic changes due to pump wear, hydraulic leak and high air content in the oil are
introduced. Also, the pitch actuator bias is added to the pitch mechanism. Addition-
ally, sensor measurement is contaminated with noise. Accordingly, to only consider
the dynamic change, sensor noise and pitch bias are removed, which will be con-
sidered afterward. Indeed, the sensor noise and pitch bias have more effect on pitch
angle than the dynamic change, which reduces the visibility of the dynamic change,
in the case of βd = 0◦. Actually, it is just for the sake of consideration. Also,
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FIGURE 5.9: Generator torque using the proposed controller (red
line) and baseline controller (blue line).
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FIGURE 5.10: Estimated (red line) and actual wind speed (blue
line).

the initial pitch angle is selected as 5◦, to let the delay in response be distinguish-
able. The results are illustrated in Figure 5.13. It is obvious that using the proposed
pitch controller reduces the delays due to the induced dynamic change significantly,
where the response is even better than the fault-free case with no controller. Now,
to consider all types of faults altogether, pitch sensor noise, νβ and pitch bias Φ, i.e.
10◦, are introduced to the model and it is expected that the pitch bias is removed
and meanwhile the noise should not cause instability and should be reduced. In
Figure 5.14, the proposed pitch controller results, in the presence of νβ and Φ, for
pump wear, hydraulic leak and high air situations, are illustrated, where the refer-
ence pitch angle is 0◦. It is obvious that in each of the three cases, the pitch bias
is removed. Also, considering the dynamic change, it is obvious that the response
of the pitch actuator using the proposed controller is similar to the fault-free one,
comparing Figures 5.13 and 5.14. Finally, it can be stated that the proposed pitch
controller is able to handle the pitch dynamic change and pitch bias. Although in
partial load operation the pitch angle is enough to be set to 0◦, by using the pro-
posed controller it is guaranteed that this aim is met using the sensor measurement
which is contaminated with noise or else the pitch actuator may introduce the pitch
bias. Also, this controller is readily capable of being used in full load operation,
where the reference pitch angle is not fixed anymore and should be tuned to keep
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TABLE 5.1: Values of the control criteria for fault-free situation

Performance criteria Proposed controller Baseline controller

CC1 1.486 (GJ) 1.394 (GJ)
Efficiency 70% 65%
CC2 47.06 (µrad2/s) 0.6154 (µrad2/s)
CC5 17.88 (MNm) 0.3694 (MNm)
CC6 28.10 (kNm) 25.30 (kNm)
CC7 7.32 (kNm) 7.27 (kNm)

TABLE 5.2: Pitch actuator dynamic change fault detection indices

Calculated auxiliary signal
Fault
free

Pump
wear

Hydraulic
leak

High air
content Decision

Fault
free

RMSE VAF RMSE VAF RMSE VAF RMSE VAF No
fault0.13 95.3 3.88 2.71 3.918 3.01 1.83 7.78

Pump
wear

RMSE VAF RMSE VAF RMSE VAF RMSE VAF Pump
wear8.40 0.82 0.45 99.69 2.58 94.35 1.38 96.41

Hydraulic
leak

RMSE VAF RMSE VAF RMSE VAF RMSE VAF Hydraulic
leak40.85 0.05 17.00 50.02 5.60 97.64 13.51 76.04

High air
content

RMSE VAF RMSE VAF RMSE VAF RMSE VAF High air
content56.81 0.08 2.24 86.17 3.35 79.65 0.78 97.13

the generated power at its nominal one. Indeed, via the proposed controller, the
results show that the pitch angle is guaranteed to track the reference one, whether
it is fixed, i.e. in partial load operation which is of interest in this chapter, or not,
i.e. in full load operation, despite the presence of pitch bias, dynamic change and
pitch noise. Also, in full load operation, using the proposed controller, the dynamic
change of the pitch actuator can be detected. However, the dynamic change, in the
case of the zero degree fixed pitch angle, is not very effective, considering Figure
5.13. So, in the next section only the pitch actuator bias is considered.

Wind turbine FTC using both generator and pitch controllers

The generator torque controller, (5.15), alongside the pitch controller, (5.24), are
applied to the wind turbine model, and it is expected that despite the generator bias,
i.e. fTg , pitch actuator bias, i.e. Φ and wind speed variation which is shown in Fig-
ure 5.4, the power coefficient is being kept at its maximum value and accordingly
the generated power tracks the maximum one. Also, the considered faults are ap-
plied to the baseline, to study the effects of faults on the wind turbine behavior. The
fault scenario is summarized in Table 5.3. In this fault scenario, to study the effect
of the generator fault, which is more likely in partial load operation (Badihi et al.,
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FIGURE 5.11: Fault detection in pitch actuator due to dynamic
change. (First row) Reference pitch (blue line) and pitch sensor out-
put (red line). (1) Fault-free case, (2) pump wear case, (3) high air
content case, and (4) hydraulic leak case. (Second row) Estimated
fault signal. (1) Fault-free case, (2) pump wear case, (3) high air
content case, and (4) hydraulic leak case. (Third row) Calculated
auxiliary signal for fault-free (black), pump wear (red), hydraulic
leak (blue), and high air content (green). (1) Fault-free case, (2)
pump wear case, (3) high air content case, and (4) hydraulic leak

case.

2014), two different generator biases are introduced. Also, to evaluate the fault tol-
erance capability accurately, a consecutive pitch bias is considered which starts at
900(s), exactly when the second generator bias ends. In Figures 5.15 and 5.16, the
power coefficient and generated power using the proposed controller and baseline
controller, are shown, respectively. It is obvious that the proposed controller keeps
the power coefficient at its maximum one, while the reference control results are
significantly decreased in faulty periods. It is obvious that this power curve is sim-
ilar to the fault-free one, in Figure 5.6, using the proposed controller. The tracking
error, reference generator torque, reference pitch angle and drive train torsion angle
are illustrated in Figures 5.17-5.20, respectively. It can be seen that the tracking er-
ror using the proposed controller is similar to the fault-free situation, in Figure 5.8.
Also, the generator torque is kept at the same value unlike the corresponding result
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FIGURE 5.12: Estimated pitch actuator bias (blue line) and actual
one (red line).
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FIGURE 5.13: Pitch actuator controller response without sensor bias
and noise, fault-free with no controller (black line), pump wear con-
dition (blue line), hydraulic leak condition (red line), high air con-
dition (light green line), pump wear with controller (light blue line),
hydraulic leak with controller (pink line) and high air in the oil with

controller (dark green).

from the baseline controller. At 300(s) and 700(s), when the generator biases are
applied, sudden deviations from the fault-free case are obvious, after which their
effects are completely removed using the proposed controller. Also, the same result
can be obtained considering Figure 5.19, in which using the proposed pitch angle
controller, the effect of pitch bias is removed. The estimated generator and pitch
biases, are depicted in Figures 5.21 and 5.22, respectively. Considering the tracking
error, the initial deviation of the estimated generator bias should not be taken into
consideration, because at this time period, the desired trajectory tracking error has
not been reduced yet, after which the generator biases are accurately estimated. On
the other hand, because of the fast response of the pitch actuator, the pitch bias is
estimated precisely over the whole simulation time. Also, the resulting control cri-
teria are shown in Table 5.4. It is obvious that the efficiency from using the proposed
controller is kept the same as the fault-free one, while the corresponding result us-
ing the baseline controller is decreased significantly. On the other hand, the induced
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FIGURE 5.14: Pitch actuator controller response (red line) and with-
out controller (blue line) in (a) hydraulic leak, (b) pump wear and (c)

high air content conditions with sensor noise and pitch bias.

TABLE 5.3: First Fault scenario.

Fault scenario 1 Value Period

Generator bias fTg = 2000 (Nm) 300− 500 (s)
Generator bias fTg = 5000 (Nm) 700− 900 (s)
Pitch bias Φ = 10◦ 900− 1100 (s)

drive train torsion stress remains in the same order using the proposed controller,
but considering the corresponding result using the baseline controller, this criterion
is about 54 times larger than the fault-free one. Also, considering the other criteria,
the advantage of the proposed controller can be concluded. To further investigate
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FIGURE 5.15: Power coefficient using the proposed controller (red
line) and baseline controller (blue line).

the proposed controller’s performance, a realistic wind speed profile, as shown in
Figure 4.18, with mean wind speed 7.08 m/s is fed into the wind turbine includ-
ing the fault scenarios shown in Table 5.5. The control criteria are summarized in
Tables 5.6 and 5.7. It is obvious that the same results can be obtained considering



5.5. Discussion 109

T ime (s)
0 300 500 700 900 1100 1200

P
g
(M

W
)

0

1

2

3

4

5

FIGURE 5.16: Generated power using the proposed controller (red
line) and baseline controller (blue line), and optimal extractable wind
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FIGURE 5.17: Tracking error using the proposed controller (red
line) and baseline controller (blue line).

the performance of the proposed controller in both fault-free and faulty situations
compared to the corresponding results when using the baseline controller.

5.5 Discussion

In the simulations, for the fault-free case, obviously the initial response from using
the proposed controller has been improved, as shown in Figures 5.5 and 5.6. Also,
the fluctuations of generated power, induced torsion angle and generator torque, can
be seen in Figures 5.5, 5.7 and 5.9, respectively. In fact, the adaptive structure of the
controller and high variation of the GRBFNN output, which was used to estimate
the unknown desired trajectory, i.e. Figure 5.10, and also variation of T̂a used in
(5.15), have led to this phenomenon. So, considering Table 5.1, it is obvious that
high fluctuation of the generator torque, has caused more drive train torsion angle
fluctuations and generator torque variation, compared to the corresponding ones for
the baseline controller. Nevertheless, considering Figures 5.7 and 5.9, it is obvi-
ous that the induced torsion angle and generator torque are in the same order as



110 Chapter 5. Optimum Efficiency Control with Unknown Desired Trajectory

TABLE 5.4: Values of the control criteria with first fault scenario.

Performance criteria Proposed controller Baseline controller

CC1 1.483 (GJ) 1.1 (GJ)
Efficiency 69.5% 52%
CC2 68.8 (µrad2/s) 32.55 (µrad2/s)
CC5 18.49 (MNm) 0.3539 (MNm)
CC6 28.14 (kNm) 22.42 (kNm)
CC7 7.38 (kNm) 5.88 (kNm)

TABLE 5.5: Second Fault scenario.

Fault scenario 1 Value Period

Generator bias fTg = 5000 (Nm) 100− 300 (s)
Pitch bias Φ = 5◦ 500− 700 (s)
Generator bias fTg = 7000 (Nm) 900− 1100 (s)
Pitch bias Φ = 10◦ 1300− 1500 (s)

TABLE 5.6: Values of the control criteria for real wind profile in
fault-free case.

Performance criteria Proposed controller Baseline controller

CC1 1.852 (GJ) 1.785 (GJ)
Efficiency 77% 74%
CC2 212.3 (µrad2/s) 20.95 (µrad2/s)
CC5 42.74 (MNm) 0.5268 (MNm)
CC6 30.52 (kNm) 28.67 (kNm)
CC7 12.28 (kNm) 7.65 (kNm)

TABLE 5.7: Values of the control criteria second fault scenario.

Performance criteria Proposed controller Baseline controller

CC1 1.847 (GJ) 1.374 (GJ)
Efficiency 76% 57%
CC2 299.3 (µrad2/s) 264.4 (µrad2/s)
CC5 42.53 (MNm) 75.44 (MNm)
CC6 35.30 (kNm) 35.3 (kNm)
CC7 12.49 (kNm) 11.23 (kNm)
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FIGURE 5.18: Generator torque using the proposed controller (red
line) and baseline controller (blue line).
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FIGURE 5.19: Pitch angle using the proposed controller (red line)
and baseline controller (blue line).

the baseline controller results. So, it can be concluded that the proposed controller
has similar performance in the fault-free case, as the baseline controller, while the
efficiency has been increased. The advantage of the proposed controller can be ex-
ploited in the faulty case, considering Tables 5.3 and 5.4, in which the efficiency
has been retained in the same order, while this number has been decreased about
13% for the baseline controller. Also, the stress has been increased just 1.47 times
more than the fault-free case, but this ratio is about 52.89, for the baseline controller.
Also, the actuator fault has been estimated, which can be used for maintenance pur-
poses. The pitch actuator dynamic change, for nonzero desired pitch angle, βd, was
studied and it was shown that the dynamic change can be accurately detected, as
shown in Table 5.2 and Figure 5.11. Also, the response of the pitch actuator un-
der dynamic change was considered and it was illustrated that the pitch angle has
tracked the desired one, using the proposed controller, faster than any other con-
dition, either with or without dynamic change, as shown in Figures 5.13 and 5.14.
It should be clearly pointed out that because of the negligible effect of the pitch
actuator dynamic change in the partial load operation, where βd = 0(◦), this case
is not considered in Section 5.4.2, where just the effect of pitch bias has been stud-
ied. In fact, the proposed pitch controller, is readily able to follow the βd, whether
fixed or variable, and detect dynamic change. So, this controller is applicable in full
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FIGURE 5.20: Torsion angle of drive train using the proposed con-
troller (red line) and baseline controller (blue line).
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FIGURE 5.21: Estimated (red line) and actual (blue line) generator
bias.

load region, where the βd can be simply tuned via a PID controller , which has not
been considered in this chapter. In the selection of the controller parameters, a com-
promise should be taken between the boundedness of the controller behaviour and
tracking performance. For example, because the GRBFNN weight estimation, θ̂, is
the sliding surface function, small σc will cause large estimation weights. On the
other hand, small σd1 and σd2 , may make large adapting disturbance parameters, and
thus decrease the robustness to disturbances. In addition, large k2,ωg and k2,β , may
lead to saturated control input, i.e. pitch and generator torque. Actually, numerous
offline response studies should be conducted to make the trade-off satisfactorily,
between the various contradictory objectives.

The optimum power point tracking of the nonlinear wind turbine, using a non-
linear FTC in the presence of actuator faults, has been studied in this chapter. It
was aimed to propose a new controller having functionality to fulfil the control ob-
jectives in both fault-free and faulty situations, satisfactorily. The wind speed and,
accordingly, desired operational trajectory, at which wind turbines capture the most
available energy, have been considered as unknown and so the desired trajectory
has been reconstructed using a neural network scheme embedded into the proposed
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FIGURE 5.22: Estimated (red line) and actual (blue line) pitch bias.

controller. Utilising the Lyapunov analysis, the boundedness of the closed-loop sys-
tem behavior with the proposed controller has been guaranteed. The performance of
the proposed controller was studied via numerical simulations in which the baseline
controller, i.e. constant gain controller, was used to evaluate the proposed controller
results. The results showed that the proposed controller, contrary to the constant
gain controller, was able to track the optimum power trajectory in both fault-free
and faulty cases with very close performance indices. Additionally, the actuator
faults were accurately estimated, which can be used for effective management of
the required maintenance procedures.
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6 Power Regulation with Unknown
Control Direction using Neuro
Adaptive Constrained FTC

In full load operation, the power regulation is vital to prevent the wind turbine from
over speeding resulting in catastrophic operation, and for keeping the produced
power at the nominal level. Otherwise, if the wind turbine speeds up and violates
the predefined limit, the mechanical brakes, located on the rotor, are engaged. This
leads to generated power reduction considerably less than the nominal one. Also,
fatigue load on the rotor is increased (Tiwari et al., 2016). Therefore, it is beneficial
to guarantee that the produced power is kept within the safe-to-operate constraint,
around the nominal power and, consequently, to avoid the engagement of the me-
chanical brake. The power regulation is fulfilled by adjusting the blade’s pitch angle
via the pitch actuator, to adjust the applied aerodynamic torque, and consequently,
the generated power. The aerodynamic torque is a nonlinear function of the blade
pitch angle (Li et al., 2017). Meanwhile, the wind speed, as another variable which
affects the aerodynamic torque, is highly stochastic and, consequently, an unmea-
surable disturbance. So, it can be stated that the control function, from pitch angle
to aerodynamic torque, is not completely known. This leads to the unknown con-
trol direction problem. Accordingly, it is very challenging to retain the generated
power exactly at the nominal one (Boukhezzar et al., 2011). The achievable pitch
angle is bounded. Hence, the practical operational range of the pitch actuator is
limited. So, the high wind speed variation may lead to the pitch actuator saturation,
which consequently causes violation of the constrained power regulation. So, in
the pitch angle controller design, it is desirable to avoid any abrupt and long-lasting
saturation, and smoothly pass any possible saturation period.

The modern wind turbines are designed to be larger and are often located in
remote places, i.e. offshore, to increase the produced power. Operation in harsh
remote places in the presence of the high wind speed variation, may lead to pitch
actuator faults, and consequently, poor power regulation and catastrophic opera-
tion. These faults can be considered as pitch actuator bias, effectiveness loss and
dynamic change. The last one causes slow pitch actuator response (see Figure 3.8),
which consequently leads to degraded power regulation. Also, the debris build-up
and blade erosion changes the aerodynamic characteristics of the blades. So, it is
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desirable to integrate the fault tolerance capability into the pitch angle controller to
keep the performance at the desired level.

Considering the abovementioned issues, this chapter presents a novel adaptive
neural-based FTC design for wind turbines with unknown dynamics and unknown
wind speed. By utilizing the Barrier Lyapunov Function (BLF) in the analysis of
the Lyapunov direct method, the constrained behavior of the system is provided in
which the rotor speed and its variation remain in their bounds. Furthermore, the
computational cost of the controller is reduced by exploiting the Dynamic Surface
Control (DSC) in the proposed analytical algorithms. Input saturation, in terms
of smooth pitch actuator bounding is considered. In addition, by introducing a
Nussbaum type function and adaptive laws, together with utilizing GRBFNN, a
robust adaptive FTC scheme is advanced without the need for precise information
about the wind turbine model nor the pitch actuator faults. The effectiveness of the
theoretical results is illustrated using numerical simulations.1 It should be noted
that the values of controller parameters are given in Section B.4.

6.1 Pitch Actuator Saturation

Considering the physically bounded achievable pitch angle, the operational range of
the pitch actuator is limited, as (3.22). So, the pitch actuator saturation phenomenon
should be considered in the pitch angle controller design. Considering (3.26), for
the given wind turbine model the pitch actuator saturation H (βu) is as,

H(βu) =


βmax, βu > βmax,

βu, βmin ≤ βu ≤ βmax,

βmin, βu < βmin,

(6.1)

where, βmax = 30(◦) and βmin = −2(◦). H(βu) is illustrated in Figure 6.1. So, this
actuation saturation function is integrated into the pitch actuator mechanism (3.21)
as,

β̈ = −ωn2β − 2ωnξβ̇ + ωn
2H (βu) . (6.2)

Obviously, this saturation function of the pitch angle is non-smooth with sharp
saturation behavior, which may cause pitch actuator failure (Zhao et al., 2016). So,
it is desirable to approximate this saturation function by a smooth function and

1This chapter is captured and reorganized from the papers “Backstepping Nussbaum Gain Dy-
namic Surface Control for a Class of Input and State Constrained Systems with Actuator Faults”,
and “Constrained control of wind turbines for power regulation in full load operation”. The authors’
attribution on these papers are given in Appendix C.
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FIGURE 6.1: Pitch actuator saturation (blue line) and its smooth
estimation (red line).

to pass from each saturation period fluently. In this regard, the following smooth
saturation function is proposed as,

S (βu) =
%̄P − %P−1

P + P−1
, (6.3)

where, % = 2, %̄ = 30, P = eε+ηβu , ε = 0.5 ln
(
%/%̄
)
, and η is a positive constant

to be selected. S (βu) is always in
(
−%, %̄

)
for all βu ∈ R. S (βu) is illustrated in

Figure 6.1, for η = 0.1. Then, H (βu) can be expressed as,

H (βu) = S (βu) +D(βu), (6.4)

whereD(βu) is the difference between S (βu) andH (βu). The bounded property of
the function S (βu) and saturation function H (βu), yields the function D(βu) to be
bounded as, |D(βu)| ≤ D̄1, where D̄1 is a positive and unknown constant. For the
pitch actuator controller design, the mean value theorem is employed on function
S (βu) to get,

S (βu) = S (β0) +
∂S

∂βu

∣∣∣∣
βm

(βu − β0) , (6.5)

where, βm = mβu + (1−m) β0 and m ∈ (0, 1). By choosing β0 = 0 and using
the fact that S (0) = 0, (6.5) becomes,

S (βu) =
∂S

∂βu

∣∣∣∣
βm

βu = Sβuβu, (6.6)
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where, Sβu =
2η(%̄+%)

(P+P−1)2

∣∣∣∣
βm

. Sβu ∈ (0.2, 1.65) for βm ∈ (−%, %̄). Then, Sβu is a

positive variable. Now, considering (6.2), (6.4) and (6.6), the pitch actuator dynamic
behavior with smooth saturation function can be written as,

β̈ = −ωn2β − 2ωnξβ̇ + ωn
2 (Sβuβu +D (βu)) . (6.7)

6.2 Desired Operational Mode with Pitch Actuator
Faults and Aerodynamic Characteristics Change

The pitch actuator dynamic change is considered as an uncertainty which should
be attenuated by the pitch angle controller. Also, the pitch actuator output can be
corrupted by an unanticipated fault, modelled as an additive bias and/or effective-
ness loss. So, the pitch actuator dynamic behavior (6.7), associated with dynamic
change, pitch actuator bias and effectiveness loss, can be rewritten as,

β̈ = −ωn,N 2β−2ωn,NξN β̇+ωn,N
2
(
Sβuρ (t) βref + SβuΦ (t) +D(βu)

)
+∆f̃PAD.

(6.8)

The wind turbine operation in the presence of rain, snow and dirt, leads to debris
build-up on the blades or erosion, which in turn, leads to the blade aerodynamic
efficiency reduction. Consequently, the captured aerodynamic power is decreased.
On the other hand, the power regulation by the blade pitch control is not satisfac-
torily achieved due to the changed blade aerodynamic profile. The debris build-up
effect is modelled as an aerodynamic change ∆Ta|∆Cp , due to a change in power
coefficient as C̃p = Cp + ∆Cp. So, it is very important to foresee this potential
change in the controller design. It is worth noting that debris build-up is difficult
to detect, as it is hard to identify if the blade’s debris is the reason for the reduced
power generation or simply that the wind speed has reduced (Borcehrsen et al.,
2014). As debris build-up happens slowly on the blades, it is mostly assumed that
this changes within the annual maintenance/inspection, and the blades can be sim-
ply cleaned/replaced. So, in this chapter it is aimed to design the pitch controller
to be insensitive to debris build-up and to retain desired operation up to next an-
nual maintenance/inspection of the blades. In regard to aerodynamic characteristics
change, taking the time derivative of (4.16), yields

Ṫa (Vw, ωr, β) = ∆Ta|∆Cp + β̇
∂Ta
∂β

= ∆Ta|∆Cp + β̇ Ta)β , (6.9)
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where, ∆Ta|∆Cp = dTa(Vr, ωr, β∗)
dt

+ ( β − β∗) d
dt

∂Ta
∂β

∣∣∣
(Vr, ωr, βk)

− dβ∗

dt
∂Ta
∂β

∣∣∣
(Vr, ωr, βk)

and ∂Ta
∂β

= Ta)β . ∆Ta|∆Cp is due to ∆Cp, which is the result of blade aerody-
namic characteristic changes. The debris build-up happens slowly in time within
the annual timeframe of blade maintenance. So, all terms which are contributing to
∆Ta|∆Cp are assumed to be bounded, then ∆Ta|∆Cp is bounded as,

∣∣∣∆Ta|∆Cp∣∣∣ ≤
k̄1, where k̄1 is an unknown positive constant. Also, it should be noted that the wind
speed is not accurately measurable. So, Ta)β in (6.9) is an unknown variable.

Substituting (6.9) into (4.15) leads to,

ω̈r = c1ωr + c2ωg + c3Ta + c4Tg + a3

(
∆Ta|∆Cp + β̇ Ta)β

)
. (6.10)

Now, by considering (6.8), the rotor dynamic behavior, (6.10), can be rewritten
as,

ω̈r = c1ωr + c2ωg + c3Ta + c4Tg −
a3ωn,Nβ Ta)β

2ξN
−
a3β̈ Ta)β
2ωn,NξN

+
a3Sβuωn,Nρ Ta)β

2ξN
βref +

a3ωn,ND Ta)β
2ξN

+ a3 ∆Ta|∆Cp

+
a3 Ta)β

2ξN

(
∆f̃PAD
ωn,N

+ Sβuωn,NΦ

)
.

(6.11)

This captures the wind turbine rotor dynamic behaviour, operating on the desired
operational mode, associated with pitch actuator dynamic change, pitch bias, effec-
tiveness loss and blade aerodynamic change. Also, smooth pitch angle saturation is
considered.

As mentioned earlier in Section 4.2, in the full load region it is desirable to keep
Pg at the nominal value Pa,N , to keep the wind turbine structurally safe, to avoid
over speeding and consequent brake engagement. As the wind speed is a highly
stochastic variable, the accurate nominal power generation is very challenging, and
in the case of improper controller design, it may lead to over speeding and braking.
So, it is very beneficial to guarantee the generated power and speed so as to not
violate the given constraint, within which the mechanical brake is not engaged.
It should be noted that for the wind turbine power regulation considered in this
chapter, the generator torque controller is not active. Accordingly, the faults in the
generator are not considered and it is assumed that these faults have already been
accommodated using the generator torque controller (5.15).
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The controller is designed to regulate the reference pitch angle βref in (6.11) and
maintain the rotor speed as close as possible to the nominal one, i.e. ωr,N , never
violating the given constraint, in the presence of wind speed variation, disturbance,
and pitch actuator faults and saturation. The primary objective of this chapter is to
satisfy the above-mentioned requirements.

6.3 Constraint FTC Design and Stability Analysis

In this section, the constrained FTC is designed to guarantee that the generated
power is kept within given constraints, in the presence of wind speed variation,
disturbance, pitch actuator faults and saturation. The stability of the wind turbine
closed-loop system equipped with the proposed controller is proved. Firstly, the
technical preliminaries, which are going to be used in the controller design are
given.

6.3.1 Technical preliminaries

The wind speed is considered as an unmeasurable disturbance. Accordingly, the
aerodynamic torque Ta is not available. On the other hand, Ta is contributing in
the rotor dynamic response (6.11). So, Ta should be estimated to be used in the
proposed controller structure. In this chapter, a GRBFNN is designed to estimate
aerodynamic torque. In this regard Ta is approximated as (5.10).

Now, the following definition and lemmas are given, which will be used in the
proposed controller design. As Ta)β , is an unknown variable, contributing to the
gain of βref in (6.11), this leads to the unknown control direction problem. To
tackle this problem in the controller design, the Nussbaum type function is utilized,
which is defined in Definition 4.2.

The BLF function is defined as follows, which is used in the constraint control
construction.

Definition 6.1. A scalar function V (x) is a BLF if it is a positive definite continuous
scalar function, defined with respect to the system ẋ = f(x) on an open region D,
containing the origin. In addition, V (x) has continuous first order partial deriva-
tives within all D, and approaches to infinity as x approaches to the boundary of
the region D. Finally, V (x) satisfies V (x) ≤ m, ∀t ≥ 0 along the solution of
ẋ = f(x) for x(0) ∈ D, and some positive constant m (Rahimi et al., 2018b).

The following lemma is given for stability analysis of the closed-loop system.
Lemma 6.1. For variable ψ in |ψ| < 1, tan(πψ2/2) < πψ2sec2(πψ2/2) holds true
(Rahimi et al., 2018a).
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Lemma 6.2. For any variable Ψ and any positive constant γ, 0 < |Ψ|−Ψtanh (Ψ/γ) <
Kγ holds true, where K satisfies = e−(K+1), accordingly, = 0.2785. Also, as
Ψtanh (Ψ/γ) > 0, then for any variableZ < −1, ZΨtanh(Ψ/γ) < −Ψtanh(Ψ/γ)
holds (Rahimi et al., 2018a).

6.3.2 Controller design procedure

The main objective of the proposed controller is to keep the rotor speed and accel-
eration within constraints, which in turn leads to bounded power generation around
the nominal one. To initiate the proposed controller design, the rotor speed tracking
error and its time derivatives are defined as,

eωr = ωr,s − ωr,d,
eω̇r = ω̇r,s − z2,

(6.12)

respectively, where, ωr,d is the desired rotor speed. As stated earlier, ωr,d in the full
load region is ωr,N . z2 is a virtual control. Here, to avoid repetitive differentiation of
z2, which increases the implementation complexity, the DSC technique is utilized,
by introducing filtering of z2 via αD which is a stabilizing function to be designed.
Let αD pass through a first order filter with a time constant τ2 as,

τ2ż2 + z2 = αD, z2 (0) = αD(0). (6.13)

The output error of the first-order filter is defined as, χ2 = z2 − αD where its
first-time derivative yields ż2 = −χ2/τ2.

A positive definite Lyapunov function is chosen as,

V1 =
k2
e1

π
tanΛ1 +

1

2
χ2

2, (6.14)

where, Λ1 = πξ2
1/2, ξ1 = eωr/keωr and keωr is considered a constraint on eωr . It

should be noted that V1 is continuous in the set Ωeωr =
{
eωr : −keωr < eωr < keωr

}
.

The Lyapunov function V1 is positive definite, in which the first term captures the
BLF characteristics of the modified tracking error ξ1, according to Definition 6.1.
The time derivative of ξ1 is obtained as,

ξ̇1 =
ėωr
keωr

=
eω̇r + χ2 + αD

keωr
. (6.15)

First-time derivative of (6.14) can be obtained as,
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V̇1 = eωreω̇rsec
2Λ1 + eωrχ2sec

2Λ1 + eωrαDsec
2Λ1 −

χ2
2

τ2

− α̇Dχ2. (6.16)

The virtual control αD is designed as,

αD = −γ1eωr − eωrsec2Λ1, (6.17)

where, γ1 is a positive design parameter. Substitution of (6.17) into (6.16) yields,

V̇1 = eωreω̇rsec
2Λ1+eωrχ2sec

2Λ1−γ1e
2
ωrsec

2Λ1−e2
ωrsec

4Λ1−
χ2

2

τ2

−α̇Dχ2. (6.18)

Considering Young’s inequality,

eωreω̇rsec
2Λ1 ≤

1

2
e2
ωrsec

4Λ1 +
1

2
e2
ω̇r ,

eωrχ2sec
2Λ1 ≤

1

2
e2
ωrsec

4Λ1 +
1

2
χ2

2.
(6.19)

Since αD is a function of ωr, ωr,d and ω̇r,d, it can be shown that,

α̇D =
∂αD
∂ωr

ω̇r +
∂αD
∂ωr,d

ω̇r,d +
∂αD
∂ω̇r,d

ω̈r,d. (6.20)

Considering (6.20), α̇D is a continuous function. Then, given δωr,d and any posi-
tive number δ1, the set Ωωr,d := {ωr,d ∈ R : ω2

r,d + ω̇2
r,d + ω̈2

r,d < δωr,d} for all initial
conditions satisfying Ω1 := {[eωr , χ2]T : (k2

eωr
tanΛ1)/π + χ2

2/2 < δ1} is compact.
Thus, α̇D has a maximum constant value M1 in the compact set Ωωr,d × Ω1, for
given initial conditions (Zhao et al., 2016). So, based on Young’s inequality,

|α̇Dχ2| ≤
1

2
χ2

2 +
1

2
M2

1 . (6.21)

According to (6.21) and (6.19), (6.18) can be rewritten as,

V̇1 < −γ1e
2
ωrsec

2Λ1 −
1

2
χ2

2

(
2

τ2

− 2

)
+

1

2
M2

1 +
1

2
e2
ω̇r . (6.22)
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The parameter τ2 is selected as τ2 < 1, to satisfy (2/τ2 − 2) > 0. Also, consid-
ering Lemma 6.1, −γ1e

2
ωrsec

2Λ1 < −γ1(k2
eωr
tanΛ1)/π holds true. Consequently,

(6.22) is rewritten as,

V̇1 < −σ1,1V1 + σ1,2 +
1

2
e2
ω̇r , (6.23)

where, σ1,1 = min{γ1, (2/τ2 − 2)} and σ1,2 = M2
1/2.

Considering the measurement noise and the GRBFNN estimation of aerody-
namic torque (5.10), the rotor dynamic response (6.11) can be rewritten as,

ω̈r = g1 + c3θ
∗Th−

a3ωn,Nβ Ta)β
2ξN

−
a3β̈ Ta)β
2ωn,NξN

+Gβref +
a3 Ta)β

2ξN
f + d, (6.24)

where, g1 = c1ωr+c2ωg+c4Tg, d = c1νωr+c2νωg+c4νTg+c3ε+a3ωn,N Ta)β νβ/2ξN+
a3 Ta)β νβ̈/2ωn,NξN+a3ωn,ND Ta)β /2ξN+a3∆Ta|∆Cp ,G = a3Sβuωn,Nρ Ta)β /2ξN

and f = ∆f̃PAD/ωn,N + Sβuωn,NΦ.

Assumption 6.1. Considering the limited achievable β, β̇ and βu, the boundedness
of ∆f̃PAD, Sβu and Φ are concluded. This, in turn, leads to the bounded fault term f
in (6.24), considered as |f | ≤ f̄ , where f̄ is an unknown positive constant. Also, the
time derivative of f is assumed to be bounded, i.e. |ḟ | ≤ ρḟ , where ρḟ is an unknown
positive constant (Lan et al., 2018). Indeed, it is assumed that the applied fault is
a slowly varying function of time. Besides, the sensor noise contents are assumed
limited which is a reasonable practical issue. Accordingly, by considering Figure
4.6 and |ε| ≤ ε̄, the disturbance d is bounded as |d| ≤ D̄, where D̄ is a positive
unknown constant. Finally, it is easily seen that G is unknown but bounded, due to
the presence of Ta)β .

Now the proposed pitch angle controller is designed as,

βref = N (ζ1) υ1, (6.25)

with,
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ζ̇1 = e2sec
2Λ2υ1,

υ1 = g1 +
χ2

τ2

+ c3θ̂
Th+

a3ωn,NβL

2ξN
tanh

(
eω̇rβsec

2Λ2

η1

)
+

a3β̈L

2ωn,NξN
tanh

(
eω̇r β̈sec

2Λ2

η2

)
+ d̂ tanh

(
eω̇rsec

2Λ2

η3

)
+
a3Lf̂

2ξN
tanh

(
eω̇rsec

2Λ2

η4

)
+γ2eω̇r ,

(6.26)

associated with the adaptive laws,

˙̂
f =

eω̇ra3L

2ξN
sec2Λ2 tanh

(
eω̇rsec

2Λ2

η4

)
− σf f̂ ,

˙̂
θ = Γ

(
eω̇rc3sec

2Λ2h− σcθ̂
)
,

˙̂
d = eω̇rsec

2Λ2 tanh

(
eω̇rsec

2Λ2

η3

)
− σdd̂,

(6.27)

to estimate the fault, GRBFNN weights and disturbance, respectively, where, η1,
η2, η3, η4, γ2, σf , σc, σd are positive design parameters. Also, Γ ∈ Rs is the design
matrix such that Γ = ΓT > 0. Accordingly, the estimation errors are defined as,

f̃ = f̂ − f,
d̃ = d̂− D̄,
θ̃ = θ̂ − θ∗.

(6.28)

To accurately estimate the fault, the estimation error is to be bounded as |f̃ | ≤ ρf̃ ,
where ρf̃ is an unknown positive variable (Lan et al., 2018). So, an adaptive law is
used to estimate ρf̃ as,

˙̂ρf̃ = −σf̃ ρ̂f̃ , (6.29)

where, σf̃ is a positive design parameter, with estimation error,

ρ̃f̃ = ρ̂f̃ − ρf̃ . (6.30)

Now, a positive definite Lyapunov function is selected as,

V2 =
k2
eω̇r

π
tanΛ2 +

1

2
f̃ 2 +

1

2
d̃2 +

1

2
θ̃TΓ−1θ̃ +

1

2
ρ̃2
f̃
, (6.31)

where, Λ2 = πξ2
2/2, ξ2 = eω̇r/keω̇r and keω̇r is a considered constraint on eω̇r . It

should be noted that V2 is continuous in the set Ωeω̇r
=
{
eω̇r : −keω̇r < eω̇r < keω̇r

}
.
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The Lyapunov function V2 is positive definite, in which the first term captures the
BLF characteristics of the modified tracking error ξ2, according to Definition 6.1.
The time derivative of ξ2 is obtained as,

ξ̇2 =
ω̈r + χ2

τ2

keω̇r
. (6.32)

First-time derivative of (6.31) can be obtained as,

V̇2 = f̃(
˙̂
f − ḟ) + d̃

˙̂
d+ θ̃TΓ−1 ˙̂

θ + ρ̃f̃
˙̂ρf̃

+ eω̇r(g1 + c3θ
∗Th−

a3ωn,NβTa)β
2ξN

− a3β̈.Ta)β
2ωn,NξN

+Gβref +
a3.Ta)β

2ξN
f + d+

χ2

τ2

)sec2Λ2.

(6.33)

Substituting (6.25)-(6.27) and (6.29) in (6.33) leads to,

V̇2 = GN (ζ1) ζ̇1 + ζ̇1 +
6∑
i=1

Πi, (6.34)

where,
Π1 = −(eω̇ra3ωn,Nβ Ta)β sec

2Λ2)/2ξN−eω̇ra3ωn,NβLsec
2Λ2tanh(βeω̇rsec

2Λ2/η1) /2ξN ,

Π2 = −(eω̇ra3β̈ Ta)β sec
2Λ2)/2ωn,NξN−eω̇ra3β̈Lsec

2Λ2tanh
(
eω̇r β̈sec

2Λ2/η2

)
/2ωn,NξN ,

Π3 = deω̇rsec
2Λ2+d̃eω̇rsec

2Λ2tanh(eω̇rsec
2Λ2/η3)−σdd̂d̃−d̂tanh(eω̇rsec

2Λ2/η3)eω̇rsec
2Λ2,

Π4 = (eω̇ra3 Ta)β fsec
2Λ2)/2ξN−eω̇ra3Lfsec

2Λ2tanh(eω̇rsec
2Λ2/η4)/2ξN−σf f̂ f̃−

f̃ ḟ−σf̃ ρ̂f̃ ρ̃f̃ , Π5 = −σcθ̃T θ̂, Π6 = −γ2e
2
ω̇rsec

2Λ2.

Considering Remark 4.2 and the inequality 0 ≤ |eω̇r | |β| sec2Λ2 leads to
(|Ta)β||eω̇r ||β|sec2Λ2)/L ≤ |eω̇r ||β|sec2Λ2. Accordingly, based on Lemmas 5.2
and 6.2, one can obtain,

Π1 ≤
a3ωn,NL

2ξN

(
|eω̇r | |β| sec2Λ2 − eω̇rβsec2Λ2 tanh

(
eω̇rβsec

2Λ2

η1

))
≤
a3ωn,NL

2ξN
Kη1.

(6.35)

Similarly, considering |Ta)β||eω̇r ||β̈|sec2Λ2/L ≤ |eω̇r ||β̈|sec2Λ2, leads to
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Π2 ≤
a3L

2ωn,NξN

(
|eω̇r |

∣∣∣β̈∣∣∣ sec2Λ2 − eω̇r β̈sec2Λ2 tanh

(
eω̇r β̈sec

2Λ2

η2

))
≤ a3L

2ωn,NξN
Kη2.

(6.36)

Also, with the aid of Lemma 6.2, the following inequality can be obtained.

Π3 ≤ D̄ |eω̇r | sec2Λ2 − D̄eω̇rsec2Λ2 tanh

(
eω̇rsec

2Λ2

η3

)
− σdd̂d̃

≤ D̄Kη3 −
σd
2
d̃2 +

σd
2
D̄2,

Π4 ≤
a3Lf̄

2ξN

(
|eω̇r | sec2Λ2 − eω̇rsec2Λ2tanh

(
eω̇rsec2Λ2

η4

))
− σf

2
f̃ 2 +

σf
2
f̄ 2

−
σf̃
2
ρ̃2
f̃

+
σf̃
2
ρ2
f̃

+ ρḟρf̃

≤ −σf
2
f̃ 2 −

σf̃
2
ρ̃2
f̃

+
a3Lf̄

2ξN
Kη4 +

σf
2
f̄ 2 +

σf̃
2
ρ2
f̃

+ ρḟρf̃ ,

Π5 ≤
−σc

2
||θ̃||2 +

σc
2
||θ∗||2 ≤ −σc

2λmax(Γ−1)
θ̃TΓ−1θ̃ +

σc
2
||θ∗||2,

(6.37)
where, λmax(Γ−1) is the maximum eigenvalue of Γ−1. Finally, considering Lemma
6.1, leads to

Π6 < −γ2

k2
ω̇r

π
tanΛ2. (6.38)

Using (6.35)-(6.38) in (6.34) yields,

V̇2 < GN (ζ1) ζ̇1 + ζ̇1 − σ2,1V2 + σ2,2, (6.39)

where, σ2,1 = min{γ2, σf , σd, σc/λmax(Γ
−1), σf̃} and σ2,2 = a3ωn,NLKη1/2ξN +

a3LKη2/2ωn,NξN+D̄Kη3+σdD̄
2/2+a3Lf̄Kη4/2ξN+σf f̄

2/2+σf̃ρ
2
f̃
/2+ρḟρf̃+

σc||θ∗||2/2.

Now, the main property of the designed pitch controller is given in the following
theorem.

Theorem 6.1. Consider the wind turbine rotor dynamic model (6.11), with non-
smooth input saturation (6.1) approximated with (6.4), including pitch actuator
bias, effectiveness loss, dynamic changes and blade aerodynamic change, under
Assumption 6.1. If initial conditions satisfy eωr (0) ∈ {eωr : |eωr (0)| < keωr} and
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eω̇r (0) ∈ {eω̇r : |eω̇r (0)| < keω̇r}, via utilizing control inputs (6.25), (6.26) with fil-
ter (6.13), virtual control (6.17) adaption laws (6.27) and (6.29), then the following
objectives are obtained.

(i) All states of the closed-loop system are bounded

(ii) The constraint sets Ωeωr =
{
eωr : |eωr | < keωr

}
and Ωeω̇r

=
{
eω̇r : |eω̇r | < keω̇r

}
are not violated for i = 1, 2

(iii) The tracking error eωr can be made small by the proper choice of the design
parameters.

The proof of this theorem is given in A.8.

6.4 Fault Identification

In this section, a scheme is given to identify the pitch actuator fault, including pitch
bias Φ, effectiveness loss ρ, dynamic change ∆f̃PAD, and aerodynamic characteris-
tic change ∆Ta|∆Cp . For this aim, the auxiliary signals are calculated and compared
with the estimated fault f̂ to identify dynamic change cases. Considering Table 3.1,
the auxiliary signals are defined as (5.28). Now to finalize the pitch actuator fault
identification scheme, first, the dynamic change case is considered, assuming no
pitch actuator bias. Considering f = ∆f̃PAD/ωn,N +Sβuωn,NΦ, in absence of Φ, it
can be obtained that f = ∆f̃PAD/ωn,N . So, using the auxiliary signals fauxiliary, X ,
the most similar one to f̂ , is identified as the dynamic change case. So, similarity
indices are needed, on which basis the fault identification is conducted. The indices
adopted in this chapter are RMSE and VAF defined as,

RMSEX =

√
1

texe

∫ texe

0

(
fauxiliary,X − f̂

)2

dt,

V AFX =

1−
var

(
fauxiliary,X − f̂

)
var (fauxiliary,X)

× 100%.

(6.40)

In the ideal fault identification case, RMSE and VAF indices are zero and 100%,
respectively. Accordingly, the case X with RMSE and VAF indices close to zero
and 100%, respectively, is selected as the corresponding dynamic change case, i.e.
X̂ . The pitch bias Φ is considered as an added constant on the accumulative fault
f . So, even in the presence of pitch bias with dynamic change, only the RMSE
index deviates significantly from zero, but the VAF index still indicates the correct
dynamic change properly. Now, after indicating X̂ , the pitch actuator bias is esti-
mated. Considering f = fauxiliary,X̂ /ωn,N + Sβuωn,NΦ, where fauxiliary,X̂ is the
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calculated auxiliary signal using (5.28) for the indicated dynamic change X̂ , the
estimation of pitch actuator bias, Φ̂, is as,

Φ̂ =
ωn,N f̂ − fauxiliary,X̂

Sβuωn,N
2

. (6.41)

Finally, if neither dynamic change case nor pitch actuator bias is identified, and
meanwhile, the fault-free case is not identified, then it can be concluded that the
faulty case is either pitch actuator effectiveness loss or aerodynamic characteristic
change. Considering (6.24), it is clear that the aerodynamic characteristic change is
seen as an additive disturbance, and attenuated by the proposed controller. On the
other hand, the effectiveness loss is contributing in the control gain, i.e. G. So, the
estimated fault f̂ is affected by the effectiveness loss and is insensitive to the aero-
dynamic characteristic change. Accordingly, consider the given period, in which
no pitch actuator dynamic change, bias or fault-free cases are identified. Then if f̂
is considerably disturbed from zero, this leads to effectiveness loss identification.
Otherwise, the aerodynamic characteristic change is identified.

6.5 Numerical Evaluation and Comparison

In this section, the numerical simulations are studied to evaluate the performance
of the proposed controller (6.25), both in fault-free and faulty situations. Also, a
comparison is made to the industrial baseline controller (4.10) to illustrate the su-
periority of the proposed controller, considering the numerical criteria Table 3.3. It
should be noted that different fault scenarios, including separated and simultaneous
ones, and wind speed variations are introduced to investigate the robustness of the
proposed controller.

The parameter values of the proposed controller are given in Section B.4. The
constraints on the rotor speed and its time derivative are selected as, ke1 = 0.02 (rad/s)
, ke2 = 0.04 (rad/s2), respectively. So, it can be concluded that the inequal-
ities |ωr − ωr,N | ≤ 0.02 (rad/s) and |ω̇r| ≤ 0.04 (rad/s2) are to be satisfied.
Consequently, considering the desired operational mode leads to the constraints
on generator shaft speed and generated power as, |ωg − ωg,N | ≤ 1.9 (rad/s) and
|Pg − Pg,N | ≤ 0.056 (MW ), respectively. As it is obvious in (6.25), a Nussbaum
type function is needed. In this chapter the Nussbaum function N (ζ1) = ζ2

1 cos(ζ1)
is used which complies with Definition 4.2.
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6.5.1 Fault-free situation

Firstly, the performance of the proposed controller in the fault-free situation under
wind speed variation with mean 19.84 (m/s) and standard deviation 1.94 (m/s),
illustrated in Figure 6.2, is studied for 1500 (s). It is expected that the mentioned
constraints are not violated, the pitch angle saturation is smoothly avoided, and that
the performance is to be improved compared to the baseline controller.
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FIGURE 6.2: Free wind speed profile.

The corresponding rotor speed, rotor acceleration, generator speed and generated
power, using the proposed controller, are shown in Figures 6.3-6.6, respectively. It
is obvious that the considered constraints are not violated. Also, using the same
wind speed, the baseline controller results are given in Figures 6.3-6.6. It is obvi-
ous that the baseline controller is not able to keep the corresponding outputs within
the considered constraints, in the presence of the wind speed variation. Also, the
designed reference pitch angle using both controllers are compared in Figure 6.7, in
which it is obvious that using the baseline controller has caused the pitch actuator
saturation. In contrast, the proposed controller has smoothly avoided the satura-
tion. It should be noted that, as the proposed controller has kept the rotor speed
within the constraints, despite the high wind speed variation, more pitch angle vari-
ation is requested, compared to the baseline one. As mentioned in Section 6.2, the
proposed controller is designed on the desired trajectory of the wind turbine, on
which the drive train torsion angle is reduced. In this regard, to investigate this
issue, the induced drive train torsion angle using the proposed and baseline con-
trollers are depicted in Figure 6.8. It is obvious that the induced drive train torsion
angle using the proposed controller has been kept in the same order as the base-
line one. This implies that the proposed controller has not considerably increased
drive train torsion and, consequently, stress, despite the wind speed variation and
more accurate nominal power tracking. As it is obvious in the proposed controller
structure, the unknown aerodynamic torque is estimated by the GRBFNN. This esti-
mation is shown in Figure 6.9, in which the actual aerodynamic torque is illustrated
to evaluate the estimation efficiency. It is obvious that the aerodynamic torque is
estimated accurately-enough and has been kept around the nominal one, same as
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the actual aerodynamic torque. Finally, to accurately compare the results, the per-
formance criteria using both controllers are summarized in Table 6.1. Evidently,
the performance criteria CC1, CC2 and CC3 have been considerably reduced via
using the proposed controller. These results comply with the Figures 6.3, 6.5 and
6.6. Also, the criterion CC4 shows the same induced drive train torsion angle rate,
as has been illustrated in Figure 6.8. The criterion CC6 shows the advantage of
using the smooth pitch angle saturation, as depicted in Figure 6.7. As mentioned
earlier, the more accurate nominal power tracking needs higher pitch angle change,
in the presence of high wind speed variation. This issue can be seen considering
criterion CC8. So, it can be concluded that the proposed controller improves the
wind turbine performance in the fault-free case compared to the industrial baseline
controller.
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FIGURE 6.3: Rotor speed using the proposed controller (dark blue
line), baseline controller (red line), nominal rotor speed (light blue

line), and constraints (green line), in fault-free situation.
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FIGURE 6.4: Rotor acceleration using the proposed controller (dark
blue line), baseline controller (red line), and constraints (green line),

in fault-free situation.

6.5.2 Faulty situation

In this section, in the presence of the faults, the fault tolerance capability of the
proposed controller is evaluated. It is expected that the mentioned constraints are
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FIGURE 6.5: Generator speed using the proposed controller (dark
blue line), baseline controller (red line), nominal generator speed
(light blue line), and constraints (green line), in fault-free situation.
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FIGURE 6.6: Generated power using the proposed controller (dark
blue line), baseline controller (red line), nominal power (light blue

line), and constraints (green line), in fault-free situation.

not violated and the fault effects are attenuated. Also, the estimated fault is ex-
amined to accurately identify the considered faults. The results using the baseline
controller are given to study the effect of each fault as well as to signify the benefit
of the proposed controller. The considered fault scenario is defined in Table 6.2.
The fault periods are separated to accurately study the effect of each fault. Also, the
wind speed, shown in Figure 6.2, is used again to compare the results to the corre-
sponding fault-free ones. In Figures 6.10-6.13, the rotor speed, rotor acceleration,
generator speed and generated power associated with corresponding constraints are
illustrated, respectively, using both proposed and baseline controllers. Compared
to Figures 6.3-6.6, it is obvious that the baseline controller performance is deterio-
rated, while the proposed controller is able the attenuate the fault effects and keep
the considered outputs within the corresponding constraints. The designed refer-
ence pitch angle using both controllers are compared in Figure 6.14, in which it is
obvious that using the baseline controller has caused the pitch actuator saturation,
while, the saturation is smoothly avoided using the proposed controller. It should
be noted, as the proposed controller is trying to remove the pitch actuator dynamic
change, while the dynamic change has reduced the speed of the pitch actuator, it
has led to slightly more pitch angle variation compared to the fault-free case, in
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FIGURE 6.7: Reference pitch angle using the proposed controller
(dark blue line) and baseline controller (red line), in fault-free situa-

tion.
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FIGURE 6.8: Induced drive train torsion angle rate using the pro-
posed controller (dark blue line) and baseline controller (red line), in

fault-free situation.

the dynamic change periods. Consequently, the induced drive train torsion angle
using the proposed controller, has been increased in the mentioned time periods, as
illustrated in Figure 6.15.

Now, to accurately, study the effect of the considered faults, compared to the
fault-free case, the change in all variables with respect to the fault-free one is con-
sidered, which is defined as follows.

δX = Xff −Xfa, (6.42)

where, δX is the change in the considered variable X , Xff is the fault-free value
and Xfa is the value in the faulty situation. In Figures 6.16-6.18, δPg, δωg and
δωr, are illustrated respectively, for both proposed and baseline controllers. It is
obvious that the pitch actuator bias and effectiveness loss have led to considerable
change in the baseline controller performance. However, these changes are signif-
icantly attenuated using the proposed controller. Also, the effect of the considered
blade aerodynamic change, i.e. ∆Ta|∆Cp = 5%, has led to less variation. It should
be noted that in the pitch actuator dynamic change situations, as the pitch actua-
tor response becomes slower, the performance difference is less obvious, among
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TABLE 6.1: Values of the performance criteria for fault-free situa-
tion

Performance criteria Proposed controller Baseline controller

CC1 400.7 (GW 2s) 2256 (GW 2s)
CC2 1331 (µrad2/s) 1416 (µrad2/s)
CC3 138.9 (rad2/s) 2266 (rad2/s)
CC4 0.056 (MW ) 0.2937 (MW )
CC6 29.37 (◦) 30 (◦)
CC8 10 (◦/s) 9.79 (◦/s)

TABLE 6.2: First Fault scenario.

Fault type Fault effect Fault period

Pitch actuator pump wear αf1 = 0.6316, αf2 =
0.29688

200− 300 (s)

Pitch actuator hydraulic leak αf1 = 1, αf2 =
0.87853

400− 500 (s)

Pitch angle bias Φ = 5◦ 600− 700 (s)
Pitch actuator high air αf1 = 0.81083, αf2 =

1
800− 900 (s)

Pitch actuator effectiveness loss ρ = 0.7 1000− 1100 (s)
Aerodynamic characteristic change ∆Ta|∆Cp = 5% 1200− 1300 (s)
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FIGURE 6.9: Actual aerodynamic torque (red line), estimated one
(dark blue line), and nominal one (light blue line).
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FIGURE 6.10: Rotor speed using the proposed controller (dark blue
line), baseline controller (red line), nominal rotor speed (light blue

line), and constraints (green line), under first fault scenario.

which the hydraulic leak has notable effects. To accurately study the effect of faults
on the pitch actuator response, δβ is depicted in Figure 6.19. Evidently, the pitch
actuator dynamic changes have been considerably attenuated using the proposed
controller, while the slower pitch actuator and consequent difference, are obvious
in the baseline controller performance. Also, the effect of pitch actuator bias, is
completely removed, in which at the beginning and end of the corresponding bias
period, the estimated bias is subtracted abruptly to remove its effect. This effect is
obvious considering the baseline performance. The same result is obtained consid-
ering the effectiveness loss period. In the blade aerodynamic change period, both
controllers have led to the same trend in δβ, while the variation using the baseline
controller is significantly higher. Even though, this fault is removed from the blade
after 1300 (s), but its effect has yet disturbed the baseline controller performance.

Finally, to numerically compare the performance of the controllers, the criteria
are summarized in Table 6.3. It can be pointed out that the performance of the
proposed controller remained very similar to the fault-free case, as this is the main
objective of FTC design.
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FIGURE 6.11: Rotor acceleration using the proposed controller
(dark blue line), baseline controller (red line), and constraints (green

line), under first fault scenario.
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FIGURE 6.12: Generator speed using the proposed controller (dark
blue line), baseline controller (red line), nominal generator speed
(light blue line), and constraints (green line), under first fault sce-

nario.

Fault identification

In this section, with aid of the estimated fault f̂ and calculated auxiliary signals
(5.28), the faults are identified, using the similarity indices (6.40). The identifica-
tion includes detection of the presence of the fault and the fault type. Consequently,
the estimated pitch actuator bias Φ̂ is obtained using (6.41), in which Sβu is calcu-
lated using 2η(%̄ + %)/(P + P−1)

2|βs . It should be noted that these indices and the
estimated fault should be obtained and compared in every time step of operation, to

TABLE 6.3: Values of the performance criteria under first fault sce-
nario

Performance criteria Proposed controller Baseline controller

CC1 414.8 (GW 2s) 2506 (GW 2s)
CC2 1349 (µrad2/s) 1438 (µrad2/s)
CC3 155 (rad2/s) 2552 (rad2/s)
CC4 0.056 (MW ) 0.2941 (MW )
CC6 29.26 (◦) 30 (◦)
CC8 10 (◦/s) 10 (◦/s)
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FIGURE 6.13: Generated power using the proposed controller (dark
blue line), baseline controller (red line), nominal power (light blue

line), and constraints (green line), under first fault scenario.
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FIGURE 6.14: Reference pitch angle using the proposed controller
(dark blue line) and baseline controller (red line), under first fault

scenario.

accurately identify the fault. However, in this section, for the sake of clear expla-
nation and investigation of the mentioned approach, the comparison is conducted
in each fault period. Also, as the calculated auxiliary signal for fault-free case, i.e.
fauxiliary, fault free, is always zero, then the V AF fault free in (6.40) is calculated as
var(f̂) × 100%. Now, to investigate the fault identification capability of the pro-
posed controller, the obtained f̂ is illustrated in Figure 6.20. Also, the calculated
auxiliary signals (5.28) are depicted in Figure 6.21. Also, with aid of fault identi-
fication indices of (6.40), which are summarized in Table 6.4, the estimated pitch
actuator bias is shown in Figure 6.22. As mentioned earlier, for the fault identifi-
cation, the case in which the RMSE and VAF indices have close values to zero and
100%, respectively, is selected as the fault case. Considering Table 6.4, it is obvious
that in each fault-free period, the indices are indicating the fault-free case. Also, the
estimated pitch actuator bias is zero. In pitch actuator dynamic change cases, it is
obvious that the selected indices lead to the accurate identification of correspond-
ing actual dynamic change case. In all dynamic change cases, the estimated pitch
actuator bias is zero. So, the dynamic change cases are clearly distinguished from
pitch actuator bias. Evidently, in the pitch actuator bias period, no indices satisfy
the given conditions to be selected. On the other hand, the pitch actuator bias is
precisely estimated. Now consider the pitch actuator effectiveness loss and aerody-
namic characteristic change periods. Obviously, neither the dynamic change case
nor the fault-free case is selected, as the corresponding indices do not satisfy the
given conditions. On the other hand, pitch actuator bias is estimated as zero. So,
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FIGURE 6.15: Induced drive train torsion angle rate using the pro-
posed controller (dark blue line) and baseline controller (red line),

under first fault scenario.
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FIGURE 6.16: δPg using the proposed controller (dark blue line)
and baseline controller (red line), under first fault scenario.

it can be concluded that these two periods represent the pitch actuator effectiveness
loss and/or aerodynamic characteristic change. Now to identify these two cases,
firstly consider the estimated fault, i.e. Figure 6.20. Now, considering (6.24), it is
obvious that aerodynamic characteristic change is treated as an additive disturbance,
while the effectiveness loss is contributing in the control gain, i.e. G. The proposed
controller has proved to be insensitive to the considered disturbances. Accordingly,
the estimated fault is affected by the effectiveness loss and it is insensitive to the
aerodynamic characteristic change. So, in 1000− 1100(s), as the estimated fault is
not zero, the effectiveness loss case is identified. Also, in 1200 − 1300(s), as the
estimated fault is zero, the aerodynamic characteristic change case is identified.

6.5.3 Further robustness evaluation

In this section, the proposed controller is further evaluated in terms of robustness to
different wind speed and fault scenarios. The wind speed is shown in Figure 6.23,
with mean 20.41 (m/s) and standard deviation 3.01 (m/s) for 1100(s). Compared
to the former wind speed profile, i.e. Figure 6.2, the current one is more varying. So,
it is more challenging for the controller to satisfy the objectives. Also, in the fault
scenario, which is summarized in Table 6.5, the faults are introduced simultaneously
for a longer period. Also, the pitch actuator bias and aerodynamic characteristic
change values are increased. On the other hand, the pitch actuator effectiveness
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TABLE 6.4: Fault identification indices for first fault scenario.

High Air Content Hydraulic Leak
Time (s) Fault type RMSE VAF RMSE VAF
0-200 Fault-Free 0.37 -788 0.36 -842
200-300 Pump Wear 3.25 50.94 1.94 66.65
300-400 Fault-Free 0.31 -890 0.31 -932
400-500 Hydraulic Leak 2.40 75.01 0.19 99.26
500-600 Fault-Free 0.35 -921 0.34 -963
600-700 Pitch Bias 27.82 -41.85 21.99 -32.33
700-800 Fault-Free 6.24 -93370 6.20 -68300
800-900 High Air Content 0.42 97.50 1.81 76.41
900-1000 Fault-Free 0.53 -866 0.41 -923
1000-1100 Effectiveness Loss 19.14 -8903 18.7 -5800
1100-1200 Fault-Free 1.71 -8870 1.67 -5990
1200-1300 Aerodynamic change 0.29 -751.6 0.28 -807.95
1300-1500 Fault-Free 0.46 -755 0.46 -811

Pump Wear Fault-Free
Time (s) Fault type RMSE VAF RMSE VAF mean (Φ̂)
0-200 Fault-Free 0.39 -5916 0.43 99.98 0
200-300 Pump Wear 0.15 98.91 1.46 215.12 0
300-400 Fault-Free 0.33 -6291 0.37 97.65 0
400-500 Hydraulic Leak 67.99 2.4 2.54 575.7 0
500-600 Fault-Free 0.37 -6420 0.41 99.86 0
600-700 Pitch Bias 18.67 -24.33 87.62 4.05 5
700-800 Fault-Free 6.24 -182000 6.35 97.85 0
800-900 High Air Content 1.64 79.01 1.95 383.6 0
900-1000 Fault-Free 0.44 -6309 0.05 99.89 0
1000-1100 Effectiveness Loss 19.56 -16700 21.05 1100 0
1100-1200 Fault-Free 1.75 -17300 1.88 99.17 0
1200-1300 Aerodynamic change 0.31 -5770 0.34 11.89 0
1300-1500 Fault-Free 0.49 -5790 0.54 98.38 0
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FIGURE 6.17: δωg using the proposed controller (dark blue line)
and baseline controller (red line), under first fault scenario.
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FIGURE 6.18: δωr using the proposed controller (dark blue line) and
baseline controller (red line), under first fault scenario.

is decreased. To avoid the repetitive studies, only the generated power in fault -
ree and fault cases, using both controllers are considered, for the sake of brevity.
Also, the performance criteria are compared. The generated power in both fault-
free and faulty situations are illustrated in Figures 6.24 and 6.25, respectively. It is
obvious that in both situations, the generated power is maintained within the given
constraints. The performance criteria are summarized in the Tables 6.6 and 6.7,
which further confirm that, despite the baseline controller, the proposed controller
can successfully maintain reliable performance under faulty condition.

TABLE 6.5: Second Fault scenario.

Fault type Fault effect Fault period

Pitch actuator pump wear αf1 = 0.6316, αf2 =
0.29688

100− 300 (s)

Pitch actuator effectiveness loss ρ = 0.5 100− 300 (s)
Pitch actuator hydraulic leak αf1 = 1, αf2 =

0.87853
400− 600 (s)

Pitch angle bias Φ = 10◦ 400− 600 (s)
Pitch actuator high air αf1 = 0.81083, αf2 =

1
800− 1000 (s)

Aerodynamic characteristic change ∆Ta|∆Cp = 10% 800− 1000 (s)
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TABLE 6.6: Values of the performance criteria in fault-free situation
with second wind speed

Performance criteria Proposed controller Baseline controller

CC1 465 (GW 2s) 1817 (GW 2s)
CC2 1299 (µrad2/s) 1371 (µrad2/s)
CC3 212.5 (rad2/s) 1762 (rad2/s)
CC4 0.056 (MW ) 0.2094 (MW )
CC6 29.12 (◦) 30 (◦)
CC8 10 (◦/s) 7.46 (◦/s)

TABLE 6.7: Values of the performance criteria under second fault
scenario with second wind speed

Performance criteria Proposed controller Baseline controller

CC1 544.9 (GW 2s) 3549 (GW 2s)
CC2 1421 (µrad2/s) 1376 (µrad2/s)
CC3 304.2 (rad2/s) 3747 (rad2/s)
CC4 0.056 (MW ) 0.2214 (MW )
CC6 29.40 (◦) 30 (◦)
CC8 10 (◦/s) 10 (◦/s)
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FIGURE 6.19: δβ using the proposed controller (dark blue line) and
baseline controller (red line), under first fault scenario.
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FIGURE 6.20: Estimated fault for first fault scenario.

6.6 Discussion

Considering the simulation results in fault-free and first fault scenario, i.e. Table 6.2,
using the same wind speed profile, i.e. Figure 6.2, it can be pointed out the proposed
controller is able to keep the wind turbine performance in the same level. Firstly,
it is obvious that the generated power never violates the given bound. It should be
noted that this bound is appropriately selected by the wind turbine manufacturer.
Indeed, this bound represents the safe-to-operate bound in full load operation with-
out the mechanical brake engagement. On the other hand, the mechanical braking
increases the induced fatigue load on the drive train. Also, as the rotor accelera-
tion is constrained, it leads to less stress on the rotor shaft. So, it can be concluded
that via utilizing the proposed controller, less fatigue load and stress are induced to
the drive train. One obvious benefit of the proposed controller is that harsh long-
lasting pitch actuator saturation is avoided. In fact, using the smooth pitch actuator
saturation function, the speed of the pitch actuator response is increase before the
saturation, as it is obvious in Figure 6.1. This characteristic has led to the improved
power regulation. On the other hand, the smooth saturation bounds have been kept
smaller in value than the actual ones. It has been illustrated that the induced drive
train torsion angle rate, has been kept in the same level as the baseline controller
one. So, considering industrial acceptability of the baseline controller, the proposed
controller can be approved by industry, in terms of applied torsional stress. It is
evident that the estimated aerodynamic torque is fluctuating around the nominal
one, due to the inherent features of GRBFNN and the Gaussian basis functions.
However, as mentioned in the controller design procedure, the estimation error is
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FIGURE 6.21: Auxiliary signal in the case of fault-free (red line),
pump wear (dark blue line), high air content (green line), and hy-

draulic leak (light blue line).
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FIGURE 6.22: Estimated pitch actuator bias for first fault scenario.

bounded. This is obvious when comparing the actual aerodynamic torque and the
estimated one. As mentioned earlier, the pitch actuator dynamic change, leads to
slower response of the pitch actuator and consequently poor power regulation. This
phenomenon is obvious in Figures 6.16 and 6.19. Nevertheless, the proposed con-
troller has been shown to be able to attenuate this effect, same as the effects of the
pitch actuator bias, using the properly-designed fault estimator. On the other hand,
the effects of the pitch actuator effectiveness loss and debris build-up are mitigated
appropriately, satisfying the performance objectives. Also, using the fault estima-
tor information alongside the proposed fault identification scheme, different faults
are identified. Similar outcomes are obtained, considering the results for the more
severe instantaneous faults and higher wind speed variation.

In this chapter, a new adaptive constrained control methodology was proposed
for wind turbines in power regulation subject to actuation failures as well as un-
known system dynamics. Using BLF in conjunction with the concept of DSC a con-
strained control structure was developed that ensured stable tracking while reducing
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FIGURE 6.23: Second free wind speed profile.
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FIGURE 6.24: Generated power using the proposed controller (dark
blue line), baseline controller (red line), nominal power (light blue
line), and constraints (green line), in fault-free situation, with second

wind speed.

the computational cost. In addition, utilizing GRBFNN together with a proper fault-
tolerant scheme, the precise wind turbine mathematical model and actuation faults
were not required. In contrast to previous works where the unknown wind speed
observer/estimator was needed, using the Nussbaum-type function, the proposed
method handled the unpredictable wind speed variation effects in the control design
without requiring wind speed measurement. Numerical simulations were performed
to validate the effectiveness of the reported theoretical developments.
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FIGURE 6.25: Generated power using the proposed controller (dark
blue line), baseline controller (red line), nominal power (light blue
line), and constraints (green line), under second fault scenario, with

second wind speed.
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7 Drive Train Sensor FDI and FTC
Design

In this chapter, using a novel UIO design associated with a Kalman filter, the faults
in rotor and generator sensors are detected and accommodated. In the FD step,
using Kalman filter outputs, the need for thresholds is eliminated.1 Additionally,
in the Bayesian setting, the fault probability is calculated which will be used for
FDI. Also, via an auxiliary signal and by checking the updated residual and fault
probability, the isolation of the fault in each sensor is accomplished without the
need for any redundant physical sensor. The baseline controller is used in both
the fault-free and faulty situation, as well. It should be noted that the proposed
controller, designed in Chapters 5 and 6, can be used along side with the designed
FDI. On the other hand, to avoid any repetitive explanations, this chapter is only
focused in the partial load operation. Although, the designed FDI, can be easily
augmented on the controller in full load region controller. Accordingly, for sake of
consideration, the baseline controller (4.7) is used in this chapter. It should be noted
that instead of reconfiguring the controller which increases the complexity and cost
of the final design, the VSA scheme is used to allow the baseline controller to be
applicable in faulty situations, which needs accurate identification of fault size. The
rotor and generator sensor faults are considered in this chapter, because they are fed
into the baseline controller and have a major effect on the performance of the wind
turbine. Also, to cover a wide family of fault types, the sensor fault is modelled as a
multiplicative fault, i.e. (3.30). Different numerical Recursive Least Square (RLS)
methods are proposed and compared to remove noise from the estimated fault size,
including the regular, windowed and exponentially weighted estimates. It should be
noted that the values of FDI scheme parameters are given in Section B.5.

1This chapter is captured and reorganized from the papers “Bayesian Fault Probability Estima-
tion; Application inWind Turbine Drive train Sensor Fault Detection”, and “Bayesian Sensor Fault
Detection in a Markov Jump System”. The authors’ attribution on these papers are given in Appendix
C.
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7.1 Fault Detection, Isolation and Identification

This section focuses on the detection of the sensor faults, the probability of fault
occurrence, the location of the faults that should be isolated and finally, identifying
the size of the detected faults to be used in the FTC procedure.

7.1.1 FD scheme

The FD step comprises two different indices including residual signal and fault
probability. As it will be shown, because the residual signal is constructed based
on the Kalman estimated states, it only deviates significantly from zero at the mo-
ment the fault occurs. Additionally, the residual detects any variation of the sensor
coefficient. In fact, if the sensor coefficient varies from a number other than one, to
one, which is the fault-free case, the residual deviates from zero, again. So, to find
the accurate fault period and to see which residual deviation is indicating the fault,
the fault probability is used, which along with the residual, accurately indicates the
fault moment and period.

Residual signal

In this section, an optimal observer, namely a Kalman filter, is used on one well-
known linear part of a wind turbine, i.e. the drive train (3.15), to estimate the
signals and, accordingly, the residual signal will be constructed. Additionally, as the
sensor signal is manipulated by noise, the residual signal can have nonzero value
even in fault-free situations. Indeed, the noise can be mistakenly seen as a fault
on the residual. Accordingly, to reduce the number of false alarms, where there
is no fault on the system but yet the FD scheme indicates the fault, an appropriate
threshold should be chosen and compared to the residual to check if the FD scheme
can conclude that the fault is present. Too small a threshold will lead to false alarms.
On the other hand, if the threshold is chosen to be too large, some faults, with
minor effects on the residual, will not be detected and accordingly will be missed,
even though these faults may have some severe consequences on the wind turbine
performance. So, the threshold should be designed adaptively. In the case of the
wind turbine, in which the system is noisy, a harsh disturbance such as the wind,
acting on it, and given that an accurate model of the whole system is not available,
it may be too challenging to design an appropriate adaptive threshold. Instead, a
novel approach, i.e. using the signals which are estimated by the observer, will
be used to detect the presence of faults in the sensors, because the observer is an
optimal one and the effect of noise on the estimated signal is minimized. As stated
before, this observer is designed only for the drive train whose dynamic model is
accurately available from the manufacturer and its model is linear. The sensor FD is
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completed by checking the estimated generator speed, ωg and rotor speed, ωr, to see
if their ratio is exactly equal to the drive train ratio or not. This exact number and
non-noisy estimated signal eliminate the need for the threshold. As it will be shown
later, this ratio will actually change at the time of the fault. The observer diagram
is illustrated in the Figure 7.1. It should be noted that the estimated state vector is

x̂ =
[
ω̂g ω̂r θ̂∆

]T
. Additionally, ŷ = [ω̂g ω̂r]

T , is the estimated output such that a
part of it, i.e. ω̂r, will be fed back into the observer and another part, i.e. ω̂g will be
used in the fault identification step. Using the drive train model (3.15), the observer
dynamic can be stated as follows,

˙̂x = Adtx̂+Bu+K(ωr − ω̂r),
ŷ = Cx̂,

Adt =


−(

ηdtBdt
N2
g

+Bg)

Jg
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]
,

u =

[
Tg
Ta

]
,

(7.1)

where, K is observer gain.

FIGURE 7.1: Drive train observer diagram.

It should be noted that the generator speed measurement, ωg, could be fed into the
Kalman filter and there would not be any major difference, but in the wind turbine
mechanism the rotor speed, ωr, is much noisier than ωg (Sloth et al., 2009), and ωg
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will be used in fault identification. Accordingly, the accuracy of the identified fault
size will be increased.

As it is obvious from Figure 7.1, the drive train input, u, which is fed into the
Kalman filter, includes the generator torque, Tg and aerodynamic torque, Ta. Tg
is generated by the controller (4.7), and it is available via measurement, but the
challenging issue of wind turbines is that the wind speed, on which basis the Ta will
be calculated, cannot be measured precisely using the anemometer located on the
top of the hub, due to the temporal and spatial distribution of the wind over the plane
of the blades. To overcome this issue, an estimation of aerodynamic torque should
be fed into the Kalman filter. It is obvious that when the wind turbine is working in
the fault-free situation at its stationary points, i.e. the controller is trying to keep the
wind turbine operating at these points, the generator torque should be proportional
to aerodynamic torque, i.e. Ta = NgTg. On the other hand, due to wind speed
variation and faults, this relation can be violated. So, Ta can be estimated as NgTg
and, meanwhile, a PID controller, whose gains areKPO, KIO andKDO, is designed
and added to take the effects of wind speed variation and faults into consideration
and to keep the estimated aerodynamic torque, T̂a, as close as possible to the actual
one. Accordingly, the Kalman filter will have the same input as the drive train
and optimality and accuracy of estimated signals will be guaranteed. The modified
observer diagram is illustrated in Figure 7.2, where the ideal estimate of Ta, which
is NgTg, and PID controller are added to the previous schematic shown in Figure
7.1.

Remark 7.1. In Chapters 5 and 6 RBFNN was used to estimate wind speed and
aerodynamic torque. One may say that this estimation could be used here in the
observer structure of Figure 7.1. It should be noted that, in Chapters 5 and 6, it was
assumed that the sensor measurements are fault-free and they were then fed into the
RBFNN to estimate aerodynamic torque. So, in this chapter, another wind speed
estimator is designed to be used in the observer structure, to separate the sensor
FD from Chapters 5 and 6 objectives.

In Figure 7.2, the PID controller is used to decrease the difference between the
actual rotor speed and the estimated one, whilst the Kalman filter, in case of the
same input as the drive train, i.e. u = û, will be trying to eliminate noise from
the sensor measurements. Consequently, when ωr ≈ ω̂r, as the main goal of the
Kalman filter, the PID output will approach zero and the estimated aerodynamic
torque, T̂a, will be NgTg, which is the condition of wind turbine operation at its
stationary points, because the controller will generate Tg to guarantee operation at
the expected operating trajectory. The Kalman filter equation can then be modified
as,

˙̂x = Adtx̂+Bû+K (ωr − ω̂r) . (7.2)
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FIGURE 7.2: Modified drive train observer diagram.

The estimated aerodynamic torque for the wind speed shown in Figure 4.2, is
illustrated in Figure 7.3 and compared to the actual one and, because these two
signals are very close, the relative estimation error, i.e. (T̂ a−Ta)/Ta, is depicted in
Figure 7.4. To finalize FD, the residual will be constructed as,

d = ω̂g −Ngω̂r. (7.3)

As stated before, because the noise is minimized in the estimated estates, ω̂g
and ω̂r and the PID controller guarantees ωr = ω̂r, the residual d only deviates
meaningfully from zero when a fault occurs. As the output of one sensor will be
manipulated by the fault, d ≈ 0 will not hold any more at the fault moment.

It should be noted that the PID controller used in the observer diagram, always
tries to keep ω̂r as close as possible to ωr and, consequently, ω̂g which is estimated
by the Kalman filter, is very close to Ngω̂r, except at the fault moment. Indeed, the
PID controller has a limited range of rising and settling times and the wind turbine
dynamic response is very slow, due to the large mass moment of inertia of the rotor
and blades. So when a fault occurs, it always takes a limited period of time for the
PID controller to reduce the difference between ω̂r and ωr, and to make ω̂g = Ngω̂r,
again. So this limited time period can be utilized to detect the fault.

The benefit of the proposed algorithm is that the estimated states from which
noise has been minimized, are being used to construct the residual and to sub-
sequently detect the fault. Therefore, compared to the residuals which are con-
structed using noisy sensor outputs, false alarms, in small threshold cases, and
missed faults, in large threshold cases, will be reduced. Finally, FD can be summa-
rized as, d = ω̂g−Ngω̂r, which deviates from zero at the fault time and then returns
to zero again. To illustrate FD, a case study is shown where the coefficient of the
ωr sensor is doubled after tf = 1500(s) and the proposed residual using estimated
states, i.e. (7.3), and traditional residual using sensor outputs, i.e. dT = ωg −Ngωr,
are compared. The same comparison is done when the coefficient of the ωg sensor
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coefficient is doubled after tf = 1500(s). It should be noted that the noises added
to ωg and ωr sensors were: νωr ∼ N(0, (0.004× 2× π)2) and νωg ∼ N(0, 0.052)
(Sloth et al., 2009). These illustrations are shown in Figures 7.5-7.8. It is obvious
that when using dT , the fault-free situation can be translated to the fault due to the
noise content of sensors, while the residual d, except at the fault moment, is ex-
tremely close to zero compared to its value at the fault moment, which is not the
case for dT .
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FIGURE 7.3: Estimated aerodynamic torque (blue line) and Actual
aerodynamic torque (red line).
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FIGURE 7.4: The relative estimation error of aerodynamic torque.

Fault probability

In this section, under a Bayesian setting, the probability of fault occurrence for the
sensor fault problem is studied. Consider the sensor measurement as, yt = αtxt+εt,
where, yt is sensor output, xt is the measured state coming from nonlinear dynamic
xt = h(xt−1, ut), εt is measurement noise and αt is measurement coefficient, which
is αt = 1 in fault-free case and αt 6= 1 after fault occurs. Two important cri-
teria to detect the fault are first the Bayesian estimates of regression coefficient,
i.e. E(αt|α̂t), where, α̂t is estimation of αt. Since α̂t is a sufficient statistic,
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FIGURE 7.5: Traditional residual using sensor outputs when ωr is
doubled after tf = 1500(s).
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FIGURE 7.6: Residual using observer outputs when ωr is doubled
after tf = 1500(s).

it is used in the Bayesian estimation instead of the whole data. the second cri-
terion is the probability of appearance of a special configuration (j1, . . . , jt), i.e.
P (Jt = jt, . . . , J1 = j1|α̂t). Here, jk = 0, 1, k = 1, . . . , t. For example, for
jt = 1, jt−1 = 0, . . . , j1 = 0, it is the posterior probability of facing the first fault at
time t. However, since α̂t is really sensitive to sensor noise contents, therefore the
fault probability is used in this chapter. To find the probability of the fault, two fun-
damental approaches using particle filtering and Expectation-Maximization (EM)
algorithm are used.

The Bayesian method needs a prior which, in this chapter, the Yao’s prior struc-
ture, (Yao, 1984), is selected, which is given as follows,

αt = (1− Jt)αt−1 + Jtzt, (7.4)

It is assumed that εt and zt are independent and identically distributed (iid). Al-
though, this may be generalized to any distribution of εt and zt, since the particle
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FIGURE 7.7: Traditional residual using sensor outputs when ωg is
doubled after tf = 1500(s).
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FIGURE 7.8: Residual using observer outputs when ωg is doubled
after tf = 1500(s).

filtering is applicable for all non-normal distribution. However, for descriptive pur-
poses normal distributions are chosen. The probability of the fault is given as,

pt = P (Jt = jt, Jt−1 = jt−1, . . . , J1 = j1|α̂t) . (7.5)

The following proposition is useful for calculating the probability of fault using
a Bayesian setting.

Proposition 7.1. Let µi = E(αi|Ji = ji, . . . , J1 = j1), σ2
i = var(αi|Ji =

ji, . . . , J1 = j1), and given Jmax(i,k) = jmax(i,k), . . . , J1 = j1, σik = cov(αi, αk)
for i, k ≥ 1. The distribution of α̂t given Jt = jt, . . . , J1 = j1 is normal with
the mean E(α̂t|Jt = jt, . . . , J1 = j1) =

∑t
i=1 λitµi, and variance var(α̂t|Jt =

jt, . . . , J1 = j1) =
∑t

i=1

∑t
j=1 λitλjtσij + σ2

ε/
∑t

i=1 x
2
i , where λit = x2

i /
∑t

j=1 x
2
j ,

1 ≤ i ≤ t ≤ n.

The proof of this proposition is given in A.9.

However, in this chapter, to approximate the fault probability, considering Propo-
sition 7.1, two fundamental approaches based on particle filtering and EM algorithm
are used.
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Particle filtering

A natural extension of Kalman filtering to the cases of non-normal disturbances
and nonlinear equations is particle filtering. The particle filtering method was in-
troduced in (Gordon et al., 1993) by combining the sequential Monte Carlo and
importance sampling techniques together. The Particle Filtering Framework (PFF)
algorithm, (Zhou et al., 2008), is given in Algorithm 7.1. Here, p and P stand for
density function and probability, respectively.

Algorithm 7.1: PFF for state X and measurement Y
Result: Calculate p̂t (Xt)

1 Initialization. Sample {X i
0}Ni=1 iid from initial distribution p0. Set t = 1.

2 Importance sampling. Sample X i
t from p

(
Xt

∣∣X i
t−1

)
, i = 1, 2, . . . , N . Set

t ≥ 2.
3 Bayesian updating. Let p̂t (Xt) =

∑N
i=1w

i
tδ(Xt−X i

t), where δ is the Dirac
delta function. Weights are calculated aswit ∝ p(Yt|X i

t), i = 1, 2, . . . , N , and
normalized.

4 Re-sampling. Sample {X i
t}Ni=1 iid from p̂t (Xt) and go to step 2.

Algorithm 7.1 is used to calculate the probability of fault P (Jt = jt, . . . , J1 = j1|α̂t)
for each t and for every configuration (jt, . . . , j1) in which (Jt, . . . , J1) and α̂t play
the roles of X and Y , respectively. Also, since vector (Jt, . . . , J1) is not a Markov
property, step 2 of Algorithm 7.1 is removed in Algorithm 7.2. Consider the fol-
lowing algorithm.

Algorithm 7.2: PFF algorithm for probability of fault
Result: Calculate P (Jt = jt, . . . , J1 = j1|α̂t)

1 Fix t ≥ 1. Extract L samples (jt, . . . , j1)l, l = 1, . . . , L from (Jt, . . . , J1).
2 For each l = 1, . . . , L, compute the density of α̂t given

(Jt, . . . , J1) = (jt, . . . , j1)l and particle filtering weights are computed, as
Proposition 7.1.

3 Using weights of step 2, configurations are re-sampled B times, using the
weighted bootstrap method, to obtain re-samples (j∗t , . . . , j

∗
1)b, b = 1, . . . , B.

4 The Empirical distribution of (j∗t , . . . , j
∗
1)b, b = 1, . . . , B estimates distribution

of P (Jt = jt, . . . , J1 = j1|α̂t).

Remark 7.2. A fast approach to derive the var(
∑t

i=1 x
2
iαi) is using a standard

Monte Carlo method, given Jt = jt, . . . , J1 = j1.

Although, the particle filtering (Algorithm 7.2) provides the probability of the
fault, however, characterization of the probability of a fault for every configuration
is time-consuming work. A shortcut solution to this problem is to compute the
P (Jt = jt|α̂t) for every t. Indeed, the length of configuration is reduced. On the
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other hand, computationally, it is easy to calculate P (Jt = jt|α̂s, s ≤ t). As well as,
since a recursive relation exists for α̂t, it is better to calculate P (Jt = jt|α̂t, α̂t−1)
which is proportional to the product of likelihood and prior, i.e. P (α̂t|Jt = jt, α̂t−1)×
P (Jt = jt). Thus, to run the particle filtering Algorithm 7.2, it is enough to
substitute (jt, . . . , j1),(j∗t , . . . , j

∗
1), (Jt, . . . , J1) with jt, j∗t , Jt, respectively, in all

steps and to substitute the conditional density of α̂t given Jt = jt, . . . , J1 = j1

with p(α̂t|Jt = jt, α̂t−1) in step 2 of Algorithm 7.2. To compute the last density,
recursive relations are useful. As follows, the distribution of α̂t given Jt = jt
and α̂t−1 is derived and the particle filtering method is applied to compute the
pt = P (Jt = jt|α̂t, α̂t−1).

Proposition 7.2. The distribution of α̂t given Jt = jt and α̂t−1, is normal with
mean = (1− λt) α̂t−1 + λt (1− jt) α̂t−1 + λtjtµz and variance = λ2

tσ
2
ε/x

2
t +

λ2
t jtσ

2
z , where λt = x2

t/
∑t

j=1 x
2
j .

The proof of this proposition is given in A.10.

In order to reduce the computational load and complexity, beside the shortcut
p(α̂t|Jt = jt, α̂t−1), there are other solution which is to use the other types of es-
timation of α̂t. Also, it is beneficial to use very recent observations and forget the
very past ones to check the existence of the fault. This new estimation is given via
utilization of EM algorithm, which is described in the next section.

EM algorithm

Here the EM algorithm is reviewed briefly, to obtain a recursive relation for the
estimation of measurement coefficient α̂t, to be used in Algorithm 7.2. Let the θ be
an unknown parameter, X be observed and Z be missing data. Let f(X,Z; θ) be
the joint density of X and Z. The EM algorithm consists of two steps. First, the
expectation EZ|X,θ=θt (logp (X,Z; θ)) = Q(θ, θt) is calculated. Then, Q(θ, θt) is
maximized with respect to θ. As t → ∞, θt converges in probability to the actual
maximum likelihood of θ which is not computable directly, since the Z is missing.
Next, to apply the EM algorithm to the problem of Bayesian FD, first Lemma 7.1
is proposed. Let n(x, µ, σ2) be the density of normal distribution with mean µ and
variance σ2 and log(n (x, µ, σ2)) be its natural logarithm.

Lemma 7.1. Let 0 < q < 1, θ∗ = σ2
2/σ

2
1 and define, f (x) = q.log (n (x, µ1, σ

2
1)) +

(1− q) .log (n (x, µ2, σ
2
2)). Then, f attains its maximum at x = (qµ1θ

∗ + (1 −
q)µ2)/(qθ∗ + (1− q)).

The proof is straightforward and omitted.

To implement the EM algorithm, let d̂t = α̂t − (1− λt) α̂t−1 = λt (yt/xt) =
λt (αt + εt/xt). Here, the α̂t is the least square estimate of αt.
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Proposition 7.3. Letk2 (Jt) = (1− λt)2 Jtσ
2
z+λ

2
tσ

2
ε/x

2
t , θ = k2 (Jt = 0) /k2 (Jt = 1)

and γ = pθ/(pθ + (1 − p)). The EM algorithm Bayesian recursive relation for αt
is given by, α̂EMt = d̂t + (1− λt)

(
γµz + (1− γ) α̂EMt−1

)
.

The proof of this proposition is given in A.11.

Since the recursive relation for EM estimate of α̂tis found, thus the probability
of fault is computable. The following proposition gives the conditional distribution
of α̂EMt given Jt = jt.

Proposition 7.4. The distribution of α̂EMt given Jt = jt and α̂EMt−1 is normal with
mean λtαt + (1− λt)

(
γ∗µz + (1− γ∗) α̂EMt−1

)
and variance λ2

tσ
2
ε/x

2
t .

The proof is straightforward and omitted.

The fault probability calculation procedure using EM algorithm is illustrated in
Figure 7.9. Now, using this algorithm, the corresponding fault probability for faults
shown in Figures 7.5-7.8, are illustrated in Figures 7.10 and 7.11. It is obvious
that after the fault moment, the fault probability is accurately changed to one. It
should be noted that in the simulation the sampling time is 0.01(s). Also, to run the
Algorithm 7.2, L = 100 and B = 1000 are selected.

FIGURE 7.9: EM algorithm procedure for fault probability calcula-
tion.
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FIGURE 7.10: Fault probability when ωg is doubled after tf =
1500(s).
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FIGURE 7.11: Fault probability when ωr is doubled after tf =
1500(s).

7.2 Drive Train Sensor Fault Model

The fault is modeled as an unknown abrupt sensor coefficient jump or latent jump,
in which the coefficient of the sensor equation will change at an unknown time and
with an unknown size. For example, considering (3.24), the rotor speed sensor is
rewritten as,

ωr,s = αωrωr + νωr , (7.6)

where αωr is the coefficient of measurement equation. It should be noted that be-
fore the unknown fault moment tf , αωr = 1 and after tf , αωr = α1, where α1

is unknown. Similar consideration can be made for generator speed sensor to 7.6,
but for sake of explanation, only the rotor speed sensor is considered in this section.
Four different fault types commonly happen in a sensor including, proportional error
(multiplicative fault), bias error (additive fault), no output and fixed output. Indeed,
via this fault model, all types of sensor faults can be considered. For sensor bias,

ωr,s = ωr +Biasωr + νωr = α1ωr+νωr . (7.7)

where, α1 = 1 + Biasωr/ωr. So, the sensor bias, i.e. Biasωr , can be considered as
a coefficient change αωr to α1. In fact, it is considered as a time variable coefficient
that can cover a wide range family of biases. On the other hand, for the sensor fixed
output,

ωr,s = ωrConstant = α1ωr. (7.8)

where, α1 = ωrConstant/ωr. Also, there is another method to detect the fixed output
by considering the probability of the fixed output from a noisy sensor with white
Gaussian distribution of noise for several consecutive time steps (Sloth et al., 2009).

It should be noted that the zero-output situation cannot be considered as a fixed
output because this implies that α1 = 0, meaning that the fault cannot be identified.
If the anemometer, which is located at the top of the hub to measure wind speed
roughly, denotes the nonzero value of wind speed, because the wind speed provides
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the motivating force that makes the wind turbine operate, neither of ωr or ωg can
be zero. If so, the zero sensor output fault can be concluded. Although, one zero
sensor output and one nonzero sensor output, can indicate the fault on the zero one,
but, in the case that both sensor outputs are zero, using only the anemometer signal
can lead to FD. For no output situations, the controller, which changes the generator
torque, and the Kalman filter will detect the fault. Indeed, if the ωr sensor generates
no output, because it has been fed into the observer diagram, the Kalman filter will
alarm this type of fault. On the other hand, if the ωg sensor generates no output, the
main controller 4.7, into which ωg has been fed, will generate the alarm.

7.3 Effect of Fault on Kalman Filter

In the fault-free situation, the Kalman filter is able to minimize the noise from mea-
sured signals and estimate them appropriately in an optimal manner. Now, it should
be taken into consideration what happens if the sensor whose output is manipulated
by faults, is fed into the Kalman filter. Indeed, this will provide the basic logic for
FII, as well. Suppose that the fault occurs at time step tf and sensor coefficient of

system, i.e. matrix C in (7.1), before and after fault are
[
1 0 0
0 1 0

]
and

[
1 0 0
0 α1 0

]
,

respectively. Indeed, it is assumed that the coefficient of the ωr sensor is changed
from one to α1. Although, considering the ωg sensor fault with a similar procedure
can be used to consider its effect on the Kalman filter. In fact, the fault in the ωr
sensor will lead to estimation of ω̂g dissimilar to ωg because the faulty ωr sensor is
used in the Kalman filter. On the other hand, the fault in the ωg sensor will cause
instantaneous deviation of ωr from the estimated one, ω̂r, because ωg is utilized as
input to the controller which changes the generator torque. After the fault occurs,

it is assumed that the matrix C is
[
1 0 0
0 α1 0

]
. α1 is unknown and should be iden-

tified. Because the fault in the sensor is latent, so the matrix C of the sensor is

assumed to still be
[
1 0 0
0 1 0

]
. In fact, one cannot directly apply the coefficient α1

in matrix C of the Kalman filter, because the accurate size of the fault is not yet
known, which will be estimated in the fault identification step. On the other hand,
to hold ωr = ω̂r, as the goal of the Kalman filter, the latent coefficient α1 should be
applied in matrix C of the Kalman filter. Accordingly, the Kalman filter equation
should be written as follows to satisfy ωr = ω̂r, giving,

˙̂x = Adtx̂+Bû+K (ωr − α1ω̂r) . (7.9)

So, by selecting the appropriate estimator gain,K, the estimated rotor speed, i.e. ω̂r,
will be close optimally to the term of ωr/α1 (Habibi et al., 2017a). Consequently, it
can be concluded that ω̂r cannot be similar to ωr, but rather to the ωr/α1 term where
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the coefficient α1 is contributing. In other words, ω̂r will be similar to the affected
ωr by the fault (Isermann, 2006). This shows the applicability of the Kalman filter
for state estimation for the unknown coefficient jump. The same thing will hold
when the fault occurs in the ωg sensor. In Figures 7.12 and 7.13 the sensors and
corresponding Kalman estimations are illustrated when the ωr sensor coefficient is
doubled after tf = 1500(s).
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FIGURE 7.12: ωg (blue line) and ω̂g (red line) when ωr sensor coef-
ficient is doubled after tf = 1500(s).
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FIGURE 7.13: ωr (blue line) and ω̂r (red line) when ωr sensor coef-
ficient is doubled after tf = 1500(s).

7.4 Fault Isolation

In the fault isolation step, the source of the fault should be detected. Indeed, it
should be determined which actual sensor is faulty. The fault can be isolated uti-
lizing and comparing the measured and estimated signals to locate the fault source.
It should be noted that due to the presence of the PID controller in the observer
diagram, ωr = ω̂r always holds, and whether the ωr or ωg sensor is faulty, only
a change in comparing ωg and ω̂g is obvious. In Figures 7.12 and 7.13, it can be
seen that when the ωr sensor is faulty, i.e. ωr sensor coefficient is doubled after
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tf = 1500(s), disregarding noise contents, only the ωg sensor is different from ω̂g.
The same results can be found when the ωg sensor is faulty. So, it seems that despite
the fault source, using the proposed FD scenario, it always indicates that the ωg sen-
sor is faulty. Let either the rotor or generator sensor coefficients change from one
to α at tf . The question remains then about how to isolate the ωr sensor fault? The
point is that when only using information from two sensors, the fault in each sensor
cannot be isolated directly (Isermann, 2006). In most of the literature, it has been
proposed to use hardware redundancy (Chen et al., 2011b). The novel approach
used in this chapter is in designing an auxiliary signal in the FTC step. Indeed, the
PID controller always makes the residual d = ω̂g − Ngω̂r zero except at the fault
moment when d deviates from zero significantly and the fault probability becomes
one. After the fault occurrence, despite the fault source, as discussed in Section 7.3,
ωg/ω̂g = α̂, accordingly, the ωg sensor can be multiplied by 1/α̂ to remove the fault
effect from this signal which is being fed into the controller. The auxiliary signal
can then be designed by accommodating the fault and signal correction of the ωg
sensor, which will be described in the next section, after which it is expected that d
and the fault probability will return to zero. Consequently, if this is the case, it can
be concluded that the fault source was correctly selected as the ωg sensor. Other-
wise, if still d 6= 0 and the fault probability is around one, at exactly the moment
that the ωg signal was corrected, it can evidently be pointed out that the fault source
was the ωr sensor and this fault should be accommodated.

It can be pointed out that in this fault isolation procedure, if the ωg,s signal is
mistakenly corrected by multiplying by 1/α̂, then it may lead to dangerous oper-
ation and even instability. Indeed, this correction can be seen as a sudden change
Kc in (4.7), to Kc/α̂

2. Firstly, it should be noted that the stability of the con-
troller gain Kc is considered using gain and phase margins and, as wind turbines
are operating in dangerous harsh environment, these margins are selected to be con-
siderably large. So, a mistakenly small change of α̂, will not lead to dangerous
operation or instability. However, this issue should be considered in the isolation
procedure. Accordingly, the marginal safety gains KM1 and KM2 can be defined
by the designer to guarantee safe operation, such that KM1 ≤ Kc/α̂

2 ≤ KM2.
So, as long as the estimated fault size lies within

√
Kc/KM2 ≤ α̂ ≤

√
Kc/KM1,

corresponding correction of ωg,s will not lead to dangerous operation. On the other
hand, in (Zhang et al., 2011), it is proposed to detect the fault in ωg,s, using the
wind turbine generated power (3.19). Accordingly, it is proposed to estimate gen-
erator speed using measured generated power, i.e. Pg,s, via ωge = Pg,s/ηgTg. Then
comparing ωge and ωg,s the fault in generator sensor is estimated as ωg,s/ωge = α̂e.
Although, due to the presence of noise in Pg,s and ωg,s, α̂e is not accurately equal
to α̂. So, for small fault size, this criterion may not be able to accurately detect
the fault and it only operates properly for considerable large α̂. This complemen-
tary criterion is utilized here to fulfil the fault isolation. In this regard, after α̂ is
obtained, it is compared with α̂e. So, if |α̂− α̂e| ≤ εd, where εd is a small de-
sign parameter, and

√
Kc/KM2 ≤ α̂ ≤

√
Kc/KM1, then the ωg,s is the fault
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source and it is corrected. Then the fault probability is recalculated to guarantee
the selected fault source. If it is not zero, then ωr,s is the fault source and it is cor-
rected. This fault isolation is given in Algorithm 7.3 and illustrated in Figure 7.14.
Algorithm 7.3: Fault isolation algorithm
Result: Find the sensor fault source

1 Sample estimated states using (7.2).
2 Calculate fault probability via Algorithm 7.2. If the Fault probability is zero,
3 Terminate this algorithm. Otherwise,
4 Calculate α̂.
5 Calculate α̂e = ωg,sηgTg/Pg,s. If |α̂− α̂e| ≤ εd and√

Kc/KM2 ≤ α̂ ≤
√
Kc/KM1, then,

6 Inserting corrected ωg,corrected into the controller as, ωg,corrected = ωg,s/α̂.
Otherwise,

7 Inserting corrected ωr,corrected into the observer as, ωr,corrected = ωr,s × α̂.
8 Go to step 1.

Remark 7.3. In Algorithm 7.3, step 4, the calculation of α̂ is needed. It is obvious
that this calculation, using ωg/ω̂g, will be noisy due to noise in the ωg signal. So,
in this section, for the sake of explanation, it is assumed that this calculation of α̂
is satisfactorily accurate and then, after constructing the fault isolation and fault
accommodation scenarios, further analysis will continue to remove noise content
from α̂ in the fault identification step.

One benefit of this proposed algorithm for fault isolation, i.e. designing an aux-
iliary signal, is that the α̂, calculated using the measured ωg and estimated ω̂g, will
be used for FA in both ωg and ωr sensors, which is described in the next section. In
fact, there will be no need for further calculation algorithms for each fault source
and using the one step calculation, both faults can be accommodated.

Remark 7.4. It should be noted that it is assumed that the main rotor and generator
sensor pair are fed into Algorithm 7.3. However, if the redundant sensor pair is
available, then Algorithm 7.3 can be separately used to detect the faults in those
sensors.

Remark 7.5. In this chapter, the faults in drive train sensors are considered because
in partial load operation, these sensor measurements are fed into the baseline con-
troller. Although there are other sensors in wind turbine systems which are also
prone to failure. The pitch angle is kept at its optimal value while its sensor fault
can be accommodated passively (Sloth et al., 2011). On the other hand, in the case
of the generated power sensor fault, the generator torque and generator speed sen-
sors can be used in which the generator torque sensor is passively robust against
faults (Sloth et al., 2010). Finally, faults in the wind speed sensor are not stud-
ied, because the baseline controller is not constructed based on the measured wind
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FIGURE 7.14: Fault isolation algorithm.

speed. Also, it should be noted that, the proposed algorithms can be simply used
for pitch and generator sensors FDI with Kalman filter estimation without the need
for UIO design. In both pitch and generator actuator dynamic models, there are no
unknown inputs. So, to avoid any repetitive study, this chapter is only focused on
drive train sensor FDI design, which are more challenging than the other sensors.

7.5 Drive Train Sensors FA

It should be noted that in the FTC procedure, FII is prior to the FA, but for sake
of readability, the FA scheme is considered firstly, and the fault identification is
considered in detail in the next section. In this chapter, so-called virtual sensor
accommodating method or signal correction, is used to accommodate sensor faults
and remove their effects from the system and keep the baseline controller working
and the system performing as close as possible to the fault-free condition (Badihi et
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al., 2014). In the virtual sensor method, the sensor signal is fed into a virtual sensor
module, such that the fault effect is mitigated and then, this corrected signal will be
fed into the controller. The benefit of this FTC method is that the baseline controller
can be utilized in both fault-free and faulty conditions and there will be no need for
CR which is one of the major issues in FTC research (Blanke et al., 2006). When the
signal is being corrected, because the baseline controller has already been designed
for fault-free situations and this controller is going to be utilized again in the faulty
situation, then there is no need to be concerned regarding final controller stability
and performance, which have already been considered in the fault-free condition.

7.5.1 Remedial action

Remedial action can be seen as part of FA in which any action that should be taken
regarding FTC, will be designed for any fault type. Based on the fault type which
has been described in Section 7.2, several actions can be considered. The design
approach here is to use as least different actions as possible to reduce the com-
plexity and increase the applicability of the final proposed FTC. As discussed in
Section 7.2, proportional, bias and nonzero fixed output errors, can be considered
as multiplicative faults. So, the sensor coefficient should be estimated via the fault
identification step using measured and estimated signals and improving its accuracy
and removing noise from it through the use of RLS estimate. As discussed in earlier
sections, the only two signals which are different after the fault occurrence, are ωg
and ω̂g. The generator speed sensor is as,

ωg,s = αωg + νωg . (7.10)

As discussed in Section 7.3,

α̂ ≈ ωg
ω̂g
≈ ωg

95ω̂r
. (7.11)

So, to eliminate the fault effect from the measured signal, either ωg should be di-
vided by α̂ or ω̂r should be multiplied by α̂, which depends on the fault source.
Accordingly, in the latter case, in which ω̂r should be multiplied by α̂, keeping
ωg/ω̂g at one can be done by multiplying the ωr signal by α̂ before it is fed into
the observer, because, based on the observer diagram, ω̂r always tracks the ωr, then
ωg/ω̂g can be one by changing ωr appropriately. In summary, disregarding noise
content, the ratio ωg/ω̂g should be one unless a fault occurs in either the ωg or the
ωr sensors. On this basis, whenever the ωg sensor is detected as the fault source,
then, the ωg signal should be divided by α̂ before it is fed into the baseline con-
troller and, on the other hand, when the FD scheme indicates the ωr sensor as the
faulty component, then ωr signal should be multiplied by α̂. One benefit of this
algorithm is that the fault size with different sources, i.e. either the ωg or ωr sensor,
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can be identified with only one calculation step which comprises the calculation
of α̂ accurately. This issue reduces complexity of the algorithm and increases its
applicability.

For zero fixed output or no output conditions, there is no choice except CR. In
fact, the modern wind turbines have been equipped with duplicated sensors, i.e. us-
ing two or three sensors with identical structure and signals, to be used for FD
as well as FTC. Accordingly, in zero fixed output or no output conditions, the
second identical sensor can be replaced. In this chapter, it is suggested to uti-
lize the proposed algorithm instead of redundant sensors. Accordingly, for the
two above-mentioned conditions, to eliminate the need for redundant sensors, it
is suggested that the lost signals be replaced by the estimated ones. In (Sloth et
al., 2009), it has been proposed to use the other fault-free signals instead of the
lost one, but this leads to some major problems. First of all, for instance, us-
ing the Ngωr signal instead of the lost ωg signal, increases the noise content of
the signal, because ωr is much noisier than ωg (Sloth et al., 2009), and multiply-
ing it by Ng, further increases the noise content amplitude, which is not desir-
able. Additionally, in case of the simultaneous loss of both sensor signals, there
will be no signal to be replaced. In the other solution, ωg can be estimated by
Pg,s/(ηgTg,s), in which the two noises of Pg and Tg sensors are contributing (Sloth
et al., 2009), this estimation is not applicable. The FA and remedial action are
summarized in Algorithm 7.4 and is illustrated in Figure 7.15. Of course, it does
not eliminate the need for CR, because the signals which had already been fed into
the controller or observer, have to be replaced by estimated ones and this issue
raises the need for switching the signals that can be translated as CR in the FTC
field. However, using estimated signals will not add any further noise to the sys-
tem and also it is applicable in the case of simultaneous loss of both sensor signals.
Algorithm 7.4: FA and remedial action algorithm
Result: Remove the effect of drive train sensor faults

1 Obtain fault isolation information.
2 Calculate α̂.
3 If the fault source is ωg,s, correct ωg,s as ωg,s/α̂ before feeding into the

controller.
4 If the fault source is ωr,s, correct ωr,s as ωr,s × α̂ before feeding into the

observer.
5 If there are no sensor measurements, switch the estimated signals into the

controller or observer structure.

7.5.2 Fault identification and RLS estimation

This section seeks to identify the accurate size of the fault and the removal of noise
from the calculated α̂. To improve α estimation the least squares method is used
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FIGURE 7.15: Fault accommodation and remedial action.

to mitigate noise. Consider sensor measurement as, yt = αtxt + εt, where, with-
out loss of generality, it is assumed that εt are iid normally distributed random
variables with zero mean and variance σ2

ε . For a time span {1, 2, . . . , t}, the null
hypothesis implies that there is no fault among observations up until time t. The
least square estimate of αt is the minimizer of

∑t
i=1 (yi − αtxi)2, which is given by

α̂t =
∑t

i=1 xiyi/
∑t

i=1 x
2
i , to minimize the noise effect. α̂t is normally distributed

as N
(
αt, σ

2
ε/
∑t

i=1 x
2
i

)
, under the null hypothesis of no fault up to time t. This dis-

tribution plays the role of observation equation density. There is a recursive formula
for α̂t derived as follows,

α̂t =

∑t−1
i=1 xiyi + xtyt∑t

i=1 x
2
i

=
(
∑t−1

i=1 x
2
i )α̂t−1 + xtyt∑t
i=1 x

2
i

= (1− πt)α̂t−1 + πt

(
yt
xt

)
,

(7.12)
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where, πt = x2
t/
∑t

i=1 x
2
i . (7.12) defines the RLS filter of αt. Because of the

strength of past data, it is seen that the RLS has a delay to distinguish the fault
size, therefore, some modifications on this estimator are given. The exponentially
weighted version of this estimator for some forgetting factor λe ∈ (0, 1) is also
given by,

α̂t,λe =

∑t
i=1 λ

t−i
e xiyi∑t

i=1 λ
t−i
e x2

i

. (7.13)

Suitable values for λe belong to the interval (0.95, 0.99). The recursive formula for
α̂t,λe is given by,

α̂t = (1− πt,λe)α̂t−1 + πt,λe

(
yt
xt

)
, (7.14)

where, πt,λe = x2
t/
∑t

i=1 λ
t−i
e x

2
i . The ordinary least square estimator α̂t based on

the r-current observations (with suitable select for r) is given by,

α̂t,r =

∑t
i=t−r+1 xiyi∑t
i=t−r+1 x

2
i

. (7.15)

It is referred to as the windowed least square estimate, in the literature. One may use
a hybrid estimator by combining the weighted and windowed formula. It should be
noted that there is a tradeoff between the length of the window r and the accuracy of
the windowed estimator and the cost of data gathering will be considerable. Indeed,
using exponentially weighted or windowed least square estimates, it is expected to
utilize the most recent data, instead of using all data, which is the case for α̂t. So, the
accuracy of fault size estimation should be increased, as discussed in the simulation
section.

A useful tool for fault size identification, visually, especially in offline settings,
is the scatter plot of the measured signal, yt, against the estimated state x̂t. If the
estimated state is time ordered, i.e. an increasing function of time, then the model
is changed to a piecewise line regression and this plot clarifies the fault size very
well. However, this is not always the case. To overcome this problem, let zt be
an increasing sequence across time t. Then, the following regression model has
increasing independent variable zt, that is,

y∗t =
zt
xt
yt = αtzt +

zt
xt
εt = αtzt + ε∗t . (7.16)

Notice that var (ε∗t ) = z2
t σ

2
ε/x

2
t . To avoid heteroscedasticity problems, it is neces-

sary to use the weighted least square,

α̂w,t =

∑t
i=1 wtzty

∗
t∑t

i=1 wtz
2
t

, (7.17)
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where, wt = x2
t/z

2
t . The scatter plot of (zt, y

∗
t ) works better than this plot based on

coordinates (xt, yt). To find zt, let

zt = xt + bht (zt−1 − xt) , b ≥ 1, z1 = x1, (7.18)

where,

ht =

{
0, xt ≥ zt−1,

1, xt < zt−1,
(7.19)

When b = 1, then, zt = max(zt−1, xt). This choice has a problem that if for some
t, zt−1 is larger that zs, s ≥ t, then the trend of regression is removed. To solve this
problem, a modified version of this method is,

zt = max(zt−1, xt) + δ, (7.20)

where, δ is a small number like 0.005. It should be noted that similar to the ordinary
least square estimate α̂t, the exponentially weighted and windowed least square
estimates can be rewritten for sorted state and measurements, i.e. zt and y∗t , such
that wt appears in the numerator and denominator of exponentially weighted and
windowed estimate formulas, which are going to be used in this work, as follows,

α̂w,t,r =

∑t
i=t−r+1wtzty

∗
t∑t

i=t−r+1wtz
2
t

,

α̂w,t,λe =

∑t
i=1 λ

t−i
e wtzty

∗
t∑t

i=1 λ
t−i
e wtz

2
t

.

(7.21)

The α̂t = ωg/ω̂g graph is illustrated in Figure 7.16, in which the ωg sensor coeffi-
cient is doubled at t = 1500(s). It is obvious that despite the rapid change in Figure
7.17, the fault size is not clearly identified. The α̂w,t is shown in Figure 7.17. Also,
exponentially weighted and windowed least square estimates are shown in Figures
7.18 and 7.19, respectively. It is obvious that, comparing Figures 7.16-7.19, the

T ime (s)
0 500 1000 1500 2000

α
t

0

1

2

3

FIGURE 7.16: α̂t= ωg/ω̂g.
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FIGURE 7.17: α̂w,t.
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FIGURE 7.18: Exponentially weighted α̂w,t,λe for λe = 0.95.

noise is removed from α̂w,t, while there is a considerable delay in fault size iden-
tification. So, using exponentially weighted and windowed least square estimates,
this delay is eliminated. It should be noted that, via simulation study, windowed
estimates are less time consuming and, by adjusting window length, the noise effect
is completely removed from the estimated fault size.

To compare the different estimations numerically, the RMSE and VAF indices
are used, which are as follows (Badihi et al., 2014),

RMSE =

√√√√ 1

N

N∑
i=1

(αit − α̂et)2,

V AF = 1− var(αit − α̂et)
var(αit)

,

(7.22)

where, N is data number, αit is ideal fault size which should be estimated and α̂et
is estimated one.

Corresponding RMSE and VAF indices for Figures 7.16-7.19, are compared in
Table 7.1. It is obvious that the exponentially weighted and windowed estimates
are more accurate while the windowed method is less time consuming than the
exponential one.
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FIGURE 7.19: Windowed α̂w,t,r for r = 1000.

TABLE 7.1: RMSE and VAF indices for different identification
methods

Estimation Method RMSE VAF
α̂t= ωg/ω̂g 44.43 9387.9
α̂w,t 40.39 9381.4

Windowed α̂w,t,r
r = 1000 0.027 0.9964
r = 3000 0.33 0.9948
r = 5000 0.057 0.9846

Exponentially
weighted α̂w,t,λe

λe = 0.95 0.076 0.722

Now, to accurately evaluate the proposed fault identification algorithm for mul-
tiple faults, which is the case in the simulation section, the fault scenario, which is
given as follows, is designed such that several consecutive faults with different sizes
and sources appear,

αt of ωg sensor =



1, 0 ≤ t < 300,

2, 300 ≤ t < 800,

1, 800 ≤ t < 1000,

0.5, 1000 ≤ t < 1300,

1, 1300 ≤ t ≤ 2145,

αt of ωr sensor =


1, 0 ≤ t < 1700,

0.25, 1700 ≤ t < 2100,

1, 2100 ≤ t ≤ 2145.

Considering this fault scenario, regardless of fault source, the expected estimate
of fault sizes, which are going to be identified via the proposed algorithm, should
be as follows. Considering the ωg sensor coefficients, it is easy to conclude that
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between 300 ≤ t < 800 and 1000 ≤ t < 1300, the ωg sensor output is 2 and
0.5 times the estimated one, respectively. On the other hand, between, 1700 ≤
t < 2100, the ωr sensor output is multiplied by 0.25 and because of PID, such that
ωr = ω̂r, and the ωg sensor output will be 4 times the estimated one,

expected fault size estimation : α̂t =



1, 0 ≤ t < 300,

2, 300 ≤ t < 800,

1, 800 ≤ t < 1000,

0.5, 1000 ≤ t < 1300,

1, 1300 ≤ t < 1700,

4, 1700 ≤ t < 2100,

1, 2100 ≤ t ≤ 2145.

First of all, the residual, on which basis the fault is detected, using the estimated
states, is shown in Figure 7.20. It should be noted that each change of sensor co-
efficient is precisely detected as a fault, for instance, at t = 1300(s), at which the
coefficient of ωg sensor is changed from 0.5 to 1, the residual deviates consider-
ably from zero, even though the coefficient 1 is a fault-free situation. The fault
probability, on which basis the fault periods can be found, because this section is
about fault size estimation, are not shown, but will be considered in the simula-
tion section. Additionally, the estimated fault sizes are shown in Figures 7.21-7.23,
including α̂t= ωg/ω̂g, α̂w,t and the windowed α̂w,t,r. It should be noted that the
exponentially weighted estimate is omitted here, because it takes too much compu-
tation time while the windowed one is more accurate, as discussed earlier in this
section.
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FIGURE 7.20: Residual for multiple fault scenario.

It is obvious that α̂w,t the estimated fault size has a delay and the size 0.5 is
not estimated at all. On the other hand, the windowed α̂w,t,r has accurately esti-
mated the fault size as well as fault time, and the noise content, which is obvious in
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FIGURE 7.21: α̂t= ωg/ω̂g for multiple fault scenario.
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FIGURE 7.22: α̂w,t for multiple fault scenario.

α̂t= ωg/ω̂g, is satisfactorily removed. The corresponding RMSE and VAF indices
are shown in Table 7.2.

7.6 FTC Simulation Results

In this section, using a real measured wind speed shown in Figure 4.18, proposed
FD and FTC algorithms are evaluated, with the aim of the baseline controller (4.7).
It should be noted that the proposed controller (5.15) is implantable here, but just
for the sake of consideration, the baseline controller is used.

TABLE 7.2: RMSE and VAF indices for several consecutive faults

Estimation Method RMSE VAF
α̂t= ωg/ω̂g 44.8970 1395.22
α̂w,t 44.241 1393.64
Windowed α̂w,t,r r = 1000 0.088 0.9938
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FIGURE 7.23: Windowed α̂w,t,r for multiple fault scenario r =
1000.

7.6.1 Multiplicative fault scenario

In this section the multiplicative fault scenario is investigated, which is as follows,

First fault scenario : αt of ωgsensor =


1, 0 ≤ t < 600,

4, 600 ≤ t < 800,

1, 800 ≤ t ≤ 1800,

αt of ωr sensor =


1, 0 ≤ t < 1400,

0.5, 1400 ≤ t < 1600,

1, 1600 ≤ t ≤ 1800,

and the expected fault size is,

expected fault size estimation : α̂t =



1, 0 ≤ t < 600,

4, 600 ≤ t < 800,

1, 800 ≤ t < 1400,

2, 1400 ≤ t < 1600,

1, 1600 ≤ t < 1800.

The generated power with this fault scenario, is compared to the fault-free one,
in Figure 7.24. It can be seen that the generated power is less than the fault-free one
over the range from 600 ≤ t < 1100, although the ωg sensor fault is only between
600 ≤ t < 800. Indeed, the system is still under the effect of the sensor fault
300(s) after the fault has removed. Also, as it was stated in the proposed controller
section, the generated power is not affected by the ωr sensor fault, because this
sensor measurement is not fed into the proposed controller, but because it is fed into
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the Kalman filter, it deviates the residual from zero, so it should be accommodated.
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FIGURE 7.24: Comparison between generated power under first
fault scenario (red line) and fault-free one (blue line).

Fault detection

The residual and fault probability of the considered fault are shown in Figures 7.25
and 7.26. It is obvious that according to the residual, the fault moments are accu-
rately detected. On the other hand, as shown in Figure 7.26, the fault periods are
satisfactorily shown.
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FIGURE 7.25: The residual for first fault scenario.

Fault isolation

Utilizing fault sizes, which are going to be identified in the next section, remedial
action and fault accomodation scenarios, the location of each fault is determined. It
should be noted that, in this proposed FTC scheme, the fault isolation and identifi-
cation happen simultaneously, but for sake of explanation, are described separately.
So, in this step, for fault isolation purposes, the expected values of fault size are
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FIGURE 7.26: The fault probability for first fault scenario.

used, which is not the case in practice. Firstly, between 600 ≤ t < 800, the ωg
sensor output is divided by 4 before it is fed into the controller and then, is divided
by 2 between 1400 ≤ t < 1600. At each step, it is expected that the correspond-
ing residual and fault probability are zero, otherwise, it can be concluded that the
ωr sensor is faulty and its output is multiplied by the fault size. In Figures 7.27
and 7.28, the residual and fault probability, for fault isolation purposes are shown,
respectively.

It is obvious that during 600 ≤ t < 800, the fault effect was removed, so it
was correctly decided that the fault source was the ωg sensor, while at t = 1400(s)
the residual and fault probability are deviated from zero significantly, so the fault
source was not the ωg sensor, rather it was the ωr sensor, so that after this decision
and multipling the ωr sensor output by the fault size which was 2, the residual and
fault probability are zero, again.
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FIGURE 7.27: The residual for fault isolation under first fault sce-
nario.

Fault identification

Now, using the proposed algorithms, the fault size is identified, as shown in Figures
7.29 and 7.30. It should be noted that α̂w,t and the exponentially weighted estimate,
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FIGURE 7.28: The fault probability for fault isolation under first
fault scenario.

are not shown as the windowed one satisfactorily estimate the fault size and the
estimation delay and noise have been eliminated.
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FIGURE 7.29: αt= ωg/ω̂g for first fault scenario.

Fault accommodation

Using the estimated fault size and the proposed FTC basis, which is the virtual sen-
sor and the isolated fault source, the fault effect has been eliminated. It should be
noted, as stated in the fault isolation section, that all steps are implemented simul-
taneously to evaluate the proposed FTC scheme practically. In accommodating the
fault effect, it is assumed that the source of the fault is not yet isolated and it is
done at the same time as the fault accommodation. The resulting generated power
is shown in Figure 7.31 and a comparison with the fault-free and faulty situations,
is made. It is obvious that at t = 1400(s), when mistakenly the ωg sensor is isolated
as the fault source, the generated power deviated from the fault-free one, which is
inevitable because this is a necessary part of the fault isolation step. After this time,
it was decided that the ωr sensor was the fault source and, consequently, the gener-
ated power returns to be the same as the fault-free one. Additionally, in Table 7.3,
the generated power and induced torsion angle of twist for the fault-free and faulty
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FIGURE 7.30: Windowed α̂w,t,r for multiple fault scenario r =
1000 for first fault scenario.
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FIGURE 7.31: Comparison between generated power under first
fault scenario with FTC (red line) and fault-free one (blue line).

situation with/without FTC are compared numerically, to evaluate the effect of the
proposed FTC algorithm.

It can be concluded that, despite the energy loss at the fault isolation time, the
captured energy with FTC is very close to the fault-free one. Additionally, via FTC
algorithm, the induced torsion angle on the drive train is kept at a reasonable level
compared to the operation without FTC.

TABLE 7.3: Control Criteria values for first fault scenario

Performance
criteria

Fault-free situa-
tion

Faulty situation
without FTC

Faulty situation
with FTC

CC1 1.93 (GJ) 1.724 (GJ) 1.926 (GJ)
CC2 5.92 (µrad2/s) 586.37

(µrad2/s)
83.06 (µrad2/s)
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7.6.2 Additive (bias) and fixed output fault scenario

In this section, to investigate the proposed FTC algorithm for the fixed sensor output
or the biased one, the fault scenario is defined as follows, and its effects are shown in
Figures 7.32 and 7.33. Second fault scenario: ωg sensor output is fixed at 80(rad/s)
in 1000 ≤ t < 1200 and ωr sensor output is biased 2(rad/s) in 500 ≤ t < 700.

It is obvious that ωg and ωr sensor outputs are fixed and biased in corresponding
time periods, respectively. Also, in Figure 7.34, the generated power under the
second fault scenario is shown, which deviated from the fault-free one when the ωg
sensor is faulty. Although the ωr sensor has no effect on the generated power, it still
increases the induced torsion angle of shaft twist and should be accommodated.
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FIGURE 7.32: ωg sensor output under second fault scenario.
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FIGURE 7.33: ωr sensor output under second fault scenario.

Fault detection

The residual and fault probability, for obtaining fault moments and periods, are
shown in Figures 7.35 and 7.36, respectively. It is obvious, considering these two
indices, that the faults are accurately detected.
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FIGURE 7.34: Comparison between generated power under second
fault scenario (red line) and fault-free one (blue line).
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FIGURE 7.35: The residual for second fault scenario.

Fault isolation, identification and accommodation

In this section, the second fault scenario is identified with windowed RLS, as shown
in Figure 7.37. It should be noted that because the fixed and biased fault is consid-
ered as a multiplicative fault with variable coefficient, the ideal fault size cannot be
predicted prior to the fault identification, which is the case in real FTC of dynamic
systems.

The fault isolation and accommodation are done simultaneously, because there
is no fault size expectation to consider these two steps separately, such as in the
multiplicative fault scenario section. Even for the multiplicative fault scenario, the
fault isolation and accommodation are conducted at the same time, but for sake of
explanation and because the ideal fault size was well known prior to fault identifi-
cation, they were addressed separately. The updated residual and fault probability
are shown in Figures 7.38 and 7.39, respectively, in which it is obvious that at
t = 500 (s), it was mistakenly decided that the ωg sensor was faulty and actually,
the ωr sensor was the fault source. Accordingly, using the estimated fault size, Fig-
ure 7.37, the ωr sensor output was corrected. On the other hand, at t = 1000 (s),
according to Figure 7.38 and 7.39, it can be concluded that the fault source was cor-
rectly selected as the ωg sensor whose sensor output was corrected prior to feeding
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FIGURE 7.36: The fault probability for second fault scenario.

TABLE 7.4: Control Criteria values for second fault scenario

Performance
criteria

Fault-free situa-
tion

Faulty situation
without FTC

Faulty situation
with FTC

CC1 1.93 (GJ) 1.882 (GJ) 1.929 (GJ)
CC2 5.92 (µrad2/s) 51.52 (µrad2/s) 25.79 (µrad2/s)

it into the controller. Also, in Figure 7.40, the generated power is compared to the
fault-free one, which confirms the above mentioned result.
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FIGURE 7.37: Windowed α̂w,t,r, r = 1000 for second fault sce-
nario.

In Table 7.4, the control criteria for the fault-free situation and the fault with/without
FTC are given to evaluate the proposed algorithm numerically. It is obvious that,
despite the fact that the generated power in the fault situation with FTC is very
close to the fault-free one, the induced torsion angle of twist is considerably less
than the corresponding value for the faulty situation without FTC because of the
accommodation of the sensor fault.

In this chapter, a FTC scheme, to accommodate drive train sensor faults, was
proposed. To detect sensor faults, a Kalman filter procedure was designed such that
it was sensitive to faults and the aerodynamic torque was also estimated by utilizing
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FIGURE 7.38: The residual for fault isolation under second fault
scenario.
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FIGURE 7.39: The fault probability for fault isolation under second
fault scenario.

a PID controller prior to the Kalman filter. The sensor faults were modelled as a
multiplicative fault which represents a change in coefficient of the measurement
equation to cover several different faults simultaneously. The residual, constructed
by estimated states, was investigated for several fault scenarios and consequently,
to isolate the fault source, an auxiliary signal was designed. Additionally, the fault
probability using the Bayesian setting was calculated to be used as part of FDI and
meanwhile, to diagnose the fault periods. The recursive least square methods and
its two modifications, were used to eliminate the noise from the estimated fault
size which was then fed into the fault accommodating scheme to remove the fault
effects. The windowed RLS fault size estimation, because of its inherent updating
characteristics, showed better fault size estimation when using the RMSE index
for several consecutive faults. Utilizing the virtual sensor and signal correction
concept, the baseline controller was demonstrated to be useable in both fault-free
and faulty situations which was a desirable property for this proposed controller. All
proposed algorithms and the baseline controller, were evaluated with two different
fault scenarios including multiplicative, biased and fixed faults. The results showed
satisfying accommodation of the considered faults and the total generated power
and induced torsion angle of twist on the drive train as control criteria, and showed
the ability of this algorithm to keep the wind turbine operating very close to the
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FIGURE 7.40: Comparison between generated power under second
fault scenario with FTC (red line) and fault-free one (blue line).

desirable trajectory in faulty situations compared to the fault-free one, which is the
major aim of FTC.
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8 Conclusions

In this chapter, the concluding remarks of this thesis are discussed. Also, based
on the given discussion, some of the future study trends of the current research are
proposed.

8.1 Concluding Remarks

In this thesis MBFDI and FTC design approaches of a wind turbine benchmark
model were sought, as the most recent solutions to have sustainable and reliable
wind energy production. These approaches are shown to be profitable in the case
of offshore wind farms, which are currently dominating this industry. This arises
from the fact that long-term operation in harsh remote environment with less main-
tenance plans, due to reachability difficulty, increase the possibility of the presence
of faults on the wind turbines, and consequently, power generation is degraded,
requisite downtime is longer and increased maintenance cost is expected. As the
wind turbine MBFDI and FTC designs have recently been introduced, there exist
numerous studies on this field. Accordingly, to have a contributive research, an
accurate and comprehensive review on the wind turbine MBFDI and FTC designs
was presented in Chapter 2. On this regard, the different methods, which have been
adopted to fulfil the fault tolerance capability on wind turbines, were introduced in
detail, and their application on wind turbines components, was evaluated. This led
to accurately adopting the methods to be utilized in the rest of this thesis.

A necessary step in MBFDI and FTC design, is accurate wind turbine modeling.
So, in Chapter 3, the HAWT model was accurately introduced, including different
fault sources, which have been considered afterwards. Also, the HAWT opera-
tional modes and desirable trajectories were introduced, on which basis, numerical
operational criteria were defined. These criteria were widely used in the follow-
ing chapters to investigate the fault tolerance capability of the proposed controllers
in comparison to the available industrial baseline controllers. Consequently, these
baseline controllers were introduced in Chapter 4 and their performance on the wind
turbine are investigated. As a side outcome, satisfactory operation using the base-
line controller could lead to wind turbine model verification. In both partial load and
full load operations, the baseline controllers are constant gain ones, assuming the
wind turbine is operating on the desired operational mode, which is not the case in
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practice. Accordingly, in Chapter 4, initial improvements of the baseline controllers
were proposed. In partial load operation the baseline controller was equipped with
FIS to tune the controller gain properly, with respect to corresponding wind speed
variation. The results showed the increased captured power. On the other hand, a
PID-like controller is designed with adaptive gains for full load operation, to take
advantage of structural simplicity, while providing a better performance, compared
to the baseline PID controller. Also, the Nussbaum-type function was adopted in
adaptive laws, to tackle the unknown control direction problem, which stemmed
from unknown wind speed variation. On the other hand, the proposed controller
was passively tolerant against the pitch actuator faults and dynamic change.

Throughout this thesis, the proposed controllers were designed separately for
different operational regions of wind turbines. The reason for this approach, is that,
there exist some available wind turbines in operation which have been designed
for only one operation region. On the other hand, the integration of the proposed
controller into one controller to function in the whole operational region of the
wind turbine is not challenging. Indeed, via adoption of some appropriate switch-
ing schemes, the proposed controller can be integrated into one controller, which
was considered in this thesis. Accordingly, in chapter 5, for partial load operation,
a nonlinear FTC was proposed to keep the wind turbine operating with maximum
efficiency, in the presence of pitch angle bias, dynamic change and generator torque
bias, similar to the fault-free case. Also, the wind speed was assumed as an unmea-
surable disturbance, and accordingly using GRBFNN, the unknown desired trajec-
tory was reconstructed, so that the captured power was maximized. The proposed
controller was shown to be able to keep the wind turbine tracking the reconstructed
desired trajectory with sufficient accuracy. Results were compared with the base-
line controller ones, which showed superiority of the proposed controller in both
fault-free and faulty cases. Also, the considered faults were estimated adaptively,
and fault information was gathered which can be used in maintenance procedures.

In Chapter 6, the constrained FTC was designed for the full load region. The idea
was to avoid the possible and frequent use of mechanical brakes which are located
on the rotor shaft. The use of these brakes is to prevent the rotor shaft from over
speeding and keep the wind turbine structurally safe. On the other hand, mechanical
brake engagement leads to increased applied stress on the drive train. The baseline
controller was shown not to be able to guarantee that the rotor speed does not violate
the predefined and safe-to-operate limit. So, via adoption of constrained control this
objective was achieved. Also, the proposed controller was robust against pitch ac-
tuator faults, dynamic change and aerodynamic characteristics change due to debris
build-up. The pitch actuator saturation was smoothly avoided. The Nussbaum-type
function was utilized to resolve the unknown control direction problem. The fault
information was estimated adaptively. Finally, the unknown aerodynamic torque,
was approximated using GRBFNN. The numerical comparison was made with re-
spect to baseline controller results, considering the defined performance criteria,
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which showed the effectiveness of the proposed controller.

In Chapter 7, the drive train sensor MBFDI scheme was designed. This scheme
was shown to be able to detect and isolate the faults in both rotor speed and gen-
erator speed sensors, using a UIO with a Kalman filter structure. This was done
to avoid using the wind speed estimation, which was given in Chapter 5, because,
in that estimation the sensors measurements were already used. So, in the case of
sensor faults this estimation is not accurate anymore. Accordingly, it is aimed to
keep the structure of the proposed scheme separated from the proposed schemes in
the Chapters 5 and 6. On the other hand, within the Bayesian framework, the fault
probability was calculated with the aim of particle filtering and EM algorithm, to
be used in both FD and FII, without the need for any redundant sensor. It should be
mentioned that both controllers proposed in Chapter 5 and 6, were utilizable here,
but just for sake of consideration the baseline partial load controller was used. To
let the controller be usable in both fault-free and faulty conditions, the VSA scheme
was adopted to remove the sensor fault effects. An accurate fault size estimation
was given which was used in the FA step. Also, a wide family of sensor faults,
including multiplicative fault, bias and fixed output, were numerically considered
and the results illustrated that the proposed FTC scheme was able to perform satis-
factorily even in the presence of faults. Finally, it should be noted that the proposed
scheme is applicable in the case of pitch and generator sensor faults. However, it is
less challenging for the pitch actuator and generator sensors, as there is no unknown
input acting on these two subsystems. Accordingly, this chapter was focused only
on the drive train sensors, on which an unknown input, i.e. wind speed, is being
applied.

8.2 Closing Points, Future Perspective and Trends

Wind turbine FDI and FTC have recently emerged to support reliable wind energy
conversion. Different FDI schemes are available, which can rely on the accurate
modelling, among which fuzzy T-S and LPV are common descriptions. However,
it is always desirable to design FDI schemes for the nonlinear model. Effective FDI
is the main step in the active FTC, so it should be well matured before practical
implementation. The MBFDI methods applied to the drive train are still limited to
signal-based methodologies. The blade aerodynamic change due to debris build-up
and erosion can be detected more accurately at the farm level, compared to the indi-
vidual wind turbine scale. The adoption of hardware redundancy is still an effective
and desirable approach for industrial FDI purpose, in which the rate of false/missed
alarms are decreased. For FTC, the VSA approach is more commonly adopted to
compensate for the wind turbine sensor faults. This approach has attracted most of
the industrial interest due to its simple implementation. The CR strategy has been
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considered for accommodating the wind turbine actuator faults. However, accu-
rate fault information is needed. In contrast to active FTC, the passive solutions
are designed in a conservative manner, to remove the need for fault detection, and
meanwhile to keep the wind turbine working in faulty situations with an accepted
performance level, only in specific considered fault situations.

Finally, by considering the issues above, future trends on wind turbines FDI and
FTC are suggested as follows.

• Expert’s knowledge can be included in the design phase, using soft comput-
ing approaches, e.g. fuzzy if-then rules, neural networks or Bayesian frame-
works.

• High-fidelity simulators are required for both wind turbine and wind farm
systems.

• More realistic fault scenarios need to be implemented and analyzed, espe-
cially multiple and simultaneous actuator faults.

• Accurate performance analysis, verification and validation tools applied to
the developed FDI and FTC strategies are required.

• The practical implementation of the designed schemes needs to be assessed
in experimental-scale wind turbines and industrial applications.

• Most of the studies have been focused on FDI, rather than FTC design. More-
over, the proposed solutions are mostly developed for a given operational re-
gion of the wind turbine. Accordingly, the focus should be on FTC systems,
since the FDI task is a by-product. Moreover, the requirements of Industry
4.0 lead to the consideration of adaptive and real-time methodologies, work-
ing for the whole operational region of the wind turbine.

• Some faults are better dealt with at the wind farm control level, e.g. blade
debris build-up, erosion and slowly developing faults, but the literature is still
scarce. So, new schemes for detection, isolation and accommodation of faults
at the wind farm level should be investigated.

• Some faults, such as the ones affecting the drive train, are detected only via
signal-based approaches (e.g. vibration or frequency analysis tools); active
schemes should be analyzed for this wind turbine component.
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A Proofs

In this appendix, the proofs of the theorems which have been stated in this thesis
are given, in order of the appearances of the theorems.

A.1 Proof of Theorem 4.1

Let the Lyapunov function V be selected as,

V =
1

2
Z2 +

1

2σ1

ã2, (A.1)

where, ã is estimation error of a, defined as ã = a− â. The time derivative of (A.1),
considering (4.23) and (4.25), is derived as,

V̇ = ZŻ − 1

σ1

ã ˙̂a = ZH +B(λD0 + λD)N(ξ)Z2 +
σ0

σ1

âã− ãϕ2Z2. (A.2)

Considering the trivial inequality (ã− a)2 ≥ 0, it can be easily shown that âã ≤
a2/2 − ã2/2. Also, considering (A.2), ZH < |Z| aϕ < aϕ2Z2 + a/4 holds true.
So, V̇ can be bounded as,

V̇ ≤ aϕ2Z2 +
a

4
+BN(ξ)ξ̇ +

σ0

σ1

a2

2
− σ0

σ1

ã2

2
− ãϕ2Z2. (A.3)

The right hand side of (A.3) is equal to (âϕ2+λD0)Z
2 + a/4 + B (·)N (ξ) ξ̇ +

σ0a
2/2σ1−σ0ã

2/2σ1−λD0Z
2. Also considering λD = âϕ2 and ξ̇ = (λD0 + λD)Z2,

yields,

V̇ ≤ ξ̇ +B (·)N (ξ) ξ̇ +
a

4
+
σ0

σ1

a2

2
− σ0

σ1

ã2

2
− λD0Z

2

< ξ̇ +B (·)N (ξ) ξ̇ − c1V + c2,

(A.4)
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where,c2 = min{σ0, 2λD0} and c2 = a/4 + σ0a
2/2σ1 and both are positive. Multi-

plying (A.4) by ec1t > 0, yields,

d (V ec1t)

dt
≤ ξ̇ec1t +B (·)N (ξ) ξ̇ec1t + c2e

c1t, (A.5)

and integrating both sides of (A.5) over [0 t], leads to,

V < e−c1t
∫ t

0

(B (·)N (ξ) + 1) ξ̇ec1τdτ +

(
V (0)− c2

c1

)
e−c1t +

c2

c1

. (A.6)

It is obvious that 0 < e−c1t ≤ 1, so, inequality (A.6) is rewritten as,

V < e−c1t
∫ t

0

(B (·)N (ξ) + 1) ξ̇ec1τdτ+c0, (A.7)

where, c0 = c2/c1 + V (0) is a positive constant. Considering Lemma 4.1 and
Remark 4.3, it is concluded from (A.7) that V , ξ and

∫ t
0

(B (·)N (ξ) + 1) ξ̇ec1τdτ
are bounded on [0 tf ). As stated in (Ryan, 1991), if the closed-loop system solution
is bounded, then tf approaches to +∞. Boundedness of V leads to boundedness
of Z and ã. Because a is bounded and ã = a − â, then â is bounded. Since,
V (0) is bounded, it is obvious that limt→+∞ Z

2/2 ≤ c2/c1; i.e. |Z| converges to
set Ω = {|Z|||Z| <

√
2c2/c1} as t → +∞. On the other hand, boundedness of

Z ensures boundedness of er,
∫ t

0
er (τ) dτ and ėr, and consequently, ωr, ωg, ϕ are

bounded (Khalil, 1996). Therefore, from (4.23), (4.25) and (4.26), it can be stated
that βref , ˙̂a, Ż and λD are bounded. Taking the time derivative of βref , (4.25), can
be written as,

β̇ref =
∂βref
∂Z

Ż +
∂βref
∂N

∂N

∂ξ
ξ̇ +

∂βref
∂ϕ

ϕ̇+
∂βref
∂â

˙̂a, (A.8)

where, ∂βref/∂Z = (λD0 + λD)N(ξ), ∂βref/∂N = (λD0 + λD)Z (t) , ∂βref/∂ϕ =
2âϕN(ξ)Z (t), ϕ̇ = (∂ϕ/∂x1)ẋ1 + (∂ϕ/∂e)ė and ∂βref/∂â = ϕ2N(ξ)Z (t). Note
that Z, Ż, ξ, ξ̇, â, ˙̂a, ϕ, N(ξ) and, consequently, ∂N/∂ξ are all bounded and contin-
uous, and accordingly so are all terms in (A.8). So, β̇ref is bounded and continuous,
which leads to smooth βref . This ends the proof.

A.2 Proof of Lemma 5.1

Multiplying both sides of dV/dt < −b1V+b2 by eb1t leads to eb1tdV/dt < −eb1tb1V+
b2e

b1t which is equivalent to d(eb1tV )/dt < e(b1t)b2. Now, taking the integral with
respect to time from both sides, leads to eb1tV −V (0) < eb1tb2/b1−b2/b1. Multiply-
ing by e−b1t, gives V < b2/b1+e−b1t(V (0)−b2/b1). On the other hand, for bounded
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initial condition and consequent bounded V (0), V is bounded. Consequently, x is
bounded since V includes a positive term as a function of states. On the other hand,
as the time goes by, e−b1t approaches to zero. So, V satisfies V < b2/b1.

A.3 Proof of Lemma 5.2

Considering (ã+ a)2 ≥ 0 leads to ã2+a2 ≥ −2ãa. Replace−2ãawith−2ã (â− ã)
and multiply both sides by σd. Consequently, −2σdãâ ≤ −σdã2 + σda

2 can be ob-
tained.

A.4 Proof of Lemma 5.3

Consider the inequality ξ4 ≤ ξ2γ2 + ξ4 and take the square root from both sides.
Consequently, it proves the left side of the inequality. To prove the right-hand side,
consider 0 ≤ 2 |ξ| γ and add ξ2 + γ2 to both sides. Taking the square root of the
resulting inequality leads to

√
ξ2 + γ2 ≤ γ + |ξ|. Accordingly, it can be obtained

that−1/
√
ξ2 + γ2 ≤ −1/(γ+|ξ|) which leads to |ξ|−ξ2/

√
ξ2 + γ2 ≤ |ξ|−ξ2/(γ+

|ξ|). Finally, considering |ξ|−ξ2/(γ+|ξ|) = γ |ξ| /(γ+|ξ|) and γ |ξ| /(γ+|ξ|) < γ,
it can be seen that |ξ| − ξ2/

√
ξ2 + γ2 < γ.

A.5 Proof of Theorem 5.1

Choose a positive definite Lyapunov function V ωg,d as,

V ωg,d =
1

2
Ψ̃T Ψ̃. (A.9)

The time derivative of V ωg,d can be obtained as,

V̇ ωg,d = Ψ̃T Ψ̇∗ + σΨ̃TΨ∗ − σΨ̃T Ψ̃− ΛΨ̃Tη. (A.10)

Considering the inequality for the two vectors A, B ∈ Rn×1 as, ±ATB ≤ (ATA+
BTB)/2 and, ATA = ‖A‖, the following can be derived from (A.10), as,
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V̇ ωg,d ≤ Ψ̃T Ψ̃ + Ψ̇∗
T
Ψ̇∗

2
+ σ

(Ψ̃T Ψ̃ + Ψ∗TΨ∗)

2
− σΨ̃T Ψ̃ + Λ

(Ψ̃T Ψ̃ + ηTη)

2

≤ Ψ̃T Ψ̃

2
− σ Ψ̃T Ψ̃

2
+ Λ

Ψ̃T Ψ̃

2
+ ‖Ψ̇∗‖2

+ σ‖Ψ∗‖2 + Λ‖η‖2

< −Υ1V + Υ2,
(A.11)

where, Υ1 = −1 + σ − Λ and Υ2 = σψ2
1 + ψ2

2 + Λη2
1 . Since 0 < σ, 0 < Λ, and

according to σ > Λ + 1, then 0 < Υ1 and 0 < Υ2. Now, considering Lemma 5.1,
Ψ̃ and Ψ̂ are UUB. Also, considering (5.5) and Assumption 5.1, it can be seen that
˙̂
Ψ and consequently ˙̃Ψ are UUB.

A.6 Proof of Theorem 5.2

Choose a positive definite Lyapunov function as,

V Tg = V
Tg

1 +
1

2
e2

2,ωg
+

1

2
d̃2

1 +
1

2
θ̃TΓ−1θ̃ +

1

2
f̃ 2

1 +
1

2
ρ̃2
f̃1

+ V ωg,d . (A.12)

Taking the time derivative of (A.12) obtains, V̇ Tg = V̇
Tg

1 + e2,ωg ė2,ωg + d̃1
˙̃d1 +

θ̃TΓ−1 ˙̃θ + f̃1
˙̃

1f + ρ̃f̃1
˙̃ρf̃1 + V̇ ωg,d , which can be rewritten as,

V̇ Tg =
4∑
i=1

Π
Tg
i − k1,ωge

2
ωg − k2,ωge

2
2,ωg + V̇ ωg,d , (A.13)

where, Π
Tg
1 = −e2,ωgc4ε− e2,ωgd1 + (d̃1− d̂1)e2

2,ωg/
√
e2

2,ωg + η2
d1
−σd1 d̂1d̃1, Π

Tg
2 =

−c4e2,ωg(θ̃
T + θ∗

T − θ̂T )h−σcθ̃T θ̂, Π
Tg
3 = −e2,ωg(−f̂1 + f1 + f̃1)−σf1 f̂1f̃1− ḟ1f̃1
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and Π
Tg
4 = −σf̃1 ρ̂f̃1 ρ̃f̃1 . According to Lemmas 5.2 and 5.3, it can be shown that,

Π
Tg
1 <

∣∣e2,ωg

∣∣ (c4ε̄+ d̄1

)
−

e2
2,ωg√

e2
2,ωg + η2

d1

D

=

∣∣e2,ωg

∣∣− e2
2,ωg√

e2
2,ωg + η2

d1

D − σd1 d̂1d̃1

< ηd1D −
σd1
2
d̃2

1 +
σd1
2
D2,

Π
Tg
2 < −σc

2
θ̃T θ̃ +

σc
2
θ∗T θ∗

< − σc
2λmax(Γ−1)

θ̃TΓ−1θ̃ +
σc
2
θ∗T θ∗,

Π
Tg
3 < −σf1

2
f̃ 2

1 +
σf1
2
f̄1

2
+ ρḟ1ρf̃1 ,

Π
Tg
4 < −

σf̃1
2
ρ̃2
f̃1

+
σf̃1
2
ρf̃1

2.

(A.14)

where, λmax (Γ−1) is the maximum eigenvalue of Γ−1. Finally, considering (A.11),
(A.13) and (A.14), it can be shown that,

V̇ Tg < −bTg1 V
Tg + b

Tg
2 , (A.15)

where, bTg1 = min{2k1,ωg , 2k2,ωg , σf̃1 , σf1 , σd1 , σc/λmax(Γ
−1), 2Υ1} and bTg2 = ηd1D+

σd1D
2/2 + σf1 f̄1

2
/2 + ρḟ1ρf̃1 + σf̃1ρf̃1

2/2 + σc‖θ∗‖2/2 + Υ2. Here, λmax(Γ−1)
represents the maximum eigenvalue of matrix Γ−1. It is obvious that b1 and b2

are positive. Now, Considering Lemma 5.1, it can be stated that eωg and ėωg are
UUB.

A.7 Proof of Theorem 5.3

Choose a positive definite Lyapunov function as,

V β = V β
1 +

1

2
e2

2,β +
1

2
d̃2

2 +
1

2
f̃ 2

2 +
1

2
ρ̃2
f̃2
. (A.16)

Taking the time derivative of (A.16) obtains, V̇ β = V̇ β
1 + e2,β ė2,β + d̃2

˙̃d2 + f̃2
˙̃

2f +
ρ̃f̃2

˙̃ρf̃2 , which can be rewritten as,

V̇ β =
3∑
i=1

Πβ
i − k1,βe

2
β − k2,βe

2
2,β, (A.17)
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where, Πβ
1 = e2,β

(
f̂2 − f2 − f̃2

)
− σf2 f̂2f̃2 − ḟ2f̃2,

Πβ
2 = −e2,βd2 + e2

2,β

(
d̃2 − d̂2

)
/
√
e2

2,β + η2
d2
− σd2 d̂2d̃2 and Πβ

3 = −σf̃2 ρ̂f̃2 ρ̃f̃2 .
According to Lemmas 5.2 and 5.3, it can be shown that,

Πβ
1 < −

σf2
2
f̃ 2

2 +
σf2
2
f̄2

2
+ ρḟ2ρf̃2 ,

Πβ
2 < d̄2

|e2,β| −
e2

2,β√
e2

2,β + η2
d2

− σd2 d̂2d̃2

< d̄2ηd2 −
σd2
2
d̃2

2 +
σd2
2
d̄2

2,

Πβ
3 < −

σf̃2
2
ρ̃2
f̃2

+
σf̃2
2
ρf̃2

2.

(A.18)

Accordingly, it can be shown that,

V̇ β < −bβ1V β + bβ2 , (A.19)

where, bβ1 = min{2k1,β, 2k2,β, σf̃2 , σf2 , σd2} and bβ2 = σf2 f̄2
2
/2 + ρḟ2ρf̃2 + d̄2ηd2 +

σd2 d̄
2
2/2 + σf̃2ρf̃2

2/2. Now, considering Lemma 5.1, it can be stated that eβ and ėβ
are UUB.

A.8 Proof of Theorem 6.1

Multiplying both sides of (6.39) by eσ2,1t yields,

d
(
V2(t) eσ2,1t

)
dt

<
(
GN (ζ1) ζ̇1 + ζ̇1 + σ2,2

)
eσ2,1t. (A.20)

Thus, integration of (A.20) over [0, t], becomes,

V2 (t) <
σ2,2

σ2,1

+

(
V2 (0)− σ2,2

σ2,1

)
e−σ2,1t + e−σ2,1t

∫ t

0

(GN (ζ1) + 1) ζ̇1e
σ2,1τdτ .

(A.21)
Furthermore, considering σ2,2/σ2,1 > 0 and limt→∞ e−σ2,1t = 0, (A.21) becomes,

V2 (t) < c1,1 + e−σ2,1t

∫ t

0

(GN (ζ1) + 1) ζ̇1e
σ2,1τdτ . (A.22)

where, c1,1 = σ2,2/σ2,1 + V2 (0). Also, G satisfies the conditions in Lemma 4.1.
Accordingly, considering (A.22), it can be stated that V2 and ζ1 are bounded. Con-
sequently, according to (6.31), (k2

eω̇r
tanΛ2)/π, f̃ , d̃, θ̃ and ρ̃f̃ are bounded, which

implies eω̇r belongs to set Ωeω̇r
=
{
eω̇r : |eω̇r | < keω̇r

}
and accordingly is bounded.
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Then one can obtain that
1

2
e2
ω̇r ≤ m1,1, (A.23)

where, m1,1 = 0.5max
(
e2
ω̇r (τ)

)
, for τ ∈ [0, t]. Now, considering (A.23), (6.23) is

rewritten as,
V̇1(t) < −σ1,1V1(t) + c1,2, (A.24)

where, c1,2 = σ1,2 +m1,1. According to Lemma 5.1, V1 is bounded and considering
(6.14), (k2

eωr
tanΛ1)/π and χ2 are bounded, which implies eωr belongs to set Ωeωr ={

eωr : |eωr | < keωr
}

. From the abovementioned analysis, the objectives (i), (ii) and
(iii) are achieved as follows.

(i) Consider the boundedness of V1, V2, eω̇r and eωr . Therefore ωr and ω̇r are
bounded. Now from the boundedness of f̃ , d̃, θ̃ and ρ̃f̃ , the boundedness of
αD, ζ1, υ1, f̂ , d̂, θ̂, ρ̂f̃ , and consequently βref is concluded.

(ii) As a part of the closed-loop system analysis, it is shown that the tracking
errors eωr and eω̇r , always stay in the sets Ωeωr =

{
eωr : |eωr | < keωr

}
and

Ωeω̇r
=
{
eω̇r : |eω̇r | < keω̇r

}
, respectively.

(iii) Multiplying both sides of (A.24) by eσ1,1t yields,

d
(
V1 (t) eσ1,1t

)
/dt < c1,2e

σ1,1t. (A.25)

Thus, integration of (A.25) over [0, t], becomes,

V1 (t) < D, (A.26)

where, D = (V1 (0)− c1,2/σ1,1) e−σ1,1t + c1,2/σ1,1. From the definition of V1,
it can be shown that,

|eωr | < O. (A.27)

where, O = keωr

√
2tan−1

(
πD/k2

eωr

)
/π. If V1 (0) = c1,2/σ1,1, then, it

holds |eωr | < keωr

√
2tan−1

(
πc1,2/k2

eωr
σ1,1

)
/π. IfV1 (0) 6= c1,2/σ1,1, it

can be concluded that given any O > keωr

√
2tan−1

(
πc1,2/k2

eωr
σ1,1

)
/π,

there exists T such that for any t > T , it has |eωr | < O. As, t → ∞,

|eωr | < keωr

√
2tan−1

(
πc1,2/k2

eωr
σ1,1

)
/π, which implies eωr can be made

arbitrarily small by selecting the design parameters appropriately.

Considering Definition 4.1, and objectives (i), (ii) and (iii), it is guaranteed that the
closed-loop system is UUB.
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A.9 Proof of Proposition 7.1

It is easy to see that α̂t =
(∑t

i=1 x
2
iαi +

∑t
i=1 xiεi

)
/
∑t

i=1 x
2
i . Given Jt = jt, . . . , J1 = j1,

then αi = (1− ji)αi−1 + jizi with α1 = a1. Therefore, αi is a linear combination
of independent normal variables zj(j ≤ i). Thus, it is normally distributed with
µi = (1− ji)µi−1+jiµz, σ2

i = var (αi) = (1− ji)σ2
i−1+jiσ

2
z , µ1 = a1 and σ2

1 = 0.
The covariance of αi and αj , i.e. σij = cov (αi, αj), is easy to derive. For example,
σi,i−1 = (1− ji)σ2

i−1 or σi+h,i = (1− ji+h) (1− ji)σi+h−1,i−1. Also, variables∑t
i=1 x

2
iαi and

∑t
i=1 xiεi are independent. Let λit = x2

i /
∑t

i=1 x
2
i . Notice that

var(α̂t) = var(
∑t

i=1 x
2
iαi)/(

∑t
i=1 x

2
i )

2
+σ2

ε/
∑t

i=1 x
2
i and var(

∑t
i=1 x

2
iαi)/(

∑t
i=1 x

2
i )

2
=

cov(
∑t

i=1 x
2
iαi,

∑t
j=1 x

2
jαj)/(

∑t
i=1 x

2
i )

2
=
∑t

i=1

∑t
j=1 x

2
ix

2
jσij/

(∑t
i=1 x

2
i

)2
.

A.10 Proof of Proposition 7.2

Notice that α̂t = (1− λt) α̂t−1+λt(yt/xt), yt/xt = αt+εt/xt and αt = (1− jt)αt−1+
jtzt ≈ (1− jt) α̂t−1 +jtzt. Combining these relations leads to α̂t = (1− λt) α̂t−1 +
λtεt/xt + λt (1− jt) α̂t−1 + λtjtzt. This completes the proof.

A.11 Proof of Proposition 7.3

Notice that d̂t = λtyt/xt = λt (αt + εt/xt). Then, d̂t = αt− (1− λt)αt + λtεt/xt.
Since, αt = (1− Jt)αt−1+Jtzt, then d̂t = αt−(1− λt) (1− Jt)αt−1−(1− λt) Jtzt+
λtεt/xt. The conditional density of d̂t given Jt, αt and αt−1 is, fd̂t|Jt,αt,αt−1

(d) =

n (d, k1 (Jt) , k2 (Jt)), where,k1 (Jt) = αt − (1− λt) (1− Jt)αt−1 − (1− λt) Jtµz
and k2 (Jt) = (1− λt)2 Jtσ

2
z + λ2

tσ
2
ε/x

2
t .

Considering αt and αt−1 as deterministic variables, the expectation of the logarithm
of fd̂t|Jt,αt,αt−1

(d) is,

EJt

(
log(fd̂t|Jt,αt,αt−1

(d))
)

= p log (n (d, k1 (Jt = 1) , k2 (Jt = 1)))

+(1− p) log (n (d, k1 (Jt = 0) , k2 (Jt = 0))) = p log (n (d, αt − (1− λt)µz, k2 (Jt = 1)))+
(1− p) log (n (d, αt − (1− λt)αt−1, k2 (Jt = 0))).
Notice that n (x, µ+ a, σ2) = n (µ, x− a, σ2), thus,EJt

(
log
(
fd̂t|Jt,αt,αt−1

(d)
))

=

p log (n (αt, d+ (1− λt)µz, k2 (Jt = 1)))+(1− p) log (n (αt, d+ (1− λt)αt−1, k2 (Jt = 0))).
According to the Lemma 7.1, the EJt

(
log(fd̂t|Jt,αt,αt−1

(d))
)

attains its maximum

at αEMt = d̂t + (1− λt)
(
γµz + (1− γ)αEMt−1

)
, where γ = pθ/(pθ + (1 − p)) and

θ = k2 (Jt = 0) /k2 (Jt = 1).
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B Design Parameters

In this appendix, the numerical values of model and designed schemes, which have
been used in this thesis, are given.

B.1 Wind Turbine Model Parameters

The wind turbine benchmark model parameters are given in this section, separately
for each subsystems in Tables B.1-B.7. It should be noted that the pitch actuator
dynamic parameters are given in Table 3.1

B.2 Design Parameters Used in Chapter 4

In this section the design parameters of baseline partial load and full load baseline
and improved full load controllers, which have been designed in Chapter 4, are
given in Tables B.8-B.10. It should be noted that the parameters of the improved
partial load controller have been given in Section 4.3.

B.3 Design Parameters Used in Chapter 5

In this section the design parameters of nonlinear partial load FTC, which have been
designed in Chapter 5, are given here.

Firstly, the GRBFNN structures which have been used to reconstruct the un-
known desired trajectory and estimate the aerodynamic torque are given. It should
be noted that as in partial load operation, both desired trajectory and aerodynamic

TABLE B.1: Aerodynamic model parameters.

Density Swept area Blade length

ρa = 1.225(kg/m3) A = 10381.625(m2) R = 57.5(m)
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TABLE B.2: Drive train model parameters.

Rotor inertia Generator inertia Rotor damping

Jr = 390(kgm2) Jg = 55(Mkgm2) Br = 27.8(kNm/rad/s)

Generator damping Gearbox ratio Torsional stiffness

Bg = 3.034(Nm/rad/s) Ng = 95 Kdt = 2.7(GNm/rad)

Torsional damping Gearbox efficiency

Bdt = 945(kNm/rad/s) ηdt = 0.97

TABLE B.3: Tower model parameters.

Nacelle mass Tower Damping Tower elasticity

Mt = 484(ton) Bt = 66.7(N/m/s) Kt = 2.55(MN/m)

TABLE B.4: Generator model parameters.

Time constant Generator delay Generator efficiency

τg = 0.02(s) tg,d = 0.01(s) ηg = 0.92

Minimum rate Maximum rate Minimum torque

Ṫg,min =
−50(MNm/s)

Ṫg,max = 50(MNm/s) Tg,min = 0(Nm)

Maximum torque

Tg,max = 35.3(kNm)

TABLE B.5: Pitch actuator parameters.

Time delay Maximum rate Minimum rate

tp,d = 0.01(s) β̇max = 10(◦/s) β̇min = −10(◦/s)

Maximum pitch Minimum pitch

βmax = 30(◦) βmin = −2(◦)
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TABLE B.6: Sensors noise content.

Pitch angle Rotor speed Generator speed

νβ ∼ N(0, 0.2)(◦) ωr ∼ N(0, (0.008π)2)(rad/s) ωg ∼ N(0, 0.052)(rad/s)

Generator torque

νTg ∼ N(0, 90)(Nm)

TABLE B.7: Operational parameters.

Cut-in wind speed Cut-out wind speed Nominal wind speed

Vr,cut−in = 3(m/s) Vr,cut−out = 25(m/s) Vr,N = 12.3(m/s)

Nominal power Nominal torque Nominal rotor speed

Pa,N = 4.8(MW ) Tg,N = 32(kNm) ωr,N = 1.71(rad/s)

Nominal generator
speed

Optimal pitch optimal TSR

ωg,N = 162.5(rad/s) βopt = 0(◦) λopt = 8.1

Maximum power coefficient

Cp,max = 0.48

TABLE B.8: Partial load baseline controller parameters.

Kc K2

1.2353(Nm/(rad/s)2) −6.022(Nm/rad/s)

TABLE B.9: Full load baseline controller parameters.

KP KI KD

1 4 0

TABLE B.10: Full load improved controller parameters.

λ1 λD0 σ0 σ1 U L

0.1 1 0.1 1 100000 700000
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TABLE B.11: GRBFNN parameters in partial load operation.

σ and σc Λ η(eωg) Γ

0.1I5×5 0.1 sin(eωg)Ones(5, 1) I5×5

TABLE B.12: Generator torque controller parameters.

k1,ωg ηd1 k2,ωg σd1 σf1 σf̃1

10 0.1 1 1 5 1

torque are functions of unknown wind speed, then the GRBFNN structures are
designed similarly for both unknown desired trajectory reconstruction and aero-
dynamic torque estimation. In this regard, the neuron numbers are selected as
$ = s = 10. Also ϕ(t) = [ϕ1(Z), ..., ϕ$(Z)]T and h(t) = [h1(Z), ..., hs(Z)]T ,
where Z = [Tg, ωg, β]T and ϕi(Z) = hi(Z) = exp(−(Z − ϑi)

T (Z − ϑi)/2ϕ
2
c,i),

for i = 1, ..., s. ϑi = [ϑi,Tg , ϑi,ωg , ϑi,β]T is the center of the ith input and ϕc =
[ϕc,1, ..., ϕc,s]

T ∈ Rs is the width of the ith Gaussian function. The center matrix
and width vector are selected as follows.

ϑ =

 0 3567 7134 10702 14269 17837 21404 24972 28539 32107
0 18.05 36.11 54.16 72.22 90.27 108.33 126.39 144.44 162.5
−2 0.67 1.33 2 2.66 3.33 4 4.66 5.33 6

 ,
ϕ = 10ones(s, 1).

The other design parameters are given in Table B.11.

The generator torque and pitch actuator controller parameters are given in Tables
B.12 and B.13, respectively.

B.4 Design Parameters Used in Chapter 6

In this section the design parameters of neuro adaptive constrained FTC control,
which have been designed in Chapter 6, are given.

TABLE B.13: Pitch controller parameters.

k1,β ηd2 k2,β σd2 σf2 σf̃2

2 0.1 1 1 1 0.1
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TABLE B.14: Constrained controller parameters.

τ2 γ1 γ2 η1 η2 η3

0.1 10 5 1 1 1

η4 σf σc σd σf̃ Γ

1 1 1 5 5 I10×10

TABLE B.15: PID controller gains in observer structure.

KPO KIO KDO

1.17× 107 4.34× 105 0

The structure of GRBFNN, which has been used to estimate the aerodynamic
torque, is given. This structure is similar to one, which was defined in (5.10) and
(5.11) with s = 10. Also, the centers and width of the GRBFNN are as follows.

ϑ =

30907 31207 31507 31807 32107 32407 32707 33007 33307 33607
90 110 120 140 162.5 180 190 210 220 230
−2 1.5 5.11 8.66 12.22 15.77 19.33 22.88 26.44 30

 ,
ϕ = 10ones(s, 1).

The other control parameter values are given in Table B.14.

B.5 FDI Design Parameters Used in Chapter 7

In this section, the design parameters, which have been used in the observer struc-
ture and fault isolation are given. In Table B.15 the PID controller gains, which have
been adopted in Figure 7.2, are given. On the other hand, the design parameters of
the fault isolation algorithm 7.3, are given in Table B.16.

TABLE B.16: Fault isolation design parameters.

KM1 KM2 εd

0.1 7 0.01
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