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Summary

With the rise in automation
the increase in fault detection and isolation & reconfiguration is inevitable.

Interest in fault detection and isolation (FDI) for nonlinear systems has grown
significantly in recent years. The design of FDI is motivated by the need for
knowledge about occurring faults in fault-tolerant control systems (FTC sys-
tems). The idea of FTC systems is to detect, isolate, and handle faults in such
a way that the systems can still perform in a required manner. One prefers re-
duced performance after occurrence of a fault to the shut down of (sub-) systems.
Hence, the idea of fault-tolerance can be applied to ordinary industrial processes
that are not categorized as high risk applications, but where high availability is
desirable. The quality of fault-tolerant control is totally dependent on the quality
of the underlying algorithms. They detect possible faults, and later reconfigure
control software to handle the effects of the particular fault event. In the past
mainly linear FDI methods were developed, but as most industrial plants show
nonlinear behavior, nonlinear methods for fault diagnosis could probably per-
form better.

This thesis considers the design of FDI for nonlinear systems. It consists of
four different contributions. First, it presents a review of the idea and the the-
ory behind the geometric approach for FDI. Starting from the original solution
for linear systems up to the latest results for input-affine systems the theory and
solutions are described. Then the geometric approach is applied to a nonlin-
ear ship propulsion system benchmark. The calculations and application results
are presented in detail to give an illustrative example. The obtained subsystems
are considered for the design of nonlinear observers in order to obtain FDI. Ad-
ditionally, an adaptive nonlinear observer design is given for comparison. The
simulation results are used to discuss different aspects of the geometric approach,
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vi Summary

e.g. the possibility to use it as a general approach. The third contribution consid-
ers stability analysis of observers used for FDI. It gives proofs of stability for the
observers designed for the ship propulsion system. Furthermore, it stresses the
importance of the time-variant character of the linearization along a trajectory.
It leads to a different stability analysis than for linearization at one operation
point. Finally, the preliminary concept of (actuator) fault-output decoupling is
described. It is a new idea based on the solution of the input-output decoupling
problem. The idea is to include FDI considerations already during the control
design.



Sammenfatning

Stigende automationsgrad medfører stigende behov for fejldiagnose og fejltole-
rant regulering.

Diagnose af fejl i ikke-lineære systemer er vigtigt for en række tekniske anven-
delser. Området er generelt genstand for en generelt stigende opmærksomhed på
internationalt plan, og speciel interresse knytter sig til anvendelsen af resultatet
af en teknisk diagnose til aktiv indgriben i et automatisk styret system.

Når resultat af en fejldiagnose udnyttes til automatisk at foretage en påkrævet
ændring i en regulator eller en nødvendig omkobling i den regulerede proces,
indgår diagnosen i et koncept, der bredt benævnes fejltolerant styring og regu-
lering. Denne anvendelse af fejldiagnose stiller en række krav til diagnoseresul-
tatets kvalitet, herunder sandsynligheden for forkert detektion og til den tid der
hengår fra en fejl indtræder til diagnosens resultat foreligger. Kvaliteten af det
samlede fejltolerante koncept bliver helt afhængig af kvaliteten af den foretagne
diagnose idet en forkert diagnose kan føre til et fejlagtigt indgreb fra styresys-
temets side.

Anvendelse af fejldiagnosens resultat til aktiv indgriben gør det muligt at opnå,
at en reguleret proces kører videre på trods af fejl, men eventuelt med nedsat
reguleringskvalitet eller til kontrolleret nedlukning hvis nødvendigt. Et velfunge-
rende fejltolerant system vil kunne forhindre, at banale fejl fører til driftstop eller
at de udvikler sig til ulykker. Anvendelsesområdet for det fejltolerante koncept
er den brede klasse af industrielle systemer, hvor stop i regulerede delsystemer
indebærer sikkerhedsmæssige eller økonomiske risici. Anvendelsesområdet er
ikke høj risiko anvendelser, hvor fuld tilgængelighed og styrekvalitet er krævet
uanset enkeltfejl. I den industrielle sammenhæng er ulineariteter en kilde til
forkert diagnose, og forbedring af diagnosekvalitet for systemer med væsentlige
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ulineariteter vil kunne forbedre det samlede fejltolerante koncept.

Teorien for ikke-lineære systemer har taget en ny og væsentlig drejning inden for
det seneste årti, hvor de såkaldte geometriske metoder fra matematikken er un-
der forandring til at kunne benyttes i teknisk videnskabelig sammenhænge. Der
er desuden sket fremskridt indenfor anvendelse af observerteknik til diagnose på
ulineære systemer. Det har været formålet med nærværende forskningsarbejde
at belyse anvendelsen af nyere metoder til diagnose af tekniske systemer med
væsentlige ulineariteter.

Denne afhandling behandler derfor fejldiagnose for ikke-lineære systemer. Af-
handlingen har fire hovedbidrag. Først præsenteres en oversigt over resultater fra
den geometriske teori, og anvendelse på diagnoseproblemet introduceres. Med
udgangspunkt i den geometriske løsning på det lineære diagnoseproblem be-
handles nyere teori og metoder, herunder de seneste resultater for input-affine
systemer. Den geometriske metode anvendes herefter på styringen af et skibs
fremdrivningsmaskineri, et realistisk eksempel som har været anvendt i inter-
nationale sammenhænge til studiet af fejldiagnose. Fejldiagnosen for fremdriv-
ningssystemet er gennemgået i nogen detalje for at tjene som et illustrativt ek-
sempel på beregninger og resultater. Omfattende simuleringstest illustrerer rele-
vante aspekter af design og resultater. Hovedvægten er her lagt på ikke-lineære
fejldetekterende observere. En adaptiv observer er designet for at kunne sam-
menligne resultater.

Det tredie bidrag er stabilitetsanalyse af observere anvendt til fejldiagnose.
Specielt fremhæves betydningen af korrekt linearisering af et tidsvarierende sys-
tem langs en trajektorie, hvilket giver et andet resultat end traditionel analyse om
et ligevægtspunkt. Den teoretiske gennemgang er igen illustreret med anvendel-
sen på skibsfremdrivning, og et formelt stabilitetsbevis er udarbejdet for dette
system. Som et fjerde bidrag foreslås en ny metode til aktuator fejl-afkobling.
Dette er en idé som udspringer af løsning af input-output afkoblings problemet.
Kernen i den nye idé er at kunne tage hensyn til fejl-diagnose allerede ved første
design af regulatorsløjfer i et automatiseret system.
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Nomenclature

Symbols

In the following all symbols are listed that are used in this thesis. Some of them
have several meanings, however, the correct meaning is always obvious from the
context.

aij Coefficients, matrix elements

A, A0, A, A(�) Matrix, map, system matrix

A�n, A�� Matrix, to implement sensor faults as pseudo-actuator faults

Ae Matrix, system matrix of cascaded system

A
0

Dual map of A

�(A) Spectrum (eigenvalues) of A

A � S A is a subset or equal of/to S

A : S Restriction of A to S

A�kKerC = fx : Akx 2 KerCg

hAjBi Infimal A-invariant subspace containing B, i.e. the reachable
subspace of (A;B)

hKerCjAi Supreme A-invariant subspace contained in KerC, i.e. the un-
observable subspace of (C;A)

B;B(�) Matrix, map, input matrix

Be Matrix, input matrix of cascaded system

B�l Left inverse of B (i.e. B�lB = I)

ImB Image (range) of B, ImB = B

B Subspace, image (range) of B, B = ImB

Be Subspace, image (range) of B e,Be = ImBe

C, C(�) Matrix, map, output matrix

C�n, C�� Matrix, to implement sensor faults as pseudo-actuator faults
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C�r Right inverse of C (i.e. CC�r = I)

KerC Kernel of C

ImC Image (range) of C, ImC = C

C Complex space

C1 Class of differential functions

d(X ) Dimension of X

D;D0; D1 Matrix, map, feedthrough matrix, controller feedback matrix

D Domain

Dx Differential operator

D(W) Set of all D such that (A+DC)W �W

e Estimation error

en Estimation error en = n� n̂

eU Estimation error eU = U � Û

E Matrix

f(�); fe; ~f Smooth vector field

fi Fault signal

fr Function of class C1

F Matrix

Fx, Fy Fault signature matrix

gi; g
e
i ; ~gi Smooth vector field

gk Decision funtion

G Matrix

h; he; ~h Smooth vector field

hj Smooth function

hr Function of class C1

H;HC Output matrix

H (Observability) space

He Output matrix of cascaded system

H0, H1 Statistical hypotheses

i Index number

inf Infimum, the greatest lower bound

Im m�m identity matrix

Im Inertia of the ship’s shaft system

j Index number
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k Dimension of � or number of faults

ki Dimension of �i, in general ki = 1

k Finite set f1; : : : ; kg

kr Governor gain

kt Gain

ky Diesel engine gain

K Matrix

K Anti-windup gain

Ke Feedthrough matrix of cascaded system

Kn̂
�ky

,KÛ
�ky

Observer gain

K �̂
�� Observer gain

l Dimension of y or number of outputs

l Finite set f1; : : : ; lg

l(x),li(x) Smooth vector field, fault signature

le(xe) Smooth vector field, fault signature

lnew New/changed vector field

L Adaptive observer gain

L�n, L�� Matrix, to implement sensor faults as pseudo-actuator faults

Li Fault signature of the ith fault

Le Fault signature in the cascaded system

LXh Lie derivative of h along X

L11 Fault signature in the transformed system

L Subspace, range of L

Le Subspace, range of Le

L1loc Space of locally bounded measurable functions

mk Time-variant threshold

M , M� Matrix

Mu
dec Decoupling matrix with respect to u

M�
dec Decoupling matrix with respect to �

Mi Vector space for fault �i, d(Mi) = ki

m Dimension of u or number of inputs

m Finite set f1; : : : ;mg

m (Mass) weight of the ship

n Dimension of x or number of states
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n Finite set f1; : : : ; ng

n Shaft speed

nm Measured shaft speed

nmax Maximal shaft speed

nref Shaft speed reference

n̂ Shaft speed estimate

N , N� Matrix

N Neighborhood of the origin in Rn

N e Neighborhood of xe = (x; z) = (0; 0)

O;Oe Observation space, observability subspace

dO; dOe Observability subspace

p Dimension of r or number of residuals

p Finite set f1; : : : ; pg

p Adaptive observer gain

pi; p
e
i Smooth vector field

pnew New/changed vector field

p�r Probability density

P Canonical projection P : X ! X=S�

P�r Right inverse of P (i.e. PP�r = I)

P Residual vector space

q Dimension of z, order of residual generator

Q Involutive conditioned invariant unobservability distribution

Q Torque

Qeng Engine torque

Qprop Propeller developed torque

Qf Friction torque

Q0 Propeller torque coefficient

Qjnjn, QjnjVa Propeller torque coefficients

r,ry,r� Residual vector [r1 : : : rp]T , output vector of the cascaded sys-
tem , r 2 Rp

ri ith residual or ith component of residual vector r

Ri Fault signature

R(U) Hull resistance

R(x̂; u) Observer gain
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R Real space

Rn n-dimensional real space

R
+ Positive real space

s Dimension of w or number of disturbances

s, si Log-likelihood ratio

sup Supremum, the least upper bound

S Observer gain

Sk Cumulative sum

S Subspace

S(Li) (C;A)-u.o.s. containing the range of L i denoted by Li

Se Subspace

S? Annihilator for S

S� S� = inf S(Li) infimal element of S(Li)

S(L) Set of all (C;A)-unobservability subspaces containing the sub-
space L

t Time

t0 Initial time or starting point of time

tT Thrust deduction number

T Thrust

Tprop Propeller developed thrust

Text External force (due to wind and waves) imposed on the ship
speed

Td Detection time

Ts Sampling time

Tjnjn, TjnjVa Propeller thrust coefficients

T (�) Coordinate transform

u Input vector [u1u2 : : : um]T , where u 2 U

uref Reference signal for the input u

ue Input vector of cascaded system, ue 2 Ue = U �M2

ui ith input or ith component of input vector u

u _� Output of pitch controller

U Ship speed

Um Measured ship speed

Umax Maximal ship speed
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Û Ship speed estimate

U Input vector space

Ue Input vector space of cascaded system U e = U �M2

V Lyapunov function
_V Time derivative of the Lyapunov function

Va Max. advanced speed

w Disturbance vector [w1w2 : : : ws]
T , where w 2 Rs

wi ith disturbance signal

w, ~w New input vector

wnew New/changed disturbance vector

w Wake fraction

W (C;A)-invariant subspace

W(L) Set of all (C;A)-invariant subspaces containing the subspace L

W1, W2, W3 Continuous positive definite functions

x; ~x State vector [x1x2 : : : xn]T , where x 2 X

x0 Initial condition x0 = x(t = 0)

x̂ Estimate of the state (vector) x

xe; ~xe State vector of cascaded system, xe 2 X e = X �Z

_x(t) time derivative of x(t)

xi ith state or ith component of state vector x

X _U Added mass in surge

X Vector space

X e State vector space of cascaded system X e = X �Z

X
0

Dual space of X

X=S Factor space of X with respect to S

y; ~y Output vector [y1y2 : : : yl]T , where y 2 Y

ŷ Estimate of the output (vector) y

yi ith output or ith component of output vector y

Y Fuel index

Ym Measured fuel index

YPI Governor output

Ylb, Yub, YPIb Boundaries for fuel index

Y Output vector space

z State vector [z1z2 : : : zq]T , where z 2 Z , d(Z) = q
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zi ith component of state vector z

Z State vector space

0 Zero vector, zero space, etc.

� Index number

~�ij Real number, coefficient
~�i Real number, coefficient

� Unobservability space or distribution

� ky Diesel engine gain fault

�nsensor Shaft speed sensor fault
_�nsensor Time derivative of shaft speed sensor fault

�� Fault on the propeller pitch

� �sensor Pitch sensor fault
_� �sensor Time derivative of pitch sensor fault

� _�inc Pitch actuator hydraulic fault

� Involutive closure of distribution �

� Code vector or estimation error � = �1 � �̂1

�; �i Threshold

� Eigenvalue, � 2 �

�� Complex conjugate of eigenvalue �

� Set of eigenvalues

�r Mean value of the signal r

�rnofault Mean value of the signal r in the faultfree case

�rfault Mean value of the signal r in the faulty case

� Fault, complete fault vector [�1�2 : : : �k]T , where � 2 M and
ki = 1

�new New/changed fault vector

�i Fault vector, �i 2Mi

��n, ��� New fault signal, to implement sensor faults as pseudo-actuator
faults

�i Fault vector, � i 2 Mi

�i ith component of fault vector �

�n Measurement noise concerning shaft speed measurement

�U Measurement noise concerning ship speed measurement

�Y Measurement noise concerning fuel index measurement
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�� Measurement noise concerning pitch measurement


 Subspace, range, area, coding set


u Range of u


x Range of x


j jth coding set, set of numbers


� Subspace

� Structure matrix

�(t; t0) Transition matrix

�(�) Change of output coordinates

 (u; y) Smooth vector field

'(x; y) Smooth vector field

�ui Characteristic number with respect to u

��i Characteristic number with respect to �

�(A) Spectrum (eigenvalues) of A

�2r Variance of the signal r

�P
� Involutive conditioned invariant distribution

�i Time cons. in the governor

�c Time cons. in the diesel engine

� Constant number

� Propeller pitch

�m Measured propeller pitch

�ref Propeller pitch reference

�min, �max Boundaries for pitch
_�min, _�max Boundaries for pitch

� Parameter (vector), fixed codistribution

�nom Nominal value of the parameter (vector) �

�̂ Estimate of the parameter (vector) x

� State vector (�1�2 : : : �n)T

�1 State vector �1 = (�1; : : : ; �k)

�̂1 Estimation of �1

�2 State vector �2 = (�k+1; : : : ; �n)
@
@xi

Partial derivative

(�)? Annihilator

inf(:); (�)� Infimal element
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spanf�g Spanned vector space.

Abbreviations

ANN Artificial neural network

ATOMOS Advanced Technology to Optimize Maritime Operational
Safety

BJDFP Beard Jones detection filter problem

CAISA (C;A)-invariant subspace algorithm

COSY control of complex systems

CPP Controllable pitch propeller

CUSUM Cumulative sum

DDEP Disturbance decoupled estimation problem

DOS Dedicated observer scheme

FDI Fault detection and isoltaion

FDIFP FDI filter problem

FMEA Failure mode and effect analysis

FPA Fault propagation analysis

FPRG Fundamental problem of residual generation

FTC Fault tolerant control

FTCS Fault-tolerant control system

h:o:t: Higher order terms

l-NLFPRG Local nonlinear fundamental problem of residual genera-
tion

LTI linear, time-invariant

LTV linear, time-variant

NLFPRG Nonlinear fundamental problem of residual generation

rl-NLFPRG Regular local nonlinear fundamental problem of residual
generation

o.c.a. Observability codistribution algorithm

SA Structural analysis



xxviii Nomenclature

SNF Statens Naturvidenskabelige Forskningsråd

(Danish Research Council)

STVF Statens Teknisk Videnskabelige Forskningsråd

(Danish Research Council)

u.o.s. Unobservability subspaces

Terminology

The terminology used in FTCS has only during the recent years approached an
agreement in the published material. The Safeprocess Technical Committee of
IFAC has compiled a list of suggested definitions (Isermann and Ballé (1997)),
which is generally in coherence with the terminology used throughout this thesis.
Some of the definitions are changed according to the terminology presented in
Blanke et al. (2000).

Active fault-tolerant system A fault-tolerant system where faults are explic-
itly detected and handled. See also passive fault-
tolerant system.

Analytical redundancy Use of more than one not necessarily identical
ways to determine a variable, where one way uses
a mathematical process model in analytical form.

Availability Probability that a system or equipment will op-
erate satisfactorily and effectively at any point of
time.

Constraint A functional relation between variables and pa-
rameters of a system. Constrains may be specified
in different forms, including linear and nonlinear
differential equations, and tabular relations with
logic conditions between variables.

Decision logic The functionality that determines which remedial
action(s) to execute in case of a reported fault and
which alarm(s) shall be generated.

Detector An algorithm that performs fault detection and
isolation.

Discrepancy An abnormal behaviour of a physical value or in-
consistency between more physical values and the
relationship between them.
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Fail-safe The ability to sustain a failure and retain the ca-
pability to make a safe close-down. An example
could be a system where the occurrence of a single
fault can be determined but not isolated and where
the fault cannot be accommodated to continue op-
eration.

Fail-operational The ability to operate with no change in objectives
or performance despite of any single failure.

Failure Permanent interruption of a systems ability to per-
form a required function under specified operating
conditions.

Failure effect The consequence of a failure mode on the opera-
tion, function, or status of an item.

Failure mode Particular way in which a failure can occur.

Fault detection Determination of faults present in a system and
time of detection.

Fault accommodation A change in controller parameters or structure to
avoid the consequences of a fault. The input-
output between controller and plant is unchanged.
The original control objective is achieved al-
though performance may degrade.

Fault diagnosis Determination of kind, size, location, and time of
occurrence of a fault. Includes fault detection, iso-
lation and identification.

Fault isolation Determination of kind, location, and time of de-
tection of a fault. Follows fault detection.

Fault modeling Determination of a mathematical model to de-
scribe a specific fault effect.

Fault propagation analysis Analysis to determine how certain fault effects
propagate through the considered system.

Fault-tolerance The ability of a controlled system to maintain con-
trol objectives, despite the occurrence of a fault.
A degradation of control performance may be ac-
cepted. Fault-tolerance can be obtained through
fault accommodation or through system and/or
controller reconfiguration.

Hardware redundancy Use of more than one independent instrument to
accomplish a given function.
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Incipient fault A fault where the effect develops slowly e.g. clog-
ging of a valve). In opposite to an abrupt fault.

Passive fault-tolerant system A fault-tolerant system where faults are not ex-
plicitly detected and accommodated, but the con-
troller is designed to be insensitive to a certain re-
stricted set of faults. See also active fault-tolerant
system.

Qualitative model A system model describing the behavior with re-
lations among system variables and parameters in
heuristic terms such as causalities or if-then rules.

Quantitative model A system model describing the behavior with re-
lations among system variables and parameters in
analytical terms such as differential or difference
equations.

Reconfiguration Change in input-output between the controller
and plant through change of controller structure
and parameters. The original control objective is
achieved although performance may degrade.

Reliability Probability of a system to perform a required func-
tion under normal conditions and during a given
period of time.

Remedial action A correcting action (reconfiguration or a change in
the operation of a system) that prevents a certain
fault to propagate into an undesired end-effect.

Residual Fault information carrying signals, based on de-
viation between measurements and model based
computations.

Safety system Electronic system that protects local subsystems
from permanent damage or damage to environ-
ment when potential dangerous events occur.

Severity A measure on the seriousness of fault effects us-
ing verbal characterization. Severity considers the
worst-case damage to equipment, damage to envi-
ronment, or degradation of a system’s operation.

Structural analysis Analysis of the structural properties of the models,
i.e. properties that are independent on the actual
values of the parameter.

Threshold Limit value of a residual’s deviation from zero, so
if exceeded, a fault is declared as detected.



Chapter 1

Introduction

Interest in fault detection and isolation (FDI) for nonlinear systems has grown
significantly in recent years. Its design is one important step towards fault-
tolerant control systems (FTCS). In a FTCS occurring faults are handled in such
a way that it can still perform in an acceptable manner. This is preferred to shut
down of (sub-)systems caused by occurring faults. Obviously, the actions for
fault handling are different for each potential fault. Hence, it is required to diag-
nose which actual faults might be present in a system.

This thesis considers observer-based FDI for nonlinear systems. The design is
based on the geometric approach. It is applied to analyze the considered sys-
tem and to choose suitable subsystems for the observer design. A nonlinear ship
propulsion system is used as an illustrative application example. Furthermore,
stability aspects concerning the observer design are mentioned. Finally, the novel
concept of fault-output decoupling is introduced to integrate FDI aspects in the
control design and to improve FDI possibilities.

1.1 Background and Motivation

The level of automation has reached a high level, both, in industry and in daily-
life. Still, the number of tasks taken over by computers is growing every day;
in airplanes, biomedical applications like pacemakers, cars, CD-players, robots,
ships, telephones, television, and numerous others. Only in few of them possible
faults, in e.g. actuators and sensors, have been considered during the design.
However, in most applications they are not considered. This leads to several

1
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difficulties during the occurrence of a fault. Often a small fault can have a big
impact on a control system. In one example, a simple sensor fault, caused an
auto-pilot on board a ship to steer it in a wrong direction. This was not noticed
on-time by the officer on watch (obviously trusting the auto-pilot) and caused
heavy damage to the ship as it sailed onto ground. In another example a tem-
perature sensor caused an emergency shut-off system to turn off the ship’s diesel
engine to prevent overheating. As a consequence the ship was not able to ma-
neuver and caused a collision in the harbor while docking. Most of these kind
of accidents could be prevented when the possible faults would be considered
during the control design.

In airplane design the possible sensor faults are considered by implementing re-
dundant sensors (hardware redundancy). This makes the design more expensive
due to a higher degree of complexity of the design and the extra hardware costs.
The fuel consumption is also increased due to the higher weight. As a result
of the hardware redundancy the system becomes fail-operational, i.e. even if
a sensor fault occurs, the redundant sensors will provide correct information.
Therefore, the system will keep on performing as if nothing happened. Due to
the high costs the fail-operational approach is seldom implemented in systems
which are not considered to be high risk. However, with the growing demand in
availability, efficiency, quality, reliability, and safety fault handling has become
an important issue. As a result control systems with fault handling capabilities
are considered. They are also known as fault-tolerant control systems (FTCS).
The goal is to handle occurring faults in such a way that the system can still per-
form in an acceptable manner and that shut down of (sub-)systems is prevented.

The design of fault-tolerant control systems includes several different tasks.
First, all possible faults have to be modeled (fault modeling) that can occur in
the considered system. Then a fault propagation analysis (FPA) is carried out
to analyze which impact the single faults have on the system. As a result the
severity of the faults and possible fault handling strategies can be determined.
However, the most essential part for a FTCS design is fault detection and isola-
tion (FDI). Its design is required to judge when and which fault has occurred in
order to initiate the correct fault handling at the right point of time.
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1.2 Overview of previous and related work

The topic of fault detection and isolation (FDI) has been of interest since the
beginning of the 1970s. In the start the research was mainly concentrated on
the area of aeronautics and aviation. An essential body of literature has been
produced since due to contributions from several research areas. Different re-
search groups proposed FDI approaches based on the expertise from their own
field and/or the experience with a specific class of systems. The high diversity
of solutions has also been driven by the growing interest from industry in FDI.
This was mainly due to the hope of improving efficiency, safety, and reliability
of process automation.

Most methods are covered by the term model-based fault detection and isolation.
The idea is to use the analytic redundancy given by a model of the system, i.e.
cross checking between expected/predicted and measured behavior. The meth-
ods use a system model and the observables of the system (control and measure-
ment signals) to generate residuals. Residuals are measures for the discrepancy
between expected and measured system behavior. Their analysis leads to model-
based fault detection and isolation. However, there exist also many other meth-
ods that are not considered as model-based, e.g. the fuzzy-approach (Kiupel and
Frank (1997)), the artificial neural network (ANN) approach (Köppen-Seliger
and Frank (1996)), or the stochastic signal analysis (Basseville and Nikiforov
(1994)).

The field of model-based FDI for linear systems is well-studied. Key references
can be found in Chen and Patton (1999); Gertler (1998); Isermann and Ballé
(1997); Patton (1997); Frank (1996); Massoumnia et al. (1989); Willsky (1976).
There exist several solutions for different linear FDI problems. On the opposite,
the area of FDI for nonlinear systems is not covered completely yet. For some
nonlinear systems it was shown to be sufficient to use linearization around oper-
ating points in order to apply linear FDI methods. However, in general this is of-
ten not possible due to hard nonlinearity (e.g. saturation effects or non-analytic
behavior) or the inefficiency of linearization. Hence, several FDI approaches
have been improved to also handle nonlinear systems, e.g. the observer-based
approach, the parity space approach, and the parameter estimation approach.
Also fuzzy observers and artificial neural networks were considered for nonlin-
ear systems.
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Recently, new approaches were proposed for the class of input-affine nonlinear
systems (linear in the input). Especially the observer-based FDI approach for
nonlinear systems has gained a lot of interest (García and Frank (1997); Ham-
mouri et al. (1999); Nijmeijer and Fossen (1999); Åström et al. (2000)).

An interesting question for the observer design is to decide which (sub-)system
should be observed for residual generation. In Izadi-Zamanabadi (1999) an ex-
ample is given how this problem can be solved applying the structural analysis
(Staroswiecki and Declerck (1989); Cassar et al. (1994)). Another solution is the
application of the geometric approach. It was originally introduced by Massoum-
nia et al. (1989) for the linear case. In the last two years it has been extended to
nonlinear systems (Hammouri et al. (1998, 1999); DePersis and Isidori (1999);
DePersis (1999)). However, only little application experience exists from using
the geometric approach for FDI in nonlinear systems.

In practice the FDI design is seldom considered during the control design, but
often designed later on top of the control. Hence, it is impossible for the FDI
designer to influence the controller design, e.g. to improve the FDI possibilities
by adding sensors. However, as pointed out by Bøgh (1997), this is inevitable
for the design of fault-tolerant control systems. This is also described in detail
in Patton (1997).

In Chapter 2 a general introduction to model-based FDI is given. It describes
some of the most common model-based FDI approaches and different aspects of
residual generation.

1.3 Objectives and contributions

This thesis focuses on observer-based fault detection and isolation for nonlin-
ear systems. One of the objectives is to give an overview over the geometric
approach towards observer-based FDI and to apply it to a ship propulsion sys-
tem. The latter is done to investigate its applicability. Furthermore, it considers
stability issues for the observer design. The goal is to stress the necessity of rec-
ognizing the resulting time-variance when linearizing a nonlinear system along
a trajectory. Finally, the novel idea of fault-output decoupling is proposed based
on the well-studied input-output decoupling problem. It points out the impor-
tance of considering FDI properties already during the control design and shows
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one way to achieve that.

In order to address these objectives the thesis contributes in the following way:

� Different important facts about residual generation and evaluation are ad-
dressed in Chapter 2. Different model-based FDI approaches are men-
tioned. Furthermore, coding sets for the residual evaluation are stated, as
e.g. defined by Gertler (1998).

� A detailed review of the geometric approach towards fault detection and
isolation is given. Starting from linear systems, covering state-affine non-
linear systems up to input-affine nonlinear systems. Furthermore, its basic
concept of using unobservability subspaces/distributions is pointed out.

� As an application example the geometric approach introduced by DePer-
sis and Isidori (1999); DePersis (1999) is applied to different FPRGs.
These fundamental problems of residual generation (FPRG) are defined
for a nonlinear ship propulsion benchmark (Izadi-Zamanabadi and Blanke
(1997, 1999)).

� Several observers are designed to obtain successful FDI. The structure of
two of them is based on the results from the geometric approach. Stability
is proven based on Gauthier et al. (1992).

� An adaptive nonlinear observer (Blanke et al. (1998); Blanke and Lootsma
(1999)) is designed and simulated. Its simulation results show fast de-
tection possibilities. They are compared with the results obtained by the
geometric approach.

� Several simulation results are given to illustrate the successful FDI for the
ship propulsion benchmark. The designed observers are able to detect and
isolate all implemented faults. The requirements for detection time are
fulfilled as well.

� Based on the simulation results the advantages and disadvantages of the
geometric approach are discussed.

� Stability aspects are considered. It is shown how important it is to consider
the resulting time-variance when linearizing a nonlinear system along a
trajectory.
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� The novel idea of fault-output decoupling is proposed to show a possibility
of combining FDI and control design. The concept of complete and effi-
cient fault-output decoupling is introduced and discussed. Furthermore,
an application example is given for illustration.

1.4 Thesis Outline

The thesis is organized as follows:

Chapter 2 gives a brief introduction into the field of model-based fault detec-
tion and isolation. The idea of observer-based FDI is briefly reviewed. Further-
more, aspects like residual structure, robustness, and performance criteria are
addressed.

Chapter 3 reviews the existing geometric approaches, starting with the linear
case and ending with the wide class of input-affine nonlinear systems. Both,
problem formulations and solutions are presented. Furthermore, the similarities
are pointed out.

Chapter 4 illustrates the application of the geometric approach to a ship
propulsion system in order to obtain successful FDI. First the system is de-
scribed. Then the geometric approach is applied. The detailed calculations are
given in Appendix C. The results are used to design several observers for FDI.
Simulation results of the ship propulsion system and the observers illustrate the
obtained FDI performance. Finally, the results are discussed to evaluate the ge-
ometric approach.

Chapter 5 covers several stability aspects of observers used for FDI. It out-
lines the stability proof for the observers that were designed based on the ge-
ometric approach. Chapter 5 illustrates also the importance of the awareness
that linearization along a trajectory leads to a time-variant system. The differ-
ence between the stability analysis for time-variant and time-invariant systems is
described.
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Chapter 6 introduces a novel idea, fault-output decoupling, to show how FDI
and control design could be combined to improve FDI possibilities. The con-
cepts of complete and efficient fault-output decoupling are defined and illustrated
by a simple example.

Chapter 7 gives concluding remarks and recommendations for future work.





Chapter 2

Model-based fault detection and
isolation

Fault-tolerant control systems have the ability to tolerate the occurrence of a fault
by being able to continue operation while a degradation of performance may be
accepted, see Blanke (1999). Continued operation is assured by handling oc-
curring faults. To initiate the correct fault handling sufficient FDI information
is required. As mentioned in the introduction there exist several approaches
towards FDI. This thesis focuses on observer-based FDI for nonlinear systems
which belongs to the group of model-based FDI methods.

The field of model-based FDI is well-studied. There exists a wide variety of
model-based FDI approaches for linear systems, e.g. the observer-based ap-
proach, the parity space approach, and the parameter estimation approach. Key
references can be found in Chen and Patton (1999); Gertler (1998); Isermann
and Ballé (1997); Patton (1997); Frank (1996); Willsky (1976). Also for non-
linear systems there exist several model-based FDI methods (García and Frank
(1997); Chen and Patton (1999); Åström et al. (2000)). Especially the observer-
based approach has gained a lot of interest recently (García and Frank (1997);
Frank et al. (1999); Hammouri et al. (1999); Nijmeijer and Fossen (1999); De-
Persis (1999)). However, most methods only handle a specific class of nonlinear
FDI problems. This is mainly due to the fact that there exist different classes of
nonlinear systems and nonlinear systems also include phenomena like saturation
effects or non-analytic behavior.

9
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In this chapter different aspects of model-based FDI are addressed, starting with
analytical redundancy and the use of structured residuals. Furthermore, robust-
ness issues and performance criteria are mentioned.

2.1 Analytical redundancy

One possibility to achieve FDI is the use of analytical redundancy. Analytical
redundancy is based on using the available signal information (known inputs and
measurements) and a mathematical model of the system. A cross-check of the
signal information is carried out to detect and isolate faults. For systems with
hardware redundancy this cross-check can be carried out by comparing signal
information with available redundant information supplied by redundant hard-
ware. Using analytical redundancy means to calculate the required redundant
information by using the model and the available signal information. Hence, this
approach is also referred to as model-based FDI. A detailed description of the
term model-based FDI is given in Chen and Patton (1999).

The model-based FDI methods are restricted by the fact that they require a pre-
cise model to obtain sufficient FDI. In practice this is not always available.
Hence, other methods next to the model-based methods have been considered,
e.g. the artificial neural network approach, the fuzzy approach, and the quali-
tative approach. They are referred to as knowledge-based and qualitative in the
literature (Frank (1996)).

The restriction of the so-called knowledge-based methods is that they are de-
pending on knowledge acquisition from the system in form of training data sets
Frank (1996). In practice these sets are difficult to obtain. This is due to the fact
that they must provide data from the system while the considered faults occur.
However, in a real running system it is hardly possible to convince the owner
of a plant to simulate all possible faults. When a knowledge-based systems can
be trained sufficiently they can be used to estimate measurements based on the
available signal information, hence, provide redundancy. The main advantage of
these methods is that they do not require a precise analytical model.
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2.2 Residuals

Normally, the consistency check based on analytical redundancy is achieved by
comparing measured signals with their estimates. The resulting difference for
one signal is referred to as residual signal; e.g. ri = yi � ŷi; i 2 k, where
ri denotes the ith residual, yi the ith measured system output, ŷi the estimated
ith system output, and k the number of residuals. Residuals are designed to be
equal or converge to zero in the fault-free case (ri � 0) and deviate significantly
from zero under occurrence of a fault (jrij > �i > 0, where �i 2 R denotes
a threshold). Hence, the residuals represent the fault effects. Depending on the
number of residuals and their design it is possible to detect and isolate occurring
faults. Most model-based FDI methods incorporate two sequential steps in order
to obtain FDI: 1: Residual generation, and 2: Residual evaluation.The two dif-
ferent steps are explained in the following two subsections.

There exist also model-based methods that are not based on residual generation,
e.g. the statistical automata approach (Lunze (2000)). It provides direct fault in-
formation and does not generate residuals in order to evaluate them in a second
step to take a FDI decision.

2.2.1 Residual generation

The residual generation for model-based FDI is based on exploiting the avail-
able analytical redundancy. In most approaches the analytical redundancy is
represented by a set of differential equations. The goal is to generate structured
residuals to obtained sufficient FDI. One common way to generate residuals is to
estimate the system output vector y or the system parameter vector �. Then the
estimates ŷ and �̂ are subtracted from the real measurement y and the nominal
value of the parameters �nom. This leads to the following residual vectors:

ry = y � ŷ and r� = �nom � �̂

The residual vector r� corresponds to the parameter estimation approach. The
residual vector ry is typical for the observer-based approach, but is also used
by the so-called parity relation approach. A good overview and comparison of
these three model-based methods can be found in Chen and Patton (1999). In
the following and in the rest of the thesis only the observer-based approach will
be considered.



12 Model-based fault detection and isolation

ActuatorsController

Actuator
faults

uref Plant
Dynamics

Sensors

Sensor
faults

Component &
parameter faults

u y

Open-loop system

Model-based FDI
system

Fault information

Figure 2.1: General scheme for model-based FDI.

The principle idea of model-based residual generation is illustrated in Figure 2.1.
It shows the observed plant and its different parts:

� The controller that assures the required performance of the plant based on
an external reference signal uref .

� The three given parts of the plant itself: actuators, plant dynamics, and
sensors.

� The model-based FDI system.

Furthermore, it is illustrated that the possible faults can affect the actuators, the
plant, and the sensors. The FDI system has two different inputs, the so-called
observables: the system input u and the measured system output y. It is applied
to the open-loop system.

The main task of observer-based FDI approach is to design an observer structure
that generates structured residuals that enable detection and isolation of the con-
sidered faults. The existing observer-based methods generate estimates that can
be subtracted from available measurements to obtain residuals (e.g. ry). There
exist many different observer-based approaches considering linear systems and
different classes of nonlinear systems. Key references can be found in Chen and
Patton (1999); Patton (1997); García and Frank (1997); Frank (1996); Nijmeijer
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and Fossen (1999).

The next Chapter gives a detailed overview over the observer-based FDI ap-
proaches that are based on the geometric approach. It starts with one of the
first observer-based FDI approaches, the Beard&Jones detection filter (BJDF)
for linear systems (Beard (1971),Jones (1973)). The BJDF is based on a full-
order Luenberger observer where the gain is tuned to use the prediction error
(or innovation) as residual. Furthermore, the latest results for nonlinear systems
based on the geometric approach Hammouri et al. (1998, 1999); DePersis and
Isidori (1999); DePersis (1999) are described in detail.

2.2.2 Residual evaluation

Successful residual-based FDI requires appropriate residual evaluation. Resid-
ual evaluation describes the task of evaluating the residuals in order to take the
following decisions: 1: Is there any fault present? , and 2: If yes, which fault(s)
is/are present. Especially the second decision is depending on the fact whether
only single faults (one fault at a time) or also multiple (simultaneous) faults are
considered. Multiple faults are most unlikely events, unless there is a severe de-
fect in the system which causes several faults to occur. The problem of handling
multiple faults lies in the fact that resulting fault effects caused by single faults
occur at the same time. Hence, they might compensate each other or they might
overlap in a way that either only one of them or a complete other fault is detected
and isolated.

Therefore, it is important to obtain the correct residual structure for correct resid-
ual evaluation. The residuals should be generated in such a way that for each
fault a different set of residuals is affected (i.e. the residuals deviate signifi-
cantly from zero). For multiple faults it should furthermore be guaranteed that
the overlapping of the resulting fault effects does not lead to a wrong decision,
e.g. missed detection of a fault or a wrong decision about which fault occurred.
There exist several ways to define structured residuals that can be used for correct
residual evaluation.

Structured residuals

According to Gertler (1998) a structured residual is characterized by the follow-
ing property: Any residual responds only to a specific subset of faults, and to any
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fault only a specific subset of residual responds. Following Gertler (1998) one
can represent a set of p residuals in two different ways:

� in a geometric way by considering the vector
r(t) = ( r1(t) r2(t) : : : rp(t) )

T , where r(t) 2 R
p .

� and in a Boolean way by defining a fault code vector in the following way:

�i(t) =

(
1 if jri(t)j � �i

0 if jri(t)j < �i

) �(t) = ( �1(t) �2(t) : : : �p(t) )
T

for i 2 p and the thresholds �i.

Obviously, the fault code vector �(t) provides the information weather the ith

residual ri(t) hits a defined threshold �i or not. When following the Boolean
notation one can also define a structure matrix � in the following way, when
using the fault vector �(t) = ( �1(t) �2(t) : : : �k(t) )

T :

r L99 � �

where the ith column vector of � is defined as: �i = ��i , where ��i describes the
code vector � concerning the ith fault. Hence, � is a p � k matrix that contains
only ones (’1’) and zeroes (’0’). The operator defined by ’L99 ’ can be read as
’is affected by’. The expression r L99 0 is a special case and should be read like
the residual r is not affected (by any fault). To illustrate this notation a simple
example is given representing the structured residual where the ith residual ri(t)
is only affected by the ith fault �i(t), and the number of faults k equals the
number of residuals p, k = p = 3 (the time dependence is omitted for a better
readability):

r =

0
B@ r1

r2

r3

1
CA L99

0
B@ �1

�2

�3

1
CA =

0
B@ 1 0 0

0 1 0

0 0 1

1
CA

| {z }
�

0
B@ �1

�2

�3

1
CA

| {z }
�

which can be read as fault r1 is affected by fault �1, r2 is affected by fault �2,
and r3 is affected by fault �3. This notation offers also the possibility to consider
disturbances wj ; j 2 s. They can be added to the description by treating them
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like additional faults. This is done by defining also code vectors �j for them and
add these to the structure matrix �, and adding the disturbance signals to the
fault vector.

As already mentioned in Chapter 2, different kinds of structural residuals are
known in the field of FDI, see e.g. Gertler (1998); Chen and Patton (1999). They
can all be represented in the above given notation using corresponding structure
matrices �. In Gertler (1998)[Chapter 7] a detailed discussion is given concern-
ing the design of structured residuals. It provides several useful definitions like
e.g.:

Undetectability in a structure A fault �i or disturbance wj is undetectable in
a residual structure if its column �i in the structure matrix � contains only zeroes
(’0’). Note that while undetectability is undesirable for a fault, clearly this is the
desirable behavior as far as disturbances are concerned.

Indistinguishability in a structure Two faults or disturbances are indistin-
guishable in a structure if their respective columns in the structure matrix are
identical.

Weakly isolating structure We will refer to a structure as weakly isolating if
all columns in the structure matrix are different and nonzero. Obviously, with
such structure, all faults are detectable and all single faults are mutually distin-
guishable.

For further definitions, details, and explanations the reader is referred to Chapter
7 in Gertler (1998).

In this thesis the following general description of an efficient residual structure
as introduced by Massoumnia et al. (1989) will be used:

In the jth fault mode (i.e. when the jth fault occurs; fault signal �j(t) 6= 0; j 2
k), the residuals ri(t) for i 2 
j are nonzero, and the other residuals r�(t) for
� 2 p � 
j decay asymptotically to zero. The specified family of coding sets

j � p; j 2 k, is chosen such that, by knowing which of the residuals ri(t) are
(or decay to) zero and which are not, the fault �j can be uniquely identified.
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The different coding sets 
j are used to identify the occurring faults. A cod-
ing set contains a set of numbers that represents a specific subset of residuals
ri(t); i 2 p, i.e. 
j � p; j 2 k; where k denotes the number of faults and p the
number of residuals. In case of single faults the following holds: Iff the com-
plete set of residuals defined by the coding set 
j is affected by an occurring
fault it can be said that the occurring fault is the jth fault. For multiple faults
extra conditions have to be fulfilled to avoid overlapping or cancellation of fault
effects. The effects from multiple faults (e.g. �1 and �2) might add up in a way
that it leads to a wrong decision (e.g. when 
1 [ 
2 = 
3 the fault �3 would
be detected instead of �1 and �2). The simplest coding set that can handle both
multiple and single faults would be p = k and 
j = fjg; in that case the jth

fault would only affect the jth residual.

2.3 Robustness

Model-based FDI methods are based on a mathematical model, however, a pre-
cise and accurate model of a real system cannot be obtained. This can have dif-
ferent causes, e.g. an unknown structure of disturbances, different noise effects,
and uncertain or time-varying (due to aging) system parameters. FDI methods
that are able to handle these kind of model uncertainty are referred to as robust.

Model uncertainty can cause false and missed alarms, hence, it needs to be con-
sidered when implementing FDI. If it is not handled it can have such a strong
impact that the FDI system becomes useless. There exist several approaches to
handle the robustness issue. They are divided into active and passive robustness
approaches. The active robustness approach deals with the model uncertainty in
the residual generation phase. The goal is to avoid model uncertainty effects on
the residuals. The passive robustness approach is implemented in the residual
evaluation, e.g. by using time varying thresholds �(t), also known as adaptive
thresholds (Clark (n.d.); Chen and Patton (1999)). One example of active robust-
ness was already mentioned in Section 2.2.2. It handles the external disturbances
by considering them as additional faults. Then the FDI system has to be designed
such that these artificial faults are undetectable. This idea is also followed in the
geometric approach described in the next chapter. Parameter uncertainty could
be handled in the same way when it can be modeled as such a disturbance.

For further details about robust FDI the reader is referred to Chen and Patton
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(1999); Patton (1997) and references therein.

2.4 Performance

Another important aspect of FDI design is the resulting performance of the ob-
tained FDI system. It is closely related to robustness. In order to illustrate the
need for good performance the following performance aspects are addressed:

False detection rate
A false detection (false alarm) is a fault alarm although no fault occurred. The
FDI system has to be designed in such a way that the number of false alarms is
acceptable low. This could mean that e.g. a high threshold is chosen to avoid
false detection caused by disturbances or measurement noise. Obviously, a false
detection leads to inappropriate actions in a FTCS, because initiates fault hand-
ling for a fault that is not present.

Missed detection rate
A missed detection (missed alarm) describes the situation that no alarm is given
although a fault is present. The rate of missed alarms needs to be acceptable low.
One way to achieve this is to choose a low threshold to ensure that also small
faults can be detected. However, this is obviously in contrast with the solution
to avoid false detection. A missed alarm has a serious effect on the FTCS as the
occurring fault is not be handled.

Residual dynamics
Next to the problem of false and missed detection, the detection time, or better,
the reaction time of the residuals, plays a very important role. This has mainly
two reasons:

1. In order to handle faults in FTCS they need to be detected and isolated fast
enough. Otherwise, the performance of the system might have reached an
unacceptable level before handling is initiated.

2. When certain residuals have significantly different reaction times (detec-
tion time of a change in the residual) the result could be a false isolation.
To illustrate this the following example is considered: Two faults are con-
sidered �1 and �2, with the corresponding code vectors �1 = ( 1 0 )T and
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�2 = ( 1 1 )T . The second residual (r2) reacts significantly slower than
the first residual (r1). When fault �2 occurs and the residual evaluation is
carried out exactly at the point where the first residual has reacted, but the
second not yet, this leads to a wrong residual evaluation. As a result fault
�1 would be detected instead of �2.

Next to the reaction time, the response of the residual to an occurring fault is
important. If the residual hits the threshold as long as the fault is present strong
detectability is obtained. However, when it only hits the threshold during the
transition of the fault ( _� 6= 0) it is difficult to detect in a residual containing
measurement noise effects. This might cause problems like wrong isolation or
missed detection. One possibility to improve the FDI performance might be a
filtering of the residual.

2.5 Summary

This section gave a brief overview over important aspects of model-based FDI.
Especially the robust and performance issues are of high interest. They are a
measure for the quality and applicability of a designed FDI system. The dis-
cussed issues in this chapter stressed the fact that the design of FDI is more
than just generation of residuals. A complete design method is an optimization
method which optimizes the above stated performance criteria. In the observer-
based design this includes several aspects:

� finding an appropriate observer structure

� tuning of the observer to obtain structured residuals

� stability of the observer

� robustness issues

� optimization of the performance

These issues are addressed in the next chapter based on the geometric approach.



Chapter 3

Residual generation - geometric
approach

Among the different approaches for fault detection and isolation (FDI) men-
tioned in Chapter 2 the geometric methods are of high interest. The geometric
theory offers various advantages as it gives a general formulation of the FDI
problem, and is more compact and more transparent for more general systems
(like the nonlinear systems, which are considered in this thesis) than the alge-
braic approach. In recent years the existing geometric theory for the residual
generation in linear systems based on the original work by Massoumnia (1986a),
Massoumnia (1986b), and Massoumnia et al. (1989) has been extended. Formu-
lations for different classes of nonlinear systems were derived in order to han-
dle state-affine nonlinear systems (Hammouri et al. (1998)), and lately also the
class of input-affine systems (Hammouri et al. (1999)). In a similar effort others
recently presented more general solutions for the class of input-affine nonlin-
ear systems (DePersis and Isidori (1999), DePersis (1999), DePersis and Isidori
(2000), and references therein). The later results give a very detailed geometric
description of how to tackle the residual generation problem for nonlinear sys-
tems.

This chapter gives a review of these different geometric ideas and illustrates
how they are connected. They are all based on the same main idea of design-
ing a residual generator to solve the fundamental problem of residual generation
(FPRG). A formulation of the FPRG for each considered class of systems is pre-
sented in Section 3.2. The common idea is to use a residual generator based on

19
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the mathematical model of the considered system and using the available signals
- control inputs and measured outputs. This idea is also referred to as analytical
redundancy, see chapter 2 for more details. The first geometric description of a
solution for the FPRG was given by Massoumnia et al. (1989) for linear systems
and provides necessary and sufficient conditions for a solution to exist. This
original work is described in detail in the Sections 3.2.1 and 3.3.1 in order to
introduce the basic idea of the geometric approach and the used geometric con-
cepts. (The used (geometric) theory is described in Section 3.1 and Appendix A.
Hence, no special background in geometric theory is required to follow the ideas
presented in this chapter.) After a detailed description of the linear case it is il-
lustrated how it has been extended to the different classes of nonlinear systems -
state-affine and input-affine nonlinear systems. At the end of the chapter the re-
sults are summarized and compared to other existing approaches. Following the
summary, some concluding remarks will be given. The duality of the solutions
to other well-studied problems in geometric control theory is emphasized, e.g.
the restricted control decoupling problem.

The application of the geometric approach is illustrated by a detailed example
in Chapter 4. There the geometric approach is applied to a ship propulsion sys-
tem in order to obtain successful FDI. The calculations are explained in detail
(Appendix C) and simulation results are presented.

3.1 Notation and preliminaries

The notation in this chapter deviates from the notation in some of the references.
This is in order to make the notation consistent throughout the chapter and the
rest of the thesis. The used notation and mathematics are explained in the follow-
ing. For further details the reader is referred to Appendix A, the nomenclature
table at the beginning of the thesis, and the given references. The notation cor-
responds widely to the one used in Massoumnia (1986b).

In the thesis, script letters as X , U , and Y denote real vector spaces, with typical
elements being denoted by x, u, and y. The dimension of the different vector
spaces, e.g. X , is described by d(X ). Example: x 2 X � Rn , where d(X ) = n.
The dual space1 of X is written as X 0

.
1For a detailed explanation of the term dual space the reader is referred to Appendix A.4.
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The annihilator of S , S � X , is denoted by S?; S? = fx0 ; x0S = 0; x
0 2

X 0g, hence, S? � X 0

. The zero vector, zero space, etc. are denoted by 0.
Matrices and linear maps are both denoted by capital italic letters, e.g. A,

B, and C . The maps A : X ! X , B : U ! X , and C : X ! Y are fixed
throughout and are associated with the linear system (C;A;B):
_x(t) = Ax(t) +Bu(t); y(t) = Cx(t).
The dimensions are given by d(X ) = n, d(U) = m, and d(Y) = l.

ImB = B denotes the image (range) of B, B = fy ; y = Bx; x 2 Xg.
KerC denotes the kernel of C , KerC = fx ; Cx = 0; x 2 Xg.

The spectrum (eigenvalues) of a matrix A is denoted by �(A). A bold printed
integer describes a finite set of integers, e.g. k = f1; : : : ; kg. A set of complex
numbers � 2 C is symmetric if � 2 � implies �� 2 � where � denotes the
complex conjugate.

If B is injective2 , then B�l denotes a left inverse of B (i.e. B�lB = Im),
where Im denotes the m � m identity matrix. If C is surjective3, then C�r

denotes a right inverse of C (i.e. CC�r = Il), where Il denotes the l� l identity
matrix.

A subspace S � X is termed A-invariant if AS � S; i.e. a solution x(t)
of the differential equation _x = Ax that starts in S (x(t = 0) 2 S), stays in S
(x(t) 2 S8t 2 R+ ). Let S � X be A-invariant; the restriction of A to X=S is
written as A : X=S . X=S denotes the factor space4 of S � X .

During the whole thesis S denotes a (C;A)-unobservability subspace5

(u.o.s.).
A system is called state-affine when it is linear in the states. Similar, input-

affine systems are linear in the inputs.

For a more detailed description and explanation of the used geometric concepts
in this chapter the reader is referred to Wonham (1985), Nijmeijer and van der
Schaft (1990), and Isidori (1995).

2A map B : X ! Y is injective when: Bv = Bu ) v = u or equivalently KerB = 0.
3A map C : X ! Y is surjective if ImC = Y .
4For a detailed explanation of the term factor space the reader is referred to Appendix A.5.
5For a detailed explanation of the term unobservability subspace the reader is referred to Ap-

pendix A.2.
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3.2 Fundamental problem of residual generation

This section describes the fundamental problem of residual generation (FPRG)
for different classes of systems. It starts with describing the linear case for which
the FPRG was originally formulated by Massoumnia et al. (1989) and shows
how it has been extended for nonlinear systems that are either affine in the states
or affine in the inputs.

3.2.1 FPRG for linear systems

The first formulation of the FPRG was stated for finite-dimensional, linear, time-
invariant (LTI) systems in Massoumnia et al. (1989) and is based on the FDI filter
problem (FDIFP) which is a generalized version of the Beard Jones detection fil-
ter problem (BJDFP). The BJDFP considers linear time-invariant systems (LTI)
of the following form:

_x(t) = Ax(t) +Bu(t) +

kX
i=1

Li�i(t) (3.1)

y(t) = Cx(t) (3.2)

where x(t) 2 X � R
n describes the states, u(t) 2 U � R

m the known
control inputs, and y(t) 2 Y � R

l the measured (known) system outputs.
�i(t) 2 Mi � Rki with i 2 k describes the behaviour (concerning time and
magnitude) of the ith fault and is denoted as fault signal. The fault signatures
are given by the maps (matrices) Li : Mi ! X (Li 2 Rn�ki ). They describe
in which way (direction) the fault affects the system. The size of the matrices A,
B, and C is obvious from (3.1) and (3.2).

Knowledge about the fault signature Li (fault modeling) is required for the con-
sidered model-based fault detection and isolation methods. The fault signal �i(t)
is an arbitrary and unknown signal which can represent several different fault be-
haviours. Choosing Li to be equal to the ith column of the B matrix gives for
example the possibility to model a fault in the ith actuator. As �i(t) is arbitrary
it could model a complete loss of the actuator (�i(t) = �ui(t)) or just an offset
(�i(t) = const:). For more details about fault modeling the reader is referred to
Chapter 2 and Chen and Patton (1999). In e.g. Chen and Patton (1999) an extra
term (

Pk
i=1Rifi(t)) is added to the output equation (3.2) to model sensor faults.

It is omitted here due to the fact that sensor faults can be included in a model like
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(3.1) and (3.2) by adding additional dynamics (additional fault signals and states
in (3.1)). A precise description of this fault modeling describing sensor faults by
pseudo-actuator faults can be found in Massoumnia (1986a) and Hashtrudi-Zad
and Massoumnia (1999).

Massoumnia (1986b) gives a geometric formulation of the BJDFP and neces-
sary and sufficient conditions for its solution. It is the first geometric approach
to tackle fault detection and isolation (FDI). The details of the BJDFP can be
found in Beard (1971) and Jones (1973). It is based on a full-order Luenberger
observer and is one of the first observer-based FDI approaches. They propose a
systematic procedure to design an observer for the monitored system and tune its
observer gain in such a way that the prediction error (or innovation) can be used
for residual generation: In absence of faults, system disturbances, and modeling
errors the residual vector is designed to tend (be equal) to zero. Under presence
of a fault its length is supposed to grow significantly different from zero (fault
detection). Furthermore, the gain is tuned in such a way that the direction of the
residual vector in the residual space (output space) can be used to identify the
fault (fault isolation). In that case the residual is also called a directional resid-
ual, see section 2.7 in Chen and Patton (1999). Obviously, when considering
multiple (simultaneous) faults, the dimension of the residual space determines
the maximal number of faults that can be isolated from each other. This is due to
the fact that the dimension of the residual space determines the maximal number
of independent directions. Otherwise the effects of two simultaneously occur-
ring faults might add up in a way, such, that the resulting residual vector points
in a direction, which is used to isolate a third fault, and vice-versa. More details
about the evaluation and design of residuals is given in Chapter 2.

This first approach of a FDI filter led to the following general FDI filter problem
formulation given in Massoumnia et al. (1989).

Definition 3.1 (Fault detection and isolation filter problem (FDIFP)): Con-
sidering the system (3.1) and (3.2), the FDIFP is to design an LTI dynamic
residual generator that takes the known signals u(t) and y(t) (observables of
the system) as inputs and generates a set of residual vectors ri(t); i 2 p, with
the following properties:

1. When no fault is present, all the residuals ri(t) decay asymptotically to
zero. Hence, the net transmission from u(t) to the residuals is zero, and
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the modes observable from the residuals are asymptotically stable.

2. In the jth fault mode (i.e. when �j(t) 6= 0; j 2 k), the residuals ri(t)
for i 2 
j are nonzero, and the other residuals r�(t) for � 2 p � 
j

decay asymptotically to zero. Here the pre-specified family of coding sets

j � p; j 2 k, is chosen such that, by knowing which of the ri(t) are (or
decay to) zero and which are not, the fault �j can be uniquely identified.

Definition 3.1 uses the concept of coding sets 
j to identify the occurring faults.
A coding set contains a set of numbers that represents a specific subset of the dif-
ferent residuals ri(t); i 2 p, i.e. 
j � p; j 2 k; where k denotes the number of
faults and p the number of residuals. If the complete set of residuals defined by
the coding set 
j is affected by an occurring fault it can be said that the occurring
fault is the jth fault. The simplest coding set would be p = k and 
j = fjg;
in that case the jth fault would only affect the jth residual. More details can be
found in Massoumnia et al. (1989).

The fundamental problem of residual generation (FPRG) for LTI systems is a
restricted version of the FDIFP and was for the first time stated in Massoumnia
et al. (1989). It considers only two different faults and aims for a stable resid-
ual generator that generates a signal (residual) that is sensitive to one fault and
insensitive to the other. Considering more than two faults leads to the extended
fundamental problem of residual generation (EFPRG) which is also presented in
Massoumnia et al. (1989). It is based on generalizing the results for the FPRG
as shown later at the end of section 3.3.1.

In the following a definition of the FPRG is given for systems of the following
linear form (specific version of (3.1) and (3.2) with k = 2):

_x(t) = Ax(t) +Bu(t) + L1�1(t) + L2�2(t) (3.3)

y(t) = Cx(t) (3.4)

and a residual generator of the following general form:

_z(t) = Fz(t)�Ey(t) +Gu(t) (3.5)

r(t) = Mz(t)�Hy(t) +Ku(t) (3.6)

where z(t) 2 Z � Rq and r(t) 2 P � Rp . As shown in Massoumnia et al.
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(1989) the system and residual equations can be combined in the following way: 
_x(t)

_z(t)

!
=

 
A 0

�EC F

! 
x(t)

z(t)

!

+

 
B L2

G 0

! 
u(t)

�2(t)

!
+

 
L1

0

!
�1(t) (3.7)

r(t) =
�
�HC M

� x(t)

z(t)

!
+
�
K 0

� u(t)

�2(t)

!
(3.8)

The system (3.7) and (3.8) can also be written in the following obvious way:

_xe(t) = Aexe(t) +Beue(t) + Le�1(t) (3.9)

r(t) = Hexe(t) +Keue(t) (3.10)

where xe(t) 2 X e = X �Z and ue(t) 2 Ue = U �M2.

Definition 3.2 (Massoumnia et al. (1989))(Fundamental problem of residual
generation (FPRG)): Considering the system (3.3) and (3.4), the linear FPRG
is to design an LTI dynamic residual generator by finding the appropriate matri-
ces in (3.5) and (3.6) such that the following constrains are satisfied for system
(3.9) and (3.10):

(i) r is unaffected6 by ue

(ii) The map from �1 to r is input observable7

and that the observable modes of the pair (He; Ae) be asymptotically stable,
so that the contribution to r(t) of initial conditions in (3.9) and (3.10) dies out
asymptotically .

While Condition (i) assures that the residual will not be affected by the control
input u(t) and the other fault �2(t), Condition (ii) assures that a fault �1(t) can
be seen (detected) in the residual. Without Condition (ii) it might happen that the
fault might only affect states of the residual generator (3.5) that do not affect the
residual (3.6). A detailed discussion about this condition is given in Massoumnia
et al. (1989).

6For a definition of unaffected see Appendix A.1.
7For a definition of input observability see Appendix A.6.
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Remark 3.3 Even if not stated explicitly, solving the FPRG handles in prin-
cipal several different aspects of efficient FDI. Condition (i) assures that nei-
ther the input nor the second fault �2 affect the residual, hence, it prevents false
alarms and helps to isolate fault �1 from fault �2. As the second fault �2 could
also represent a disturbance Condition (i) also handles the problem of robustness
against disturbances. The problem of missed alarms is handled by Condition (ii)
which assures that the fault �1 will have an effect on the residual. Stability of
the residual generator is considered in the additional comment in Definition 3.2.
Section 3.2.3 addresses these aspects more explicit for the nonlinear systems that
are affine in the inputs, faults, and disturbances.

As mentioned in Remark 3.3 the fundamental problem of residual generation
(FPRG) as it is defined in Definition 3.2 incorporates the basic idea to handle all
important aspects of successful FDI. Therefore, it has recently been extended in
the literature to nonlinear systems. These extended versions are presented in the
next two sections.

3.2.2 FPRG for state-affine nonlinear systems

The previous chapter presented a definition of the linear FPRG. In this section a
generalization of the linear FPRG to the class of state-affine systems up to output
injection (Hammouri et al. (1998)) is described. Next to Kinnaert et al. (1995),
Yu and Shields (1994) and Kinnaert (1999) it is one of the first approaches con-
sidering an extension of the FPRG to a special class of nonlinear systems. It
gives a definition of the problem and a sufficient condition for a solution to exist.
The condition and a solution for the problem using a Kalman-like observer will
be presented in section 3.3.2.

The approach considers systems of the following kind (the time dependence is
omitted for a better readability):

_x = A(u)x+  (u; y) + L1(x)�1 + L2(x)�2 (3.11)

y = Cx (3.12)

and a smooth residual generator system of the form:

_z = fr(z; u; y) (3.13)

r = hr(z; u; y) (3.14)
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where x(t) 2 X � R
n , u(t) = (u1(t); : : : ; um(t)) 2 U an open subset of

Rm , �i 2 R; i = 1; 2, and y(t) 2 Y � Rl . A(u) is a n � n matrix which
is analytic with respect to u.  (u; y) and Li(x); i = 1; 2 are analytic vector
fields. z(t) 2 R

q and r(t) 2 R
p . fr and hr are of class C1. Obviously,

r(t) = r(x(0); z(0); u; �1 ; �2; t).

In Hammouri et al. (1998) the following definition of the FPRG for the above
presented class of systems (3.11) and (3.12) is given:

Definition 3.4 (Fundamental problem of residual generation (FPRG) for
state affine systems up to output injection): System (3.13) and (3.14) is a
residual generator for the detection and isolation of the fault �1 in system (3.11)
and (3.12) if there exists U , a set of admissible controls defined on R+ , such that:

(i) For �1 = 0, 8u 2 U; 8x(0) 2 Rn , 8z(0) 2 Rq ; 8�2 2 L1loc (the space of
locally bounded measurable functions):
r(x(0); z(0); u; 0; �2 ; t)! 0 as t! +1

(ii) For �2 = 0, 8u 2 U; 8z(0) 2 Rq , 9x(0) 2 Rn ; 9t � 0; 9�1, �1 2 L1loc
such that r(x(0); z(0); u; �1 ; 0; t) 6= r(x(0); z(0); u; �1; 0; t):

Comparing Definition 3.2 with Definition 3.4 shows that both include the same
requirements for the residual generator. The residual signal has to be insensitive
to the second fault �2(t), sensitive to the first fault �1(t), and have stable dynam-
ics for each initial condition. The different formulations result from the fact that
they handle different classes of systems.

3.2.3 FPRG for input-affine nonlinear systems

In the last two years different definitions of the FPRG for nonlinear systems that
are affine in the inputs, faults, and disturbances were given (see e.g. Hammouri
et al. (1999), DePersis and Isidori (1999), or Åström et al. (2000)[chapter 10]).
This section presents the definition given in DePersis (1999). It does not only
treat the basic idea of the linear FPRG (Section 3.2.1) and expands it to non-
linear systems, but it also includes the EFPRG (Massoumnia et al. (1989)) and
robustness against disturbance (see e.g. Chen and Patton (1999)). As stated in
Remark 3.3 the classical FPRG contains the basic idea of how to handle other
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faults and thereby also disturbances, but it was not stated explicitly as it is done
in the following definition for the following class of systems:

_x = f(x) +
mX
i=1

gi(x)ui + l(x)� +
sX

i=1

pi(x)wi (3.15)

yj = hj(x); j 2 l (3.16)

in which the states x are defined on a neighborhood N of the origin in R
n . ui,

i 2m, denotes the inputs and yj , j 2 l, the outputs. � 2 R is a scalar fault signal
with the nonlinear fault signature l(x). f(x), gi(x); i 2m, l(x), and pi(x); i 2 s

are smooth vector fields and hj(x); j 2 l are smooth functions. Furthermore, let
f(0) = 0 and h(0) = 0. w = [w1w2 : : : ws]

T 2 R
s describes all the distur-

bances and other fault signals that should not affect the residual. Hence, the
following nonlinear version of the FPRG is able to handle the problems of fault
isolation, robustness against disturbances, false alarms and missed detection as
mentioned in Remark 3.3.

For the given class of systems the following definition of the local nonlinear
FPRG (DePersis (1999)) can be given:

Definition 3.5 (Local nonlinear fundamental problem of residual generation
(l-NLFPRG)): Considering the system of the form (3.15) and (3.16) the l-
NLFPRG is to find, if possible, a filter

_z = ~f(y; z) +

mX
i=1

~gi(y; z)ui (3.17)

r = ~h(y; z) (3.18)

where z 2 Rq , r 2 Rp , 1 � p � l. ~f(y; z), ~gi(y; z); i 2 m, and ~h(y; z)
are smooth vector fields, with ~f(0; 0) = 0 and ~h(0; 0) = 0, such that, when
considering the cascaded system (with obvious meaning of the symbols, similar
to (3.9) and (3.10))

_xe = f e(xe) +

mX
i=1

gei (x
e)ui + le(xe)� +

sX
i=1

pei (x
e)wi (3.19)

r = he(xe) (3.20)

defined on Ne, a neighborhood of xe = (x; z) = (0; 0), the following properties
hold:
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(i) if � = 0, then r is unaffected8 by ui, wj , 8i; j;
(ii) r is affected9 by �;

(iii) limt!1 kr(t;x0; z0;u1; : : : ; um; � = 0; w1; : : : ; ws)k = 0 for any initial
condition x0, z0 in a suitable set containing the origin (x; z) = (0; 0),
and any set of admissible inputs (note that the convergence to zero of the
residual is required in absence of the fault (� = 0)).

For linear systems (3.1) and (3.2) this definition of the l-NLFPRG reduces ex-
actly to Definition 3.2. In Definition 3.5 Condition (i) assures robustness, i.e.
that the control signals ui and the disturbances (and other faults) wi do not affect
the residual in the fault-free case (� = 0) and, therefore, cannot generate false
alarms. For robustness against model uncertainty it has to be possible to model
the uncertainties as additional disturbances wi. For more details about robust-
ness against model uncertainty see the review in Chen and Patton (1999).

In the case that � 6= 0 the inputs and disturbances may affect the residual, be-
cause Condition (ii) assures that they cannot vanish the effect of the fault � on
the residual and, hence, cannot cause missed alarms. Obviously, solving the
l-NLFPRG means finding a residual generator which is robust against distur-
bances. Condition (iii) assures its stability.

8For a definition of unaffected see Appendix A.1.
9For a definition of affected see Appendix A.1.
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3.3 Solving the FPRG

Different geometric solutions exist for the above described residual generation
problems. They are all based on the geometric concept of using unobservability
subspaces (originally introduced as complementary observability subspaces by
Willems and Commault (1981)) that was first presented for linear systems in
Massoumnia (1986b) and Massoumnia et al. (1989). Hence, this approach is
described in detail in the next section and followed by its extended versions for
the different classes of nonlinear systems. Each section presents conditions for
a solution to exist. Additionally, different designs to solve the corresponding
version of the FPRG are presented.

3.3.1 Solution for linear systems

The fundamental problem of residual generation (FPRG) as formulated in Def-
inition 3.2 can be solved by the method presented in Massoumnia et al. (1989).
It uses the geometric concept of an unobservability subspace to derive a solution
and sufficient and necessary conditions for its existence. The idea has been de-
rived from the results presented in Massoumnia (1986b) and White and Speyer
(1987) which have been inspired by the work in Beard (1971) and Jones (1973);
e.g. Massoumnia (1986b) gives an original geometric approach to handle a gen-
eralized version of the Beard Jones detection filter problem (BJDFP). It uses a
full-order observer which, however, limits significantly the classes of problems
that have solutions - because the set of possible failure modes (�i, i 2 k) must
satisfy a strong mutual detectability condition (Massoumnia (1986b)) - but it
also makes the FDI problem and the design process appear more complicated
than necessary (Massoumnia et al. (1989)).

In the following an approach taken from Massoumnia et al. (1989) is presented
that does not have these structural constrains. It uses a more general, finite-
dimensional, causal, LTI system as residual generator (see (3.5) and (3.6)) to
solve the FPRG. Hence, necessary and sufficient conditions can be obtained for
a wider class of systems than in (Massoumnia (1986b)).

As a starting point the cascaded system (3.9) and (3.10) as given in Section 3.2.1



3.3 Solving the FPRG 31

is considered:

_xe(t) = Aexe(t) +Beue(t) + Le�1(t) (3.21)

r(t) = Hex(t) +Keue(t) (3.22)

It can be seen directly that in order to assure that the residual r(t) is not sen-
sitive to the input signal u(t) and the second fault �2(t) it has to be insensitive
concerning the new constructed input ue(t) (see also Condition (i) in Definition
3.2). This leads to the following conditions:

Ke = 0 (3.23)

and hAejBei � Se := hKerHejAei (3.24)

where condition (3.23) assures that input ue(t) has no direct effect on the resid-
ual. The subspace Se denotes the unobservability subspace of the cascaded sys-
tem, i.e. all states xe 2 Se cannot be observed from the residual. It is defined by
Se := hKerHejAei = KerHe \ Ae�1KerHe \ � � � \ Ae�n+1KerHe where
Ae�kKerHe = fx : Aekx 2 KerHeg. hKerHejAei is also called the maxi-
mal Ae-invariant subspace contained in KerHe, i.e. the unobservable subspace
of (He; Ae). hAejBei = Be + AeBe + � � � + Aen�1Be describes the reachable
subspace that is reachable by the input ue(t) in the state equation (3.21). Hence,
Condition (3.24) assures that the input ue(t) does not affect the residual indi-
rectly via the states’ dynamics. hAejBei is also called the infimal Ae-invariant
subspace containing Be, i.e. the reachable subspace of (Ae; Be). To fulfill Con-
dition (ii) in Definition 3.2 it is clear that the following condition has to be ful-
filled to assure that all states affected by the fault �1 are observable from the
residual:

Le is injective and Le \ Se = 0; where Le = ImLe (3.25)

In Massoumnia et al. (1989) it is shown that the conditions (3.23)-(3.25) lead to
the following conditions for the original system (3.3) and (3.4):

S 2 S(L2); (3.26)

L1 is injective and L1 \ S = 0 (3.27)

where S is a (C;A)-unobservable subspace10 (u.o.s.) and S(L2) is a family of
(C;A)-u.o.s.es containing the range of L2 denoted by L2. Obviously, conditions
(3.26) and (3.27) hold only if the following condition is fulfilled:

10For its calculation see Appendix A.2.
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S� \ L1 = 0 (3.28)

where S� = inf S(L2). Condition (3.28) can be proven to be also sufficient
(Massoumnia et al. (1989)), which leads to the following theorem:

Theorem 3.6 The linear fundamental problem of residual generation (FPRG),
Definition 3.2, has a solution if and only if:

S� \ L1 = 0: (3.29)

The proof of the sufficiency of Condition (3.29) in Massoumnia et al. (1989) de-
scribes a design procedure for the 6 matrices (design parameters) of the residual
generator (3.5) and (3.6) and, hence, to a solution. It is based on the following
steps11 (where the dimension of the residual generator (observer) is given by
q = n� d(S�)):

(1) Find a n � l matrix D0 such that D0 2 D(S�), i.e. such that (A +
D0C)S� � S�.

(2) Find a canonical projection P : X ! X=S�, i.e. a q � n matrix that
projects the states x into a q-dimensional subspace that is not affected by
the second fault �2.

(3) Calculate the q � q matrix A0 = (A+D0C : X=S�), such that
A0 : X=S� ! X=S� and A0 P = P (A+D0C).

(4) Let the p� l matrix H be a solution of KerHC = S� +KerC .

(5) Let the p� q matrix M be the unique solution of: MP = HC .

(6) Then by construction, the pair (M;A0) is observable, so there exists a
q� p matrix D1, such that �(F ) = �, where F = A0+D1M and � is an
arbitrary self-conjugate set. This gives the freedom to shape the behaviour
of the residual and to assure the stability of the residual generator (3.5)
and (3.6).

11The reader unfamiliar with the notation or terms is referred to Appendix A.2.
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After following this procedure and denoting the right inverse of P by P�r, the
missing matrices, E, G, and K (for F , H , and M see above) of the residual
generator (3.5) and (3.6) can be calculated as follows:

D = D0 + P�rD1H E = PD G = PB K = 0:

When defining e(t) = z(t)�Px(t) the error dynamics of the residual generator
that solves the linear FPRG can be derived:

_e(t) = Fe(t)� PL1�1(t) (3.30)

r(t) = Mz(t)�Hy(t) =Me(t): (3.31)

The dimension of the residual generator (observer) is given by q = n�d(S�), i.e.
it is not a full-order observer (q < n) as used in the original work by Massoumnia
(1986b).

Remark 3.7 (Massoumnia et al. (1989)) Obviously, as there might be other
unobservability subspaces S � S� that satisfy S \ L1 = 0 the dimension of
the residual generator could be further reduced. But as there does not exist a
systematic way to obtain such an u.o.s. as it does for the infimal u.o.s. S� a
residual generator having a lower dimension is difficult to design. As there ex-
ists a systematic way12 to calculate the infimal u.o.s. S� the Condition (3.29) can
be checked straightforward. If it is fulfilled the design of the residual generation
can be achieved by following the above given procedure.

In Massoumnia et al. (1989) the generic solvability13 of the FPRG is mentioned
for the arbitrary system matrices A, C , L1, and L2 with the respective dimen-
sions n� n, l � n, n� k1, and n� k2. It says that the FPRG generically has a
solution if and only if k1+k2 � n and k2 < l. For the proof the reader is referred
to Massoumnia (1986a). Further information concerning the generic solvability
of the linear FPRG is given in Hashtrudi-Zad and Massoumnia (1999), where
also the concept of generic solvability is described in a clear and understandable
way.

The linear FPRG is a reduced version of the FDIFP. This can be seen for k = 2
12For the algorithm see Appendix A.2.
13A problem whose solvability depends on a set of parameters is said to be generically solvable

if it is solvable for almost every set of the parameter values (Hashtrudi-Zad and Massoumnia
(1999)).
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in Definition 3.1. An extension of the above solved FPRG, hence, also referred
to as EFPRG, is briefly considered in the following. The EFPRG is equal to the
FDIFP when for the later only the coding sets 
i = fig; i 2 k are considered.
Obviously, the EFPRG gives the possibility to handle several faults, and there-
fore, also disturbances when they are treated as additional faults. Furthermore,
it can detect and isolate simultaneous faults from each other. By following the
same geometric idea as for the FPRG Massoumnia et al. (1989) give the follow-
ing result for the EFPRG:

Theorem 3.8 The extension of the linear fundamental problem of residual gen-
eration (EFPRG) has a solution if and only if:

S�i \ Li = 0; i 2 k where S�i := inf S(
X
j 6=i

Li) (3.32)

where S�i denotes the smallest unobservability subspace that includes all fault
effects Lj from the faults �j; j 6= i.

A family of fault signatures satisfying the condition (3.32) is called a strongly
identifiable family. Hence, Theorem 3.8 is equivalent to the statement that the
extension of the linear fundamental problem of residual generation (EFPRG) has
a solution if and only if the family of handled fault events is strongly identifiable.
For the generic solvability of the EFPRG the reader is referred to Hashtrudi-Zad
and Massoumnia (1999).

This section presented the basic geometric concept of using unobservability sub-
spaces to solve the linear FPRG and its extension, the EFPRG. Necessary and
sufficient conditions for a solution to exist were given as well as a design proce-
dure for a LTI residual generator. The following sections show how this result by
Massoumnia et al. (1989) has been generalized for different classes of nonlinear
systems.

3.3.2 Solution for state-affine nonlinear systems

A solution for the FPRG for state affine systems up to output injection (described
by Definition 3.4 in section 3.2.2) is given in this section. It is taken from Ham-
mouri et al. (1998) and provides a sufficient condition for its existence. The
proposed residual generator has the structure of a Kalman-like observer which
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is applicable to the class of state affine systems. The considered systems (3.11)
and (3.12):

_x = A(u)x+  (u; y) + L1(x)�1 + L2(x)�2; y = Cx (3.33)

obviously, also include linear and bilinear systems.

Applying a linear output transformation (constant matrix H , H : Y ! Y) and a
n� l analytical matrix D(u) the system (3.33) can be rewritten as:

_x = (A(u)+D(u)C)x �D(u)y| {z }
=0

+ (u; y) + L1(x)�1 + L2(x)�2; (3.34)

y = HCx (3.35)

The idea of the solution presented in Hammouri et al. (1998) is to choose D(u)
and H such that the unobservability subspace �(H) = KerdO(HC) of the sys-
tem (3.34) and (3.35) includes the range of L2(x) but not the range of L1(x).
For more details about the unobservability subspace �(H) and the observability
subspace dO(HC) the reader is referred to Appendix A.7. Obviously, the basic
idea behind this approach is the same as in the previous section and, hence, as
in Massoumnia et al. (1989). It is based on hiding the unwanted fault effects
on the states of the residual generator in an unobservability space. However, as
pointed out in Hammouri et al. (1998) there does not exist a constructive method
to determine H and D(u) for a given system.

As can be seen from equation (3.34) the term D(u) does not influence the dy-
namics of the system asD(u)C)x�D(u)y = 0. It is used like the output mixing
map H to ease the observer design as can be seen in the following.

In Hammouri et al. (1998) the following theorem is given for the considered
class of systems.

Theorem 3.9 The FPRG for state affine systems up to output injection de-
scribed by Definition 3.4 has a solution if there exist matrices H and D(u) such
that:

(i) L1(x) =2 �(H) (ii) L2(x) 2 �(H)
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Denoting �(H)(L2(x)) as the unobservability space containing the range of
L2(x) the Conditions (i) and (ii) of Theorem 3.9 can be stated as one: L1(x) \
�(H)(L2(x)) = 0. So, Theorem 3.9 looks similar to Theorem 3.6. The only
difference lies in the fact that �(H)(L2(x)) is not the infimal unobservability
subspace containing L2(x) and that the conditions in Theorem 3.9 are only suf-
ficient.

The interesting question is if:

L1(x) \�(H)� = 0 (3.36)

where �(H)� = inf �(H)(L2(x)), is a necessary and sufficient condition for
a solution of the FPRG for state affine systems up to output injection. From a
logical point of view it should, because if L1(x) \ �(H)� = 0 is not fulfilled
it means that there are effects coming from fault �1 that are hidden in �(H)�.
Decreasing �(H)� to make sure that all effects from �1 can be observed would
also allow effects from fault �2 to enter the observable subspace.

In Kinnaert (2001) it was pointed out that the conditions of Theorem 3.9 should
be written more correctly as:

(i) There exists x such that L1(x) =2 �(H)

(ii) L2(x) 2 �(H)8x
As a consequence, the conditions cannot be stated as one using an intersection
operator as done above.

If a pair D(u) and H can be found such that the conditions of Theorem 3.9 are
fulfilled the considered FPRG is solvable. As a consequence a linear change
of coordinates exists, i.e. a constant invertible matrix P , such that � = Px,
where � = (�1; : : : ; �n), �1 = (�1; : : : ; �k), and �2 = (�k+1; : : : ; �n)) such that
�1 spans the k-dimensional observability subspace dO(HC) and �2 spans the
(n� k)-dimensional unobservability subspace �(H).

Applying this coordinate change to system (3.34) and (3.35) leads to the follow-
ing system as L2(x) 2 �(H) for the chosen D(u) and H:

_�1 = (A(u) +D(u)C)1�
1 �D1(u)y +  1(u; y) + L11(�)�1 (3.37)

_�2 = (A(u) +D(u)C)2� �D2(u)y +  2(u; y) + L12(�)�1 + L22(�)�2

y = HC�1 (3.38)
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where the new terms are defined in the following way:

P (A(u) +D(u)C)P�1 =

 
[(A(u) +D(u)C)1 0]

(A(u) +D(u)C)2

!
;

PD(u) =

 
D1(u)

D2(u)

!
; P (u; y) =

 
 1(u; y)

 2(u; y)

!
;

PL1(P
�1�) =

 
L11(�)

L12(�)

!
PL2(P

�1�) =

 
0

L22(�)

!
;

and HCP�1 = (HC 0):

When using the following notation

A(u) = (A(u) +D(u)C)1 and '(u; y) = �D1(u)y +  1(u; y)

for abbreviation, the system (3.37) and (3.38) can be written as:

_�1 = A(u)�1 � '(u; y) + L11(�)�1 and y = HC�1: (3.39)

Designing an observer for the obtained system (3.39) considering �1 = 0 leads
to a solution for the considered FPRG. Its estimation error (innovation) can be
used as residual.

In Hammouri et al. (1998) the following observer structure is used:

_̂
�1 = A(u)�̂1 + '(u; y) + S�1HC

T
(y �HC�̂1) (3.40)

_S = ��S �A(u)TS � SA(u) +HC
T
HC; S(0) > 0 (3.41)

r = y �HC�̂1 = HC�1 �HC�̂1 (3.42)

Hammouri et al. (1998) call this observer a Kalman-like observer. It does not
have a constant gain, but a time varying gain described by (3.41). Some of the
important requirements to apply this observer structure are that the system has
to be observable (fulfilled for (3.40) by definition of �1) and its inputs have to be
regularly persistent exciting or equivalently be universal14 (for more details see
Hammouri et al. (1998)).

14For a definition of universal inputs see Appendix A.7
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Defining � := �1 � �̂1 the estimation error dynamics take the following form:

_� = A(u)�� S�1HC
T
HC�+ L11(�)�1 (3.43)

_S = ��S �A(u)TS � SA(u) +HC
T
HC; S(0) > 0 (3.44)

r = HC� (3.45)

For details about the observer design the reader is referred to Section 3 in Ham-
mouri et al. (1998). The proof that the Conditions (i) and (ii) of Theorem 3.9
are sufficient to solve the FPRG defined by Definition 3.4 can be found there as
well.

However, the presented solution is not complete, as there does not exist a design
procedure for the observer as given for the linear problem in the previous sec-
tion. This is due to the fact that there does not exist a constructive method to
determine H and D(u) for a given system. Nevertheless, it demonstrates how
the geometric concept of using unobservability subspaces can be applied to state
affine systems up to output injection as well. In Hammouri et al. (1998) two dif-
ferent applications are described to illustrate successfully that, in specific cases,
the design of the residual generator essentially boils down to the computation of
a specific unobservability subspace of the considered system.

3.3.3 Solution for input-affine nonlinear systems

The local nonlinear fundamental problem of residual generation (l-NLFPRG)
as stated in Definition 3.5 is of particular interest. From all versions of the
FPRG it considers the largest class of systems - the input-affine nonlinear sys-
tems. Hence, a lot of research is carried out to solve it. Some results have been
published recently or are submitted, see e.g. Hammouri et al. (1999), DePersis
and Isidori (1999), DePersis (1999), Åström et al. (2000)[chapter 10]), DePersis
and Isidori (2000), and the references therein. This section presents the ideas
developed by DePersis and Isidori of how to handle the l-NLFPRG. It considers
the following class of systems, (3.15) and (3.16):

_x = f(x) +

mX
i=1

gi(x)ui + l(x)� +

sX
i=1

pi(x)wi (3.46)

yj = hj(x); j 2 l (3.47)

As the set of disturbances wi can be extended in order to include also other faults
than the considered one (�) solving the l-NLFPRG leads also to a solution for
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the local nonlinear EFPRG.

Similar to the solutions presented above DePersis and Isidori consider the geo-
metric approach based on the observation space of the cascaded system (3.19)
and (3.20), denoted by Oe. Oe is defined as the linear space (over R) of func-
tions on X e containing all repeated Lie derivatives15 LX1LX2 � � �LXk

hej ; j 2
l; k = 1; 2; : : : with Xi; i 2 k in the set ffe; ge1; : : : ; gem; pe1; : : : ; pesg (Definition
3.29 in Nijmeijer and van der Schaft (1990)). The observation space Oe defines
the observability codistribution dOe by setting:

dOe(xe) = spanfdH(xe); H 2 Oeg; xe 2 X e (3.48)

where dH is the standard differential map: dH(xe) = ( @H
@x1

; : : : ; @H
@x(n+q)

).

Similar to the unobservability subspace for linear systems (introduced in Mas-
soumnia (1986b)) the annihilator of the observability codistribution dOe can be
seen as the unobservability distribution (dOe)? of the system (3.19) and (3.20).
As a consequence the Conditions (i) and (ii) of Definition 3.5 can be equally
stated as shown in DePersis (1999) and DePersis and Isidori (2000) as:

spanfge; peg � (dOe)? and le =2 (dOe)? (3.49)

If xe = (x; z) = (0; 0) is a regular16 point of dOe, then dOe can be described
by the smallest codistribution which is invariant under ffe; ge; peg and contains
spanfdheg. The latter is denoted by Qe, hence, in a neighborhood of a regular
point xe = (0; 0) the following holds: dOe = Qe. Therefore, condition (3.49)
can be stated (according to Theorem 2 in DePersis (1999)) for regular points as:

spanfge; peg � (Qe)? and le =2 (Qe)? (3.50)

According to DePersis (1999) it is more convenient to focus on the condition
(3.50) when designing a residual generator. Hence the following regular version
of the l-NLFPRG is stated in DePersis (1999) and Åström et al. (2000)[chapter
10] and will be handled in the following.

15See Appendix A.7 for its definition.
16See Appendix A.8 for its definition.
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Definition 3.10 (Regular local nonlinear fundamental problem of residual
generation (rl-NLFPRG): Find, if possible, a filter

_z = ~f(y; z) +
mX
i=1

~gi(y; z)ui (3.51)

r = ~h(y; z) (3.52)

such that requirement (3.50) and Condition (iii) of Definition 3.5 are fulfilled.

For the linear case it is straightforward to show that this formulation of the rl-
NLFPRG boils down to the original linear FPRG presented in Massoumnia et al.
(1989), see e.g. Åström et al. (2000)[chapter 10].

The idea behind the following solution for the rl-NLFPRG is the same as for the
problems stated above. The goal is to determine an unobservability distribution
and an appropriate coordinate transformation, such that an observer for a sub-
system of the transformed system performs as a desired residual generator.

In the following only the main result is summarized. For more details the reader
is referred to the different publications by DePersis and Isidori.

Theorem 3.11 (Åström et al. (2000)[chapter 10]): Let Q be an involutive con-
ditioned invariant distribution such that

spanfpg � Q � Ker d( Æ h) and l =2 Q:
for some surjection  : R

q ! R
~q , defined locally around y = 0 and with

 (0) = 0. Then, there exists a change of state coordinates ~x = �(x) and a
change of output coordinates ~y = 	(y), defined locally around x = 0 and,
respectively, y = 0, such that, in the new coordinates, the system (3.46) and
(3.47) admits the normal form:

_~x1 = ~f1(~x1; ~y2) + ~g1(~x1; ~y2)u+ ~l1(~x1; ~x2)�1 (3.53)
_~x2 = ~f2(~x1; ~x2) + ~g2(~x1; ~x2)u+ ~p2(~x1; ~x2)w + ~l2(~x1; ~x2)�2 (3.54)

~y1 = ~h1(~x1) (3.55)

~y2 = ~h2(~x1; ~x2) (3.56)

with ~x1 2 R� , � := codim(Q) and ~l1(~x1; ~x2) 6= 0 locally around �(0).
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After transforming the system (3.46) and (3.47) successfully into a normal form
(3.53) - (3.56) the next task to solve the rl-NLFPRG is to analyze the observabil-
ity of the subsystem:

_~x1 = ~f1(~x1; ~y2) + ~g1(~x1; ~y2)u and ~y1 = ~h1(~x1) (3.57)

Depending on how the conditioned invariant distribution Q is generated the ob-
servability can be guaranteed (see Åström et al. (2000)[chapter 10]). The final
step is then to design an observer for the subsystem (3.57) if possible that will
lead to a residual generator (3.51) and (3.52). The stability requirement for this
residual generator can take different forms in order to fulfill condition (iii) of
Definition 3.5. Its formulation depends specifically on the chosen observer struc-
ture and, therefore, on the considered system.

Theorem 3.11 describes the conditions under which a solution for the regular lo-
cal nonlinear FPRG exists. However, there does not exist a constructive method
to determine how to obtain the necessary diffeomorphism (change of coordi-
nates). A constructive methodology to calculate the involutive conditioned in-
variant distribution Q is given in the following.

3.3.3.1 Calculation of the involutive conditioned invariant unobservability
distribution Q

The first step to check whether a specific FPRG is solvable or not it is to com-
pute an involutive conditioned invariant distribution17 Q (see Theorem 3.11) that
contains the unwanted disturbance and fault effects. If this distribution Q does
not contain the considered fault effect (the one to be detected and isolated) a
geometric solution might exist. The next step is then to find an appropriate coor-
dinate transformation and to check the observability of the obtained subsystem.
The final step is to design an observer (residual generator) that solves the FPRG.
In DePersis and Isidori (2000) it is shown how to calculate the involutive condi-
tioned invariant distribution Q (unobservability distribution) for a system of the
following form:

_x = f(x) +
mX
i=0

gi(x)ui y = h(x) (3.58)

17A distribution � is said to be conditioned invariant for a system (3.58) if it satisfies
[f;� \Kerfdhg] � � and [gi;� \Kerfdhg] � �.
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where x 2 X an open subset of Rn , ui 2 R, i = 1; : : : ;m, and y 2 R
p .

f(x) (also denoted as g0(x)) and g1(x); : : : ; gm(x) are smooth vector fields and
h(x) is a smooth map. The calculation is based on the following two algorithms
(introduced in DePersis and Isidori (2000)):

Computing the involutive conditioned invariant distribution �P
� : This al-

gorithm is the nonlinear version of the recursive (C;A)-invariant subspace algo-
rithm (CAISA), see (A.1) in Appendix A.2. It starts with the distribution

P = spanfp1; p2; : : : ; psg

where pi, i = 1; : : : ; s, are additional smooth vector fields; in this thesis they
represent the column vectors of the disturbance distribution matrix p(x) in order
to obtain FDI. Then the following non-decreasing sequence of distributions is
considered:

S0 = P (3.59)

Sk+1 = Sk +

mX
i=0

[gi; Sk \Kerfdhg] (3.60)

where � denotes the involutive closure of a distribution �. For every constant
distribution � it holds that � = �. g0 : : : gm stand for the column vectors
of g(x) and for f(x), which is written as f(x) = g0(x) to ease the notation.
Kerfdhg denotes the distribution annihilating the differentials of the rows of
the mapping h(x).

Finally, k� is defined as the finite number for which:

Sk�+1 = Sk� (3.61)

Sk� is also denoted as �P
� . Then �P

� is involutive, contains P and is conditioned
invariant. Moreover, any other distribution � which is involutive, contains P ,
and is conditioned invariant satisfies � � �P� .

Suppose that �P
� is well-defined (i.e. equation (3.61) holds for some k�) and non-

singular, so that its annihilator (�P� )
? is locally spanned by exact differentials

(because �P
� is by construction involutive). Suppose also that �P� \Kerfdhg is

a smooth distribution. Then it can be asserted that (�P� )
? is the maximal (in the
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sense of codistribution inclusion) conditioned invariant codistribution18 which
is locally spanned by exact differentials and contained in P?. For more de-
tails about �P

� and its computation the reader is referred to DePersis and Isidori
(2000).

Observability codistribution algorithm (o.c.a.): Let � be a fixed codistri-
bution then the observability codistribution algorithm is defined by the following
non-decreasing sequence of codistributions:

Q0 = � \ spanfdhg (3.62)

Qk+1 = � \
 

mX
i=0

LgiQk + spanfdhg
!

(3.63)

where spanfdhg is the codistribution spanned by the differentials of the rows
of the mapping h(x). (To make the notation more consistent with Kerfdhg one
could use the notation Imfdhg instead of spanfdhg, however, to be consistent
with the used references it is not done here.) Suppose that all codistributions of
this sequence are nonsingular, so that there is an integer k� � n � 1 such that
Qk = Qk� for all k > k�, and set 
� = Qk� . This result can be stated by the
following notation:


� = o.c.a.(�)

The algorithm has the property that o.c.a.(�) = o.c.a.(o.c.a.(�)) and if � is
conditioned invariant, so is the codistribution 
�. A codistribution 
 is called an
observability codistribution if:

Lgi
 � 
+ spanfdhg 8i = 0; : : : ;m

o.c.a.(
) = 


Furthermore, a distribution � is called an unobservability distribution if its an-
nihilator 
 = �? is an observability codistribution.

When the distribution �P
� is well-defined and nonsingular, and �P� \Kerfdhg

is a smooth distribution, then o.c.a.((�P� )
?) is the maximal (in the sense of

codistribution inclusion) observability codistribution which is locally spanned
18A codistribution 
 = �? is said to be conditioned invariant if it satisfies Lgi
 � 
 +

spanfdhg for all i = 0; : : : ;m.
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by exact differentials and contained in P?. The corresponding unobservability
distribution Q can be obtained by:

Q = (o.c.a.((�P
� )
?))?

For more details about the o.c.a. algorithm and the calculation of Q the reader is
referred to DePersis and Isidori (2000).

As a result of the algorithm Q is the smallest involutive conditioned invariant
unobservability distribution that contains P (the disturbance effects) due to the
maximality of o.c.a.((�P

� )
?). Obviously, this Q is the most likely distribution to

fulfill the condition of Theorem 3.11.

In Chapter 4 the geometric approach is applied to a ship propulsion system. For
that purpose several FPRGs are defined in Section 4.2. Then different unobserv-
ability distributions Q are calculated for each FPRG, see Appendix C.

3.4 Summary

In this chapter the fundamental problem of residual generation (FPRG) was de-
scribed and several approaches to obtain solutions for different classes of sys-
tems were summarized.

It was illustrated that solving the FPRG means achieving successful fault detec-
tion and isolation (FDI) that is robust against disturbances. However, the robust-
ness concerning model uncertainty can only be handled as long as the model
uncertainty can be modeled as extra disturbances. A definition of the generic
solvability for the linear FPRG was given as well.

The presented solutions were all based on the same basic geometric idea intro-
duced by Massoumnia (1986b). The idea starts with determining an unobserv-
ability subspace/distribution which does not include the fault that has to be de-
tected and isolated. Additionally it includes all the fault- and disturbance effects
that are not allowed to affect the residual in order to achieve successful FDI. In
Massoumnia (1986b) this was shown to be possible in a constructive way. Fur-
thermore, the existence of such a subspace/distribution was proven to assure a
solution for the corresponding FPRG. As a consequence of the existence of such
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an unobservability subspace/distribution an appropriate coordinate transforma-
tion can be found, such that one subsystem of the transformed system is only
influenced by the considered fault. The final step is to built an observer for this
subsystem which fulfills the tasks of a residual generator. However, there does
not exist a constructive way to determine this coordinate transformation which
is used to ease the final step.

Several geometric solutions were presented starting with the original approach
for linear systems up to the input-affine nonlinear systems. The solution for
the later includes the linear case and hence can be seen as a general approach
to tackle the FPRG. There exist several other approaches to solve the FPRG
in the literature, but basically they boil down to one of the versions presented
above. Some of these approaches are based on finding a coordinate transfor-
mation z = T (x) such that a subsystem is obtained for that an observer can
be designed that solves the FPRG. They are stated in an algebraic way, see e.g.
Seliger and Frank (1991a,b) and recently Kinnaert and Bahir (1999).

The geometric concept leads to a more compact notation than the algebraic one.
The conditions for checking the solvability of a particular FPRG can be checked
straightforward, because there exist algorithms to compute the unobservability
subspace/distribution. For more details about the comparison between the alge-
braic and geometric approach the reader is referred to Åström et al. (2000)[chap-
ter 10]. It illustrates the advantages of the geometric approach for linear systems
by giving a conclusive result (Theorem 10.3.1 in Åström et al. (2000)) incorpo-
rating both, the algebraic and the geometric approach.

However, as can be seen from the presented solutions there does not exist a fully
constructive solution to design a residual generator for the nonlinear systems
yet.DePersis and Isidori refer in their recent publications DePersis (1999), De-
Persis and Isidori (2000), and in Åström et al. (2000) to articles to appear that
might give a more constructive approach.

3.5 Conclusions

The above presented geometric approach to solve the nonlinear FPRG does not
describe a complete new idea. It is more a general notation or problem formula-
tion. Looking for example at other approaches it can be seen that they fit in the
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same approach although they are not written in a geometric way, see e.g. Seliger
and Frank (1991a,b) and Ashton and Shields (1999). As mentioned in the intro-
duction to this chapter the geometric approach is a more compact way to treat
the FPRG problem.

Following the geometric approach can lead to different results. This is due to the
freedom to choose the observer structure (residual generator). In Massoumnia
(1986b) a Luenberger observer has been applied as a residual generator. Other
examples are the general structure in Massoumnia et al. (1989), Kalman-like
observer in Hammouri et al. (1998), high-gain observers in Hammouri et al.
(1999) and a backstepping observer in DePersis (1999). This variety shows how
general the geometric approach can be applied. However, it has problems deal-
ing with model uncertainty that cannot be modeled as extra disturbances, hence,
needs a precise model. Furthermore, there exists no constructive result to de-
sign the residual generator for the state-affine and input-affine nonlinear systems.
The main problem is to find the required coordinate transformation that helps to
choose the correct observer structure and to design it. Also the generic solvabil-
ity for the nonlinear FPRG is still an open question.

Another possible disadvantage might be that the geometric approach considers
arbitrary fault and disturbance signals. Hence, only FPRGs can be solved where
the fault is 100% decoupled from the disturbances. However, there might be
FDI problems where the disturbance effect on the residual is significantly differ-
ent from the fault effect. When for example the disturbance effect turns out to be
limited enough one solution could be to apply a higher threshold. Another solu-
tion to handle the disturbance when its effect on the residual shows a significant
different dynamic behaviour than the fault effect might be to apply a filter to get
the disturbance effect out.

The disturbance problem and other application aspects are considered in Chapter
4. There the above presented geometric approach is applied to a ship propulsion
system. The application results are used to design residual generators. In a con-
cluding discussion the strong and weak points of the geometric approach for FDI
will be pointed out.

As mentioned in the above cited references the geometric approach for FDI
has been inspired by using the dual of certain results that are known for
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other control problems, like e.g. the disturbance decoupled estimation prob-
lem (DDEP) (Wonham (1985)).Unobservability subspaces introduced by Mas-
soumnia (1986b) play an important role when searching for a solution for the
linear FPRG. They have been originally introduced by Willems and Commault
(1981) as complementary observability subspaces to approach the disturbance
decoupling problem via output measurements. For the nonlinear systems the
counterpart of the conditioned invariant subspaces are the conditioned invariant
distributions, introduced in Isidori et al. (1981). Results holding for unobserv-
ability subspaces can be derived by taking the dual of the corresponding results
available for controllability subspaces. In fact, a given subspace is an unobserv-
ability subspaces if and only if its complement space is a controllability sub-
space. However, as also mentioned in Massoumnia et al. (1989), the solutions
are not obtained by simply taking the dual of a familiar control problem. One of
the reasons is that the goal is a residual generator that helps to take a decision
and not a controller to obtain a required system behaviour.

Inspired by this idea of using the dual of known geometric approaches a new
idea of fault-output decoupling is proposed in Chapter 6. It is based on the
input-output decoupling problem.





Chapter 4

FDI for a ship propulsion system

Several approaches for fault detection and isolation in nonlinear systems have
been developed, but only little experience exists from applying them to real sys-
tems. The existing application results are mostly obtained by using academic
examples or small laboratory setups. This accounts especially for the recently
introduced nonlinear geometric approach by DePersis and Isidori described in
Chapter 3. Hence, this chapter presents FDI-application results obtained by ap-
plying the geometric approach to a simulation model of a nonlinear ship propul-
sion system. The simulation model is part of a ship propulsion benchmark de-
fined and developed by Izadi-Zamanabadi and Blanke at the Department of Con-
trol Engineering at the University of Aalborg. A complete description of the
benchmark can be found in Izadi-Zamanabadi and Blanke (1998).

First the part of the ship propulsion benchmark is presented that has been used
to apply the geometric approach. Next to the system dynamics the fault scenario
is presented. Then the application of the geometric approach to the system is
illustrated in detail. The next step is the observability analysis of the results fol-
lowed by nonlinear observer (residual generator) design. Additionally, in order
to have results for comparison a nonlinear adaptive observer design (Blanke and
Lootsma (1999)) is given. Different simulation results are presented to illustrate
the FDI properties of the different observers. They are discussed in a concluding
discussion at the end of this chapter.

49
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4.1 Ship propulsion system - system description

This section describes in detail the ship propulsion system and the fault sce-
nario that was used to apply the geometric approach presented in the previous
chapter. The used simulation model is part of a ship propulsion benchmark prob-
lem that was defined by Izadi-Zamanabadi and Blanke (1997, 1999). A detailed
description of the complete ship propulsion benchmark can be found in Izadi-
Zamanabadi and Blanke (1998). The ship propulsion benchmark is used as a
platform to develop, enhance, test, and compare new and existing methods for
achieving fault tolerant control systems. International groups have contributed
with results at conferences (Cocquempot et al. (1998); Amann et al. (1999);
Blanke and Lootsma (1999); Edwards and Spurgeon (1999); Kerrigan and Ma-
ciejowski (1999); Schreier and Frank (1999); Zhang and Wu (1999)) and an
overview is given in chapter 13 of the COSY-project monograph (Åström et al.
(2000)).

4.1.1 Motivation for fault-tolerance in the propulsion system

Achieving fault-tolerance in a ship propulsion system has several advantages
compared with the existing control strategies applied on-board marine vessels.
Hence, the motivation to consider fault-tolerant control theory is presented in the
following and some remarks concerning fault-operational strategies are given.

Faults in ship propulsion systems, e.g. failure of sensors or actuators, are far
from being unlikely events. In the past, faults have resulted in events going along
with severe damage and significant loss of capital investment. In the marine area
the automation systems are not designed to be fail-operational1 ; mainly due to
high costs. Considering the raising demands of safety and reliability this is not
desirable. Several accidents have shown in the past how high the cost of an oil-
tanker accident can be for the owners and mainly for nature. However, instead
of applying fail-operational strategies to the entire automation system only local
shut down mechanisms are applied. Individual machinery is shut down as soon
as a critical state has been observed. This local strategy can obviously have a
negative effect on the overall operation of a ship. When a prime mover is shut
down, e.g. due to a sensor fault in its diesel maneuvering system, a ship looses
its ability to brake and maneuver. An overall strategy based on fault-tolerant

1For a definition of fail-operational see Chapter 2.
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concepts could help to handle these kind of faults in local equipment and prevent
them from causing unwanted effects on the overall operation. As its application
is significantly cheaper than the fail-operational strategy the motivation to study
the possibilities of using them on-board is high.

4.1.2 System description

The propulsion system of a ship consists of several components, with the diesel
engine and the propeller as main parts. The benchmark simulation package con-
sists of two simulation models, one representing a one propeller/one engine sys-
tem, and one describing a two propeller/two engine system. Both models are
based on real data from a ferry. The technical data related to the vessel can be
found in Appendix B. This section focuses on the subsystem of the ship propul-
sion benchmark, that is based on one engine and one controllable pitch propeller,
as it has been used for the simulations in this chapter. The control system of
the propulsion system has a control hierarchy consisting of two control levels.
One contains the shaft speed and propeller pitch controllers and is referred to
as lower-level control. The other, the coordinate control level, also called the
upper-level control, comprises combinator curves for the overload controller, the
handle on the bridge, ship speed controller, and an efficiency optimizer.
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Figure 4.1: Ship propulsion system - an overview.

Fig. 4.1 gives an outline of the used propulsion system. It shows the following
main components and subsystems:

� The coordinated control level: providing the set-points for the shaft speed
nref and propeller pitch �ref .



52 FDI for a ship propulsion system

� Propeller pitch controller and governor (shaft speed controller): control-
ling the propeller pitch � and fuel index Y .

� Diesel dynamics (diesel engine): generating torque Qeng to drive the pro-
peller shaft depending on the fuel index.

� Shaft dynamics: describing the shaft speed n, resulting from the difference
between the engine and the propeller torque.

� Propeller characteristics: describing the propeller thrust Tprop and torque
Qprop, that are determined by shaft speed, water speed Va, and propeller
pitch.

� Ship speed dynamics: describing the ship speed U resulting from the pro-
peller thrust balanced by hull resistance and external forces Text like wind
and waves.

The thrust - and as a consequence the ship speed - generated by the propulsion
system is vital for the ability to maneuver and to sail a ship; without thrust the
ship cannot be accelerated or stopped. In the system described in Fig. 4.1 there
are two main control loops, one for the propeller pitch and one for the shaft
speed. Both, the propeller pitch and the shaft speed determine the ship speed
and are supervised by the co-ordinate control level. The co-ordinate control
level includes strategies to optimize the fuel consumption and to avoid overload
situations - details can be found in Izadi-Zamanabadi and Blanke (1998).

Obviously there are different strategies to control the ship speed. Changing from
an ahead to an astern heading can be carried out in different ways, e.g. by either
keeping the propeller pitch constant and reversing the diesel engine or by keep-
ing the shaft speed constant and reversing the propeller pitch. In the simulations
the shaft speed is considered to be positive.

In Fig. 4.2 a more detailed scheme of the lower control level of the propulsion
system is given. It shows the two basic control loops and the different limitation
and saturation effects. Details about all the values can be found in Appendix B.
The system has two known inputs from the coordinated control level: the shaft-
speed reference nref and the propeller-pitch reference �ref . The unknown inputs
are the external forces (wind and waves) Text and the friction torqueQf . The fol-
lowing measurements (system outputs) are available: diesel engine shaft speed
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Figure 4.2: Ship propulsion system - a detailed view.

nm, fuel index Ym, propeller pitch position �m, and ship speed Um. Further-
more, Fig. 4.2 shows the faults considered during the simulation of the system;
they are described in more detail in the next section.

4.1.3 Fault scenario

Various faults can occur on-board a ship. For the ship propulsion benchmark a
fixed fault scenario has been defined to have the possibility to compare the FDI
results obtained by different fault-tolerant control (FTC) research groups with
their methods. The considered faults of the scenario are presented in this section.
They have been defined after applying a fault-propagation analysis (FPA). The
FPA is a methodology to investigate how considered faults affect the operation
of the system and its control under their occurrence. Furthermore, it investigates
the severity of the overall effect caused by the possible faults. For a detailed de-
scription of the fault propagation analysis the reader is referred to Blanke (1996)
and Bøgh (1997) as the details are not of further interest in this chapter. Results
of the FPA concerning the ship propulsion benchmark are described in Izadi-
Zamanabadi and Blanke (1998); Izadi-Zamanabadi (1999). They led to the fault
scenario for the propulsion system given in Table 4.1.
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Fault Symbol Sign Type

shaft speed sensor faults �nsensor pos./neg. additive - abrupt

pitch sensor faults � �sensor pos./neg. additive - abrupt

hydraulic leak � _�inc neg. additive - incipient

diesel fault � ky neg. multiplicative - abrupt

Table 4.1: Faults implemented in the ship propulsion benchmark.

The four different faults listed in Table 4.1 are considered as generic faults, as
they are the faults that are most likely to occur. Their detection is very impor-
tant for the operation of the propulsion system when fault-tolerant strategies are
applied. The severity of the faults will be discussed below, but first a description
of the faults is given:

� Propeller pitch faults:

– ��high: This fault can occur due to a defect in the pitch sensor or
its connections. As a result the controller receives a wrong sensor
measurement that is too high compared to the real one.

– ��low: This fault can occur due to a defect in the pitch sensor or
its connections. As a result the controller receives a wrong sensor
measurement that is too low compared to the real one.

– � _�inc: A leakage can occur in the (hydraulic) actuation part of the
control system; in practice, often in an over-pressure valve.

� Shaft speed sensor faults:

– �nhigh: This fault can occur due to a defect in the shaft speed sensor
or its connections. As a result the controller receives a wrong sensor
measurement that is too high compared to the real one.

– �nlow: This fault can occur due to a defect in the shaft speed sensor
or its connections. As a result the controller receives a wrong sensor
measurement that is too low compared to the real one.
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� Gain fault in the diesel engine:

– �ky: This fault describes the effect of a lower engine torque than
expected for the actual fuel index. Possible causes: cylinder failure
in the engine, connection problems causing reduced inlet of air, oil
or fuel.

Each of the described faults has a different effect on the over-all behaviour of the
ship propulsion system. Some faults are more severe than others and, therefore,
need to be handled with higher priority. A list of the faults and their fault effect
and its severity is given in Table 4.2.

Fault Fault effect Severity

��high deceleration �! maneuvering risk high

��low acceleration �! collision risk very high

� _�inc gradual speed change �! cost increase medium

�nhigh deceleration �! maneuvering risk high

�nlow acceleration �! collision risk very high

�ky diesel overload �! wear, slowdown medium

Table 4.2: Fault effects and resulting severity for the propulsion system.

Fault Detection time Fault Detection time

��high Td < 2Ts �nlow Td < 2Ts

��low Td < 2Ts �nhigh Td < 2Ts

� _�inc Td < 100Ts �ky Td < 5Ts

Table 4.3: Required detection time for the different faults.

The data is taken from Izadi-Zamanabadi (1999) and Izadi-Zamanabadi and
Blanke (1998), where also further information concerning the faults is given,
like e.g. the necessary detection time Td for each fault (see Table 4.3). The
detection time has been chosen in such a manner that the system can be recon-
figured in time to prevent severe situations like the loss of the ability to maneuver
the ship.
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Event Magnitude Start time End time

��high �� � 0:7 180s 210s

�nhigh nmax � n 680s 710s

� _�inc - 800s 1700s

��low �� 1890s 1920s

�nlow �n 2640s 2670s

�ky �0:2 ky 3000s 3500s

Table 4.4: Time sequence of the simulated faults.

A predefined sequence of the above defined faults has been implemented in the
simulation model. The total simulation time is 3500sec and the faults occur at
the in Table 4.4 given points of time. This sequence has been predefined to im-
prove the possibility to compare results obtained with different FDI approaches.

4.1.4 System dynamics

In this section a brief overview over some equations describing the ship propul-
sion system’s dynamics, see Fig. 4.1 and Fig. 4.2, is given. Not all dynamic
relations of the system are presented as not all of them are of interest in the FDI
design. For a complete description of the system dynamics the reader is referred
to Izadi-Zamanabadi and Blanke (1998) and Izadi-Zamanabadi (1999).

4.1.4.1 Diesel engine

Describing the dynamics of a diesel engine is often a difficult task depending on
the type of engine. In the simulation of the propulsion system the diesel engine
dynamics are described by the following transfer function (taken from Blanke
(1981), Blanke and Andersen (1984), and Fossen (1994, pp. 246-257)):

Qeng(s) =
(ky +�ky)

1 + �c s
Y (s); (4.1)

where Qeng describes the torque generated by the diesel engine, which is con-
trolled by the fuel index Y . The parameters of the transfer function are given by
ky the gain constant of the engine, �ky describing the gain fault in the engine,
and �c the time constant corresponding to torque built-up from cylinder firings.
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4.1.4.2 Propeller shaft

The dynamics of the propeller shaft turning the generated engine torque into
shaft speed (n) are described by the following equation based on a torque bal-
ance:

Im _n = Qeng �Qprop �Qf : (4.2)

where Im describes the resulting inertia of the shaft with all couplings. Qeng de-
notes the torque generated by the diesel engine, Qprop denotes the torque coming
from the propeller (load), and Qf describes the friction of the propeller shaft.

4.1.4.3 Ship speed

The ship is accelerated by the propeller-generated thrust (Tprop). The resulting
ship speed (U ) can be determined with the help of the following force balance
describing the nonlinear dynamics:

(m�X _U )
_U = R(U) + (1� tT )Tprop + Text (4.3)

Um = U + �U : (4.4)

where m denotes the mass of the ship. The X _U term represents an added mass
in surge. R(U) describes the resistance the ship experiences from the water (hull
resistance). As the generated propeller thrust Tprop changes the flow of the water
behind the ship (ship’s stern) the resulting thrust accelerating the ship is reduced.
This effect is described by the thrust deduction number tT . External forces like
the wind and the waves are represented by Text. The measured shaft speed sig-
nal (Um) contains the measurement noise (�U ) as described in Appendix B and
shown in equation (4.4).

4.1.4.4 Propeller

A controllable pitch propeller (CPP) has been simulated in the ship propulsion
system benchmark. The pitch (�) describes the angle with that the propeller
blades attack the water during rotation of the propeller. It can be adjusted for
a CPP by turning the propeller blades via a hydraulic system over a range from
-100% (full astern) over to 100% (full ahead). As a consequence there are two
possibilities to control the propeller-generated thrust and torque - changing shaft
speed (n) and/or propeller pitch (�). The propeller thrust (Tprop) and propeller
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torque (Qprop) generated with a CPP can be described by the following nonlinear
equations (Blanke (1981)):

Tprop = Tjnjn(�)jnjn+ TjnjVa(�)jnjVa (4.5)

Qprop = Q0jnjn+Qjnjn(�)jnjn+QjnjVa(�)jnjVa: (4.6)

The propeller parameters Tjnjn(�), TjnjVa(�), Q0, Qjnjn(�), and QjnjVa(�) are
all, except Q0, depending on the actual propeller pitch (�) and difficult to obtain
for a real system. The pitch-variant parameters of Tprop and Qprop are calculated
for the simulations by interpolating between tables of data measured in model
propeller tests. For further details the reader is referred to Izadi-Zamanabadi
and Blanke (1998) and Izadi-Zamanabadi (1999). Va describes the velocity with
which the water passes through the propeller disc. It is smaller than the ship
speed U due to the hydrodynamic turbulence under the hull of the ship. It can be
obtained with the help of the wake fraction (w), a hull-dependent parameter:

Va = (1� w)U: (4.7)

For the residual generation the following special forms of (4.5) and (4.6) are
implemented as stated in Fossen (1994, pp. 246-257):

Tprop = Tjnjnjnjn� + TjnjVa jnjVa (4.8)

Qprop = Qjnjnjnjnj�j+QjnjVajnjVa�: (4.9)

4.1.5 Controllers

In the lower-level control there are two main control loops - shaft speed control
and propeller pitch control. Different controllers are applied to these loops. They
are described in the following. Both loops are interconnected via the propeller
dynamics. The upper-level control is not of special interest here. It generates the
set-points for the shaft speed nref and the propeller pitch �ref for the lower-level
control. Furthermore, the upper-level control includes an overload controller in
order to avoid damage of system components, e.g. a too high demand in shaft
speed would lead to a too high engine torque that could brake the shaft. For
more detailed information about the upper-level control the reader is referred to
Izadi-Zamanabadi and Blanke (1998) and Izadi-Zamanabadi (1999).

4.1.5.1 Shaft speed control

The shaft speed controller receives as inputs the reference signal nref from the
upper-level control and the shaft speed measurement nm. The measured shaft
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Figure 4.3: Governor - shaft speed controller.

speed can be described as follows:

nm = n+ �n +�nsensor (4.10)

where the actual shaft speed is described by n, the measurement noise by �n and
the sensor fault is represented by �nsensor.

The shaft speed controller (governor) is a PI-controller and generates the fuel
index reference signal Y . A detailed scheme of the governor is given in Fig.
4.3. The figure shows the saturation phenomena and an anti-windup as part of
the integrating action, where K is the anti-windup gain. The integrating part
of the governor has Ylb and Yub as lower and upper bounds. Furthermore, the
limitations of the fuel index, depending on the shaft speed measurement, are
shown in an extra block. It limits the fuel index from above by the maximum
allowed fuel inlet, which is related to constrains on the torque characteristics of
the diesel engine. Obviously, the fuel index is nonnegative, which limits it from
below.

The shaft speed controller can be described in detail by the following equations:

_Yi =
kr
�i

�
(nref � nm)�K(YPIb � YPI)

�
(4.11)

YPIb = Yi + kr(nref � nm) (4.12)

YPI = min(max(YPIb; Ylb); Yub) (4.13)

The values for the different parameters of the governor and the measurement
noise can be found in Appendix B.
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4.1.5.2 Propeller pitch control

The propeller pitch � is adjusted via a hydraulic actuator turning the propeller
blades. The actuator’s dynamic has an integrating structure and is controlled by
the pitch controller. The propeller pitch control loop can be described by the
following relations:

�m = � + �� +��sensor (4.14)

u _� = kt (�ref � �m) (4.15)
_� = max( _�min;min(u _�;

_�max)) + � _�inc (4.16)

� = max(�min;min(�; �max)) (4.17)

where �m describes the pitch measurement, �� describes the measurement noise
and ��sensor stands for the pitch sensor fault. u_� denotes the controller output
(not measured in the benchmark) and kt the controller parameter (P-controller).
The incipient fault in the pitch hydraulic actuator is described by �_�inc. As
the actuator can only turn the propeller blade over a specific range it is limited
by �min and �max. Furthermore, the speed of change is limited due to the flow
velocity of the hydraulic oil. That effect is described by _�min and _�max. Fig. 4.4
shows the complete pitch control system.
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4.2 Geometric FDI analysis

The in Chapter 3 presented geometric approach towards FDI for input-affine
nonlinear systems has gained high interest in the last two years. However, until
now, only little experience with its application has been obtained. In this section
the geometric approach described in DePersis and Isidori (1999, 2000) is applied
to the ship propulsion benchmark. The results are then used to design diagnostic
nonlinear observers for successful FDI in the next section.

First, a nonlinear state-affine model of the propulsion system is stated as it is used
in DePersis and Isidori (1999). Then different scenarios are defined in order to
apply the geometric approach followed by the application results.

4.2.1 Model description

The propulsion system dynamics have to be rewritten in the following input-
affine form to be able to apply the geometric approach as stated in DePersis and
Isidori (2000) and Chapter 3:

_x = f(x) +
mX
i=1

gi(x)ui + l(x)� +
sX

i=1

pi(x)wi (4.18)

yj = hj(x); j 2 l (4.19)

One way to obtain the required form (4.18) and (4.19) is to include sensor faults
as pseudo-actuator faults. A procedure for that is described in Massoumnia
(1986a) and Hashtrudi-Zad and Massoumnia (1999). For the propulsion sys-
tem it can be done by adding the following additional linear dynamics to the
original system for the shaft speed sensor fault:

_x�n = A�nx�n + L�n��n (4.20)

y�n = C�nx�n = �nsensor (4.21)

where ��n = _�nsensor, A�n = 0, and L�n = C�n = 1. Obviously, the con-
ditions as stated in Hashtrudi-Zad and Massoumnia (1999) are fulfilled, i.e. the
number of columns of L�n is equal to the number of rows in C�n, L is injective,
C is surjective, and the order of the additional dynamics (n�n = 1) is equal to
(or greater than) the dimension of the sensor fault dim(�nsensor) = 1.
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The extra dynamics for the pitch sensor can be written in the same way by re-
placing �n by ��:

_x�� = A��x�� + L����� (4.22)

y�� = C��x�� = ��sensor (4.23)

where ��� = _��sensor, A�� = 0, and L�� = C�� = 1.

As a result the following dynamics are obtained for the whole system when using
equations (4.1) - (4.4), (4.7) - (4.11), and (4.14) - (4.17); considering positive
shaft speed (n > 0), and neglecting the saturation phenomena, the unknown
term X _U , and the measurement noise:

_x = f(x) + g(x)u + l(x)� + p(x)w (4.24)

y = h(x) (4.25)

where
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Remarks: When looking at equations (4.11) and (4.13) it can be see that the
fuel index Y and its measurement Ym are functions of nref and nm. Hence, Ym
gives no useful redundant information when the saturation effects are neglected
no faults are considered in the governor. Governor faults have been handled in
the industrial actuator benchmark introduced by Blanke and Patton (1995). The
FDI-results are described in (Bøgh (1997)). Therefore, the measurement of the
fuel index Ym is omitted in the following analysis to ease the computation.

The gain fault �ky is modeled as an additive fault by using the notation
�1 = �kyY .

The fault vector � contains four different faults instead of being scalar as in
Definition 3.5 for the nonlinear FPRG. This is handled in the following way:
For the above system four different FPRGs are defined, one for each fault, by
considering the remaining three faults as additional disturbances (i.e. including
them in the disturbance vector w), more details are given in the next subsection.

During the whole analysis all initial conditions are considered to be equal
zero, x0 = x(t = 0) = 0. Furthermore, as the propeller has a controllable
pitch (CPP) the shaft speed is considered to be positive (n > 0) corresponding
to normal operation. Without loss of generality for the FDI problem the pitch �
is considered positive for the whole operating range.
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4.2.2 Application & results

In order to apply the geometric approach, as described in the previous chapter,
the FDI problem for the ship benchmark (see Section 4.1.3) has to be formulated
as a combination of several different FPRGs. This is due to the fact that there
are four different faults to be handled in the benchmark and that a FPRG only
considers FDI for one fault at a time.

System (4.24) and (4.25) offers several possibilities to define these FPRGs, be-
cause different subsystems can be considered next to the overall system. The
following scenarios are treated on the next pages:

� Complete system with controllers and disturbances Qf and Text

� Complete system with controllers and without disturbances Qf and Text

� Propeller pitch loop with pitch controller

� Shaft speed loop with governor and disturbances Qf and Text

� Shaft speed loop with governor and without disturbances Qf and Text

For each of these scenarios different FPRGs are defined and analyzed in the next
subsections. The geometric approach is applied to each of them following eight
steps:
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Methodology for applying the geometric approach to the different
FPRGs:

1. Reducing the model (4.24) and (4.25) to the subsystem of the con-
sidered FPRG.

2. Choosing the fault �i, i 2 f1; : : : ; 4g that is to be detected and
isolated.

3. Adding the remaining 3 faults �j , j 2 f1; : : : ; 4g ^ j 6= i,
to the disturbances w 2 R

s ) �new = �i; lnew(x) =
li(x); wnew = [�j w]T , and pnew(x) = [lj(x) p(x)].

4. Determining P = spanfpnewi g, where pnewi , i = 1; : : : ; (s + 3),
are the column vectors of pnew(x).

5. Using algorithm (3.59) and (3.60) to calculate �P� .

6. Using algorithm (3.62) and (3.63) to calculate
Q = (o.c.a.((�P

� )
?))?.

7. If li(x) =2 Q, then designing a coordinate transformation to obtain
a subsystem as described in Theorem 3.11. If li(x) 2 Q, then the
analyzed FPRG cannot be solved for arbitrary fault signals.

8. Observability analysis of the resulting subsystem that is only af-
fected by the considered fault, i.e. where the corresponding com-
ponents of li(x) 6= 0.

4.2.2.1 Complete system with controllers and disturbances

The complete system (4.24) and (4.25) includes four different faults; described
by the four components of vector �. Hence, four different FPRGs can be de-
fined as stated in Table 4.5. When applying the above presented methodology in
order to solve the single FPRGs the following results can be obtained (Detailed
description of the calculations is given in Appendix C.1.):
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Step 1 can be omitted as the complete system is considered, i.e. the model (4.24)
and (4.25) is used. The next two steps (2 and 3) are covered by Table 4.5 and
the reordering of the corresponding matrices. The distribution Pi,i 2 f1; : : : ; 4g
for the ith FPRG can be determined by Pi = spanfpnewj (x)g, j 2 f1; : : : ; 5g.

Starting the algorithm (3.59) and (3.60) to calculate �P
i

� for FPRG 1 up to FPRG
4 leads in all cases to the same result: �P

i

� = P i.

The next step is to obtain the observability codistribution o.c.a.((�P
i

� )?). As
it turns out that o.c.a.((�P i

� )?) = 0 for all i it can easily be seen that Qi =
(o.c.a.((�P i

� )?))? = R
7 . As a consequence the condition lnew(x) =2 Qi is not

fulfilled, hence, the FPRGs 1-4 are not solvable for arbitrary fault signals.

FPRG Fault (�new) Disturbances (wnew)

FPRG 1 �kyY _�nsensor, _��sensor, � _�inc, Text , Qf

FPRG 2 _�nsensor �kyY , _��sensor, � _�inc, Text, Qf

FPRG 3 _��sensor �kyY , _�nsensor, � _�inc, Text, Qf

FPRG 4 � _�inc �kyY , _�nsensor, _��sensor, Text, Qf

Table 4.5: FPRGs for the complete system with controllers and disturbances.

4.2.2.2 Complete system with controllers and without disturbances

In the previous subsection it was shown that the FPRGs 1-4 cannot be solved.
Hence, there is no way to isolate one fault from the disturbances and the other
faults. In order to check if one fault can be isolated from the others this section
considers the complete system (4.24) and (4.25), but neglects the disturbances
Qf and Text. The resulting FPRGs are listed in Table 4.6. The motivation for
trying these FPRGs comes from the fact that there might be methods to handle
with the disturbance afterwards; e.g. during the residual evaluation as mentioned
in the conclusions of Chapter 3.

In order to analyze the solvability of the FPRGs 5-8 the above introduced
methodology is followed. For details about the calculations the reader is re-
ferred to Appendix C.2. Again the complete system is considered and the steps
2 and 3 are covered by Table 4.6 and the reordering of the corresponding matri-



4.2 Geometric FDI analysis 67

ces. For each FPRG the distribution Pi, i 2 f5; : : : ; 8g can be determined by
P i = spanfpnewj (x)g, j 2 f1; : : : ; 3g. Then the algorithm (3.59) and (3.60) is

applied to calculate �P i

� . For FPRG 5-8 the algorithm stops at k� = 1 instead
of k� = 0 as it did for FPRG 1-4. The next step is then to obtain the observ-
ability codistribution o.c.a.((�P i

� )?). It turns out to be equal to zero, just like in
the previous section. Hence, the unobservability distribution can be determined
as: Qi = R

7 . As a consequence the FPRGs 5-8 are not solvable, because the
condition l(x)new =2 Qi is not fulfilled.

FPRG Fault (�new) Disturbances (wnew)

FPRG 5 �kyY _�nsensor, _��sensor, � _�inc

FPRG 6 _�nsensor �kyY , _��sensor, � _�inc

FPRG 7 _��sensor �kyY , _�nsensor, � _�inc

FPRG 8 � _�inc �kyY , _�nsensor, _��sensor

Table 4.6: FPRGs for the complete system with controllers and without distur-
bances Qf and Text.

4.2.2.3 Pitch loop with pitch controller

The FPRGs defined for the complete system could not be solved as shown above.
Hence, this section considers only the pitch loop, which is only affected by two
faults - the pitch sensor fault _��sensor and the incipient actuator fault �_�inc.
This subsystem is linear and there are no disturbances present. Two different
linear FPRGs are considered in order to investigate the possibility for detection
and isolation of these two faults. They are described in Table 4.7.

To get started with the geometric analysis step 1 is to reduce the model (4.24)
and (4.25) to the considered subsystem:

_x = f(x) + g(x)u + l(x)� + p(x)w

y = h(x)
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where
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FPRG Fault (�new) Disturbance (wnew)

FPRG 9 _��sensor � _�inc

FPRG 10 � _�inc _��sensor

Table 4.7: FPRGs for the pitch loop with controller.

When following the remaining seven steps of the introduced methodology it can
be seen that the FPRG 9 and FPRG 10 are not solvable either. Reason for this is
that also for FPRG 9 and FPRG 10 the condition l(x)new =2 Qi is not fulfilled.
To see the detailed calculations the reader is referred to Appendix C.3.

4.2.2.4 Shaft speed loop with governor and disturbances

In this section the shaft speed loop is considered. Together with the pitch loop
system from the previous section it forms the complete system. Hence, the
shaft speed loop is the only remaining subsystem to be analyzed. It includes
the shaft speed controller (governor) and the external disturbances Text and Qf .
The pitch � is considered as fault-free input to this subsystem, because there are
other known methods to detect pitch faults and the occurence of multiple (si-
multaneous) faults is very unlikely. Therefore, the shaft speed loop is affected
by two different faults, the diesel engine gain fault �kyY and the shaft speed
sensor fault _�nsensor. Table 4.8 describes the resulting FPRGs. Model (4.24)
and (4.25) can be reduced to the following model of the shaft speed loop with
governor and disturbances (step 1 of the analysis methodology):

_x = f(x) + g(x)u + l(x)� + p(x)w

y = h(x)
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FPRG Fault (�new) Disturbances (wnew)

FPRG 11 �kyY _�nsensor, Text, Qf

FPRG 12 _�nsensor �kyY ,Text, Qf

Table 4.8: FPRGs for the shaft speed loop with governor and disturbances.
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l(x) =
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The calculations for the geometric approach to solve FPRG 11 and FPRG 12
are given in Appendix C.4. They show that the FPRG 11 and FPRG 12 are not
solvable either, as also here the condition l(x)new =2 Qi is not fulfilled.

4.2.2.5 Shaft speed loop with governor and without disturbances

This section considers the shaft speed loop including the shaft speed controller
(governor) and neglecting the external disturbances Text and Qf . Similar to Sec-
tion 4.2.2.2 this is done in order to check the possibility two isolate the two faults
�kyY and _�nsensor from each other. The disturbance might be dealt with in the
residual evaluation phase. Two different FPRGs neglecting the disturbances are
stated in Table 4.9.

FPRG Fault (�new) Disturbances (wnew)

FPRG 13 �kyY _�nsensor

FPRG 14 _�nsensor �kyY

Table 4.9: FPRGs for the shaft speed loop with governor and without distur-
bances.

The geometric approach is applied to analyze the solvability of FPRG 13 and 14
by following the methodology described on page 65. The detailed calculations
are given in Appendix C.5. For the FPRG 13 they show that the calculation of
the unobservability distribution Q13 = (o.c.a.((�P 13

� )?))? leads to the follow-
ing result:

Q13 = (o.c.a.(P 13?))? = P 13 = span
�
(0 0 0 0 1)T

	
So it can be seen that the conditions p(x)new = (0 0 0 0 1)T 2 Q13 and
l(x)new = ( 1

�c
0 0 0 0)T =2 Q13 are fulfilled, hence, a solution for FPRG 13
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might exist. So, the next step in the procedure is to find a coordinate transfor-
mation as described in Theorem 3.11. This is done by applying the procedure
described in DePersis and Isidori (2000) (Proposition 3). Details are given in
Appendix C.5. As a result the following subsystem can be stated for the FPRG
13 that is only affected by the gain fault �kyY :

_x = f(x) + g(x)u+ l(x)� (4.26)

y1 = Um = U (4.27)

(4.28)

where

x =

0
BBBB@

Qeng

n

U

Yi

1
CCCCA u =

0
B@ nref

�

nm

1
CA � = �kyY

f(x) =

0
BBBB@

� 1
�c
Qeng +

ky
�c
Yi

1
Im
Qeng

1
m
R(U) + 1�tT

m
TjnjVa(1� w)nU

0

1
CCCCA l(x) =

0
BBBB@

1
�c

0

0

0

1
CCCCA

g(x) =

0
BBBB@

ky kr
�c

0 �ky kr
�c

0 � 1
Im

�
Qjnjnn

2 +QjnjVa(1� w)nU
�

0

0 1�tT
m

Tjnjnn
2 0

kr
�i

0 �kr
�i

1
CCCCA

Hence, building an observer for the (x; y1)-system, considering the shaft speed
measurement nm = n+ x�n as additional input, while neglecting the fault, i.e.
� = 0, could solve the FPRG 13. However, this requires that the subsystem is
observable and an observer can be designed.

The observability can be analyzed by taking a look at the observability codis-
tribution (see Nijmeijer and van der Schaft (1990) or equation (3.48), on page
39):

dO(x) = spanfdH(x); H 2 Og; x 2 X
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For the considered subsystem it can be shown that the dimension of dO(x)
equals the dimension of X (n = 4) as:

dO(x) = spanfdh2; dLg2h2; dLfLg2h2; dL
2
fLg2h2g

hence, the subsystem is locally observable. In Section 4.3 the possibility to
design an observer for the subsystem (considering � = 0) in order to obtain a
residual r that solves the FPRG 13 is investigated.

Very similar considerations are made for FPRG 14. The detailed calculations
can be found in Appendix C.5. Following the procedure in order to obtain the
unobservability distribution Q14 = (o.c.a.((�P 14

� )?))? leads to the following
result:

Q14 = (o.c.a.(S141
?
))? = spanf(1 0 0 0 0)T ; (0 1 0 0 0)T ; (0 0 0 1 0)T g

So it can be seen that the conditions p(x)new = ( 1
�c

0 0 0 0)T 2 Q14 and

l(x)new = (0 0 0 0 1)T =2 Q14 are fulfilled, hence, a solution for FPRG 14
might exist. So, the next step in the procedure (described on page 65) is to find
a coordinate transformation as described in Theorem 3.11. This is done by ap-
plying the procedure described in DePersis and Isidori (2000) (Proposition 3).
Details are given in Appendix C.5. As a result the following subsystem can be
stated for the FPRG 14 that is only affected by the sensor fault _�nsensor:

_x = f(x; nm) + g(x; nm)u+ l(x)�

y1 = Um = U

nm = n+ x�n

where

x =

 
U

x�n

!
u = � � =

�
_�nsensor

�
l(x) =

 
0
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!

f(x; nm) =

 
1
m
R(U) + 1�tT

m
TjnjVa(1� w)(nm � x�n)U
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1�tT
m

Tjnjn(nm � x�n)
2

0

!
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When considering the fault-free subsystem, i.e. taking out the sensor fault effect,
the system reduces to the subsystem:

_x = f(x; nm) + g(x; nm)u (4.29)

y1 = Um = U (4.30)

where

x = U u = � g(x; nm) =
1� tT
m

Tjnjnn
2
m

f(x; nm) =
1

m
R(U) +

1� tT
m

TjnjVa(1� w)nmU

which is obviously observable. In the Section 4.3 an observer is built for this
subsystem (considering � = 0) in order to obtain a residual r that solves the
FPRG 14.

4.2.3 Conclusions

From the previous section it can be seen that the FDI problem for the ship propul-
sion system cannot be solved in a geometric sense. Following the geometric idea,
as presented by DePersis and Isidori (2000) and described in Chapter 3, does not
lead to residuals that are only affected by a particular fault. This has several rea-
sons.

One reason for this lies in the dynamics of the system. The pitch and shaft speed
loop are coupled via the propeller dynamics. This makes it impossible to sepa-
rate the shaft speed loop from the pitch faults. Another problem is that for the
pitch sensor fault and the incipient pitch fault the points of entry into the system
are only separated by an integration. That means obviously that the two faults
cannot be isolated from each other, because arbitrary fault signals are consid-
ered. An abrupt hydraulic pressure loss (�_�inc described by a step function)
would affect the system in a similar way as a drift in the pitch measurement
( _��sensor described by a ramp function). Another reason why successful FDI
is not possible is that the disturbances Qf and Text act directly on the propeller
dynamics and, hence, also on the measurements. As a consequence, there exists
no observable subsystem for each fault that is not effected by the disturbances as
shown above.

However, these problems count also for other FDI approaches. Hence, they can-
not solve the FDI problem either, unless they use additional information. For
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example, some methods exploit additional information about the dynamics of
the disturbances. This is not done by the geometric approach as it considers
arbitrary fault and disturbance signals. So, obviously the geometric approach
cannot handle FDI problems where the disturbances act in the same ’direction’
as the faults.

In practice it might be possible to solve this problem by additional means, e.g.
additional residual evaluation. This is due to the fact that in reality the signals
are not completely arbitrary. Hence, there might exist methods to eliminate the
disturbance effect on the residual, e.g. filtering the residual. When the dis-
turbance dynamics are significantly slower than the fault dynamics a high-pass
filter might help. Another situation might be that the disturbance effect is small
enough, such, that the FDI problem could be solved by a higher threshold in the
decision phase. These possibilities using additional methods to solve the FDI
problem need specific analysis, hence, there does not exist a general approach.
Therefore, FDI design cannot be fully automated.

However, the geometric approach is a powerful and systematic tool to find sub-
systems and structures for the observer design. This is important in order to
obtain useful residuals. The advanced mathematics might be an obstacle for en-
gineers, who are not familiar with the different geometric calculations, but once
learned it is straightforward computation. Hence, it might be interesting to in-
vestigate to which degree the geometric approach could be automated (e.g. as
analysis-tool) in future research.

In the next section two observers are designed based on the results from the ge-
ometric analysis given in the previous section. The goal is to generate residuals
that can solve the FDI problem for the propulsion system.
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4.3 Observer design for FDI

In the previous section two different locally observable subsystems, (4.26)-(4.27)
and (4.29)-(4.30), were obtained by the geometric analysis of the propulsion
system. Each of these subsystems is affected by only one fault when the pitch
measurement is considered to be fault-free. Hence, two observers are designed
in the following subsections to detect and isolate the two different shaft speed
loop faults. Additionally, an observer for the pitch loop is designed to detect the
pitch faults. At the end of this section an adaptive nonlinear observer is given for
comparison.

4.3.1 FDI in shaft speed loop

The following two subsections describe the observer design for the obtained sub-
systems. The goal is to use the observers as residual generators to detect and
isolate the shaft speed loop faults �ky and �nsensor.

4.3.1.1 FDI for the diesel engine gain fault �ky

Subsystem (4.26)-(4.27) is by construction only affected by the diesel engine
gain fault �ky , when the pitch loop is considered to be fault-free. Hence, an
observer is designed in the following, such, that it can be used for FDI.

To start the fault-free subsystem can be rewritten as:

_x = f(x) + g(x)u (4.31)

y = U (4.32)

where x =

 
n

U

!
f(x) =
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1
m
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m
TjnjVa(1� w)nU

!

g(x) =
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Im
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Qjnjnn
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2
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�m

!

because the diesel engine dynamics are very fast (small �c) comparing to ship
dynamics (4.1) can be replaced by Qeng = (ky + �ky)Ym; where Ym denotes
the available fuel index measurement. To return to the original notation of the
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ship dynamics the following notation is used for the subsystem:

_n =
1

Im
ky Ym � 1

Im

�
QjnjVa(1�w)nU +Qjnjn n

2
�
� (4.33)

_U =
1

m
R(U) +

1� tT
m

TjnjVa(1� w)nU +
1� tT
m

Tjnjn n
2 � (4.34)

y = U (4.35)

with the fuel index measurement Ym and the pitch measurement �m as external
inputs. For system (4.33) and (4.35) an observer can be given of the following
form:

Observer1:

_̂n =
1

Im
ky Ym � 1

Im

h
QjnjVa(1� w)n̂Û +Qjnjnn̂

2
i
�m +K n̂

�ky
(Um � Û)

(4.36)

_̂
U =

1

m
R(Û) +

1� tT
m

[TjnjVa(1� w)n̂Û + Tjnjnn̂
2�m] +KÛ

�ky
(Um � Û)

(4.37)

ŷ = Û (4.38)

The stability of Observer1 can be proven following Gauthier et al. (1992). De-
tails of the proof are outlined in Chapter 5. For FDI a residual can be obtained
using the output (ship speed estimate) of Observer1 and the ship speed measure-
ment Um in the following way:

Residual1: r1 = Um � Û (4.39)

Residual1 is by construction only affected by the gain fault �ky as shown by the
geometric approach (when considering the pitch signal to be fault-free). As the
observer is stable the residual behaves in the fault-free case, such, that r1 ! 0
for t!1.
For the estimation errors:

e1n = n� n̂ e1U = U � Û
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the following error dynamics can be given (as here � = �m:

_e1n =
1

Im
�ky Y � 1

Im

h
QjnjVa(1� w)(nU � n̂Û) +Qjnjn(n

2 � n̂2)
i
�m

�K n̂
�ky

(Um � Û) (4.40)

and

_e1U = _r1 =
1

m
(R(U)�R(Û)) +

1� tT
m

[TjnjVa(1� w)(nU � n̂Û)

+ Tjnjn(n
2 � n̂2)�m]�KÛ

�ky
(Um � Û) (4.41)

Looking at the estimation error dynamics (4.40) one could think that an occur-
ring gain fault �ky would have a direct impact on _e1n leading to a growing esti-
mation error: n 6= n̂. As can be seen from (4.41) this would then also affect the
shaft speed estimate , i.e. U 6= Û . Hence, Residual1 would deviate from zero in
case of a gain fault: r1 6= 0. However, as the dynamics are nonlinear and coupled
the argumentation is not that simple. Simulation results given in the next section
show that the gain fault �ky indeed affects Residual1.

When taking a closer look it can be seen that Observer1 offers also another pos-
sibility to generate a residual when using the shaft speed measurement nm:

Residual2: r2 = nm � n̂ (4.42)

Obviously, this residual is also affected by the shaft speed sensor fault �nsensor.
The residual dynamics can be stated as follows:

_r2(nm; n̂) = _e1n +
_�nsensor (4.43)

where _e1n is described by (4.40). The FDI performance of Residual1 and Resid-
ual2 will be demonstrated by simulation results in the next section.

4.3.1.2 FDI for the shaft speed sensor fault �nsensor

In this subsection an observer is designed for subsystem (4.29) - (4.30) in or-
der to detect the shaft speed sensor fault �nsensor. As shown by the geometric
approach in the previous section this subsystem is only affected by one fault
(�nsensor), when the pitch loop is considered to be fault-free. Hence, the ob-
servation error can be used as a residual to obtain FDI for the ship propulsion
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system.

To return to the original notation the following notation is used for subsystem
(4.29) - (4.30):

_U =
1

m
R(U) +

1� tT
m

[TjnjVa(1� w)nm U + Tjnjn n
2
m �] (4.44)

y1 = Um = U (4.45)

with the shaft speed measurement nm and the pitch measurement � as external
inputs. For system (4.44) and (4.45) an observer can be given of the following
form:

Observer2:

_̂
U =

1

m
R(Û) +

1� tT
m

[TjnjVa(1� w)nm Û + Tjnjn n
2
m �m] +KÛ

�n(U � Û)

(4.46)

ŷ = Û (4.47)

The stability of Observer2 can be proven following Gauthier et al. (1992). De-
tails of the proof are outlined in Chapter 5. For FDI a residual can be obtained
using the output (ship speed estimate) of Observer2 and the ship speed measure-
ment Um in the following way:

Residual3: r3 = Um � Û (4.48)

This residual is only affected by the shaft speed sensor fault �nsensor as shown
by the geometric approach. The observer is stable, hence, in the fault-free case
r3 ! 0 for t!1. The residual dynamics can be stated as follows:

_e3U = _r3 =
1

m
(R(U)�R(Û)) +

1� tT
m

[TjnjVa(1� w)(nU � nmÛ)

+ Tjnjn(n
2 � n2m)�m]�KÛ

�n(Um � Û) (4.49)

as nm = n+�nsensor equation (4.49) can rewritten as:

_e3U = _r3 =
1

m
(R(U)�R(Û)) +

1� tT
m

[TjnjVa(1� w)n(U � Û)

� TjnjVa(1� w)�nsensorÛ � Tjnjn(2n�nsensor +�n2sensor)�m]

�KÛ
�n(Um � Û) (4.50)
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Hence, �nsensor affects Residual3. The FDI performance of r3 will be demon-
strated by simulation results in the next section.

4.3.2 FDI in pitch loop

The previous section describes the design of two different residual generators
(observers). The resulting residuals can be used for detection and isolation of
the two shaft speed loop faults; however, only when the pitch faults are not
present. This can be seen when looking at Residual1 and Residual3 and the
corresponding dynamics (4.41) and (4.50), because while the system state is
based on the real pitch � the observers use the pitch measurement �m. Hence,
this subsection describes an observer design for the pitch loop in order to detect
the two pitch faults ��sensor and � _�inc.

The pitch loop is described by the equations (4.14) - (4.17). They can be stated
as follows when neglecting the measurement noise and the saturation effects:

u _� = kt (�ref � �m) _� = u _� +� _�inc y = �m = � +��sensor
(4.51)

For the linear system (4.51) a linear observer can be given in the following way
when neglecting the pitch faults:

Observer3:

_̂
� = u _� +K �̂

��(�m � �̂) ŷ = �̂ (4.52)

where u _� = kt (�ref � �m) is considered as input signal. For detection of pitch
faults a residual can be obtained using the output (pitch estimate) of Observer3
and the pitch measurement �m in the following way:

Residual4: r4 = �m � �̂ (4.53)

The fault-free dynamics of Residual4 are given by:

_r4 = _�m � _̂
� = u _� � u _� �K �̂

��(�m � �̂) = �K �̂
�� r4 (4.54)

where it can be seen that stability can be assured by choosing a positive K�̂
��,

because the dynamics are linear.
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Taking the possible pitch faults ��sensor and � _�inc into account, the following
dynamics can be obtained for the dynamics of Residual4:

_r4 = _�m � _̂
� = ( _� + _��sensor)� _̂

�

= (u _� +� _�inc + _��sensor)� u _� �K �̂
��(�m � �̂)

= � _�inc + _��sensor �K �̂
��(�m � �̂) (4.55)

From the dynamics (4.55) it can be seen that Residual4 is affected by both pitch
faults, hence, the residual can be used to detect the pitch faults. The FDI perfor-
mance of r4 will be demonstrated by simulation results in the next section.

4.3.3 Adaptive nonlinear observer

Designing an observer for observable systems is not straight-forward. Depend-
ing on the system structure there are different possibilities to design an observer.
Hence, the FDI performance of the different observers can be different from de-
sign to design. This subsection presents a fault detection approach (Blanke et
al. (1998),Blanke and Lootsma (1999)) based on an adaptive nonlinear observer
design given by Cho and Rajamani (1997). Its FDI performance is illustrated by
simulation results in the following section for comparison with the designs given
above.

The observer is designed for the following subsystem describing the torque bal-
ance (4.2):

Im _n = Qeng �Qprop �Qf y = nm (4.56)

Neglecting the disturbance Qf (friction torque) and using the known expressions
for Qeng and Qprop leads to the following observable subsystem (including the
shaft speed loop faults and considering the pitch loop to be fault-free):

_n =
1

Im
(ky +�ky)Y � 1

Im

�
QjnjVa(1� w)nU +Qjnjn n

2
�
� (4.57)

y = n+�nsensor (4.58)

In order to design an adaptive observer for system (4.57) and (4.58) as described
in Cho and Rajamani (1997) the system is stated for the fault-free case as follows:

_x = �(x; u2; u3) + �u1 (4.59)

y = x (4.60)



4.3 Observer design for FDI 81

where

�(x; u2; u3) = � 1

Im

�
QjnjVa(1� w)nUm +Qjnjn n

2
�
�m

x = n; u1 = Ym; u2 = Um; u3 = �m; � =
1

Im
ky

using the measurements Ym, Um, and �m as external inputs u1, u2, and u3.

Then an observer can be designed in the following way:

Observer4:

_̂n = � 1

Im

�
QjnjVa(1� w) n̂ Um +Qjnjn n̂

2
�
�m + �̂Ym + L (nm � n̂)

(4.61)

ŷ = n̂ (4.62)

with the parameter update:

_̂
� = p Ym (nm � n̂) (4.63)

and �̂(t = 0) = �0. �0 =
1
Im
ky describes the nominal value for parameter �

in the fault-free case. Stability of Observer4 is proven in Blanke et al. (1998).

Observer4 estimates the shaft speed and adapts to the actual value of the param-
eter �. Hence, two different residuals can be generated for FDI:

Residual5: r5 = nm � n̂ (4.64)

and

Residual6: r6 = �nom � �̂ (4.65)

Obviously, parameter � changes in the propulsion system when a diesel engine
gain fault occurs; �actual = 1

Im
(ky + �ky). This will clearly affect Resid-

ual6, because �̂ ! �actual, when no other faults occur, due to the design of
Observer4. Hence, the following relations hold for Residual6:

r6 =
�
�nom � �̂

�
!
�

1

Im
ky � 1

Im
(ky +�ky)

�
= � 1

Im
�ky (4.66)

_r6 = � _̂
� = �p Ym (nm � n̂) = �p Ym (n+�nsensor � n̂) (4.67)
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The equations (4.66) and (4.67) illustrate that Residual6 is affected by both shaft
speed loop faults, �ky and �nsensor, when Ym 6= 0.

For Residual5 the following dynamics can be derived:

_r5 = _nm � _̂n =

�
1

Im
(ky +�ky)� �̂

�
Y + _�nsensor

� 1

Im

�
QjnjVa(1� w) (n� n̂)U +Qjnjn (n

2 � n̂2)
�
�

� L (n� n̂)� L�nsensor (4.68)

Obviously, Residual5 is also affected by both shaft speed loop faults, �ky and
�nsensor. The FDI performance of Observer4 will be demonstrated by simula-
tion results in the next section.
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4.4 Simulation results

Section 4.3 describes the design of four different observers (residual generators).
Furthermore, it shows how to generate six different residuals by using the system
outputs (measurements) and the observer outputs (output estimates). This sec-
tion presents simulation results obtained by applying these residual generators to
the simulation model of the ship propulsion system (described in Section 4.1).
For the fault simulation the fault scenario described in Section 4.1.3 is consid-
ered.

In the simulations all four faults given in Table 4.1 (page 54) are simulated to
test the FDI performance of the different residuals. The total simulation time
is 3500sec and the faults occur at the in Table 4.4 given points of time. This
sequence is used to provide the possibility to compare the obtained results with
those obtained by other FDI approaches.

First, simulation results are given showing the ship propulsion system’s behav-
ior in the fault-free and in the faulty case. Then simulation results illustrate the
residuals’s behavior and sensitivity to the different faults. Section 4.4.4 takes a
closer look at the residuals’s performance and how they can be used to obtain
successful FDI.

4.4.1 Ship propulsion system in the fault-free case

For the simulations the fixed maneuver defined for the ship propulsion bench-
mark is considered. It has a duration of 3500sec. During this maneuver the ship
is accelerated three times and decelerated once.

The corresponding reference signals for the lower-level control nref and �ref are
provided by the upper-level control. They are shown in Figure 4.5. The resulting
measurements of shaft speed nm, pitch �m, ship speed Um, and fuel index Ym
(without measurement noise) are given in Figure 4.6 for the fault-free case.
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Figure 4.5: Reference signals nref and �ref provided by the upper-level control.

4.4.2 Ship propulsion system in the faulty case

For the faulty case all faults are simulated as described by Table 4.4. The re-
sulting measurements are shown in Figure 4.7. The fault effects can be seen by
comparing the measurements with those for the fault-free case given in Figure
4.6.
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Figure 4.6: Measured shaft speed nm, pitch �m, ship speed Um, and fuel index
Ym in the fault-free case (without measurement noise).
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Figure 4.7: Measured shaft speed nm, pitch �m, ship speed Um, and fuel index
Ym in the faulty case (without measurement noise).
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4.4.3 Residual simulation

Section 4.3 describes the generation of six different residuals. In this section the
simulation results for these residuals are given for the full sequence of 3500sec.
The simulations include all faults as described by Table 4.4. Measurement noise
is not simulated to enhance visibility. Small fault effects would otherwise not be
visible. However, for the residual evaluation it has been considered during the
simulations. The propeller coefficients QjnjVa , Qjnjn, TjnjVa , and Tjnjn are gen-
erated online by using the correct measurements and the function TQ_const.m
for MATLABTM . The function is part of the linear package linear.zip of the ship
propulsion benchmark software. This is done due to the fact that the focus of
this chapter lies on fault diagnosis and not on model identification.

4.4.3.1 Simulation of Residual1

Residual1 is generated in the following way:

r1 = Um � Û

where Û is the output of Observer1 described by (4.36) - (4.38). The gains and
initial conditions for the observer are chosen as follows:
K n̂
�ky

= 0:001, K Û
�ky

= 0:01, n̂(t = 0) = 9 rad=s, and Û(t = 0) = 0:1m=s.
The simulation result is shown in Figure 4.8.
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Figure 4.8: Residual1, r1 = Um � Û . Simulation including all faults and no
measurement noise.

4.4.3.2 Simulation of Residual2

Residual2 is generated in the following way:

r2 = nm � n̂

where n̂ is the inner state of Observer1 described by (4.36) - (4.38). The gains
and initial conditions for the observer are chosen as follows:
K n̂
�ky

= 0:001, K Û
�ky

= 0:01, n̂(t = 0) = 9 rad=s, and Û(t = 0) = 0:1m=s.
The simulation result is shown in Figure 4.9.

4.4.3.3 Simulation of Residual3

Residual3 is generated in the following way:

r3 = Um � Û

where Û is the output of Observer2 described by (4.46) and (4.47). The gain and
initial condition for the observer are chosen as follows:
KÛ
�n = 0:05, and Û(t = 0) = 0:1m=s.

The simulation result is shown in Figure 4.10.
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Figure 4.9: Residual2, r2 = nm � n̂. Simulation including all faults and no
measurement noise.
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Figure 4.10: Residual3, r3 = Um � Û . Simulation including all faults and no
measurement noise.
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Figure 4.11: Residual4, r4 = �m � �̂. Simulation including all faults and no
measurement noise.

4.4.3.4 Simulation of Residual4

Residual4 is generated in the following way:

r4 = �m � �̂

where �̂ is the output of Observer3 described by (4.52). The gain and initial
condition for the observer are chosen as follows:
K �̂
�� = 0:05, and �̂(t = 0) = 0:1.

The simulation result is shown in Figure 4.11.

4.4.3.5 Simulation of Residual5

Residual5 is generated in the following way:

r5 = nm � n̂

where n̂ is the output of Observer4 described by (4.61) - (4.63). The gains and
initial conditions for the observer are chosen as follows:
L = 0:1, p = 0:1, n̂(t = 0) = 9 rad=s, and �̂(t = 0) = 1

2�nom. The
simulation result is shown in Figure 4.12.
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Figure 4.12: Residual5, r5 = nm � n̂. Simulation including all faults and no
measurement noise.

4.4.3.6 Simulation of Residual6

Residual6 is generated in the following way:

r6 = �nom � �̂

where �̂ is the adapted parameter of Observer4 described by (4.61) - (4.63). The
gains and initial conditions for the observer are chosen as follows:
L = 0:1, p = 0:1, n̂(t = 0) = 9 rad=s, and �̂(t = 0) = 1

2�nom. The
simulation result is shown in Figure 4.13.
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Figure 4.13: Residual6, r6 = �nom � �̂. Simulation including all faults and no
measurement noise.

4.4.4 FDI possibilities

As can be seen from Figures 4.8 - 4.13 the residuals react on the different faults,
i.e. they deviate from zero. To investigate the resulting FDI possibilities it is nec-
essary to take a closer look at the different residuals. In the Subsection 4.4.4.1
each fault is handled by zooming in on the six different residuals for the corre-
sponding time of occurrence given in Table 4.4. The residuals are also plotted for
the fault-free case to stress the fault effects. Robustness issues and the measure-
ment noise are considered in Subsection 4.4.4.2 and 4.4.4.3. A final overview
over the FDI possibilities is given in Subsection 4.4.4.4.

4.4.4.1 Residual overview

An overview over all six residuals is given in Figure 4.14. Figures 4.15 to 4.20
are zooming in on all residuals for each fault.
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Figure 4.14: Overview over all six residuals (including all faults and no mea-
surement noise). The solid lines show the residuals for the faulty case, while the
dashed lines show the residuals for the fault-free case.
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Figure 4.15: All six residuals; zoom-in for ��high (180s�210s). The solid lines
show the residuals for the faulty case, while the dashed lines show the residuals
for the fault-free case. The small deviations around t = 100s are a result of the
initialization phase.
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Figure 4.16: All six residuals; zoom-in for �nhigh (680s�710s). The solid lines
show the residuals for the faulty case, while the dashed lines show the residuals
for the fault-free case.
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Figure 4.17: All six residuals; zoom-in for �_�inc (800s�1700s). The solid lines
show the residuals for the faulty case, while the dashed lines show the residuals
for the fault-free case. The small deviations around t = 800s are a result of the
shaft speed fault �nhigh.
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Figure 4.18: All six residuals; zoom-in for ��low (1890s � 1920s). The solid
lines show the residuals for the faulty case, while the dashed lines show the
residuals for the fault-free case.
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Figure 4.19: All six residuals; zoom-in for �nlow (2640s � 2670s). The solid
lines show the residuals for the faulty case, while the dashed lines show the
residuals for the fault-free case.
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Figure 4.20: All six residuals; zoom-in for �ky (3000s�3500s). The solid lines
show the residuals for the faulty case, while the dashed lines show the residuals
for the fault-free case. The small deviations around t = 2900s are a result of the
shaft speed fault �nlow.
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Figure 4.21: Residual1 (solid line) simulated for the fault-free case without mea-
surement noise. Shaft speed reference nref (dashed line) is shown with different
scaling and an offset for illustration.

4.4.4.2 Robustness issues

When looking at the residuals in Section 4.4.4.1 it can be seen that the fault-free
residuals are not always equal zero. This can clearly be seen when looking at
Residual1, Residual3, and Residual6 in Figure 4.18. In order to investigate this
effect Figure 4.21 shows Residual1 for the fault-free case. It shows clearly, when
comparing Residual1 with the shaft speed reference signal nref (Figure 4.5) that
Residual1 deviates from zero in connection with the transitions and the startup
phase. Similar effects can be shown for the other five Residuals. There are only
slight differences in the dynamical behavior of the deviations. When looking at
the residuals in Figures 4.8 - 4.13 it can be seen that these deviations are smaller
in magnitude than the fault effects; especially than those fault effects the residu-
als have been designed for.

As shown in Section 4.2 the FPRGs cannot be solved when the disturbances
Text and Qf are considered. Hence, they are neglected in all the residuals simu-
lated and shown above. Including Text in the simulations as defined by the ship
propulsion benchmark (see Figure 4.22) will have a clear impact on the residuals.
Figure 4.23 illustrates this for Residual1 in the fault-free case.



4.4 Simulation results 101

500 1000 1500 2000 2500 3000 3500
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4  Disturbance T
ext

 T
ex

t  [
kN

]

 time [s]

Figure 4.22: External force Text as it is implemented in the ship propulsion
benchmark simulation package.
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Figure 4.23: Residual1 simulated for the fault-free case without measurement
noise including the disturbance Text as given in Figure 4.22. Using the initial
condition n̂(t = 0) = 0 rad=s, and Û(t = 0) = 0m=s.
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Figure 4.24: Residual4 simulated including all faults and measurement noise.

4.4.4.3 Measurement noise

Until now measurement noise has been omitted to enhance the readability of the
simulation results. However, for the final residual evaluation in the next subsec-
tion to obtain fault detection and isolation for the ship propulsion system it has
to be considered. In this subsection it is illustrated for Residual4 what happens
when the measurement noise is considered and how it can be handled.

Figure 4.24 shows the simulation result for Residual4 when the measurement
noise is considered. Obviously, the residual evaluation becomes more difficult in
the presence of measurement noise than for the noise-free case given in Figure
4.11. For faults like the pitch sensor fault ��low occurring at t = 1890s a sim-
ple threshold testing (threshold = �0:5) would be sufficient for detection. This
is due to the abrupt occurrence and the high magnitude. However, fault effects
with a lower magnitude might hide in the noise. Furthermore, it becomes more
difficult to detect incipient faults like �_�inc. As can be seen from Figure 4.24 it
is not possible to use a simple threshold testing due to the alternating behavior
of the signal.

There exist several statistical methods to detect a change of mean value in
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stochastic signals (Basseville and Nikiforov (1993, 1994)). They can be applied
to solve the problem of residual evaluation for a residual containing measure-
ment noise. A simple version of the well-known CUSUM-algorithm has been
used for the residual evaluation in this thesis. It is described in detail in Bas-
seville and Nikiforov (1993)[Chapter 2], hence, it will only be reviewed briefly
in the following.

The cumulative sum (CUSUM) algorithm is used to detect a change of mean
value in the residuals. For this purpose the residual signal r is considered to be
Gaussian (as the measurement noise is Gaussian) having a mean value �r and a
variance2 �2, which results in the following probability density:

p�r(r) =
1

�r
p
2�

e
� (r��r)

2

2�2r (4.69)

The interesting question for the residual evaluation is now to decide whether the
mean value is zero �r = 0 or higher than a given threshold �r � threshold. A
powerful measure to test between the two hypothesis:

H0 : �r = �rno fault = 0 and H1 : �r = �rfault = threshold

is the log-likelihood ratio defined as:

s(r) = ln
p�rfault (r)

p�rno fault (r)
: (4.70)

The log-likelihood ratio is a positive measure when the residual r has a mean
value that is closer to �rfault than to �rno fault , otherwise it is negative. This can
be seen easily when drawing the two corresponding Gaussian probability density
functions into one diagram.

When the variance is considered to be equal for both hypothesis the log-
likelihood ratio takes the following form (using (4.69) and (4.70)):

si = s(ri) =
�rfault � �rno fault

�2r

�
ri �

�rno fault + �rfault
2

�
:

2As the goal is to detect a change in mean value the variance could be calculated online. For
the simulations it was estimated based on the fault-free simulations.
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where ri denotes the ith sample of the residual r. The next step of the CUSUM-
algorithm is to sum up the log-likelihood ratios si for the different samples.
Which leads to the following cumulative sum:

Sk =

kX
i=1

si

Obviously, the function Sk is increasing in the faulty case (when the threshold
is chosen properly) and decreasing in the fault-free case. The final step of this
version of the CUSUM-algorithm is to calculate the following decision function:

gk = Sk �mk where mk = min
1�j�k

Sj

As this function only becomes significantly larger than zero when the function
Sk has been increasing significantly it can be used to decide whether the mean
value of the residual has become significantly different from zero or not. For this
purpose a second threshold h is needed:

gk > h : the mean value of the residual is closer to �rfault
0 � gk � h : the mean value of the residual is closer to �rno fault

For the residual evaluation it is necessary to check for a positive and a negative
change in mean value (��rfault) and to choose an appropriate value for the de-
cision threshold h.

In the following the results from applying the CUSUM-algorithm to Residual4
in Figure 4.24 are given to illustrate its applicability. The simulations are based
on the following values:

� �2r = 0:002, based on simulations of r4 for the fault-free case

� �negrfault = �0:01, in order to detect a negative change in mean of r4

� �posrfault = 0:01, in order to detect a positive change in mean of r4

Furthermore, the decision functions gk are reset to zero at t = 50, t = 250,
t = 350, and t = 1800. This is done to enable the detection of the next fault and
to compensate for the summing up from the initialization phase. The obtained
decision functions are shown in Figure 4.25. Using a second threshold h = 2:5
leads to the decision about fault or no fault as shown in Figure 4.26. The result
shows that ��high can be detected at t = 182s, �_�inc at t = 899, and �nlow at
t = 1891.
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Figure 4.25: Decision functions to detect positive and negative changes in the
mean value of Residual4 shown in Figure 4.24.
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Figure 4.26: Evaluation of the decision functions given in Figure 4.25 using a
threshold of h = 2:5.
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4.4.4.4 Residual evaluation for FDI

To obtain successful fault detection and isolation (FDI) the next task after resid-
ual generation is the residual evaluation. This is done in two separate steps -
fault detection and fault isolation. First, fault detection is considered.

As shown in the previous section, it is possible to detect the pitch faults ��high,
� _�inc, and ��low using Residual4. The detection times fulfill also the require-
ments given by Table 4.3.

From Figure 4.8, 4.9, and 4.10 it can be seen that also the other three faults
�nhigh, �nlow, and �ky can be detected. Applying a CUSUM-algorithm to
Residual2 using �2 = 0:005, �rfault = �0:2, and h = 30 leads to the detection
times given in Table 4.10. There it can be seen that also the detection times for
the shaft speed loop faults fulfill the requirements given by Table 4.3.

Fault Detection time Fault Detection time

��high 194s �nlow 2641s

��low 1895s �nhigh 682s

� _�inc not detected �ky 3003s

Table 4.10: Detection times for the different faults when evaluating Residual2.

The evaluation of the residuals r1 and r3 by using CUSUM-algorithms leads also
to the detection of the shaft speed loop faults. However, the detection times are
significantly bigger than the given requirements. They are about 10�20 seconds
slower than the values given in Table 4.3.

The next step is fault isolation. As can be seen from the simulations Residual4
only reacts on the pitch faults, which is also clear from its design, see Section
4.3. During the design it was shown that it is not possible to isolate the two
pitch faults ��sensor and � _�inc from each other, when they are considered to be
arbitrary. However, from the simulations it can be seen that they show different
behavior. As a result Residual2 is only affected by ��sensor, hence, isolation
can be obtained, when using both residuals. The shaft speed loop faults can be
isolated by using the residuals r1 and r3 as shown in Figure 4.8 and 4.10.
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4.5 Conclusions

This chapter illustrated how the geometric approach (presented in Chapter 3)
was applied to a nonlinear ship propulsion system. First the propulsion system
was described in detail. Then a detailed description of the geometric analysis
is given. The analysis results were used to design different residual generators
(observers) in order to obtain FDI. Their performance was tested by simulations
based on the ship propulsion simulation package. From the application and the
simulations the following conclusions can be drawn:

� As a result from the geometric analysis it can be concluded that the FDI
problem as stated in Section 4.1.3 cannot be solved for arbitrary fault and
disturbance signals. This can also be seen when looking at the simulation
results. If the pitch faults cannot be assumed to have the behavior they
show in the simulations it is clear that they cannot be isolated in the de-
scribed way. Also the disturbance and transition effects could have a too
big impact on the residuals.

� Obviously, it is a quite strong restriction for its applicability that the ge-
ometric approach considers arbitrary fault and disturbance signals. There
might be only few systems where FDI can be achieved for that condition.
In practical applications, like for the propulsion system, there is often ad-
ditional information available. This is completely neglected in the geo-
metric approach. The results above illustrate that taking them into account
improves significantly the possibility to obtain sufficient FDI.

� The disturbance is a problem for successful FDI as illustrated by Figure
4.23. Only, when it can be considered to be small enough a well-chosen
threshold could achieve robust FDI. Otherwise FDI is not possible.

� Also the transition effects shown in Figure 4.21 cause problems. When
the threshold is chosen big enough to avoid false alarms in the worst case
of transition (reversing the ship from full-ahead to full-astern) it reduces
the FDI performance. Small faults might not be detected and the detection
times will become longer. This problem could be handled by using time-
variant thresholds, known as adaptive thresholds Clark (n.d.); Chen and
Patton (1999). The deviations are caused by the fact, that the model used
to calculate the propeller thrust and torque, (4.8) and (4.9), gives a fairly
good approximation in the steady state cases but is less applicable during
transients.



4.5 Conclusions 109

� The geometric approach is very sensitive to model uncertainties. Further-
more, the model has to be differentiable. Therefore, only the working
range for n > 0 and � > 0 has been considered here.

� The correct tuning of the FDI system is a complex task. First the observer
gains have to be chosen correctly. In the given case too high gains would
reduce next to the transition and disturbance effects also the fault effects.
A main problem is the residual evaluation, where several questions have
to be considered: Is the threshold high enough to avoid false alarms? Is it
low enough to obtain fast detection? Should it be adaptive? How to tune
the CUSUM-algorithm? How can the fault be isolated?

� The given solution for FDI neglects the disturbances and needs further
consideration concerning the questions given above for the evaluation. For
the disturbance-free case complete FDI can be obtained for the propulsion
system when applying a sufficient evaluation logic.

� The residuals r1 and r3 can by construction be used for detection and iso-
lation of the two shaft speed fault. However, they need too much time to
detect the faults. This is due to the fact that they are based on the slow ship
speed dynamics. This can be seen in Figure 4.19 when comparing Resid-
ual2 (or Residual5) with Residual3. The slope of Residual3 is smaller,
hence, the detection using Residual3 is slower. From this fact it can be
seen that the geometric approach does not consider detection speed at all,
hence, it might not be that successful in practical applications where fast
detection is often required.

� Residual2, which was generated by using one of the states of Observer1,
shows good FDI performance. Although it was only a ’side-effect’ of the
geometric approach it detects the shaft speed loop faults as fast as re-
quired. Furthermore, it can be used to isolate the two pitch faults from
each other. For this residual several thresholds could be applied. For ex-
ample a threshold of � = 1:5 rad=s could be applied to isolate the shaft
speed sensor fault from the gain fault. This becomes clear when looking
at Figure 4.9, where the gain fault effect is smaller than 1:2 rad=s. How-
ever, this requires additional knowledge about the possible magnitude of
the faults.

� Other observer structures might be considered as e.g. shown by Ob-
server4. However, it did not show significantly better performance than
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Observer1. One important difference, however, is that Residual5 and
Residual6 were designed, while Residual2 was only a kind of ’side-effect’.
Without engineering inside it would not have been considered after the
geometric approach which only proposed Residual1 and Residual3. So
another conclusion is that designing and tuning a sufficient FDI system
cannot be completely automated.

� The subsystems obtained by the geometric approach were also obtained by
using the structural analysis (Staroswiecki and Declerck (1989); Cassar et
al. (1994)) by Izadi-Zamanabadi (1999)[Section 5.1.3].



Chapter 5

FDI Observer stability

Observers are often used in the design of fault detection and isolation (FDI).
Their design for linear systems is well-studied (Chen and Patton (1999)).
Observer-based FDI has been considered for different classes of nonlinear sys-
tems since the 1990s. The first designs were based on linearization around the
system’s operating point. This was done in order to apply the existing lin-
ear observer-based FDI methods. However, for nonlinear systems with hard
or higher-order nonlinearity this turned out to be inefficient. Hence, nonlinear
observer-based FDI approaches were developed (García and Frank (1997); Frank
et al. (1999); Chen and Patton (1999)). Especially, the design based on the ge-
ometric approach gained a lot of interest in the recent years (Hammouri et al.
(1998, 1999); DePersis and Isidori (1999); DePersis (1999)).

One important design aspect of the observer-based approach is the stability of
the FDI observer. This chapter addresses two different stability aspects of the
nonlinear observer-based FDI approach. First, the stability of an approach based
on linearization along a trajectory is addressed. Obviously, it results in a time-
varying linear system, which requires a more involved analysis when for instance
stability is to be investigated. The objective is to point out in detail where and
why it is incorrect to neglect the time-variance in the stability analysis when us-
ing the linearization along a trajectory. Finally, the stability proof is outlined for
the nonlinear observers used in Chapter 4 for FDI in the ship propulsion system.

111
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5.1 FDI based on linearization along a trajectory

In the past decade the idea of how to obtain successful FDI for systems with
nonlinear dynamics has changed from using linearization to applying nonlinear
methods (Frank et al. (1999)). The first methods to achieve FDI for nonlinear
systems are based on linearization. The idea is to linearize the nonlinear dy-
namics around a working point and then apply the well-studied FDI methods
designed for linear systems on the resulting linear time-invariant (LTI) system
dynamics:

X
LTI

:

(
_x = Ax+B u+ Fx �

y = C x+Du+ Fy �
(5.1)

where x 2 Rn denotes the states, y 2 Rl the outputs, � 2 Rk the faults, and A,
B, C , D, Fx, and Fy are constant matrices of corresponding size. The limita-
tion of this approach becomes obvious when considering systems that are highly
nonlinear and systems that have different operating points. Deviations or estima-
tion errors around an operating point (caused by the inaccuracy of the linearized
model) have a negative effect on the residual generation - e.g. they could result
in unwanted false alarms. To avoid this obstacle several FDI systems could be
designed for all possible operating points. However, this is not very practical for
real-time applications due to the resulting high number of FDI systems and the
connected high computational load (Chen and Patton (1999)). Furthermore, the
stability proof becomes more complex due to the switching between the different
systems.

In the last decade nonlinear FDI methods have been developed in order to over-
come the inaccuracy problem originating from linearized system dynamics. The
first approaches are summarized in García and Frank (1997), Chen and Patton
(1999), and Frank et al. (1999). Recently, other nonlinear methods have been
developed that for example are based on geometric descriptions as presented in
Chapter 3.

One of the first approaches to solve the nonlinear FDI problem with a nonlinear
design, is based on a first order Taylor approximation along a trajectory depend-
ing on the system input. As a consequence it can handle different operating
points. However, it leads in contrast to the linearization around a fixed operating
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point to a linear time-variant (LTV) system.

X
LTV

:

(
_x = A(t)x+B(t)u+ Fx(t) �

y = C(t)x+D(t)u+ Fy(t) �
(5.2)

where x 2 R
n denotes the states, y 2 R

l the outputs, � 2 R
k the faults, and

A(t), B(t), C(t), D(t), Fx(t), and Fy(t) are time-varying matrices of corre-
sponding size. As shown later in Section 5.1.2 by equation (5.25) the dynamics
sometimes even take a more general form _x(t) = A(x(t); u(t)), where u(t) is
an arbitrary control signal (which is exogenous). As u(t) is considered to be ar-
bitrary it could take many different forms next to u(t) = t, hence, the dynamics
have to be considered as time-variant.

Even if the time-variance looks like a small change compared to the time-
invariant dynamics it is known to have an important impact on the system. Time-
variant systems can for example not be solved as easy as time-invariant systems.
Furthermore, it is known that the stability analysis for time-variant systems is
significantly different from the one for time-invariant systems. In order to en-
sure correctness of the stability proof one has to be aware of the difference when
considering the control signal to be an arbitrary time-varying signal.

This section points out and illustrates why it is important to distinguish clearly
between time-variant and time-invariant systems when analyzing stability. The
stability analysis for time-variant systems is compared with the one for time-
invariant systems and important differences are emphasized. At the end of the
section an illustrative example is given.

5.1.1 Stability analysis for time-variant & time-invariant systems

Stability theory is based on the basic definitions that an equilibrium point is sta-
ble if all solutions starting from points that lie nearby the equilibrium point stay
nearby; otherwise the considered equilibrium is unstable. It is asymptotically
stable if all solutions starting at nearby points not only stay nearby, but also tend
to the equilibrium point as time approaches infinity (Khalil (1996)).

In the following some methods are described that can be applied to prove stabil-
ity of certain dynamic systems. The emphasis lies on the fact that the stability
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analysis for time-variant systems is significantly different from the analysis for
time-invariant systems.

5.1.1.1 Time-invariant systems

For linear time-invariant (LTI) systems, e.g. _x = Ax, the stability can be investi-
gated by looking at the eigenvalues of the system matrix A. Asymptotic stability
of the equilibrium point x = 0 is for example guaranteed for LTI-systems if the
eigenvalues all lie in the open left-half plane (see e.g. theorem 3.5 and 3.6 in
Khalil (1996)). For nonlinear systems of the form _x = f(x) a more general for-
mulation, also known as Lyapunov’s1 indirect method, can be stated (Theorem
3.7 in Khalil (1996)):

Theorem 5.1 Let x = 0 be an equilibrium point for the nonlinear system
_x = f(x), where f : D ! Rn is continuously differentiable and D � Rn is a
neighborhood of the origin. Let

A =
@f

@x
(x)

����
x=0

Then,

1. The origin is asymptotically stable if Re �i<0 for all eigenvalues of A.

2. The origin is unstable if Re�i>0 for one or more of the eigenvalues of A.

For time-variant systems it is not sufficient to look at the eigenvalues. There
might be some exceptions, as periodic systems or slowly-varying systems. How-
ever, in general it is not possible to analyze stability of time-variant systems by
looking at the eigenvalues as done in Theorem 5.1.

This is illustrated by the following example (Example 3.22 in Khalil (1996)) that
considers the following time-variant system:

_x = A(t)x (5.3)

1Russian engineer and mathematician
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where

A(t) =

 
�1 + 3

2 cos2(t) 1� 3
2 sin(t) cos(t)

�1� 3
2 sin(t) cos(t) �1 + 3

2 sin2(t)

!
(5.4)

Although for each time t, the eigenvalues of A(t) are given by �1;2 = �1
4 �

1
4

p
7j, thus are time independent(!) and lie in the open left-half plane, the origin

is not asymptotically stable. It is even unstable. This can be shown easily by
looking at the solution of (5.3):

x(t) = �(t; t0)x(t0) (5.5)

where

�(t; 0) =

 
e0:5t cos(t) e�t sin(t)

�e0:5t sin(t) e�t cos(t)

!
(5.6)

denotes the state transition matrix and x(t0) = x(t=0) describes the initial
condition. When choosing a starting point close to the origin, e.g. x(t0) =
(0:01 0)T , it becomes obvious that the solution is unbounded and escapes to
infinity, hence the origin is not asymptotically stable. This example illustrates
clearly that the eigenvalue condition, which is often used for LTI systems, cannot
be applied to time-variant systems.

5.1.1.2 Time-variant systems

An alternative method to investigate stability of a system, which is not limited to
linear time-invariant systems, is Lyapunov’s direct method. It is also referred to
as Lyapunov’s stability theorem, or just Lyapunov stability.

The conditions of Lyapunov’s stability theorem are sufficient, but not necessary.
This is due to the fact that they are based on finding and using a so-called Lya-
punov function, often assigned as V . Finding an appropriate Lyapunov function
is not straight forward. It can be chosen arbitrary; one of the conditions it has to
obey is that it has to be a function of the systems’s states V (x) (other conditions
are given in the following theorems). For physical reasons often the energy func-
tion is used. If the conditions of Lyapunov’s stability theorem are not fulfilled it
could be due to a wrongly chosen Lyapunov function candidate as well as to the
fact that the system is unstable.
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In the following, theorems of the Lyapunov stability theory for both time-variant
and time-invariant systems are cited. For a more detailed description of the Lya-
punov theory the reader is referred to the system and control literature, e.g. in
Khalil (1996) a detailed description is given.

For time-invariant systems of the form _x = f(x) the following theorem, known
as Lyapunov’s stability theorem, can be stated (Theorem 3.1 in Khalil (1996)):

Theorem 5.2 Let x = 0 be an equilibrium point for _x = f(x), where f :
D ! Rn , and D � Rn be a domain containing x = 0. Let V : D ! R be a
continuously differentiable function, such that

V (0) = 0 and V (x) > 0 in D � f0g (5.7)

and _V (x) � 0 in D (5.8)

then, x = 0 is stable. Moreover, if

_V (x) < 0 in D � f0g (5.9)

then x = 0 is asymptotically stable.

A function V (x) fulfilling the prerequisites of Theorem 5.2 and the Conditions
(5.7) and (5.8) is called a Lyapunov function. A function V (x) satisfying con-
dition (5.7), that is V (0) = 0 and V (x) > 0 for x 6= 0, is said to be positive
definite. If it satisfies the weaker condition V (0) = 0 and V (x) � 0 for x 6= 0, it
is said to be positive semidefinite. A function V (x) is said to be negative definite
or negative semidefinite if �V (x) is positive definite or positive semidefinite,
respectively. If V (x) does not have a sign as per one of these four cases, it is
said to be indefinite.

Theorem 5.2 treats local stability; for global stability the following theorem is
given (Theorem 3.2 in Khalil (1996)):

Theorem 5.3 Let x = 0 be an equilibrium point for _x = f(x). Let V : Rn !
R be a continuously differentiable function, such that

V (0) = 0 and V (x) > 0; 8x 6= 0 (5.10)

k x k! 1 ) V (x)!1 (5.11)

_V (x) < 0; 8x 6= 0 (5.12)
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then x = 0 is globally asymptotically stable.

Theorem 5.3 is also known as Barbashin-Krasovskii theorem.

The above given theorems give sufficient conditions to check the stability of the
time-invariant system _x = f(x). They are not necessary as finding the Lyapunov
function is not trivial, hence, often no easy task. Nevertheless, the theorems are
widely used to investigate stability.

When considering time-variant systems Theorem 5.2 changes to a slightly but
significant different form. For time-variant systems the following theorem can
be given (Theorem 3.8 in Khalil (1996)):

Theorem 5.4 Let x = 0 be an equilibrium point for _x = f(t; x) and D � Rn

be a domain containing x = 0. Let V : [0;1) � D ! R be a continuously
differentiable function, such that

W1(x) � V (t; x) �W2(x) (5.13)

@V

@t
+
@V

@x
f(t; x) � �W3(x) (5.14)

8t � 0;8x 2 D where W1(x), W2(x), and W3(x) are continuous positive
definite functions of D. Then, x = 0 is uniformly2 asymptotically stable.

The difference between Theorem 5.2 and Theorem 5.4 is easy to see. In the latter
the Lyapunov function depends next to the state x also explicitly on the time t,
which is due to the time-dependency of the system _x = f(t; x). Furthermore, the
Wi(x) functions are used to bound the Lyapunov function and its time derivative
uniformly away from zero and to bound it from above.

2Uniformly means that it is independent of the initial point or starting point of time, denoted
by t0.
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5.1.2 FDI stability analysis for time-varying systems

This section addresses stability aspects for diagnostic observers used for FDI
in nonlinear systems. The observer design is based on a linearization along a
trajectory, hence, considering a time-varying system.

In the following systems of the following form are considered:

_x(t) = f (x(t); u(t)) ; x(t = 0) = x0 (5.15)

y(t) = h (x(t)) (5.16)

where x 2 R
n describes the states of the system, u 2 R

m the inputs, y 2 R
l the

outputs of the system, and x0 stands for the initial system state. Furthermore,
it is assumed that for any input u(t) and initial state x0 the corresponding state
trajectory x(t) is defined for all t and that f and h are continuously differentiable
functions. In order to make the notation more readable the time dependence (t)
is omitted in the following, but must be kept in mind (especially for u(t)).

Often the approach to design a diagnostic observer for a system as described by
(5.15) and (5.16) is based on the classical Luenberger design in the following
way:

_̂x = f (x̂; u) +R (x̂; u) (y � ŷ); x̂(t = 0) = x̂0 (5.17)

ŷ = h (x̂) (5.18)

where x̂ 2 Rn describes the states of the observer, ŷ 2 Rl the outputs of the ob-
server, x̂0 stands for the initial observer state, and R (x̂; u) denotes the observer
gain matrix. In order to investigate the stability and convergence of the observer
the state estimation error dynamics are analyzed:

e = x� x̂ (5.19)

_e = f (x; u)� f (x̂; u)�R (x̂; u) (y � ŷ) (5.20)

Some of the proofs for stability of existing methods are based on a first order
Taylor expansion (linearization along a trajectory determined by the system input
u) in the following way:

f (x; u) = f (x̂+ e; u) = f (x̂; u) +Dxf (x̂; u) e+ h:o:t: (5.21)

h(x) = h(x̂+ e) = h(x̂) +Dxh(x̂)e+ h:o:t: (5.22)
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where h:o:t: denotes higher order terms and Dx is a differential operator defined
in the following way:

Dxf (x̂; u) =
@f(x; u)

@xT

����
x=x̂

(5.23)

This Taylor expansion approach leads to the following error dynamics:

_e � [Dxf (x̂; u)�R (x̂; u)Dxh(x̂)] e (5.24)

Obviously, proving stability using this kind of Taylor expansion works only if the
nonlinearity is not too significant and the higher order terms can be neglected.
The stability can be achieved by finding a suitable observer gain matrix R (x̂; u).

When solving this stability problem the designer has to be very careful and aware
of the time-variance of the system coming from the influence of u(t) (and thus
of also of x̂(t)). For a correct stability analysis the following steps should be
considered.

Time-variant dynamics First of all it is important to realize that the error
dynamics are time-variant even if the time dependence is not stated explicitly.
To illustrate this the error dynamics given in equation (5.24) can be considered
in the following abbreviated form:

_e � Ae(x̂; u) e (5.25)

where Ae(x̂; u) = [Dxf �R (x̂; u)Dxh] is a n� n-matrix.
Due to the fact that the matrix Ae depends on the independent (exogenous),
arbitrary input signal u (as well as x̂(t) (= x̂(t; u))) it has to be considered as
time-variant during the stability analysis.

Stability proofs As a consequence of the time-variance of the dynamics the
stability proofs for some existing diagnostic observer designs should be recon-
sidered. Statements saying that the error dynamics (5.25) are stable if the poles
of Ae lie in the open left-half plane are obviously incorrect as shown in section
5.1.1.1 if arbitrary input signals u are allowed. Instead the stability could be
proven using Lyapunov’s stability theorem as stated in Theorem 5.4. Hence, the
following result can be stated:
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Theorem 5.5 A FDI observer (5.17) and (5.18) for a system (5.15) and (5.16)
is locally asymptotically stable if the following conditions are satisfied:

(i) The error dynamics can be approximated in the following way:

_e � Ae(x̂; u) e

(ii) There exists a Lyapunov function V (e; x̂; u), such that

W1(e) � V (e; x̂; u) �W2(e)

@V

@t
+
@V

@e
Ae(x̂; u)e � �W3(e)

whereW1(e),W2(e), andW3(e) are continuous positive definite functions
of Rn .

5.1.3 Example

In the following an example is given to illustrate the problem of neglecting the
time-variance when designing a stable observer. The example is based on lin-
earization along a trajectory as shown in the previous section. The goal is to
design a stable observer for the following system:

_x =

 
x1 + x2

�0:5x1u� 0:2x2

!
= f(x; u) (5.26)

y = h(x) = x1; x(t = 0) = x0 (5.27)

where the input signal is bounded: �1 � u � 1. Considering system (5.26)
and (5.27) an open-loop observer is designed having the following form (corre-
sponding to (5.17) and (5.18)):

_̂x = f(x̂; u) +R(x̂; u)(y � ŷ); ŷ = h(x̂) = x̂1; x̂(t = 0) = x̂0 (5.28)

Its stability is achieved by choosing an appropriate gain matrix R (x̂; u). As
derived above in Section 5.1.2 this is done by using a Taylor expansion that leads
for the given example to the following error dynamics (see (5.24) and (5.25)):

_e = [Dxf (x̂; u)�R (x̂; u)Dxh(x̂)] e = Ae(x̂; u) e (5.29)
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with

Dxf (x̂; u) =
@f(x; u)

@xT

����
x=x̂

=

 
1 1

�0:5u �0:2

!
; (5.30)

Dxh(x̂) =
@h(x)

@xT

����
x=x̂

=
�

1 0
�

(5.31)

Choosing the gain matrix

R (x̂; u) =
�

1 1
�T

(5.32)

leads to the following error dynamics:

_e = Ae(x̂; u)e (5.33)

where

Ae(x̂; u) =

 
0 1

�(1 + 0:5u) �0:2

!
(5.34)

The eigenvalues of matrix Ae(x̂; u) are given by �1;2 = �0:1� jp0:99 + 0:5u.
Obviously, they lie in the left-half plane for the bounded inputs �1 � u � 1.
However, as mentioned above it is not possible to analyze the stability of a time-
variant system by checking the eigenvalues. In fact, the considered system is
unstable for the input u(t) = cos(2t). This is shown in Example 13 in Rugh and
Shamma (2000) (which corresponds to (5.33) and (5.34)).

5.1.4 Summary

This section pointed out that a designer using FDI methods based on a lineariza-
tion along a trajectory has to be careful concerning the stability analysis. This
is due to the fact that the linearization leads to a time-variant system. The main
differences between the stability analysis for time-invariant and for time-variant
systems were emphasized and a stability theorem (Theorem 5.5) was stated. At
the end an example was given to illustrate the problematic.
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5.2 Stability of the ship propulsion FDI observers

For successful observer-based FDI the stability of the observer plays an essential
role. This section addresses the stability of two nonlinear observers designed
for FDI in the ship propulsion system. Their design is based on results from
the geometric approach and described in Section 4.3. During the simulations the
observers showed stable behavior for different initial conditions. In the following
the formal proof of their stability is outlined.

5.2.1 FDI for the diesel engine gain fault

An observer to detect and isolate the diesel engine gain fault �ky was designed
in Section 4.3 for the following fault-free subsystem ((4.31)-(4.32)):

_x = fsub1(x; u) = f(x) + g(x)u (5.35)

y = U (5.36)

where x =

 
n

U

!
f(x) =

 
0

1
m
R(U) + 1�tT

m
TjnjVa(1� w)nU

!

g(x) =

 
1
Im
ky � 1

Im

�
Qjnjnn

2 +QjnjVa(1� w)nU
�

0 1�tT
m

Tjnjnn
2

!
u =

 
Y

�

!

with the fuel index measurement Y and the pitch measurement � as external
inputs. Subsystem (4.33)-(4.35) is by construction only affected by the diesel
engine gain fault �ky , when the pitch loop is considered to be fault-free. Hence,
Observer1 ((4.36)-(4.38)) is designed in Section 4.3 to detect and isolate the gain
fault. It has the following form:

Observer1:

_̂n =
1

Im
ky Y � 1

Im

h
QjnjVa(1� w)n̂Û +Qjnjnn̂

2
i
� +K n̂

�ky
(U � Û)

(5.37)

_̂
U =

1

m
R(Û) +

1� tT
m

[TjnjVa(1� w)n̂Û + Tjnjnn̂
2�] +KÛ

�ky
(U � Û)

(5.38)

ŷ = Û (5.39)
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which corresponds to a form like:

_̂x = fsub1(x̂; u) +K(y � ŷ) (5.40)

ŷ = h(x̂) = x̂2 = Û (5.41)

The function fsub1(x; u) in (5.35) is globally Lipschitz for the complete operat-
ing range 
x = fx j 0 < n < nmax; 0 < U < Umaxg and 
u = fu j �1 < � <
1; 0 < Y < 1g; i.e. kfsub1(x; u) � fsub1(x̂; u)k � �kx � x̂k, with Lipschitz
constant � 2 R and x; x̂ 2 
x. This is due to the physical limitations and the
upper-level control of the system. The upper-level control is designed to keep the
signals (n; �) inside certain boundaries (corresponding to 
x) to achieve desired
operation and to avoid overload situations for the shaft and the pitch. Further-
more, there are the following physical limitations: The pitch signal is physically
limited by construction �1 < � < 1 like the fuel index 0 < Y < 1. The ship
speed U is limited by the top speed of the ship. The shaft speed n is limited by
an emergency shut-off.

The considered subsystem is observable over the complete operating range 
x.
This can be seen when looking at the system and its corresponding observability
codistribution (Nijmeijer and van der Schaft, 1990, Theorem 3.32). The ob-
servability codistribution can be obtained as follows (see Nijmeijer and van der
Schaft (1990) or equation (3.48), on page 39):

dO(x) = spanfdH(x)jH 2 Og; x 2 
x

where the observation space O(x) denotes the linear space (over R) of functions
on 
x containing h(x), and all the repeated Lie derivatives

LX1LX2 � � �LXk
hj(x); j 2 l; k = 1; 2; : : :

with Xi, i 2 k, in the set of ff; g1 : : : gmg. For the considered subsystem it can
be seen that

dh(x) = (0 1)

dLfh(x) =

�
1� tT
m

TjnjVa(1� w)U
1

m

@R(U)

@U
+

1� tT
m

TjnjVa(1� w)n

�
) dimdO(x) = 2 = n = dim
x for u 2 
u

Hence, the system is observable over the complete operating range 
x. Using the
fact that fsub1(x; u) is globally Lipschitz and that the subsystem (5.35)-(5.36) is
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observable over the complete operating range 
x the stability of Observer1 can
be proven by using the result of Gauthier et al. (1992). In Gauthier et al. (1992)
it is also shown how the observer gain K has to be chosen. For the simulations
in Chapter 4 it was chosen ad hoc.

5.2.2 FDI observer to detect and isolate shaft speed sensor fault

In Section 4.3 an observer to detect and isolate the shaft speed sensor fault
�nsensor was designed for subsystem (4.44) and (4.45). The stability of the ob-
server (Observer2) can be proven in the same way as the stability for Observer1.
However, the proof for Observer2 is shorter due to the fact that subsystem (4.44)
and (4.45) is globally observable, because the only state (U) is measured.

Remark: The observer design is only meaningful due to the possible faults,
because in the fault-free case all variables (n; U; �) are either measured or
known inputs.



Chapter 6

Fault-output decoupling

Fault detection and isolation (FDI) plays an important role in the design of fault-
tolerant control systems (FTCS). Fault-tolerant control systems have the ability
to tolerate the occurrence of a fault by being able to continue operation while a
degradation of performance may be accepted, see Blanke (1999). The main task
for an active approach towards fault-tolerant control (see chapter 2) is to detect
and isolate the faults occurring in the system. As stated in Patton (1997) success-
ful fault detection and isolation (FDI) should be achieved by rather simple than
complex methods. The reason for this lies in the fact that the later are seldom
applied in real applications due to their complexity.

One well studied and applied approach for model-based fault detection and iso-
lation uses diagnostic observers, see e.g. Chapter 2; Frank (1996); García and
Frank (1997); Frank and Ding (1997); Patton (1995); Patton and Chen (1997).
The text-book Chen and Patton (1999) gives a good introduction into the field.
Nevertheless, the observer-based FDI design is not always easy to apply, espe-
cially in nonlinear systems it turns out to be a difficult task.

The observer-based FDI design would be easier if each considered fault would
affect one and only one specific output. In that situation a dedicated observer
scheme (DOS), e.g. a bank of observers, where each observes one output, would
be able to detect and isolate the faults. The later can be achieved by checking for
which outputs the generated residuals are affected. Analyzing this pattern leads
to FDI. In that case also multiple faults (faults being active at the same time)
could be detected and isolated from each other. The isolation of multiple faults
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is otherwise often a problem due to possible cancellation of the faults against
each other. Thus many of the existing observer-based methods are limited to
single faults (faults happening one at a time).

In this chapter the idea is proposed to use the well studied concept of input-
output decoupling (Falb and Wolovich (1967); Wonham and Morse (1970);
Isidori (1985); Nijmeijer and van der Schaft (1990)) for a new concept fault-
output decoupling and combine it with the controller design in such a way that
the controlled system has the property that each fault affects one and only one
output. Combining the fault-output decoupling idea with the overall control ob-
jective (e.g. stabilizing the plant or solving a tracking problem) would, as men-
tioned above, enhance the possibilities for the fault diagnosis design. Other ideas
for an integrated approach have been made before, e.g. based on a four param-
eter controller scheme (Nett et al. (1988); Jacobson and Nett (1991)) or on a
robust control approach (Stoustrup et al. (1997)).

This chapter is not meant to give a review of the wide field of input-output de-
coupling, but as an introduction of the new idea of fault-output decoupling. As
the theory for input-output decoupling is available for both linear and nonlinear
systems it is possible to formulate the fault-output decoupling idea for both lin-
ear and nonlinear systems systems. For simplicity and a better understanding it
will only be handled for linear systems in this chapter. However, the procedure
of how to obtain fault-output decoupling, given at the end of this chapter, is valid
for both linear and nonlinear systems.

The proposed method is introduced and demonstrated for linear systems of the
following structure:

_x = Ax + B u + Lx �x (6.1)

y = C x + Du + Ly �y (6.2)

where x 2 Rn describes the states, u 2 Rm the inputs, y 2 Rl the outputs,
�x 2 Rkx and �y 2 Rky the modeled faults, and A, B, C , D, Lx and Ly are
matrices of appropriate size. The overall fault vector is defined as �T =

�
�Tx �

T
y

�
of dimension k = kx + ky . This description has been widely used in the FDI
literature, see e.g. the survey papers (Gertler (1991); Frank (1991); Gertler and
Kunwer (1993); Frank (1993); Patton (1994)).
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Remark 1: One important aspect of the above mentioned model is that a com-
plete loss of the ith actuator is modeled by setting the ith column of the matrix
Lx equal to the ith column of the matrix B and the ith component of �x equal to
�ui, as also described in chapter 2. This could cause problems as it means that
the fault signal is not just an additional independent input, but depends of the
input signal. This problem will be addressed later in Remark 2 after the fault-
output decoupling is introduced.

The next section introduces the concept of complete fault-output decoupling fol-
lowed by a section describing the more practical concept of efficient fault-output
decoupling and a section looking at how to meet the control objectives. Finally
a general design procedure will be given and applied to an illustrative example.

6.1 Complete fault-output decoupling

The proposed concept of fault-output decoupling corresponds to the input-
output decoupling problem which is well described for linear systems (Falb
and Wolovich (1967); Wonham and Morse (1970); Wonham (1985)) and non-
linear systems (Isidori (1985); Nijmeijer and van der Schaft (1990)); yet, there
is a major difference which makes the fault-output decoupling harder to obtain
and, hence, needs extra consideration:Faults are unknown and cannot be used in
feedback design, i.e. they cannot be used as normal inputs when applying input-
output decoupling. As a consequence, the normal control inputs have to be used
to achieve fault-output decoupling, as they are the only access to the system. One
possibility to achieve it is to apply a regular static state feedback (6.3) and will
be explained in the next section.

To introduce the idea of fault-output decoupling, we start with the following
definition:
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Definition 6.1: A system, described by equations (6.1) and (6.2), is called
completely fault-output decoupled iff after a possible relabeling of the faults,
the following three properties hold:

(i) For each i 2 l the output yi, is unaffected1 by the faults �j; j 6= i .

(ii) For each i 2 l ^ i � k the output yi is affected2 by the fault �i .

(iii) k � l:

where l = f1; : : : ; lg and �j describes the jth-component of the fault vector �,
j 2 k.

Condition (ii) assures the possibility to detect the fault �i by checking the output
yi. Isolation of the fault is then guaranteed by Condition (i) as it assures that no
other fault affects the output yi. Hence, complete fault-output decoupling means
that each fault affects only one output, which is not affected by others. As stated
in Condition (iii), this can only be achieved if the number of faults k is smaller
than the number of outputs l. This is due to the fact, that if Condition (iii) would
not be fulfilled and the first two conditions would, there would be k�l faults that
do not affect any output. Hence, they cannot be detected and isolated by using the
outputs. However, in systems where k > l some faults might be considered as
a group and then be treated as one fault component in �i to fulfill the Condition
(iii) of Definition 6.1. Obviously, this grouping makes only sense for faults
that do not need to be isolated from each other. Only if they act significantly
different on the outputs, due to different fault signatures, it might be possible to
isolate them. This would require an additional step of residual evaluation.

The proposed method uses a regular static3 state feedback for the system (6.1)
and (6.2) of the form

u = M x + N w (6.3)

where M 2 R(m;n) , N 2 R(m;m) is a nonsingular matrix, and w 2 Rm denotes
the new input. The later implies that application of the feedback (6.3) will not

1For a definition of unaffected see Appendix A.1.
2For a definition of affected see Appendix A.1.
3A static state feedback u = Mx + Nw is a state feedback with a constant gain matrix M .

There are no extra dynamics involved in the feedback. The latter is referred to as dynamic state
feedback (see equation (6.14) and (6.15)).
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affect the controller access to the system. Goal of the method is to decouple the
faults from the outputs by finding an efficient feedback during the controller de-
sign in order to ease the fault detection and isolation. This leads to the following
problem formulation:

Problem 6.2: (Complete fault-output decoupling by using regular static
state feedback on the inputs) Find a regular static state feedback (6.3) (with-
out using the fault signals, as they are unknown) for the system (6.1) and (6.2)
that achieves complete fault-output decoupling when applied to the input u of
the system.

6.2 Solution for complete fault-output decoupling

As an approach to solve Problem 6.2 we use the decoupling idea also presented
in Gras and Nijmeijer (1989) for time-invariant linear systems. Due to the fact,
that now next to the normal inputs also faults are acting on the system, additional
steps have to be introduced. To start with, we take a look at the characteristic
numbers of the considered system (6.1) and (6.2). Next to the characteristic
numbers, �ui , of the system with respect to the inputs a definition for the charac-
teristic numbers, ��i , with respect to the faults is required. In the following the
definitions for the different characteristic numbers are presented.

6.2.1 Characteristic numbers

The characteristic numbers, �ui , of the system (6.1) and (6.2) with respect to
the inputs, with i 2 l, describe the number of time derivatives of the ith output
needed such that at least one of the inputs uj , with j 2 m, appears explicitly
(see e.g. Falb and Wolovich (1967)). To illustrate this, we start with equation
(6.2) and calculate the time derivatives for the ith output:
(The faults are omitted in order to ease the calculations.)

yi = Ci x+ Di u i 2 l

where Ci and Di describe the ith row of the matrices C and D. If the the ith row
of the feed-through Matrix D is nonzero at least one of the inputs will appear
explicit in the output yi. As no derivative has been calculated yet, this would
mean that the characteristic number �ui of the ith output is equal to zero:

�ui = 0
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If the ith row of the feed-through Matrix D is zero the first derivative is calcu-
lated:

_yi = Ci _x = CiAx + CiB u

If then CiB is nonzero at least one of the inputs will appear explicit in _yi and
the characteristic number �ui of the ith output is equal to one:

�ui = 1

When CiB is equal to zero the calculation procedure continues:

�yi = CiA _x = CiA
2 x + CiAB u

If now CiAB is nonzero at least one of the inputs will appear explicit in �yi and
the characteristic number �ui of the ith output is equal to two:

�ui = 2

Otherwise the calculation of the time derivatives of the outputs has to be con-
tinued until at least one output appears explicitly, which leads to the following
definition:

Definition 6.3: The characteristic numbers �u1 : : : �
u
l of the linear system (6.1)

and (6.2) with respect to the inputs u = (u1 u2 : : : um )T are defined in the
following way:

�ui = 0 if Di 6= 0

�ui =1 if CiA
k B = 08 k � 0

otherwise �ui , i 2 l, equals the smallest nonnegative number such that:

CiA
k B = 0 for k = 0 : : : (�ui � 2)

and CiA
�ui �1B 6= 0:

In the same way we can now introduce a definition for the characteristic numbers
of the system (6.1) and (6.2) with respect to the faults. The definition looks
slightly different due to the fact that the faults enter in the state equation via
Lx �x and in the output equation via Ly �y :
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Definition 6.4: The characteristic numbers ��1 : : : �
�
l of the linear system (6.1)

and (6.2) with respect to the faults � = ( �1 �2 : : : �k )
T are defined in the fol-

lowing way:

��i = 0 if Lyi 6= 0

��i =1 if CiA
k Lx = 08 k � 0

otherwise ��i , i 2 l, equals the smallest nonnegative number such that:

CiA
k Lx = 0 for k = 0 : : : (��i � 2)

and CiA
��i �1 Lx 6= 0:

Next to the characteristic numbers the decoupling matrix place an important role
when solving the input-output decoupling problem. In the next section defini-
tions with respect to the inputs and with respect to the faults are given.

6.2.2 Decoupling matrices

In the input-output decoupling theory the decoupling matrix plays a fundamental
role, see e.g. Falb and Wolovich (1967). In the following we will give a notation
of the decoupling matrix with respect to the inputs and, furthermore, introduce
the decoupling matrix with respect to the faults.

Definition 6.5: The l � m decoupling matrix for the linear system (6.1) and
(6.2) with respect to the inputs uj , with j 2 m, is for finite characteristic num-
bers �u1 : : : �

u
l defined as:

Mu
dec =

0
BB@

Mu
dec1
...

Mu
decl

1
CCA

where for i 2 l

Mu
deci

=

(
Di ifDi 6= 0

CiA
�ui �1B ifDi = 0 ^ CiA

k B = 08 k = 0 : : : (�ui � 2):

Corresponding to the decoupling matrix with respect to the inputs we introduce
the following definition of the decoupling matrix with respect to the faults:
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Definition 6.6: The l � k decoupling matrix for the linear system (6.1) and
(6.2) with respect to the faults �j , with j 2 k, is for finite characteristic numbers
��1 : : : �

�
l defined as:

M�
dec =

0
BB@

M�
dec1
...

M�
decl

1
CCA

where for i 2 l

M�
deci

=

(
Lyi ifLyi 6= 0

CiA
��i �1Lx ifLyi

= 0 ^ CiA
k Lx = 08 k = 0 : : : (��i � 2):

A solution for Problem 6.2 is derived and discussed in the next section.

6.2.3 Solving the complete fault-output decoupling problem

This section proposes a solution for the complete fault-output decoupling prob-
lem (Problem 6.2). The solution is closely related to the solution for the input-
output decoupling problem using a regular static state feedback (6.3) for a square
analytic system (6.4) and (6.5), see e.g. Falb and Wolovich (1967); Gras and Ni-
jmeijer (1989). Therefore, the solution for the input-output decoupling will be
briefly introduced first and then a solution for the fault-output decoupling with
its conditions is presented.

Input-output decoupling

One solution for input-output decoupling by a regular static state feedback for
the system (6.1) and (6.2) can be obtained by following the solution given in
Gras and Nijmeijer (1989). Taking the system (6.1) and (6.2), omitting the faults
�, and considering it to be square, i.e. it has the same number of inputs as outputs
m = l, the following system remains:

_x = Ax + B u (6.4)

y = C x + Du (6.5)

where x 2 Rn describes the states, u 2 Rm the inputs, y 2 Rl the outputs, A,
B, C and D are matrices of appropriate size, and m = l. For this system the
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following derivatives can be calculated:0
BB@

y
(�u1 )
1
...

y
(�ul )
l

1
CCA =

0
BB@

C1A
�u1

...

CpA
�ul

1
CCAx + Mu

dec u (6.6)

Looking at the derivatives (6.6) it can be seen that it is possible to establish input-
output decoupling from the new inputs wj to the outputs yi by the following
regular static state feedback which has the same form as (6.3):

u =

0
BB@

u1
...

um

1
CCA = � (Mu

dec)
�1

0
BB@

C1A
�u1

...

CpA
�ul

1
CCAx + (Mu

dec)
�1

0
BB@

w1
...

wm

1
CCA (6.7)

as it leads to: 0
BB@

y
(�u1 )
1
...

y
(�u
l
)

l

1
CCA =

0
BB@

w1
...

wm

1
CCA = w (6.8)

The solution given by equation (6.7) obviously only holds if Mu
dec is invertible

and that means it is nonsingular or equivalently has full rank:

rankMu
dec = m (6.9)

In Falb and Wolovich (1967); Gras and Nijmeijer (1989) the proof is given that
the regular static state feedback input-output problem (as considered here) is
solvable if and only if equation (6.9) holds true.

Complete fault-output decoupling

A solution for the complete fault-output decoupling problem (Problem 6.2), is
derived corresponding to the solution for the input-output decoupling problem
presented above. Also here the system (6.1) and (6.2) is considered to be square,
i.e. l = m. First the case is considered that the characteristic numbers fulfill the
following condition:

�ui = ��i 8i 2 l (6.10)
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Later the other cases where condition (6.10) does not hold will be discussed in
detail. Using the condition (6.10) the following derivatives similar to equation
(6.6) can be obtained:0

BB@
y
(��1 )
1
...

y
(��l )

l

1
CCA =

0
BB@

C1A
��1

...

CpA
��l

1
CCAx + Mu

dec u + M�
dec � (6.11)

When looking at the derivatives (6.11) it can be seen that to achieve fault-output
decoupling for the considered system two different aspects have to be consid-
ered: Is there any cross-coupling of states in the CiA��i x terms that causes
different faults to affect the same output? and Which structure does the decou-
pling matrix M�

dec have? If the later has more than one nonzero element in one
row there is no possibility to obtain complete fault-output decoupling, as it is not
possible to prevent certain faults from effecting the output signals yi by direct
compensation. This is due to the important difference that fault signals are un-
known, hence, they cannot be compensated by using them in a feedback.

To avoid the mentioned cross-coupling of states in the CiA��i x terms the in-
puts ui can be used for a regular static state feedback in the same way as in the
input-output decoupling problem (see (6.7) and (6.8)):

u =

0
BB@

u1
...

um

1
CCA = � (Mu

dec)
�1

0
BB@

C1A
��1

...

CmA
��
l

1
CCAx + (Mu

dec)
�1

0
BB@

w1
...

wm

1
CCA (6.12)

By applying the feedback (6.12) the equation (6.11) turns into0
BB@

y
(��1 )
1
...

y
(��l )

l

1
CCA =

0
BB@

w1
...

wm

1
CCA + M�

dec � (6.13)

Looking at equation (6.13) and keeping the result for the input-output decoupling
problem in mind the following theorem can be given :
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Theorem 6.7 Complete fault-output decoupling can be achieved for a square
analytic system of the form (6.1) and (6.2), which fulfills condition (6.10) by the
regular static state feedback (6.12) if the following two conditions are fulfilled:

(i) The decoupling matrix Mu
dec is invertible.

(ii) The decoupling matrix M�
dec can be written in a diagonal form after pos-

sible relabeling of the faults.

Remark 2: When looking at the feedback (6.12) it can be seen that the inputs
are used to cancel out the cross-couplings CiA��i x, with i 2 l. This is done to
achieve the wanted fault-output decoupling as described by (6.13). As already
mentioned in Remark 1 a complete loss of the ith actuator can be modeled by
setting the ith column of the matrix Lx equal to the ith column of the matrix B
and the ith component of �x equal to �ui. This would mean that the control
action of the ith input (ui) is destroyed (compensated) by the fault. Hence, the
compensation of the cross-coupling terms achieved by this input is lost. This
will, however, only effect one predefined output. This is due to the fault-output
decoupling. The actuator fault was modeled and taken care of during the fault-
output decoupling design. Hence, the decoupling effect is only lost for exactly
that output that by design is only affected by the actuator fault. So when this lost
compensation affects the predefined input it has exactly the desired affect. If it
would also affect other outputs it would proof that the fault-output decoupling
was not designed correctly.

In the following the case will be considered that condition (6.10) is not fulfilled.
This is done by discussing the possibilities to achieve fault-output decoupling
for the situations �ui < ��i and �ui > ��i .

�ui < ��i : If the characteristic number with respect to the inputs is smaller than
the characteristic number with respect to the faults it means that there exists at

least one derivative of the output y
(�ui )
i where the inputs enter explicitly before

the faults do. This gives an additional freedom, because the inputs ui, i 2 m

could then be used for an additional state feedback to influence the output yi in
such a way, by compensating certain states, that some faults or even all faults
do not enter/affect the output yi. The additional state feedback could be of the
following structure

u = M� x + N� v
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where M� 2 R
(m;n) and N� 2 R

(m;m) is a nonsingular matrix. That would
give the possibility to influence the decoupling matrix M�

dec. The exact possi-
bilities of the freedom available have been well studied in connection with the
disturbance-decoupling problem (DDP), see e.g. Wonham and Morse (1970);
Wonham (1985); Isidori (1985); Nijmeijer and van der Schaft (1990). Another
useful option might be in this case to apply a dynamic state feedback:

_z = Az z + Bzx x + Bzv v (6.14)

u = Cz z + Dzx x + Dzv v (6.15)

where z 2 R
s describes the states of the dynamic feedback, x 2 R

n the system
states, u 2 R

m the inputs to the system, v 2 R
m the new inputs to the overall

system, y 2 R
l the system outputs, and Az , Bzx, Bzv , Cz , Dzx, and Dzv are

matrices of appropriate size. Applying a specific number of integrations on the
input could for example lead to the situation that condition (6.10) is fulfilled for
the new input signals vi, i 2m. However, this idea requires further study, which
is not in the scope of this thesis.

�ui > ��i : If the characteristic number with respect to the inputs is bigger than
the characteristic number with respect to the faults it means that there exists at

least one derivative of the output y
(�ui )
i where the faults enter explicitly before the

inputs do. Hence, the fault-output decoupling problem cannot be solved in this
case as there is no possibility to compensate possible cross-coupling of states in
the CiA

��i x terms or to influence the decoupling matrix M�
dec.

6.3 Efficient fault-output decoupling

In the previous sections the concept of complete fault-output decoupling, see
Definition 6.1 and Problem 6.2, has been introduced. A solution and the con-
dition when it can be obtained was derived and stated in Theorem 6.7. In this
section we take a look at what to do when complete fault-output decoupling can-
not be obtained due to the structure of the considered system. Would that mean
that fault-output decoupling is not applicable at all? The answer is ’no’. By dis-
cussing problems with a non-diagonal decoupling matrix M�

dec and with sensor
faults it will be illustrated why. As a result an additional definition of fault-
output decoupling, next to the complete fault-output decoupling, will be given.
It is called efficient fault-output decoupling for FDI.
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6.3.1 Problems with complete fault-output decoupling

Complete fault-output decoupling (introduced in the previous section) experi-
ences two main problems. First the decoupling matrix M�

dec will not always
have the desired structure as described by Condition (ii) in Theorem 6.7 and
second complete fault-output decoupling does not always make sense.

The problem of a non-diagonal structure (after possible relabeling of the faults)
of the decoupling matrix with respect to the faults might be solvable for the case
that �ui < ��i . As mentioned in the previous section the theory known from the
disturbance decoupling problem (DDP) or an additional feedback might lead to
a solution in this situation. However, if the structure of M�

dec cannot be changed
to be diagonal due to the fact that the fault signals are unknown, complete fault-
output decoupling cannot be achieved. This strongly limits the systems it can be
applied to.

However, even if complete fault-output decoupling cannot be obtained, partial
fault-output decoupling might be possible. For FDI purposes a partial decoupling
might already be efficient enough. This can be explained by a simple example.
Consider a system with two outputs y1 and y2, which is affected by two faults �1
and �2. If the decoupling matrix M�

dec has the following triangular structure

M�
dec =

 
1 0

1 1

!
(6.16)

it is obvious that we cannot achieve complete fault-output decoupling. Never-
theless, a decoupling matrix as given in (6.16) is still good enough for partial
fault-output decoupling. If the conditions (6.10) and (i) of Theorem 6.7 are ful-
filled the possible cross-coupling of states in the CiA��i x terms can be canceled,
which leads to a structure as given in equation (6.13). This would assure that the
output y1 is only affected by fault �1 and the output y2 can be affected by both
faults �1 and �2. This is efficient enough to detect and isolate the faults when the
rule of exclusion is applied. So in case of single faults it becomes obvious that
complete fault-output decoupling is not required to assure efficient FDI.

Next to the rule of exclusion a sufficient decision logic could be based on a kind
of binary coding using the outputs (yi: faulty or non-faulty) like presented in
Massoumnia et al. (1989) with its practical risks, e.g. if one output reacts faster
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than the others and the fault decision is taken too early a false alarm is the result.
As already mentioned in Chapter 2, different kinds of structural residuals are
known in the field of FDI, see e.g. Gertler (1991); Chen and Patton (1999). They
can be described by the coding sets used in Definition 6.8 and in Definition 3.1.

Next to the problem with the structure of the decoupling matrix another impor-
tant problem has to be considered. There are situations where complete fault-
output decoupling is not desirable. To illustrate this another simple example is
used. If a system with two inputs and three outputs is considered to be affected
by three different faults, the following problem might occur. Consider one sensor
fault and two actuator faults, each of them affecting one of the two inputs. If this
system fulfills the conditions of Theorem 6.7 complete fault output-decoupling
can be obtained. However, this would lead to a loss of controllability in the sys-
tem. Explanation: Complete fault output decoupling would lead to the situation
that each output is affected by one and only one of the three faults. So, two
outputs are affected by actuator faults and one is affected by the sensor fault.
Actuator faults enter the system in the same way as the control inputs, as a result
decoupling an output from them means automatically decoupling it from the cor-
responding inputs. Hence, the output, which is only affected by the sensor fault,
is no longer affected by the inputs. If it would be affected by one of the inputs,
clearly, one of the actuator faults would affect it as well, which contradicts the
definition of complete fault-output decoupling. So in this case complete fault-
output decoupling would destroy the ability to steer or control the considered
output by the input signals. This explains why not every system is suitable for
complete fault-output decoupling. In the next section a concept to overcome this
difficulty is introduced.

6.3.2 Efficient fault-output decoupling

As a consequence of the mentioned disadvantages of complete fault-output de-
coupling a new definition introducing efficient fault-output decoupling is given:

Definition 6.8: A system, described by equations (6.1) and (6.2), is called effi-
ciently fault-output decoupled if it has the following property:
In the jth fault mode (i.e. when �j(t) 6= 0; j 2 k), only the outputs yi(t) for
i 2 
j are affected. The pre-specified family of coding sets 
j � l; j 2 k, is
chosen such that, by knowing which of the outputs yi(t) are affected and which
are not, the fault �j can be uniquely identified.
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For a more detailed description of the coding sets 
j the reader is referred to
page 24. Obviously, the question if a system is efficiently fault-output decoupled
or not and which coding sets to chose depends also on the fact if single or mul-
tiple faults are considered.

The mentioned difference between considering single faults (faults happening
one at a time) and multiple faults (faults being active at the same time) becomes
clear when looking again at the example given above with the decoupling matrix
(6.16). The mentioned example is only able to handle single faults when using
the mentioned efficient fault-output decoupling. Explanation: It can easily be
seen that if fault �1 occurs it is not possible to detect and isolate a simultane-
ous occurrence of fault �2 by only looking at the outputs as �1 already affects
all. Additional FDI steps are required to handle multiple faults in this case.
Obviously, complete fault-output decoupling is able to handle both single and
multiple faults.

The given Definition 6.8 leads to the following problem statement corresponding
to Problem 6.2:

Problem 6.9:(Efficient fault-output decoupling by using regular static state
feedback on the inputs and decision logic) Find a regular state feedback
(6.3) (without using the fault signals, as they are unknown) for the system (6.1)
and (6.2) and a decision logic that achieves efficient fault-output decoupling
when applied to the inputs of the system.

6.4 Controller design to meet the control objectives

After using successfully one of the two concepts that are described in the pre-
vious sections a fault-output decoupled system can be obtained. However, the
resulting system does not yet meet the control objectives, hence, does not yet per-
form as necessary for normal operation. As stated in Gras and Nijmeijer (1989)
the proposed feedback (6.12) is not the only solution to achieve the decoupling.
Due to the fact that the resulting system is not asymptotically stable it is even
a bad solution. In the input-output decoupling theory the complete set of linear
state feedbacks that could be used to decouple the system (6.1) and (6.2) are
given, see e.g. Gilbert (1969); Wonham and Morse (1970). In this section a de-
scription of a subset of these possible control laws will be introduced. It can then
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be applied additional to the control law (6.12) without affecting the decoupling.
For a more detailed study the reader is referred to Gilbert (1969); Wonham and
Morse (1970).

So, to be able to use the fault-output decoupling in practice the following prob-
lem has to be solved.

Problem 6.10: (Meeting the control objectives without affecting the fault-
output decoupling) Design a controller for the overall fault-decoupled system
that meets the control objectives and does not affect the fault-output decoupling.

In this section a subset of possible controls is introduced. To start with, it is
shown that the input-output decoupled system (see equations (6.4)-(6.8)) can be
written in a normal form. Namely, by defining for i 2m:

zi =
�
zi1; : : : ; zi�ui

�
=
�
yi; _yi; : : : ; y

(�ui �1)
i

�
(6.17)

and letting z be (n � �), where � =
Pm

i=1 �
u
i , supplementary linear coordinate

functions such that z = (z; z1; : : : ; zm) = Sx form new coordinates, for some
nonsingular matrix S 2 R(n;n) . With respect to these new coordinates the state
equations for the decoupled system (6.1,6.2,6.4-6.8) can be written as:

_zi = Ai z
i + biwi; i 2m; (6.18)

_z = f z + g w (6.19)

where f 2 R(n��;n) , g 2 R(n��;m) , and the pairs (Ai; bi); i 2 m, are in
Brunovsky canonical form:

Ai =

0
BBBBBBB@

0 1 0 � � � 0
...

. . .

0 � � � 1 0

0 � � � 0 1

0 � � � 0

1
CCCCCCCA

�ui ��
u
i

and bi =

0
BBBBBBB@

0
...
...

0

1

1
CCCCCCCA

�ui �1

(6.20)

The outputs are described by:

yi = Ci zi; where Ci = (1; 0; : : : ; 0)1��ui and i 2 l (6.21)
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When looking at the normal form, it can be seen that the regular static state
feedback in equation (6.7) can be modified for the linear case as follows:

wi = ~�i1 yi + ~�i2 _yi + : : : + ~�i�ui y
(�ui �1)
i + ~�i ~wi (6.22)

where ~�ij; ~�i 2 R.

As known from the input-output decoupling theory combining (6.22) with (6.7)
can be used to decouple and control a system (6.1) and (6.2). In a similar way
Problem 6.10 can be solved by combining (6.22) with the feedback (6.12). Note
that (6.22) describes output feedback and not state feedback. The state knowl-
edge is only required for the decoupling (6.12) and in some cases not all states
are required for the decoupling.

However, the decoupled system cannot be controlled arbitrarily. When looking
at the normal form of the decoupled system it can be seen that there are some
states z that cannot be influenced. So if for example that part of the dynamics
is unstable the system cannot be stabilized, at least not if we want to preserve
the decoupling. In the theory for input-output decoupling it has been shown that
these states are connected to the zero dynamics (or system zeros) of the original
system. As a consequence the system (6.1) and (6.2) has to be minimumphase
in order to use the fault-output decoupling idea, otherwise the decoupled system
cannot be stabilized.

If for the system the condition � =
Pm

i=1 �
u
i = n is fulfilled the control law

(6.22) gives full freedom to place the n poles of the fault-decoupled system;
note that this corresponds to the case that the zero dynamics is trivial, or equiva-
lently the system has no zeros. If � =

Pm
i=1 �

u
i < n then n � � poles are fixed

and cannot be moved. Further research of how the known theory for the con-
troller design for input-output decoupled systems can be used for fault-output
decoupled systems is required.
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6.5 Design procedure to obtain a fault-output decoupled
system

This section presents a scheme of how to apply the proposed idea of fault-output
decoupling. By following the different steps and using the in the previous chap-
ters mentioned theory the control designer will find out if the system can be
fault-output decoupled or not.

To achieve fault-output decoupling for a system (6.1) and (6.2) the following
procedure should be followed:

� step 1: Separate the faults in maximal l different groups as l output signals
are available. Only faults should be grouped together that can be isolated
by their different effect on the output or do not have to be isolated from
each other.

� step 2: Decouple the l fault groups from the output by considering the
above introduced concepts of complete and efficient fault-output decou-
pling. Keep in mind that the faults are not measurable.

� step 3: Design a controller that meets the controller task and preserves the
fault-output decoupled structure.

If these three steps are performed successfully fault-output decoupling and satis-
fying controller performance can be achieved. This leads to a system where the
fault diagnosis task could be performed by a dedicated observer scheme (DOS),
e.g. by a bank of diagnostic observers monitoring each one system output.

The application of the design method will be illustrated in the next section. Dur-
ing the application it can be seen that step 2 of the procedure is not trivial. It
needs special consideration as there might be different solutions of how to de-
couple and different decision logics that could be used. In certain systems addi-
tional FDI techniques might be required.

As also mentioned in the previous chapter it is important that the fault-output
decoupled system can be controlled in a way to meet the control objectives. One
condition for this is that the considered system is minimumphase or in other
words has stable zero dynamics.
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The design procedure can also be applied to nonlinear systems if the concepts
given in the previous chapters are also formulated for the nonlinear case.

6.6 Application example

In this section the proposed design procedure from the previous section will be
applied to a modified linearized aircraft model for lateral motion. The original
model is presented in Mudge and Patton (1988). During the application com-
ments are given to explain and discuss each step of the in the previous chapter
given design procedure.

6.6.1 Model description

First, the modified system model based on a linearized aircraft model for lateral
motion presented in Mudge and Patton (1988) is introduced. Then the model
will be changed corresponding to equations (6.1) and (6.2) in order to include
faults and to obtain stable zero dynamics.

6.6.1.1 Original model

As stated in Mudge and Patton (1988) a stick fixed linearization established by
considering small changes about a chosen state trajectory of the nonlinear system
gives the following linear lateral motion model:

_x = Ax + B u (6.23)

y = C x (6.24)

where:

x =

0
BBBBBBBBBBB@

x1

x2

x3

x4

x5

x6

x7

1
CCCCCCCCCCCA

: sideslip velocity

: roll rate

: yaw rate

: roll angle

: yaw angle

: rudder angle

: aileron angle

(6.25)
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A =

0
BBBBBBBBBBB@

a11 0 a13 a14 0 a16 0

a21 a22 a23 0 0 0 a27

a31 0 a33 0 0 a36 0

0 1 0 0 0 0 0

0 0 1 0 a55 0 0

0 0 0 0 0 a66 0

0 0 0 0 0 0 a77

1
CCCCCCCCCCCA

(6.26)

BT =

 
0 0 0 0 0 b61 0

0 0 0 0 0 0 b72

!
and u =

 
u1

u2

!
(6.27)

C =

0
B@ 1 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

1
CA (6.28)

In the following we will use the system with a modified A matrix, i.e. compared
to the original A matrix in Mudge and Patton (1988) two values are changed.
The original values for aold55 = 0 and aold36 are changed to anew55 = �0:1 and
anew36 = �aold36 in order to get stable zero dynamics. The values used for the
simulations are given in Appendix D.

6.6.1.2 Model including faults

To consider fault isolation and detection aspects the equations (6.23) and (6.24)
have to be modified in the following way:

_x = Ax + B u+ Lx �x (6.29)

y = C x+ Ly �y (6.30)

The vectors �x and �y stand for the modeled and considered faults. Depending
on their effect matrices Lx and Ly they can describe different faults. Some
examples:

� if Lx = B then �Tx =
�
�x1 �x2

�
describes actuator faults.
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� if Ly = I3 then �Ty =
�
�y1 �y2 �y3

�
describes sensor faults.

I3 stands for the 3x3 identity matrix. Of course other faults are possible, like
component faults (modeled by parameter changes), but they are not considered
here.

6.6.2 Demonstration of the method

In this section we will introduce a specific fault scenario for the presented model
and then apply the design method given in section 6.5 in order to obtain fault-
output decoupling.

6.6.2.1 Fault scenario

The considered faults are faults on both actuators (�a1 and �a2) and a fault on the
third output sensor �s3, which leads to the system description:

_x = Ax + B u+ Lx �x (6.31)

y = C x+ Ly �y (6.32)

with

Lx = B ; �Tx =
�
�a1 �a2

�
(6.33)

and Ly =

0
B@ 0 0 0

0 0 0

0 0 1

1
CA ; �Ty =

�
0 0 �s3

�
(6.34)

6.6.2.2 Applying the design procedure

Having defined the fault scenario, equations (6.31) - (6.34), and knowing the sys-
tem model, equations (6.25) - (6.28), we can start applying the proposed method
by following the procedure given in section 6.5:

Step 1 (fault grouping): In the lateral motion example we have three outputs,
the sideslip velocity, y1 = x1, the roll angle, y2 = x4, and the yaw angle,

y3 = x5. As only three faults are considered, �T =
�
�a1 �a2 �s3

�
, every

fault can be considered for itself, i.e. it is not necessary to group some faults
together. Therefore, step 1 is in this case easily handled and we proceed with
step 2.
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Step 2 (fault-output decoupling): As the system has two inputs and three out-
puts complete fault-output decoupling for the given fault scenario is not feasible.
This is due to the in Section 6.3.1 discussed problem. If complete fault-output
decoupling was achievable the third output y3 would only be affected by the
sensor fault �s3 and be decoupled from the actuator faults �a1 and �a2. As a
consequence the third output would also be decoupled from the two inputs and
hence uncontrollable. As this is not desirable efficient fault-output decoupling
will be considered. Efficient fault-output decoupling can be achieved, because it
is possible to decouple the first two outputs of the system from the actuator faults
such that for this subsystem complete fault-output decoupling is obtained. Then
the third output does not have to be decoupled form the actuator faults. This is
due to the fact that by the rule of exclusion the following logic makes it possible
to detect and isolate the faults (FDI) anyway:

� if output y1 is faulty �a1 has occurred

� if output y2 is faulty �a2 has occurred

� if only output y3 is faulty �s3 has occurred

To continue the decoupling matrix, M�
dec, with respect to the faults will be de-

rived, hence, first the characteristic numbers, ��i , with respect to the faults are
calculated.
Starting with the output y1:

y
(0)
1 = x1 (6.35)

y
(1)
1 = _x1 = a11x1 + a13x3 + a14x4 + a16x6 (6.36)

y
(2)
1 = a11[a11x1 + a13x3 + a14x4 + a16x6] +

+a13[a31x1 + a33x3 + a36x6] +

+a14[x2] + a16[a66x6 + b61u1 + b61�a1] (6.37)

) characteristic number for y1 : �
�
1 = 2 (6.38)
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continuing with with the output y2:

y
(0)
2 = x4 (6.39)

y
(1)
2 = _x4 = x2 (6.40)

y
(2)
2 = _x2 = a21x1 + a22x2 + a23x3 + a27x7 (6.41)

y
(3)
2 = a21[a11x1 + a13x3 + a14x4 + a16x6] +

+a22[a21x1 + a22x2 + a23x3 + a27x7] +

+a23[a31x1 + a33x3 + a36x6] +

+a27[a77x7 + b72u2 + b72�a2] (6.42)

) characteristic number for y2 : �
�
2 = 3 (6.43)

and finally for the output y3:

y
(0)
3 = x5 + �s3 (6.44)

) characteristic number for y3 : �
�
3 = 0 (6.45)

As a result, the fault-output decoupling matrix M�
dec can be derived as follows:

@y
(��1 )
1

@�
=

�
a16b61 0 0

�
(6.46)

@y
(��2 )
2

@�
=

�
0 a27b72 0

�
(6.47)

@y
(��3 )
3

@�
=

�
0 0 1

�
(6.48)

) M�
dec =

0
B@ a16b61 0 0

0 a27b72 0

0 0 1

1
CA (6.49)

As can be seen from Mudge and Patton (1988) the coefficients a16b61 and a27b72
are not equal to zero and therefore the decoupling matrix has full rank. It is even
diagonal. Keeping in mind why we changed from complete to efficient fault-
output decoupling only the following subsystem of derivatives is considered:

 
y
(��1 )
1

y
(��2 )
2

!
=

 
C1A

��1

C2A
��2

!
x + Mu�

dec u +M��
dec

 
�a1

�a2

!
(6.50)
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with Mu�
dec =

 
C1A

��1�1B

C2A
��2�1B

!
=

 
a16b61 0

0 a27b72

!
(6.51)

and M��
dec =

 
a16b61 0

0 a27b72

!
= Mu�

dec: (6.52)

The fact that Mu�
dec equals M��

dec is due to the fact that actuator faults are consid-
ered, Lx = B. As mentioned before the elements from matrix Mu�

dec are nonzero,
which implies that the matrix is invertible. In order to obtain complete fault-
output decoupling for the first two outputs with respect to the actuator faults the
following regular static state feedback can be derived from the equations (6.50)
to (6.52):

u =

 
u1

u2

!
= � (Mu�

dec)
�1

 
C1A

��1

C2A
��2

!
x+ (Mu�

dec)
�1

 
w1

w2

!
(6.53)

which leads to the following completely fault-decoupled subsystem: 
y
(��1)
1

y
(��2)
2

!
=

 
w1

w2

!
+

 
a16b61 0

0 a27b72

! 
�a1

�a2

!
: (6.54)

When looking at the equations (6.37) and (6.42) the feedback can be written in
the following form which corresponds with (6.3):

u = M x+ (Mu�
dec)

�1

 
w1

w2

!
(6.55)

where

M = � (Mu�
dec)

�1

 
C1A

��1

C2A
��2

!
(6.56)
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) M = �

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

a211+a13a31
a16b61

a21a11+a22a21+a23a31
a27b72

a14
a16b61

a222
a27b72

a11a13+a13a33
a16b61

a21a13+a22a23+a23a33
a27b72

a11a14
a16b61

a21a14
a27b72

0 0

a11a16+a13a36+a16a66
a16b61

a21a16+a23a36
a27b72

0 a22a27+a27a77
a27b72

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

T

(6.57)

Applying the feedback given by equation (6.55) the system (6.31) and (6.32) is
completely fault-output decoupled regarding the two actuator faults and the first
two outputs. Hence, efficient fault-output decoupling has been achieved when
considering the above introduced decision logic and single faults. For multiple
faults it is necessary to be able to isolate the sensor fault with additional FDI
means. This can according to Chen and Patton (1999) be achieved straightfor-
ward, e.g. by diagnostic observers, hence, it is possible. So, performing step 2
successfully has shown the capability of the new introduced idea of fault-output
decoupling to improve the fault isolation possibilities.

Step 3 (Controller design to meet control objectives): After establishing ef-
ficient fault-output decoupling the last step to design a controller to meet the
control objectives and which preserves the decoupling has to be carried out.

In this example the control objective is chosen to be that the system is asymp-
totically stable. In order to achieve this the control possibilities as described in
section 6.4 are considered in the following:

wi = ~�i1 yi + ~�i2 _yi + : : : + ~�i�ui y
(�ui �1)
i + ~�i ~wi (6.58)
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where ~�ij ; ~�i 2 R. For the considered control objective the external access ~wi
can be omitted which leads to the following control law:

w1 = ~�11 y1 + ~�12 _y1 (6.59)

w2 = ~�21 y2 + ~�22 _y2 + ~�23 �y2 (6.60)

Choosing the controller parameters ~�ij e.g. to be�10 gives a stable performance
of the system, which has the following eigenvalues:

�1 = �0:1 ; �2 = �58:12 ; �3;4 = �0:49 � 0:93 i;

�5 = �9 ; �6 = �8:87 �7 = �1:13

where �1 = �0:1 and �2 = �58:12 are the poles given by the zero dynamics.

Remark 3: It is straightforward to show that the decoupled system (6.31) and
(6.32) with (6.55) is controllable, hence, a general state feedback could be used
to place all the poles of the system arbitrarily, but as mentioned earlier in section
6.4 this would destroy the decoupling. The restriction given by the objective to
preserve the decoupling can be clearly seen in the example. Two poles (n� �),
�1 and �2, are fixed and the others can be assigned arbitrarily.

Simulations In a simulation of the modified aircraft example the above de-
signed feedbacks (6.55) and (6.59) are applied. The first one to achieve fault-
output decoupling and the second one to stabilize the system. The used parame-
ters can be found in Appendix D. During the simulation applied fault signals are
given in the first sub-figure of Fig. 6.1.

Three different faults were simulated in the following order, first actuator fault 1,
�a1 starting at 10 seconds, then actuator fault 2, �a2, starting at 30 seconds, and
at the end sensor fault 3, �s3, starting at 50 seconds. The simulated outputs are
shown in the last three sub-figures of Fig. 6.1. It can be clearly seen that the out-
puts react in such a way, that the decision logic, as designed in step 2, is efficient
enough to detect and isolate the faults with a bank of observers that monitor the
single outputs. Hence, the proposed method has been applied successfully.
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Figure 6.1: Output and fault signals from the simulation of the fault-output de-
coupled modified aircraft example.

6.7 Conclusions

In this chapter the novel idea of fault-output decoupling to improve the fault
detection and isolation possibilities has been presented. It is based on integrat-
ing fault-output decoupling in the controller design such that the design of fault
detection and isolation can be performed easier, e.g. by applying dedicated ob-
server scheme (DOS).

The idea is strongly connected to the well studied problems of input-output and
disturbance decoupling. Hence, not all details of the theory were investigated
and stated in this chapter. The interested reader is referred to the given refer-
ences in the chapter as this chapter is meant to present a new idea and not to give
a review of existing theory.



152 Fault-output decoupling

It was shown how state feedback is used to obtain fault-output decoupling.
Hence, state knowledge is required. This is from a FDI-point-of-view very re-
strictive, because full-state knowledge opens the possibility to use other FDI
methods. However, in control theory many different control strategies exist that
are based on state feedback. In those cases the state knowledge is available
anyway, hence, it could be used to improve the FDI possibilities. At present,
however, the FDI design is not considered during the controller design for most
systems.

A design procedure to obtain successful fault-output decoupling, to ease the fault
isolation task, and to meet the controller objectives has been introduced. Its ap-
plication has been illustrated on a modified linearized aircraft model for lateral
motion. The simulations show that the fault-output decoupling has successfully
been achieved.

In this chapter only linear systems were considered to make it more understand-
able. However, as the input-output decoupling theory is also well studied for
nonlinear systems fault-output decoupling should apply to them as well. The de-
sign procedure presented in Section 6.5 is applicable to both linear and nonlinear
systems.

There are still a lot of open questions concerning the new idea of fault-output
decoupling. They require further research to decide whether it is applicable or
not. Hence, some recommendations for further research are given in Chapter 7
at the end of this thesis.



Chapter 7

Conclusions and
Recommendations

This thesis considered different aspects of fault detection and isolation (FDI).
The design of nonlinear observers for FDI in nonlinear systems was studied in
detail using the so-called geometric approach. This chapter summarizes the work
presented in this thesis. The main results and conclusions are reviewed. Direc-
tions and recommendations for further investigations are identified.

7.1 Conclusions

Theory and application were combined in this thesis. The thesis first described
the geometric approach and discussed how to use this mathematical theory on
the fault diagnosis problem. Then application of the theory was illustrated on
a nonlinear ship propulsion system. Furthermore, the thesis considered some
stability aspects of observer design. Finally, it introduced the novel idea of fault-
output decoupling.

A number of conclusions can be drawn based on the accomplishments of this
thesis:

� The idea of model-based fault detection was explained briefly. This was
done by addressing the following aspects: analytical redundancy, residual
generation, residual evaluation, robustness concerning model uncertainty,
and performance issues.
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� A detailed review was given on fault-diagnostic observers using the ge-
ometric approach. The review started with a description of the original
idea introduced by Massoumnia (1986b) to solve the fundamental prob-
lem of residual generation (FPRG) for linear systems. It ended with the
latest results for input-affine nonlinear systems by DePersis (1999); De-
Persis and Isidori (1999, 2000). Both problem formulations and solutions
were presented. Furthermore, the similarities and the common idea of the
geometric approaches were pointed out.

� A nonlinear ship propulsion system was used as application example. The
geometric approach was applied by considering several FPRGs for differ-
ent subsystems and fault scenarios. Detailed calculations were given to
illustrate the application of the geometric approach and its different geo-
metric algorithms. Only two FPRGs could be solved when neglecting the
disturbances.

� As a result it can be concluded that the FDI problem as stated in Section
4.1.3 cannot be solved for arbitrary fault and disturbance signals.

� The results for the two solvable FPRGs were used to design two nonlin-
ear observers for FDI. They were designed to detect and isolate the two
possible shaft speed loop faults in the propulsion system. Furthermore, a
linear observer was designed to detect the pitch loop faults in the system.
For comparison an adaptive nonlinear observer was designed as well. Six
residuals were obtained based on these observers.

� Different simulations (neglecting the disturbances) were carried out to test
the FDI performance of the different observers. From the simulation re-
sults it could be seen that all faults could be handled according to the
requirements as long as multiple faults could be neglected and additional
considerations were made.

� It was illustrated how the measurement noise and possible disturbances
affect the residuals. A CUSUM-algorithm was used to illustrate that the
measurement noise could be handled. However, it was also shown that
the disturbances could not be handled. Their occurrence would lead to
false alarms. This was also shown by the geometric approach, because the
corresponding FPRGs were not solvable.
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� The correct tuning of the FDI system is a complex task. It is a optimization
problem considering several problems, as finding an appropriate observer
structure, tuning of the observer to obtain structured residuals, stability
of the observer, robustness issues, and the performance. The geometric
approach handles most of these aspects, however, it does not consider the
residual dynamics, which might cause problems as shown for the ship
propulsion system where some residuals react too slow.

� The geometric approach proved to be a powerful tool for FDI design, but
additional work is needed to obtain a complete solution for successful FDI.

� The subsystems obtained by the geometric approach were also obtained by
using the structural analysis (Staroswiecki and Declerck (1989); Cassar et
al. (1994)) by Izadi-Zamanabadi (1999)[Section 5.1.3].

� Different aspects of the stability of observer-based FDI were addressed.
The stability for the nonlinear observers designed for the ship propulsion
system was outlined. Furthermore, the importance of the awareness that
linearization along a trajectory leads to a time-variant system was empha-
sized.

� The novel idea of fault-output decoupling was presented to show how FDI
and control design could be combined to improve FDI possibilities. The
concepts of complete and efficient fault-output decoupling was defined
and illustrated by a simple example.
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7.2 Recommendations

Some aspects and topics are not covered in this thesis. They are listed in the fol-
lowing, as it is believed that future investigation is needed or could be beneficial:

� The solutions presented for the ship propulsion’s FDI problem neglects the
disturbances. For real application a way to handle the disturbances need to
be found. This might be possible by disturbance estimation (e.g. for Text
based on weather data) or additional sensors, e.g. measuring the torque or
the thrust.

� The correct tuning of the FDI algorithm for the ship propulsion system
needs further investigation, like e.g. which thresholds to chose and how to
tune the observers in an optimal way.

� The residuals r1 and r3 can by construction be used for detection and
isolation of the two shaft speed fault. However, they need too much time
to detect the faults. This is due to the fact that they are based on the slow
ship speed dynamics. This kind of problem due to the residual’s dynamics
is believed to be an important aspect for real applications. However, so
far it has not been considered often in model based approaches. A unified
FDI design methodology considering all important aspects for successful
FDI is still missing and therefore still a topic for further research.

� Furthermore, it is believed to be an interesting topic to attempt to combine
the geometric approach with the structural analysis. Both methods provide
information to determine subsystems for the observer design in order to
obtain observer-based FDI.

� The new idea of fault-output decoupling needs further research. The topics
to be addressed are e.g. its robustness, ability to handle nonlinear systems,
required knowledge of the states, and what kind of faults can be handle.
When looking at the equations (6.13) and (6.54) it can be seen that it is
also an interesting question if the fault-output decoupling idea could be
used for fault estimation.



Appendix A

Geometric theory and other
mathematical concepts

This appendix presents and explains the different geometric and system theory
concepts used in this thesis. Throughout the thesis footnotes are used to refer
to the different sections below. Each gives an explanation of the corresponding
concept and refers to further literature.

A.1 Affected/unaffected

Section 3:3 in Isidori (1995) gives a detailed description of the definitions for
output invariance and the concept of affected/unaffected. In the following the
definition as stated in DePersis (1999) is repeated.

The jth output yj(t;x0;u1; : : : ; um) corresponding to an initial condition x0 and
to the set of input functions u1; : : : ; um is unaffected by (or invariant under) the
ith input ui if, for any initial condition x0 in U (U being an open set of Rn - or,
more abstract, the state space manifold, - on which the system is defined) and
any collection of admissible input functions u1; : : : ; ui�1; ui+1; : : : ; um, there
holds:

yi(t;x
0;u1; : : : ; ui�1; ua; ui+1; : : : ; um)

= yi(t;x
0;u1; : : : ; ui�1; ub; ui+1; : : : ; um)

for all t � 0 and any pair ua, ub. The jth output yi(t;x0;u1; : : : ; um) is said to
be affected by ui if it is not unaffected by ui.
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A.2 Algorithm to obtain the u.o.s. S�

In this section a detailed description is given of how to obtain the infimal unob-
servability subspace S� as it is used in section 3.3.1 to solve the linear FPRG in
geometric way. The given description can also be found in Massoumnia et al.
(1989).

A subspace W � X is called (C;A)-invariant if there exists a map D : Y ! X
such that (A + DC)W � W (see e.g. Wonham (1985)). Let W be (C;A)-
invariant then D(W) denotes the class of all maps D such that (A +DC)W �
W . LetL � X ; the family of (C;A)-invariant subspaces containing L is denoted
by W(L). The family W(L) is closed under intersection (i.e., if W1 2 W(L)
and W2 2 W(L), then W1 \W2 2 W(L)); hence W(L) contains an infimal el-
ement W� := infW(L). Also W� = limWk (limit attained for finite k) where
Wk is given in the following recursive algorithm (CAISA : (C;A)-invariant sub-
space algorithm, see Wonham (1985)):

Wk+1 = L+A(Wk \KerC); W0 = 0: (A.1)

A subspace S � X is a (C;A)-unobservability subspace (u.o.s.) if S =
hKerHCjA +DCi for some output injection map D : Y ! X and measure-
ment transformation H : Y ! Y; where hKerCjAi = KerC \ A�1KerC \
� � � \A�n+1KerC , and A�kKerC = fx : Akx 2 KerCg. S is the unobserv-
able subspace of the pair (HC;A +DC), and the spectrum of A+DC : X=S
can be assigned to an arbitrary symmetric set � by appropriate choice of D if
the pair fC;Ag is observable. S(L) denotes the class of u.o.s. containing L.
The class of u.o.s. S(L) is closed under intersection; therefore, it contains an
infimal element S� := inf S(L), (see e.g. Wonham (1985)). Also S� = limSk
is given by a recursive algorithm (UOSA : unobservability subspace algorithm,
see Wonham (1985)) using the result from (A.1):

Sk+1 =W� + (A�1Sk) \KerC; S0 = X : (A.2)

Moreover, S� = hKerC+W�jA+DCi forW� := infW(L) andD 2 D(W�),
see Wonham (1985).
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A.3 Conditioned invariant distribution

Conditioned invariant distributions the nonlinear counterpart of the conditioned
invariant subspaces were introduced in Isidori et al. (1981).

A distribution S is a conditioned invariant distribution for the system:

_x = f(x) +
mX
i=1

gi(x)ui + l(x)� +
sX

i=1

pi(x)wi

yj = hj(x); j 2 l

if it fulfills the following conditions:

[X;S \Ker(dh)] � S

for each X 2 ff; g1; : : : ; gmg. Where the Lie bracket [X;Y ] for two vector
fields X(x) and Y (x) is defined as follows:

[X;Y ](x) = [X(x); Y (x)] = [
@Y

@x
(x)X(x) � @X

@x
(x)Y (x)]

@f
@x

denotes the Jacobian matrix of f = (f1; f2; : : : ; fm)
T :

@f

@x
=

0
BB@

@f1
@x1

� � � @f1
@xn

...
...

@fm
@x1

� � � @fm
@xn

1
CCA (A.3)

A.4 Dual spaces

For a vector space or distribution X � Rn there exists a group of linear functions
f such that f : X ! R. This group of functions defines the dual space X0 � Rn

or also denoted asXT . So obviously, for x 2 X and x
0 2 X 0

the following holds:
x
0

x 2 R. One known simple example: The dual space of the column vectors is
the space of row vectors.
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A.5 Factor spaces

In Wonham (1985) the following definition of a factor space is given:

Let S � X . Call vectors x; y 2 X equivalent mod S if x� y 2 S . We define the
factor space (or quotient space) X=S as the set of all equivalence classes:

�x , fy : y 2 X ; y � x 2 Sg; x 2 X (A.4)

For linear spaces it can be shown that:

dimX=S = dimX � dimS , codimS

To explain and illustrate the definition given by Wonham (1985) the following
example is given:

Let X = R2 , where x = (x1 x2 )
T 2 X . Furthermore, define a subspace

S1 = ( s1 0 )T where s1 2 R. Hence, the dimension of S1 is one, dimS1 = 1.
To understand the definition (A.4) one can start by choosing one arbitrary point
x̂ = ( x̂1 x̂2 )

T 2 X and look at (A.4):

�̂x = fy : y 2 X ; y � x̂ 2 S1g (A.5)

Then it can be seen that �̂x describes the following line:

y = x̂+ ( s1 0 )T (A.6)

hence, one can see that the set of all equivalence classes �x describes the set of
all parallel lines to the line defined by S1. This is the factor space (or quotient
space) X=S1. Together with S1 it spans X . X=S1 is isomorph to the subspace
S2 = ( 0 s2 )

T where s2 2 R.
Hence, it can somehow be seen as: X ’minus/modulo’ S1.
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A.6 Input observability

In Definition 3.2 the map condition ’The map from �1 to r is input observable’ is
given. As discussed in Massoumnia et al. (1989) it is one of the possible criteria
to decide whether a nonzero fault signal (�1(t) 6= 0) will affect the residual r(t)
or not. The most natural approach would be to require that the transfer matrix
Gr�1(s) from �1(s) to r(s) is left invertible, so that any nonzero �1(t) results in a
nonzero r(t). Another approach would be to use the weaker requirement that the
system relating �1(t) to r(t) should be input observable. A system (C;A;B) is
input observable if B is monic and the image of B (ImB) does not intersect the
unobservable subspace of (C;A). In terms of transfer matrices, left invertibility
is equivalent to the columns of C(sI � A)�1B being linearly independent over
the field of rational s, while input observability is equivalent to independence
over the field of real numbers. When the fault signal �1 is scalar (k1 = 1) input
observability is equivalent to the left invertibility of the system relating �1(t) to
r(t), and hence if �1(t) 6= 0 then r(t) 6= 0 (see also Remark1 in Hammouri et
al. (1998)).

Even if the system relating �1(t) to r(t) is only input observable and not left
invertible, almost any nonzero �1(t) will produce a nonzero residual r(t). This
is because it is extremely unlikely that an arbitrary nonzero �1(t) will hide itself
for all t in the nullspace of the mapping from �1(t) to r(t). It may therefore be
argued that the requirement of left invertibility is too stringent for FDI purposes
(Massoumnia et al. (1989)).
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A.7 Observability and unobservability spaces for state-
affine systems

The solution of the FPRG presented in Section 3.3.2 for state-affine systems
uses observability and unobservability spaces. In the following these terms are
explained according to the definition given in Hammouri et al. (1998) for the
following class of system:

_x = A(u)x; y = [c1x; : : : ; clx]
T = Cx (A.7)

where x(t) 2 X � R
n , u(t) = (u1(t); : : : ; um(t)) 2 U and open subset of Rm ,

and y(t) 2 Y � Rl . A(u) is a n� n matrix which is considered to be analytic
with respect to u.

System (A.7) is observable if and only if for every pair of initial states, (x01,x02),
x01 6= x02, there exists an admissible control u : [0; T ] ! U and a time instant
t 2 [0; T ] such that y(x01; u; t) 6= y(x02; u; t), where y(x01; u; t) = Cx1(t), and
x1(t) is the unique trajectory of (A.7) such that x1(0) = x01. If such an input
u exists, it is called to distinguish (x01,x02). An input u : [0; T ] ! U , which
distinguishes every (x01,x02), x01 6= x02 is said to be universal on [0; T ].

The observation space, O(C), of a system described by (A.7) is defined as
the smallest vector space containing each output function c1x; : : : ; clx and
being closed under the Lie derivative LX , where X stands for the vector
fields A(u)x, with u 2 U . The Lie derivative is in this case defined as
LXf(x) =

Pn
i=1

@f
@xi

(x1; : : : xn)X(x1; : : : xn), where f(x) is a function, x =
(x1; : : : xn) 2 R

n , and X(x) is a vector field. A simple calculation shows that
O(C) is the linear vector space (over R) spanned by the family of linear functions
fc1x; : : : ; clxg [ fciA(u1) : : : A(ur)x; i = l; r � 1; and u1; : : : ; ur 2 Ug.
Hence dimO(C) � n. Set dO(C) = fd� ; � 2 O(C)g, where d� is the
standard differential map: d�(x) = ( @�

@x1
; : : : ; @�

@xn
). Clearly, dO(C) is the

real vector space spanned by fc1; : : : ; clg [ fciA(u1) : : : A(ur); i = l; r �
1; and u1; : : : ; ur 2 Ug. It is also called the observability subspace. Notice that
dimO(C) = dimdO(C) = ko. This space allows one to define a geometric no-
tion of observability, namely the rank observability condition. System (A.7) is
observable in the sense of rank if dimdO(C) = n holds globally. For linear sys-
tems this is equivalent to the Kalman observability rank condition. Similarly, the
observability rank condition is satisfied for a state-affine system if and only if it
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is observable (Hammouri et al. (1998)). In the case that dimdO(C) = ko < n,
i.e. dO(C) describes a ko-dimensional subspace of Rn , set � = KerdO(C).
Then � describes a (n�ko)-dimensional subspace of Rn , also referred to as un-
observability subspace. This subspace can also be considered as the orthogonal
space (annihilator) of dO(C) in Rn (� = (dO(C))?).

A.8 Regular point of a distribution

In Isidori (1995) the following explanation for a regular point of a distribution is
given in section 1.3:

A distribution �, defined on an open set X , is nonsingular if there exists an
integer d such that for the dimension of the distribution the condition

dim (�(x)) = d

holds for all x in U . Hence, a distribution is regular if and only if it has constant
dimension.

A point x0 of X is said to be a regular point of a distribution �, if there exists a
neighborhood N0 of x0, where N0 � X , with the property that � is nonsingular
on N0. Each point of X which is not a regular point is said to be a point of
singularity.





Appendix B

Technical data of ship
propulsion system

The ship propulsion benchmark provides two different simulation models. In
this thesis the simulation model of the propulsion system with one engine and
one propeller has been used. It has been designed with the help of real data from
a ferry with a length of 147:2m and a displacement of 12:840m3 (fully loaded).
In this appendix the parameters used in the simulation model are presented
as they are given in Izadi-Zamanabadi and Blanke (1998); Izadi-Zamanabadi
(1999).

B.1 Disturbances
Two disturbance sources are considered to simulate the friction torque of the
shaft and the external forces (hull friction, waves, and wind):

Source Name Value

Qf friction torque 0:05 �Qeng;max

Text external force 0:1 � Tmax

Table B.1: Disturbances.

165



166 Technical data of ship propulsion system

B.2 Ship parameters

This section describes the ship parameters as they are used in the simulation
model:

Parameter Value Description Unit

Im 0.25�106 inertia kg m2

m 13.282 weight (fully loaded) tons

m 10.359 weight (unloaded) tons

D 6.123 propeller diameter m

� 1025 water density kg/ m3

N 6 number of cylinders -

kt 0.15 pitch angle control gain -

ky 1.137�106 engine gain Nm

kr 0.2211 governor gain rad�1s

K 226 anti-windup gain -

�i 5 time cons. in the PI s

Umax 9.7 max. ship speed m/s

nmax 120 max. shaft speed RPM

Va;max 8.54 max. advanced speed m/s

Qeng;max 1137 max. torque (motor) kNm

Tprop;max 889.8 max. developed thrust kN

Qprop;max 1063 max. developed torque kNm

X _U 0 added mass in surge kg

Table B.2: Ship parameters.



B.3 Saturation & limitations 167

B.3 Saturation & limitations

In the simulation model the following limitations and saturations have been con-
sidered:

Paramater Value Description Unit

_�max 0.2 max limit on pitch rate -
_�min -0.2 min limit on pitch angle -

�max 1 max limit on pitch angle -

�min -0.7 min limit on pitch angle -

nmax;a 120 max allowed shaft speed. RPM

Ylb 0 lower bound for fuel index -

Yub 1 upper bound for fuel index -

kf 0.05 gain in overload controller -

kb 1 gain in overload controller -

� 0.05 threshold in overload contr. -

�min -0.7 min limit on pitch angle -

nmax;a 120 max allowed shaft speed. RPM

Ylb 0 lower bound for fuel index -

Table B.3: Saturation & limitations.

B.4 Measurement noise
Measurement noise has been added to make the simulation model realistic. The
noise on the measurements is considered to be white and Gaussian having a zero
mean and has been generated and added as follows:



Signal Name Standard deviation

�U ship speed 0:01 � Umax(9:7m=s)

�n shaft speed 0:005 � nmax(124RPM)

�� propeller pitch 0:0425 � �max(1)

�Y fuel index 0:005 � Ymax(1)

Table B.4: Measurement noise.



Appendix C

Application of the geometric
approach to the ship benchmark

The detailed calculations for the application of the geometric approach to the
ship propulsion benchmark are described in this chapter. Each section handles
one group of FPRGs as defined in Section 4.2.2.

C.1 Complete system with controllers and disturbances

Calculations for FPRG 1:

�new = �kyY and wnew = ( _�nsensor _��sensor � _�inc Text Qf )
T

P 1 = span

8>>>>>>>>>>>><
>>>>>>>>>>>>:

0
BBBBBBBBBBB@

0

0

0

0

0

1

0

1
CCCCCCCCCCCA
;

0
BBBBBBBBBBB@

0

0

0

0

0

0

1

1
CCCCCCCCCCCA
;

0
BBBBBBBBBBB@

0

0

0

1

0

0

0

1
CCCCCCCCCCCA
;

0
BBBBBBBBBBB@

0

0
1
m

0

0

0

0

1
CCCCCCCCCCCA
;

0
BBBBBBBBBBBB@

0

� 1
Im

0

0

0

0

0

1
CCCCCCCCCCCCA

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

Following the algorithm (3.59) and (3.60) to calculate �P
1

� starts with:

S10 = P 1 = P 1 (as P 1 is constant)
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Furthermore:

h(x) =
�
h1(x) h2(x) h3(x)

�T
=
�
n+ x�n � + x�� U

�T

)

8><
>:

dh1 = (0 1 0 0 0 1 0)

dh2 = (0 0 0 1 0 0 1)

dh3 = (0 0 1 0 0 0 0)

as x = (Qeng n U � Yi x�n x��)
T

) Kerfdhg = span

8>>>>>>>>>>><
>>>>>>>>>>>:

0
BBBBBBBBBBB@

1

0

0

0

0

0

0

1
CCCCCCCCCCCA
;

0
BBBBBBBBBBB@

0

�1
0

0

0

1

0

1
CCCCCCCCCCCA
;

0
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0

0

0

�1
0

0

1

1
CCCCCCCCCCCA
;

0
BBBBBBBBBBB@

0

0

0
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1

0

0

1
CCCCCCCCCCCA

9>>>>>>>>>>>=
>>>>>>>>>>>;
:

) S10 \Kerfdhg = span
�
(0 � 1 0 0 0 1 0)T ; (0 0 0 � 1 0 0 1)T

	
:

The next step of the algorithm (3.60) leads to:

S1k+1 = S
1
k +

mX
i=0

[gi; S
1
k \Kerfdhg] ) S11 = S

1
0 +

2X
i=0

[gi; S
1
0 \Kerfdhg]

) S11 = S10 +

2X
i=0

[gi; S
1
0 \Kerfdhg] ) S11 = S10 + [f; S10 \Kerfdhg]

as g1(x), g2(x), and S10 \Kerfdhg are constant.

[f; S10 \Kerfdhg] = �@f
@x

�
S10 \Kerfdhg

�
, as S10 \Kerfdhg is constant.

[f; (0 � 1 0 0 0 1 0)T ] = (0 � 1

Im
[2Qjnjnn� +QjnjVa(1� w)U�]

1� tT
m

[2Tjnjnn� + TjnjVa(1� w)U ] 0 0 0 0)T
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and

[f; (0 0 0 � 1 0 0 1)T ] = (0 � 1

Im
[Qjnjnn

2 +QjnjVa(1� w)nU ]

1� tT
m

Tjnjnn
2 0 0 0 0)T

as

@f

@x
=

0
BBBBBBBBBBBB@

� 1
�c

�ky kr
�c

0
1
Im

� 1
Im

[2Qjnjnn� +QjnjVaVa�] � 1
Im
QjnjVa(1� w)n�

0 1�tT
m

[2Tjnjnn� + TjnjVaVa]
1
m

@R(U)
@U

+ 1�tT
m

TjnjVa(1� w)n

0 0 0

0 �kr
�i

0

0 0 0

0 0 0

0
ky
�c

�ky kr
�i

0

� 1
Im

[Qjnjnn
2 +QjnjVanVa] 0 0 0

1�tT
m

Tjnjnn
2 0 0 0

�kt 0 0 �kt

0 0 �kr
�i

0

0 0 0 0

0 0 0 0

1
CCCCCCCCCCCCA

where Va = (1� w)U .

) [f; S10 \Kerfdhg] � S10

) S11 = S10 + [f; S10 \Kerfdhg] = S10

) k� = 0 ) �P 1

� = P 1

�P 1

� is well-defined (as equation (3.61) holds for k� = 0) and nonsingular (as it is
constant). Hence, its annihilator (�P

1

� )? is locally spanned by exact differentials
(because �P 1

� is by construction involutive). It can also be seen above that �P
1

� \
Kerfdhg is a smooth distribution. Hence, (�P 1

� )? is the maximal (in the sense
of codistribution inclusion) conditioned invariant codistribution which is locally
spanned by exact differentials and contained in P1? (according to DePersis and
Isidori (2000)).
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Next step in the procedure (described on page 65) is to calculate the involutive
conditioned invariant distribution Q1 (unobservability distribution):

Q1 = (o.c.a.((�P 1

� )?))? = (o.c.a.(P 1?))?

Applying the observability codistribution algorithm (o.c.a.) (see page 43), in
order to calculate o.c.a.(P1?), starts with:

Q0 = P 1? \ spanfdhg

where

P 1? = span f(1 0 0 0 0 0 0); (0 0 0 0 1 0 0)g
spanfdhg = span f(0 1 0 0 0 1 0); (0 0 0 1 0 0 1); (0 0 1 0 0 0 0)g :

Hence, it is easy to see that Q0 = 0. The next step of the algorithm:

Qk+1 = P 1? \
 

3X
i=0

LgiQk + spanfdhg
!

leads to:

Q1 = P 1? \
 

3X
i=0

LgiQ0 + spanfdhg
!

= P 1? \ spanfdhg = Q0 = 0

) o.c.a.(P 1?) = 0

) Q1 = (o.c.a.(P 1?))? = R
7

) l(x)new =
�

1
�c

0 0 0 0 0 0
�T 2 Q1

As a result it can be seen that the FPRG 1 is not solvable in the geometric sense
described in Chapter 3 . The calculations for the FPRG 2 - FPRG 4 are similar
and therefore omitted here.
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C.2 Complete system with controllers and without dis-
turbances

Calculations for FPRG 5:

�new = �kyY and wnew = ( _�nsensor _��sensor � _�inc)
T

P 5 = span
�
(0 0 0 0 0 0 1)T ; (0 0 0 0 0 1 0)T ; (0 0 0 1 0 0 0)T

	
Now the algorithm (3.59) and (3.60) is used to calculate �P

5

� :

S50 = P 5 = P 5 (as P 5 is constant)

) S50 \Kerfdhg = span
�
(0 0 0 � 1 0 0 1)T

	
:

S5k+1 = S
5
k +

mX
i=0

[gi; S
5
k \Kerfdhg] ) S51 = S
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5
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2X
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5
0 \Kerfdhg] ) S51 = S50 + [f; S50 \Kerfdhg]

as g1(x), g2(x), and S50 \Kerfdhg are constant.

[f; S50 \Kerfdhg] = �@f
@x

�
S50 \Kerfdhg

�
, as S50 \Kerfdhg is constant.

[f; (0 0 0 � 1 0 0 1)T ] =(0 � 1

Im
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where Va = (1� w)U .

) S50 6= S51 ) k� 6= 0

S52 = S
5
1 +

2X
i=0

[gi; S
5
1 \Kerfdhg] = S51 + [f; S51 \Kerfdhg]

as g1(x), g2(x), and S10 \Kerfdhg are constant. It can easily be checked that:

S51 \Kerfdhg = S50 \Kerfdhg = span
�
(0 0 0 � 1 0 0 1)T

	
:

) S52 = S51 + [f; S50 \Kerfdhg] ) S52 = S51

) k� = 1 ) �P 5

� = S51

�P 5

� is well-defined (as equation (3.61) holds for k� = 1) and nonsingular as
long as the shaft speed is not zero (n 6= 0). It can be seen above that �P

5

� \
Kerfdhg is a smooth distribution. Hence, (�P 5

� )? is the maximal (in the sense
of codistribution inclusion) conditioned invariant codistribution which is locally
spanned by exact differentials and contained in P5? when n 6= 0 (according to
DePersis and Isidori (2000)).

Next step in the procedure (described on page 65) is to calculate the involutive
conditioned invariant distribution Q5 (unobservability distribution):

Q5 = (o.c.a.((�P 5

� )?))? = (o.c.a.(S51
?
))?

Applying the observability codistribution algorithm (o.c.a.) (see page 43), in
order to calculate o.c.a.(S51

?
), starts with:

Q0 = S51
? \ spanfdhg

S51
?
= spanf(1 0 0 0 0 0 0); (0

1� tT
m

Tjnjnn
2

1

Im
[Qjnjnn

2 +QjnjVa(1� w)nU ] 0 0 0 0)T ; (0 0 0 0 1 0 0)g
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spanfdhg = span f(0 1 0 0 0 1 0); (0 0 0 1 0 0 1); (0 0 1 0 0 0 0)g :

Hence, it is easy to see that Q0 = 0 (as n > 0). The next step in the algorithm:

Qk+1 = S51
? \

 
3X

i=0

LgiQk + spanfdhg
!

leads to:

Q1 = S51
? \

 
3X

i=0

LgiQ0 + spanfdhg
!

= S51
? \ spanfdhg = Q0 = 0

) o.c.a.(S51
?
) = 0

) Q5 = (o.c.a.(S51
?
))? = R

7

) l(x)new =
�

1
�c

0 0 0 0 0 0
�T 2 Q5

As a result it can be seen that the FPRG 5 is not solvable. The calculations for
the FPRG 6 - FPRG 8 are very similar and therefore omitted here.

C.3 Pitch loop with pitch controller

Calculations for FPRG 9:

�new = _��sensor and wnew = � _�inc

P 9 = span
�
(1 0)T

	
Now the algorithm (3.59) and (3.60) is used to calculate �P

9

� :

S90 = P 9 = P 9 (as P 9 is constant)

h(x) = (� + x��) ) dh = (1 1) ) Kerfdhg = span
�
(�1 1)T

	
) S90 \Kerfdhg = 0
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S9k+1 = S
9
k +

mX
i=0

[gi; S
9
k \Kerfdhg]

) S91 = S90 +

2X
i=0

[gi; S
9
0 \Kerfdhg]

) S90 = S91 ) k� = 0 as S90 \Kerfdhg = 0:

) �P 9

� = S90 = P 9 = span
�
( 1 0 )T

	
�P 9

� is well-defined (as equation (3.61) holds for k� = 0) and nonsingular.
Hence,its annihilator (�P 9

� )? is locally spanned by exact differentials (because
�P 9

� is by construction involutive). It can be seen above that �P
9

� \Kerfdhg = 0
is a smooth distribution. Hence, (�P 9

� )? is the maximal (in the sense of codistri-
bution inclusion) conditioned invariant codistribution which is locally spanned
by exact differentials and contained in P9? (according to DePersis and Isidori
(2000)).

Next step in the procedure (described on page 65) is to calculate the involutive
conditioned invariant distribution Q9 (unobservability distribution):

Q9 = (o.c.a.((�P 9

� )?))? = (o.c.a.(P 9?))?

Applying the observability codistribution algorithm (o.c.a.) (see page 43), in
order to calculate o.c.a.(P9?), starts with:

Q0 = P 9? \ spanfdhg

P 9? = span f( 0 1 )g and spanfdhg = spanf( 1 1 )g

hence, it is easy to see that Q0 = 0.

) o.c.a.(P 9?) = 0

) Q9 = (o.c.a.(P 9?))? = R
2

) l(x)new = ( 0 1 )T 2 Q9

As a result it can be seen that the FPRG 9 is not solvable. The calculations for
the FPRG 10 are very similar and therefore omitted here.
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C.4 Shaft speed loop with governor and disturbances

Calculations for FPRG 11:

�new = �kyY and wnew = ( _�nsensor Text Qf )
T

P 11 = span

�
(0 0 0 0 1); (0 0

1

m
0 0); (0 � 1

Im
0 0 0)

�

Now the algorithm (3.59) and (3.60) is used to calculate �P
11

� :

S110 = P 11 = P 11 (as P 11 is constant)

h(x) =
�
n+ x�n U

�T )
(
dh1 = (0 1 0 0 1)

dh2 = (0 0 1 0 0)

)Kerfdhg = span
�
(1 0 0 0 0)T ; (0 � 1 0 0 1)T ; (0 0 0 1 0)T

	
)S110 \Kerfdhg = span

�
(0 � 1 0 0 1)T

	

S11k+1 =S
11
k +

mX
i=0

[gi; S
11
k \Kerfdhg]

)S111 = S
11
0 +

2X
i=0

[gi; S
11
0 \Kerfdhg]

)S111 = S110 + [f; S110 \Kerfdhg] + [g2; S
11
0 \Kerfdhg]

as g1(x), S110 , and S110 \Kerfdhg are constant.

[f; S110 \Kerfdhg] = �@f
@x

�
S110 \Kerfdhg�

, as S110 \Kerfdhg is constant.

[f; (0 � 1 0 0 1)T ] = (0 0 � 1� tT
m

TjnjVa(1 �w)U 0 0)T
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,as

@f

@x
=

0
BBBBBBB@

� 1
�c

�ky kr
�c

0
ky
�c

�ky kr
�c

1
Im

0 0 0 0

0 1�tT
m

TjnjVaVa
1
m

@R(U)
@U

+ 1�tT
m

TjnjVan(1� w) 0 0

0 �kr
�i

0 0 �kr
�i

0 0 0 0 0

1
CCCCCCCA
:

[g2; (0 � 1 0 0 1)T ] = (0
1

Im
[2Qjnjnn+QjnjVa(1�w)U ]

� 1� tT
m

2Tjnjnn 0 0)T

,as

@g2
@x

=

0
BBBBBB@

0 0 0 0 0

0 � 1
Im

[2Qjnjnn+QjnjVa(1� w)U ] � 1
Im
QjnjVa(1� w)n 0 0

0 1�tT
m

2Tjnjnn 0 0 0

0 0 0 0 0

0 0 0 0 0

1
CCCCCCA
:

) [gi; (0 � 1 0 0 1)T ] � S110

) S111 = S110

) k� = 0 ) �P 11

� = P 11

�P 11

� is well-defined (as equation (3.61) holds for k� = 0) and nonsingular (as it
is constant). Hence, its annihilator (�P

11

� )? is locally spanned by exact differen-
tials (because �P 11

� is by construction involutive). It can also be seen above that
�P 11

� \Kerfdhg is a smooth distribution. Hence, (�P 11

� )? is the maximal (in
the sense of codistribution inclusion) conditioned invariant codistribution which
is locally spanned by exact differentials and contained in P11? (according to
DePersis and Isidori (2000)).

Next step in the procedure (described on page 65) is to calculate the involutive
conditioned invariant distribution Q11 (unobservability distribution):

Q11 = (o.c.a.((�P 11

� )?))? = (o.c.a.(P 11?))?
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Applying the observability codistribution algorithm (o.c.a.) (see page 43), in
order to calculate o.c.a.(P11?), starts with:

Q0 = P 11? \ spanfdhg

P 11? = span f(1 0 0 0 0); (0 0 0 1 0)g
spanfdhg = span f(0 1 0 0 1); (0 0 1 0 0)g

hence, it is easy to see that Q0 = 0. The next step in the algorithm:

Qk+1 = P 11? \
 

3X
i=0

LgiQk + spanfdhg
!

leads to:

Q1 = P 11? \
 

3X
i=0

LgiQ0 + spanfdhg
!

= P 11? \ spanfdhg = Q0 = 0

) o.c.a.(P 11?) = 0

) Q11 = (o.c.a.(P 11?))? = R
5

) l(x)new =
�

1
�c

0 0 0 0
�T 2 Q11

As a result it can be seen that the FPRG 11 is not solvable. The calculations for
the FPRG 12 are very similar and therefore omitted here.

C.5 Shaft speed loop with governor and without distur-
bances

Calculations for FPRG 13:

�new = �kyY and wnew = _�n
T

sensor

P 13 = span
�
(0 0 0 0 1)T
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Now the algorithm (3.59) and (3.60) is used to calculate �P
13

� :

S130 = P 13 = P 13 (as P 13 is constant)

) S130 \Kerfdhg = 0

S13k+1 = S
13
k +

mX
i=0

[gi; S
13
k \Kerfdhg]

) S131 = S130 +

2X
i=0

[gi; S
13
0 \Kerfdhg]

) S131 = S130

) k� = 0 ) �P 13

� = P 13

�P 13

� is well-defined (as equation (3.61) holds for k� = 0) and nonsingular (as it
is constant). Hence, its annihilator (�P

13

� )? is locally spanned by exact differen-
tials (because �P 13

� is by construction involutive). It can also be seen above that
�P 13

� \Kerfdhg is a smooth distribution. Hence, (�P 13

� )? is the maximal (in
the sense of codistribution inclusion) conditioned invariant codistribution which
is locally spanned by exact differentials and contained in P13? (according to
DePersis and Isidori (2000)).

Next step in the procedure (described on page 65) is to calculate the involutive
conditioned invariant distribution Q13 (unobservability distribution):

Q13 = (o.c.a.((�P 13

� )?))? = (o.c.a.(P 13?))?

Applying the observability codistribution algorithm (o.c.a.) (see page 43), in
order to calculate o.c.a.(P13?), starts with:

Q0 = P 13? \ spanfdhg

P 13? = span f(1 0 0 0 0); (0 1 0 0 0); (0 0 1 0 0); (0 0 0 1 0)g
spanfdhg = span f(0 1 0 0 1); (0 0 1 0 0)g
) Q0 = span f(0 0 1 0 0)g
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The next step in the algorithm:

Qk+1 = P 13? \
 

3X
i=0

LgiQk + spanfdhg
!

leads to:

Q1 = P 13? \
 

3X
i=0

Lgi(0 0 1 0 0) + spanfdhg
!

Calculating Lgi(0 0 1 0 0):

Lg0(0 0 1 0 0) = Lf (0 0 1 0 0) = dLfU

=

�
0
1� tT
m

TjnjVa(1� w)U
1

m

@R(U)

@U
+

1� tT
m

TjnjVan(1� w) 0 0

�
Lg1(0 0 1 0 0) = dLg1U = 0

Lg2(0 0 1 0 0) = dLg2U = (0
1� tT
m

2Tjnjnn 0 0 0)

)
 

3X
i=0

Lgi(0 0 1 0 0) + spanfdhg
!

= span f(0 1 0 0 0); (0 0 1 0 0); (0 0 0 0 1)g

)Q1 = P 13? \
 

3X
i=0

Lgi(0 0 1 0 0) + spanfdhg
!

= span f(0 1 0 0 0); (0 0 1 0 0)g
)Q1 6= Q0

So the next step is:

Q2 = P 13? \
 

3X
i=0

LgiQ1 + spanfdhg
!
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Calculating Lgi(0 1 0 0 0):

Lg0(0 1 0 0 0) = Lf (0 1 0 0 0) = dLfn =

�
1

Im
0 0 0 0

�
Lg1(0 1 0 0 0) = dLg1n = 0

Lg2(0 1 0 0 0) = dLg2n = (0 � 1

Im
[2Qjnjnn+QjnjVa(1� w)U ]

� 1

Im
QjnjVa(1� w)n 0 0)

)
 

3X
i=0

LgiQ1 + spanfdhg
!

= spanf(1 0 0 0 0);

(0 1 0 0 0); (0 0 1 0 0); (0 0 0 0 1)g

)Q2 = P 13? \
 

3X
i=0

LgiQ1 + spanfdhg
!

= span f(1 0 0 0 0); (0 1 0 0 0); (0 0 1 0 0)g
)Q2 6= Q1

Hence, the next step is:

Q3 = P 13? \
 

3X
i=0

LgiQ2 + spanfdhg
!

Calculating Lgi(1 0 0 0 0):

Lg0(1 0 0 0 0) = Lf (1 0 0 0 0) = dLfQeng

=

��
� 1

�c

� �
�ky kr

�c

�
0
ky
�c

�
�ky kr

�c

��
Lg1(1 0 0 0 0) = dLg1n = 0

Lg2(1 0 0 0 0) = dLg2n = 0
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)
 

3X
i=0

LgiQ2 + spanfdhg
!

= R
5

)Q3 = P 13? \
 

3X
i=0

LgiQ1 + spanfdhg
!

= P 13?

)Q3 6= Q2

So the final step is:

Q4 = P 13? \
 

3X
i=0

LgiQ3 + spanfdhg
!

As Q2 � Q3 and

�
3P

i=0
LgiQ2 + spanfdhg

�
= R5

it is easy to see that also

�
3P

i=0
LgiQ3 + spanfdhg

�
= R5 .

Hence, Q4 = P 13? = Q3

) o.c.a.(P 13?) = P 13?

) Q13 = (o.c.a.(P 13?))? = P 13 = span
�
(0 0 0 0 1)T

	
) p(x)new 2 Q13 and l(x)new =

�
1
�c

0 0 0 0
�T

=2 Q13

As a result it can be seen that the FPRG 13 might be solvable. The next step is
now to obtain a coordinate transformation as described in Theorem 3.11. In the
following the procedure described in DePersis and Isidori (2000) (Proposition 3)
is applied in order to find such a coordinate transformation.

Checking conditions: As shown above P13? is an observability codistri-
bution. Let n1 denote the dimension of P13?, hence, n1 = 4. P 13? is
spanned by exact differentials as P13? = (�P 13

� )? (see above). spanfdhg =
span f(0 1 0 0 1); (0 0 1 0 0)g is nonsingular as it is constant. Let l � n2
(l = 2, number of outputs) denote the dimension of P13? \ spanfdhg =
span f(0 0 1 0 0)g, hence n2 = l � 1 = 2� 1 = 1.
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Coordinate transformation: After checking the conditions the first step to-
wards the coordinate transformation is to choose a 	1 : Rl ! Rl�n2 = R1

such, that:

P 13? \ spanfdhg = spanfd(	1 Æ h)g
One possibility to do so is 	1(y) = h2(x) = U :

spanfd(	1 Æ h)g = spanfd(U)g = span f(0 0 1 0 0)g = P 13? \ spanfdhg
Choosing a selection matrix H2 = (1 0) and combining it with 	1 in the fol-
lowing way:

ynew =

 
ynew1

ynew2

!
= 	(y) =

 
	1(y)

H2y

!
; with

@	(y)

@y
=

 
0 1

1 0

!
(C.1)

gives a local diffeomorphism at yÆ in Rl , where yÆ = h(xÆ) and xÆ 2 X .

The second step is to choose a neighborhood UÆ of xÆ and a function �1 : UÆ !
R
n1 = R

4 such that P13? = spanfd�1g at any point of UÆ. Here the following
�1 is chosen: �1(x) = (Qeng n U Yi)

T , hence, the following transformation is
a local diffeomorphism at xÆ in X :

�(x) =

 
�1(x)

H2h(x)

!
=

 
xnew1

xnew2

!
=

0
BBBBBB@

xnew11

xnew12

xnew13

xnew14

xnew2

1
CCCCCCA =

0
BBBBBB@

Qeng

n

U

Yi

n+ x�n

1
CCCCCCA (C.2)

where it is easy to see that the matrix @�(x)
@x

has full rank.

The shaft speed loop system including the controller can be stated in the fol-
lowing form when applying the coordinate transformation (C.1) and (C.2) and
neglecting the disturbances Qf and Text:

_x1
new = ~f1(x

new
1 ; xnew2 ) + ~g1(x

new
1 ; xnew2 )u+ ~l1(x

new)�new

_x2
new = ~f2(x

new
1 ; xnew2 ) + ~g2(x

new
1 ; xnew2 )u+ ~l2(x

new)�new + ~p2(x
new)wnew

ynew1 = ~h1(x
new
1 )

ynew2 = xnew2
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which corresponds to the transformed form stated in Theorem 3.11.

For solving the FPRG 13 the x1new-subsystem can be extracted:

_x1
new = ~f1(x

new
1 ; ynew2 ) + ~g1(x

new
1 ; ynew2 )u+ ~l1(x

new)�new (C.3)

ynew1 = ~h1(x
new
1 ) (C.4)

(C.3) and (C.4) can be stated in the original coordinates as follows:

_x = f(x; y2) + g(x)u + l(x)�

y1 = Um = U

y2 = nm = n+ x�n

where

x =

0
BBBB@

Qeng

n

U

Yi

1
CCCCA u =

 
nref

�

!
� =

�
�kyY

�

f(x; y1) =

0
BBBB@

� 1
�c
Qeng +

ky
�c
Yi � ky kr

�c
y1

1
Im
Qeng

1
m
R(U) + 1�tT

m
TjnjVa(1� w)nU

�kr
�i
y2

1
CCCCA l(x) =

0
BBBB@

1
�c

0

0

0

1
CCCCA

g(x) =

0
BBBB@

ky kr
�c

0

0 � 1
Im

�
Qjnjnn

2 +QjnjVa(1� w)nU
�

0 1�tT
m

Tjnjnn
2

kr
�i

0

1
CCCCA

Hence, building an observer for the (x; y1)-system, while neglecting the fault,
i.e. � = 0, and considering y2 as an additional input, could solve the FPRG 13.
However, this requires that the subsystem is locally observable and an observer
can be designed.
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Calculations for FPRG 14:

�new = _�nsensor and wnew = �kyY

P 14 = span
�
(1 0 0 0 0)T

	
Now the algorithm (3.59) and (3.60) is used to calculate �P

14

� :

S140 = P 14 = P 14 (as P 14 is constant)

)S140 \Kerfdhg = span
�
(1 0 0 0 0)T

	

S14k+1 =S
14
k +

mX
i=0

[gi; S
14
k \Kerfdhg]

) S141 = S140 + [f; S140 \Kerfdhg] + [g2; S
14
0 \Kerfdhg]

as g1(x) and S140 \Kerfdhg are constant.

[f; S140 \Kerfdhg] = �@f
@x

�
S140 \Kerfdhg�

as S140 \Kerfdhg is constant.

[f; (1 0 0 0 0)T ] = (� 1

�c

1

Im
0 0 0)T [g2; (1 0 0 0 0)T ] = 0

) S141 = span
�
(1 0 0 0 0)T ; (0 1 0 0 0)T

	 ) S141 6= S140

so the next step is: S142 = S141 +
2P

i=0
[gi; S

14
1 \Kerfdhg].

As S141 \Kerfdhg = S140 \Kerfdhg = span
�
(1 0 0 0 0)T

	
it is easy to see that S142 = S141 .

) k� = 1 ) �P 14

� = S141 = span
�
(1 0 0 0 0)T ; (0 1 0 0 0)T
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�P 14

� is well-defined (as equation (3.61) holds for k� = 1) and nonsingular (as it
is constant). Hence, its annihilator (�P

14

� )? is locally spanned by exact differen-
tials (because �P 14

� is by construction involutive). It can also be seen above that
�P 14

� \Kerfdhg is a smooth distribution. Hence, (�P 14

� )? is the maximal (in
the sense of codistribution inclusion) conditioned invariant codistribution which
is locally spanned by exact differentials and contained in P14? (according to
DePersis and Isidori (2000)).

The next step in the procedure (described on page 65) is to calculate the involu-
tive conditioned invariant distribution Q14 (unobservability distribution):

Q14 = (o.c.a.((�P 14

� )?))? = (o.c.a.(S141
?
))?

Applying the observability codistribution algorithm (o.c.a.) (see page 43), in
order to calculate o.c.a.(S141

?
), starts with:

Q0 = S141
? \ spanfdhg

S141
?
= span f(0 0 1 0 0); (0 0 0 1 0); (0 0 0 0 1)g

spanfdhg = span f(0 1 0 0 1); (0 0 1 0 0)g
) Q0 = span f(0 0 1 0 0)g

The next step in the algorithm:

Qk+1 = S141
? \

 
3X

i=0

LgiQk + spanfdhg
!

leads to:

Q1 = S141
? \

 
3X

i=0

Lgi(0 0 1 0 0) + spanfdhg
!

Taking the following result from above it can be seen that: 
3X

i=0

Lgi(0 0 1 0 0) + spanfdhg
!

= span f(0 1 0 0 0); (0 0 1 0 0); (0 0 0 0 1)g
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)Q1 = S141
? \

 
3X

i=0

Lgi(0 0 1 0 0) + spanfdhg
!

= span f(0 0 1 0 0); (0 0 0 0 1)g
)Q1 6= Q0

So the next step is:

Q2 = S141
? \

 
3X

i=0

LgiQ1 + spanfdhg
!

Calculating Lgi(0 0 0 0 1): Lgi(0 0 0 0 1) = Lgix�n = 0

)
 

3X
i=0

LgiQ0 + spanfdhg
!

=

 
3X

i=0

LgiQ1 + spanfdhg
!

) Q2 = Q1 = span f(0 0 1 0 0); (0 0 0 0 1)g
) o.c.a.(S141

?
) = span f(0 0 1 0 0); (0 0 0 0 1)g

) Q14 = (o.c.a.(S141
?
))? = spanf(1 0 0 0 0)T

(0 1 0 0 0)T ; (0 0 0 1 0)T g
) p(x)new 2 Q14 and l(x)new = (0 0 0 0 1)T =2 Q14

As a result it can be seen that the FPRG 14 might be solvable. The next step is
now to obtain a coordinate transformation as described in Theorem 3.11. In the
following the procedure described in DePersis and Isidori (2000) (Proposition 3)
is applied in order to find such a coordinate transformation.

Checking conditions: o.c.a.(S141
?
) is by definition an observability codis-

tribution. Let n1 denote the dimension of o.c.a.(S141
?
), hence, n1 = 2. It

is easy to see o.c.a.(S141
?
) is spanned by exact differentials (e.g. d(U) and

d(x�n) ). spanfdhg = span f(0 1 0 0 1); (0 0 1 0 0)g is nonsingular as it
is constant. Let l � n2 (l = 2, number of outputs) denote the dimension of
o.c.a.(S141

?
)\spanfdhg = span f(0 0 1 0 0)g, hence n2 = l�1 = 2�1 = 1.

Coordinate transformation: After checking the conditions the first step to-
wards the coordinate transformation is to choose a 	1 : Rl ! Rl�n2 = R1
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such, that:

o.c.a.(S141
?
) \ spanfdhg = spanfd(	1 Æ h)g

One possibility to do so is 	1 = h2(x) = U :

spanfd(	1 Æ h)g = spanfd(U)g = span f(0 0 1 0 0)g
= o.c.a.(S141

?
) \ spanfdhg

Choosing a selection matrix H2 = (1 0) and combining it with 	1 in the fol-
lowing way:

ynew =

 
ynew1

ynew2

!
= 	(y) =

 
	1(y)

H2y

!
; with

@	(y)

@y
=

 
0 1

1 0

!
(C.5)

gives a local diffeomorphism at yÆ in Rl , where yÆ = h(xÆ) and xÆ 2 X .

The second step is to choose a neighborhood UÆ of xÆ and a function �1 : UÆ !
Rn1 = R2 such that o.c.a.(S141

?
) = spanfd�1g at any point of UÆ. Here the

following �1 is chosen: �1(x) = (U x�n)
T 2 R2 . Choosing additionally a

�3(x) = (Qeng Yi)
T 2 R2 leads to the following local diffeomorphism at xÆ

in X :

�(x) =

0
B@ �1(x)

H2h(x)

�3(x)

1
CA =

0
B@ xnew1

xnew2

xnew3

1
CA =

0
BBBBBB@

xnew11

xnew12

xnew2

xnew31

xnew32

1
CCCCCCA =

0
BBBBBB@

U

x�n

n+ x�n

Qeng

Yi

1
CCCCCCA (C.6)

The shaft speed loop system including the controller can be stated in the fol-
lowing form when neglecting the disturbances Qf and Text after applying the
coordinate transformation (C.5) and (C.6):

_x1
new = ~f1(x

new
1 ; xnew2 ) + ~g1(x

new
1 ; xnew2 )u+ ~l1(x

new)�new

_x2
new = ~f2(x

new) + ~g2(x
new)u+ ~l2(x

new)�new + ~p2(x
new)wnew

_x3
new = ~f3(x

new) + ~g3(x
new)u+ ~l3(x

new)�new + ~p3(x
new)wnew

ynew1 = ~h1(x
new
1 )

ynew2 = xnew2
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This description can be interpreted as a special version of the form stated in
Theorem 3.11. For solving the FPRG 14 the x1new-subsystem can be extracted:

_x1
new = ~f1(x

new
1 ; ynew2 ) + ~g1(x

new
1 ; ynew2 )u+ ~l1(x

new)�new (C.7)

ynew1 = ~h1(x
new
1 ) (C.8)

The equations (C.7) and (C.8) can be given as follows by using the original
coordinates:

_x = f(x; y2) + g(x; y2)u+ l(x)�

y1 = Um = U

y2 = nm = n+ x�n

where

x =

 
U

x�n

!
u = � � = _�nsensor l(x) =

 
0

1

!

f(x) =

 
1
m
R(U) + 1�tT

m
TjnjVa(1� w)(y2 � x�n)U

0

!

g(x; y1) =

 
1�tT
m

Tjnjn(y2 � x�n)
2

0

!

Hence, building an observer for the (x; y1)-system, considering y2 as additional
input, and neglecting the fault, i.e. � = 0, could solve the FPRG 14. However,
this requires that the subsystem is locally observable and an observer can be
designed.



Appendix D

Simulation parameters for
modified linearized aircraft
model

In this section the values for the parameters used in the simulation of the mod-
ified linearized aircraft model for lateral motion as described in chapter 6 are
given.

In the A-matrix only two values are changed compared to the original system in
Mudge and Patton (1988). The original values for aold55 = 0 and aold36 are changed
to anew55 = �0:1 and anew36 = �aold36 in order to get stable zero dynamics. Which
leads to the following system:

_x = Ax + B u

y = C x
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where:

x =

0
BBBBBBBBBBB@

x1

x2

x3

x4

x5

x6

x7

1
CCCCCCCCCCCA

: sideslip velocity

: roll rate

: yaw rate

: roll angle

: yaw angle

: rudder angle

: aileron angle

A =

0
BBBBBBBBBBB@

�0:277 0 �32:9 9:81 0 �5:432 0

�0:103 �8:325 3:75 0 0 0 �28:64
0:365 0 �0:639 0 0 9:49 0

0 1 0 0 0 0 0

0 0 1 0 �0:1 0 0

0 0 0 0 0 �10 0

0 0 0 0 0 0 �5

1
CCCCCCCCCCCA

BT =

 
0 0 0 0 0 20 0

0 0 0 0 0 0 10

!

C =

0
B@ 1 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

1
CA
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