9,444 research outputs found

    Noisy Hamiltonian Monte Carlo for doubly-intractable distributions

    Full text link
    Hamiltonian Monte Carlo (HMC) has been progressively incorporated within the statistician's toolbox as an alternative sampling method in settings when standard Metropolis-Hastings is inefficient. HMC generates a Markov chain on an augmented state space with transitions based on a deterministic differential flow derived from Hamiltonian mechanics. In practice, the evolution of Hamiltonian systems cannot be solved analytically, requiring numerical integration schemes. Under numerical integration, the resulting approximate solution no longer preserves the measure of the target distribution, therefore an accept-reject step is used to correct the bias. For doubly-intractable distributions -- such as posterior distributions based on Gibbs random fields -- HMC suffers from some computational difficulties: computation of gradients in the differential flow and computation of the accept-reject proposals poses difficulty. In this paper, we study the behaviour of HMC when these quantities are replaced by Monte Carlo estimates

    Recent advances in directional statistics

    Get PDF
    Mainstream statistical methodology is generally applicable to data observed in Euclidean space. There are, however, numerous contexts of considerable scientific interest in which the natural supports for the data under consideration are Riemannian manifolds like the unit circle, torus, sphere and their extensions. Typically, such data can be represented using one or more directions, and directional statistics is the branch of statistics that deals with their analysis. In this paper we provide a review of the many recent developments in the field since the publication of Mardia and Jupp (1999), still the most comprehensive text on directional statistics. Many of those developments have been stimulated by interesting applications in fields as diverse as astronomy, medicine, genetics, neurology, aeronautics, acoustics, image analysis, text mining, environmetrics, and machine learning. We begin by considering developments for the exploratory analysis of directional data before progressing to distributional models, general approaches to inference, hypothesis testing, regression, nonparametric curve estimation, methods for dimension reduction, classification and clustering, and the modelling of time series, spatial and spatio-temporal data. An overview of currently available software for analysing directional data is also provided, and potential future developments discussed.Comment: 61 page

    Hidden Gibbs random fields model selection using Block Likelihood Information Criterion

    Full text link
    Performing model selection between Gibbs random fields is a very challenging task. Indeed, due to the Markovian dependence structure, the normalizing constant of the fields cannot be computed using standard analytical or numerical methods. Furthermore, such unobserved fields cannot be integrated out and the likelihood evaluztion is a doubly intractable problem. This forms a central issue to pick the model that best fits an observed data. We introduce a new approximate version of the Bayesian Information Criterion. We partition the lattice into continuous rectangular blocks and we approximate the probability measure of the hidden Gibbs field by the product of some Gibbs distributions over the blocks. On that basis, we estimate the likelihood and derive the Block Likelihood Information Criterion (BLIC) that answers model choice questions such as the selection of the dependency structure or the number of latent states. We study the performances of BLIC for those questions. In addition, we present a comparison with ABC algorithms to point out that the novel criterion offers a better trade-off between time efficiency and reliable results

    Estimating the transition matrix of a Markov chain observed at random times

    Get PDF
    In this paper we develop a statistical estimation technique to recover the transition kernel PP of a Markov chain X=(Xm)m∈NX=(X_m)_{m \in \mathbb N} in presence of censored data. We consider the situation where only a sub-sequence of XX is available and the time gaps between the observations are iid random variables. Under the assumption that neither the time gaps nor their distribution are known, we provide an estimation method which applies when some transitions in the initial Markov chain XX are known to be unfeasible. A consistent estimator of PP is derived in closed form as a solution of a minimization problem. The asymptotic performance of the estimator is then discussed in theory and through numerical simulations

    Particle-based likelihood inference in partially observed diffusion processes using generalised Poisson estimators

    Full text link
    This paper concerns the use of the expectation-maximisation (EM) algorithm for inference in partially observed diffusion processes. In this context, a well known problem is that all except a few diffusion processes lack closed-form expressions of the transition densities. Thus, in order to estimate efficiently the EM intermediate quantity we construct, using novel techniques for unbiased estimation of diffusion transition densities, a random weight fixed-lag auxiliary particle smoother, which avoids the well known problem of particle trajectory degeneracy in the smoothing mode. The estimator is justified theoretically and demonstrated on a simulated example

    Bayesian Inference from Composite Likelihoods, with an Application to Spatial Extremes

    Full text link
    Composite likelihoods are increasingly used in applications where the full likelihood is analytically unknown or computationally prohibitive. Although the maximum composite likelihood estimator has frequentist properties akin to those of the usual maximum likelihood estimator, Bayesian inference based on composite likelihoods has yet to be explored. In this paper we investigate the use of the Metropolis--Hastings algorithm to compute a pseudo-posterior distribution based on the composite likelihood. Two methodologies for adjusting the algorithm are presented and their performance on approximating the true posterior distribution is investigated using simulated data sets and real data on spatial extremes of rainfall

    On the Challenges of Physical Implementations of RBMs

    Full text link
    Restricted Boltzmann machines (RBMs) are powerful machine learning models, but learning and some kinds of inference in the model require sampling-based approximations, which, in classical digital computers, are implemented using expensive MCMC. Physical computation offers the opportunity to reduce the cost of sampling by building physical systems whose natural dynamics correspond to drawing samples from the desired RBM distribution. Such a system avoids the burn-in and mixing cost of a Markov chain. However, hardware implementations of this variety usually entail limitations such as low-precision and limited range of the parameters and restrictions on the size and topology of the RBM. We conduct software simulations to determine how harmful each of these restrictions is. Our simulations are designed to reproduce aspects of the D-Wave quantum computer, but the issues we investigate arise in most forms of physical computation

    Variational semi-blind sparse deconvolution with orthogonal kernel bases and its application to MRFM

    Get PDF
    We present a variational Bayesian method of joint image reconstruction and point spread function (PSF) estimation when the PSF of the imaging device is only partially known. To solve this semi-blind deconvolution problem, prior distributions are specified for the PSF and the 3D image. Joint image reconstruction and PSF estimation is then performed within a Bayesian framework, using a variational algorithm to estimate the posterior distribution. The image prior distribution imposes an explicit atomic measure that corresponds to image sparsity. Importantly, the proposed Bayesian deconvolution algorithm does not require hand tuning. Simulation results clearly demonstrate that the semi-blind deconvolution algorithm compares favorably with previous Markov chain Monte Carlo (MCMC) version of myopic sparse reconstruction. It significantly outperforms mismatched non-blind algorithms that rely on the assumption of the perfect knowledge of the PSF. The algorithm is illustrated on real data from magnetic resonance force microscopy (MRFM)
    • 

    corecore