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Abstract
Mainstream statistical methodology is generally applicable to data observed in
Euclidean space. There are, however, numerous contexts of considerable scientific
interest in which the natural supports for the data under consideration are Riemannian
manifolds like the unit circle, torus, sphere, and their extensions. Typically, such data
can be represented using one or more directions, and directional statistics is the branch
of statistics that deals with their analysis. In this paper, we provide a review of themany
recent developments in the field since the publication ofMardia and Jupp (Wiley 1999),
still themost comprehensive text on directional statistics.Many of those developments
have been stimulated by interesting applications in fields as diverse as astronomy,
medicine, genetics, neurology, space situational awareness, acoustics, image anal-
ysis, text mining, environmetrics, and machine learning. We begin by considering
developments for the exploratory analysis of directional data before progressing to
distributional models, general approaches to inference, hypothesis testing, regression,
nonparametric curve estimation, methods for dimension reduction, classification and
clustering, and the modelling of time series, spatial and spatio-temporal data. An
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overview of currently available software for analysing directional data is also pro-
vided, and potential future developments are discussed.

Keywords Classification · Clustering · Dimension reduction · Distributional models ·
Exploratory data analysis · Hypothesis tests · Nonparametric methods · Regression ·
Serial dependence · Software · Spatial statistics

Mathematics Subject Classification 62H11

1 Introduction

Directional statistics is that branch of statistical methodology specifically designed
for use with observations that are directions. A direction observed in the plane R

2,
like wind direction, can be represented by an angle, θ , typically in [0, 2π) or [−π, π),
measured in a specified direction from a specified origin, or by the unit vector x =
(cos θ, sin θ)′ for which ||x|| = √

x′x = 1. The natural support for such directions
is the circumference of the unit circle, S1, data on it being referred to as circular.
The term “circular data” is also used to distinguish them from data with the real
line R (or some subset of it) as their support, which henceforth we will refer to as
linear data. Certain calculations can be performed more efficiently using the complex
representation z = eiθ , where i = √−1, forwhich |z| = 1 andArg(z) = θ ∈ [−π, π).
Closely related to circular data are axial data, which arise when axes, for which the
angles θ and θ+π are indistinguishable, are observed.Observationsmadeondirections
in R

3, like the positions of stars on the celestial sphere, can be represented by pairs
of angles or 3 × 1 unit column vectors, have natural support the unit sphere, S2, and
are referred to as being spherical. Circular and spherical data are the most commonly
occurring forms of directional data. Since their supports are compact manifolds, it
is (generally) inappropriate, and can prove thoroughly misleading, to apply standard
statistical methods, designed for observations with more familiar supports like R

d ,
d ≥ 1, to them.

Other data types that fall within the remit of directional statistics include toroidal
and cylindrical data: toroidal data, with support the unit torus, T2 = S

1 × S
1, arising

when observations on a pair of circular variables are made, and cylindrical data, with
support the cylinder S1 × R or some subset of it, when observations are made on a
pair consisting of one circular and one linear variable. For example, toroidal data are
obtained when wind direction is recorded at two different meteorological stations, and
cylindrical data if, instead, wind direction and velocity are jointly measured at the
same station.

In applications, data on these variousmanifolds, or their generalisations, such as the
unit d-dimensional sphere, Sd , and the d-torus,Td = (S1)d , d ≥ 1, might be observed
and analysed as regression, time series, spatial or spatio-temporal data. Henceforth,
we will use the term “spherical data” to refer to data on any S

d with d ≥ 1, not just
S
2, unless specifically mentioned otherwise.
Directional statistics can also be applied to data that are not originally direc-

tions but which can be represented on, or transformed to, one of the manifolds
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Recent advances in directional statistics 3

referred to previously. For instance, times on the 24 h clock can be analysed as cir-
cular data after transferring them to the unit circle (see, e.g., Gill and Hangartner
2010). More generally, methods for spherical data can be applied to data originally
observed in Euclidean space, x1, . . . , xn ∈ R

d+1, after their Euclidean normalisation
to x1/||x1||, . . . , xn/||xn|| ∈ S

d , a form of transformation often encountered (see,
e.g., Banerjee et al. 2005).

Rotation groups, Stiefel and Grassmann manifolds, the elements of which are
orthonormal frames and subspaces of Rd , respectively, and other sample spaces such
as hyperboloids, complex projective spaces, and general manifolds, are also important
to the field but here, because of length restrictions, we refer only tangentially to certain
developments related to them. Specifically, we do not consider models for rotations
in R

3 despite the fact that a 3 × 3 rotation matrix can be represented as a 4 × 1 unit
vector called a quaternion, and modelling such rotations is equivalent to modelling
axial data on S

3. We would direct the reader interested in these topics to Mardia and
Jupp (1999, Chapter 13), Mardia and Patrangenaru (2005), Chirikjian and Kyatkin
(2001), Chikuse (2003), Arnold and Jupp (2018), and Rivest and Oualkacha (2018).
An important related field is shape analysis (Kendall et al. 1999; Dryden and Mardia
2016), where a preshape corresponding to a configuration of k landmarks in R

d can
be regarded as a point on Sd(k−1)−1.

The last article-length review of directional statisticswas Jupp andMardia (1989). It
contained an extensive bibliographywhich included virtually all publications on direc-
tional statistics between 1975 and 1988. In their review, the authors sought to unify
the theory of directional statistics from a mathematical perspective. In attempting to
doing so, they referred to five key underpinning ideas: (i) exponential families; (ii)
transformation structure; (iii) tangent-normal decomposition; (iv) transformation (of
a directional problem) to a multivariate one; and (v) the central limit theorem (CLT),
and three basic approaches to directional statistics, termed the embedding, wrapping,
and intrinsic approaches. All of these underlying principles have been fundamental to
the ongoing development of the field, apart perhaps from the first. Whilst exponential
models have certain appealing mathematical and inferential properties, insistence on
them has largely been abandoned in recent years, primarily because of an increasing
awareness of the need to model distributional features beyond location and concentra-
tion, such as the varying levels of skewness and peakedness frequently exhibited by
real data. Moreover, directional data are often multimodal and finite mixture distribu-
tions, which do not belong to the exponential family, are natural choices with which
to model them.

Books covering numerous facets of directional statistics published prior to the
review of Jupp and Mardia (1989) include Mardia (1972), Batschelet (1981), Wat-
son (1983), Fisher et al. (1987), and Fisher (1993). Those published after that review
includeMardia and Jupp (1999), Jammalamadaka and SenGupta (2001), Pewsey et al.
(2013), Ley and Verdebout (2017a), and Ley and Verdebout (2018), the latter being
an excellent overview of interesting and important modern applications of directional
statistics. We take as our definition of “recent developments” those that have appeared
in the literature since the publication of Mardia and Jupp (1999), still the most com-
prehensive book-length treatment of the field.Whilst many, but certainly not all, of the
themes we discuss are addressed in the books of Ley and Verdebout, our aim has been
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4 A. Pewsey, E. García-Portugués

to provide a concise review of the most important developments since the publication
of Mardia and Jupp (1999) which is as exhaustive as possible, subject to length con-
straints. Given the latter, we have concentrated on describing key ideas and directing
the interested reader to relevant original sources where more detailed information can
be found. With the increasing pace of advances in the field, it is perhaps inevitable
that we will have overlooked some developments. We hope that the number of such
omissions is minimal and apologise in advance for any that might have arisen.

Important areas of application that have stimulated much of the recent research
activity in the field include bioinformatics (Boomsma et al. 2008; Mardia et al. 2018),
astronomy (Cabella and Marinucci 2009; Marinucci and Peccati 2011), medicine
(Vuollo et al. 2016; Pardo et al. 2017), genetics (Eisen et al. 1998; Dortet-Bernadet
and Wicker 2008), neurology (Gu et al. 2004; Kaufman et al. 2005), space situational
awareness (Horwood and Poore 2014; Kent et al. 2016), acoustics (McMillan et al.
2013; Traa and Smaragdis 2013), image analysis (Jung et al. 2011; Esteves et al. 2020),
text mining (Dhillon and Modha 2001; Banerjee et al. 2005), machine learning (Ham-
sici and Martinez 2007; Sra 2018), and the modelling of wildfires (García-Portugués
et al. 2014; Ameijeiras-Alonso et al. 2018) and sea conditions (Jona-Lasinio et al.
2012, 2018; Lagona 2018).

The remainder of the paper is structured as follows. In Sect. 2 we review advances
in exploratory data analysis before proceeding to distributional models in Sect. 3, gen-
eral approaches to inference in Sect. 4, and to hypothesis testing in Sect. 5. Section 6
discusses developments for correlation and regression. Section 7 focuses on advances
in nonparametric curve estimation, Sect. 8 on methods for dimension reduction, and
Sect. 9 on classification and clustering. Developments in modelling serial dependence,
and spatial and spatio-temporal data, are reviewed in Sects. 10 and 11, respectively.
Advances in data depth, the design and analysis of experiments, order-restricted anal-
ysis, outlier detection, and compositional data analysis are considered more briefly in
Sect. 12. An overview of the software currently available for analysing directional data
is provided in Sect. 13. The paper ends with the brief Sect. 14 in which conclusions
are drawn and potential future developments discussed.

2 Exploratory data analysis

As for other types of data, the exploratory analysis of directional data usually begins
with an inspection of some graphical summary of the data. Various adaptations of the
popular rose diagram have been developed recently. Munro and Blenkinsop (2012)
introduced a moving rose diagram and applied it to circular datasets from the Earth
sciences. Rodgers et al. (2014) proposed the wrap-around time series plot for display-
ing time series exhibiting periodic patterns. Morphet and Symanzik (2010) proposed
the circular dataimage, a graphical tool that uses a colour wheel to encode directions
over a map. Rose diagrams, circular histograms, and other circular plots were adapted
in Xu and Wang (2020) so as to obtain area-proportional displays.

Circular boxplots have been investigated only relatively recently (but see Anderson
1993). For θ1, . . . , θn ∈ [0, 2π), Abuzaid et al. (2012) advocated one centred on the
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Recent advances in directional statistics 5

circular median, M = argminφ∈[0,2π)

∑n
i=1 dc(φ, θi ), where

dc(φ, θ) = π − |π − |θ − φ|| (1)

is the shortest arc length distance between the two angles φ, θ ∈ [0, 2π) when repre-
sented as points on the circumference of the unit circle. In an attempt to mimic more
closely Tukey’s original construction, Buttarazzi et al. (2018) proposed a depth-based
boxplot in which the observations are ranked from the antimedian to the median. For
both proposals, the fences are calibrated assuming an underlying von Mises distribu-
tion (see Sect. 3.1).

TheSiZer, an abbreviation for “significant zero crossings of derivatives” (Chaudhuri
and Marron 1999), is a handy tool used to identify statistically significant features at
different scales, such as modes and antimodes, in univariate linear data. A circular
adaptation of the SiZer, the CircSiZer, based on the kernel density estimator (18) and
bootstrap confidence intervals to assess the significance of smoothed derivatives, was
proposed inOliveira et al. (2014). It can also be employed to explore significant features
in linear-circular regression. In both contexts, smoothing is based on a vonMises kernel
with concentration parameter κ (see (18) and (20)). This kernel was shown not to be
“causal” by Huckemann et al. (2016), in the sense that its convolution with a circular
density function is not guaranteed to maintain or reduce the number of modes as the
level of smoothing, 1/κ , increases. They proved that, amongst all the circular kernels
satisfying certain mild assumptions, the wrapped normal (see Sect. 3.1) is the only one
that yields circular causality. Employing such a kernel, they proposed the Wrapped
SiZer (WiZer), with asymptotic confidence intervals used to assess the significance
of smoothed derivatives. Extension of the SiZer methodology to spherical data led to
the SphereSiZer of Vuollo and Holmstrom (2018), itself inspired by the adaptation of
the SiZer to bivariate linear data by Godtliebsen et al. (2002). The SphereSiZer uses
a von Mises–Fisher kernel density estimator for data on S

2 (see (17)), and bootstrap
confidence intervals to assess the significance of smoothed gradients. It produces a
movie, indexed by the smoothing scale, that displays statistically significant density
gradients as a vector field and highlights spherical regions with high density.

3 Distributional models

3.1 Circular models

The probability density function (pdf) of an absolutely continuous circular random
variable (rv)Θ , fΘ , is such that fΘ(θ) ≥ 0 and fΘ(θ+2π) = fΘ(θ) for almost all θ ∈
R. Also,

∫ θ+2π
θ

fΘ(ω) dω = 1. Thus, fΘ is nonnegative, 2π -periodic, and integrates
to 1 over any interval of length 2π . As a consequence of this latter property, it is usual to
define a circular pdf through its values on [0, 2π) or [−π, π). For instance, the circular
uniform distribution, the most fundamental model for circular data corresponding
to there being no preferred direction, has pdf fΘ(θ) = 1/(2π), θ ∈ [0, 2π). The
circular cumulative distribution function (cdf) is defined as the non-periodic function
FΘ(θ) = ∫ θ

θ0
f (ω) dω, with θ0 typically being 0 or −π .
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6 A. Pewsey, E. García-Portugués

Six general approaches have often been used to generate models for circular data
(Mardia and Jupp 1999, Section 3.5):wrapping, projection, perturbation, conditioning,
diffusion, and characterisations such as maximum likelihood or maximum entropy.
The latter leads to distributions whose entropy is maximal under certain constraints,
usually on their moments. The classical von Mises (vM) model with pdf

fΘ(θ;μ, κ) = 1

2πI0(κ)
exp{κ cos(θ − μ)}, (2)

where μ ∈ [0, 2π) is the mean direction, κ > 0 its concentration parameter, and Iν

denotes the modified Bessel function of the first kind and order ν, can be derived using
no less than five of these constructions (Mardia and Jupp 1999, Section 3.5.4). Due to
their relevance in the sequel, belowwe give brief descriptions of wrapping, projection,
and perturbation.

If X is a linear rv, then Θ = X (mod 2π) ∈ [0, 2π) is its wrapped circular
counterpart. Alternatively, using a complex representation, Θ = Arg{exp(iX)} ∈
[−π, π). If φX is the characteristic function (cf) of X , then the cf of Θ is the set
{φk : k = 0,±1, . . .} where φk = E(eikΘ) = φX (k), the φk being referred to as
the Fourier coefficients or trigonometric moments (Pewsey et al. 2013, Section 4.2.2)
of Θ . Thus, Θ inherits the cf of X . If fX is the pdf of X , then the pdf of Θ is
fΘ(θ) = ∑∞

k=−∞ fX (θ + 2πk), the infinite sum generally not reducing to a closed-
form expression. An important exception is the pdf of the wrapped Cauchy (WC)
distribution,

fΘ(θ;μ, ρ) = 1

2π

1 − ρ2

1 + ρ2 − 2ρ cos(θ − μ)
,

where μ = Arg{E(eiΘ)} ∈ [−π, π) is the mean direction and ρ = |E(eiΘ)| ∈ [0, 1]
the mean resultant length. More generally, the trigonometric moments of the WC
model are given by

φk = (ρeiμ)k, k = 1, 2, . . . . (3)

Perhaps the best-known wrapped model is the wrapped normal distribution, obtained
when X ∼ N(μ, σ 2). It can be used to closely approximate the vM distribution,
and vice versa (Pewsey and Jones 2005). Appealing wrapped circular models investi-
gated recently include the wrapped: skew-normal (Pewsey 2000, 2006), exponential
and Laplace (Jammalamadaka and Kozubowski 2004), t (Pewsey et al. 2007), stable
(Pewsey 2008), and generalised normal-Laplace (Reed and Pewsey 2009).

Projection involves projecting univariate or bivariate linear random variables onto
S
1. For example, stereographic projection of the linear randomvariable X produces the

circular rv Θ = 2 tan−1(X) (Abe et al. 2010). Radial projection of a bivariate linear
random vector X = (X1, X2)

′ onto S1 results in the circular rvΘ = Arg(X1+iX2) or,
equivalently, the random point X/||X|| on S

1. Perhaps the most popular distribution
of this latter type is the projected normal, also known as offset normal or angular
Gaussian, the pdf of which can be symmetric or asymmetric, unimodal, or bimodal
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Recent advances in directional statistics 7

in shape (Mardia and Jupp 1999, Section 3.5.6). Projection is a natural construction
when modelling measurements relative to the position of an observer.

Perturbation involves multiplying a pdf by a suitable function so as to modulate its
shape in some desired way. The cardioid distribution, with pdf

fΘ(θ;μ, ρ) = 1

2π
{1 + 2ρ cos(θ − μ)},

where |ρ| < 1/2, is an example of perturbation of the circular uniformmodel. Umbach
and Jammalamadaka (2009) adapted the perturbation approach of Azzalini (1985) to
the circular context, a special case of which is the sine-skewed family of distributions
studied by Abe and Pewsey (2011). If gΘ denotes a base symmetric unimodal circular
pdf with mean direction μ, then the pdf of its sine-skewed extension is

fΘ(θ;μ, λ) = gΘ(θ − μ){1 + λ sin(θ − μ)},
where λ ∈ [−1, 1] is a skewing parameter. The symmetric base pdf is unperturbed
when λ = 0; otherwise, it is skewed in the anticlockwise direction (λ > 0) or the
clockwise direction (λ < 0). Sine-skewed densities have the same normalising con-
stants as their base symmetric densities, but can model only moderate departures from
symmetry and are not necessarily unimodal.

An overarching family of symmetric unimodal circular distributions containing,
amongst others, the circular uniform, cardioid, vM, and WC distributions, was pro-
posed by Jones and Pewsey (2005). Its pdf is

fΘ(θ;μ, ρ,ψ) ∝ {1 + tanh(κψ) cos(θ − μ)}1/ψ ,

where μ ∈ [0, 2π) is the mean direction, κ ≥ 0 is a concentration parameter, and
ψ ∈ R is a shape index.

Recently, Kato and Jones (2015) proposed a highly flexible extension of the
WC model obtained by broadening the trigonometric moments in (3) to γ (ρeiλ)−1

{ρei(μ+λ)}k . The resulting family is unimodal and has pdf

fΘ(θ;μ, ρ, γ, λ) = 1

2π

{

1 + 2γ
cos(θ − μ) − ρ cos λ

1 + ρ2 − 2ρ cos(θ − μ − λ)

}

, (4)

where μ ∈ [0, 2π), ρ ∈ [0, 1), γ ∈ [0, (1 + ρ)/2], and λ ∈ [−π, π) satisfies
ργ cos λ ≥ (ρ2 + 2γ − 1)/2. Its cdf also has a closed form. Its reparametrisation in
terms of standard trigonometric moments (Pewsey 2004a) has parameters with clear
interpretations and is the one generally used to perform inference.

Constructions based onMöbius transformation, Brownian motion, and transforma-
tion of argument have also been used recently to generate more flexible families of
circular models. A Möbius transformation preserving the unit circle maps a point on
the unit circle, Θ , to another, Θ∗, via

eiΘ
∗ = eiφ

eiΘ + reiω

rei(Θ−ω) + 1
,
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8 A. Pewsey, E. García-Portugués

where φ,ω ∈ [−π, π) and r ∈ [0, 1), or equivalently via

Θ∗ = φ + ω + 2 tan−1[wr tan{(Θ − ω)/2}], (5)

where wr = (1 − r)/(1 + r). Applying this Möbius transformation to a circular
uniform rv results in aWC rv (McCullagh 1996). Kato and Jones (2010) andWang and
Shimizu (2012) studied families obtained by applying the same transformation to vM
and cardioid random variables, respectively. Jacimovic and Crnkić (2017) related the
former family to the dynamics of coupled oscillators. Kato and Jones (2013) varied the
Brownian motion specification leading to theWC distribution so as to generate a four-
parameter extension of it. The families of Kato and Jones (2010), Wang and Shimizu
(2012), and Kato and Jones (2013) have pdfs that can be symmetric or asymmetric
and unimodal or bimodal in shape.

Transformation of argument involves replacing the argument of an existing circular
pdf, fΘ , by some function of θ . Jones and Pewsey (2012) used this approach to
derive inverse Batschelet distributions. The resulting four-parameter distributions are
unimodal and highly flexible in shape. Unlike the smooth unimodal models of Kato
and Jones (2015), inverse Batschelet distributions can adopt Laplace-like shapes. The
most flexible unimodal circular models currently available are those of Jones and
Pewsey (2012) and Kato and Jones (2015).

Of the modelling approaches available for multimodal circular data, finite mixtures
have proven the most popular. Mixture models with vM components have recently
received renewed attention (Mooney et al. 2003; Fu et al. 2008; see, also, Sect. 3.4).
The pdf of an m component vM mixture is

fΘ(θ; p,μ, κ) =
m∑

j=1

p j fΘ(θ;μ j , κ j ), (6)

where p = (p1, . . . , pm)′ is a vector of mixing probabilities satisfying
∑m

j=1 p j = 1,
μ = (μ1, . . . , μm)′, κ = (κ1, . . . , κm)′, and fΘ(θ;μ j , κ j ) is as in (2). When the
interpretation of the parameters of the component densities is straightforward, so is
the interpretation of the parameters of a mixture.

More generally, Holzmann et al. (2004) established conditions for the identifia-
bility of mixtures of location-scale extensions of wrapped circular models including
the wrapped symmetric α-stable, wrapped normal, and WC distributions. Mixtures
with circular triangular (McVinish and Mengersen 2008), skew-rotationally symmet-
ric (Miyata et al. 2020), and power Batschelet (Mulder et al. 2020b) components have
also been considered.

Regarding alternative approaches to modelling multimodal circular data, gener-
alised von Mises models (Gatto 2008, 2009), with the density of the generalised vM
distribution of order m being

fΘ(θ;μ, κ) = exp

{

κ0 +
m∑

j=1

κ j cos( j(θ − μ j ))

}

, (7)
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where μ = (μ1, . . . , μm)′, κ = (κ1, . . . , κm)′, μ j ∈ [0, 2π/ j), and κ j ≥ 0, have
a long history dating back to Maksimov (1967). The normalising constant, eκ0 , must
generally be computed numerically. Fernández-Durán (2004) revisited work by Fejér
(1916) when defining a family of circular distributions based on nonnegative trigono-
metric (i.e. truncated Fourier) sums. Whilst they do not require the calculation of
normalising constants, fitted densities of this type tend to have many parameters and
display minor harmonic modes that need not be supported by the data. Recently,
Taniguchi et al. (2020) proposed flexible models for circular data obtained by normal-
ising the spectra of stochastic processes, the residue theorem being used to calculate
their normalising constants. The interpretation of the parameters of all three of these
types of model is, however, generally difficult.

Recently, novel applications have stimulated renewed interest inmodels for discrete
circular data (Mastrantonio et al. 2019; Mardia and Sriram 2020).

3.2 Models for toroidal data

Let (Θ1,Θ2) denote the angular coordinates of a random vector distributed on the
torus T2 = S

1 × S
1. Some of the approaches used to generate models for toroidal

data are extensions of those introduced in Sect. 3.1. These include maximum entropy
characterisation, projection, and wrapping (Johnson and Wehrly 1977; Baba 1981;
Mardia et al. 2008). Models for univariate and bivariate axial data were proposed by
Arnold and SenGupta (2006).

The bivariate von Mises model of Mardia (1975) is a maximum entropy (equiva-
lently, an exponential family) distribution with pdf

fΘ1,Θ2(θ1, θ2) ∝ exp{κ1 cos(θ1 − μ1) + κ2 cos(θ2 − μ2)

+ (cos(θ1 − μ1), sin(θ1 − μ1))A(cos(θ2 − μ2), sin(θ2 − μ2))
′}, (8)

where μ1, μ2 ∈ [−π, π), κ1, κ2 ≥ 0, and A is a 2 × 2 matrix. The most compact
form for its normalising constant involves a doubly infinite sum (Mardia 2010). The
model has eight parameters, three more than the minimum of five required to control
the locations and concentrations of the two marginal variables and the dependence
between them. Moreover, their interpretation is difficult (Mardia et al. 2007). In the
search for five-parameter analogous of the bivariate normal distribution, Singh et al.
(2002), Mardia et al. (2007), and Kent et al. (2008) proposed the sine, cosine, and
hybrid submodels of (8), respectively. The properties of these three submodels were
compared in Kent et al. (2008) and Mardia and Frellsen (2012). Their normalising
constants are available as infinite sums. Their conditional distributions are vM, but
their marginal pdfs are generally not and, for some parameter values, can be bimodal.

Extensions of (8) and its cosine submodel, for use with data on T
d , d ≥ 2,

were proposed by Mardia et al. (2008) and Mardia and Patrangenaru (2005), respec-
tively. No simple closed analytic form is generally available for the normalising
constant of the sine multivariate von Mises model of Mardia et al. (2008), but its
conditional distributions are vM and thus its parameters can be estimated by maximis-
ing the pseudo-likelihood. Conditions on its parameters to ensure unimodality were
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10 A. Pewsey, E. García-Portugués

established in Mardia and Voss (2014) and pseudo-likelihood regularised approaches
were given in Rodriguez-Lujan et al. (2015, 2017). A multivariate extension of the
second-order generalised vM (GvM2) distribution (with m = 2 in (7)), obtained by
conditioning a multivariate Gaussian distribution on R

2d to T
d , was proposed by

Navarro et al. (2017). Its one-dimensional conditional distributions are GvM2, and the
sinemultivariate vMmodel is a special case of it. Hassanzadeh andKalaylioglu (2018)
recently proposed a model for data on T

2 obtained using a conditional specification
construction involving GvM2 pdfs.

The range of available models can be expanded beyond toroidal analogues of the
bivariate normal distribution using the projection approach of Saw (1983) to construct
models with more flexible specified marginal distributions. A simpler marginal spec-
ification approach can be traced back to Wehrly and Johnson (1980). They proposed
toroidal pdfs of the form

fΘ1,Θ2(θ1, θ2) = 2π fΘ1(θ1) fΘ2(θ2) fΩ(2π [FΘ2(θ2) − qFΘ1(θ1)]), (9)

where fΘ j and FΘ j are the marginal pdf and cdf of Θ j , j = 1, 2, fΩ is a circular
binding pdf, and q = ±1 determines whether the dependence is positive or negative.
Various models obtained using (9) with different choices for fΘ1 , fΘ2 , and fΩ are
referred to in Jones et al. (2015).

Kato and Pewsey (2015) considered a case of (9) having a closed-form pdf that is
unimodal and pointwise symmetric, and marginal and conditional distributions that
are allWC. This bivariateWCmodel can also be obtained by applying aMöbius trans-
formation to a tractable toroidal model with circular uniform marginal distributions
derived by Kato (2009) using a Brownian motion construction.

Shieh and Johnson (2005) were the first to note the relationship between (9) and
copulas (Sklar 1959), toroidal pdfs being generated through

fΘ1,Θ2(θ1, θ2) = fΘ1(θ1) fΘ2(θ2)c(FΘ1(θ1), FΘ2(θ2)), (10)

where c is a copula pdf. García-Portugués et al. (2013a) imposed periodic restrictions
on c to construct alternatives to (9). Jones et al. (2015) revisited (9) and considered,
instead of (10),

fΘ1,Θ2(θ1, θ2) = 4π2 fΘ1(θ1) fΘ2(θ2)c◦(2πFΘ1(θ1), 2πFΘ2(θ2)),

where now c◦ is what they coined a circula density, with arguments that are circular
uniform. For any circula density, c◦(θ1, θ2) = c◦(θ1 ± 2πk, θ2 ± 2πl), k, l ∈ Z

+.
Jones et al. (2015) showed that (9) corresponds to c◦(φ1, φ2) = 1

2π fΩ(φ2 − qφ1),

the pdf of (Φ1, Φ2), where Φ1 and Φ2 = Φ1 − qΩ (mod 2π) are circular uni-
form random variables and Ω follows the circular pdf fΩ independently of Φ1. This
circula density is a particular case of the (infinite) Fourier series approach to obtain-
ing circula densities proposed recently by Kato et al. (2018). They considered six
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cases of their general construction, all having simple closed-form expressions for
their densities. Jupp (2015) extended the idea of copulas to compact Riemannian
manifolds.

Recently, Ameijeiras-Alonso and Ley (2020) used a sine-skewing approach (see
Sect. 3.1) to generate models for asymmetric data on T

d , d ≥ 2. Alternative
approaches to modelling such data make use of pdfs obtained from truncated Fourier
series (Pertsemlidis et al. 2005; Fernández-Durán and Gregorio-Domínguez 2014b)
or normalised spectra of stochastic processes (Taniguchi et al. 2020). These mod-
els have properties analogous to those mentioned in Sect. 3.1 for their circular
counterparts.

3.3 Models for cylindrical data

Let (Θ, X) denote the coordinates of a random vector distributed on the cylinder
S
1 ×R. Approaches used to generate models for cylindrical data have included wrap-

ping (Johnson andWehrly 1977), conditioning, marginal specification, and maximum
entropy characterisation.

Mardia and Sutton (1978) conditioned a trivariate normal distribution to obtain
a six-parameter cylindrical model for which the marginal distribution of Θ is vM
and the conditional distribution of X |Θ = θ is normal. More recently, Kato and
Shimizu (2008) proposed an eight-parameter extension of it having generalised vM
distributions for Θ and Θ|X = x .

An analogous marginal specification approach to that used to derive pdf (9) can be
employed to obtain a cylindrical model with pdf

fΘ,X (θ, x) = 2π fΘ(θ) fX (x) fΩ(2π [FΘ(θ) − qFX (x)]), (11)

where fΘ and fX are the marginal pdfs of Θ and X , respectively, and FΘ and FX

their cdfs. Johnson and Wehrly (1978) considered cases of (11) with X normally
distributed, and circular uniform or vM distributions forΘ . Recently, other cases have
been applied to model cylindrical data from disciplines such as wind energy analysis
(Carta et al. 2008; Zhang et al. 2018a), ocean engineering (Soukissian 2014), and
image analysis (Roy et al. 2017).

Johnson and Wehrly (1978) also proposed three maximum entropy cylindrical
models, with conditional distributions that are vM and normal or exponential. The
dependence structures of all three models are, however, severely constrained. Their
model having vM and exponential marginal distributions when Θ and X are inde-
pendent was recently extended by Abe and Ley (2017), Imoto et al. (2019), and Abe
and Shimatani (2018) so as to admit skew and more flexible models for Θ and X ,
respectively.

Recently, Mastrantonio (2018) proposed the joint projected normal and skew-
normal distribution, the firstmodel formultivariate cylindrical data. It is highly flexible
and closed under marginalisation.
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3.4 Models for spherical data

Suppose X is a unit random vector on Sd . Perhaps the best-known model for spherical
data is the von Mises–Fisher (vMF) distribution, with pdf

fX (x;μ, κ) = κ(d−1)/2

(2π)(d+1)/2I(d−1)/2(κ)
exp{κx′μ}, (12)

where μ ∈ S
d is the mean direction vector and κ ≥ 0 is a concentration parameter.

Other classical models are the Kent, Fisher–Watson, Bingham–Mardia, Bingham, and
Watson distributions (Mardia and Jupp 1999, Chapter 9), the last two being models
for axial data. They are all submodels of the Fisher–Bingham exponential family of
distributions with pdf

fX (x;μ, κ, A) ∝ exp{κx′μ + x′Ax}, (13)

where A is a symmetric (d+1)×(d+1)matrix, andμ and κ play the same roles as in
(12). Evaluation of the distribution’s normalising constant is challenging: Kume and
Sei (2018) showed how it can be calculated using the holonomic gradient method, and
Yuan (2021) provided an algorithm for computing it, when d = 2, based on an infinite
series expansion involving hypergeometric functions. Kent et al. (2018) developed
an efficient acceptance-rejection method of simulating variates from Fisher–Bingham
distributions on spheres and related manifolds. Kent et al. (2016) introduced a five-
parameter special case of the Fisher–Bingham model for use with data patterns that
are unimodal and concentrated near a great circle. More recently, Kim et al. (2019)
proposed two kinds of small-sphere distributions, one of which is a member of the
Fisher–Bingham family. Previously, Oualkacha and Rivest (2009) had developed an
alternative to the Bingham distribution for modelling symmetric axial data, with a
simple closed-form normalising constant.

Rotationally symmetric (RS) spherical pdfs depend on x only through x′μ and, as
a consequence, have contours that are circular when x ∈ S

2. Historically, the vMF
has been the most important such model. In recent years, numerous other RS families
have been proposed in the literature: Section 2.3.2 of Ley and Verdebout (2017a)
summarises many of them. The spherical logistic distribution of Moghimbeygi and
Golalizadeh (2020) provides amultimodal andRS extension of the vMF,with a closed-
form normalising constant when d = 2. Another recent addition is the highly tractable
spherical Cauchy distribution of Kato and McCullagh (2020), which extends the WC
to Sd and has a very simple normalising constant.

The pdf of the Kent distribution, i.e. (13) constrained to have Aμ = 0, has elliptical
contours and hence can be used to model certain departures from isotropy. Recently,
Paine et al. (2018) proposed the elliptically symmetric angular Gaussian (ESAG) as
an alternative. As simulation from it and the computation of its pdf are far quicker than
for the Kent model, this model is a particularly appealing alternative when the use of
computer intensive methods is being contemplated. Other Kent-like alternatives with
the advantages of the ESAG model are the scaled vMF family of Scealy and Wood
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(2019), which has an additional parameter controlling tail-weight, and the tangent
models of García-Portugués et al. (2020b).

The sine-skewed circular distributions of Sect. 3.1 are special cases of the
skew-rotationally symmetric (SRS) distributions proposed as models for asymmet-
ric spherical data by Ley and Verdebout (2017b). In turn, SRS models are spherical
analogues of the skew-symmetric linearmodels ofWang et al. (2004). The perturbation
of spherical distributions was studied in greater generality by Jupp et al. (2016).

Asymmetric or bimodal spherical data can be modelled using the general projected
normal family of distributions referred to in Mardia and Jupp (1999, Section 9.3.3)
and advocatedmore recently from aBayesian perspective inHernandez-Stumpfhauser
et al. (2017). Núñez-Antonio and Geneyro (2020) proposed a projected gamma dis-
tribution to model data on the positive orthant of Sd .

In Sect. 9 we summarise recent developments in the use of mixture distributions
with spherical component pdfs as ameans ofmodellingmultimodal spherical data. The
flexible directional log-spline pdfs of Ferreira et al. (2008), based on thin-plate splines
on Sd (Taijeron et al. 1994), provide an alternative means of modelling multimodality
and skewness. They are given by

fX (x; c,K,m) = exp

⎧
⎨

⎩
c0 +

m∑

j=1

c j Rd(x; k j )

⎫
⎬

⎭
, (14)

where m ≥ 1, (c0, c1, . . . , cm)′ ∈ R
m+1, K = {k1, . . . , km} is a set of knot vectors

in Sd , and Rd(·; k j ) are real-valued spline basis functions on Sd that, when evaluated
at x ∈ S

d , are functions of x′k j , for j = 1, . . . ,m. Ferreira et al. (2008) proposed
a Bayesian inferential approach for (14). Fernández-Durán and Gregorio-Domínguez
(2014a) constructed pdfs on S2 through nonnegative trigonometric sum expansions in
terms of spherical angles.

4 General approaches to inference

Historically, inference for the models in Sect. 3 has generally been frequentist:
sometimes using the method of (trigonometric) moments but more generally being
likelihood-based. Themaximum likelihood (ML) estimators of full exponential family
models are moment estimators (van der Vaart 2000, Chapter 4) and, as a consequence,
closed-form expressions exist for the ML estimators of, e.g., the vM distribution and
the cylindrical model of Mardia and Sutton (1978). Exact ML inference for the highly
challenging Fisher–Bingham model and its submodels identified in Sect. 3.4 was
developed recently in Kume and Sei (2018). More generally, maximisation of the
log-likelihood has to be performed numerically. When available, method of moments
estimates can be used as starting values for that process. For some models, statistical
inference based on the full log-likelihood is intractable and pseudo-likelihoodmethods
have been employed (Kent et al. 2008). Score matching estimators, inspired by the
Hyvärinen (2005) scoring rule, circumvent the need to calculate normalising constants
for directional distributions (Mardia et al. 2016; Mardia 2018; Takasu et al. 2018).
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Large-sample results for ML-based inference generally assume standard regularity
conditions to derive the asymptotic normality of ML estimators (van der Vaart 2000,
Chapter 5). Pewsey (2004a) employed the delta method to obtain the asymptotic
distribution of the fundamental measures of central location, concentration, skewness,
and kurtosis used in the analysis of circular data. For some models, large-sample ML-
based inference for parameter values on the boundary of the parameter space will be of
interest, and the results of Self and Liang (1987) can be employed (see, e.g., Shieh and
Johnson 2005). For small-sized samples, bootstrap confidence interval constructions
have become increasingly popular (Pewsey et al. 2013,Chapter 5). Computer-intensive
resampling methods in hypothesis testing are mentioned in Sect. 5.

Recently, Le Cam’s local asymptotic normality approach to inference has been
adapted to problems in directional statistics: see Sect. 5, and Section 5 of Ley and
Verdebout (2017a). The first such adaptation appeared in Ley et al. (2013), where
optimal rank-based estimators of the location parameter of rotationally symmetric
spherical distributions were proposed. More recently, Paindaveine and Verdebout
(2020) considered inference under high concentration for the spherical location of
a semi-parametric class of rotationally symmetric distributions.

Bayesian inferential techniques have become increasingly popular in recent years,
often being implemented using Markov chain Monte Carlo (MCMC) methods. A
general approach to MCMC simulation on embedded Riemannian manifolds was
introduced by Byrne and Girolami (2013) and illustrated for the Fisher–Bingham dis-
tribution. Bayesian approaches to inference have been developed for the: vM (Damien
and Walker 1999) and mixtures thereof (Mulder et al. 2020a), WC (Ghosh et al.
2019), vMF (Núñez-Antonio and Gutiérrez-Peña 2005b; Hornik and Grün 2013),
bivariate vM (Mardia 2010), and projected normal (Núñez-Antonio and Gutiérrez-
Peña 2005a) distributions. Bhattacharya and SenGupta (2009b) considered Bayesian
inference for circular distributions with unknown normalising constants. Fallaize and
Kypraios (2016) gave aMonte Carlo exact Bayesian method of inference for the Bing-
ham distribution. Bayesian approaches based on projected and wrapped models have
become popular for a range of applications: see Sects. 3.4 and 11. Scoring rules pro-
vide an alternative to the traditional Bayesian formulation and have been applied for
the vMF distribution (Giummolè et al. 2019).

Robust estimators have been proposed for the parameters of the vM and wrapped
normal distributions (Agostinelli 2007), the vMF distribution (Kato and Eguchi 2016),
and a range of other circular distributions in a series of papers referred to by Laha
et al. (2019).

Asymptotic results for extrinsic and intrinsic means on manifolds, including S
d ,

were obtained in Bhattacharya and Patrangenaru (2003, 2005); see Bhattacharya and
Patrangenaru (2014) for a review on the topic. Hotz (2013) gave a detailed com-
parison between extrinsic and intrinsic means on S

1. Nonparametric inference on
intrinsic means on circles and spheres, however, can be fundamentally different from
its Euclidean analogues due to the effect of smeariness (asymptotic rates are slower
than n−1/2) present on S

1 (Hotz and Huckemann 2015) and S
d (Eltzner and Hucke-

mann 2019). The related effect of finite sample smeariness has been studied on the
circle by Hundrieser et al. (2020) and may affect all of the circular distributions men-
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tioned previously. As a consequence, quantile-based tests may be inappropriate, whilst
suitable bootstrap tests remain valid.

The inferential impact of the reference systems used for circular distributions was
explored recently in Mastrantonio et al. (2019).

5 Hypothesis testing

Here we consider hypothesis tests for uniformity, symmetry, location, concentration,
goodness-of-fit, and other testing scenarios. Calibration of the tests has generally
been based on asymptotic theory and, for small- to moderate-sized samples, the use
of resampling methods.

5.1 Uniformity

Uniformity (or isotropy), corresponding to there being no preferred direction, is the
most important dividing hypothesis in directional statistics. García-Portugués and
Verdebout (2018) provide a review of tests for it.

Sobolev tests (Beran 1968, 1969; Giné 1975) form, by far, the most extensive class
of tests for uniformity on S

d . Given a sample X1, . . . , Xn on S
d , Sobolev statistics

take the form

Sn({v2k }) = 1

n

n∑

i, j=1

∞∑

k=1

v2k hk(X i , X j ), (15)

where

hk(u, v) =
{
2 cos(k cos−1(u′v)), d = 1,
(
1 + 2k

d

)
C (d−1)/2
k (u′v), d > 1,

C (d−1)/2
k is the k-th Gegenbauer polynomial of index (d − 1)/2, and the v2k should

decay fast enough to ensure convergence in (15). Different choices for {v2k } give
different local optimality properties, consistencies, and powers against specific kinds
of alternatives. For example, the choices vk = δk j , j = 1, 2, give, respectively, the
test statistics of Rayleigh (1919) and Bingham (1974). Both were modified by Jupp
(2001) to improve their convergence under the null hypothesis. The alternatives for
which the Rayleigh and Bingham tests are inconsistent were identified by Ehler and
Galanis (2011) as the minimisers of certain potentials over Sd . The Rayleigh test plays
a key role in the CUSUM-based test for circular uniformity developed by Lombard
and Maxwell (2012). Pycke (2007, 2010) proposed uniformity tests on S

2 and S
1

based on the geometric mean of pairwise chordal distances, whilst Bakshaev (2010)
gave an analogous approach based on the arithmetic mean. The Bayesian optimality
of Sobolev tests on S

1 was studied by Sun and Lockhart (2019).
“Data-driven” Sobolev tests are obtained by using an information criterion to trun-

cate the infinite series in (15). This approach was used to obtain tests of uniformity
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on S1 by Bogdan et al. (2002), and on compact Riemannian manifolds by Jupp (2008,
2009). Such truncation simplifies the computation of (15) and its asymptotic distribu-
tion, the latter effectively being chi-squared. A variation on this approach was pursued
recently by Jammalamadaka et al. (2020), who proposed increased levels of truncation
of (15) on S1 and S2, so as to obtain a normal limit rather than the usual weighted sum
of chi-squared random variables appearing in the asymptotic null distribution of (15).

Su andWu (2011) considered spherical harmonics and exponential models as alter-
natives to uniformity, and derived score tests strongly related to Sobolev tests. Also
related to Sobolev tests, García-Portugués et al. (2020a) proposed a class of tests based
on the projected empirical cdf that yields extensions for data onSd of theWatson (1961)
and Rothman (1972) tests for circular uniformity, and a novel Anderson–Darling-like
test for uniformity on S

d .
Recent non-Sobolev tests for circular uniformity include the four-point Cramér–

von Mises test of Feltz and Goldin (2001), the likelihood-ratio test against a mixture
with symmetric wrapped stable and circular uniform components of SenGupta and Pal
(2001), the spacings-based Gini mean difference test of Tung and Jammalamadaka
(2013), and the Bayesian tests of Mulder and Klugkist (2021) against the vM dis-
tribution and the kernel density estimator (18). Tests for uniformity on S

d include
that of Faÿ et al. (2013), based on needlets (see Sect. 7.1.2), and those of Lacour
and Pham Ngoc (2014) and Kim et al. (2016) for “noisy” data on S

2, i.e. where the
density of the observations is a convolution of an error pdf with a true underlying pdf.
Cuesta-Albertos et al. (2009) proposed a projection-based test, and Ebner et al. (2018)
one based on a sum of weighted nearest-neighbour distances. Cutting et al. (2020)
investigated tests for uniformity on S

d against axial alternatives.
Tests for uniformity when d → ∞ as n → ∞ are scarcer. Cai and Jiang (2012)

and Cai et al. (2013) proposed tests based on maxi< j |X ′
iX j |. Paindaveine and Verde-

bout (2016) and Cutting et al. (2017a) studied a standardised Rayleigh statistic under
uniformity and vMF alternatives, respectively.

Simulation studies comparing the performance of various tests for uniformity on
S
1 have been carried out by Landler et al. (2018), on Sd , d ≥ 1, by García-Portugués

et al. (2020a), and on S
d , d ≥ 2, by Figueiredo and Gomes (2003) and Figueiredo

(2007). Humphreys and Ruxton (2017) and Landler et al. (2019) performed simulation
experiments to compare the performance of tests for circular uniformity when the data
are grouped.

5.2 Symmetry

There are at least four forms of symmetry that might be of interest in the analysis of
circular data: reflective symmetry about an unknown direction, reflective symmetry
about a known median axis, reflective symmetry about a specified median axis, and
�-fold symmetry. Pewsey (2002, 2004b) described these various forms of symmetry
and proposed simple, trigonometric moment-based, omnibus tests for the first two
scenarios. More recently, Ameijeiras-Alonso et al. (2020), Meintanis and Verdebout
(2019), and Ley and Verdebout (2014b) proposed tests for the same two setups that are
optimal against the k-sine-skewed models of Umbach and Jammalamadaka (2009).
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As we saw in Sect. 3.4, many of the models for spherical data are rotationally
symmetric. Recently, García-Portugués et al. (2020b) developed semi-parametric tests
for rotational symmetry when the axis of symmetry is known or unknown. Previously,
Ley and Verdebout (2017b) had developed two tests for rotational symmetry about a
known centre within the class of skew-rotationally symmetric distributions.

For data on S2, Jammalamadaka and Terdik (2019) proposed tests for various types
of symmetry, as well as uniformity, based on spherical harmonics.

5.3 Location and concentration

Various tests for the parameters of vM and vMFmodels have been developed in recent
years. Larsen et al. (2002) proposed improved likelihood-ratio tests for the: (i) mean
direction of a vM distribution; (ii) equality of mean directions of two vM distributions;
(iii) concentration of a vMF distribution; and (iv) equality of concentrations of two
vMF distributions. Watamori and Jupp (2005) introduced improved likelihood-ratio
and score tests for homogeneity of concentration in vMF distributions. Their score
tests were derived and studied from an alternative perspective in the review of Ley and
Verdebout (2014a). Laha and Mahesh (2015) investigated the robustness of tests for
the locations of the vM and vMF models. Gatto (2017) proposed a simultaneous test
for the mean direction and concentration of a vMF distribution. For data from vMF
distributions with a common unknown concentration, Rumcheva and Presnell (2017)
proposed an improved version of the multisample likelihood-ratio test for the equality
of mean directions.

Widening the scope to rotationally symmetric spherical distributions, Tsai (2009)
introduced asymptotically efficient rank tests for the equality of the modal direction
vectors of two unimodal rotationally symmetric spherical distributions. Ley et al.
(2015) investigated the high dimensional robustness of Watson’s test for the mean
direction. Paindaveine and Verdebout (2015) proposed optimal rank-based tests for
the mean direction, and Ley et al. (2017) used the invariance principle to construct
rank-based semi-parametric tests for the homogeneity ofmean directions. Paindaveine
andVerdebout (2017) investigated the problemof testing for a specifiedmean direction
when the underlying distribution tends to uniformity. Cutting et al. (2017b) proposed
tests for concentration in low and high dimensions, and Verdebout (2015, 2017) tests
for homogeneity of concentration.

A simultaneous saddlepoint test for the mean direction and dispersion of the
wrapped symmetric stable model was proposed in Gatto (2000), and a nonparametric
extension of it, for an assumed underlying unimodal circular distribution, in Gatto
(2006). Amaral et al. (2007) proposed nonparametric bootstrap and permutation tests
for the equality of the mean directions of directional distributions.

For axial data, Figueiredo (2017) proposed and explored the performance of boot-
strap and permutation counterparts of a high-concentration test for the homogeneity
of principal axes of Watson distributions.
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5.4 Goodness-of-fit

Given an independent and identically distributed circular sample, Θ1, . . . , Θn , with
underlying cdf F , the goodness-of-fit testing problem of H0 : F = F0 versus H1 :
F �= F0, where F0 is a fully specified cdf, can be addressed using tests for circular
uniformity. Appealing to the probability integral transform, testing H0 is equivalent
to testing the sample 2πF0(Θ1), . . . , 2πF0(Θn) on [0, 2π) for circular uniformity.
When the parameters of a model are estimated, the sampling distributions of the test
statistics are affected. However, those sampling distributions can be approximated
using the parametric bootstrap (Pewsey et al. 2013, Chapter 6).

For data on other supports, the situation ismore complicated as there is no canonical
transformation to uniformity. Examples of bootstrap goodness-of-fit tests for models
fitted to toroidal data appear in Jones et al. (2015), Pewsey and Kato (2016), and
Kato et al. (2018): the approach used in the latter essentially being based on the mul-
tivariate probability integral transform. Almost-canonical transformations for other
Riemannian manifolds have been proposed recently in Jupp and Kume (2020).

Using spherical harmonic expansions, Boulerice and Ducharme (1997) developed
goodness-of-fit tests for the vMF and Watson distributions. Jupp (2005) considered
weighted Sobolev goodness-of-fit tests for distributions on compact Riemannian man-
ifolds. Deschepper et al. (2008) proposed a lack-of-fit test for linear-circular regression
models based on the arcs generated by the circular observations. Wouters et al. (2009)
proposed data-driven goodness-of-fit tests for the vM model based on orthonormal
polynomials.

Smoothing-based approaches to testing the goodness of fit of parametric models to
directional data have also been developed. Boente et al. (2014) and García-Portugués
et al. (2015) used kernel density estimators (see Sect. 7.1) to test the goodness of
fit of spherical, and spherical-linear/spherical models, respectively. In the regression
context, García-Portugués et al. (2016) proposed a goodness-of-fit test for linear-
spherical models based on an extension of (19).

5.5 Other testing scenarios

For bivariate circular data, the asymptotic sampling properties of likelihood-ratio tests
of independence were considered by Shieh and Johnson (2005), and their permutation
analogues by Kato and Pewsey (2015) and Kato et al. (2018). Nonparametric, kernel-
based, tests for the independence of spherical-linear/spherical variables were proposed
in García-Portugués et al. (2014, 2015).

Several tests for change-point detection in circular series have been introduced.
Nonparametric tests include thepermutation test ofByrne et al. (2009) and theCUSUM
test of Lombard et al. (2017). In vM-distributed series, likelihood (Ghosh et al. 1999;
Hawkins and Lombard 2015) and CUSUM (Hawkins and Lombard 2017) procedures
have been advocated. Bayesian approaches have also been considered (Ghosh et al.
1999; SenGupta and Laha 2008).

Other tests for circular data include the kernel density estimate-based tests of Fisher
and Marron (2001) and Ameijeiras-Alonso et al. (2019a) for assessing the number of

123



Recent advances in directional statistics 19

modes, and the test ofDucharme et al. (2012) for detecting vortices in two-dimensional
vector fields. Recently, bootstrap-based tests using smoothing have been introduced
in Zhang et al. (2019), for comparing two samples, and in Alonso-Pena et al. (2020),
for testing in circular regression.

6 Correlation and regression

6.1 Correlation

Mardia and Jupp (1999, Section 11.2) provide details of some of the correlation coef-
ficients for toroidal, cylindrical, and spherical data that have been proposed in the
literature. Others are considered in SenGupta (2001, Chapter 8). Recently, Zhan et al.
(2019) reviewed the correlation coefficients available for toroidal data and proposed
two new ones. In the context of Bayesian network modelling, Leguey et al. (2019b)
and Leguey et al. (2019a) introduced mutual information measures of the dependence
between circular and linear variables, and between two circular variables, respectively.

6.2 Regression

Here we consider parametric regression models. Throughout, we use the generic nota-
tion Y-X to denote that Y is the response variable and X is the explanatory variable.
Recent developments in nonparametric regression are described in Sect. 7.2.

6.2.1 Circular-circular regression

Circular-circular regression is used to model the relationship between a circular
response variable,Ψ , and a circular explanatory variable,Θ . Polsen and Taylor (2015)
reviewed parametric circular-circular regression models and considered inference and
diagnostic analysis for them. They focused on the general inverse tangent link-based
regression model

Ψ = Arg{g1(Θ; η) + ig2(Θ; η)} + ε (mod 2π), (16)

where the first term represents the conditional mean direction ofΨ givenΘ , g1 and g2
are non-uniquely identifiable functions, η is a vector of parameters, and ε is a circular
error variable. The decentred model of Rivest (1997) and the Möbius transformation-
based models of Downs and Mardia (2002), Kato et al. (2008), and Kato and Jones
(2010) are all special cases of (16). The first two have vM errors, whilst those of the
models of Kato et al. (2008) and Kato and Jones (2010) are WC and a four-parameter
highly flexible unimodal extension of the WC different from (4), respectively. Polsen
and Taylor (2015) also related the bivariate regression model of Sarma and Jammala-
madaka (1993) (see also Jammalamadaka and SenGupta 2001, Section 8.6), having
finite-order trigonometric polynomials for g1 and g2, to the model in (16).

McMillan et al. (2013) proposed a hierarchical Bayesian approach for repeated
measures circular data that are bimodal, based on a two-component circular-circular
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regression model with parameters that change according to a function expressed in a
finite circular B-spline basis (see Sect. 7.2.1).

6.2.2 Circular-linear regression

Circular-linear regression is used tomodel the relationship between a circular response
variable,Θ , and a vector containing one or more covariates denoted here by X . Mardia
and Jupp (1999, Section 11.3.2) refer to the use of the link-based models of Fisher and
Lee (1992) in this context. It would appear that the most popular such link function
has been 2 tan−1. For this choice, the conditional mean is

E(Θ|X = x) = 2 tan−1(β ′x),

whereβ is a vector of regression coefficients. This link functionmaps the origin ofR to
the angle 0, and the two extremes of R to the angle furthest from 0, namely −π ≡ π .
Presnell et al. (1998) identified important practical difficulties with estimating the
parameters of such models using ML methods. As a means of circumventing those
inherent inferential problems, George and Ghosh (2006) proposed a semi-parametric
Bayesian approach. Artes (2008) developed analysis of covariance tests for link-based
models.

Instead of using link functions, Presnell et al. (1998) proposed an alternative mod-
elling approach based on projecting (see Sect. 3.1) the unobserved responses from a
multivariate linear model onto S

1. This approach has become increasingly popular,
particularly in Bayesian applications (see, e.g., Núñez-Antonio et al. 2011; Wang and
Gelfand 2013; Hernandez-Stumpfhauser et al. 2016). The interpretation of predictor
effects in projected normal regressionmodels has been considered recently byCremers
et al. (2018).

A different tack was taken by Lund (2002), who evaded the problem of devising a
meaningful regression function through the use of a tree-based approach to predicting
a circular response from a combination of circular and linear predictors.

Various approaches to modelling longitudinal data have been developed recently.
Artes et al. (2000) considered the use of estimating equations when the angular
response is assumed to follow a circular distribution parametrised by its mean direc-
tion and mean resultant length. D’Elia (2001) proposed a variance components model
with fixed and random effects. Lagona (2016) introduced a regression model for cor-
related circular data which assumes that the angular measurements arise from the sine
multivariate vM distribution of Mardia et al. (2008). All three of these proposals make
use of the link function approach of Fisher and Lee (1992). The model of Lagona
(2016) was extended byMulder and Klugkist (2017), who employed weakly informa-
tive priors within a Bayesian framework to elude the problems withML estimation for
link-based models. Other researchers have adapted projected normal models. Núñez-
Antonio and Gutiérrez-Peña (2014) investigated one in which the components are
specified as mixed linear models. Maruotti (2016) considered a mixed linear model
with correlated random coefficients controlling dependence that can be represented
as a finite mixture of projected normal distributions. Maruotti et al. (2016) proposed
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a time-dependent extension of the projected normal regression model with a hidden
Markov heterogeneity structure.

Many of the above proposals have been used tomodel animal orientation data. Other
models for such data include that of Rivest et al. (2016), which features a consensus
model for the angular response, based on circular and linear covariates, combined with
vMerrors. Recently, Rivest andKato (2019) proposed a random effects circular regres-
sion model for clustered circular data where both the cluster effects and the regression
errors have vM distributions. Their model is based on the multivariate angular pdf
with vM-distributed cluster-level random effects of Holmquist and Gustafsson (2017).
Other approaches to modelling animal orientation data are considered in Sect. 11.

6.2.3 Linear-circular regression

Linear-circular regression is applied to model the relationship between a linear
response variable and one or more circular covariates. The standard approach is to
regress the linear variable on sums of trigonometric polynomials of the circular vari-
ables, using least squares to estimate the parameters (Johnson and Wehrly 1978).
Bhattacharya and SenGupta (2009a) and SenGupta and Bhattacharya (2015) have
considered Bayesian approaches to linear-circular modelling.

Recently, Cremers et al. (2020) proposed several regressionmodels for a cylindrical
response variable with linear and circular components.

6.2.4 Spherical response

Spherical regression was first considered by Chang (1986). Downs (2003) made use of
Möbius transformation, stereographic projection and link functions to develop S

2-S2

regression models with the conditional distribution between response and predictor
being vMF. Hinkle et al. (2014) proposed polynomial models for manifold-linear
regression. For Sd -Sd regression, Rosenthal et al. (2014) employed projective linear
transformations to model the conditional mean direction of the response, combined
with a vMF error structure. Cornea et al. (2017) proposed a more general semi-
parametric intrinsic manifold-manifold regression model that incorporates parametric
link functions and a nonparametric error structure. Very recently, Paine et al. (2020)
introduced a very general regression model for an S2-valued response with covariates
that can be spherical, linear or categorical, and two kinds of anisotropic error distribu-
tions. In its most general formulation, a preliminary orthogonal transformation of the
response is assumed to follow an anisotropic distribution with covariate-dependent
parameters. For Sd -Rq regression, Scealy and Wood (2019) proposed a flexible het-
eroscedastic model with scaled vMF errors.

Related regression problems for a S2-valued response include the fitting of small
circles to spherical data (Rivest 1999) and the analysis of rotational deformations
through fitting small circles on the sphere nonparametrically (Schulz et al. 2015) and
parametrically (Kim et al. 2019).
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7 Nonparametric curve estimation

Here we review advances in nonparametric curve estimation. See Sect. 5 for nonpara-
metric tests, and later sections for other nonparametric methods.

7.1 Density estimation

7.1.1 Smoothing-based

Kernel density estimation (KDE) on Sd dates back to Beran (1979), Hall et al. (1987),
and Bai et al. (1988). In the latter’s formulation, the kernel estimator for a sample
X1, . . . , Xn from the target pdf f is given by

f̂ (x; h) = cL(h)

n

n∑

j=1

L

(
1 − x′X j

h2

)

, x ∈ S
d , (17)

where h > 0 denotes the bandwidth, L : [0,∞) → [0,∞) a kernel, and cL(h) a
normalising constant. For the vMF kernel L(r) = e−r and d = 1, (17) reduces to (6)
with common concentration κ = 1/h2, namely

f̂ (θ; κ) = 1

2πI0(κ)n

n∑

j=1

exp{κ cos(θ − Θ j )}, θ ∈ [−π, π). (18)

Several extensions and modifications of (17) and (18) have been proposed. For
d ≥ 2, Klemelä (2000) used L(κ cos−1(x′X j )) in (17) to analyse estimators of f
and its derivatives. Extending (18) to [−π, π)d , Di Marzio et al. (2011) introduced a
class of Fourier-based sine-order circular kernels containingmanywell-knowncircular
pdfs. García-Portugués et al. (2013b) considered the extension of (17) to S

d × R.
Amiri et al. (2017) transformed (17) into a sequentially updating estimator. Tsuruta
and Sagae (2017a) showed that using a WC kernel instead of a vM kernel in (18)
worsens the optimal asymptotic mean integrated squared error (AMISE) rate from
n−4/5 to n−2/3, despite both kernels being second sine-order. This motivated Tsuruta
and Sagae (2017b) to propose a class of p-th order kernels with an optimal AMISE
rate of n−2p/(2p+1).

Bandwidth selection is crucial to KDE and hence was also addressed in most of
the aforementioned contributions. Plug-in selectors as alternatives to cross-validation
(CV) have received most attention. Taylor (2008) proposed the first plug-in selector
for (18) by deriving the AMISE under the assumption that f is vM. The plug-in rule
of Oliveira et al. (2012) employed the AMISE of Di Marzio et al. (2011), but used
a two-component vM mixture in its curvature term. García-Portugués (2013) gave
plug-in selectors for (17) using the AMISE and MISE for mixtures of vMF pdfs.
Recently, Tsuruta and Sagae (2020) studied the convergence rates of direct plug-in
and CV selectors for KDE on S

1. Pham Ngoc (2019) proposed a bandwidth selector
for (17) with a convergence rate of n−2p/(2p+d) for p-th order kernels.
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Asymptotic results obtained for (17) include: CLTs for the integrated
squared error of KDEs on Sd (Zhao andWu 2001), and Sd ×R and Sd1 ×S

d2 (García-
Portugués et al. 2015); lower bounds for asymptotic minimax risks (Klemelä 2003);
laws for the iterated logarithm (Wang and Zhao 2001, 2003); and large and moderate
deviations (Gao and Li 2010; Li 2014).

Convolutions onSd are intimately relatedwithKDEand are key to fast computation.
They have been studied in Eğecioğlu and Srinivasan (2000), Dokmanic and Petrinovic
(2010), and Le Bihan et al. (2016).

As alternatives to (17) and (18), Wang and Ma (2000) introduced a nearest-
neighbour estimator of f and Park (2012, 2013) considered KDE via the tangent
space of Sd . Di Marzio et al. (2017) matched trigonometric moments of f with their
smoothed sample versions to derive pdf estimators. As in high-order KDE, such esti-
mators lower the bias and retain the variance order of (18), although negative values
are possible. Using a different approach, Di Marzio et al. (2016b, 2018a) investigated
local likelihood (Loader 1996) for pdfs on [−π, π)d by using local approximation of
log f . KDE based on the heat kernel on Sd (see Hartman andWatson 1974), the d = 1
case of which being the wrapped normal kernel, was applied in Zhang et al. (2019).

Extensions of (18) enable the construction of smoothed estimators for circular cdfs
(DiMarzio et al. 2012b) and conditional pdfs (DiMarzio et al. 2016a).More generally,
KDE has also been developed for compact Riemannian manifolds (Pelletier 2005;
Henry and Rodriguez 2009), with inherent reduced tractability.

7.1.2 Series-based

An alternative approach to estimating a circular pdf is to use sample trigonometric
moments as estimates of coefficients in its Fourier series expansion. Such estimates
generally exhibit harmonic peaks and troughs and can be negative, although the latter
defect can be circumvented by imposing constraints (Fernández-Durán 2004). Instead,
periodic Bernstein polynomials might be considered. However, as Carnicero et al.
(2018) have shown, imposing periodicity on such polynomials increases the error rate
from n−4/5 to n−2/3. An interesting connection between Fourier-based estimation and
(18) arises through the use of the WC kernel (Chaubey 2018).

Spherical harmonics (see, e.g., Dai and Xu 2013) extend Fourier orthogonal bases
to Sd with increasing complexity as d grows. Hence, pdf estimation through spherical
harmonics inherits both the advantages and disadvantages of Fourier series estima-
tion on the circle. A compelling alternative are needlets (Narcowich et al. 2006; see
also Marinucci et al. 2008), a class of spherical wavelets. Needlets build on spheri-
cal harmonics to form a tight frame on L2(Sd) that is not a basis, as redundancy is
allowed, but has superior localisation properties. Needlet coefficients can be estimated
from sample spherical harmonic coefficients. Baldi et al. (2009a) approached adaptive
pdf estimation on S

d by thresholding needlet coefficients, and Kueh (2012) studied
the latter estimator under varying local pdf regularity. Like Fourier-based estimates,
needlet-based pdf estimates can take negative values.

Circular deconvolution, i.e. the estimation of a pdf on S
1 from noisy observations

(see Sect. 5.1), has been tackled with increasing generality in Efromovich (1997),
Comte and Taupin (2003), and Johannes and Schwarz (2013). Spherical deconvolution
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has been studied through spherical harmonics (Healy et al. 1998; Kim and Koo 2002;
Kim et al. 2004) and needlets (Kerkyacharian et al. 2011).

7.1.3 Bayesian-based

Density estimation using Dirichlet process mixtures (DPMs) is a popular nonparamet-
ric Bayesian approach and has been employed with directional variables too. Lennox
et al. (2009) provided a DPM model having sine bivariate vM distributions to model
pairs of dihedral angles onT2. Straub et al. (2015) proposed a DPMmodel of Gaussian
distributions in distinct tangent spaces to Sd . DPMmodels with projected normal dis-
tributions have been advocated by Núñez-Antonio et al. (2018) on S1 and by Abraham
et al. (2019) on T

d . Density estimation through DPM on manifolds was addressed in
Bhattacharya and Bhattacharya (2012, Chapter 13).

7.2 Regression estimation

7.2.1 Linear response

The Nadaraya–Watson estimator for linear-spherical regression is

m̂(x; h) = cL(h)

n f̂ (x; h)

n∑

j=1

Y j L

(
1 − x′X j

h2

)

, x ∈ S
d , (19)

which, for the vMF kernel and S
1, reduces to

m̂(θ; κ) =
∑n

j=1 Y j exp{κ cos(θ − Θ j )}
∑n

j=1 exp{κ cos(θ − Θ j )} , θ ∈ [−π, π). (20)

As an extension of (20), DiMarzio et al. (2009) introduced local polynomial regres-
sion for predictors on Td through a sine term-based Taylor expansion. Their approach
was extended further by Qin et al. (2011) to accommodate circular and multivariate
predictors using product kernels, a broadly applicable approach to combine different
predictors. Tsuruta and Sagae (2018) showed the different optimal error rates for the
(second sine-order) WC and vM kernels.

On Sd , (19) was considered by Wang et al. (2000) and Wang (2002) when deriving
laws for iterated logarithm and exponential error bounds, respectively. DiMarzio et al.
(2014) extended (20) to local polynomial regression using a Taylor expansion within
the tangent-normal decomposition. García-Portugués et al. (2016) used a different
Taylor expansion yielding a local linear estimator that, for d = 1, coincides with the
DiMarzio et al. (2009) proposal. DiMarzio et al. (2019b) built on their construction in
DiMarzio et al. (2014) to perform local polynomial logistic regressionwith a spherical
predictor.

Monnier (2011) proposed needlet-based regression for a uniformly distributed pre-
dictor on S

d and Gaussian noise, whilst Lin (2019) weakened those assumptions and
introduced regularisation on the needlet coefficients.
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Thin-plate splines on S
d (Taijeron et al. 1994) offer an alternative smoothing

approach to kernel methods. Such splines have been considered for improving brain
conformal mapping to S2 (Zou et al. 2007). Kaufman et al. (2005) introduced circular
Bayesian adaptive regression splines formodelling the firing rates of neurons activated
bymovements of a monkey’s wrist. Quadratic B-splines on the circle were constructed
in McMillan et al. (2013).

Related to regression for a S
1 predictor, Hall et al. (2000), Hall and Yin (2003),

and Genton and Hall (2007) studied the estimation of periodic functions over an
(unwrapped) time domain. Klemelä (1999) considered the estimation of a function on
S
d observed in Gaussian continuous time white noise.

7.2.2 Circular or spherical response

Boente and Fraiman (1991) considered estimators for S
d -Rq regression based

on locally weighted spherical means, with nearest-neighbour or Nadaraya–Watson
weights. Their construction was generalised to local polynomial S1-S1 and S

1-R
(Di Marzio et al. 2013), S1-Rq (Meilán-Vila et al. 2020), and S

d -Sq (Di Marzio
et al. 2014) regression through local circular and spherical means. A novel approach
to S

d -Sd regression, based on local polynomial expansions of the rotation function,
was advocated by Di Marzio et al. (2019c).

Quantile S
1-S1 and S

1-R regression was developed by Di Marzio et al. (2016c)
through inversion of the conditional circular distribution and smoothing a circular
check function.

From a Bayesian perspective, Scott (2011) estimated the regression function on S2

by imposing shrinkage priors on its needlet coefficients. Navarro et al. (2017) proposed
multivariate generalisedvMcircular processes as a replacement forGaussianprocesses
in circular regression.

More generally, Cheng and Wu (2013) addressed linear-manifold regression
through local linear regression on the tangent space, and Lin et al. (2017) gave an
extrinsic Nadaraya–Watson estimator for manifold-linear regression.

8 Dimension reductionmethods

8.1 Principal component analysis

8.1.1 General manifolds

Principal component analysis (PCA) for data on a Riemannian manifoldM of dimen-
sion d, such as Sd or Td , has received considerable attention lately. Approaches to
manifold PCA can be classified using two broad dichotomies: (i) extrinsic (based on
tangent space) versus intrinsic (geodesic-based); (ii) forward (sequential computation
of the j-th principal component, j = 1, . . . , d) versus backward (computation of a
sequence of nested subspaces of decreasing dimensionwithinM based on constraints;
Damon and Marron (2014)). Huckemann et al. (2010) gave a detailed review of the
topic, and Marron and Alonso (2014) and Pennec (2018) more recent overviews.
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Fletcher et al. (2004) introduced principal geodesic analysis (PGA) as an analogue
of PCA in symmetric spaces such as Sd and Td . It is centred upon the intrinsic sample
mean on M, μ̂, and defines the first principal geodesic as the one passing through
μ̂ that minimises the sum of squared intrinsic residuals. Other principal geodesics
are obtained sequentially by imposing orthogonality at μ̂. PGA involves a complex
optimisation process, only solved later by Sommer et al. (2014). This complexity led
Fletcher et al. (2004) to propose tangent PCA (tPCA) as an approximation. tPCA
performs PCA with the log-mapped data onto the tangent plane at μ̂ and then obtains
the principal geodesics on M spanned by the tangent principal directions. When
M = S

2, the principal components of PGA and tPCA are great circles that pass
through μ̂.

Two limitations of PGA are exemplified on S2: (a) great circles are forced to cross
at μ̂; (b) great circles are unable to describe certain forms of variation (see Sect. 8.1.2).
Huckemann and Ziezold (2006) tackled (a) by introducing geodesic PCA (GPCA) for
Riemannianmanifolds, a forward-typemethodwith a backward shift that locates a data
centre μ̃ after finding the best fitting geodesic. The other components cross orthog-
onally at μ̃, a restriction circumvented by horizontal component analysis (Sommer
2013). Curry et al. (2019) recently proposed principal symmetric space approxima-
tion (PSSA), which considers totally geodesic subspaces (great subspheres, on S

d )
and is computationally tractable on certain manifolds.

A non-geodesic approach to PCA on M is barycentric subspace analysis (Pennec
2018). It considers k-dimensional affine spans (great subspheres ifM = S

d ) spanned
by k + 1M-affinely independent points, whose successive addition/removal yields a
forward/backward-type sequence of nested subspaces.

Zhang and Fletcher (2013) proposed probabilistic PGA, in which the normal dis-
tribution used in probabilistic PCA (Tipping and Bishop 1999) is replaced by what
the authors refer to as the Riemannian normal distribution, with pdf f (x;μ, σ 2) ∝
exp{−dg(x,μ)2/(2σ 2)}, where x,μ ∈ M and dg is the intrinsic distance on M
(dg(x,μ) = cos−1(x′μ) if M = S

d ). Sommer (2019) advocated an alternative to
PGAbased on an anisotropic normal distribution overM, generated from themarginal
distributions of a diffusion process on M with a constant infinitesimal covariance.

The previous approaches assume a parametric form for the first principal curve on
M. Instead, the principal flow of Panaretos et al. (2014) is defined as the curve of
maximal data variation onM that, starting at μ̂, is tangential to the vector field formed
by the first eigenvector of the local tangent covariance matrix. Higher-order principal
flows, which are always curves, are defined analogously.

Dai and Müller (2018) adapted tPCA for functional data on M (e.g. flight trajec-
tories on S

2) by replacing PCA by functional PCA on the tangent plane.
Nonparametric inference on backward nested principal component subspaces, gen-

eralising the result of Anderson (1963) on asymptotic inference for classical PCA, has
been provided by Huckemann and Eltzner (2018).

8.1.2 Methods for spherical data

In relation to limitation (b) of Sect. 8.1.1, and for the specific case of S2, Jung et al.
(2011) advocated principal arc analysis (PAA), a non-geodesic approach designed to
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improve the flexibility of GPCA. PAA employs small circles on S
2 as the primary

modes of data variation, an idea generalised to S
d by Jung et al. (2012) as principal

nested spheres (PNS). By iteratively performing a series of tangent-normal decomposi-
tions on Sd , PNS is a backward-type approach that produces a sequence of subspheres
isomorphic to S

j , j = d − 1, . . . , 1, that none of the methods in Sect. 8.1.1 are able
to match in terms of flexibility.

Despite the generality of the approaches in Sect. 8.1.1, the success of PNShighlights
the advantages of focusing on specificmanifolds, such as Sd orTd , and exploiting their
peculiarities so as to obtain more informative methods. Other examples of the benefits
of specificity include PAA on direct product manifolds such as (R3×R

+ ×S
2×S

2)m ,
introduced by Jung et al. (2011), and composite PNS for skeletal models, proposed
by Pizer et al. (2013).

8.1.3 Methods for toroidal data

Torus-specific PCA proposals have been stimulated by the need to analyse dihedral
angles in bioinformatics, and the inapplicability of most of the methods in Sect. 8.1.1
due to the pathological behaviour of geodesics on T

d .
Themajority of toroidal PCAmethods resort to some sort of transformation prior to

applying classical PCA. Mu et al. (2005) proposed dihedral PCA (dPCA) by mapping
angles from [−π, π)d to T

d and then performing PCA. Complex dPCA (Altis et al.
2007) performs PCA on the complex representation of angles. Riccardi et al. (2009)
proposed angular PCA(aPCA), based on applyingPCA to toroidal data centred on their
circular means. Kent andMardia (2009) gave a trigonometric moment characterisation
of the covariance matrix in a wrapped normal model on T

d , facilitating PCA on it.
Nodehi et al. (2015) applied PGA on T

d in what they called dPGA. The latter two
approaches yield principal directions that almost surely wrap around infinitely. With
regard to this issue,Kent andMardia (2015) discussed desirable properties for principal
component curves on [−π, π)2. Sittel et al. (2017) introduced a variation on aPCA,
called dPCA+, that shifts each variable so that −π ≡ π is located at the lowest pdf
region for minimising the distortion when PCA is applied. Sargsyan et al. (2012,
2015) used a non-injective mapping from T

d to S
d that equates toroidal angles in

[−π, π)d to hyperspherical coordinate angles, even though the latter are defined in
[0, π ]d−1 × [−π, π), then applied GPCA.

A better-grounded approach to torus PCA is T-PCA (Eltzner et al. 2018), which
maps Td to S

d with a deformation, which, for d = 2, corresponds to cutting T
2 at a

data-driven point to form a cylinder, contracting the circles at its ends to single points,
and reconnecting at those points. Principal nested deformed spheres (Eltzner et al.
2015) is an extension of the T-PCA approach to data on a polysphere Sd1 ×· · ·×S

dm .
PSSA can also be applied to toroidal data, with geodesics onTd identified usingmodel
selection.
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8.2 Other dimension reductionmethods

Nonlinear dimension reduction methods for Euclidean data have also been adapted
to the directional context. Lunga and Ersoy (2013) modified t-stochastic neighbour
embedding (t-SNE) of van derMaaten andHinton (2008) to obtain a dimension reduc-
tion method, from S

d to S
q , q � d , using neighbourhoods formed by the extension

of the WC distribution to S
d in Kato (2009). Wang and Wang (2016) proposed a

modification of t-SNE with vMF neighbourhoods.
Wilson et al. (2014) revisited multidimensional scaling on S

d , proposing a
new approach that obviated the minimisation of stress functions based on spher-
ical distances inherent in former approaches. They used their approach to map
textures of 3D objects onto spheres (Elad et al. 2005), and model normalised
time-warping functions (Veeraraghavan et al. 2009). Lu et al. (2019) adapted t-
SNE for dimension reduction from R

d to S
q , q � d, highlighting the benefits

of the clusterings obtained on the spherical geometry. Note that these transforma-
tions of multivariate data into spherical data, termed spherical embeddings, call
for the use of directional statistics with data which were not originally direc-
tions.

9 Classification and clustering

9.1 Classification

SenGupta and Roy (2005) introduced a discrimination rule based on the chordal
distance between a new circular observation and those from two known circu-
lar populations. More recently, Di Marzio et al. (2018b) considered nonparametric
circular classification based on KDE and local logistic regression. Pandolfo et al.
(2018a) studied the depth-versus-depth classifier for circular data. Leguey et al.
(2019a) proposed Bayesian classification algorithms for WC-distributed circular pre-
dictors.

SenGupta and Ugwuowo (2011) proposed generalised likelihood-ratio tests for
classifying toroidal and cylindrical data into two populations when one of the
misclassification probabilities is assumed to be known. Fernandes and Cardoso
(2016) developed a logistic classifier for use with circular and linear predic-
tors.

Classification rules for data on S
d from Watson and vMF populations were

developed by Figueiredo and Gomes (2006) and Figueiredo (2009), respectively.
Bhattacharya and Dunson (2012) proposed a Dirichlet process mixture model clas-
sifier comprising vMF kernels. López-Cruz et al. (2015) considered the naive Bayes
classifier with vMF-related conditional distributions of directional predictors. Tech-
niques for the classification of image textures, based on multiresolution directional
filters, were proposed by Kim and So (2018). Di Marzio et al. (2019a) considered
KDE-based nonparametric classification. The cosine depth distribution classifier was
introduced in Demni et al. (2019). A comparison of different classification rules on
S
2 was performed by Tsagris and Alenazi (2019).
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9.2 Clustering

The development of clustering methods for directional data has been a major research
theme lately, particularly amongst the machine learning community.

The two most popular approaches to clustering data on S
d are spherical k-means

and the use of (finite) mixture models with vMF components, the vMF extension of
(6). Both have often been applied after projecting data inRd+1 to Sd . The spherical k-
means approach (Dhillon and Modha 2001) maximises the cosine similarity measure∑n

j=1 X
′
j c( j) between the sample X1, . . . , Xn and k centroids c1, . . . , ck ∈ S

d , where
c( j) is the centroid of the cluster containing X j .

Dhillon and Sra (2003) and Banerjee et al. (2003, 2005) gave expectation-
maximisation (EM) algorithms for fitting vMFmixtures. Suchmixtures accommodate
spherical k-means as a particular limiting case (Banerjee et al. 2005). Other approaches
to fitting vMF mixtures include those of: Yang and Pan (1997), based on embedding
fuzzy partitions in the mixtures; Taghia et al. (2014), a Bayesian approach employ-
ing variational inference; Gopal and Yang (2014), who proposed Bayesian graphical
modelling approaches based on variational inference and collapsed Gibbs sampling;
Qiu et al. (2015), which used a new information criterion to determine the number
of clusters; Kasarapu and Allison (2015), based on the Bayesian minimum message
length criterion to determine the optimal number of components; Mash’al and Hos-
seini (2015), a k-means++ method for identifying favourable mixture starting values;
and Salah and Nadif (2019), a co-clustering approach based on diagonal block mix-
tures of vMF distributions. Mixtures with vMF components have been employed to
model data from photometry (Hara et al. 2008), text mining (Banerjee et al. 2009),
speech recognition (Tang et al. 2009), radiation therapy (Bangert et al. 2010), pattern
recognition (Calderara et al. 2011), multichannel array processing (Costa et al. 2014),
and collaborative filtering (Salah and Nadif 2017). vMF mixtures have been used to
cluster pdf objects based on their spherical-valued wavelet coefficients (Montanari
and Calò 2013).

Clustering approaches based on mixtures with other types of directional distribu-
tions have also been advocated. To increase cluster shape modelling flexibility on Sd ,
Peel et al. (2001) used mixtures of Kent distributions, whereas Dortet-Bernadet and
Wicker (2008) proposed ones with inverse stereographic projections of multivariate
normal distributions. Mixture models with wrapped normal components were investi-
gated by Agiomyrgiannakis and Stylianou (2009), and used to cluster X-ray position
data in Abraham et al. (2013). Bayesian approaches to fitting projected normal mix-
tures have been proposed by Wang and Gelfand (2014) and Rodríguez et al. (2020),
and for general projected normal mixtures by Hernandez-Stumpfhauser et al. (2017).
Franke et al. (2016) developed an EM algorithm to fit the latter type of mixtures to
data on S

2. For data on T
d , Mardia et al. (2012) proposed mixtures of concentrated

sinemultivariate vM components, with approximated normalising constants, to cluster
dihedral angles of an amino acid. For cylindrical data, Lagona and Picone (2011, 2012)
developed latent-class mixture models to cluster incomplete environmental data.

Mixture model-based approaches for clustering axial data have also been proposed.
Bijral et al. (2007), Souden et al. (2013), and Sra andKarp (2013) developedEM-based
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algorithms to fit mixtures of Watson distributions. Hasnat et al. (2014) provided an
alternative approach to fitting suchmodels based on Bregman divergence. A clustering
approach based on mixtures of Bingham distributions was developed by Yamaji and
Sato (2011).

Variations of spherical k-means include the spherical fuzzy and possibilistic c-
means proposed by Kesemen et al. (2016) and Benjamin et al. (2019), respectively,
and the adaptations by Maitra and Ramler (2010) for computational efficiency. On S1,
Baragona (2003) further investigated an alternative partitioning based on the statistic
of Lund (1999).A nonparametric alternative to k-means is kernelmean shift clustering,
introduced on S

d by Oba et al. (2005). It was then extended by Cetingul and Vidal
(2009) to S

d and other specific manifolds, using intrinsic and extrinsic perspectives,
and later reintroduced on S

d with minor variations (Chang-Chien et al. 2010; Yang
et al. 2014). A modification of kernel mean shift that uses time-varying bandwidths
was adapted to spherical data by Hung et al. (2015).

10 Modelling serial dependence

10.1 Discrete-time processes

Let {Θt }t=1,2,... denote a discrete-time circular process, and {θt }t=1,2,...,n a correspond-
ing circular time series. Mardia and Jupp (1999) provide a summary of the projected
normal, wrapped, linked autoregressivemoving average (ARMA), and circular autore-
gressive (CAR) models for circular time series considered in Fisher and Lee (1994)
and Fisher (1993, Section 7.2).

If {(Xt , Yt )}t=1,2,... is a stationary bivariate normal process, then {Θt }t=1,2,..., where
Θt = Arg(Xt + iYt ), is a projected normal process. If {Xt }t=1,2,... is a process on R,
then {Θt }t=1,2,..., where Θt = Xt (mod 2π), is the corresponding wrapped process.
The wrapped AR processes of Breckling (1989) provide an example. A linked process
is defined through Θt = μ + g(Xt ), where μ ∈ [−π, π) and g is a link function
defined in Fisher (1993, Section 7.2.4) as a mapping from R to (−π, π). A linked
ARMA(p, q) process is obtained if Xt = g−1(Θt ) is an ARMA(p, q) process. A
CAR process is one for which Θt |Θt−1 = θt−1, . . . , Θt−p = θt−p is vM-distributed
with mean direction

μt = μ + g[α1g
−1(θt−1 − μ) + · · · + αpg

−1(θt−p − μ)]

and concentration parameter κ , where μ ∈ [−π, π) and α1, . . . , αp ∈ R. Artes and
Toloi (2009) proposed an extension of the CARmodel with covariates. Processes with
distributions other than the vM can be defined analogously to CAR. Erdem and Shi
(2011) consider four ARMA-based approaches to the short-term forecasting of wind
speed and direction.

Markov models can be constructed using a transition pdf, fΘt |Θt−1=θt−1 , derived
from a bivariate circular pdf. Hughes (2007) used this approach, dating back toWehrly
and Johnson (1980), to obtain stationary Markov processes from the sine and cosine
bivariate vM models referred to in Sect. 3.3, and the Möbius transformation-based
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regression model of Downs and Mardia (2002). Similarly, Kato (2010) employed the
regression model of Kato et al. (2008) to derive a stationary Markov process. Yeh
et al. (2013) proposed a circular Markov process based on a transition pdf that belongs
to the class of generalised vM distributions referred to in Sect. 3.1. Le Bihan et al.
(2016) studied Markov processes with rotationally symmetric transition pdfs on S

d ,
specifically analysing the vMF case.

In a paper that has stimulated much research into the modelling of time series, spa-
tial, and spatio-temporal data (see Sect. 11), Holzmann et al. (2006) introduced hidden
Markov models (HMMs) (Zucchini et al. 2016) for circular as well as cylindrical time
series. Such models offer considerable flexibility in their serial dependence properties
and use mixtures of varying distributions to model different underlying regimes. More
specifically, Holzmann et al. (2006) considered circular HMMs with state-dependent
vM, wrapped normal orWC distributions, and marginal distributions that are mixtures
of each. They also proposed a cylindrical HMMwith state-dependent vM distributions
for the circular component. Bulla et al. (2012) extended this approach to develop a
multivariate hidden Markov model for bivariate circular and bivariate linear data with
sine bivariate vM and bivariate skew-normal pdfs. An HMM for toroidal time series
using sine bivariate vM pdfs and allowing for missing observations was proposed in
Lagona and Picone (2013). Hokimoto and Shimizu (2014) developed a model incor-
porating a non-homogeneous HMM with cylindrical covariates. Ailliot et al. (2015)
proposedMarkov-switching autoregressive models based on a non-homogeneous hid-
den Markov chain for circular time series with vM innovations. HMMs for use with
cylindrical time series have been proposed byLagona et al. (2015a),Mastrantonio et al.
(2015), and Mastrantonio and Calise (2016). Mastrantonio et al. (2015) considered a
projected normal-based extension of the model of Bulla et al. (2012) that allows for
conditional correlation between the circular and linear variables. TheDirichlet process
mixture model of Mastrantonio and Calise (2016) is designed for use with discrete
cylindrical variables.

HMMs with toroidal components have also been employed in protein structure
modelling. Boomsma et al. (2008) proposed onewith cosine bivariate vMdistributions
tomodel the pairs of dihedral angles describingprotein backbones. Lennox et al. (2010)
considered a Dirichlet process mixture of HMMs with sine bivariate vM distributions
for the dihedral angles. Golden et al. (2017) developed anHMM tomodel the evolution
of pairs of proteins, with bivariate wrapped normal diffusions (García-Portugués et al.
2019) used to describe dihedral angle evolution.

Recently, Mazumder and Bhattacharya (2017) proposed a state-space model for
circular time series, with a circular latent process, based on wrapped Gaussian pro-
cesses (Mazumder and Bhattacharya 2016). Beran and Ghosh (2020) introduced a
class of linked processes for circular time series, allowing for long-range dependence,
obtained by transformingGaussian processes.Hokimoto andShimizu (2008) extended
the multiple regression model of Johnson and Wehrly (1978) to develop a time series
model for data on T

d × R
q .

Nonparametric kernel-based trend estimation in circular time series was tackled in
Di Marzio et al. (2012a). Beran (2016) proposed a class of nonparametric normalised
symmetric linear estimators for the trend of Sd -valued time series.
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The modelling of longitudinal data on smooth Riemannian manifolds, such as bird-
migration trajectories and hurricane paths on S2, has been addressed by Su et al. (2014)
and Zhang et al. (2018b).

10.2 Continuous-time processes

Continuous-time processes involving directional data have received considerably less
attention than discrete-time processes. Hill and Häder (1997) introduced a random
walk model whose reorientation process follows a vM diffusion (Kent 1975). Several
variations of such random walk models have been developed for biological pur-
poses: see Codling et al. (2008) for a review. García-Portugués et al. (2019) proposed
various Langevin diffusions on the torus that can be viewed as analogues of Ornstein–
Uhlenbeck processes and studied likelihood-based estimation approaches for them.
Sommer (2019) considered anisotropic diffusion processes on Riemannian manifolds,
and Jensen et al. (2019) simulated diffusion bridges onTd . Ball et al. (2008) introduced
Brownian motion and Ornstein–Uhlenbeck processes on the shape space of R2.

Kurz et al. (2019) provided an overview of various recursive filtering algorithms
involving a variety of circular, toroidal, and spherical distributions. Analogues of the
Kalman filter based on the vMF and Bingham distributions on S

d were proposed
by Chiuso and Picci (1998) and Kurz et al. (2014), respectively. Filtering using the
wrapped normal distribution on S1 was considered by Traa and Smaragdis (2013). Pitt
and Shephard (1999) proposed auxiliary particle filter methods and applied them to
a ship tracking problem modelled using a WC process. Recently, the use of various
types of filtering in the tracking of space debris has received considerable attention
(Kent et al. 2020; Bhattacharjee 2020, and references therein).

11 Spatial and spatio-temporal modelling

Themodelling of spatial and space-time directional data is one of the branches of direc-
tional statistics that has experienced particularly important advances in recent years.
Many contributions involve fitting hierarchical Bayesian spatial models to meteoro-
logical data using MCMC methods. As an approach to modelling hurricane winds,
Modlin et al. (2012) proposed a Bayesian hierarchical model for vector fields featuring
a wrapped normal conditional autoregressive model. Jona-Lasinio et al. (2012) for-
mulated a similar model incorporating, instead, a wrapped Gaussian spatial process to
model wave directions at different sea locations. Using a different perspective, Wang
(2013), Wang and Gelfand (2014), and Wang et al. (2015) considered models based
on projected normal processes for modelling wave direction and height at different
sites.

As Lagona et al. (2015b) has pointed out, suchBayesian hierarchicalmodels require
specific assumptions on the prior distributions of the parameters of interest and ad hoc
MCMC for fitting. Instead, Lagona et al. (2015b) developed an HMM to model the
temporal evolution of the sea surface in terms of time-varying circular-linear patterns
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that arise through latent environmental conditions. Fitting is performed using a pseudo-
likelihood approach.

Extending the wrapped normal-based Bayesian approach of Jona-Lasinio et al.
(2012),Mastrantonio et al. (2016a) introduced awrapped skew-normal process, for use
with spatio-temporal circular data, which is capable ofmodelling asymmetricmarginal
distributions. Mastrantonio et al. (2016b) extended and compared the processes of
Jona-Lasinio et al. (2012) and Wang and Gelfand (2014) to the spatio-temporal set-
ting by introducing space-time dependence and space- and time-varying covariate
information.

In Lagona and Picone (2016) and Ranalli et al. (2018), hidden Markov random
field models were proposed for the analysis of cylindrical spatial series, enabling seg-
mentation of latent environmental conditions. Jona-Lasinio et al. (2018) and Lagona
(2018) provided overviews of many of the developments discussed above. Ameijeiras-
Alonso et al. (2019b) extended the approach of Ranalli et al. (2018) to develop a hidden
Markov random field for the spatial segmentation of wildfires, using a mixture of Kato
and Jones (2015) pdfs with parameters varying according to a latent nonhomogeneous
Potts model.

Next, we consider models for animal orientation data based on random walks and
HMMs that provide alternatives to those in Sect. 6.2.2. Morales et al. (2004) pro-
posed a Bayesian approach to fitting multiple random walks to animal movement data
with paths composed of random step lengths and turning angles. Each step and turn
is assigned to a random walk characteristic of a hidden behavioural state. A similar
approach was proposed byMcClintock et al. (2012), with movement paths considered
to be movement strategies between which animals switch in response to environmen-
tal factors. The authors combined a variety of methodologies to develop a suite of
models based on biased and correlated random walks that allow for different forms
of movement. Nicosia et al. (2017) proposed a hidden-state random walk model in
which a circular-linear process models the direction and distance between consecutive
positions of an animal, and the hidden states describe the animal’s behaviour.

Random fields on S
2 are discussed in depth in Marinucci and Peccati (2011).

Amongst many other advances, their monograph analyses recent high-frequency limit
results and tests for Gaussianity and isotropy of scalar-valued random fields, and
considers applications in the analysis of the cosmic microwave background. Recent
research into isotropic Gaussian random fields on S

2 has developed CLTs for func-
tionals of needlet coefficients (Baldi et al. 2009b), limit results for the first Minkowski
functional (Leonenko and Ruiz-Medina 2018), isotropy tests based on spherical har-
monics (Sahoo et al. 2019), and tests for the detection of local maxima on isotropic
fields (Cheng et al. 2020). The construction of valid covariance functions on S

d , for
use in geostatistics, has been summarised in the excellent overview ofGneiting (2013).
New covariance functions on S

d include the spatio-temporal covariance functions of
Porcu et al. (2016) and the matrix-valued covariance functions of Guella et al. (2018);
see also the review by Porcu et al. (2020). A review of advances in the construction
of covariance functions and process models on S2 was given in Jeong et al. (2017).

Irwin et al. (2002) gave a reviewof spatio-temporal nonlinear filtering and illustrated
the use of cylindrical filtering in the analysis of battlespace data.
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12 Other topics

12.1 Statistical depth

Agostinelli andRomanazzi (2013) studied,mainly forS1 andS2, the angular simplicial
depth of Liu and Singh (1992) and the angular Tukey depth of Small (1987).Within the
class of rotationally symmetric distributions on S

d , Ley et al. (2014) defined a depth
based on the quantiles of the sample projections onto the mean direction. Pandolfo
et al. (2018b) introduced computationally tractable distance-based depths on Sd , illus-
trating their use in location estimation and classification. A nonparametric approach
to constructing tolerance regions for spherical data was proposed by Mushkudiani
(2002).

12.2 Design and analysis of experiments

Otieno and Anderson-Cook (2012) provided an overview of the design of experi-
ments involving directional variables, and methods available for analysing the data
obtained from them. Recently, optimal designs for linear-spherical regression, based
on Fourier series and spherical harmonics, have been established for S1 by Dette and
Melas (2003), for S2 by Dette et al. (2005) and Dette and Wiens (2009), and for Sd ,
with d > 2, by Dette et al. (2019).

12.3 Order-restricted analysis

The random-periods model (RPM) of Liu et al. (2004) is a nonlinear regression model
used to estimate the phase angles of periodically expressed genes. Rueda et al. (2009)
developed circular isotonic regression estimation to infer the relative order of phase
angles from the unconstrained estimates of the RPM. Fernández et al. (2012) pro-
posed a test for a specified ordering of phase angles assuming the unconstrained
estimators of the RPM to be vM-distributed. Barragán et al. (2015) developed meth-
ods for estimating and testing for a common ordering of phase angles across multiple
experiments. A review of such developments was provided by Rueda et al. (2015).
Subsequently, Rueda et al. (2016) proposed a piecewise circular regression model
for the relationship between the phase angles of cell-cycle genes in two species with
differing periods, and Barragán et al. (2017) considered the problem of aggregating
different circular orders for the peak expressions of genes coming from heteroge-
neous datasets. Recently, Larriba et al. (2020) proposed a circular signal plus error
model for identifying components of systems displaying rhythmic temporal pat-
terns.

Independently of these developments, Klugkist et al. (2012), Baayen et al. (2012),
and Baayen and Klugkist (2014) proposed ANOVA tests under order restrictions on
the mean directions of vM distributions.
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12.4 Outlier detection

New tests for detecting outliers in circular data, based on the circular distance (1), sums
of such distances, and gaps, were introduced and compared with existing procedures
in a series of papers referred to by Mahmood et al. (2017). Sau and Rodriguez (2018)
developed a minimum distance approach to estimating the parameters of spherical
models that provides an outlier detection tool. Outlier detection tests for cylindrical,
simple circular regression, and circular time series data were proposed in Sadikon
et al. (2019), Abuzaid et al. (2013), and Abuzaid et al. (2014), respectively.

Eigenvalue, likelihood-ratio, andgeodesic distance-based tests for detectingoutliers
in axial data from an assumed underlying Watson distribution were developed in
Figueiredo and Gomes (2005), Figueiredo (2007), and Barros et al. (2017).

12.5 Compositional data analysis

Compositional data analysis is used when the data under consideration are vectors of
nonnegative proportions summing to one. The most popular approach to analysing
such data is that of Aitchison (1986). However, an alternative approach, based on
the square-root transformation from a unit simplex to S

d , was discussed in Stephens
(1982). Recently, that approach has been further developed by Scealy and Welsh
(2011, 2014a, b, 2017). The relationship between compositional and directional data
was further exploited by Cuesta-Albertos et al. (2009) in the context of testing for
uniformity.

13 Software

Historically, a major impediment to the application of directional statistics was a lack
of software implementing the methodology particular to it. In recent years, the advent
of the R statistical computing environment (R Core Team 2020) and its ecosystem of
contributed packages has partially addressed that paucity. An overview of many such
packages was given by Pewsey (2018). Relevant packages written in other languages
include CircStat (Berens 2009) and PyCircStat (Sinz et al. 2018) for data on
S
1, libDirectional (Kurz et al. 2019) for data on T

d and S
d , Mocapy++ for

constructing probabilistic models of biomolecular structure (Paluszewski and Hamel-
ryck 2010), and the promisinggeomstats (Miolane et al. 2020) for manifold-valued
data.

13.1 General-purpose packages

There are two main R packages designed for use with directional data: circular
(Agostinelli and Lund 2017) and Directional (Tsagris et al. 2020). Both include
functions for the analysis of data on S

1, T2, and S
1 × R. Directional also has

routines for data on Sd .
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For data on S
1, the circular package has functions for: descriptive statistics;

KDE; pdf evaluation, simulation, and estimation for a range of classical and more
recently proposed circular distributions; tests for uniformity, homogeneity, goodness-
of-fit, and change points; and one-way ANOVA. It also has functions for S1-S1 and
S
1-R regression and includes a variety of datasets. Many of circular’s capabil-

ities were illustrated in Pewsey et al. (2013). The latter’s companion workspace,
CircStatsInR, includes over 150 routines for techniques not implemented in
circular.

Amongst its more specific capabilities, Directional implements techniques
on S

d for: descriptive statistics; spherical data visualisation; constructing convenient
rotation matrices and transformations; KDE; pdf computation, simulation, and ML
estimation for various spherical distributions; and S

d -Sd correlation and regression,
ANOVA, classification, and clustering.

13.2 More specific R packages

Here we provide an overview of more specific R packages and their functionality,
following the order used to present themes in the previous sections.

Various graphical representations for data onS1 are supported inbpDir (Buttarazzi
2020), season (Barnett and Baker 2020), and bReeze (Graul and Poppinga 2018).
Visualisation of data on S

2 is facilitated by the outstanding rgl (Adler et al. 2020)
and plot3D (Soetaert 2019) packages.

Efficient modelling with vMF mixtures on S
d is implemented in movMF (Hornik

and Grün 2014). Several mixture models can be fitted using Bayesian methods to data
on S1 and T2 with BAMBI (Chakraborty andWong 2019). Nonnegative trigonometric
sums can be fitted to data on T

d and S
2 using CircNNTSR (Fernández-Durán and

Gregorio-Domínguez 2016).
Tests for uniformity and rotational symmetry on S

d are available in sphunif
(García-Portugués and Verdebout 2020) and rotasym (García-Portugués et al.
2020c), respectively.

Bayesian projected normal regression models for data on S
1 are implemented in

bpnreg (Cremers 2020). Also for data on S
1, nonparametric kernel methods for

density and regression estimation are available in NPCirc (Oliveira et al. 2014).
KDE and bandwidth selection on Sd are supported in DirStats (García-Portugués
2020a). Nonparametric Sd -Sd regression is implemented in nprotreg (Taylor et al.
2018). Smoothing splines on S

2 are supported in mgcv (Wood 2017).
Principal nested spheres and spherical k-means clustering can be performed with

shapes (Dryden 2019) and skmeans (Hornik et al. 2012), respectively.
Markov switching autoregressive models with vM innovations are implemented in

NHMSAR (Monbet 2020). Animal orientation data can be analysed using CircMLE
(Fitak and Johnsen 2017),FLightR (Rakhimberdiev et al. 2017),move (Kranstauber
et al. 2020), and moveHMM (Michelot et al. 2016). Tools for toroidal diffusions are
provided in sdetorus (García-Portugués 2020b).

Bayesian methods for fitting spatial and spatio-temporal models to circular data
are implemented in CircSpaceTime (Jona Lasinio et al. 2020). Spherical random
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fields can be analysed using RandomFields (Schlather et al. 2015). Routines for the
management and analysis of cosmic microwave background data on S

2 are available
in rcosmo (Fryer et al. 2020).

Methods for analysing data onS1 under order restrictions are supported byisocir
(Barragán et al. 2013). Outlier detection methods for S1-S1 regression are available
in CircOutlier (Ghazanfarihesari and Sarmad 2016). Depths on S1 and S2 can be
computed using depth (Genest et al. 2019).

Intrinsic means and fundamental geodesic tools for Sd and other manifolds are
available in RiemBase (You 2020).

14 Conclusions and future developments

We hope that the previous sections provide both seasoned and neophyte researchers
with a concise, comprehensive, and useful overview of the widespread developments
in directional statistics that have taken place over the last two decades. As often hap-
pens in research,most of those developments evolved in an uncoordinatedway through
the efforts of individuals and research groups working independently of one another.
Given this background, predicting how the field might develop over the next 20 years
is essentially impossible. That said, the further development of models with greater
flexibility, techniques for high-dimensional and complex directional data involving
combinations of different data types, as well as Bayesian, nonparametric, and resam-
pling methods, would appear highly probable in the short term as such developments
would be consistent with current trends. More generally, progress in all the areas cov-
ered in the previous sections is certainly possible and will no doubt evolve through
responses to interesting new applications and the exigencies of the Riemannian sup-
ports of directional data, often incorporating appropriate adaptations ofmethodologies
from other fields of statistics. The development of software to implement new tech-
niques will continue to be crucial to the wider and proper application of directional
statistics.

Supplementary Materials

The BibTeX file DirectionalStats.bib includes entries for over 1700 refer-
ences related to directional statistics. Future updated versions of it will be available at
https://github.com/egarpor/DirectionalStatsBib. We hope researchers in the field will
find this resource useful.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11749-021-00759-x.
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