357 research outputs found

    Static Analysis of Circuits for Security

    Get PDF
    The purpose of the present work is to define a methodology to analyze a system description given in VHDL code and test its security properties. In particular the analysis is aimed at ensuring that a malicious user cannot make a circuit output the secret data it contains

    A Very High Level Logic Synthesis

    Get PDF
    The evolution of Computer Aided Design (CAD) calls for the incorporation of design specifications into a microelectronics system development cycle. This expansion requires the establishment of a new generation of CAD procedures, defined as Very High Level Logic Synthesis (VHLLS). The fundamental characteristics of open-ended VHLLS are: (1) front-end graphical interface; (2) time encapsulation; and (3) automatic translation into a behavioral description. Consequently, the VHLLS paradigm represents an advanced category of CAD-based microelectronics system design, built on a deep usage of expert systems and intelligent methods. Artificial Intelligence (AI) formalisms such as Knowledge Representation System (KRS) are necessary to model properties related to the very high level of specification such as: dealing with ambiguities and inconsistencies, reasoning, computing high-level specification, etc. A prototype VHLLS design suite, called Specification Procedure for Electronic Circuits in Automation Language (SPECIAL), is defined, compared with today\u27s commercial tools and verified using numerous design examples. As a result, a new family of formal and accelerated development methodologies has become feasible with a better understanding of formalized knowledge driving these design processes

    Congruent Weak Conformance

    Get PDF
    This research addresses the problem of verifying implementations against specifications through an innovative logic approach. Congruent weak conformance, a formal relationship between agents and specifications, has been developed and proven to be a congruent partial order. This property arises from a set of relations called weak conformations. The largest, called weak conformance, is analogous to Milner\u27s observational equivalence. Weak conformance is not an equivalence, however, but rather an ordering relation among processes. Weak conformance allows behaviors in the implementation that are unreachable in the specification. Furthermore, it exploits output concurrencies and allows interleaving of extraneous output actions in the implementation. Finally, reasonable restrictions in CCS syntax strengthen weak conformance to a congruence, called congruent weak conformance. At present, congruent weak conformance is the best known formal relation for verifying implementations against specifications. This precongruence derives maximal flexibility and embodies all weaknesses in input, output, and no-connect signals while retaining a fully replaceable conformance to the specification. Congruent weak conformance has additional utility in verifying transformations between systems of incompatible semantics. This dissertation describes a hypothetical translator from the informal simulation semantics of VHDL to the bisimulation semantics of CCS. A second translator is described from VHDL to a broadcast-communication version of CCS. By showing that they preserve congruent weak conformance, both translators are verified

    Semantics-driven design and implementation of high-assurance hardware

    Get PDF

    Toatie : functional hardware description with dependent types

    Get PDF
    Describing correct circuits remains a tall order, despite four decades of evolution in Hardware Description Languages (HDLs). Many enticing circuit architectures require recursive structures or complex compile-time computation — two patterns that prove difficult to capture in traditional HDLs. In a signal processing context, the Fast FIR Algorithm (FFA) structure for efficient parallel filtering proves to be naturally recursive, and most Multiple Constant Multiplication (MCM) blocks decompose multiplications into graphs of simple shifts and adds using demanding compile time computation. Generalised versions of both remain mostly in academic folklore. The implementations which do exist are often ad hoc circuit generators, written in software languages. These pose challenges for verification and are resistant to composition. Embedded functional HDLs, that represent circuits as data, allow for these descriptions at the cost of forcing the designer to work at the gate-level. A promising alternative is to use a stand-alone compiler, representing circuits as plain functions, exemplified by the CλaSH HDL. This, however, raises new challenges in capturing a circuit’s staging — which expressions in the single language should be reduced during compile-time elaboration, and which should remain in the circuit’s run-time? To better reflect the physical separation between circuit phases, this work proposes a new functional HDL (representing circuits as functions) with first-class staging constructs. Orthogonal to this, there are also long-standing challenges in the verification of parameterised circuit families. Industry surveys have consistently reported that only a slim minority of FPGA projects reach production without non-trivial bugs. While a healthy growth in the adoption of automatic formal methods is also reported, the majority of testing remains dynamic — presenting difficulties for testing entire circuit families at once. This research offers an alternative verification methodology via the combination of dependent types and automatic synthesis of user-defined data types. Given precise enough types for synthesisable data, this environment can be used to develop circuit families with full functional verification in a correct-by-construction fashion. This approach allows for verification of entire circuit families (not just one concrete member) and side-steps the state-space explosion of model checking methods. Beyond the existing work, this research offers synthesis of combinatorial circuits — not just a software model of their behaviour. This additional step requires careful consideration of staging, erasure & irrelevance, deriving bit representations of user-defined data types, and a new synthesis scheme. This thesis contributes steps towards HDLs with sufficient expressivity for awkward, combinatorial signal processing structures, allowing for a correct-by-construction approach, and a prototype compiler for netlist synthesis.Describing correct circuits remains a tall order, despite four decades of evolution in Hardware Description Languages (HDLs). Many enticing circuit architectures require recursive structures or complex compile-time computation — two patterns that prove difficult to capture in traditional HDLs. In a signal processing context, the Fast FIR Algorithm (FFA) structure for efficient parallel filtering proves to be naturally recursive, and most Multiple Constant Multiplication (MCM) blocks decompose multiplications into graphs of simple shifts and adds using demanding compile time computation. Generalised versions of both remain mostly in academic folklore. The implementations which do exist are often ad hoc circuit generators, written in software languages. These pose challenges for verification and are resistant to composition. Embedded functional HDLs, that represent circuits as data, allow for these descriptions at the cost of forcing the designer to work at the gate-level. A promising alternative is to use a stand-alone compiler, representing circuits as plain functions, exemplified by the CλaSH HDL. This, however, raises new challenges in capturing a circuit’s staging — which expressions in the single language should be reduced during compile-time elaboration, and which should remain in the circuit’s run-time? To better reflect the physical separation between circuit phases, this work proposes a new functional HDL (representing circuits as functions) with first-class staging constructs. Orthogonal to this, there are also long-standing challenges in the verification of parameterised circuit families. Industry surveys have consistently reported that only a slim minority of FPGA projects reach production without non-trivial bugs. While a healthy growth in the adoption of automatic formal methods is also reported, the majority of testing remains dynamic — presenting difficulties for testing entire circuit families at once. This research offers an alternative verification methodology via the combination of dependent types and automatic synthesis of user-defined data types. Given precise enough types for synthesisable data, this environment can be used to develop circuit families with full functional verification in a correct-by-construction fashion. This approach allows for verification of entire circuit families (not just one concrete member) and side-steps the state-space explosion of model checking methods. Beyond the existing work, this research offers synthesis of combinatorial circuits — not just a software model of their behaviour. This additional step requires careful consideration of staging, erasure & irrelevance, deriving bit representations of user-defined data types, and a new synthesis scheme. This thesis contributes steps towards HDLs with sufficient expressivity for awkward, combinatorial signal processing structures, allowing for a correct-by-construction approach, and a prototype compiler for netlist synthesis

    Studying and Analysing Transactional Memory Using Interval Temporal Logic and AnaTempura

    Get PDF
    Transactional memory (TM) is a promising lock-free synchronisation technique which offers a high-level abstract parallel programming model for future chip multiprocessor (CMP) systems. Moreover, it adapts the well-established popular paradigm of transactions and thus provides a general and flexible way to allow programs to read and modify disparate memory locations atomically as a single operation. In this thesis, we propose a general framework for validating a TM design, starting from a formal specification into a hardware implementation, with its underpinning theory and refinement. A methodology in this work starts with a high-level and executable specification model for an abstract TM with verification for various correctness conditions of concurrent transactions. This model is constructed within a flexible transition framework that allows verifying correctness of a TM system with animation. Then, we present a formal executable specification for a chip-dual single-cycle MIPS processor with a cache coherence protocol and integrate the provable TM system. Finally, we transform the dual processors with the TM from a high-level description into a Hardware Description Language (VHDL), using some proposed refinement and restriction rules. Interval Temporal Logic (ITL) and its programming language subset AnaTempura are used to build, execute and test the model, since they together provide a powerful framework supporting logical reasoning about time intervals as well as programming and simulation

    Nouvelles approches pour la conception d'outils CAO pour le domaine des systèmes embarqués

    Full text link
    Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

    Correct synthesis and integration of compiler-generated function units

    Get PDF
    PhD ThesisComputer architectures can use custom logic in addition to general pur- pose processors to improve performance for a variety of applications. The use of custom logic allows greater parallelism for some algorithms. While conventional CPUs typically operate on words, ne-grained custom logic can improve e ciency for many bit level operations. The commodi ca- tion of eld programmable devices, particularly FPGAs, has improved the viability of using custom logic in an architecture. This thesis introduces an approach to reasoning about the correctness of compilers that generate custom logic that can be synthesized to provide hardware acceleration for a given application. Compiler intermediate representations (IRs) and transformations that are relevant to genera- tion of custom logic are presented. Architectures may vary in the way that custom logic is incorporated, and suitable abstractions are used in order that the results apply to compilation for a variety of the design parameters that are introduced by the use of custom logic
    corecore