
University of New Hampshire
University of New Hampshire Scholars' Repository

Doctoral Dissertations Student Scholarship

Spring 1998

A Very High Level Logic Synthesis
Norbert Ange Valverde
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/dissertation

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more
information, please contact nicole.hentz@unh.edu.

Recommended Citation
Valverde, Norbert Ange, "A Very High Level Logic Synthesis" (1998). Doctoral Dissertations. 2037.
https://scholars.unh.edu/dissertation/2037

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fdissertation%2F2037&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F2037&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fdissertation%2F2037&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F2037&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation/2037?utm_source=scholars.unh.edu%2Fdissertation%2F2037&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type o f computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely afreet reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back o f the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NOTE TO USERS

The original manuscript received by UMI contains pages with
slanted print. Pages were microfilmed as received.

This reproduction is the best copy available

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A Very High Level Logic Synthesis

BY

Norbert A. VALVERDE

Master of Science in Automation and Micro-Electronics

Submitted to the University of New Hampshire
in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

in

Engineering

May 1998

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9831970

UMI Microform 9831970
Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ALL RIGHTS RESERVED

©1998

Norbert A. VALVERDE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This dissertation has been examined and approved.

Dissertation director, Andrzej Rucinski
Professor of Electrical and Computer Engineering

A/
Jean-Frangois Santucci
Professor of Electrical and Computer Engineering, Universite
de Corse. FRANCE

David Forrest
Associate Research Professor of Space Science Center

Filson Glanz
Professor of Electrical and Computer Engineering

Richard Messner
Associate Professor of Electrical and Computer Engineering

John Pokoski
Professor of Electrical and Computer Engineering

f / z o / < f 9
Date

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dedication

I dedicate this dissertation to:

• my parents who considered the education of my sisters and me as a top priority:

• my niece Audrey to whom I wish to understand the value of education:

• my sisters Veronique and Corinne who were always there to help me out;

• and, most of all, my lovely wife Frangoise who has been very supportive all along my

thesis work and was w illin g to accept the challenges of changing her life style for me.

Je dedie cette these a:

• mes parents qui ont place mon education ainsi que celle de mes soeurs avant tout

autre chose;

• ma niece Audrey a qui je souhaite de comprendre la valeur d ’une bonne education:

• et, avant tout, ma tendre epouse Frangoise qui m ’a soutenu, encourage tout au long

de ma these et qui a accepte le defit de changer de mode de vie pour moi.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A cknow ledgm ents

This dissertation has been possible thanks to the supports and advises of Dr. Jean-Frangois

Santucci and Dr. Andrjez Rucinski. Their friendship gave me the opportunity to experience

the US life style as well as its working environment.

I acknowledge the precious financial support from EERIE (Ecole pour les Etudes et

la Recherche en Informatique et Electronique), Nimes France under the direction of Jean-

Claude Ippolito.

I want to thank Dr. David Forrest, Dr. Filson Glanz, Dr. Richard Messner and Dr.

John Pokoski for accepting to be in my thesis committee.

While being student at UNH, the encouragement and friendship of Brad Gillespie, Karen

Hein, Andrew Kun and Tariq Nazeer helped me tremendously. They, all, contributed to

the success of my integration at UNH and the completion of my PhD.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Dedication... v

Acknowledgments... vi

List of T ab le s ... xi

List of F ig u r e s .. xiii

List of Sym bols..xvii

A cronym s... xjciii

A b strac t.. xxv

1 Introduction I

1.1 Research Problem S ta te m e n t .. 1

1.1.1 Research M o tiv a tio n .. 1

1.1.2 H y p o th e s is .. 7

1.1.3 Research G o a ls .. 14

1.1.4 Merits and C o n trib u tio n s ... 15

1.2 Thesis O rg a n iz a tio n .. 16

2 C A D Dom ain in M icroelectronics 17

2.1 Design Process C h arac te riza tio n .. 17

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Commercial Tools .. 22

2.3 Case Study: RAM C e ll.. 25

2.4 VHLLS Role .. 32

3 Very H igh Level Logic Synthesis (VHLLS) 35

3.1 Design Space Fundam entals.. 35

3.2 Design Space Form alization .. 39

3.3 Extended Design Space .. 47

4 Formal M echanism s for VHLLS 53

4.1 Taxonom y.. 54

4.2 Process Control Based M ethods.. 56

4.2.1 A lgorith m ic State M achines.. 56

4.2.2 C om m u n ic a tio n Sequential Processes... 58

4.2.3 Petri N e ts ... 64

4.2.4 Specification and Description L an g u ag e .. 67

4.2.5 Evaluation of Process Control Based M ethods....................................... 69

4.3 Microelectronics System Design Methods .. 72

4.3.1 Hardware Description Languages... 72

4.3.2 S i la g e .. 76

4.3.3 S p ecC h a rts .. 77

4.3.4 State Action T a b le s ... 81

4.3.5 Evaluation of the Microelectronics Based M e th o d s 83

5 VHLLS D esign Strategies 87

5.1 Fundamental D efinitions... 90

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1.1 Model of T i m e .. 90

5.1.2 Facts and E v e n ts .. 95

5.2 Fundamental VHLLS Design Methodology... 104

5.2.1 Extended Zeigler Form alism .. 104

5.2.2 Syntax and Semantic Using Ziegler F o rm a lism 108

5.2.3 Interpretation of Conditions.. 112

5.2.4 Example of the Zeigler M odel.. 114

5.3 Intelligence Built-In VHLLS Design Methodology... 117

5.3.1 Knowledge Representation... 117

5.3.2 Syntax and Semantics Using Conceptual Graphs Form alism 130

5.3.3 Example of the Conceptual Graphs M odel... 135

5.4 Conclusion ... 138

6 Specification Procedure for Electronic Circuits in A utom ation Language

(SPECIAL) 140

6.1 Introduction to V H D L .. 140

6.1.1 BLOCK S ta tem en t... 141

6.1.2 PROCESS S ta te m e n t... 142

6.1.3 WAIT S ta tem en t.. 143

6.2 S P E C IA L .. 144

6.2.1 S y n tax ... 144

6.2.2 Sem antics... 145

6.2.3 Translation in VHDL ... 161

6.2.4 Example of SPECIAL Front E n d .. 168

6.3 Conclusions on S P E C IA L ... 172

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 VHLLS Exam ples 175

7.1 Process C o n tro lle r ... 175

7.2 SPECIAL in MCM Design Flow .. 180

7.3 Sample of Non Working Features in S P E C IA L .. 186

7.4 Closing R e m a rk s .. 188

8 Conclusions and Future Plans 189

8.1 C onclusions.. 189

8.2 Future Developments... 190

Bibliography 192

A PPEN D IC ES

A ppendix A SPECIAL 198

A.l Semantic of the Graphical Interface... 198

A.1.1 COMPADD S em an tic .. 198

A.1.2 COMPMULT S e m a n tic ... 200

A. 1.3 PIPE Sem antic ... 201

A.2 Software S tru c tu re .. 205

A ppendix B Basic Set Theory 207

B.l The Basic Language of Set T h e o ry ... 207

B.2 Classes.. 208

B.3 Relations ... 208

B.4 Fundamentals of M orph ism .. 208

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C VHDL C ode o f a R A M Cell 210

C .l Top Level VHDL code of the RAM C e l l .. 210

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Tables

1.1 Acceptable Design Automation Tool C harac te ris tics 12

1.2 First Generation VHLLS C haracteristics.. 13

1.3 Advanced High-Level Synthesis Tools Characteristics..................................... 13

2.1 Graphical HDL Code-Generation Tool V endors.. 23

2.2 Advanced High-Level Synthesis Tools Characteristics..................................... 24

2.3 Mentor Graphics™ Front-End Design Tool C haracteristics........................ 31

3.1 Levels of Abstraction in the Design S p a c e .. 38

4.1 Characteristics of Programming or Control Based M e th o d s 70

4.2 RAM Description in State-Action T a b le ... 83

4.3 Characteristics of Microelectronics Based M e th o d s .. 84

5.1 First Generation VHLLS Characteristics: C j m i n ... 90

5.2 Time Domains .. 93

5.3 Temporal R elationsh ips... 100

5.4 Set Roles .. 121

5.5 Member Roles ... 122

6.1 First Generation VHLLS C haracteristics... 173

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1 Design Sizes

7.2 Design Timing in Hours

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f F igures

1-1 Status of Electronic Design Technologies.. 2

1-2 Y D ia g ra m ... 4

1-3 Mentor Graphics™ ’ Design T a s k s .. 6

1-4 Theoretical Design Process .. 8

2-1 Idealistic Design F l o w .. 20

2-2 Context Diagram for RAM in the the Mentor Graphics™ Design Environment 27

2-3 Data Flow Diagram for RAM in the Mentor Graphics™ ’ Design Environment 28

2-4 State Machine for RAM in the Mentor Graphics’ Design Environment . . . 29

2-5 French’s Design Flow ... 33

3-1 Formalization of Design Space.. 36

4-1 Taxonomy of Formal VHLLS M echanism s... 54

4-2 RAM Description in A S M .. 57

4-3 CSP Hierarchical Structure and In teractions.. 59

4-4 RAM Using Petri n e t s .. 66

4-5 SDL Hierarchical S tr u c tu re ... 67

4-6 RAM Specification Using SDL .. 68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

4-7 RAM Description Using S p e c C h a rts .. 80

5-1 Global Strategy: Specification-Behavior Synthesis.. 88

5-2 Branching Future ... 94

5-3 VHLLS Temporal Logic H ie ra rc h y ... 97

5-4 Waiting In terpreta tion ... 105

5-5 InfoSchema/InfoMap S tru c tu re .. 120

5-6 Basic Conceptual Graph: Graphical R ep re se n ta tio n 124

5-7 Inst of APPLY is DEVICE: a Conceptual Graph R ep resen ta tio n 124

5-8 Example of Semantic Network in Conceptual Graphs 126

6-1 Timing Representation: Fact Verified.. 146

6-2 T iming Representation: Fact Not V erified ... 146

6-3 Graphical Representation of F a c t ... 146

6-4 Timing Representation: Event Verified .. 148

6-5 Timing Representation: event Not Verified .. 148

6-6 Graphical Representation of E v e n t .. 148

6-7 Life-Time Notion ... 14:9

6-8 True Conditions of COMPADD O p e r a to r ... 152

6-9 False Condition: F I COMPADD F 2 .. 152

6-10 False Condition: F I COMPADD e 2 ... 153

6-11 False Condition: e l COMPADD e 2 ... 153

6-12 COMPADD With Two F a c t s ... 153

6-13 Ttue Condition: F I COMPMULT F 2 .. 155

6-14 H ue Condition: e l COMPMULT e 2 .. 156

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6-15 True Condition: e l COMPMULT F 2 .. 156

6-16 COMPMULT With Two Events .. 157

6-17 PIPE With Two E v e n ts .. 160

6-18 Priority R ep resen ta tio n .. 162

6-19 RAM Description W ith S P E C IA L ... 169

7-1 Process Controller Specification... 176

7-2 Up-Down Counter For C A T S A T .. 182

7-3 Up-Down Counter: Design M ethodologies.. 183

7-4 Graphical SpecChart of a Simple Computer System 187

A-l COMPADD With Event and Fact ... 198

A-2 COMPADD with two events... 199

A-3 COMPMULT With Event and Fact .. 200

A-4 COMPMULT With Two F a c t s ... 201

A-5 PIPE with two f a c t s .. 202

A-6 PIPE With Event and F a c t ... 203

A-7 PIPE with a fact and an e v e n t ... 204

A-8 Software Structure of SPECIA L... 205

C-l Context D iagram .. 210

C-2 Dataflow in Mentor Graphics’ Design A rc h ite c t... 212

C-3 State machine in Mentor Graphics’ System A rchitect..................................... 215

xv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Sym bols

carufii (p , i) Transition condition predicate i.e. the transition condition predicate from

state Si to Sj (s,-, Sj E S) is true when p is true at the instant i E 3

dbhv Behavioral domain

dphi Physical domain

dstr Structural domain

d\ Distance of an evolution process

e(p.i) Event predicate i.e. the event predicate is true when a proposition p holds

true at the instant i E E

Pact Architecture Level

&cct Circuit Level

icpt Concept Level

timp Implementation Level

tigC Logic Level

tsys System Level

p Proposition defined as a statement which can be significantly character­

ized as either true or false

xvi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A Set of attributes such that a E A, a being an attribute

A* Equivalence class quotient of A under R1 (A* = A /R l)

Aext Set of attributes such that A C Aext and additional elements of A ^ are

attributes derived from Lext

Aext* Equivalence class quotient of Aa t under R lext (A’^ = A€Xt/ i? lext)

C Set of characteristics such that c 6 C, c being a characteristic

C ' Equivalence class quotient of C under R2 (C* = C/R2)

CL* Equivalence class quotient of Cext under R2ext (C^.£ = Cext/R2ext)

Cext Set of characteristics such that C c Cext and additional elements of Cext

are characteristics derived from Lext

D Description domains in design space D S such that D = {dbhv, dstr, dpta}

D S Design Space D S = < D .L . A, C.6.X >

E D S Extended Design Space E D S = < D. Lext-, Aext , Cext5 &ext, Xext ^

F{p. I) Fact predicate i.e. the fact predicate is true when a proposition p holds

true over the time interval / € T

G T S Global Time Set i.e. G T S = 3 U T

Id Time interval defining the life-time of a system state

L Partially ordered class of abstraction levels < L, <l > in design space

D S such that L = ^ccti fygci V-act, ^ays}

Lext Extended levels of abstraction in E D S such as: Lext = L U {&cpt}

M Zeigier Model capturing the pseudostate diagram using the formalism of Zeigler

such as: XLzeigler “ R, I , E I C •, Tijit, Text, ta, F >

xvii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R1 Attribute equivalence relation over A defined as Vx,y € A, x R1 y <=>•

p{x) = p(y)

R2 Characteristic equivalence relation over C defined as Vx, y 6 C ,x R2 y

C (^) = C (y)

Rlext Extended attribute equivalence relation over Aext defined as Vx, y E Aext-.

X R l e x t V ^ Peit(^) = Pextiy)

R 2 e x t Extended characteristic equivalence relation over Cext defined as Vx. y E

Cext- 2- ^ 2 ext y Cext(a') = Cextiy)

S Set of state of the pseudo-state diagram

S T A T E (I . Si) State predicate i.e. the state predicate is true when the system is in state

Si E S during the time interval I E T

T Time Space

ta Duration of the life-time of a system state

Vd Set of descriptive variables such that Vd = Vi U Vn-i

Vi Set of input variables

Vs Set of state variables

Vn-s Set of none-state variables

Vn-i Set none-input variables such that Vn- i = VS U Vn- S

3? Real numbers

N Natural numbers

5 Function such as 5 : D x L —> A* x C* maps a description domain from

D and a level of abstraction from L onto an attribute set from A m and a

xviii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

characteristic set from C* (at each point in D S, a set of attributes and

characteristics can be extracted)

Sext Function such as Sext: D x Lext -+ A ^ t x C^.t maps a description domain

from D and a level of abstraction from Lext onto an attribute set from

A\xt and a characteristic set from

C Property such as C : C D x L maps each characteristic c G C onto a

description domain from D and a level of abstraction from L

Cext Property such as Cext : Cext —> D x Lext maps each characteristic of Cext

onto a description domain from D and a level of abstraction from Lext

A Evolution process defined a s X : D x L —* D x L

Xcpt-reft Concept refinement evolution defined as Xcpt-reft{dbhv, £cpt) = (dstr, ?cpt)

Xcpt-synt Concept synthesis evolution defined as Xept-reftidstr, Zcpt) = (dbhv, tsys)

Xext Evolution process defined as Aext : D x Lext D x Lext

Au Unary evolution process w ith a distance of 1

p Property such as p : A —*■ D x L maps each attribute a £ A onto a

description domain from D and a level of abstraction from L

Pext Property such as Pext • Aext —*■ D x Lext maps each attribute of Aext onto

a description domain from D and a level of abstraction from Lext

Text External transition function such that Text = rz

Tint Internal transition function such that tz : S -> S

rz Transition function such th a t tz : S x Vi —► S

ipz O utput function such that rpz : S x Vi -*■ V„-s

xix

with permission of the copyright owner. Further reproduction prohibited without permission

r Priority function such that r : S x S —► N

3 Ins tantaneo us time interval

T Time interval

<L Partial ordering on L such as Vx, y E L. x <l y x is less abstract than y

Cardinal of a set

V For all

3 There exists

=s> If ... then ...

<=>■ If and only if

V Or

A And

-i Not

fl flB = the intersection of all members of B

U UB = the union of all members of B

x A x B = Cartesian product of A and B

Note on typographical styles:

italic Introduction of a new concept or term

bo ld /ita lic Emphasis a group of words which is under consideration in

a defintion, theorem or corollary

UNDERLINE CAPITAL reserved words in VHDL

□ End of proof

XX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(...) Ordered elements

{ ...} Set

< . . . > Definition of a model

xxi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f A cronym s

AI Artificial Intelligence

ASIC Application Specific Integrated Circuit

ASIM Application Specific Integrated Module

ASM Algorithmic State Machine

ATPG Automatic Test Pattern Generator

ATW Advanced Technology Workshop

BSDL Boundary Scan Description Language

CAD Computer Aided Design

CAE Computer Aided Engineering

CATSAT Cooperative Astrophysics and Technology SATellite

CEEDA Collaborative Engineering and Electronic Design Automation Conference

CPLD Complex Programmable Logic Device

CSP Communication Sequential Process

DSP Digital Signal Processing

EDA Electronic Design Automation

xxii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EERIE Ecole pour les Etudes et la Recherche en Informatique et Electronique

ESDA Electronic System Design Automation

FPGA Field Programmable Gate Array

FSM Finite State Machine

HDL Hardware Description Language

HLS High Level Synthesis

KRS Knowledge Representation System

MCM Multi-Chip Module

PCB Printed Circuit Board

RAM Random Access Memory

RT Register Transfer

SDL Specification and Description Language

SPECIAL Specification Procedure for Electronic Circuits in Automation Language

SRAM Static Random Access Memory

UNH University of New Hampshire

VHDL VHSIC Hardware Description Language

VHLLS Very High Level Logic Synthesis

VHSIC Very High Scale Integrated Circuit

VLSI Very Large Scale Integration

XX1U

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

A V ery H ig h L ev e l L ogic S y n th es is

by

N orbert A. VALVERDE
University of New Hampshire, May, 1998

The evolution of Computer Aided Design (CAD) calls for the incorporation of design

specifications into a microelectronics system development cycle. This expansion requires

the establishment of a new generation of CAD procedures, defined as Very High Level

Logic Synthesis (VHLLS) . The fundamental characteristics of open-ended VHLLS are: (1)

front-end graphical interface: (2) time encapsulation; and (3) automatic translation into a

behavioral description. Consequently, the VHLLS paradigm represents an advanced cate­

gory of CAD-based microelectronics system design, built on a deep usage of expert systems

and intelligent methods. Artificial Intelligence (AI) formalisms such as Knowledge Repre­

sentation System (KRS) are necessary to model properties related to the very high level

of specification such as: dealing with ambiguities and inconsistencies, reasoning, computing

high-level specification, etc. A prototype VHLLS design suite, called Specification Proce­

dure for Electronic Circuits in Automation Language (SPECIAL) , is defined, compared

with today’s commercial tools and verified using numerous design examples. As a result, a

new family of formal and accelerated development methodologies has become feasible with

a better understanding of formalized knowledge driving these design processes.

xxiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 1

Introduction

The evolution of automatic design methodologies is moving to new ground. Understand­

ing this evolution is the primary purpose of this thesis. In addition, it is proposed a view

to characterize the next generation of automatic design methodologies.

The influence of automation in the design space of microelectronics systems is affecting

a larger scope of risky and uncertain design decisions than before. At the same time no

single de facto strategic direction in design methodologies appears to be emerging, reflect­

ing the reality that the design is as much art as engineering. This chapter characterizes

some directions in which the design of microelectronics systems is evolving, with a new

formal representation of the design space and associated automation procedures selected as

a gradient in advancing the knowledge about design processes.

1.1 Research Problem Statement

1.1 .1 R esearch M o tiv a tio n

The complexity of a design cycle governs the strategy undertaken by an electronic system

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

Early 1980s
1970s— -

ao*3
raJ3
toX>
<

u>

Behavior

Register

Gate

Mask

Manual

Late 1980s
 Mid 1990s

-H-
| i

System j
Specification

Manual
System
Design

N X,
BehavioraK
Synthesis s

CAD

Manual
Logic
Design

ASIM
Vendor

Manual
Synthesis Vendor

Captive
Fabrication

-Early 1990s

1980s

Silicon Foundry
or Broker

Manual Automated Fabrication
Practices Procedures Entry

Figure 1-1: Status of Electronic Design Technologies

developer. A common approach, the top-down approach, is to start with a more abstract

description when the complexity o f the system is higher. Fig. 1-1 shows the evolution

of design practices over time highlighting that as complexity increased, design tools were

developed to define a system at a higher level of abstraction [NEW91]. In the 1970s, it was

common practice to design the whole system manually from the system level description

to the fabrication of Printed Circuit Boards (PCBs) . In the early 1980s, some Computer

Aided Design (CAD) tools were promoting physical synthesis to take over the manual mask

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

design task. Physical synthesis from one library to another on the logic level, also referred to

as technology mapping, is accomplished by deriving the behavioral description in terms of

Boolean expressions, and resynthesizing it with a new library. Silicon compilation [BCM~88]

is a member of this physical synthesis class. In the meantime, a new type of component

emerged which was based on silicon. In the mid-1980s, Application Specific Integrated

Circuit (ASIC) components became a valuable option for designers and increased the

need for more automation in the electronics design flow. In late 1980s and early 1990s,

logic synthesis emerged as an alternative to manual logic design which could also support

other applications specialized in verification, test, libraries, etc . . . , tasks which are time

consuming and cumbersome. Logic synthesis translates Boolean expressions into a netlist

of components from a given library of logic gates such as NAND, NOR, XOR, etc

Within the past two years, behavioral synthesis, also referred to as register-transfer (RT)

synthesis, has gained in popularity in CAD systems [BLA97]. RT synthesis starts with a

set of states and a set of register-transfers in each state. One state corresponds roughly

to a clock cycle. Register-transfer synthesis generates the corresponding structure in two

parts: (a) a datapath which emphasizes data processing and (b) a unit control responsible

for control signal scheduling. Application Specific Integrated Module (ASIM) components

such as Field Programmable Gate Arrays (FPGAs) are highly dependent on this synthesis

process to confine the design complexity. The design space discussed above is concisely

encapsulated in Fig. 1-2 (also known as the Y diagram) [DGLW92] as we will discuss more

thoroughly in Chapter 3.

The analysis of the evolution of electronics design technologies clearly indicates tha t

from the 1970s the behavioral level is the highest level of abstraction in design automation

commonly accepted as an entry level. Typically:

with permission of the copyright owner. Further reproduction prohibited without permission.

4

STRUCTURAL DOMAIN BEHAVIORAL DOMAIN

t
PHYSICAL DOMAIN

Figure 1-2: Y Diagram

• The microelectronics industry uses the RT level as its highest level of abstraction to

initiate a design process. This entry level is commonly offered by CAD vendors such

as Mentor Graphics™ [Cor95], Viewlogic™ [Inc97], and others:

• Research (contrary to the above) is focused on High Level Synthesis (HLS) to trans­

late a behavioral description into the RT level. HLS is the transformation of a behav­

ioral description into a set of connected storage and functional units. Typically, the

types of algorithm generally used in HLS axe partitioning, scheduling, and allocation

[DGLW92, AB94].

Note that this observation is consistent with a notion of research preceding the availability

of commercial tools.

Another aspect of design is the complexity of tools used to facilitate the design flow.

On one hand, tools alleviate certain steps such as the interpretation of a symbol as its

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

corresponding physical representation, the placement and routing processes of components,

etc. On the other hand, design needs to take into consideration a multiplicity of aspects,

typically each with a separate CAD tool. Therefore, for a single design, a suite, rather than

one complex tool is used. For example, during a Multi-Chip Module (MCM) device design

(further information on MCM design can be found in [HEI95, JIA95]), four main families

of tools are involved in a Mentor Graphics™ design environment [Cor93b]:

• Capture of the system description using VHSIC Hardware Description Language

(VHDL) (a text editor and the package sys_1076™ to compile VHDL design files):

• Synthesis of the VHDL code into a hierarchical structure with the top level containing

symbols of dies which are mounted on the substrate of an MCM device (Autologic™):

• Design of each die using a Very Large Scale Integration (VLSI) method (IC Station™):

and finally

• Preparation of the MCM device for fabrication (MCM Station™).

The total number of tools involved during this design task is 11 as illustrated in Fig. 1-3.

Such mutation requires sophisticated training which emphasizes the tools5 functionalities

instead of focusing on new design techniques and technologies.

In sum m ary- there is an acute need to start the design process at a highest possible level

of abstraction (as part of a natural evolution of the CAD methodologies). This evolutionary

step is driven by the mutation of the electronic design world where miniaturization [KAT82]

and system-on-chip [KM91] are continuously sought. It must manage or even reduce, the

complexity of new design processes. These statements are seconded by a quotation:

“In order to move upward efficiently, we need to build other languages on top of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

DESIGN
anrf

SYNTHESIS
proceduremanually

manually

IC LAYOUT

IC FABRICATION
(Make a die for MCM)

CMOSN Fadtty

INVOKE ICStalion AND
GENERATE LAYOUT FILE

ICStalion
INVOKE ICStalion AND

GENERATE LAYOUT FILE
ICStalion

WRITE RTL-LEVEL VHDL
DESCRIPTION

Design Architect VHDL Editor

IC LAYOUT AND FABRICATION
(make a die for MCM)

CMOSN Fsdity

INVOKE ENWrile AND DIRECT IT
TO WRITE AN ED IF NETLIST
Design Manager and ENWrile

COMPILE CHVL DESCRIPTION
AND SIMULATE THE FILE

System-1076 Compiler in the design
Architect and Quicks'm II

CREATE GATE-LEVEL SCHEMATIC
AND SIMULATE IT

Schematic capture in Design Architect
Component Library and QuickSim H

SPECIFICATION OF A SYSTEM

SYNTHESIZE THE VHDL DESCRIPTION
INTO A GATE-LEVEL DESCRIPTION

AND SIMULATE TT
Design Architect, Antologic and

_______QuickSim II_____________

SETTING DESTINATION TECHNOLOGY
AND OPTIMIZE THE GATE-LEVEL
DESCRIPTION AND SIMULATE IT

Vendor Library, Design Architect, Antologic
and Qnkksim H

INVOKE MCM5tatk>n AND GENERATE A MCM-D LAYOUT
MCM StMion

Figure 1-3: Mentor Graphics™ ’ Design Tasks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

VHDL to represent fam iliar concepts used by systems designers” , from DUTT et

al. in “High-level synthesis : introduction to chip and system design” [DGLW92]

1.1.2 H y p o th es is

To meet the design challenge outline in the previous section, this research activity is

envisioned to:

1. Introduce a new design process using a generalized synthesis approach as shown in

Fig. 1-4. The emphasis in this thesis is on the front-end synthesis, called Very High

Level Logic Synthesis (VHLLS);

2. Introduce the next generation of design automation tools as a practical consequence

of a generalized synthesis process;

3. Lessen or at least m aintain the complexity of microelectronics systems design by

starting a design process at a higher level of abstraction;

4. Incorporate a high-level specification as the entry level in an automated design flow.

Indeed, item (1) represents our primary objective. Item (2) introduces the issue of

feasibility to this problem. Therefore, the hypothesis of the research problem can be stated

as follows: having (1), we can define (2) or mathematically ((1) =£• (2)). If ((1) =>■ (2)) is

true then (3) and (4) are the properties of the new design methodology. In other words,

(hypothesis ((1) =*► (2))) => ((3) A (4)) becomes a theorem.

In order to characterize the next generation of design automation tools, a list of desired

properties [GVN93] is introduced. These properties are called characteristics of a design

automation tool, and are dependent on the level of abstraction the tool is designed to work

at. A set of characteristics is defined and denoted as C. This set should be a non-restrictive,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

VHLLS HLS

Structural Domain

Behavioral Domain BehavioralBehavioral Domain

Structural DomainStructural Domain

Physical DomainPhysical Do mamPhysical Domain

Behavioral Do mamBehavioral Do mam

(e)

Structural Domain Structural Do mam

Physical Do mamPhysical Do mam
Low Level Synthesis RTL Synthesis

Domaii

1: Circuit Level
2: Logic Level
3: Architecture or Register Level
4: System Level
5: Concept Level

(a) Concept Synthesis
(b) System Synthesis
(c) Register Transfer Synthesis
(d) Logic Synthesis
(e) Circuit Synthesis
(f) Physical Synthesis

Figure 1-4: Theoretical Design Process

but, bounded set, to keep the problem tractable C is then defined as a set of a finite

number of elements. So, the elements of C allow a classification of design automation tools

which indicate their characteristics or peculiar qualities. For the next generation of CAD,

a non-exhaustive proposed list of characteristics is as follows1:

lNote that the proposed schema does not preclude defining a different set of characteristics for the next
generation of CAD tools.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

G
en

er
al

iz
ed

Lo

gi
c

Sy
nt

he
si

s

9

• Sequentially Decomposable Activities: an action2 can be decomposable in a sequence of

sub-actions. The use of sequential actions is a common practice in engineering. When

a system is defined, designers practice a one step reasoning i.e. when one action

is performed enabling changes to a new known configuration of the system, the next

action captures this new system configuration and brings the system into another one,

and so on. An analogy of sequential action is any structured programming language

such as C:

• Concurrently Decomposable Activities: an action2 can be decomposable in sub-actions

which can be applied concurrently. The use of concurrent actions allows the system

to perform actions at the same time and independently from one to another. In this

case, shared resources become the bottleneck of the system performance. An analogy

is parallel programming;

• State Transitions: a system can be described as a set of states under which a transition

function defines a state change. States are predefined configurations of a system. A

transition is a mechanism of changing a predefined system configuration to another

one. In engineering, the most common state transition mechanisms used me Moore3

or Mealy4 Finite State Machine (FSM) ;

• Immediate Mode Change: at any instant and any system status, a system has the

ability to apply an operational mode change instantly. In most systems, some external

2 Action or equivalently activity is a particular mode of system behavior. It may be a computation, which
is possibly complex or time-consuming, or it may be recursively defined as a composition of sub-activities,
where the sub-activities may be sequential or concurrent to one smother.

3In the Moore FSM, the output value is depending only on the state of the FSM

* In the Mealy FSM, the output value depends on the transition and the input values of the FSM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

events must be treated instantaneously. A common use of this characteristic is when

a system receives a reset command, it needs to react at once even though the system

is in the middle of a computation. So, this characteristic treats exceptional events

which needs immediate attention:

• Activity Completion: a system ends its current activity before starting a new one. Such

mechanism is important when associated with sequential activities. In this case, an

action must be completed before starting the next one. This is crucial when a designer

uses a description language which mixes concurrent and sequential statements with

no completion mechanism defined, this is the case with VHDL:

• Delay Specification: time constraints can be specified. When the time constraint

elapses, the system changes its status automatically. This characteristic avoids the

definition of a clock rate which is a critical constraint in a synchronous system. There­

fore, the decision on the clock rate is then postponed until after the behavior of the

system is validated. Indeed, if a designer needs to specify that the system under de­

sign must change its status after 40 ns, the ways of measuring these 40 ns are infinite

i.e. a clock with a period of 25MHz can measure 40 ns as well as 50MHz, 75Mhz and

any multiple of 25MHz. So, depending of the system, one clock rate may be better

than another. There is no way to know the best fit before starting the system design:

• Asynchronous Activities: actions specified in a system do not depend on a global

clock. These activities are reacting to an external change which are not correlated

with any clocks. Interrupts are a good analogy to these asynchronous activities:

• Design for {Testability, Manufacturability, etc}: specific properties are added to the

system to meet requirements for testability, manufacturing, etc. When a design is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

performed, the design methodology changes somewhat depending on the property to

emphasize i.e. for space applications, a property to emphasize is the test and fault-

tolerance because no failure is allowed while the spacecraft is in space, whereas in

consumer electronics, the design for manufacturing property is emphasized to mini­

mize cost:

• Multiple Model Representations: a system can be represented using a mixture of more

than one description model. Depending on the type of system a designer wants to

design, a unique description model might not be sufficient or appropriate to specify

the full system. So, the use of appropriate description models will lead to a better

description of a system:

• Reusability, a system or a sub-system is designed in such a way tha t it can be very

easily reused for another projects. This characteristic is important to optimize the

design process by reducing the time-to-market, eliminating repetitive activities, etc.

In summary, the acceptable design automation tool implementing the research vision

outlined in Section 1.1.2 should conform to all the characteristics defined above. Table 1.1

recapitulates these characteristics:

with permission of the copyright owner. Further reproduction prohibited without permission.

12

Characteristics Checkmark

Sequentially Decomposable Activities
Concurrently Decomposable Activities

State Transitions /
Immediate Mode Change /

Activity Completion
Delay Specification /

Asynchronous Activities V”
Design for { Testability, Manufacturing, etc }

Multiple Model Representations s

Reusability /
Table 1.1: Acceptable Design Automation Tool Characteristics

It has to be stressed that in order to make the growing complexity of CAD tools

tractable, not all the characteristics can be taken into consideration. A minimal config­

uration for the first generation of VHLLS is sufficient to demonstrate the feasibility of the

proposed automatic process evolution. This first generation of VHLLS has been built upon

an existing representation of the design space provided by the Y diagram. A new level

of abstraction, called concept level, is introduced above the highest one defined in the Y

diagram. This new level is indispensable in an attem pt to formalize design specifications

and their associated properties. So, VHLLS represents the synthesis process that links the

concept level to the system level, as explained in detail in Chapter 3. This first generation

of VHLLS has to automate the transition from the concept level to the system level w ith a

tool able to conform to the following characteristics:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

C h arac teris tics C h eck m ark

Sequentially Decomposable Activities
Concurrently Decomposable Activities

State Transitions
Immediate Mode Change

Activity Completion
Delay Specification /

Asynchronous Activities
Design for { Testability, Manufacturing, etc }

Multiple Model Representations
Reusability

Table 1.2: First Generation VHLLS Characteristics

For the purpose of comparison, the most currently available advanced high-level synthe­

sis tool, presented in Chapter 4, can be characterized such as:

C h arac te ris tic s C heckm ark

Sequentially Decomposable Activities
Concurrently Decomposable Activities *

State Transitions <r
Immediate Mode Change

Activity Completion ✓
Delay Specification

Asynchronous Activities
Design for { Testability, Manufacturing, etc }

Multiple Model Representations
Reusability

Table 1.3: Advanced High-Level Synthesis Tools Characteristics

The main difference between these two design methodologies is tha t the methodology

characterized by Cmin meets the requirement of “Delay Specification” as opposed to Spec-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

Charts characterized, by CspecCharts■ Note that this set of characteristics gives a method­

ology to classify design procedures and to compare them. The first metric which can be

applied is simply to use the cardinal of the characteristics set (noted #C) for a design pro­

cedure. For example, # C min = 4 or #CspecCharts = 5 or # C = 10. A method to classify

these design procedures is to compare the cardinal of their characteristics set. So, from the

above sets, we have:

ifcCmin < #CspecCharts < i fC

This means Cmin verifies fewer characteristics than CspecCharts and both of these methods

do not meet the full requirement for the next generation of design automation tools. Other

classification schemes can be considered by applying a weight coefficient to each element of

the characteristics set. However, this issue goes beyond the scope of this thesis. Another

issue related to the evolution of design automation tools can be characterized using the set

of characteristics. A design automation tool is characterized by Ct-. Its next generation can

be characterized by Ct_i such as # C t- <

1.1.3 R esearch G oals

To implement the hypothesis stated in the previous section, the research goals are for­

mulated as follows:

1. The characterization of the design space along with a set of properties;

2. The formalization of a concept level in which high-level specifications are embedded:

3. The statement and formalization of an automatic process to migrate from the concept

level to the system level which is called VHLLS and formally defined in Chapter 3 ;

4. The implementation of VHLLS, taking high-level specifications and translating them

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

into a behavioral description at the system level.

1 .1 .4 M erits an d C o n tr ib u tion s

A new design process is introduced a t the front-end of the generalized synthesis pro­

cess leading to the next generation of design automation tools. A characterization and

form alization of the design space is necessary in order to bound the requirement of this

new design process. As a consequence, a set of characteristics describing this new design

process is introduced defining a metric to classify design automation tools. An unusual

characteristic proposed among others is the delay specification which enables specification

of time constraints for the system specifications independently from a clock. As a result

of the introduction of this new design process, a Concept Level is defined as a new level of

abstraction, above the system level. A formalism is proposed to represent the evolution of a

design description in the design space. This synthesis process, called VHLLS. is introduced,

enabling a link between the concept level and the behavioral level with a particular em­

phasis on time encapsulation. So far, commercial tools and research in design automation

specify a global clock and use it to specify the remaining behavior of the system. A second

approach ra n be taken considering tha t the measure of time is a very important constraint

which must be fixed as late as possible in order to choose the best clock rate for the system

under design. To do the above, a set of restrictions is taken into consideration to reduce

the domain of investigation. As a result, some metrics have been defined. In addition, a

feasibility study has been performed to expand the representation of the design space which

led to VHLLS.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

16

1.2 Thesis Organization

Chapter 2 describes the state of the art of the CAD domain in microelectronics. It

emphasizes, among other things, the availability and sophistication of commercial CAD

tools. Chapter 3 refines the new level of abstraction in the design process and adopts the

design space accordingly. Chapter 4 provides an overview of relevant research in high-level

synthesis and description styles for specification purposes. Chapter 5 discusses the VHLLS

process and suggests two approaches to implement it. Chapter 6 presents a tool called

SPECIAL which enables a designer to specify a system. A VHLLS process defined in the

previous chapter can then be applied to generate a VHDL description automatically. In

Chapter 7, three typical examples show the benefits and limits of a such approach. Finally,

some conclusions and suggestions for future work in the area of VHLLS are proposed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

CAD Domain in Microelectronics

Having stated the aim of the research activity, an overview of the concepts behind the

term “CAD domain’’ is provided in this chapter along with a presentation of the status of

commercial CAD tools. With these two fundamental elements, the principles of VHLLS are

also stated.

2.1 Design Process Characterization

This section introduces the notions of design automation and design methodology. It

is fundamental to understand the existential reason of these two notions in order to con­

ceptualize the motivation and direction of this research. Currently, designers perceive that

available design methodologies will soon become obsolete because of the rapid rise of sys­

tem complexity. It should be stressed that this “unstable” phenomenon is typical for the

whole CAD history (with no end in sight) leading then to a new design approach called the

Electronic System Design Automation (ESDA) approach.

In the field of microelectronics system devices have become increasingly complex, reach­

ing densities of millions of transistors per square centimeter. It has become more difficult

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to design such systems by handcrafting methods, that is, by representing each transistor

or defining each signal in terms of logic gates. To manage the complexity, systems have

to be designed a t abstract levels where functionalities and tradeoffs are easier to compre­

hend. Design automation enables integrated circuit designers an opportunity to optimize

design efforts at these levels w ith superior productivity and competitiveness. Furthermore,

design automation empowers engineers with the ability to do rapid prototyping, consider

mechanical and physical constraints, handle mixed-signal systems, etc. A consequence of

this approach is the development of complex tools to autom ate the entire design process

from concept to final implementation.

In the development of design automation methods and tools, a typical goal is to apply

the concepts of (1) first-silicon and (2) first-specification [DGLW92] to reduce the time-

to-market cycle for new devices. The first silicon concept is based on the principle that

prototyping1 is time consu m in g and costly. Traditionally prototyping is a critical stage

because it allows verification of the system functions. The first silicon concept requires a

design process where simulation prevails over prototyping during the validation stage of the

finalized system. The simulation process uses back-annotation2 to take into account the

physical constraints of the circuit such as propagation delay, setting time, etc. Another

important feature of the first silicon concept is automatic control of the physical design

rules. Consequently, CAD tool assistance is crucial in verifying both functionality and

design rules of the entire chip design cycle. The second concept, first-specification, has as

its goal the reduction of the number of design iterations involved to just one. As opposed

1A prototype is viewed as a first physical realization of a design in order to check its behavior against its
specifications.

2It is a method for importing low level timing informations to the level of description of which a system
is captured in. Its purpose is to have a more realistic simulation of the design.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

to the first-silicon concept, the first-specification concept requires accurate modeling of

the design process and accurate estimation of the product’s quality measurements such as

performance and cost.

Today, commercial tools are mature enough to operate with relative accuracy at the level

defined by first-silicon. Researchers and toolmakers are currently attempting to meet the

challenge of the first-specification concept. To address these issues, there are two competing

philosophies:

• top-down methodology : and

• bottom-up methodology.

The top-down methodology, often referred to as “describe and synthesize’’, can be defined

as a method for modeling a whole system using a high-level of abstraction. A synthesis

process is applied to refine the system model into lower subsystems and lower abstraction

levels closer to the target technology. The bottom-up methodology, often referred to as

“capture and simulate", is a method for modeling a system starting with the lowest mod­

ules of the system hierarchy, and building the whole system using a combination of these

modules. Simulation is performed on each module to ensure proper functionality. Modules

are combined to form larger modules, creating new levels in the system hierarchy. The level

of hierarchy terminates when a combination of modules reaches the top system level.

Currently, available tools promote the use of the bottom-up methodology when the

description entry is a schematic form. With the emergence of Hardware Description Lan­

guages (HDLs) 3 at the entry level, the top-down methodology becomes more effective.

Often prominent toolmakers such as Mentor Graphics™ or Viewlogic™ combine both

3 HDLs are like programming languages but specialized in the description of microelectronics hardware.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

methodologies in their tool set. For example, during the design process of an FPGA, the

design starts with a VHDL description which promotes top-down methodology. Because the

target technology is FPGA, designers must use a library of components and practice bottom-

up methodology. The practical result therefore is a description with both methodologies

mixed together. When a description is technology independent, the top-down methodology

is the most appropriate. It is even more appropriate when description entries are high-level

specifications.

Need

Scheme

Scheme
Embodiment

Conceptual
Deaifn

?
X
I?3

r
2.&
i

- form of description
o f the evolving deaifn

| | « dcrign activity

Figure 2-1: Idealistic Design Flow

i
?

! » z
I■ar

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

A model describing design flow is shown in Fig. 2-1 (the original version was defined

in [FRE85] and is described in Section 2.4) and illustrates a top-down methodology from

the statement of a need until completion. This model is considered idealistic because no

feedbacks are defined. It is assumed that each state of this design flow corresponds to the

optimum design solution. Fig. 2-1 also illustrates a possible representation of the principles

of first-specification and first-silicon. This idealistic model is composed of:

• circles which usually represent some form of description of the evolving design, al­

though they sometimes represent a stage. For example, the circle labeled “Need”

is a statement of needs which initiates the design process whereas the circle labeled

“selected scheme” is a form of design description:

• rectangles which indicate a design activity such as analyzing the problem or performing

a detailed design;

• arrows which sequence description forms and activities.

The first element in this design process is called “Need”. When a consensus is established

around a clear “statement of the problem” , the “conceptual design” activity can be applied

to consider different concepts (or “schemes”) that can be used to solve the stated design

problem. Brainstorming is required at this stage to find strategies to solve the stated

problem. Thereafter, these strategies are translated into a description (“selected scheme”)

which then depends strongly on the requirement of the high-level attributes of the design

goal, including interface constraints, size, quality, anticipated cost, and device function.

The conceptual design stage is the most “open-ended” stage of the design process. The

result of this conceptual design is a set of possible concepts o r schemes for the design. A

“scheme” is defined as an outline of major functions in the design. A scheme should be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

relatively explicit about special features or components but does not require much detail

beyond the established practices. The next stage of the design process is called either the

“embodiment of schemes” or “preliminary design”. The first behavioral model is realized by

implementing an initial solution. When a solution strategy is chosen, the following stages

are a refining process until the final product is completed at the physical level.

This model, even though it is not feasible, illustrates clearly the top-down, first specifi­

cation and first silicon concepts.

2.2 Commercial Tools

This section reviews some commercial tools which provides graphical tools to describe

systems. A majority of these tools uses high-level synthesis to target programmable-logic

components. Programmable-logic complexity is forcing designers into the world of HDLs

and top-down design. The so-called “second wave of design engineers” axe slowly mov­

ing from schematics to HDLs. In the workplace, designers are typically using a mixture

of schematics, Abel-like language, and other HDLs (usually reserving HDL for a well-

understood function in the design). For these design engineers, moving toward HDLis a

radical change in their mind set. In order to domesticate a new design style among design­

ers, some Electronic Design Automation (EDA) vendors (see Table 2.1 [DON96, MAN97])

provide them with graphical-entry tools facilitating the monitoring process of converting a

state machine description into an HDL file.

with permission of the copyright owner. Further reproduction prohibited without permission

23

Company Product(s) Types o f entry accepted HDLs gener­
ated

Alta Group
of Cadence
Design System

Hardware De­
sign System

Block diagrams, state ma­
chines

VHDL, Verilog,
C

Aldec Active-CAD,
Active-HDL
editor

Hierarchical block diagrams,
state machines, schematics

VHDL, Abel

Antares Antares En­
vironment
Graphical Edi­
tor

Block diagrams, state ma­
chines

VHDL

Escalade DesignBook Block diagrams, state ma­
chines, waveforms

VHDL, Verilog

i-Logix Express StateCharts, activity charts,
block diagram

VHDL, Verilog,
C

Knowledge
Base Silicon

flowHDL, block-
HDL

Block diagrams, flow diagrams VHDL, Verilog

Mentor Graph­
ics

System Archi­
tect

State transition diagrams,
state matrix, dataflow dia­
grams, schematics

VHDL, Verilog,
C

Omniview Alchemist State diagrams, timing dia­
grams, flowcharts, tru th tables

VHDL, Verilog,
C

R-active Con­
cepts

Better State Pro StateCharts, state machines,
Petri-nets

VHDL, Verilog,
C, C-l—F

Synopsis COSSAP DSP
suite, Design
Source

Block diagrams VHDL. Verilog,
C

Table 2.1: Graphical HDL Code-Generation Tool Vendors

These tools are commonly classified as Electronic System Design Automation (ESDA)

tools. One can notice that, from the list of vendors in Tab. 2.1, every one generates

automatically VHDL code. Also, the most common type of entry accepted by these tools

is the state machine. Finally, the majority of these tools can be characterized using the list

of characteristics defined in Chapter 1 as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

C h arac te ris tics C heckm ark

Sequentially Decomposable Activities
Concurrently Decomposable Activities

State Transitions
Immediate Mode Change

Activity Completion
Delay Specification

Asynchronous Activities
Design for { Testability, Manufacturing, etc }

Multiple Model Representations
Reusability

Table 2.2: Advanced High-Level Synthesis Tools Characteristics

EDA vendors claim they can ease the schematic to HDL transition with tools that gener­

ate HDLs from graphical input. For example, Aldec™ has been promoting the use of state

machines for programmable logic design with its Active State Editor™ tool. According

to Aldec™, Active State Editor™ produces device-independent Complex Programmable

Logic Device (CPLD) or Field Programmable Gate Array (FPGA) designs from graphical

entry of bus-based state machines. In the Aldec™ environment, a designer can specify

combinational and sequential outputs, active clock edges, and default and trap states. The

editor then converts these files into Abel and VHDL files which, according to Aldec™, are

synthesis-ready.

From a designer point of view, ESDA tools are good learning tools. However, the code

generated from these tools is far from being refined compared to the code written by an

experienced HDL designer. Another criticism of ESDAs is that design engineers accustomed

to working with schematics habitually tweak their design to correct behavioral, timing, and

area problems. These designers have a hard time resisting the temptation to get into the

code and fiddle with bits, even if they are not experienced HDL users. The danger here is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

that if the code is changed, it can disconnect from the original state-machine description.

Once that happens, an error tagged during HDL simulation will not necessary connect to

the original description and ESDA input is flawed.

In addition to code-generation capabilities, many ESDA tools provide a block-diagram

function to help keep track of the numerous files generated during the design process. For

designers used to schematics, these functions can be a useful learning tool because the top-

down design methods are not just about learning code bu t a whole new way of thinking

about a design.

The main drawback of ESDA tools, which is also true for automatic processes a t every

level of abstraction, is the performance of the system under design (i.e. obtaining the

most efficient design at the silicon level). It is nearly impossible to get the same level

of optimization with an automatic process as with a hand-written one. Then, the trade­

off’ becomes time versus performance. Another drawback is that EDA vendors provide

tools optimized for a specific architecture (FPGA, CPLD, Static Random Access Memory

(SRAM) , . . .) . Often these vendors use benchmarks [Cor93a] provided by corporation like

Programmable Electronics Performance Corporation (PREP) to promote these specialized

tools. Therefore, when the targeted architecture needs to be changed it is not always a

straightforward process to perform this kind of migration.

2.3 Case Study: RAM Cell

To illustrate the most advanced feature of today’s CADs, we define a RAM cell. Its

specification4 is thus:

4 This specification is used as often as possible throughout this thesis to get a common illustration of
description methods and thus ease their comparison.

with permission of the copyright owner. Further reproduction prohibited without permission.

A list of control signals are defined: NRST (reset signal), CS (chip select),

RD (read command), WD (write command) enabling identification of which

action the Random Access Memory (RAM) needs to perform. An address bus

allows a unique location of the data stored and manipulated using a data bus.

The normal operation of the RAM is to be in a “wait state” watching for the

condition ” CS = T ’ ” to occur. When this condition is verified, the action of

read or write is decoded from the combination of RD and W R (RD = T ’ and

WR = !0! means the RAM is in the read mode, RD = ’O’ and W R = T ' means

the RAM is in the write mode, and other conditions than these correspond to

error conditions). The RAM comes back to the wait state upon completion of

its task, desired to be within 1 ns. If within this period of time the condition

" NRST = ’O’ ” is true, the RAM has to wait for the condition ”NRST = ’1’

" to be in the wait state again. When one inconsistency on the control signals

occurs, the RAM goes back to an initial state automatically after a desired time

of 1 ns. When the RAM is in the initial state, a sequence of events caused by

control signals (NRST = ’O’, NRST = T ’) brings it back to the wait state.

In the Mentor Graphics™ environment, a tool called System Architect™ can partially

capture the above specification of the RAM. First, a context diagram has to be created

allowing the specification of the Input/O utput interface as shown in Fig. 2-2. When the

context diagram is defined, the functionality of the RAM needs to be described. In System

Architect™ , the control functions and the data transformation have to be separated. As

illustrated in the data flow diagram (Fig. 2-3), the control functions are described under

the node “control” and the data transformations are performed under “storage”.

The control functions are described using a Moore type state machine as shown in Fig.

with permission of the copyright owner. Further reproduction prohibited without permission.

27

NRST.
N

DOUT

READY

""AD"''"

Figure 2-2: Context Diagram for RAM in the the Mentor Graphics™ Design Environment

2-4. A compromise has to be made for this state machine. In the specification, it has been

defined that, for example, the RAM goes into a wait state after 1 ns when the RAM is in

read or write mode. This requirement is not implemented with the description method used

in this section. Instead, this implemented duration relies on the settle time of a flip-flop

component. The data transformation is described using the VHDL syntax to describe the

storage function of the data. The following VHDL code is the description of the storage

function input to System Architect™ (the full VHDL description generated by System

Architect™ can be found in Appendix C):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

NRST..

•CS

-R D ------
-W R ------

•READY

en_
read en_

write en errAD
DOUT

DIN

Figure 2-3: Data Flow Diagram for RAM in the Mentor Graphics™ ’ Design Environment

A R C H IT E C T U R E spec O F storage IS
B E G I N Architecture

 Description o f the storage activity o f the R A M cell
vhdlstorage : P R O C E S S (sensitive list o f this process statem ent

AD 'transaction.----- transaction is an attribute
D IN 'transaction , defined in V H D L to notice
enjread'transaction,----- any change on a signal
enjwrite' transaction,
enjerr'transaction)

 D efine a list o f constants : it is a nice way o f programming
C O N ST A N T T JL E A D Y .U : T IM E := 60 ns;
C O N ST A N T T -R E A D Y -D : T IM E := 1 ns;
C O N STA N T T -A C C E S S : T IM E := 40 ns;
C O N ST A N T T .W R IT E : T IM E := 5 ns:
C O N STA N T nb-words : IN T E G E R := 2 * *8;
 D efine a new type : required in V H D L when a table o f vectors needs to be used
T Y P E typejmemory IS A R R A Y fO T O nb.words - 1) O F B IT V E C T O R fO TO 3);
 D efine variables : special meaning in V H D L — it is used only in a sequential
 statement and during simulation, the assignment o f a variable is
 instantaneous whereas a signal has a delay
V A RIA BLE propjdelay : T IM E := Ins;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Slate Transition Diagram for control'

D efault Actions

e n _ re ad <* '0^
en_w rite <= ‘0^
en _err <= 'CA
R EA D Y cs’O

N RST = '01

NRST = ‘11
|N R S T » 'Q ’ - g

R>y
v ..̂ .v...

MS.!fflE£QY*<»
wrie<»,’1

1 ,>'VM

3C S = M
(WR s 'V \

nd RD = ■Q") - i

(WR
and RD

(RD = 'O’ \
and WR = '0‘) \

or (RD = "TV
and W R = T) - 3

Figure 2-4: State Machine for RAM in the Mentor Graphics’ Design Environment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

V A RIA BLE M : typejmemory;
 T his function allows the conversion o f a bit string to a natural number
F U N C T IO N value{bv : IN B IT V E C T O R) R E T U R N natural IS
V A RIA BLE n : N A TU R A L := 0:
B E G I N process

F O R I IN Inflow TO fnfhigh LO O P
ii := n * 2;
IF bv(l) = ' 1'

T H E N
n := r t + I:

EN D IF ::
E N D LO O P:
R E T U R N n;

E N D value; end o f function
 Beginning o f the description o f the storage function o f the R A M cell
B E G IN

IF (en.write — 1 ') the operation o f writing a data in the R A M
 is requested
T H E N

M (value(AD)) < = D IN A F T E R T jw rite:----- store a data in the table M
EL SIF (enjread — 1 ') the operation o f reading a data is required

T H E N
DOUT <= M (value(AD)) A F T E R Tjaccess: ----- provide a data to the RAM
 databus

ELSIF (en_err = ' 1 ') an inconsistency occurs and raises an error
T H E N

A SSERT F A L S E statement in VH D L fo r simulation purposes
R E P O R T n Wrong values for WR and RD when CS rises"
S E V E R IT Y W A R N IN G :

ELSE
N U LL:

EN D IF ::
E N D PR O C E SS vh d lsto ra g e :----- end o f description

E N D spec:

Notice that the above example presents a design methodology which can be characterized

using the set of characteristics introduced in Chapter 1 as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

Characteristics Checkmark
Sequentially Decomposable Activities " " 7

Concurrently Decomposable Activities
State Transitions

Immediate Mode Change /
Activity Completion
Delay Specification

Asynchronous Activities
Design for { Testability, Manufacturing, etc }

Multiple Model Representations
Reusability

Table 2.3: Mentor Graphics™ Front-End Design Tool Characteristics

As indicated before, in lieu of shortcomings of the current CAD tools, the following

strategy is proposed. On top of exiting CAD tools, it is desired to create a user friendly

interface which would allow a seamless integration with existing CAD tools, and at the

same time address the need for automation at the specification level.

Driven by the mutation of the electronics design methodologies, tools should become

non-specialized description style environments for capturing high-level specifications. These

environments should be graphically oriented because it is a common engineering practice to

use sketches for describing the function of a system. Another important feature would be

to encapsulate time without tightening the design with a clock. The method of measuring

time is a design issue which must not restrict the ability to find the best solution for a

system. As noted during the discussion about ESDA tools, a drawback was stated that the

code generated by these tools were not optimized. Therefore, an optimization process along

the same principle as the one applied to schematics needs to be defined a t the specification

level.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

2.4 VHLLS Role

The two previous sections discussed design automation, tools. Desired and logical prop­

erties for these tools is summarized as follows:

• they must provide the reduction of the design cycle time:

• they must provide an increased design quality:

• they must alleviate the design complexity of today’s and tomorrow’s systems:

• they must effectively maintain complex systems:

• they must facilitate improved verification facilities.

As seen in Chapter 1. these items identify the characteristics of a design automation envi­

ronment. This section narrows down the design cycle to the area of interest typical for the

early stage of this cycle.

The top-down methodology, as defined in Section 2.1, has been selected as an appropriate

and suitable design methodology. This approach appears to be more natural and does not

carry possible constraints stemming from lower levels which can reduce the spectrum of

solutions, as in the case of the bottom-up approach. The objective of a top-down approach

is to start with high quality specifications and inject constraints as late as possible in the

process. Moreover, this approach allows for a deeper exploration of possible solutions so that

problems can be solved more effectively and efficiently. Also, a top-down approach gives the

opportunity to evaluate several candidate solutions before selecting the most appropriate

one.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

33

Need

Working
dr*wings

etc —
I 5 ; 1
* 8.

' form of description
of the evolving dcag

|) • design sdivity

Figure 2-5: French’s Design Flow

As mentioned in Chapter 1, there is a need for higher level of abstraction for design

automation. For this purpose, a new level of abstraction is added as an outer ring to the

Y Diagram (Fig. 1-2). This level of abstraction is called the concept level. The purpose of

our study is to sketch out the bridge between the concept level and the system level. These

two notions are explained in more depth in Chapter 3. In this context, the concept level is

defined as a part of the design space along with the system level. Furthermore, these levels

under study axe the two highest levels. However, the concept level represents the early stage

of a design flow and in that sense it precedes the system level. The corresponding model,

introduced by French [FRE85], is depicted in Fig. 2-5. This model has been partially

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

discussed in Section 2.1. Fig. 2-1 is the idealistic view of French’s design flow. The main

difference is in the feedback loops which characterize a refinement process of the “problem

analysis” state. Indeed, during the design flow, the statement of a “need” generates an

iteration of “problem statement” in order to keep the project under feasible boundaries.

The concept level can be identified by the shaded zone in Fig. 2-5. The objective here

is to develop a framework to automate the transition between a conceptual design and the

embodiment o f a scheme. Indeed, the automation of these design flow sequences promotes

creativity at the specification level. This automated transition is referred to as Very High

Level Logic Synthesis (VHLLS).

D efinition 2.1 Very High Level Logic Synthesis (VH LLS) is a translation from a

description at the Concept Level into a description at the System Level.

By introducing the extra layer in the Y diagram (other additional layers are expected

in the future) and defining a proper synthesis process at this new layer, we are able to

address several fundamental design paradigms in a practical manner. One of them is the

encapsulation of time which becomes more universal and not clock driven. The next chapter

reexamines the CAD domain using a formal approach necessary for a better understanding

of this matter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 3

Very High Level Logic Synthesis (VHLLS)

The previous chapters identify the need for higher abstraction levels during the design

flow. This chapter introduces the corresponding design space and a formalism associated

with it. The samp methodology issues are addressed using a different, more formalized

approach.

3.1 Design Space Fundamentals

As indicated before, according to Thomas [TLW~90] and Gajski [GK83], the design

space is composed of three orthogonal domains of description:

• behavioral;

• structural;

• physical.

Fig. 3-1, commonly called the Y diagram, illustrates the three above domains. The behav­

ioral domain, referred to as dbhv, focuses only on the description of functions the system

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

CONCEPT LEVEL
STRUCTURAL DOMAIN ^ — ------------- — ^

^ SYSTEM LEVEL ** ^
BEHAVIORAL DOMA

I
I
I
I
\

V
\

/

t

/

\

/

\

I

\

I

\

PHYSICAL DOMAIN

Figure 3-1: Formalization of Design Space

must perform (often referred to as the “black box" approach). In this domain, the input

and output interfaces and their relationships are defined as a result. The physical domain.

referred to as dphi, focuses on the physical structure of a system under consideration. In

this domain, the function of the system is not relevant. The intermediate domain which

bridges the behavioral and physical domains is called the structural domain and is referred

to as d3tr. This domain corresponds to a mapping (or synthesis) of the behavioral domain

into a set of components and connections under constraints such as cost, area, delay, etc.

The system representation being in the structural domain, a second mapping process syn­

thesizes the design into the physical domain. The origin of the orthogonal domains is the

final implementation, referred to as £t-mp, of a system.

In these three domains, four levels of abstraction are defined:

• system level (faya)i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

• architectural level (£act)j

• logic level (4gc);

• circuit level (£Cct)-

The relationship between the levels of abstraction and description domains is governed by

design attributes.

D efin ition 3.1 In the design space, an a ttr ibu te (a), element o f the set of attributes A

(a £ A), is either a form of representation or description by which a design is characterized.

An attribute is dependent on the level of abstraction and the description domain.

The relationships between each level of abstraction and each description domain axe illus­

trated in Table 3.1 by their respective attributes. For example, electrical engineers are very

f a m i l i a r with schematics as a medium to describe the function of a system. A schematic

is characterized by being in the structural domain at the logic level. The most character­

izing attributes associated with this pair (structural domain, logic level) are gates, clocks,

multivibrators, and flip-flops.

This section introduced the design space illustrated by the Y-diagram as shown in Fig. 3-

1. The notions of level of abstractions and design domains were introduced. Each possible

pair of level of abstractions and design domains is associated with a list of attributes. These

attributes allow a clear distinction of each pair of level of abstractions and design domains.

Note that the list of attributes is likely to evolve from a research effort on formalizing the

design space. The next section proposes a formal representation of this design space as well

as its associated metrics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

A bstrac tion Level \
D escription Do­
m ain

B ehav io ra l D om ain S tru c tu ra l D om ain P hysical D om ain

Extension f
Concept Level • Natural language

description
• Sketches
• Mappings
• Duration relation­
ships
• Math, equations

• Modules
• Buses
• Networks

• Boards
• Boxes
• Stacked MCMs

System Level • Flowcharts
• Algorithms
• Regular Expressions

• Processors
• Controllers
• Memories
• Data Pipelines
• Buses

• Boards
• Chips
• MCMs

Architecture
Level

• Register
transfers

• ALUs
• Multipliers
• MUXs
• Registers
• Receivers
• Transmitters
• Buffers
• Memories

• Chips
• Floorplans
• Module Floorplans
• 3D-Chips

Logic Level • Boolean equations
• Waveforms

• Sequencers

• Gates
• Clocks
• Multivibrators
• Flip-Flops

• Modules
• Packaging pin out
• Cells

Circuit Level • Transfer
functions

• Transistors
• Connections
• Resistors
• Capacitors
• Diodes

• Transistor layouts
• Wire segments

• Contacts
Implementation • Functional Docu­

mentation
• Structural Docu­
mentation

• final design

Table 3.1: Levels of Abstraction in the Design Space

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

3.2 Design Space Formalization

The design space is viewed as a multi-dimensional space where the directions of that

space are at least the description domain and the levels of abstraction. Mathematically, the

design space can be expressed as:

D S = < D .L , A, C.S.X > (3.1)

where:

• D represents the description domains in the design space D S such as D = {dbh.v, d3tr-

dphl}

• L represents the levels of abstraction in the design space DS: L = {£tmp, Zcct, tigc,

tact, tsys}- Under L, an ordered relation <c is defined as:

'ix .y 6 L .x <l y <=► x is less abstract than y

So, the elements of L can be ordered as follows:

timp ^L ĉct ^ L tigc tact ^-L t 3y3,

T hjs ordered relation (less abstract) is a relation to classify description regarding the

amount of details provided to define a system. So a system description is less abstract

t han another (of the same system) when the information provided for describing a

system is more accurate. For example, a traffic light can be described as a device to

regulate traffic of terrestrial vehicles. However, a less abstract description of a traffic

light is that a traffic light is a device which indicates to a driver of a vehicle either (i)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

40

to cross a junction when it is green, (ii) to stop before the junction when it is red or

(iii) to be careful while crossing the junction when it is yellow.

From now on, the term successor of a level of abstraction x is used to mention a

level of abstraction y such as y < l x . For example, £jmp is a successor of £sy5. The

term immediate successor of a level of abstraction x is used to mention the level of

abstraction y such as y < t x A ($z E L .y <£, z <£, x). For example, tact is the

immediate successor of t sys. The term with the opposite meaning for successor is

predecessor. t sys is a predecessor of £«* and tact is the immediate predecessor of tigc.

• A represents a set of attributes such that a E A, a being an attribute. Table 3.1

contains a non-exhaustive list of attributes. So, for example, an attribute can be

ALUs, Flowcharts, or Chips;

• C represents a set of characteristics (introduced in Section 1.1.2) such that c E C. c be­

ing a characteristic. For example, a characteristic can be “Sequentially Decomposable

Activities”:

• Mapping 5 : D x L —*• A* x C* associates in the design space D S a level of abstrac­

tion from L and a description domain from D onto a set of attributes from A * and

characteristics from C*.

A* is the set of equivalence classes of A under R l (A* = A /R l) . In other words,

each element of A* is an equivalence class of the elements of A under the equivalence

relation R l. R l is defined as:

Vx, y E A ,x R l y p(x) = p(y)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where p is defined, as: p : A L x D . So p defines a property that maps each attribute

of A onto a description domain from D and a level of abstraction from L. For example,

an element of A* taken from the Table 3.1 is a” = {Gates, Clocks, Multivibrators,

Flip-Flops} which is associated with the logic level and the structural domain. Note

that each pair composed by a level of abstraction and a design domain is mapped

with an element of A* as shown in Table 3.1.

C* is the set of equivalence classes of C under R2 (C* = C /R2). R2 is defined as:

V x.y E C .x R2 y <=> C(a:) = C(y)

where C is defined as: £ : C —*■ L x D. (defines a property that maps each char­

acteristic of C onto a description domain from D and a level of abstraction from L.

Consequently, C* is a set of equivalence classes under the equivalence relation R2. For

example, an element of C* is c* = (Sequential Decomposable Activities, State Transi­

tions, Immediate Mode Change, Activity Completion} mapped with the system level

and the behavioral domain.

For example. 6 (d b h v - ^ s y s) = ({Flowcharts, Algorithm, Regular expressions}, {Sequential

Decomposable Activities, State Transitions, Immediate Mode Change, Activity Completion}):

• \ : D x L - * D x L represents an evolution in the design space D S from a pair (aq, yi)

composed by a description domain from D (xi 6 D) and a level of abstraction from

L (j/i £ L) to another one Just following, an interpretation of an evolution

in D S is given as well as some examples.

Using the formal representation of the evolution A in D S introduced above, commonly

used evolutions on D S can be written in a mathematical form. One of these evolutions is

with permission of the copyright owner. Further reproduction prohibited without permission.

the reverse engineering process which consists of taking an existing design description at one

level of abstraction and describing it again a t a higher level of abstraction. For example, if

an engineer considers the description of a VLSI component at the circuit level i.e. pages of

transistors (a?i = dstT, Vi = ?cct)-. the only way to understand the function of tha t component

is to translate these pages of transistors into a description at the gate level i.e. a schematic

composed of logic gates (xi = dstr, Vi = £igc)- This reverse engineering process can be

applied until the engineer reaches a level of abstraction suitable for the comprehension of

the component behavior. So, the evolution A defines a reverse engineering process when:

3x, y 6 L and z E D such that x < i y. A(x, z) = (y, z)

Another common evolution on D S is the synthesis process. In general, a synthesis

process is the action of combining abstract entities into a single or unified entity. In other

words, a synthesis process is a process of refining a design by describing each function with a

combination of less abstract functions. For example, at the system level (£sys), an addition

between two integers i.e. z = x + y, where x and y axe integers in [0,15] and z in [0,30], is

synthesized at the logic level (£igc) as follows:

Zi = Xi © yi © Cj_i

a = xiyi + XiCi-i -i- v id - i

where X{ and y,- axe four bits wide bit-string (xs and ys are equal to 0), t is an index evolving

from 0 to 5, z is a five bit wide bit-string, and c,- is the carry (c_i = 0). So, the evolution

with permission of the copyright owner. Further reproduction prohibited without permission.

43

A defined for a synthesis process is expressed formally as follows:

Vx,y 6 L and w ,z e D such that x <l y,X{y,w) = (x , z)

More specifically, Gajski et al. in their book [DGLW92] defines four synthesis processes as

illustrated in Fig. 1-4. These synthesis processes are formalized, in a general manner, as

follows:

V x 6 L, X^dbhvi = {dst n x)

because Gajski defines a synthesis process per level of abstraction as an evolution from the

behavioral domain onto the structural domain. These synthesis processes are the following:

• System synthesis: A(dbhv,£sys) = {dstr,£sys) referred to as (b) in Fig. 1-4:

• Architecture synthesis: A(dbhv-^act) — (dstr,£act) referred to as (c) in Fig. 1-4:

• Logic synthesis: X{dbflv,£igc) = (d3tr,i igc) referred to as (d) in Fig. 1-4:

• Circuit synthesis: A(dbhvi£cct) = (dstr,£cct) referred to as (e) in Fig. 1-4.

Such formalism eases the characterization of a design process in D S and gives a tool to

compare design methods. In order to improve this characterization of design processes in

D S, a metrical space is defined. First, the notion of distance in D S is defined allowing the

introduction of a measure to evaluate a design process.

D efin ition 3.2 Letting L x D be a set of paired elements. The evolution d istance d \

in D S is defined as a function on (L x D) x (L x D) into the set of non-negative real

numbers. d\ satisfies the following conditions:

1. Vx,y € D x L ,d \(x ,y) = 0 <=► x = y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

2. Vx,y 6 D x L ,d x{x,y) = d \[y ,x)

3. V x , y , z £ D x L,dx{x,y) < dx (x,z) + dx(z,y)

The d \ function can be written as: d \ = ||x—y|| where x . y £ L xD . Using this distance func­

tion, any discrete point in D S can be compared with any other point of D S. For example, a

system synthesis process introduced above which is an evolution from the behavioral domain

onto the structural domain a t the system level has a evolution distance (simply referred to

as distance) of 1. We write then dx ((dstr-iSya)-. (dbhv.^ays)) = ||(d3tr- ^sys) — (^6Au^sys)ll =

IIA^/u^st/s) - (<W,^sya)l|* Notice that if a reverse engineering evolution is performed

between the structural domain and the behavioral domain at the system level, the distance

of this evolution gets the same value of one.

D efin ition 3.3 A unary evolu tion Au is defined as:

• Vx 6 L.V y.z 6 D with y ^ z, ||(y,x) — (z,x)|| = ||Au(z,z) — (z,x)|| = 1, or

• Vx,y 6 L, Vz 6 D with x < t y and x is the immediate successor of y, ||(z,x) —(z,y)(| =

II K{z ,y) - (* ,y) || = 1

A unary evolution has then the particularity of being an evolution having a distance of 1.

Therefore, all the evolutions defining a synthesis process in the sense of Gajski (introduced

above) are all unary evolutions. For example, logic synthesis is a unary evolution because:

l|(^6/ivi ^ays) (^s£r, ̂ sys)|[= 1

as opposed to an evolution from the behavioral domain at the system level to the structural

domain a t the architecture level which has an evolution distance different from 1. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

45

distance is written then as follows:

II(dfrhv-P-sys) ~ { d s tr t^ a c t) \ \ 7̂ 1

Having defined a unaxy evolution, an evolution can then be viewed as a sequence of

unary evolutions which brings the design from one point in D S to the desired one.

Lemma 3.1 If an evolution is not unary, then there may be a com position of unary

evolutions such as:

X(x, y) = Au o . . . o A„(x. y)

where ||(:rt--i,y t-i) - (^i,2/t)ll = IIAute.yt) - (x i ,y ,) | | = 1

P roof:

If Ao(a;o?yo) = (*i:J/i) such that d \ ((x0,y0), (®i,yi)) = 1 then Ao(x0,t/o) = Au(aro,yo)

is true.

Let us assume that

An(-ri)? 2/0} = (•^n- 2/n) = A u O . . . O \ u(xq, 2/0)> V* y
n

is true with d\ (f e y ,) , (sf~i,yi+i) = 1.

The evolution An^ 1(x0,2/o) = (*n-ri»I/n+i) can be written as a sequence of evolutions

suchas An(2o?yo) = (®n ,Vn) and X(xn,yn) = (xn^ i , y n~i). The distance of the last evolution

is 1 and then Au(ar„,yn) = (xn- i , y n+i). So we get that

A n + l (® 0 i y o) = A u ° A n { x n ,yT t) — (® n - r l •. t / n - i - l) •

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

46

Because

A n f c o , 2 / 0) = f e n i Vn) = A u o . . . o A u (x o , y o) ,

Tl

we can rewrite An_i(x0,yo) = (^n-L-2/n-i) as

An—i(x g , yo) = A„ o A„ o . . . o Aa(xo, yo) = 0 ° • • • ° Au(xo, yo)' v — / > ill v II— — ̂
n n-t-1.

which, proves that an evolution is a composition of unary evolutions.

□

Using this result, the notion of distance can be improved by saying that a distance of an

evolution is the sum of the distances of each unary evolution which, composes this evolution.

P ro p o sitio n 3.1 The distance of an evolution is defined as:

V(x,y) E D x L, dx = ||A(x,y) - (x,y)|| = ||Aa(xi,yt) - (x,,yi)||
t

where ||Au(xt-,yt-) - (Xi,yi)(| = 1

As an illustration of the above notions, let us consider that the desired evolution in D S

is the following:

A{dbh.vt^act) = {dstri @lgc)i

which is the evolution of todays commercial synthesis tools. One possible composition is:

Aufdft/ir, @act) = {dstri @act)

Au(̂ sfcr? Pact) = {dstri Plgc)

Using this composition, its distance is then equal to:

IK^WunPact) ~~ (dstr,Plgc)\\ = 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This example shows that when an electrical engineer designs a system at the architecture

level using VHDL for synthesis and then applies a synthesis process to this design in order

to get a schematic, implicitly, he or she uses indeed two evolutions.

Notice that the decomposition of an evolution is not unique. Also, the feasibility of all

evolutions is not guaranteed with today’s tools. Further research needs to be performed to

characterize all the possible evolution decompositions. For example, the evolution from the

physical domain to either the behavioral or structural domain at the system, architecture,

and logical levels has not been performed so fax.

In this section, a well-established design space, known as the Y-diagram (see Fig. 3-

1) was presented. A formal description of it was proposed allowing a formal definition of

design processes such as synthesis or reverse engineering processes. Moreover, the notion of

evolution in the design space was defined as well as a formal characterization of the level of

abstractions and design domains. Along with this formalization, some metrics which enable

another method of comparison between design processes was defined.

3,3 Extended Design Space

Currently, toolmakers provide efficient CAD applications which perform Register Trans­

fer (RT) synthesis. However, there is still a missing link between conceptual specification

and system level description in the behavioral domain. In Fig. 3-1, an extra layer, called

the Concept Level, has been added to the original Y diagram. This extra layer provides

a framework for the introduction of the next generation of CAD tools which will be more

characterized thanks to the formalism defined in the previous section.

D efinition 3.4 The concep t level, referred to as icpt, is a level o f abstraction characterized

in each description domain by attributes more abstract than those at the system level.

with permission of the copyright owner. Further reproduction prohibited without permission.

A classification of these attributes into the three description domains is shown in Table 3.1.

The list of attributes in each domain is not exhaustive. For example, the attributes char­

acterizing the concept level in the behavioral domain are Natural Language Descriptions,

Sketches, Mappings, Duration Relationships, etc. In other words, at the concept level, the

behavior of a system are specified using a description methods such as natural language,

sketches, and so on.

The addition of the concept level in L extends the design space D S. So, the design space

D S becomes the Extended Design Space (EDS). Mathematically, the Extended Design Space

can be expressed as:

E D S — ^ D. Egxts Aext*. &exti ^ext ^ (3.2)

where:

• D represents the description domains in the extended design space E D S : D = {dbh.v,

dstr-. dpfii}:

• Lext represents the levels of abstraction in the extended design space EDS: Lext =

L U {icpt} such that icpt is the immediate predecessor of i 3y3 {isy3 < l icpt)'*

• A-ext represents a set of attributes such that A C Aext and the additional elements of

Aext are attributes derived for Lext- Therefore, the extra attributes, as illustrated in

Table 3.1, are natural language, sketches, modules, buses, boards, boxes and so on;

• Ceit represents a set of characteristics such that C C Cext and the additional elements

of Cext are characteristics derived for Lext- These extra characteristics, as introduced

in Chapter 1, are among others delay specification, multiple model representations

and so on;

with permission of the copyright owner. Further reproduction prohibited without permission

• $ext - D x -* A%xt x Cext associates in the extended design space E D S a level

of abstraction from L o t and a description domain from D to a set of attributes from

and characteristics from C^.t .

A^.t is the set of equivalence classes of Aext under Rlext (A^.t = Aextf Rlext)• In.

other words, each element of A ^ is an equivalence class of the elements o f Aext under

the equivalence relation Rlext- Rlext is defined as:

Vx, y £ Aexti-E Rlext y ^ Pexti2») = Pext{y)

where pext is defined as: pext : Aext —► Lext x D. So pext defines a property that maps

each attribute of Aext onto a description domain from D and a level of abstraction from

Lext- For example, an element of A ^ taken from the Table 3.1 is a^.t = {Modules,

Buses, Networks} which is associated with the concept level and the structural domain.

Ce'xt is the set of equivalence classes of Cext under R2ext (C£xt — Cext! R^ext)- R2ext

is defined as:

Vn, y £ C ex tiK R2ext y ^ Cexti-z) = Cext(y)

where Cex t is defined as: Cext : Cext -*• Lext * D- Cext defines a property that maps

each characteristic of Cext onto a description domain from D and a level of abstraction

from Lext- Consequently, C ^ t is a set of equivalence classes under the equivalence

relation Rlext- For example, an element of C ^ . is c ,̂.t = {Sequential Decompos­

able Activities, State Transitions, Immediate Mode Change, Activity Completion,

Concurrently Decomposable Activities, Asynchronous Activities, Multi Model Rep­

resentation, Reusability, Design for {Testability, Manufacturing, . . . }} mapped with

the concept level and the behavioral domain.

with permission of the copyright owner. Further reproduction prohibited without permission.

As a result, we can state tha t 5ext(d(,hV, icpt) = ({Natural language description,

Sketches, Mappings, Duration relationships, Math, equations}, {Sequential Decom­

posable Activities, State Transitions, Immediate Mode Change, Activity Completion,

Concurrently Decomposable Activities, Asynchronous Activities, Multi Model Repre­

sentation, Reusability, Design for { Testability, Manufacturing, ...} });

• Â : D x Lext - f D x Lext represents an evolution process in the extended design space

E D S from a pair consisting of a description domain from D and a level of abstraction

from Lext to another one. Just following, an interpretation of an evolution in E D S is

given as well as some examples.

Note that, to simplify the notations from now on, the index ext is dropped from the

above notation. Using the extended design space formalism, two new evolution processes

can be introduced: Concept synthesis and Concept refinement. The composition of these

two evolutions defines VHLLS as shown in Fig. 1-4. In a sense of synthesis defined by

[DGLW92], the concept synthesis is defined as follows:

D efinition 3.5 The concept syn th es is is an evolution from the behavioral to the struc­

tural domain such that:

^ c x t i f i b h v i c p t) ~ ^ c p t—sy n t(d b h v i ic p t) = (d s tr - . ic p t)

The concept synthesis is on the top of other synthesis processes introduced in Section 3.2.

Concept synthesis starts with a set of general information about a desired behavior through

shared variables or message passing. It generates a structure of modules and networks. Each

module can be described by a behavioral description at the system level. This refinement

process is performed through an evolution referred to as the concept refinement. This

with permission of the copyright owner. Further reproduction prohibited without permission

51

evolution is defined as follows:

D efin ition 3.6 The concept re finem en t is an evolution allowing the refinement of a

system description from the concept level into the behavioral level such that:

) ^ e x t(d s tr ! ^cp t) = ^ c p t - r e f t {dstr? ^ cp t) = ifib h v .^ -sys)

For example, if we specify in a natural language the behavior of a traffic light by saying

“A traffic light system regulates the flow of terrestrial vehicles at a junction of two bidirec­

tional roads". Applying a concept synthesis of this specification results in networks with

four modules. Each module represents a traffic light. The concept refinement is considering

each module and providing it a behavioral description a t the system level such as a flowchart

specifying how the traffic light can change color.

Section 2.4 of the previous chapter describes the VHLLS process and provides a general

definition of VHLLS. W ith the introduction of the above formalism to describe an evolution

in the design space, we can provide a more formal definition of VHLLS.

D efin ition 3.7 Very H igh Level Logic S yn th esis (V H L L S) is a composition of two

evolutions: concept synthesis and concept refinement such as:

^ e x t(d b h v i f-cpt) = ^ c p t—r e f t ° ^ c p t—s y n tif ib h v i^ c p t) = {fibhvi ^ s y s)

The definition of VHLLS leads toward the definition of a new generation of CAD tools

which can be characterized using the measurement schema for classification and comparison

of design methodologies defined in this chapter. Chapter 4 illustrates tha t no commercial

tools meet the characterization of CAD tools able to perform the VHLLS methodology.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

52

The next chapter seeks out a process to perform VHLLS. Methods under research are

reviewed, classified and analyzed. As a result, the definition of a new synthesis process

more suitable for VHLLS is introduced in Chapter 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Formal Mechanisms for VHLLS

In the previous chapters, the rationale for a VHLLS process is stated and formalized.

As the next logical step, the implementation of a such process needs to be considered. To

this end, formal mechanisms suitable to perform the VHLLS process are prescribed for con­

sideration in this chapter. In the scope of this research, two families of description models

have been selected and introduced in Section 4.1. A separate section is entirely dedicated

to each of these two families detailing the most relevant description models in each. As a

concluding part of these two sections, a comparison of the presented methods is performed.

Their advantages and disadvantages regarding their impact on the characterization of VH­

LLS (referred to as C in Chapter 1) are highlighted. These methods are then compared

to the minimum characterization set (referred to as Cmin in Chapter 1. Cmin leads to a

new generation tool called Specification Procedure for Electronic Circuits in Automation

Language (SPECIAL)).

53

with permission of the copyright owner. Further reproduction prohibited without permission.

54

4.1 Taxonomy

SPECIAL

SilagePetri Nets

SpecCharts State Action TablesAlgorithm State Machine

Microelectronics Based Methods

Hardware Description Language
v_
Specification and Description Language

Communication Sequential Processes

Model of a Microelectronics System

Programming or Control Based Methods

Figure 4*1: Taxonomy of Formal VHLLS Mechanisms

We consider the two most appropriate families of methods to specify and describe a

microelectronics system as shown in Fig. 4-1:

• programming or control based methods (described in Section 4.2):

• microelectronics based methods (described in Section 4.3).

The first family of description methods (programming or control based methods) has taken

its heritage from both the computer and automatic control process areas. For instance,

the Petri nets method is a typical approach of solving control problems. I t is used to de­

scribe distributed systems with emphasis on concurrent, non-deterministic processes and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on problems of communication and synchronization. In the computer area, the communi­

cation sequential processes method has been developed to overcome the limitations of the

traditional programming languages with respect to programs running on a multi-processor

machine. The choice of investigating these methods is relevant because, at the concept level,

many s imilarities appear between the two families: sequentiality, concurrence of processes,

etc. This fam ily (program m ing or control based methods) is important to investigate be­

cause the approach of tackling a design problem is culturally different compared with the

microelectronics world. For instance, control methods decompose a problem more easily

into concurrent sub-problems compared to a microelectronics problem which is decomposed

into sequential sub-problems.

The second family of methods (microelectronics based methods) has taken its heritage

from the microelectronics area. The most typical methods are the Hardware Description

Languages (HDLs) and in particular two of the most popular ones: VHDL and Verilog™.

These two description methods use the principle of programming language to describe hard­

ware behavior as presented in Section 4.3.1.

As defined in Chapter 1, the next generation of CAD must include the functionalities

not only of todays commercial tools, but also additional features provided in the list of

characteristics C. As indicated before, the tool to implement the next generation of CAD

tools which meets the requirements of Cmin is called Specification Procedure for Electronic

Circuits in Automation Language (SPECIAL). SPECIAL must have the ability to offer to

designers the most suitable description methods from, at least, the two families under study.

Note that the next two sections present description methods from the two description

families introduced above. These sections are self-contained with respect to the notation

and symbols. The description of each of these methods is very brief. If the reader wishes

with permission of the copyright owner. Further reproduction prohibited without permission.

to probe these methods further, references are provided. Also, each description method

is illustrated using the case study introduced in Chapter 2. Comparisons of and remarks

about these methods are made in the last sub-section of each family section.

4.2 Process Control Based Methods

This section presents description methods which originate in the automatic control the­

ory and algorithmic fields.

4.2 .1 A lg or ith m ic S ta te M ach in es

Introduced by Clare, the Algorithmic State Machine (ASM) chart [CLA73] is a dia­

grammatic description1 of the output function and the next-state of a FSM. It resembles a

conventional flow chart where a control flow is expressed graphically while an operational

behavior is described using textual assignment statements. So, ASM can be viewed as a

super-set of FSM.

Three basic graphical components allow a construction of ASM charts:

• state box: contains a list of either register operations or output signal names that the

controller generates while in this state. The exit path of the state box leads to other

state boxes, decision boxes or conditional output boxes. The exit path is represented

by a rectangle;

• decision box: describes the effect of an input on the controller. Two exit paths can

be taken regarding the enclosed condition: one when that condition is true, the other

when it is false. The shape of the decision box is in a diamond;

LA description in the form of diagram like an algorithmic chart

with permission of the copyright owner. Further reproduction prohibited without permission.

57

conditional box: describes register assignments or outputs which are dependent on

one or more inputs in addition to the state of the FSM. The rounded comers of a

conditional box differentiate it from the state box.

RESET. MODE

C S -’T oal(R) and notfW)

Mem(addri <-<UtaSRST - *0*

WATTING MODE

READ MODE

START

ERROR

Figure 4^2: RAM Description in ASM

Another structure, called block, is defined in the ASM chart. A block consists of one

state box and the decision and conditional boxes connected to its exit path. One charac­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

teristic of a block is that it has one entrance and any number of exit paths represented

by the structure of the decision boxes. One block describes the FSM operation during one

state. So, an ASM chart is a interconnection of blocks. Like the FSM, the timing model is

a one-phase synchronous clocking scheme. Therefore, delay specifications in ASM charts,

as introduced in Chapter 1, are not possible due to its dependence on a global clock.

As an example, we use the specifications of the RAM cell introduced in the case study

in Section 2.3. The ASM chart can easily represent the sequence of events which initializes

the RAM cell as shown in Fig. 4-2 from the "START’’ box until the diamond box labelled ~

CS = ’! ’ ’’. This sequence is described using decision boxes. So, starting from the state box

“START’, a reset sequence is applied using two decision boxes conditioned by the value

of the reset signal. After the reset sequence, the RAM cell goes to a wait mode for a chip

select signal to occur. The wait mode is modeled by a perpetual scanning operation of the

signal CS. So, when the chip select occurs, the RAM cell is either in a read mode or write

mode. In both modes, a conditional box is used either to modify the outputs of the cell

(read from the RAM) or to apply a storage operation (write into the RAM). Finally, the

RAM cell returns into the wait mode unless a reset is required.

4 .2 .2 C om m u n ica tion S eq u en tia l P r o c esse s

The Communication Sequential Process (CSP) [HOA78] language was developed to

overcome the limitations of the traditional programming languages with respect to programs

ru n n in g on multi-processor machines. This language follows the basic idea that systems can

be decomposed into subsystems which operate concurrently and interact with each other as

well as with their common environment.

A CSP program consists of processes P which stand for the behavior pattern of an object

with permission of the copyright owner. Further reproduction prohibited without permission.

59

CSP Desicnption

{Complex Commands}{Complex Commands}

Alternative Parallel

(decision making) (new processes)
Repetition

(iteration behavior)

{Simple Conditions}

External A Internal external
Influence Influence Influence
(Inputs) (Internal behavior)

.-V
(outputs)

Figure 4-3: CSP Hierarchical Structure and Interactions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as well as its environment and the system described by all the objects. So, within a system,

processes act and interact w ith each other as they evolve concurrently as illustrated in Fig.

4-3 (Note that a plain arrow represents an inheritance from the starting box and a dashed

arrow shows the interaction between the elements of the graph).

Hence, a system is described using a list of command (represented in Fig. 4-3 by round

brackets surrounding “Complex commands” or “Simple commands” i.e. { Complex com­

mands }) describing processes and their interaction with each other. A command specifies

the behavior of a device executing the command. The command list specifies a sequential

execution ordering of the com m ands in the list. There are two classes of commands. The

first class refers to simple com m and s which contribute to altering the internal state of the

executing process, affecting the external environment, and affecting both the internal state

as well the external environment as in the input command. The second class refers to

complex commands which are structured commands and involve the execution of all their

constituent commands. This last class of commands contains the structure for decision

making, parallel behavior of processes and implementation of interactive behavior.

In CSP some processes are created to encompass a control construction. So, if event x

and process P are involved in constructing a command, (x —>■ P) describes an object which

first engages in event x (meaning when x occurs) and then behaves exactly as described

by P. That can be referred to as guarded commands. Such a structure can lead to non-

deterministic1 behavior which is a salient difference between CSP and most other languages.

Com m unication between concurrent processes is simply specified with explicit input

and output commands. That is possible only under three main conditions: (i) the output

2The description of a system may lead to a case where the decision making mechanism does not generate
a unique process activation.

with permission of the copyright owner. Further reproduction prohibited without permission.

command in one process specifies another process as the destination of the data to be sent;

(ii) the input command of a process using data from other processes needs to include the

source of the data to be received; and (iii) match of data type during communications

between processes.

To illustrate the CSP description style, we use the case study introduced in Section 2.3.

So, the description of the RAM cell becomes a sequence of statements. The CSP description

is as follows:

• List of events denoted as a, b, c, d, e, / , g, out.ready, out.daut, in.ad, in.din where

— a = ” NRST = ’O’ ” meaning the reset command is active:

— b = ” NRST = T : ” meaning the reset command is not active:

— c = ” CS = T ! ” meaning the RAM cell is selected;

— d — ” CS = ’O’ ” meaning the RAM cell is not selected;

— e = ” (WR = ’0’) and (RJD = T ’) ” meaning the RAM is in read mode:

— f = ~ (WR = T ’) and (RD = ’O’) ” meaning the RAM is in write mode:

— g = ” ((WR = '0 ') and (RD = ’O’)) or ((WR = T) and (RD = ’1’)) ” meaning

the RAM is in error mode;

— out.ready = “output a ready pulse” meaning the RAM cell is ready to send data

out;

— out.daut = “output dout” meaning the selected value is sent;

— in.ad = “input ad” meaning the address of the data to provide or store is given;

— in.din = “input din” meaning a data is provided to store;

— out.error = “output error message” meaning an error occurs;

with permission of the copyright owner. Further reproduction prohibited without permission.

62

• Definition, of the processes:

— W A I T meaning that the RAM cell is in wait mode waiting for a read or write

operation;

— R W m ean in g that the RAM cell is selected and needs to identify its mode of

operation;

— R E A D m eaning that the RAM cell is in read mode:

— W R I T E m ea n in g that the RAM cell is in write mode:

— E R R m ean in g that the RAM cell is in error mode:

• Specification of the RAM cell:

— ccRAlM = {a, b} m eaning the alphabet of R A M is a and b (list of events involved

in the description of the process R A M) ;

— R A M = (a —¥ b —► W A I T) meaning that initially, the RAM cell needs to

acknowledge the event a following by the event b before applying process WAIT:

— a.W A I T = {a.b.c} mean in g the alphabet of W A I T is a, b and c (list of events

involved in the description of the process W A IT):

— W A I T = f i W A I T .{ a -> b-> W A I T

| c -»• R W)

mea n in g that either a reset sequence occurs or the RAM is selected;

— a R W = { e .f .g } meaning the alphabet of R W is e, / and g (list of events

involved in the description of the process R W):

— R W = (e -+ R E A D

| / -» W R I T E

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

| g -+ E R R)

meaning that the RAM cell is either in a read, write or error mode;

— a R E A D = {out.ready. in.ad, out.daut} meaning the alphabet of R E A D is out.ready,

in.ad and out.dout (list of events involved in the description of the process

R E A D):

— R E A D = (out.ready —> in.ad —► out.dout —»■ W A I T)

meaning that the RAM cell is sending the data selected by the provided address:

— c tW R I T E = {out.ready, in.ad. in.din} meaning the alphabet of W R I T E is

out.ready. in.ad and in.din (list of events involved in the description of the

process W R I T E) ;

— W R I T E = (out.ready —> in.ad —f in.din -¥ W A I T)

m eaning that the RAM cell is receiving data to store a t the provided address:

— a E R R = {out.error, a, b} meaning the alphabet of E R R is out.err or, a and b

(list of events involved in the description of the process E R R):

— E R R = (out.error —> a —»• 6 —»• W A I T)

meaning that the RAM cell does not recognize the event sequence:

The description using CSP does not entirely follow the specification for RAM cell given

in Section 2.3 because the specifications say that when the RAM cell is either in read or

write mode, it has to wait 1 ns before going to the WAIT state unless a reset command

occurs. For the above description, we overrule this specification issue by noticing that by

going in a wait state immediately, if a reset command is active, the RAM performs the reset

cycle as well.

with permission of the copyright owner. Further reproduction prohibited without permission.

64

4 .2 .3 P e tr i N e ts

Petri nets [REI85] were introduced by Petri in the early 1960s as a mathematical tool for

modeling distributed systems and. in particular, notions of concurrency, non-determinism,

communication and synchronization. There are many varieties of Petri nets from black and

white nets, which are conceptually simple and straightforward to analyze, to more complex

nets such as colored nets which allow the modeling of complex systems. A simple (black and

white) Petri net is a bi-partite graph with nodes which may be places (drawn as circles) or

transitions (drawn as rectangles or lines). Edges can connect places to transitions (known

as input arcs, with the corresponding places known as input places) or transitions to places

(known as output arcs, and the corresponding places known as output places). A Petri net

can be marked by indicating tokens which are contained in each place at a point in time

(drawn as dots). If all the input places of a transition contain (at least) one token, then

the transition is eligible for firing. If it does fire then one token is removed from each of its

input places and one token is added to each of its output places. A Petri net is executed by

establishing an initial marking and then, a t each subsequent cycle, choosing a set of eligible

transitions for firing. Notice that the ability of a transition to fire is determined solely by

local conditions, namely the presence of tokens in the adjacent input places. This locality

of reference is a desirable feature in modeling concurrent systems. Even with the simplicity

of black and white nets, it is possible to model interesting concurrent systems.

Petri nets have already been used to specify the behavior of a system [PB91]. Such

systems are synchronous parallel controllers. Having their specifications defined with Petri

nets, a synthesis process can be applied targeting a VHDL description at the RT level.

In the formalism defined in Chapter 3, the above synthesis process can be described as a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

composition of a system synthesis process and a system refinement or more formally:

^ s y a t—sy n th i.d b h v !^ sy s) ~ A s tr iP s y s)

^ s y a t—r e f t (d s tr - Pays) ~~ (Abhv'.Pact)

then X p e tr i—n e t—a y n th id b h v ; Pays) = ^ s y s t —r e f t 0 ^ s y s t—s y n th i^ b h v : Pays) = (d b h v i Pact)

A VHDL template has been defined to meet criteria such as a direct match with the Petri

net schematics and also to be compatible with simulator and synthesis packages. The VHDL

code generated is into the VHDL synthesis's subset.

As an illustration of Petri nets (Fig. 4-4), the RAM cell specifications introduced for the

case study in Section 2.3 is used. The Petri net graph is a dynamic graph meaning tha t a

token is moving from place P # i to place P # j e.g. in Fig. 4r4, initially one token in present

at place P # 1 and can move to place P # 2 . W ith the token in P # l , the transition T # 1

authorize the token to move to P # 2 when the condition associated with T #1 is verified. In

the case of T #8 , the transition occurs in any circumstances but depending on the evaluation

of the condition associated with the transition the token can go either in P #3 (when “NRST

= ’O’” is true) or in P # 2 (when “NRST = ’O’” is false). When the token is in one place,

actions can be executed. In particular, when the token is either in P # 5 then the action of

reading in the memory is activated or in P # 6 then the action of writing in the memory is

activated or in P # 7 then an error alarm occurs. In the RAM example, each transition T # i

has a condition associated with it as follows:

• T # 1 being: NRST= ’O’;

• T # 2 being: NRST= T ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

Token

P # 1 T#1Transistion

P # 2

Place T # 2

P # 3

T # 3T # 4

Input ArcP # 4

T # 6T # 5 T # 7

P # 6 Output ArcP # 5
P # 7

T # 1 0

Figure 4-4: RAM Using Petri nets

• T # 3 being: NRST= ’O’;

• T # 4 being: CS = T ’;

• T # 5 being: RD = T AND WR= ’O’;

• T #6 being: R D = ’O’ AND W R= T ’;

• T # 7 being: (RD= ?0’ AND W R= ’O’) OR (RD = T ’ AND W R= T);

• T # 8 being: NRST= ’O’;

• T # 9 being: NRST= ’0!:

• T # I0 being: True.

Once again, the specifications given for the RAM cell axe not fully implemented. Using

Petri nets, no time delay can be specified.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 .2 .4 S p ec ifica tio n a n d D escr ip tio n Language

67

Level I

Level 2

Channels
Level 3

Figure 4-5: SDL Hierarchical Structure

Specification and Description Language (SDL) [BS91] is a language for the specification

and description of systems. This language, mainly used in the telecommunication field, is

well suited for specifying real-time and interactive systems. In a nutshell, SDL essentially

specifies the behavior of the system and its interaction with its environment.

The basis for describing a system behavior (shown in Fig. 4-5) is a hierarchy (tree like)

of dataflow Hia.gra.ms (to create the "branches” of the tree) and state machine at the leaf

level. The element of the tree referred to as block represents the main structuring concept

in SDL. A block helps partition a system description into sub-descriptions. So, block

can be composed by interrelated sub-blocks B?+l. We say f?” is the n-th block at the level

i and Bf_l is the p-th block of the level t' + l a level under level i (e.g. in Fig. 4-5), we have

three levels. Level 1 is the root level which represents the system description. A partition

of level 1 is composed by three blocks a t level 2 (a sub-level of level 1). Level 3, in Fig. 4-5,

represents the partition of only one block B \ into one block and one leaf. A leaf in the SDL

tree as shown in Fig. 4-5 has one or more processes. A process is essentially a state machine

which works concurrently with other processes. A mechanism for exchanging information

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

between, blocks of the same level is modeled with arrow type of links called channels. In

Fig. 4r5, rhannpls are represented with dashed arrows.

CONTROL
[NRST. CS]RAM

CONTROL

COMMAND
[Write] > STATUS

**[End of operation]

COMMAND
[Read]

READ RAM
WRITE IN RAM

STATUS
[End of operation]

COMMAND
[Error] ,

ERROR

DISPLAY
[Warning]

Figure 4^6: RAM Specification Using SDL

As an illustration for SDL, the specification of the RAM cell, described in Section 2.3,

is shown in Fig. 4r6. For the purpose of showing a SDL description style, a partition is

shown in Fig. 4-6 knowing that the RAM cell can be a leaf by itself because the RAM cell

can be described using a state machine. So, as shown in Fig. 4-6, there are four processes:

CONTROL, READ, WRITE and ERROR. The Control process manages the read and

write operations performed by READ and WRITE processes and for simulation purposes,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

the Error process was added to display warnings when an unexpected combination occurs

on WR and RD signals.

For this description model, the RAM cell is also partially described regarding the specifi­

cations given in Section 2.3. Indeed, it is not possible to specify the RAM delay specifications

using the SDL formalism.

4 .2 .5 E v a lu a tio n o f P ro cess C o n tro l B ased M eth od s

In Chapter 1, the automatic transition from concept level to system level is defined

such that it embeds at least the characteristics from the set C. The properties of the

above program m in g or control based methods can be mapped with the list of concept level

characteristics as shown in table 4.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

Sequentially Decomposable Activities

Concurrently Decomposable Activities

State Transitions

Immediate Mode Change

Activity Completion

D elay Specification

Asynchronous Activities

Design for { Test, manufacturing, etc }

Multiple Model Representations

Reusability

Table 4.1: Characteristics of Programming or Control Based Methods

Table 4.1 highlights that each method is a specialized method. Notice that Petri nets and

CSP contain the largest number of characteristics because they both address the problem

of sequentially decomposable activities, concurrently decomposable activities, state transi­

tion and activity completion. Even though they have the same characteristics, a second

level of comparison is possible. Indeed, the Petri nets model involves a dynamic graphical

description of a system whereas CSP is a static textual description style.

For each checked characteristics, a mechanism is defined. We immediately notice that the

Petri nets and CSP methods have an advantage over ASM because the set of characteristics

in ASM is contained in the two former ones (C a s a t C CP e tr iN e ts and Ca s m C Cc s p)-

Indeed, ASM does not have the ability to concurrently decompose activities. This last

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

71

remark implies that a description using ASM can be also described using Petri nets or

CSP with a reasonable effort. On the contrary, Petri nets and CSP descriptions cannot be

modeled with ASM without dramatic changes, which should lead to some modifications in

the specifications.

In the case of SDL, its Csdl shows that it is a complementary method in comparison

with the other ones. In addition to the sequentially and concurrently decomposable activi­

ties. it also has the immediate change mode characteristic. This characteristic means that

SDL has a built-in mechanism for emergency cases.

From Table 4.1, we can see that by using a multi-model representation description

method, the combination of two of the four presented methods (ASM, Petri nets, CSP,

SDL) can lead to a new description methodology having a characteristic set Ccombi greater

than any of these methods i.e. if the new description method combines either Ccombi =

C Pctrinets U CsDL or C combl = CcSP U CsD L, the Cardinal of C c o m b i is then 5 { # C c o m b i = 5)

versus # C s d l = 3, # C p etrinets = 4 and # C c s p = 4.

Table 4.1 shows, for comparison purposes, the characteristics set C for the most advanced

description methodology in the next generation of CAD tools. Notice that the four described

methods are far from meeting the requirements of the next generation of CAD tools. So, a

strategy to define this next generation of tools is to consider one characteristic which is not

addressed by other description styles. The minimal configuration of the next generation

of tools, as introduced in Section 1.1.2, is considered with an emphasis on a particular

characteristic which is “Delay specification”. Because this new generation of CAD tools

have the goal of verifying the characteristics referred to as “Multi-model representation”,

the above minimum configuration does not need to verify the characteristics o f Ccombi in

addition to the Delay specification characteristic. Later, a combination of description styles

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

will fill the gap in order to meet the requirement for a CAD tool having the characteristics

C.

The next section reviews description methods from the microelectronics design methods

introduced in Section 4.1 as the second family of description methods.

4.3 Microelectronics System Design M ethods

This section focuses on description methods defined specifically for the microelectronics

domain. This section reviews description methods in order to identify a good candidate to

initiate the VHLLS with, at a minimum- the characteristics Cmm defined in Section 1.1.2.

4 .3 .1 H ardw are D e sc r ip tio n Languages

Hardware Description Languages (HDLs) such as VHDL [IEE93], Verilog™ [TM91]

and HardwareC [KM88] are used to describe hardware from the abstract to the architecture

level and to be able to simulate, test, validate, and synthesize designs before implementa­

tion. They exhibit semantics common to high-level programming languages, such as data

abstraction, behavioral operations, assignment statements and, control and execution or­

dering constructs to express conditional and repetitive behavior. The common denominator

of these three HDLs is their software inheritance extended with hardware dependent fea­

tures i.e. in VHDL a new category of variable types called signal is introduced. In general,

specifications using these HDLs consist of a collection of concurrent processes which com­

municate with each other. Processes can be enclosed within a hierarchy of blocks. Blocks

cn n be used to define structural relationships between the processes. A process specifies an

algorithm as a set of sequential operations described in a manner close to a programming

language such as C for HardwareC [KR78] and ADA for VHDL [LSU89].

with permission of the copyright owner. Further reproduction prohibited without permission.

A different philosophy has been taken in defining such languages. HardwareC is designed

expressly to be a HDL for synthesis purposes whereas VHDL and Verilog™ are simulation

driven which gives them a more general syntax to describe a system. VHDL and Verilog™

describe relationships between the inputs and the outputs of a system in terms of behavior,

dataflow, structure or any combination thereof as illustrated in the example a t the end of

this section. The current progress on VHDL and Verilog™ has restricted their semantic

to synthesis!s subsets which are com m o n ly used in industry. Descriptions at the RT level

in the behavioral domain (as defined in Chapter 3) can be synthesized with current tools

as shown in Chapter 2. In chapter 6, VHDL is presented in more detail.

To illustrate HDL descriptions, VHDL code describing the RAM cell specified in Section

2.3 is presented. The code is composed of two parts. The first part is called entity and

defines the interface of the RAM cell:

ENTITY RAM IS
 PORT describes the interface of the RAM cell
 An input is specified using the keyword IN
 An output is specified using the keyword OUT
 A type is associated with each signed: a bit or a word (bit_vector)
PORT r

N R S T : IN bit:
C S : IN bit;
RD : IN bit;
W R : IN bit:
AD : IN BIT.VECTOR{0 TO 7);
D IN : IN BIT.VECTOR(0 TO 31:
DOUT : OUT BIT.VECTORfO TO 31:
READY : OUT bit);

 To make the description easier to modify, constant values can be defined
 For this description, several durations are specified
CONSTANT TJREADY.U : time := 60ns;
CONSTANT TJtEAD YJ) : time := Ins;
CONSTANT T-ACCESS : time := 40ns;
CONSTANT T-WRITE : time := 5ns;

END RAM :

The second part, called architecture, is the description of the behavior of the RAM cell

using algorithmic features:

with permission of the copyright owner. Further reproduction prohibited without permission.

ARCHITECTURE .4 OF RAM IS
 Declaration of a constant which specifies the number of words the RAM can store
CONSTANT nb-words : INTEGER :=2**8;
 Define the structure of the RAM: 256 4-bits words can be stored
TYPE (ype_memoiy IS ARRAYfO TO nb.words - 1) OF BIT-VECTOR(0 TO 3);
 Declare the variable which models the storage function of the RAM
SIGNAL M : t y p e j m e m o i r e :

 Definition of a function which convert the address into an index for M
 In other words, it converts a bit string in an integer
FUNCTION value(bv : IN BIT.VECTOR) RETURN natural IS
VARIABLE n : natural : = 0:
BEGIN

FOR / IN bv'low TO bv'kigh LOOP
n := n * 2:
E l I>v(l) = ' 1'

THEN
n ~ n + l;

END IF ;
END LOOP:
RETURN n:

END value:
 Definition a type which enumerates the states the control function
 of the RAM can be
TYPE Tmestate IS (InitO, In itl, Waiting, RW,R, W, Err);
 Declaration of a variable which represents the state the RAM controller is
 Note that an initial value is predefined
SIGNAL state : T y p e - S t a t e := initO;
BEGIN

 Description of the RAM’s controller
 The process is executed when one of signals NRST,
 CS, state. RD.WR changes
main : PROCESS (NRST, CS , sfate, RD, WR)
BEGIN - —main

 The case statement allows to check in which state
 the controller is
CASE state IS

WHEN InitO =>
 The controller is in state INITO
 It checks NRST to become ’0’ in order to change
 its state to INIT1
E (NRST = ' O')

THEN
state < = Initl;

END IF :
WHEN In itl - >

 The controller is in state INIT1
 Next state is Waiting
IF (NRST = ' 1')

THEN
state < = Waiting;

END IF ;
 The controller is in state ENTTl

with permission of the copyright owner. Further reproduction prohibited without permission.

 Next stace Is RW
W HEN Waiting =>

IF (CS = ' 10
THEN

state <= RW :
END IF ;

W HEN RW =>
 The controller is in state RW
 There is more than state. So. first the controller
 checks WR and RD to determine if the RAM is either in
 read mode implying the next state is R, or in write mode
 implying the next state is W, or else implying the next
 state is ERR
IF {WR = ' O' AND RD =' I')

THEN
state <= R:

ELSIF {WR =' 1' AND RD = ' O')
THEN

state <= W :
ELSE

state <= Err:
END IF ;

WHEN R =>
 The controller is in state R
 A ready pulse is sent
 the data read in memory is sent out
Ready < = ' 1' AFTER TJtEAD Y.U ,'0' AFTER TJREADY.U + T-READY JD
DOUT <= M{value{AD)) AFTER T-ACCESS;
 If a reset occurs within 1 ns time frame then the controller goes
 in state Initl otherwise it goes to state waiting
WAIT UNTIL {NRST = ' O') FOR Ins:

IF {NRST = ' O')
THEN

state <= In i t l :
ELSE

state <= Waiting:
END IF ;

W HEN W =>
 The controller is in state W
 a data is store in memory
M{value{AD)) <= D IN AFTER T-WRITE:
 If a reset occurs within 1 ns time frame then the controller goes
 in state Initl otherwise it goes to state waiting
WAIT UNTIL {NRST = ' O') FOR Ins;

IF {NRST = ' O')
THEN

state <= Initl:
ELSE

state < = Waiting;
END IF ;

W HEN Err =>
 The controller is in state ERR
 A warning is issued and the next state is ENITO
ASSERT false

permission of the copyright owner. Further reproduction prohibited without permission.

76

BRPOHT ”Wrong Value fa r W R and RD on rising edge o f CS"
SEV ERITY warning;
state < = InitO;

END CASE : ---- state
END PROCESS main;

END A:

HDLs are important to investigate because they can meet a lot of requirement for VH-

LLS. In fact, VHDL (the language of interest for the thesis) has the potential to perform

some characteristics even though they are not a part of the language. For example, VHDL

does not have the “immediate mode change'1 characteristic built-in it but with good pro­

gramming skills, this characteristic can be implemented.

4 .3 .2 S ila g e

The Silage language [HIL85] was developed to address issues related to the specifica­

tion of Digital Signal Processing (DSP) systems. DSP systems are easily conceived of as

data-flow graphs, where a set of data values enters at the input nodes, computations are

performed on them, and result values are delivered to the output node in the graph. Silage

is essentially an applicative language in that it only specifies application of functions to

manipulate a set of data values without having any variables or assignment operators.

The basic data objects in Silage are streams of value, called signals. Each Silage descrip­

tion has to have signals coming in and some signals going out. The same Silage description

is then applied over and over again to the infinite sequence of input samples. In other

words, an expression such as (A + B) is composed of a stream of numbers denoted A and

B as opposed to representing variables or array elements in conventional programming lan­

guages. A Silage program consists of a set of definitions which defines new values as a

function of other values. As the assignment of signals represents a flow of data, the order

of the definitions is not relevant. To refer to a signal in the previous sample interval, a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

delay operator is defined and noted For example, out = in + in@l semantically means

(V£: 0... + oo) :: out(t) = in{t) + in (t — 1) (at an instant t, the value of the output is equal

to the sum of the value of the input a t the same instant t and the input at the previous

instant (t - 1)). Also multi-dimensional arrays of signals are possible. For tha t matter,

operators such as sunt or max are defined over an entire array. Other constructions can be

used as well: conditional expressions to select one expression from a set of expressions based

on guarded conditions, stream manipulation operators enabling up or down sampling of a

signal, and macro expansion grouping a set of definitions. However, recursion or iteration

constructions are not allowed in Silage. These constructions are not been defined in Silage.

Silage cannot be used to describe the RAM cell specified in Section 2.3 because the

normal use of a RAM does not need a constant data stream to operate. On the contrary,

the RAM reacts to control signals. Good applications-for Silage are digital filters and other

Digital Signal Processing (DSP) applications. For our purpose, it is interesting to talk

about it because a system under specification could use features from DSP. So, a language

like Silage should be a part of the set of description methods provided by the next generation

of CAD tools.

4 .3 .3 S p ecC h arts

The SpecCharts language [VNG91a, VNG91b] consists of a hierarchy of states, repre­

sented in combined graphical and textual form, while catering to the expression of concur­

rent behavior and specification of constraints. This language combines the three aspects of

system specification (control, behavior, and structure) into a single, unified environment.

The concept of behavior is defined so as to describe a system with principles from Finite

State Machines (FSM) and VHDL. A hierarchy notion, called behavioral decomposition,

with permission of the copyright owner. Further reproduction prohibited without permission.

allows a decomposition of behaviors into either processes (also referred to as concurrent

behaviors), or states (also referred to as sequential behaviors) which are sequenced by con­

ditional arcs. At a leaf level in the hierarchy, a behavior uses VHDL sequential statements

to specify actions the system needs to accomplish.

In SpecCharts, a box represents a behavior. A transition arc sequences sequential be­

haviors and a dotted line identifies concurrent behaviors. A feature devoted to managing

a hierarchical language has been developed in order to respond to an external event: hi­

erarchical activation/deactivation allowing a deactivation of any sub-behavior at any time.

Another type of transition towards the next appropriate state is called transition imme­

diately and gives the option exiting the current behavior, then suspending its execution.

For cases other than the immediate transition, a mechanism is in place to flag a behav­

ior which has completed its actions, allowing other states to be aware of that completion.

This is called behavioral completion. Associated with that behavioral completion mecha­

nism, a transition on completion arc causes a transition only when the source behavior has

completed execution of its actions and the associated condition is true.

A translation process had been developed to generate a VHDL description from the

SpecCharts language [VNG91c]. Templates are defined to map SpecCharts with a VHDL

structure. Each behavior is translated into a block structure following the same hierarchy

as SpecCharts i.e. a sub-behavior becomes a sub-block. Control statements defined in

SpecCharts i.e. state activation/deactivation, are implemented as follows:

• a VHDL wait statement is sensitive to an activation by a parent of its behavior.

During the activation mode, the resulting task is either activating/deactivating the

proper sub-behavior or executing a VHDL code;

• during a deactivation mode, the behavior has to deactivate a sub-behavior either im-

with permission of the copyright owner. Further reproduction prohibited without permission.

mediately or after completion of actions depending of the type of transition requested;

• during an activation mode, the behavior is responsible for informing its parent upon

completion of actions requested from it.

When an immediate transition occurs, a complete mechanism is activated to force current

behavior and its sub-behavior to deactivate immediately and cease all signal assignments,

thus preventing any signal assignments having the clause * after a time delay". The second

type of transition is transition upon completion. In this case, it is verified that all statements

within a behavior have been completed even if time delays are assigned to waveforms. So,

a mechanism is implemented to evaluate the time of full completion of a behavior. Timing

variables are introduced to measure the time spent during a wait statement (global-time)

and to measure the remaining time necessary to complete all actions within the current

behavior (remain-time).

The RAM specification is used to illustrate SpecCharts as shown in Fig. 4-7. This

description is similar to a state machine where the initial state is marked with the dot

extended with an arrow. The actions associated with each state are described in the box

which model the state. In addition to the state machine, a declarative part is added at

the top of the graph along with the name of the system. In Fig. 4-7, this declarative

part contains the name RAM, the definition of the interface of the RAM cell and several

constants.

Notice th a t SpecCharts has very advanced features such as a complex mechanism for

its hierarchical structure because, for a characteristic like an “immediate mode change”

the system under description must have all the processes stopped a t once in the whole

hierarchy as well as canceling signal assignment associated with duration (for example, we

saw in Section 4.3.1 the signal “ready” was assigned with a waveform such that ready was

with permission of the copyright owner. Further reproduction prohibited without permission

80

00

a
CO

CO

00

00 oo

ao00

6/5 X sc £

Figure 4-7: RAM Description Using SpecCharts

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

getting the value ’1’ after 60 ns and ’O’ again after 61 ns). In this case, if the system must

leave the read state after 30 ns, the signal ready does not have the time to complete its

assignment. So, SpecCharts has a mechanism to identify these waveform assignments and

to cancel them.

4 .3 .4 S ta te A c tio n T ab les

State-Action Table [HCG93] provides a concise tabular notation for state-based design

descriptions, where the state sequencing of the design can be expressed clearly in a state

table and the datapath operations can be expressed using textual assignment statements in

each state.

In a state-action table, a column defines the type of the values on it or attribute of a

state and a row establishes relationships between these typed values. Therefore, a state is

characterized using a set of attributes:

• PS identifies the present state:

• SCOND is the condition for a transition to a next state:

• NS defines the next state:

• ORDER specifies the ordering of actions within a given state, stipulating a dependency

between actions (known as chaining);

• CV is a list of conditions selecting proper actions to be executed;

• ACOND is the assignment condition for each action. The composition of these con­

ditions involves asynchronous input signals, clock signals or boolean expressions;

• ACTIONS lists a sequence of operations required in the given state. This can be done

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

using functions as well as simple assignments. When using functions, operators can be

used such as operator pipelining and multi-cycle operators. By nature a function may

be composed of a sequence of operations which can take place over multiple time steps

and may have multiple return values. So, these two operators allow operations to take

one or more states to complete an operation (operator pipelining) and to partition a

single operation into some number of sequential time steps:

• A C # allocates a unique identifier to each row:

• TIMING is an attribute which is decomposed into four sub-attributes specifying tim­

ing constraints:

— AB (Action-Based constraint) defines a timing constraint on the action contained

in the same row:

— SB (State-Based constraints) defines the time needed for the considered state to

have its actions finished:

— EB (Expression-Based constraints) defines a timing constraint which has to be

applied between two actions in the same state:

— TB (Transition-Based constraints) defines a timing constraint which has to be

applied for a transition between the present state and the next state.

A notion of hierarchy is also introduced in this methodology. Its main purpose is to represent

multiple clock phases by classifying states and atomic actions.

As an illustration of the State-Action table description, we use again the case study

described in Section 2.3. For each state of the RAM cell controller as shown in the column

PS, a row is created. When one state has more than one next state, an new row is added

accordingly as illustrated with state RW. A transition is controlled by a condition in column

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

PS SCOND NS ORDER CV ASCOND ACTIONS AC# ABEB SB TB
LNITC T INITL 0 (NRST = ’O’) T 1
DNTT1 T WAIT 0 (NRST = T) T 2
WAIT T INITL 0 (NRST = ’O’) T 3

RW 0 (CS = ’1’) T 4
RW T R 0 (R=’l ’ and W=’0’) T 5

W 0 (R=’0’ and W=’l ’) T 6
ERR 0 ((R=’0’ and W=’0’))

or (R=’l ’ and W =’l ’))
T 7

R T WAIT 0 (NRST = ’O’) T out <— Mem(addr) 8 8,Ins,2
W T WAIT 0 (NRST = ’O’) T Mem(addr) «- data 9 9,Ins,2

ERR T ERR 0 F T 10 10,Ins,1

Table 4.2: RAM Description in State-Action Table

CV. Actions are specified in the column ACTIONS shown for the state R, W and ERR. For

these three states, another information is contained in the table which is a time constraint

applied on the transition from state R or W to INIT1 meaning that if a reset occurs, no

m atter what, the state change is effective after I ns. The time constraint as defined in this

description model does not meet the characteristic referred to as “delay specification” .

4 .3 .5 E valuation o f th e M icro e lec tro n ics B a sed M eth od s

In the previous section, we reviewed typical description methodologies from the micro­

electronics field. Based on the characteristic set defined in Section 1.1.2, a comparison is

performed to evaluate which method would be the most appropriate to meet the require­

ment for the next generation of CAD tools. Table 4.3 shows the characteristic set for each

of these methods as well as the desired characteristics C of the next generation of CAD

tools and the minimal configuration Cmm for the initial version of these future CAD tools.

Table 4.3 shows tha t SpecCharts meets a larger number of characteristics. SpecCharts

was defined as an extension of VHDL. It follows a bottom-up approach, meaning that

SpecCharts helps the designer to construct a VHDL code where a set of predefined structures

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

C H D L C Silage CSpecC harts C S ta te A dionTaU es Cjnin c
Sequentially Decomposable Activities S s s V >r /
Concurrently Decomposable Activities / s >f /

State Transitions V / ✓ /
Im m ediate Mode Change / /

Activity Completion s < / >r /
D elay Specification /

Asynchronous Activities S /
Design for { Test, manufacturing, etc } /

Multiple Model Representations /
Reusability ■/ /
Table 4.3: Characteristics of Microelectronics Based Methods

is provided. For example, describing a system behavior which contains a state machine is

becoming a far easier task using SpecCharts than writing the VHDL. It helps minimize the

chance of error during design. SpecCharts offer a lot more features than the commercial

tools described in Chapter 2 because they embed more than just sequentially decomposable

activities, state transitions and activity completion.

Like SpecCharts, the State Action Table description method is constructed following a

bottom-up approach. These two methods have the same roots because they were developed

in the same research laboratory (University of California, Irvine). State Action Tables are

interesting because there is a mechanism to set time constraint which is to set the period of

time the system has to stay in one state as opposed to the time encapsulation specified by

the characteristic “delay specification” (it defines the maximum duration a system can stay

in one state). However, these time constraints will be important to add in the formalism of

the next generation of CAD tools.

The Silage description method is worth referring to because it is a common description

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

method in microelectronics when the system has an important data stream to manipulate.

It has been presented for informational purposes and additionally to stress tha t the next

generation of CAD tools needs to provide this type of description method.

The last description method is HDL, with a particular emphasis on VHDL, because it

is a more abstract description language than Verilog™ and HardwareC. In addition, it has

been an international standard since its creation in 1987. Table 4.3 presents HDLs as a

description language that meets few of the characteristics. As a reminder, a characteris­

tic is checkmarked when a mechanism is built in the description method to perform this

characteristic. In the case of VHDL, even though very few characteristics Eire built-in, the

syntax is flexible enough to allow a VHDL description of them. This is indeed a reason,

SpecCharts and State Action Tables are defined upon VHDL and are able to out-shine most

of the description methods in this chapter. However, the main disadvantage of VHDL is its

absence of visual representation. Most hardware designers like to “see” a design database

rather than have it as a textual string. Also, a VHDL description can become cumbersome

very quickly.

As seen in the previous section and this one, no method meets the requirement for the

minimal configuration of the next generation of CAD tools (moreover the next generation

of CAD tools which meet the characteristics of C). Also, not all the presented description

methods have the ability to automatically generate a description in the behavioral domain

(any levels) such as CSP, Silage. On the contrary, SpecCharts and State Action Table

descriptions provide a description method which is captured at the system level in the

behavioral domain, and an evolution process (as defined in Chapter 3) allows an automatic

translation of their descriptions into the architecture level in the behavioral domain using

VHDL. Thereafter, a composition of evolutions automatically generates the design in a

with permission of the copyright owner. Further reproduction prohibited without permission

86

targeted technology.

The next chapter introduces one approach for meeting the m inim um requirement for

the next generation of CAD tools and implementations of the evolution process defined in

Chapter 3 as VHLLS. Indeed, with the addition of more characteristics, the abstraction of

the descriptions increases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 5

VHLLS Design Strategies

In Chapter 1. the notion of VHLLS has been introduced and characterized. In addition,

motivations for developing a such method have been outlined. This leads to a minimal

configuration, Cmin, for the next generation of CAD tool referred to as SPECIAL. Chapter

2 contrasts a conceptual view of VHLLS with commercial tools in order to give a preliminary

definition of VHLLS. Chapter 3 formalizes the design space as well as VHLLS. Chapter 4

reviews the most significant description methods which have been considered as a VHLLS

methodology. As a result, no methods satisfied the requirement of VHLLS as stated in

Chapter 1.

The goal of this chapter is to propose a framework for the implementation of the VHLLS

methodology. To achieve this, two different strategies are investigated. As mentioned in

the previous chapters, the VHLLS methodology is an evolution from the concept level in

the behavioral domain to the system level in the behavioral domain. At the concept level,

graphical methods are preferred because they are more widely used in the engineering field

and they can carry more information than text. This does not mean that natural language

should not be part of the input description, and SPECIAL has a potential of addressing

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

_ n

GRAPHICAL MODEL #NGRAPHICAL MODEL #2GRAPHICAL MODEL # 1

BASIC #nBASIC #2KNOWLEDGEBASE BASIC #1

TEST
VECTORS

(BEHAVIOR)

VHDL
DESCRIPTION

SYNTHESIS

— 4—
f »

TEST PHYSICAL
VECTORS DESCRIPTION
(LAYOUT)C - ■* J

Figure 5-1: Global Strategy: Specification-Behavior Synthesis

this requirement but this type of description is not considered in this thesis. The system

level description in the behavioral domain uses the most popular HDL called VHDL, as

introduced in Section 4.3.1. VHDL will be described in more details in Section 6.1.

The VHLLS methodology is performed in two steps: (1) concept synthesis, and (2)

concept refinement (both introduced in Section 3.3). To reduce the translation complexity,

an intermediate representation is introduced. Thus, the VHLLS processes can be viewed as

shown in Fig. 5-1.

In this figure, the two strategies are represented and are as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

• Basic VHLLS: for a given graphical representation, a specific translator can be created

to generate the corresponding behavioral description;

• Advanced VHLLS: the necessary knowledge is extracted from each graphical repre­

sentation and put into a unified model. From this unified model, a unique translation

process is performed to generate the corresponding behavioral description.

In Fig 5-1, the upper boxes, referred to as graphical models, represent description mod­

els at the concept level in the behavioral domain. The other boxes can be viewed as transfer

functions. The basic VHLLS strategy is represented by the link between a graphical model

and a VHDL description through an intermediate representation shown as a box labelled

“BASIC” followed by a number. Notice that for each graphical representation, one inter­

mediate representation is necessary justifying a unique label for each box. The advanced

VHLLS strategy is represented by the link between a graphical model and a VHDL de­

scription through an intermediate representation shown as a box labelled “KNOWLEDGE

BASE”. This link has the property that all the graphical models lead to the same box and

only one output of this transfer function is needed to generate the corresponding VHDL

description.

To define these two strategies, a sub-set of the possible descriptions is chosen to meet the

characteristics of the first generation of VHLLS processes as specified in Chapter 1. Indeed,

the minimum set of characteristics, referred to as Cmin in Chapter 1 and shown in Table

5.1, is applied to define a graphical model which is presented in Chapter 6. This description

is referred to as a pseudo-state diagram because it uses the principle of a conventional state

diagram where time is encapsulated. To implement this m inim al configuration of VHLLS

starting from the pseudo-state diagram, we must define the meaning of the characteristic

Delay Specification also referred to as time encapsulation. As a consequence of this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

C h arac te ris tics C heckm ark

Sequentially Decomposable Activities /
Concurrently Decomposable Activities

State Transitions V
Im m ed ia te M ode C hange

Activity Completion /
D elay Specification /

Asynchronous Activities
Design for { Testability, Manufacturing, etc }

Multiple Model Representations
Reusability

Table 5.1: First Generation VHLLS Characteristics: Cmm

characteristic, the formulation of conditions in the context of the pseudo-state diagram

must be examined. Therefore, Section 5.1 defines the notion of time and some fundamental

notions about facts and events, and features associated w ith time encapsulation. Section

5.2 presents the basic VHLLS strategy whereas Section 5.3 presents the advanced VHLLS

strategy.

5.1 Fundamental Definitions

Before presenting the two strategies for implementing VHLLS, we need to introduce

some fundamental d efin it io n s about the representation of time. Thereafter, we define the

meaning of events and facts which axe fundamental for the representation of time for the

VHLLS process.

5.1 .1 M od el o f T im e

As mentioned earlier, we need to address the representation of time in the VHLLS

process in order to encapsulate time. This process is accomplished by introducing a formal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

representation of time. Furthermore, this approach involves constructing representations

anH logical systems to handle time. The framework for handling time is in our case a

temporal logic1.

In order to specify a temporal logic in a semantical manner, the following list of items

is defined [GHR93]:

1. the time flow of the logic:

2. the units of time needed to determine tru th values:

3. the temporal connectives used:

4. the truth conditions for the connectives.

In order to elaborate on each of these elements from the above list, first a temporal structure

needs to be introduced. Let T be a discrete time set. For any ti and e T , there exists an

ordered relationship between t\ and denoted < such as t\ < t2 means t\ is before t%. Let

to E T be the first point of discrete time. In the temporal logic terms, a logical expression

referred to as a proposition p can become true at an instant to 6 T. An assignment function

h is also included in a temporal structure to define either operators or predicates. Formally,

the temporal structure can be defined as follows:

D efin ition 5.1 A tem poral stru ctu re has the form (T ,< ,to ,h), where T is an indexed

set, (T, <) is a flow of time, to E T , and h is an assignment.

In the above structure, the notation (T, <) is a generalization of time space without

constraints imposed by to and h, and < is a binary relation within the indexed set T. Tem­

poral structure, (T, < , to, h) becomes time domain for proposition p if and only if ||p||£, = 1

‘Temporal logic theory is an extension of the logic theory with time sensible operators and predicates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

which means the proposition is true a t time to and through out the assignment h. p is said

to be valid in (T , <, h) if Vi 6 T, ||p||* = 1. p is said to be valid in (T, <) if and only if any

h, p is valid in (T, < , h).

From the above discussion and the above temporal logic list, we have:

1. the time flow which can be interpreted as a continuous increase of an index t(i) 6 T

such as t{i — 1) < t(i):

2. the unit of time follows the international unit of time i.e. seconds,milliseconds, mi­

croseconds, etc...

3. the temporal connectives represent temporal operators or predicates. By default, the

eligible standard logical operators are A (and), V (or), -> (not), etc...

4. The truth conditions determine logical value of temporal expressions. The following

notation is used for predicates with temporal expressions. Predicate 5 is defined as

S(A, J3), where A, B are propositions, and interpreted depending on the combination

of temporal characteristics of A and B . Formally, a connection between temporal

characteristics of A and B , and predicate S (A ,B) is accomplished by using assignment

h representing the equality “= ” . For example, if both A and B are true in the sense

that in time B is always true whenever A is true then S(A, B) = “A and B are true

in the sense that in time B is always true whenever A is true”. In a more formal

manner, the tru th conditions for this connective can be defined as follows:

S{A .B) is true at n (“now”) if for £ < n, A is true at £ and for all points between £

and n, B is true.

Having introduced the general definition of the time flow, we can now introduce the

model of time for a VHLLS methodology. In the microelectronics domain, the time flow

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

T im e Domain D efinitions Com m ents
(r ,<) Generalization of the structure

of time
also known as time flow

(T ,< ,h) Structure of time under the as­
signment h

the time flow is associated
with an assignment mecha­
nism which allows the defini­
tion of temporal expressions

(T. < , t0 ,h) Structure of time It is a constraint version of
(T, < , h) meaning that the as­
signment definitions of tem­
poral expressions are effective
only at the instant £o

(Z \< ,=) Structure of time under the as­
signment

Same as (T ,<,h) with h =
q rt

(r,<,=,r«) Structure of time which em­
beds branching future

Same as (T .< .h) with h =
“= “ and in addition, the no­
tion of future is embedded as
well as its uncertainty with a
non-unique value of future in­
stant a

Table 5.2: Time Domains

can be characterized as follows: there is a single time path going from a system state in the

past to the one in the present. For example, a RAM cell is in an idle state waiting for a

chip select signal. As soon as the chip select signal is active, the RAM cell switches to fetch

mode. Considering the instant when the chip select signal becomes active as a reference

point, referred to as present or now (noted n), the past of n { it 6 T such as t < n) is

linear because all the states of the RAM axe known. However, future system states are not

predictable in terms of both time and state, and depend strongly on events coming from

the external world to the system. Such an interpretation of the future can be modeled

with the notion of branching future. In other words, taking the same example as above,

the state of the RAM cell after n (now) (V< 6 T such tha t t > n represents the future)

cannot be identified. So, depending on possible events, the RAM state will be in one state

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

or another. The potential of future behaviors are modeled using the notion of branching

future also referred to as planned future. This flow of time can be modeled using a linear

representation2 of time (T, < , =) adding the future branching representation Ta such as

(T, < ,= .T a), a 6 T. In Fig. 5-2, the time increases linearly when going from the left to

the right. The planned future behaviors are represented by broken line i.e. branches, for

instance, they occur at time instants t and s. So, in the first case, a = t and temporal

structure (T, < , =,Tt) is obtained. For the second case, a = s the temporal structure

(T, < ,= .T S) is defined. W ith this notation, T is the set of moments of time, and < is an

irreflexive and transitive relation within T and a 6 T . An illustration is given in Fig.5-2.

Axiomatically, (T, <,= ,Ta) has the following properties:

Planned future at s

Linear
Past

Branching FuturePast Future

Planned future at t

Figure 5-2: Branching Future

1. < is irreflexive and transitive, i.e.

(a) Vx 6 T. -i(x < x)

(b) Vx, y ,z ET, {x < y f \ y < z =& x < z)

2[mear representation is interpreted as a straight line which models the constant evolution of time (same
pace).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

2. The past is linear:

Vx, y , z E T , (x < z A y < z = > x < y V y < x \ / x = y)

3. for each branch in Fig. 5-2 generalized by the corresponding Ta, the following prop­

erties hold:

(a) a 6 T

(b) Ta Q T

(c) a 6 Ta

(d) (Ta, <) is a linearly ordered flow of time

(e) Vx, y , z e T , { x E T a / \ x < y / \ y < z A z € T a =>y€ Ta)

(f) -<3x 6 T such as ((Vy 6 Ta, (x < y)) A (Vy E Ta, (y < x)))

4. Note that fo r any x E T the past of x is the actual history but the future may be

branching and unknown.

Therefore, a notion of time is defined allowing a representation of the time flow, an illus­

tration of the past, and the present, and an uncertainty of the future. This uncertainty is

dependent on unpredictable changes modeled by the branching future. It has to be stressed

that the conclusions were derived from a formal model of time, and not using casual per­

ception of the reality.

In the VHLLS process, a corresponds to the instant where the system changes its state.

Ta corresponds to time interval Ta = [01, 02] where the system is in a certain state where ai

is known and represents the instant when the system changes its state. 02 remains unknown.

5 .1 .2 F acts and E ven ts

As stated in the previous section, temporal connectives are specified in the defined model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

time. For the purpose of this research, two major notions: fact and events are formally

clarified and analyzed. Intuitively, a general interpretation [SOW84] of an event might be

as follows: events are the means by which agents (i.e. input signals) classify certain useful

and relevant patterns of change. Another interpretation from Goldman [GOL70] is that in a

common sense, an event corresponds to a change in an element, caused or partially caused

by a stress. Definitions proposed by Allen and Ferguson [AF94] assume that knowledge

representation of events and facts can be effectively partitioned into two types of formulae:

• event formulae state that something happened that (possibly) resulted in a change:

• fact formulae represents everything else, but typically describe some properties of the

universe (possibly temporally qualified).

A representation of events can be performed using time intervals included in T. In par­

ticular, events occur over intervals of time, and cannot be reduced to some set of valid

properties (holding true) at one instant [AF94]. Therefore, an event occurs in an indivisible

time interval (Let 1.1' be two time intervals. An event occurring over interval I implies tha t

there exists no interval / ' such as / ' C I)- That indivisible time interval is referred to as an

instantaneous interval as opposed to a time interval (or duration). The set of instantaneous

intervals is noted H and the set of time intervals is noted T.

The temporal logic introduced in Section 5.1.1 is classified as a first-order predicate

calculus3 which contains several categories. The following four items are the basic categories

for modeling in this type of logic:

• TIME-REPRESENTATION {G TS standing for Global Time Set) being G T S = HUT

3First order predicate calculus uses first order variables such, as x, y, etc... Second order predicate calculus
uses second order variables such as $(z) where $(z) is any formula in this logic.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

where E is the set of instantaneous intervals and T the set of time intervals;

• PROPERTY for denoting propositions;

• OCCURRENCE for modeling modifiers and qualifiers of events as predicates acting

on temporal expressions;

• TEMPORAL EXPRESSION themselves.

An important predicate for PROPERTY is the predicate HOLDS which asserts that a

property p holds (i.e. is true) during time interval I. Thus, HOLDS(p, /) is true if and only

if property p is true during I. Another important type is the type OCCURRENCE. Indeed,

the OCCURRENCE type is divided into two subtypes, processes and events as illustrated in

Fig. 5-3. Note that the purpose of Fig. 5-3 is for clarification of notion introduced here. It

should be noted that TIME-REPRESENTATION and TEMPORAL EXPRESSIONS axe

affecting all categories in the depicted Fig. 5-3. Finally, subtrees with dotted circles in Fig.

LOGIC THEORY

TEMPORAL LOGIC OTHER LOGIC (Modal. Boolean. ...)

TIME-REPRESENTATION PROPERTY OCCURRENCE TEMPORAL EXPRESSION

HOLDS PROCESSES EVENTS

GTS Logic Driven By Temporal IntervalsIntervals Actions *: Logic Driven By Instantaneous Intervals

Conditions

Events

Figure 5-3: VHLLS Temporal Logic Hierarchy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

5-3 depict class hierarchy. So, another element of Fig. 5-3 called Processes refer to activities

not involved in a culmination or anticipated results. Events describe activities tha t involve

a product or outcome. Using the above notions, a characterization of these two subtypes

of OCCURRENCE over the set of time representation G TS is:

• the set of intervals from the event subtype (see Fig. 5-3 contains indivisible intervals.

In other words, an event occurs over the smallest time interval possible (i.e. i 6 5).

This interpretation is consistent with the definition of an event introduced before.

• the combined features of events and PROPERTY(IES) where the PROPERTY type

is defined as follows: if a proposition is true over an interval I then for all sub-interval

I ' (/ ' C /) , a property holds over I'.

There are two main notions introduced: Conditions and Actions (as indicated by dotted

circles in Fig. 5-3. In the condition class, three sub-classes are identifiable: Life-Time.

Facts and Events (Life-Time in Fig. 5-3). Before going further in the description of that

condition class, a basic set of mutually exclusive primitive relations tha t can hold between

temporal intervals is introduced. Each of these relations is represented by a predicate in

the TEMPORAL LOGIC. These relationships4 with time intervals I 1. I 2 € T are:

• D U R IN G (I\, I2) = “time interval I\ is fully contained within l 2 r,~

• S T A R T S (I\, I 2) = “time interval I \ shares the same beginning as I 2 , but ends before

I2 ends” ;

• F I N I S H E S i h - h) = “tim e interval I\ shares the same end as I 2 , but begins after

I 2 begins”;

4Note that the relationships follow the notation of truth conditions S(A, B) = “statement”.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• B E F 0 R E (I \ , l 2) = “time interval I \ is before interval 1 %, and they do not overlap”;

• O V E R L A P {Iu h) = “tim e interval A starts before A, and they overlap”;

• M E E T S i L . h) = “time interval A is before h , but there is no interval between

them, i.e., A ends where /2 starts” ;

• EQ U AL(I\, I2) = “time interval A and I2 are the same”.

Including the inverse of each of these relationships (in the same order as in the list:

IN C L U D E S, S T A R T E D - B Y , F I N I S H E D - B Y , A F T E R , O V E R L A P P E D - B Y ,

M E T — BY) , there are a total of 13 relationships between intervals as shown in Table 5.3.

These are referred to as the Allen’s classification[AF9A].

By relating the sub-classes of the Condition class from Fig 5-3 to the Allen’s classifi­

cation, a Fact is a PROPERTY type, an Event is an EVENT type and a Life-Time is a

TIME-REPRESENTATION type. A life-time is the maximum duration that a system can

stay in a certain state. An action corresponds to a PROCESS type. Using the Allen's

classification, a definition of these notions can be formulated.

D efinition 5.2 A fa c t is interpreted as a temporal predicate F(p, I). This predicate be­

comes true if and only if the proposition p is true over the whole interval I. Therefore, let

p be a proposition and I 6 T be a temporal interval such as:

(F(p,I)

v r ,r er,

(1) B E F O R E W , I) A B E F O R E (I, / ”)

(2) AH O L D ^ p , I')

(3) A H O L D U P))

with permission of the copyright owner. Further reproduction prohibited without permission

100

Temporal Relationships Interpretation Inverse Relationships

DURING(A,A>)

 n-------
f---------------- 1

' 12 '
— n --

i-----------------1

1-------------- 5 -------------1

INCLUDES(/2,A)

STARTS (A ,/2)
---n —

i------------------- 1

' 12 '

STARTED-BY(/2.A)

FEN1SHES(/i , / 2) FINISHES-BY(/2. A)

BEFORE(A; A)

— n —I------------- 1
12 AFTER(/2,A)

OVERLAP(Ar A)

— n
i---------------1

12 O VERL APPED-B Y(/2. A)
— n —i-------------- 1

MEETS(A,A) 12
t r

MET-BY(/2,A)

EQUAL(A,A) 12 EQUAL(A,A)

Table 5.3: Temporal Relationships

Definition 5.3 An even t is interpreted as a temporal predicate e(p. i). This predicate be­

comes true if and only if the proposition p happens over instantaneous interval i. Therefore,

let p be a proposition and i 6 5 such as:

(e(p, i) ^

G H,

(1) B E F O R E (i', i) A B E F O R E (i, i~)

(2) AO CCU R(^pA')

(3) AO C C L T R hp,r))

Definition 5.4 A life-tim e is a time interval Id. E l associated with each state of a system.

Interval Id determines the duration the system can check conditions in order to change its

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

state. When the time reference n (now) 5 passes the upper limit o f this time interval, the

system has to change to a predefined state.

For the purpose of modeling a pseudo-state diagram as defined in the previous section,

an event type predicate as shown in Fig. 5-3 is introduced. The main rationale for this

predicate is to express the transition condition from a state s* to Sj noted cond%i.

D efinition 5.5 A tran sition condition predicate denoted condtJt (p,i) is true when the

proposition p holds at i E H or using the above notation:

cond^i (p, i) = “proposition p holds at i E H ”

Another predicate needed is derived from the PROPERTY type as shown, in Fig. 5-3

is defined to characterize the snapshot of the system during time interval / and denoted

S T A T E {I ,Si).

D efinition 5.6 A s ta te predicate denoted S T A T E (I , s)̂ holds when the system is in state

Si during I E T or using the above notation:

S T A T E (I . S i) = “the system is in state s t- during I E T ”

As a result, a change from one state to another can be formalized with the model of

this transition expressed using the above temporal formalism. Let m, n 6 K, / , / ' E T be

natural numbers and time intervals respectively. Furthermore, the following expressions for

transition conditions can be stated:

1. the transition condition is a fact if and only if

3i E S, S T A T E (I , sn) A F(I' ,p) A I N(I , i) A i) => 3m, cond\“ (p, i).

5 Refer to Fig. 5-2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

The predicate I N {I, I') is defined as:

I N (I , I') = S T A R T S (I, T) V D U R IN G {I , T) V F I N I S H E S { I , T)

2. the transition condition is an event if and only if

3i e 3 , S T A T E (L s n) A e(p,i) A IN(I . i) =► 3m .conds3™(p.i)

3. the condition is a life-time of the state sn if and only if

3i e 5,

S T A T E (Id, sn) A M E E T S (Id, I ’) A O V E R L A P S(Id, i) A O V E R L A P S (i, / ')

=>• 3m, cond*™ (p, i)

4. the transition condition is a composition of facts and events when the following is

valid. In this case, a new generic predicate is introduced to represent a fact or an event.

Using the Global Time Set (GTS), introduced earlier, this new generic predicate is:

ExcitSi(I ,r ,p , t) .

Definition. 5.7 let I , I ' , t 6 G T S and p be a proposition, E xc itSi(I , I ',p , t) is defined

as:

ExcitSi(I ,T ,p ,t) = S T A T E (I , Si) A j F(p,V)e(p,I ') } A I N (L t) A IN(I ' , t) .

We note tha t for an event described just above in this list (item 2), the condition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

103

I N { I ', £) is redundant because in this case, by definition, I' is equal to £ and then

I N { I £) is always true. Using this new predicate, a list of transition conditions can

be defined:

(a) COMPMULT:

3fi, £251 £ GTS,

ExcitH(I , I i , p \ , t \) A ExcitSi(I, h i & i h) A E Q U A L S { t i , t) A E Q UALSfa . t)

=>• 3] ,a m d s3Ji (t,pi AP2):

(b) COMPADD:

3£i, £2 € GTS ,

ExcitSi(I , I i ,p i , t\) V E x c i t (f , ̂ 2?P2* ̂ 2)

=> 3j, (c o n d ^ ^ p i V P2) A t\ < £2) V (con^(£2,Pi VP2) A £1 > £2):

(c) PIPE (sequential operations):

h-. t £ GIT 15,

ExcitSl(I , I i , p i , t i) A E xcit,t (I, l2,P2, £2) A (A F T E R S , h) V MEETS{I i , I2))

=S- 3j , concfsi (£2,Pi | P2)-

In this section, fundamentals have been introduced and defined allowing a better under­

standing of the notion of time. Time modeling is crucial to meet the characteristic referred

to as “Delay specification” introduced in Chapter 1. As a consequence, operators or pred­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

icates must be defined to encapsulate time. Having defined these notions, the next two

sections focuse on the two strategies presented in the introductory section of this chapter

extensively using the above notions.

5.2 Fundamental VHLLS Design Methodology

This section presents the first strategy to implement the VHLLS process. It is based

on the mathematical model defined by Zeigler [ZEI84]. The principle of this strategy is

to perform a translation process from the concept level in the behavioral domain into the

system level in the behavioral domain as specified in Chapter 3.

5 .2 .1 E xten d ed Zeigler F orm alism

When we make specifications with a pseudo-state graph, we must consider having vari­

ables which we refer to descriptive variables of the system. They compose a set of variables

characterizing the system. In this variable set, two types of variables exist: input variables

and non-input variables. An input variable can be modified only out of the system. A

non-input variable can be of two types : state variables and non-state variables. A subset of

state variables characterize one state. A non-state variable is a set of descriptive variables

not included in the other sets. The state variables allow the identification of the future

system state. The non-state variables are for computing purposes at a given instant. These

statements can be represented as follows:

descriptive variables(Vd) <

input variables{Vi)

state variables{Vs)

non — state variables{Vn-.s)
> non — input variables{Vn-i)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

105

cond

not(cond)

N2N1

Figure 5-4: Waiting Interpretation

or in a more mathemical form as: Vd = Vi U Vre_t- and Vn - i = Vs U Vn - s - The transition

from one state to another is modeled by a transition function which is a function of inputs

and state variables such as:

r : : S x Vi ->• S

The principle of r- is for the evaluation of the present state variables associated with the

input variables to compute the future state. At this stage of the representation, we must

express the action of waiting in a state when, a t a given instant, no transition conditions

hold. We represent this action with a transition from a state to itself with a transition

condition which is a complement of all transition conditions applicable for the current state.

This allows us to continuously poll the transition condition until one holds thus implying a

system change into the future state. This type of loop is called a waiting loop.

The introduction of an output function allows a mapping from each state to a set of

actions:

: S x Vi y Vji—j

After introducing the fundamentals to model the pseudo-state diagram, we must consider

the notion of time where the system is forced to leave a state. Being inspired by the Zeigler

theory [ZEI84], we modify the transition function into two sub-functions. The first one is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

the external transition function rext which has the same behavior as the function defined

above rz. The second one is named internal function r,-nt which uses the notion of state

life-time Id as defined in section 5.2. When the time index (f) is in Id , the state change

depends on state conditions. As soon as t is not in Id the internal transition is applied.

Id can be expressed as [f,-n(s). tin (s) + ia(-s)] where identifies the instant the system

enters s E S and ta is a function which associates a life-time to the same state s. So

when t > tin(s) -I- ta(s), an automatic state transition is applied. Therefore, the function ta

associates a duration with each state of the system allowing the definition of its life-time:

ta : S —>■ T I M E where T I M E is defined as being a positive natural number associated

with a time unit (for example, In s 6 T I M E) . These two transition functions are:

1. Text : S x I -> 5 where rext is applicable when the current time index t verifies

DURING(£,/rf)

2. Tint : S -> S where r,nt is applicable when the current time index t verifies A F T E R (t, Id)

So, when the system is in s 6 S and is in a waiting loop, we have t E [£ in (s), tin(s) + ta(s)} =

Id and then Text is applicable. When t > tin{s) + ta{s), the state life-time is “over” .

Therefore, the internal transition function Tim is triggered off. For effective management of

this mpcha.nism. Zeigler associates at each state, a variable e (for elapsed time), initialized

a t ta(s) when the system comes into a state, and is decreased proportionally by time spent

in the state.

Having introduced the mechanism for the life-time notion, a loop on a state needs to

be more specific. We can have either a waiting loop or a loop for a state reexecution. The

waiting loop allows the time index to evolve in time without a state change. A loop for

reexecution is, indeed, an external transition from a state to itself. So, for the latter loop, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

elapsed time variable e associated with the considered state is initialized, as opposed to the

waiting loop, where e decreases to model the evolution of the time. Having the notion of time

evolution, a fact F(p, I) in a state variable is verified at t when t 6 I. However, to capture

an event condition e[p, i). the easiest way to recognize a sudden change is to “remember”

the instant i ', defined in definition 5.3, and verify OCCURC-p, i')A OCCUR(p, i). But, in

our representation, we do not keep any values from the past. To solve this problem, we

must create another state variable for each state and input variable. This new variable

can take the value RISE, FALL or STABLE. We can defined other values to fill our needs.

These variables, called behavioral variables, are computed at each instant. So, for the

input variables, the behavioral variables axe up-dated every time a change occurs in them.

When a state change caused by one of the transition functions occurs, an operation allows

the computation of the behavioral variable values associated with all the state variables.

However, if the system takes the waiting loop of a state then all the behavior variables

related to state variables get the value STABLE. Because we represent the event notion

in this fashion, we have a system uniformly modeled using the fact notion. So, an event

condition e(p,i) becomes a fact F{p',I) as follows: p' = pA p'E V E N T and I = [i'. i] where

E V E N T = R I S E V F A L L . Thus, all conditions can be checked the same way at a given

instant.

The pseudo-state machine where time is encapsulated is a deterministic system. There­

fore, the system under specification can be only in one state a t the time. So, to prevent

conflicts in the choice of the future state, the notion of priority is introduced. To treat

these conflicts, we define a priority function T such as T : S x S —> X. The greatest priority

transition is the one with the highest numeric value. To solve a conflict, only the transitions

involved in the conflict are in concurrence. An illustration of the behavior of this function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

is as follows:

T e x t{ S \ , C O n d \) — i?2j

Text(Si,cond2) = S3 ;

T~ext{S\, condz) — Si,

r (S u S2) = l;

r (5 i . 5 3) = 3 :

r(5i,54)=2.

The system is in state 5 \. Suppose that at t. cond\ and ccmdz hold. A conflict occursrtbe

system can go into either S2 or S4. The resolution of this conflict consists of comparing

the transition priorities for S2 and 64. In our example, we have r(S i, 54) > T(S i , S 2)-

Therefore, the future state is 54. Notice that only the priorities of the transitions in conflict

have been considered.

5 .2 .2 S y n ta x an d Sem an tic U sin g Ziegler F orm alism

To define properly the syntax and the semantic of the proposed VHLLS process, a model

needs to be defined. So, the model Mzeigler of the pseudo-state diagram (introduced in the

preambule of this chapter) inspired by the Zeigler theory is the following:

M z e ig le r — < S , I . F , 0 . , T g x ti ip z i â? T ^

where

• S represents the node set of the model corresponding to a set of state sub-sets of the

system:

• I represents the input variable set of the internal model corresponding to the input

variable set of the real system;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

• F represents the conditional transition of one node to another. The composition of

these conditions are realized with the input and state variables. This corresponds in

reality to a state change condition in the system;

• O represents the action set associated with nodes. These actions represent the active

part associated with states of the system. These actions are written in VHDL. The

operative part can only modify the values of the state, non-state and output variables.

We can have no actions associated with a node. Notice that states " included" in the

same node are characterized by the same operative part;

• Tint- S -v S is the internal transition function. It is in relationship with the life time

of a node:

• Text- S x F - + S describes the conditional transitions:

• ipz: S -¥ O associates, a t each node, an operative part which is a list of actions;

• ta - S —*■ T I M E associates a life-time to each state:

• T: S x S -> allows only one possible transition.

In the rest of this section, we illustrate each notion this model implies in order to

represent a pseudo-state diagram with time encapsulated. So, the following illustrates the

syntax and semantics to represent all the notions introduced by Mzdgier-

5.2.2.1 A ctions A ssociated W ith a System State

Using the model Mzeigler, we can associate each system state with either actions or

nothing. This is expressed by the output function tpz. This function is defined for each

state. For this initial study, actions are described in a sequential manner using VHDL in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

the sequential mode. So, the result of the function links with each state s E S a. sequence

of activities the system needs to perform when it is in s. If the system is in a state s E S

and no action is associated with 5 then the result at the request ipz{s) is the empty set (0).

As an illustration of the output function ipz, let us consider the following:

1. A state s E S has a list of actions to perform, so ipz looks like:

$z(s) =

action i :

actioni;

2. A state s E S does not have a n y th in g to perform in s, so ipz looks like:

V>-(s) = 0

For this initial study, these two cases are the only form of descriptions the output

function can have.

5.2.2.2 S tate Life-Time Function

T h is function is defined as ta : S —i► T I M E . The TIME type has already been defined.

Each state is associated to its life-time through this function. The range of possible values

is in [0 ns; oo ns]. A life-time of 0 ns means the system needs to change state as soon as

the actions associated with it have been completed. On the other hand, a time-life of oc ns

means the system can stay in a given state indefinitely if no transition conditions apply.

As an illustration of the life-time function, several cases are presented. Let s E S,

1. ta(s) = 20 ns means that the system stays in s up to 20 ns;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ill

2. ta(s) = 0 ns means that the system changes state as soon as the actions associated

with s have been completed:

3. ta(s) = o o ns means that the system changes state only if a transition condition holds.

5.2.2.3 Transition Functions

There are different ways of expressing the transition from one system state to another.

In fact, this depends on the nature of the transition. To take into consideration these

different ways we defined, in section 5.2.1, the following three functions:

• Tint is the internal transition function. This function is related to the life-time function.

Tim is automatically applied to produce a transition from a state si to a state S2

(si, S2 6 S) when the time given by the function ta. £a(si), has elapsed. In other words,

£ being the time index and si a given system state, if £ g Id{s\) then Tint(si) = S2-

• Text is the external transition function. This function is in relationship with conditions

made up of Vs and Vi. The condition is a parameter of the external transition function

along with a state. These two parameters allow the computation of a future state as

long as the time index is within /^(s). So, £ being the time index and si a given system

state, if £ E Id{si) and cond (the transition condition) holds true then Text{s\.ccmd) —

s2.

• r is the priority function. Because the pseudo-state diagram is deterministic, T allows

decision making when the transition functions can compute more than one future

state. So, each transition is weighted, enhancing its importance relative to the other

ones, thus it may be in conflict. When conflicts occur, we check the priority using T

and the next system state corresponds to the one with the highest priority. Let’s say

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

that we have s i, s2 , 3 3 6 S . and two possible transitions, defined as rext(si,cond2) —

3 2 and Text(si,candz) = S3, if, at t, candz and candz hold true then we consult

r(sx ,s2) < r (« i ,s 3). If this query is true then Text candz) = S3 is applied otherwise

Texti.3!'. cond2) = s2- By default, the internal transition has the lowest priority which

m ean s that if at the same instant, the life-time of the current state elapsed and a

transition condition holds, then the external transition is applied prior to the internal

one.

5.2 .3 In terp reta tio n o f C o n d itio n s

This section gives an interpretation of notions defined in section 5.2.1 and shows the

method of defining transition conditions.

5.2.3.1 Simple Conditions

For the model M;e,-gjer̂ a fact and an event are represented in the same way. To enhance

the difference between them, we added a new variable to each state and input variable. This

variable can have, for instance, three values: FALL, RISE and STABLE. This variable is

viewed as a boolean attribute describing the state or input variable evolution. The syntax

is to put a quote and the a ttribu te name after a type or object instantiation name. One

attribute which has a behavior sim ilar to our behavioral variables is EVENT in VHDL.

This attribute returns a boolean value. It returns a true value (at the instant and only

for that instant) when a variable changes its value during a simulation cycle. In the model

Mzeigier, an event is a combination of two facts. The first one considers the past of a

variable and the second one, a given time. So when we want to capture an event such as

the increase in value of a state variable or input variable (u), we interpret this event as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

t/E V E N T and v[i') < v{i) (v{i) represents the value of v at the time index i) e.g. v 'R IS E

becomes v 'E V E N T and v = 1 where v is a boolean variable. By the same token, when

we want to capture an event such as the decrease in value of a state variable or input

variable (u), we interpret this event as t /E V E N T and v(ir) > v(i) e.g. v1 F A L L becomes

1/ E V E N T and v = 0 where v is a boolean variable. It becomes obvious that, for a fact

condition, the state or input variables which constitute the condition must be stable.

5.2.3.2 Com posed Conditions

For each operator defined in section 5.2.1, each term must obey the rules described in section

5.2.2.I. Three operators were defined:

• COMPADD:

• COMPMULT:

• PIPE.

In the model M zeigier, the composition of conditions is viewed as a single condition from

the standpoint of the external transition function. Therefore, when we have:

7~cxt 1 ? COnd} S2

, where the condition cond can be expressed as:

• cond = condi C O M P A D D cond2 which means that the condition transition is per­

formed when either condi or cond2 holds under life-time constraints. Formally, the

COMPADD operator is defined in section 5.2;

• cond = condi C O M P M U L T cond2 which means that the condition transition is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

performed when condi and condi hold at the same time under life-time constraints.

Formally, the COMPADD operator is defined in section 5.2;

In contrast to the above operators, the PIPE operator defines a sequence of two con­

ditions such as cond = condi P IP E condi. This means that to have cond holding, condi

must hold true first and then condi is evaluated. Conceptually, this operator can be viewed

as a combination of two t with a virtual state between the initial state and the final state.

So, when we have:

Text[s ir condi P IP E condi) = s2

, we rewrite this transition function as follows:

Let s\ being a virtual state of the system,

Text(si.condi) = s\

Texti^l'! condi) = s 2

The properties of the new virtual state are:

• ta(s\) = ta(si) — e where e is the elapsed time of being in

• T i n t (s %) = Ti n t (S l)

5 .2 .4 E xam p le o f th e Z eigler M o d e l

This example uses the specification of the RAM introduced in Chap. 2. This system is

composed of seven states: IN IT Q ,IN IT l,W A IT ,R /W .R ,W ,E R R . For each state, we

define the transition functions, the output function, the transition priority and their life­

time. So for INITO, we have:

with permission of the copyright owner. Further reproduction prohibited without permission.

115

• t^ I N I T O S N S K T =' O'”) = IN IT 1

• TintilNITO) = 0

• ta(INITO) = oo

• r (IN I T O J N I T l) = 0

For IN IT l , we have:

• TexttfN IT l. ~ N S K T =' 1'”) = W A IT

• Tint(IN IT l) = 0

• ta(IN IT l) = oc

• r (IN I T l , WAIT) = 0

For WAIT, we have:

• T extiW A IT ^C S = ' 1'") = R /W

• TextiWA IT ." N R S T =' O'") = I N I T l

. r i7U(VFA/T) = 0

• ta(W A IT) = oc

• r(VFA/r,i?/VF) = 1

• r(W A lT , I N I T l) = 0

For R /W , we have:

• TextiR/W^iRD = ' 1') COMPMULT (W R =' 0')”) = i*

• TextiR/WSiRD = ' O') COMPMULT {WR = ' 1')”) = ^

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• T ex tiR /W ,

s ((R D = ' 1') C O M P M U L T { W R = ' T)) C O M P A D D {{R D = ' O') C O M P M U L T { W R

O'))”) = E R R

• rint{R /W) = 0

• ta{R /W) = oc

• T { R / W , W) = 0

• r{R /W ,R) = 1

• T {R fW ,E R R) = 2

For R. we have:

• T ^ R . " N R S T = ' O'”) = /JV7T1

• Tint{R) = W A I T

• ta{R) = Ins

• r (A W A IT) = 0

• r {R, I N I T l) = 1

For W , we have:

• Tezt(W,',N R S T = ' O'”) = IN I T l

• rint{W) = W A IT

• tB(Wr) = Ins

• r(W, W A I T) = 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

• r(W, I N I T 1) = 1

For E R R , we have:

• Ti n t (E R R) = I N I T Q

• ta(ERR) = I n s

• r (E R R , W A IT) = 0

5.3 Intelligence Built-In VHLLS Design Methodology

This section presents an evolution of the previous VHLLS model toward an “intelligence”

built-in model. This model is built on a knowledge base which gives the VHLLS model extra

features such as reasoning ability and greater flexibility with the specification description

to capture. So, the first part of this section reviews a few knowledge based methods. Of

these methods, one has been identified as more appropriate to our problem and is applied

for the VHLLS model.

5 .3 .1 K n ow led ge R epresen tation

Among knowledge based methods, three have been selected for their main characteris­

tics. These three methods are: Rough Sets, InfoSchemata and Conceptual Graphs. The

rough set method can optimize the amount of knowledge needed to describe a universe.

The InfoSchemata method has the very useful ability of organizing knowledge in an ab­

stract manner. Indeed, the knowledge is classified in a few levels of abstraction and a

relationship between each of them creates the meaning of the knowledge base. Finally, the

conceptual graph method has built-in operators that allow the knowledge base to evolve, ex­

pand and manipulate knowledge. Note tha t all the following sections which review methods

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

to represent knowledge axe self contained regarding symbols and notations.

5.3.1.1 Overview O f th e Rough Sets Theory

In this section, an overview of the concept of rough set theory is presented. Thereafter,

a simple example illustrates the whole idea of this method.

Rough set theory [PAW91] defines a universe of objects (U). In this universe, there

exist relationships between objects. Each relationship classifies these objects into families.

Having classified objects into subsets according to relations R (families), a knowledge base

can be defined. This base is given by K = (U, R') where R ’ is a family of equivalence

relations over U.

The goal of this theory is to classify and manipulate knowledge in a universe. To do so,

notions and relations are defined. When a set of objects included in U is given, the goal

is to know what represents this set in the universe and to associate its families in order

to characterize it. Basic sets are defined as having the following approximations of sets :

R-lower approximation of a set X (set of objects classified without ambiguity as elements of

X), R-upper approximation of a set X (set of objects possibly classified as elements of X),

R-boundary of X ({R-upper}fl{R-lower}), R-positive region of X (equal to {R-lower}), R-

negative region of X (U-{R-upper}). Properties are derived from these notions. For practical

utilization of this theory, data tables are constructed. Some operations can be applied

to this representation, such as a reduction of attributes in data tables. In the process of

model building, it should be possible to identify and eliminate redundant attributes without

losing any essential information. Another functionality is decision rules. Non-redundant

descriptions characterize potentially important patterns in data. The patterns axe expressed

as decision rules linking the presence, or absence, of specific conditions (attributes) with an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

outcome.

To illustrate the Rough set theory, the example which follows presents the manipulation

and optimization of a knowledge base. Assume the following decision table:

u a b c d e
1 1 0 0 1 1
2 1 0 0 0 1
3 0 0 0 0 0
4 1 1 0 1 0
5 1 1 0 2 2
6 2 1 0 2 2
7 2 2 2 2 2

where a, b, c and d are condition attributes (input) and e is a decision attribute (output).

The attribute c appears to be dispensable so the column c can be removed. The next step

is the computation of the core value of that decision table:

U a b d e
1 - 0 - 1
2 1 - - 1
3 0 - - 0
4 - 1 1 0
5 - - 2 2
6 - - - 2
7 - - - 2

where means ’do not care’. Therefore by assigning a proper value to these the

resulting table is:

U a b d e
1 1 0 X 1
2 1 0 X 1
3 0 X X 0
4 X 1 1 0
5 X X 2 2
6 X X 2 2
7 X X 2 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

Because decision rules 1 and 2 are identical, and so are rules 5, 6 and 7, the final table

is:

u a b d e
1 , 2 1 0 X 1
3 0 X X 0
4 X 1 1 0

5,6,7 X X 2 2

This solution is referred to as minimal. Therefore, this method would be useful for

classifying a knowledge base described using either InfoSchemata or Conceptual graph.

That, in turn, would allow the use of another knowledge base optimization method which

retains the meanings of both methods.

5.3.1.2 Overview o f th e InfoSchem ata Theory

InfoSchemata [JM94] defines a methodology for representing and developing knowledge

bases. As shown in Fig. 5-5, InfoSyntax, InfoSchema (abstractions at the general level) and

InfoSchema/InfoMap Technology

InfoSyntax

InfoSchemata

InfoMaps

InfoFactory

C InfoCases) --*■(InfoFarm)
(InfoProcesses) --*■(InfoRun)

Figure 5-5: InfoSchema/InfoMap Structure

InfoFactory compose a framework to capture and manipulate knowledge.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

InfoSyntax defines the syntax used to model concepts within the InfoSchema/InfoMap

methodology. Two levels of abstractions characterize that method: the InfoSchema level

and the InfoMap level.

In the InfoSchemata approach (“pattern” and “schemata” are synonymous terms), a

vocabulary [JC91] can be used to derive schemata. These schemata are described in terms

of sets and the relationships between them. The general format of the universal schema is

given in the following:

Universal schema ::= [[A] {set_name}

[Y] {set_name}

<Z > {set_name}

(W) {set_name}

<U > {set.name}]

Within the InfoSyntax, a hierarchy of relationships is defined allowing a mapping between

sets which assigns specific set roles (Tab. 5.4): A, Y, Z, W, and U.

A::= partition :
Y::= K - identifier: 0 - identity:

H - hierarchy: I - generalization;
P - aggregation;

Z::= X - qualifier; M - association;
F - flow; G - guard or goal:
S - sequence; V - value or instance;

W::= L - sequential state transitions;
C - concurrent state transitions;

U ::= User defined

Table 5.4: Set Roles

An InfoMap is created by enumerating sets and populating relationships defined by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

the InfoSchemata. This instantiation process implies that set roles are also instantiated to

specify a role allocated to a role member (Tab.5.5).

Legal Set Role Legal Set Element Role
A v-column marker
K id-unique identifier
0 o-column marker
H h-root tree; l..n-part marker
P w-whole; c-part: v-visible: h-hidden part
I p-parent; c-child
X x-qualifier marker
M v-row market; k-key attribute
F u-used input; o-produced output
G t-true; f-false; T-implied true; F-implied false
S l-.n-position in sequence, integer
V instance, value, string
L s-source; d-destination; 1-loop; a-assertion;

e-exemption
C c-concurrent

Table 5.5: Member Roles

Set roles and associated set member roles are the core of InfoSchemata and InfoMap

notation.

Therefore, using these mappings between concepts, knowledge can be synthesized. The

manipulation o f this knowledge can be realized through an InfoProcess which examines,

partitions, and merges knowledge.

5.3.1.3 O verview o f the C onceptual Graphs Theory

Conceptual graphs were introduced by Sowa in 1984 [SOW84] to represent and manip­

ulate knowledge. In the process of capturing knowledge, a particular notion of perception

is crucial. This notion allows the creation of a working model that represents and interprets

sensory input. Two components constitute this working model, they are: a sensory input

composed of a mosaic of percepts and a conceptual graph to fit percepts together. The basic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

goals of perception mechanisms are:

• to generate sensory icons to capture external stimulations;

• to compare these icons with percept to see if they match, called associative comparator.

• to generate a close approximation of the input and build a conceptual graph to store

it, called assembler.

• conceptual m echanism s process concrete concepts that have associated percept and

abstract concepts that do not have any associated percept.

The process of perception generates a structure u called a conceptual graph in response

to some external entity or scene e:

• the entity e gives rise to a sensory icon s:

• the associative comparator finds one or more percept p\, pi- pn tha t matches all

or parts of s:

• the assembler combines the percept pi, p i, pn to form a working model that

approximates s:

• if such a working model can be constructed, the entity e is said to be recognized by

the percept pi, p2 , pn;

• for each percept pi in the working model, there is a concept c,- called the interpretation

of pi;

• the concepts ci, C2, . . . , Cn are linked by conceptual relations to form the conceptual

graph u.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

Conceptual relations specify the role that each percept plays : one percept may match a

part of an icon to the right or left of another percept. A representation and interpretation

of a conceptual graph are:

• a linear form: [Conceptl] -* (Rel) —»■ [Concept2];

• a graphical form s im ilar to the linear form is illustrated in Fig.5-6.

CONCEPT 1 CONCEPT2

Figure 5-6: Basic Conceptual Graph: Graphical Representation

having the m ea n in g : the Rel of a Conceptl is a Concepts e.g. with the following inter­

pretation: “the Instrum ent of A P P L Y concept is D E V IC E concept”, the corresponding

conceptual graph is shown in Fig.5-7.

APPLY DEVICE

Figure 5-7: Inst of APPLY is DEVICE: a Conceptual Graph Representation

A conceptual graph is a finite, connected, bipartite graph. The two kinds of nodes of

the bipartite graph are concepts and conceptual relations:

• Concept nodes: represent any entity, action or state that can be described in lan­

guages. For an AI standpoint, this kind of node encodes information in networks or

graphs : concepts are a basic unit for representing knowledge;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

• Conceptual relation nodes: show the roles that each, entity plays. In other words,

these nodes show how the concepts are interconnected.

As an illustration, two examples of concept nodes are given from [CYR94]:

• [DEVICE] embraces all hardware elements:

• [VALUE] covers the notions of data and message as well as software (commands and

programs).

Two examples of conceptual relation nodes are given from the general conceptual graph

theory:

• (Inst) links an [ENTITY] to an [ACT] in which the entity is causally involved:

• (Dur) links a [STATE] to a [TIME-PERIOD], during which the state persists.

Every conceptual relation has one or more arcs, each of which must be linked to some

concept. If a relation has n axes, it is said to be n -adic and its arcs are labeled 1, 2,

. . . n. The term monadic is synonymous with 1-adic, dyadic with 2-adic, and triadic with

3-adic. A single concept by itself may form a conceptual graph, but every arc of every

conceptual relation must be linked to some concept. To be consistent, some assumptions

are necessary such as (i) concepts are discrete units, (ii) combinations of concepts are not

diffuse mixtures, but ordered structures, and (iii) only discrete relationships are recorded

in concepts. Continuous forms must be approximated by patterns of discrete units.

A conceptual graph has no m eaning in isolation. Only through the semantic network,

concepts and relations which link context, language, emotion and perception, make sense.

A conceptual graph can be displayed using two representations. The first one is in a linear

form with:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

• [...] representing a concept;

• (...) representing a conceptual relation.

Some concept or relation must be the head of this representation. A variable is noted as

*x. Relations connected to the concept head are listed on subsequent lines after the symbol

The end of a graph is signaled by a period Finally, a comma represents the

end of subsequent lines. The second representation is graphical where a square is a concept,

a circle a conceptual relation and an arrow puts in place the relations between nodes.

These possible representations of a conceptual graph are illustrated as follows:

• Linear representation:

[ACTION : is reset] -

—► (Agnt : by) -> [EVENT : # interruption],

-* (Obj) -» [COUNTER : #timer].

• Graphical representation (see Fig.5-8).

EVENT: (Sntenuption < -----------^ -------ACTION: is reset ---------------- > ^ Obj ------ COUNTER: ((timer

Figure 5-8: Example of Semantic Network in Conceptual Graphs

The notion of type in conceptual graphs is a classic one and means family resemblance.

One type principle reads: ’’the logical type or category to which a concept belongs is the set

of ways in which it is logically legitimate to operate with it” [RYL49]. Here we introduce

the function type which maps concepts into a set T , whose elements are called type labels.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

Concepts c and d axe of the same type if type(c) = type(d). As an illustration, let a concept

c, c = [Type Label] type(c) = Type Label.

In conceptual graphs, different meanings for knowledge or concepts can be classified to

express generality or instantiation of an concept. Two kinds of markers cam be identified:

individual and generic markers. An analogy can be drawn with nouns in natural language

where individual markers are like determinate nouns (example: the city) especially proper

nouns (example Durham) in that they designate a specific object, whereas generic markers

can be seen as indeterminate nouns (example: a city) which designate a class of objects with

a s im ilar set of characteristics (buildings, streets, ...). In conceptual graphs, an individual

marker is specified by an identifier like [Type Label : ident] and a generic marker by an

asterix like [Type L ab e l: *] or simply [Type Label]. Here we introduce a function referent

which corresponds to the identifier of a concept (ex: referent(Type Label) = ident).

Individual concepts correspond to constants in logic and progra m m in g languages, and

generic concepts correspond to variables. In fact, variables like *x or *y in the linear notation

are simply the generic marker *, followed by an identifier to indicate cross references e.g.:

[COUNTER : #tim er]: in the concept "counter", we consider the "timer" to be a type

counter of which referent(COUNTER) = #timer.

[COUNTER : *t]: in the concept "counter”, we consider a counter.

A formula operator $ is introduced which translates a conceptual graph into a logical

formula. The operator $ maps conceptual graphs into formulae in first-order predicate

calculus. If u is any conceptual graph, then is a formula determined by the following

construction:

• if u contains k generic concepts, then assign a distinct variable symbol x \,X 2 , ■ ■ ■ ,Xk

to each one;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

• for each concept c of u, let identifier(c) be the variable assigned to c if c is generic, or

referentfc) if c is individual;

• each concept c represented as a monadic predicate whose name is the same as type(c)

and whose argument is identifier(c);

• each n-adic conceptual relation r of u represented as an n-adic predicate whose name

is the same as type(r). For each i from 1 to n, let the ith argument of the predicate

be the identifier of the concept linked to the tth arc of r.

• then has a quantifier prefix 3x i3x2 . . . Bx/t and a body consisting of the conjunction

of all the predicates for the concepts and conceptual relations of u.

Therefore, if a conceptual graph is as follows:

u = [RESET] -

-> (Agnt) -+ [EVENT]

->• (Obj) ->■ [MEMORY]

-> (Nval) ->• [VALUE],

Then the resulting is:

= 3 x ,y ,z ,w [R E SE T (x) A Agnt(x,y) A E V E N T (y) A O bj(x.z) A M E M O R Y (z) A

N val(x,w) A VALUE{w)]

The notion of canonical graphs is defined to distinguish the meaningful graphs that

represent real or possible situations in the external world. Certain conceptual graphs are

canonical. New graphs may become canonical or be “canonized” by any of the following

three processes:

• perception: any conceptual graph constructed by the assembler in matching a sensory

icon is canonical:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

• formation rules: new canonical graphs may be derived from other canonical graphs

by means of the rules copy, restrict, join, and simplify,

• insight: arbitrary conceptual graphs may be assumed to be canonical.

In a knowledge-based system, insight corresponds to the introduction of new graphs by a

knowledge engineer who encodes information more efficiently. The formation rules are a

generative grammar for conceptual structures. All deductions and computations on con­

ceptual graphs involve some combination of these rules.

These formation rules are described in the following list. Let u and v be conceptual

graphs, w derives from them, then the formation rules axe:

• copy rule: an exact copy of a canonical graph is also a canonical graph, w = u:

• restrict rule: replace the type label of a concept with the label of a subtype. This rule

may also convert a generic concept into an individual concept. For any concept c in

u, type(c) may be replaced by a subtype : if c is generic, its referent may be changed

to an individual marker. These changes are permitted only if referent(c) conforms to

type(c) before and after the change:

• join rule: merge identical concepts. If a concept c in u is identical to a concept d in v,

then let w be the graph obtained by deleting d and linking to c all arcs of conceptual

relations that had been linked to d;

• simplification rule: if conceptual relations r and s in the graph u are duplicates, then

one of them may be deleted from u together with all its arcs.

5.3.1.4 Suitable Knowledge Representation

The knowledge bases, previously presented, specific strengths axe:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

• Optimization capabilities of the knowledge base in the rough set methodology;

• Good organ ization of the knowledge emphasizing a hierarchy and partition of the

knowledge in the InfoSchemata approach. It is very convenient when someone has to

create and manipulate a knowledge base:

• Good structure of the knowledge base with an enhancement of the evolution of the

knowledge base in the conceptual graphs methodology.

For the purpose of the VHLLS synthesis process, the most important criterion to consider

is the ability to improve and increase the potential of this process without redefining the

whole process. So, for that matter, the conceptual graph approach is the most suitable

method for our research problem.

5 .3 .2 Syn tax an d S em a n tics U s in g C on ceptual G raphs Form alism

In the pseudo-state graph, encapsulated time is a very important notion. Therefore, to

build a conceptual graph, notions coming from state diagrams and time must be captured.

When a state graph is analyzed, some concepts come out such as transitions from one state

to another. To make sure that a state graph behaves in a deterministic way, one relation

seems critical: priority between two transitions.

The purpose of using conceptual graphs is to build a knowledge base capturing all the

information necessary to generate a VHDL description. Another interest is that conceptual

graph methodology is a representation flexible enough to be used to describe other specifi­

cation models using a unique methodology. The main objective for a global environment is

to provide specification descriptions which designers me looking for, such as state diagrams,

petri nets, timing diagrams and so on. An embryo of this global environment is introduced

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

in chapter 6 and we call it Specification Procedure for Electronic Circuits in Automation

Language (SPECIAL). Furthermore, conceptual graphs can expand the spectrum of this

knowledge base further. Conceptual graphs offer a way to grapple with the information

within the knowledge base and go further with specification methods like those using natu­

ral language as a com m unica tio n vector. All these options are objectives and a direction to

follow. Currently, the problem is to set up a knowledge base using conceptual graphs and

to find a way of generating a behavioral description in VHDL. Therefore, the first step is

to define canonical graphs, conceptual types, and conceptual relations for this problem.

The first canonical conceptual graph to be defined is the TRANSITION concept which

captures a transition from a beginning state to an ending state. A transition is controlled

by a condition. The canonical conceptual graph is the following:

[TRANSITION] -

—> (Beginning) —»■ [STATE],

(Ending) ->• [STATE],

-> (Inst) -»• [PROPOSITION].

In this graph, conceptual relations are defined as follows:

• Beginning specifies the state from which the transition leaves:

• ending specifies to what state the transition goes:

• Inst, for instrument, links a transition to a proposition which controls the state change.

In this conceptual graph, the instrument of a transition is a PROPOSITION concept which

is a type of symbolic information. To construct this proposition, some time constraint

relations must be introduced. This corresponds, in fact, to a way of encapsulating the time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

in our pseudo-state graph. Therefore, the relations defined by Allen [ALL84] (introduced

in Section 5.2) and introduced in a conceptual graph by Cyre [CYR94] are:

• Meets: relates two intervals I \ and I 2 . The idea of this interval relation is that the

interval I\ finishes when the other one I2 starts:

[INTERVAL] -► (Meet) -> [INTERVAL]:

• Overlaps: relates two intervals I\ and I2 . In this relation, I\ has to start before I 2

and they overlap:

[INTERVAL] -)■ (Overlaps) -> [INTERVAL];

• In: relates two intervals I\ and I 2 '.

[INTERVAL] -)• (In) -> [INTERVAL].

This relation is in fact a union of several interval relations. However, it is very con­

venient to define this relation as summarizing the situation in which one interval is

wholly contained in another. Then In(/i, I 2) is equivalent to:

During(/i, I 2) V Starts(/i, I 2) V Finishes(/i, h)-

Other relations are introduced. They are specific to the pseudo-state diagram model:

• Fact: relates an interval / to a proposition p. The proposition p is a logic proposition

independent of time. The interval /represents the time interval when p is verified:

[INTERVAL] -* (Fact) -> [PROPOSITION]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

This can be interpreted as: the fact in an interval is a proposition. More formally, a

fact F(p, I) as defined in definition 5.2 is: let p be a proposition and / € T such as

F(p, I) = > V I',r E T :

- BEFORE{I', I) A BEFORE(I , F) A

- HOLD{-rpA')/\

- H O L D (^p .F).

• Event: relates an instant i to a proposition p. The proposition p is a logic proposition

independent of time. The instant i represents the moment when p is verified:

[INSTANT] (Event) -)• [PROPOSITION]

where the INSTANT concept is a subconcept of INTERVAL. This can be translated

as: the event at an instant is a proposition. More formally, an event e(p, i), as defined

in definition 5.3 is: let p be a proposition and t E E such as e(p, i) =>■ Vi', f g c :

- BEFORE{i' ,i) i\ BEFORE{i ,F)/ \

- OCCUR(->p, i') A

- OCCUR(-'p, i”).

So, to represent "NRST = T0’ ” as a fact, the corresponding conceptual graph represen­

tation is as follows:

[INTERVAL :#I] -► (Fact) -»• [PROPOSITION :# ”NRST = !0: "]

To represent NRST’RISE as an event, the corresponding conceptual graph representation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

is as follows:

[INSTANT :#i] -» (Event) -+ [PROPOSITION :# ”NRST,RISE”]

Having presented the concept of TRANSITION from one state to another one, it seems

important to introduce the concept of STATE:

[STATE] -

-»■ (Link) [TYPE]

-»■ (Name) -»■ [WORD].

At this point, this concept is defined using an identification name relation which links

a STATE concept to a WORD concept, na m in g the state. Another relation which is the

Link relation is defined allowing a linkage between a STATE concept and a TYPE concept.

The concept TYPE identifies whether the state is associated with an action or not, the

“action”. for now, being defined as a sequence of actions. Future improvements may have

as one objective: to define a hierarchical structure allowing the introduction of other kinds

of actions associated with a state (example: concurrence).

Therefore, when a state called “INITO” having no actions associated with it, the corre­

sponding conceptual graph model is as follows:

[1 : STATE] -

-> (Link) [TYPE : #none]

(Name) -* [WORD : #INIT0].

An important requirement for a state diagram is to guaranty the sequentiality of this

representation. This requirement is addressed by the conceptual relation <prior between

two transitions:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

[TRANSITION] -»• <prior -»• [TRANSITION].

This relation, orders transitions when there is a need. When more than one transition

leaves the same state, then a process has to choose which transition the system takes

during a transition conflict. <prior links [TRANSITION: *x] to [TRANSITION: *y] where

the transition *x has a higher priority than *y e.g let the transition # 1 have the highest

priority compare to the tra n sitio n # 2 , the corresponding conceptual graph representation

is:

[TRANSITION: #1] -»• <prior ->• [TRANSITION: #2]

5 .3 .3 E xam ple o f th e C o n cep tu a l G raphs M od el

To illustrate this knowledge based approach, the case study defined in Section 2.3 is

used to build the knowledge base of the RAM cell. First, the instantiation of the STATE

concept is performed. It follows the definition of the transition between each state with the

expression of the condition for a transition. So, the concept TRANSITION is instantiated

for each transition and the concept PROPOSITION contains the condition of transition

having time encapsulated. Finally, the priority relations between TRANSITION concepts

are specified.

[1 : STATE] -
—>• (Link) -> [TYPE : #none]
-> (Name) -> [WORD : #INIT0].

[2 : STATE] -
—► (Link) —>■ [TYPE : #none]
-»■ (Name) -> [WORD : #INIT1].

[3 : STATE] -
-)• (Link) -> [TYPE : #none]

(Name) [WORD : #WAIT].
[4: STATE] -

->• (Link) ->• [TYPE : #none]
->• (Name) -)• [WORD : #R /W].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

[5 : STATE] -
-> (Link) -+ [TYPE : #action]
-»> (Name) -»• [WORD : #R].

[6 : STATE] -
-»• (Link) -*■ [TYPE : #action]
-> (Name) -4 [WORD : #W].

[7 : STATE] -
—>■ (Link) -»• [TYPE : #action]
-> (Name) -» [WORD : #ERR].

[8 : TRANSITION : *t_l] -
—>■ (Beginning) -> [1]
—► (Ending) -)• [2]
-»• (Inst) -»■ [PROPOSITION: -

[INSTANT : * ti] -»• (In) ->• [INTERVAL :{[0. . . t] | [tl2 . •. t]}]
[INSTANT : *t]-►(>) —»> [INSTANT : * t L]
[INTERVAL :#I] -»• (Fact) -)• [PROPOSITION :#"NRST = 'CF ”]
[INSTANT : * t t] -»■ (In) -»• [INTERVAL : #1].
]•

[9 : TRANSITION : *t_2] -
-> (Beginning) -*■ [2]
-¥ (Ending) —>■ [3]
-»> (Inst) -+ [PROPOSITION: -

[INSTANT : *t_2] -»• (In) -»■ [INTERVAL : *[t_l . . . t]]
[INSTANT : *t] —»•(>) -+ [INSTANT : *t_2]
[INTERVAL : # I] ->• (Fact) -> [PROPOSITION : # "NRST = T ’ ”]
[INSTANT : *t_2] —¥ (In) [INTERVAL : # I].
]•

[10 : TRANSITION : *t_3] -
—> (Beginning) —>■ [3]
-*• (Ending) ->• [2]
-+ (Inst) -»• [PROPOSITION: -

[INSTANT : *t_3] -»• (In) -+ [INTERVAL : *[t_2 - - -1]]
[INSTANT : *t]->•(>) -»• [INSTANT : *t_3]
[INTERVAL : # I] -> (Fact) -> [PROPOSITION : # ”NRST = ’O’ ”]
[INSTANT : *t_3] -> (In) -*■ [INTERVAL : # I].
]•

[11 : TRANSITION : *t_4] -
-> (Beginning) -> [3]
—► (Ending) ->• [4]
-+ (Inst) -»• [PROPOSITION: -

[INSTANT : *t_4] -»• (In) -» [INTERVAL : *[t_2 . . . t]]
[INSTANT : *t]->•(>) -»• [INSTANT : *t_4]
[INTERVAL : # I] -> (Fact) -> [PROPOSITION : # ”CS = T ? ”]
[INSTANT : *t_4] ->• (In) -+ [INTERVAL : # I].
]•

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

[12 : TRANSITION : *t_5] -
—>■ (Beginning) —► [4]
—>• (Ending) —> [7]

(Inst) -> [PROPOSITION: -
[INSTANT : *t_5] ->■ (In) -)• [INTERVAL : *[t_4 . . . t]]
[INSTANT : *t]-»■(>) ->• [INSTANT : *t_5]
[INTERVAL : # !] - > • (Fact) -+ [PROPOSITION :

{ ” W R=RD=’0’ ” | "W R =R D =T' ” }]
[INSTANT : * t s] -¥ (In) -+ [INTERVAL :# I].
]•

[13 : TRANSITION : * t6] -
—y (Beginning) —>■ [4]
—>• (Ending) —> [5]

(Inst) -J- [PROPOSITION: -
[INSTANT : * t6] —>■ (In) -+ [INTERVAL : * [t4 . . . t]]
[INSTANT : *t]-»>(>) -»• [INSTANT : * t6]
[INTERVAL :# !] - > • (Fact) [PROPOSITION : # "W R =?0! A K D = T ']
[INSTANT : * t6] -»• (In) -+ [INTERVAL : # I].
]-

[14 : TRANSITION : *t_7] -
-»■ (Beginning) —> [4]
-¥ (Ending) —> [6]

(Inst) ->• [PROPOSITION: -
[INSTANT : *t_7] -)• (In) -)• [INTERVAL : *[t_4 . . . t]]
[INSTANT : t] —►(>) -* [INSTANT : * t7]
[INTERVAL : # I] -> (Fact) -» [PROPOSITION : # "W R =T ; A R D =T ’ n]
[INSTANT : * t7] ->• (In) ->• [INTERVAL : # I].
]•

[15 : TRANSITION : *t_8] -
—»■ (Beginning) —> [5]
->• (Ending) —> [2]
-»• (Inst) -> [PROPOSITION: -

[INSTANT : * t 8] ->■ (In) -»• [INTERVAL : * [t6 . . . t]]
[INSTANT : *t] —>(>) ->• [INSTANT : * t8]
[INTERVAL : # I] (Fact) -)■ [PROPOSITION : # ”NRST = ’O’”]
[INSTANT : * t8] ->• (In) -)• [INTERVAL : # I].
]•

[16 : TRANSITION : *t_9] -
—► (Beginning) —> [6]
-»• (Ending) -»• [2]
->• (Inst) -»■ [PROPOSITION: -

[INSTANT : * t9] ->• (In) ->• [INTERVAL : * [t7 . . . t]]
[INSTANT : *t] - > (>) -)■ [INSTANT : * t9]
[INTERVAL : # I] -)• (Fact) -)• [PROPOSITION : # ”NRST = ’0’”]
[INSTANT : * t9] —>• (In) -»• [INTERVAL : # I].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

[17 : TRANSITION : *t_10] -
—► (Beginning) -> [7]
—»■ (Ending) —> [1]
-»• (Inst) -»• [PROPOSITION: -

[INTERVAL : * [t5, t5 + Ins]] -+ (Meet) -»• [INTERVAL : *T]
[INTERVAL : * [ts, ts + Ins]] -* (Overlaps) —¥ [INSTANT : * tio]
[INSTANT : * t 10] -+ (Overlaps) ->• [INTERVAL : *V]
]•

[18 : TRANSITION : *t_Ll] -
—)• (Beginning) —»• [5]
—»■ (Ending) —> [3]
-»> (Inst) -»■ [PROPOSITION: -

[INTERVAL : * [t6, t6 + Ins]] -»■ (Meet) -► [INTERVAL : *P]
[INTERVAL : * [t6, t6 + Ins]] -)• (Overlaps) -*■ [INSTANT : * t u]
[INSTANT : * t u] -»■ (Overlaps) -)• [INTERVAL : *F]
]•

[19 : TRANSITION : * t 12] -
—¥ (Beginning) —» [6]
—y (Ending) —»• [3]
-»• (Inst) -»■ [PROPOSITION: -

[INTERVAL : * [t7, t7 + Ins]] -»■ (Meet) -»• [INTERVAL : *V]
[INTERVAL : * [t7, t7 + lnsj] —> (Overlaps) —t [INSTANT : * t i2]
[INSTANT : * t 12] -+ (Overlaps) -»• [INTERVAL : *V]
]-

[10] —̂ (> .prior) -¥ [11]
[12] —>■ (> .prior) -> [13]
[13] -»■ (> -prior) —>• [14]
[16] —>• (> .prior) —¥ [18]
[17] -)• (> -prior) -+ [19]

5.4 Conclusion

As illustrated in Fig. 5-1, the main problem with the basic VHLLS approach6 is that for

each representation in the conceptual phase a specific translator has to be implemented to

generate the intermediate description and another one to generate the behavioral description

[VCSR94]. To avoid having a specific translation for each description model, the creation

6 defined in the preamble of this chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

of a knowledge base can reduce the number of translations from the intermediate model to

the behavioral description to one. This idea is also conducive for updating the knowledge

base when a new representation is added to the description style set. Another advantage

of using a knowledge base is that reasoning abilities are built into it. This approach can be

applied, in turn, in such a way that it leads to the optimization of the device specification

and by conducting this activity we have a prelim in ary optimization at the behavioral level.

Finally, as shown in Fig. 5-1, the knowledge base can also be used to generate test vectors at

the behavioral level, allowing for critical time-saving (it is not the purpose of this thesis to

demonstrate the use of a knowledge base to generate test vectors: Further work is required).

The automation of this task can replace either a manual approach or an Automatic Test

Pattern Generator (ATPG) approach. At the behavioral level, the former one is unrealistic

for the industry environment and the latter one is an NP-complex problem as shown in

[SCG93].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Specification Procedure for Electronic

Circuits in Automation Language

(SPECIAL)

This chapter illustrates the VHLLS from specification to a behavioral description in

VHDL. First, VHDL is briefly introduced followed by the graphical interface used to model

the pseudo-state diagram. Finally, the structure of the VHDL code is presented. This

structure is a template of code.

6.1 Introduction to VHDL

This section presents VHDL fundamentals to help understand the translation of the

VHLLS process. In this section, the subset of VHDL shown is only enough to understand

the VHDL templates of section 6.2.3. The remaining notions of VHDL are very similar to

ADA and can be found in the IEEE standard [IEE93].

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

6 .1 .1 B L O C K S ta tem en t

A block statement defines an internal block representing a portion of a design. This

statement allows the use of concurrent statements in order to define interconnected blocks

and processes that describe the overall behavior or structure of a design. Concurrent state­

ments execute asynchronously with respect to each other.

concurrent-statement ::=
block-statement
| process-statement
| concurrent-assertion-statement
| concurrent-procedure-call
| concurrent-signal-assignment-statement
| component-instantiation-statement
| generate-statement

Blocks may be hierarchically nested to support design decomposition. The blocks prop­

erties are :

• declaration encapsulation :

• hierarchy support.

The syntax of a block statement is the following :

block-statement ::=
Wocfc-label:
B LO C K {{guard-expression)]

block-header
block-declarative-part

B E G IN
block-statement-part

EN D B LO C K [block-labeL] ;
block-header ::=

[generic-clause
[generic-map-aspect ;]]
[port-clause

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

[port-map-aspect ;]]
block-declarative-part ::=

{ block-declarative-item }
block-statement-part ::=

{ concurrent-statement }

6.1 .2 P R O C E S S S tatem en t

A process statement defines an independent sequential process representing the behavior

of some portion of the design. This statement, in the same manner as the block statement,

is a concurrent statement (seen above). The execution of a process statement consists of a

repetitive execution of its sequence of statements. After the last statement in the sequence

of statements is completed, the execution mechanism immediately continues with the first

statement of the sequence of statements. A process statement is said to be a passive process

if neither the process itself nor any procedure of which the process is a parent, contains

a signal assignment statement. To control its execution, VHDL has an instruction named

WAIT (see below) allowing a change to a passive process statement until an event on the

sensitivity list of WAIT modifies the process statement to be active. The syntax of a process

statement is the following :

process-statement ::=
[process-label :]

P R O C E S S [(sensitivity-list)]
process-declarative-part

B E G IN
process-statement-part

E N D P R O C E S S [process-label]
process-declarative-part ::=

{ process-declarative-item }
process-declarative-item ::=

subprogram-declaration
| subprogram-body
| type-declaration
| subtype-declaration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

| constant-declarat ion
| variable-declaration
| file-declaration
| alias-declaration
| attribute-declaration
| attribute-specification
| use-clause

process-statement-part ::=
{ sequential-statement }

6.1 .3 W A IT S ta tem en t

The wait statement causes the suspension of a process statement or a procedure. The syntax

of this statement is the following :

wait-statement ::=
W A IT [sensitivity-clause][condition-clause][timeout-clause] :

sensitivity-clause ::= O N sensitivity-list
sensitivity-list ::= signal-name {, signal-name }
condition-clause ::= U N T IL condition
condition ::= boolean-expression
timeout-clause ::= F O R ftme-expression

The sensitivity clause defines the sensitivity set of the wait statement. The execution of a

wait statement causes the time expression to be evaluated to determine the timeout interval.

It also causes the execution of the corresponding process statement to be suspended, where

the corresponding process statement is the one that either contains the wait statement or is

the parent of the procedure that contains the wait statement. The suspended process will

resume, at the latest, immediately after the timeout interval has expired. The suspended

process may also resume as a result of an event occurring on any signal in the sensitivity

set of the wait statement. If such an event occurs, the condition in the condition clause is

evaluated. If the value of the condition is TRUE, the process will resume. If the value of

the condition is FALSE, the process will re-suspend. Such re-suspension does not involve

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

the recalculation of the timeout interval.

6.2 SPECIAL

This section introduces the graphical language for modeling the pseudo-state diagram which

encapsulates time.

6 .2 .1 Syntax

As defined in the chapter 1, the hypothesis restricts the domain of consideration to

a pseudo-state diagram without hierarchy and actions associated with a state written in

VHDL. Through these hypotheses, a specification language is defined.

The first step in a design flow is to define inputs and outputs by their relationships.

When a designer wants to specify sequential circuits, the behavior of this system is usually

transcribed with nodes and arrows. A node represents a state of the system in which

either actions (written in VHDL), a graph type representation, or other representations

to be defined (Petri net, timing diagram, . . .) can be associated. Therefore, within the

study's restriction, the system has only actions associated with a node. The second notion

is an arrow, which represents the capability of changing state. The system behavior can be

controlled by a condition associated with an arrow entailing a transition from one node to

another. This type of arrow is called a conditional arrow. This representation is close to a

state graph. Therefore, in order to refer to this last model, a node is designated as a state

and an arrow represents a conditional transition from one state to another.

Therefore, the behavior of the system is controlled by these conditions which axe sensitive

to input variables of the system and variables computed in actions associated with a state.

These actions can also contain variables:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

• for intermediate computations, called computational variables. They can be ’’local”

to a state or "global”:

• to represent an output: output variables.

Consequently, four variables types are defined:

• input variables;

• local variables;

• global variables (they can be either variables intervening in the composition of condi­

tions or global computational variables);

• output variables.

Thus, the composition of conditional transitions is performed with the input variables

and the global variables. The other variable types (local and output) cannot be used. A

conditional transition is expressed by means of two notions: fact and event.

6 .2 .2 S em an tics

Once the notions and notations for the specification language have been defined, rela­

tions are specified. As we defined in Chapter 5, we have two categories of conditions: simple

and composed conditions. This section defines the semantics for expressing these conditions

with the specification language SPECIAL.

6.2.2.1 Sim ple Conditions

This section presents the simple conditions which axe: facts, events and life-time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

6.2.2.1.1 Fact Relation: A fact is verified when the time interval defining the maxi­

mum duration in a given state, and the interval defining a fact are related as in Fig.6-1.

Figure 6-1: T im in g Representation: Fact Verified

A fact is not verified elsewhere as illustrated in Fig. 6-2

Figure 6-2: T im ing Representation: Fact Not Verified

One generic case relating the user interface with the representation of a fact illustrated

and interpreted is shown in Fig.6-3.

Figure 6-3: Graphical Representation of Fact

So, the transition condition from state 1 to state 2 (Fig.6-3) is a fact. In order to

express it, we must write it as: F = ”var = val” where var is an input variable or a non-

Re produced with permission of the copyright owner. Further reproduction prohibited without permission.

147

computational variable and val is a value which affects var. If the system is in state 1

(as in the example) and fact F is true, the system will switch to state 2. If one of these

two statements is not verified, this change of state will not be carried out. The following

algorithm illustrates the representation behavior of a fact:

1. the operative part is computed :

2. the computational variables are assigned their new value :

3. the conditions of state change are consulted:

(a) if the fact F is verified then

• the time increases to t + <5t :

• the non-computational globed variables are assigned their new value :

• the state change is carried out ;

• the system executes this principle in item - 1 - for the new state.

(b) if the fact F is not verified then

• the time increases to t + tft :

• the non-computational global variables are assigned their new value :

• the system stays in the same state ;

• the system revalues the fact F with the same protocol as in - 3a - but without

the revaluation of the non-computational variables.

6.2.2.1.2 E vent R ela tio n : An event is verified when the time interval defining the

duration in a given state, and the instant of the event, are related as in Fig.6-4. An event

is not verified elsewhere, as illustrated in Fig.6-5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

Figure 6-4: Timing Representation: Event Verified

Figure 6-5: Timing Representation: event Not Verified

A generic case relating the user interface to the representation of a event is illustrated

and interpreted as shown in Fig.6-6.

Figure 6-6: Graphical Representation of Event

So, the tran sition condition from state 1 to state 2 is an event. In order to express it,

we must write it as: E = "up(var)" or " down(var)" where var is an input variable or a

non-computational variable. If the system is in state 1 (in the example) and event E is true

the system will switch to state 2. If one of these two statements is not verified, this change

of state is not carried out. The following algorithm illustrates the representation behavior

of an event:

1. the operative part is computed ;

2. the computational variables are assigned their new value ;

3. the conditions of state change are consulted:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

X ns

Figure 6-7: Life-Time Notion.

(a) if the event E is verified then

• the time increases to t 4- £t :

• the non-computational global variables are assigned their new value :

• the state change is carried out:

• the system executes this principle in item - 1 - for the new state.

(b) if the event E is not verified then

• the time increases to t 4- <Jt :

• the non-computational global variables are assigned their new value :

• the system stays in the same state ;

• the system revalues the event E with the same protocol as in - 3a - but

without the revaluation of the non-computational variables.

6 .2 .2 .1.3 Life-Tim e Relation: A generic case relating the user interface with the rep­

resentation of a time condition is illustrated and interpreted in Fig.6-7. So, the transition

condition from state 1 to state 2 is a time. In order to express it, we must write it as: T

= ”X unit" where X is an numerical value and unit is a time unit (ex: s, ms, /is, ns, . . .) .

If the system is in state 1 (as in the example) and time T is over, the system will switch

to state 2. If one of these two statements is not verified, this change of state is not carried

out. The following algorithm illustrates the representation behavior of a time life notion:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

1. the operative part is computed :

2. the computational variables are assigned their new value ;

3. the conditions of state change are consulted:

(a) if the time T is over then

• the time increases to t + <Jt :

• the non-computational global variables are assigned their new value :

• the state change is carried out:

• the system executes this principle in item - 1 - for the new state.

(b) if the time T is not verified then

• the time increases to t + £t :

• the non-computational global variables are assigned their new value :

• the system stays in the same state :

• the system revalues the time T with the same protocol as in - 3a - but

without the revaluation of the non-computational variables.

6.2.2.2 Com posed Conditions

We have defined the notions of fact and event. Now, we attem pt to associate these condi­

tions, the result shall be called a composed condition (CC). We know that simple conditions

are Boolean, so we can use operators from Boole’s algebra. We suggest a few operators.

6.2.2.2.1 COM P AD D Operator:

CC = S C i COMPADD S C 2■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

CC is true when S C 1 is true or S C 2 is true. Notice that this is similar to the OR

operator, except that the time notion introduces constraints we must consider. We will see

all the possibilities implied by this composition.

Note: The COMPADD operator is associative and commutative.

Let proposition pi and P2 be respectively in S C 1 and S C 2- In our representation, we use

the logic operator V as OR from the classical logic OR. We characterize CC according to

the different types SC\ and SC2.

• first case: SC\ = F {I\, p\) and SC2 = F (/2, P2) facts.

CC = F (I\. pi) COMPADD F (/2- P2) is a fact F (/ \p ') with:

p ' = pi V p2
< :

r = h u i 2

• second case: SC 1 = e(ti, pi) and SC2 = e fa , P2) events.

CC = e(fi, pi) COMPADD e(f2, P2) is an event e tf.p f) with:

{ Pr = Pi V P2

t' = ti or t' = t2

• th ird case: SCi = F (/,p i) and SC2 = e(t,P2) a fact and an event.

CC = F (/,p i) COMPADD e(t,p2)is an event or fact with:

r

P' = Pi V p2
<

V

and is expressed by the predicate T R U E defined before: T R U E [R ! ,p ') .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

We ran represent this formalization by a graphical representation:

CC is verified when one of the five cases in Fig. 6-8 holds;

i -------1 I 2 1 I------------ 1
I - 2 - ! i- 2 - h h - S h

>dI------ —-H I------------1
f i j fi

note: The dash lines mean the second condition E2 or F2 can
occur at anv time

' *dI ------1--------- I----12----- 1 I----- ------ 1el el el
I I I

Figure 6-8: Ttue Conditions of COMPADD Operator

CC is not verified when, in for one of the possible combinations shown in Figs. 6-9,
6-10. 6-11. one of the cases holds.

FI
h [di ------1 i------------ 1

i—=^-1 | n |

i — 1 i---- —------1
F2 , ^ - 1 ^

1 '

Figure 6-9: False Condition: F I COMPADD F2

One Illustration of the behavior of COMPADD is proposed (its other possible combina­

tion can be found in Appendix A.1.1). For example, the condition for a transition is CC =

FI COMPADD F2 and drawn as in Fig. 6-12.

The transition condition from state 1 to state 2 is: F I COMPADD F2. F I and F2

axe expressed as explained above. If the system is in state 1 (as in the example) and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6-10: False Condition: F I COMPADD e2

el
I e2

I

.
e l el

I I c2
I

Figure 6-11: False Condition: e l COMPADD e2

composed condition is true the system will switch to state 2. If one of these two statements

is not verified, this change of state does not occur. The following algorithm illustrates the

representation behavior of a composed condition using COMPADD:

1. the operative part is computed ;

2. the computational variables are assigned their new value :

3. the conditions of state change are consulted:

(a) if the condition FI COMPADD F2 is verified then

FI COMPADD F2

Figure 6-12: COMPADD With Two Facts

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

• the time increases to t -F Jt ;

• the non-computational global variables are assigned their new value :

• the state change is carried out;

• the system executes this principle in - 1 - for the new state.

(b) if the condition F I COMPADD F2 is not verified then

• the time increases to t -I- £t ;

• the non-computational global variables are assigned their new value :

• the system stays in the same state ;

• the system revalues the condition with the same protocol as in - 3a - but

without the revaluation of the non-computational variables.

6.2.2.2.2 COM PM ULT Operator:

CC = SC i COMPMULT SC 2.

CC is true when S C i is true and SC 2 is true. Notice tha t this is similar to the AND

operator except tha t the time notion introduces constraints we must consider. We will see

all the possibilities implied by this composition.

Note: The COMPMULT operator is associative and commutative.

Let propositions p\ and p2 be respectively in SC\ and SC 2. In our representation, we use

the logic operator A as AND from the classic logic AND. We characterize CC according to

the different types S C i and SC 2.

• first case: S C i = F {I\, p\) and SC 2 = F{I2, p2) facts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CC = F (Ii, P i) COMPMULT F{I2, p2) is a fact F (/ ',p ') with:

155

p' = Pi A p2

/ ' = A n l 2 ;

= [ti,t2]

second case: S C i = e(ti, pi) and S C 2 = e(t2, p2) events.

CC = e{t\, pi) COMPMULT e(t2, p2) is an event e(tf.p') with:

P — Pi A P2

third case: SC i = F (/,p i) and SC 2 = e(t,p2) a fact and an event.

CC = F {I.p i) COMPMULT e(£,p2) is an event or fact with:

p' = Pi A P2

(/ € I and t' = t

We can represent this formalization by a graphical representation:

• the two terms of COMPMULT are a fact, the composed condition is verified when

the one of the cases shown in Fig. 6-13;

'4 ‘ 4 >4I =------ 1 I------------- 1 I-----=------ 1
n { Fi ((fi l
. , P2 . , R ,

!4 *4 14I---------------1----------- I------ - I I - — i I------ *------- 1
t f i ̂ t f i t t f i l t n

. F2 . P2 P2 P2

Figure 6-13: Ttue Condition: F I COMPMULT F2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

the two terms of COMPMULT are an event, the composed condition is verified when

the one of the cases shown in Fig. 6-14;

i
| - - - - - - - 1 , ‘d ‘d
Cl

d . I, LI I----•— - i
el e l

L» I If 2 e2 e2
1 I I

Figure 6-14: True Condition: e l COMPMULT e2

• the two terms of COMPMULT are an event and a fact, the composed condition is

verified when the one of the cases shown in Fig. 6-15:

1------------------1el
 ̂ F2 |

i. ‘‘ i

I------- -—el
1

(P2

-4 1------ ^ ---------1el
| P2 |

el1
, P2

14

el
, -
el i i iel el

i-5-I t F2?] (P I (t PI j

— . i— —— H ,------ f i -------- 1
I4

Figure 6-15: True Condition: e l COMPMULT F2

All other possible cases express a composed condition which is false.

Now, it is shows the behavior of COMPMULT with one possible combination (the other

possibilities can be found in Appendix A.1.2). For example, the condition for a transition

is cond = e l COMPMULT e2 and drawn as in Fig. 6-16.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157

El COMPMULT E2

Figure 6-16: COMPMULT W ith Two Events

The transition condition from state 1 to state 2 is: e l COMPMULT e2. e l and e2

are expressed as explained above. If the system is in state 1 (as in the example) and the

composed condition is true the system will switch to state 2. If one of these two statements

is not verified, this change of state is not carried out. The following algorithm illustrates

the representation behavior of a composed condition using COMPMULT:

1. the operative part is computed;

2. the computational variables are assigned their new value;

3. the conditions of state change are consulted:

(a) if the condition e l COMPMULT e2 is verified then

• the time increases to t + (it ;

• the non-computational global variables are assigned their new value ;

• the state change is carried out;

• the system executes this principle in item - 1 - for the new state.

(b) if the condition e l COMPMULT e2 is not verified then

• the time increases to t + (it ;

• the non-computational global variables are assigned their new value ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

• the system stays in the same state ;

• the system revalues the condition with the same protocol as in - 3a - but

without the revaluation of the non-computational variables.

6.2.2.2.3 P IP E O perato r:

CC = S C i PIPE S C 2.

CC is true when S C \ is true and S C 2 becomes true before the life-time associated with

the considered state has elapsed. We will see how to express this operation. We characterize

CC according to different types S C i and S C 2.

• first case: S C i = F{I\. pi) and S C 2 = F (I2. pz) facts.

We have particular relationships between I \ , I 2 and Id (Id was defined in section 5.1.2

and represents the time interval [t, t -I- ta(S)] where t is the input instant in the state

S). Thus, with Ii = [ti, ^i], I 2 = [t2 ,t!2\ and Id as defined before, in order to verify

this association, we must have:

I\ U Id 7̂ 0

i I2 U Id ^ 0 ’

and if i < t2

to create the sequence of two facts:

• second case: S C \ — e(t\, p\) and S C 2 = e(t2, pz) events.

In order to verify this composition, we must have t\ < t2, in the same way t\ and

t2 6 Id to create the sequence of two events;

• third case: S C \ = F(I\, pi) and S C 2 = e(t2, P2) a fact and an event.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

For this association, particular relationships exist between fy, £2 and Id- Thus, with.

h — [£1, £'i] and Id. defined before, in order to verify this association, we must have:

*
h u i d

' h € Id :

and if 1 < £2

to create the sequence of a fact and an event ;

• fourth case: SC\ = e(£i, pi) and SC 2 = F(I2, P2) an event and a fact. For this

association, particular relationships exist between £1, I2 and Id- Thus, with I2 =

[£2,£'2] and Id defined before, in order to verify this association, we must have:

r

I2 U Id 7̂ 0

i ti E Id ;

and t\ < £2

to create the sequence of an event and a fact.

One illustration of the behavior of PIPE is shown below (the other possibilities can be

found in Appendix A.1.3). For example, the condition for a transition is cond = e l PIPE

e2 and drawn as in Fig. 6-17.

The transition condition from state 1 to state 2 is: e l PIPE e2. e l and e2 are ex­

pressed as explained previously. If the system is in state 1 (as in the example) and the

composed condition is true the system will switch to state 2. If one of these two statements

is not verified, this change of state does not occur. The following algorithm illustrates the

representation behavior of a composed condition using PIPE:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

El PIPE E2

O '

1 2

Figure 6-17: PIPE With Two Events

1. the operative part is computed:

2. the computational variables are assigned their new value:

3. the conditions of state change are consulted:

(a) if the condition e l is verified then

• the time increases to t + <5t ;

• the non-computational global variables axe assigned their new value ;

• if the condition e2 is verified then

— the time increases to t + <Jt ;

— the state change is carried out:

• if the condition e2 is not verified then

— the time increases to t + <5t ;

— the system stays in the same state ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

(b) if the condition e l is not verified then

• the time increases to t 4- 6 t ;

• the non-computational global variables are assigned their new value ;

• the system stays in the same state :

• the system revalues the condition with the same protocol as in item - 3a -

but without the revaluation of the non-computational variables.

6.2.2.3 Priority Notion

All the reasoning about state change has been done for a single condition (simple or com­

posed) implying a transition from one state to another. There is also a case in which several

conditional arrows axe associated with a state. Therefore, the possibility exists for going

to several states. However, the pseudo-state graph is deterministic; it cannot have many

possible transitions: so we must have a system with exclusive transitions. Thus, we intro­

duce the priority notion onto each arrow. This notion signifies that if, at a given instant,

we have several conditions verified for the considered state, we choose the arrow with the

greatest priority. We represent this notion with a numeric value associated with each arrow

(Fig. 6-18).

6 .2 .3 T ranslation in V H D L

This section presents the general structure of VHDL code generated from the internal

model. The translation of basic elements defined in the internal model will be described.

These basic elements are :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

condl

cond2

Figure 6-18: Priority Representation

• model states :

• variables used in the specification language ;

• state changes ;

• global structure of VHDL code.

6.2.3.1 S ta tes in VHDL

In addition to the existing types in VHDL, a node type is defined corresponding to the

node set S. To represent the set S in VHDL, for example S={Ari,iV2, . . a type NODE is

defined as:

type NODE is (N 1 .N 2 , . . .) .

A signal named STATE is of type NODE. With this signal, the system controls the change

state and when a modification occurs in it, this causes the activation of the new node

operative part. To change a new STATE value requires a specific process. This process

is the main process and is in relationship with all processes implementing actions of each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

node. This relationship requires the declaration of the variable STATE as a signal because,

in VHDL there is not other solution for exchanging information in the concurrent mode.

Therefore, the signal STATE is declared as:

signal STATE : NODE { := initial value }.

In VHDL, the behavior of a transition from one node N to another, M, is as follows. The

system is, at any given instant t, a t a node N. In the main process, when the STATE

assignment takes a new value M at t with STATE <= M, the system will be in this state

at t 4- £t. This change implies a process activation containing the operative part of M. By

convention, this process is called state process and its label is the name of the state itself.

The structure of the state process is as follows:

State : process

begin

wait until (STATE = node); - the process wait until it activation

: - action description of a node

wait on STATE;

end process:

6.2.3.2 Variable Description in VHDL

In the specification language, four types of variables are defined:

• in p u t;

• state ;

• computational;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

• output :

In VHDL, by definition, input and output variables are included in the signal class. In

addition, according to their particular utilization, state variables are also included in this

class for the reason explained above. In VHDL, input and output signals are in the header

of a VHDL code. However, state variables must be declared, and the syntax is :

signal signal name : type { := initial value } ;

Computational variables are included in the variable class in VHDL. The behavior of this

variable class is different than that of signals. Variables have no delay when there is an

assignment. The syntax of this declaration type is as follows:

variable var_name : type { := initial value } :

6.2.3.3 S tate Changes

The transition from one state to another is computed in a process named "main process” .

This process represents a VHDL description of internal and external functions from the

internal model. In the main process, if the system is in a state characterized by a node,

and a state change condition is verified, then the transition to another state (characterized

by a new node or the same one) is computed. When the new node is known, the state

process associated at the new node is activated. The main process perpetually scrutinizes

the input and state variables. When conditions are verified, a node change (also known as

system state change) occurs. It is this process which puts the system in a wait state when

no transition conditions are verified. The main process functions as:

• the system is in a state characterized by a node N. Thus, the value of the STATE

variable is N. The main process observes, a t any given instant t, all variables used to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

165

create the transition conditions of the node N;

• if no conditions are true a t this instant t, the main process (and thus the system) is in

the w ait m o d e realized by the instruction WAIT (i.e. structure of the main process);

• if one or more conditions are true at this instant t, the main process computes a state

change assigning the signal STATE at a new state characterizing a node M led by a

transition having the highest priority. Consequently, actions associated with M are

evaluated. Thus, computational variables (variables in VHDL) and output variables

(signals in VHDL) receive their new value respectively at t 4- £t and t+2£t.

The main process structure contains the instruction CA SE. A CASE statement selects for

execution one of a number of alternative sequences of statements: the chosen alternative is

defined by the value of an expression. The expression must be of a discrete type, or of a

one-dimensional character array type. The syntax of CASE is the following:

casejstatement ::=

case expression is

case_statement_alternative

{ case_statement_altemative }

end case ;

case_statement_alternative ::=

w hen choices =>

sequence_oLstatements

The main process structure is illustrated through a simple example. Let an internal model

make up of three nodes N 2 , N z . Let transition conditions condi, cond.2 be associated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166

respectively with, a transition from to N 2 and from N 2 to W3. The main process corre­

sponding to this model is as follows:

TTICLITI • PROCESS
BEG IN

CASE STATE IS
W H E N N , =>-

EF not(condl)
TH E N

 the system is in N i
WAIT U N TIL (condl):
 If concLl is not true the system stays
 in this state

EN D IF ;
IF (condi)

TH EN
 If concLl is true
STATE <= N 2;
 then the system changes state
 represented by N_2

EN D IF ;
W H E N No =>

IF not(cond2)
TH EN

 the system is in a state ofA^
WAIT U N TIL (cond2)
 If cond_2 is not true the system stays
 in this state

EN D IF ;
IF (cond2)

 If cond_2 is true
T H E N

STATE <= N 3:
 then the system changes of state
 represented byN 3

EN D IF :
EN D CASE :

END PRO CESS main',

6.2.3.4 Global Software Structure

Having defined the basic elements of a VHDL description obtained from a design specifica­

tion with the specification language, a global software structure can be proposed represent-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

167

ing the place of these elements.

In the entity specification (ENTITY), all input and output variables are declared with

their type and their input-output mode. The architecture specification (ARCHITECTURE)

contains in it declarative part : variables, signals, constants used in all processes (main and

state processes) and types defined as describing systems nodes. The body of the architecture

contains the internal model view. All processes are included in a BLOCK structure. This

BLOCK structure will be useful later when we want to insert the notion of hierarchy in the

state graph representation of the specification language. Therefore, the global software will

be :

E N T IT Y O F model-name IS
P O R T (variable — declaration^ variable — declaration]

m o d e(I/0)
type;
[variable — declaratian[.variable — declaration] :
m ode(I/0)
type:]
):

E N D model-name :
A R C H IT E C T U R E behavioral OF model-name IS
declaration of signals, variables, constants, types
B E G IN

B LO C K : {block — name}
B E G IN

m a in : PR O C E SS
B E G IN

CA SE S T A T E IS
W H E N N i ^ . . .
W H E N N 2 =► . . .

EN D C A SE :
E N D P R O C E S S :
S ta te l : PR O C E SS
B E G IN

EN D P R O C E S S state 1;
State2 : PR O C E S S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168

B E G IN

E N D P R O C E SS state2:

E N D B L O C K :
E N D behavioral;

6 .2 .4 E xam p le o f S P E C IA L Front E n d

To illustrate SPECIAL and its translation process, the example of the RAM described

in chapter 2 is used. Fig. 6-19 is a snapshot of the SPECIAL graphic interface.

As seen in chapter 5, two strategies are defined to perform this translation into a VHDL

code. For the RAM, these two models are fully developed in the example in section 5.2.4

for the basic VHLLS model, and in the example in section 5.3.3 for the advanced VHLLS

model.

The resulting VHDL code generated by SPECIAL is the following:

E N T IT Y OF RAM IS
PORT (NRST : IN bit:

C S : IN bit:
RD : IN bit:
W R: m b it:
AD : m BIT.VECTOR(Oto7);
D IN : m BIT.VECTOR(Oto3);
D O U T : O UT BIT.VECTOR{Oto3);
READY : OUT bit
);

C O N STA N T TJtEAD Y.U : TIM E := 60ns;
C O N STA N T TJREADYJ) : T IM E := Ins;
CO N STA N T T^A C C E SS : TIM E := 40ns;
CO N STA N T T .W R IT E : TIM E := 5ns;

E N D RAM ;
ARCH ITECTURE behavioral OF RAM IS
CO N STA N T nb-words : IN TEG ER := 2 * *8 ;
T Y P E typejmemory IS A R R A Y fQ TO nb-words - 1) OF B IT .V E C T O R ^ TO 3);
T Y P E Type^stateis(InitQ , In i t l , W ait — st, R /W , R , W, Err);
SIG NAL state : T yp e^ta te := initO;
VARIABLE M : typejmemory;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169

Bye) File) Options r) Delete Craph) Create Node) Delete Object) Traps late)

*
INITO

NONE

NONE

ATTENTE

NONE

NONE ACTIONACTION

ERR
ACTION

EERIE, Nfmss FRANCE N. VALVERDE

Figure 6-19: RAM Description With SPECIAL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

170

FU N C T IO N value(bv : IN B IT .V E C T O R ^ TO 7)) R E T U R N natural IS
VARIABLE n : NATURAL := 0:
B E G I N process

FO R I IN to'low TO bu'high LOOP
n : = n * 2;
IF bv(l) =' 1'

T H E N
n := n + 1;

E N D IF ::
E N D LOOP:
R E T U R N n.

END value:
B EG IN

BLOCK : {R A M — Block}
B E G IN

TTICLITI • PROCESS
B E G IN

CASE S T A T E IS
W H E N In itQ =>

IF no t(N R ST =' O')
THEN

W AIT U N T IL N R S T =' O';
END IF :
S T A T E <= In itl:

W H E N In it l =>
IF not(N R ST =' 1')

THEN
W AIT U N TIL N R S T =' 1':

END IF :
ST A T E <= W ait — st;

W H E N W a i t =>
IF not(CS =' 1')

T H E N
W AIT U N T IL C S =' 1';

END IF :
ST A T E <= R /W :

W H E N R /W =>
IF not((W R =' O' A N D R D =' 1') OR

{W R = ' O' A N D RD =' O') OR
(W R =' 1' A N D RD =' 1') OR
(W R =' 1' A N D RD = ' 0'))
THEN

W AIT U N T IL ((W R =' O' AND RD = ' 1') OR
(W R =' O' A N D RD = ' O') OR
(W R =' 1' A N D RD =' 1') OR
(W R =' 1' A N D R D =' O'));

END IF :
IF (W R =' O' A N D RD =' 1')

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

171

T H E N
state <£= R;

ELSIF (W R =' 1' AN D R D = ' O')
T H E N

state •£= W ;
ELSIF (W R =' 1' A N D R D = ' 1')

TH EN
state •$= E r r ;

ELSIF (WR = ' O' AND R D = ' O')
TH EN

state 4= E rr ;
E N D IF ;

W H EN R =>
S I n o t(N R S T = ' O')

T H E N
W AIT UN TIL N R S T =' O' FOR Ins:

E N D IF :
IF N R S T =' O'

T H E N
S T A T E <= In it l:

ELSE
S T A T E <= W A IT :

E N D IF ;
W H EN W =»

s not (N R S T = ' O')
T H E N

W AIT UNTIL N R S T =' O' FOR Ins:
E N D IF :
S I N R S T = ' O'

T H E N
S T A T E «= In it l:

ELSE
S T A T E *= W A IT :

E N D IF :
W H EN E rr

IF not(true)
T H E N

W AIT FOR Ins:
E N D IF ;
S T A T E <= InitQ:

E N D CASE :
END PROCESS :
R — p : PROCESS
B EG IN

W AIT UNTIL (S T A T E = R);
Ready <*=' 1' A FTER T - R E A D Y - U,
'O' A F T E R T - R E A D Y - U + T - R E A D Y - D;
D O U T <f= M (value(AD)) A FT E R T - A C C E SS:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

172

W A IT O N S T A T E ;
E N D P R O C E S S R - n :
W - p : P R O C E S S
B E G IN

W A IT U N T IL {ST A T E = W):
M(value{AD)) <= D IN A F T E R T - W R IT E ;
W A IT O N S T A T E :

EN D P R O C E S S W - n :
E rr — p : P R O C E S S
B E G IN

W A IT U N T IL {ST A T E = Err):
A SSER T F A L S E
R E P O R T "Wrong values for WR and RD when CS rises"
S E V E R IT Y W A R N IN G :
W A IT O N ST A T E :

EN D P R O C E S S W - o :
E N D B L O C K :

EN D behavioral:

6.3 Conclusions on SPECIAL

In Section 1.1.2, for meeting the challenges about defining a new generation of CAD

tools, the following enumeration was proposed:

1. the hypothetical introduction of a new design process using a generalized synthesis

approach as shown in Fig. 1-4. The emphasis in this thesis is on the front-end

synthesis, called VHLLS:

2. if (1) is proven then the next generation of design automation tools is introduced as

a practical consequence of a generalized synthesis process;

3. therefore, the complexity of microelectronics systems design is lessened, or at least

maintained, by starting a design process at a higher level of abstraction:

4. and, a high-level specification is incorporated as the entry level in an automated design

flow.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173

Item (1) represents our prim ary objective. Item (2) introduces the issue of feasibility to

this problem. Therefore, the hypothesis of the research problem can be stated as follows:

having (1), we can define (2) or mathematically ((1) => (2)). So, Chapters 2 and 3 identify

the need of introducing a new generation of CAD tools and define a formalism to characterize

them. Chapter 4 reviews exciting methods in order to identify description methodologies

which can be classified as the next generation of CAD tools. To have ((1) =>- (2)) true,

Chapters 5 and 6 define a framework enabling system specifications in a graphical manner

and a translation process of these specifications allowing the generation of the system at

a lower level of abstraction. As a result, the implication of getting (3) and (4) has been

partially demonstrated. Indeed, to keep this problem feasible, the domain of investigation

was restricted to a minimal configuration of the design space referred to as Cmtn (it is the

minimal set of characteristics, a next generation CAD tool must meet).

C h arac te ris tic s C h eck m ark
Sequentially Decomposable Activities V
Concurrently Decomposable Activities

State Transitions ~ T
Im m ed ia te M ode C hange

Activity Completion

Delay Specification >r
Asynchronous Activities

Design for { Testability, Manufacturing, etc }
Multiple Model Representations

Reusability

Table 6.1: First Generation VHLLS Characteristics

We can state then:

T heorem 6.1 Under the minimal configuration defined by Cmin, the following relation is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174

verified by the SPECIAL environment:

(hypothesis({ 1) =* (2))) =► ((3) A (4))

P roof: This thesis constitutes the proof.

As an illustration for this new generation o f CAD tools, next chapter is advocated to

illustrate SPECIAL using three examples.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

VHLLS Examples

The previous chapters introduce the notions needed to implement VHLLS. As a result,

a CAD tool called Specification Procedure for Electronic Circuits in Automation Language

(SPECIAL) is defined and implemented as illustrated in Chapters 5 and 6. This chapter

illustrates SPECIAL using three examples. The first one shows the method of capturing

specifications using SPECIAL. The second example identifies where SPECIAL fits in a real

design flow. The last example illustrates some limitations of this first version of SPECIAL.

7.1 Process Controller

The behavior of a computer system can be described as a set of asynchronous, concur­

rent, and interactive processes, where a process for this example is viewed as a device defined

as an identifiable sequence of related actions. This process performs a single execution of a

program. It can be in one of these major states:

• Busy or executing;

• Idle and ready to begin execution;

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176

START

NONE

1 E xec_Status=com plete

Figure 7-1: Process Controller Specification

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

177

• Idle while execution is temporarily suspended;

• Idle but not ready to begin execution.

This process uses shared system resources. The execution of a process is suspended if

a resource it requires has been preempted by other processes. To make sure that a process

is properly executed, a process controller must verify that all the resources are available

before te llin g the process to s tart the execution of the program. The time allocated for the

program execution must not exceed 10ms. If the resources are not available, the process

makes a request for them and samples their availability every 50ns until ail the resources

are ready to deliver their services. One approach to specifying the behavior of this process

controller is shown in Fig. 7-1.

The translation process led to the following VTIDL description:

PACKAGE process-ctrl-package IS
CONSTANT nb-process : integer 4;
TYPE status IS (not-available, available):
TYPE Resource^statusJtype IS array(0 TO nbprocess) OF status:
TYPE Process J D IS
RECORD

ID : bitJuector(Z DOWNTO 0):
in tp t: bit:

END :
TYPE Requestjresourcesdype IS array(0 TO nb.process) OF Process^!D:
TYPE ActivejprocessJtype IS (Idle, FastJnit, FullJnit, Start, Resume, Stop):
TYPE ExecJStatusJtype IS (IdleJ^nit, I dle^uspended, Busy .Completed,
Error, Power.on);

END process.ctrl jpaclzage:
USE work.processjctrl^package.all:
ENTITY ctrl-process IS

PORT
(
ExecJiequest. Processjready : IN BOOLEAN:
Acknowledgejrequest: OUT B IT :
Resources^tatus : IN Resource^statusjtype:
Exec^status : E l ExecJStatusJype:
PROCESSED : IN bit.vector(3 DOW NTO 0);
Requestjresaurce : OUT RequestresourcesJype;
PR O C E SSJinit: OUT Active ̂ process.type-,
Activejrrocess : OUT ActivejprocessJtype

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

178

);
END :
ARCHITECTURE CO M P OF ctrljrrocess IS
BEG IN

GRAP H E : BLOCK
TY PE NOEUD IS
(
START,
IN IT 1, Exec, Queue. Request
);
SIGNAL E T A T : NOEUD:
SIGNAL
A va il: BOOLEAN:
BEGIN

PRINCIPAL : PROCESS
BEGIN

CASE ETAT IS
W HEN IN IT1 =>

IF not(P ROC ESS-Ready = true)
TH EN

WAIT UNTIL (Process-Ready = true);
END IF ;
ETAT < = Request:

W HEN Exec = >
IF not(Exec-Status = Completed)

TH EN
WAIT TTNTTL (ExecJStatus = Completed) FOR 100ns;

END IF :
IF (ExecJStatus = Completed)

TH EN
ETAT < = START:

ELSE
ETAT < = Request:

EN D IF :
W HEN Queue = >

IF not (true)
THEN

WAIT UNTIL false FOR 50ns:
END IF :
S I (false)

TH EN
null;

ELSE
ETAT < = Request;

END IF ;
W HEN Request = >

IF (not(Auail = true))
TH EN

WAIT UNTIL Avail = true FOR 0ns:
END IF :
IF ((Avail = true))

TH EN
ETAT < = Exec;

ELSE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

179

ETAT <= Queue;
END IF :

WHEN START = >
IF (not(Exec-Request = true))

TH EN
WAIT UNTIL (ExecTtequest = true);

END IF :
ETAT < = INIT1;

END CASE :
END PROCESS PRINCIPAL;
E x e c s t : PROCESS
B E G I N Execst

WAIT UNTIL (ETAT = Exec);
IF (Exec^status = IdleJLnit)

THEN
Active-process < = Start;

ELSIF (Execstatus = Idlesuspended)
THEN

Active-process < = Resume:
ELSE

ASSERT false
REPORT " Error : Process found BUSY' when it should be IDLE7
SEVERITY ERROR:
Active-process < = fullJnit;

END IF :
WAIT ON E T A T :

END PROCESS E xecst;
I N I T l s t : PROCESS
BEGIN - - I N I T ls t

WAIT UNTIL (ETAT = IN ITT):
IF ((Execstatus — Idlesuspended.) OR (Execstatus = IdleJnit))

THEN
ProcessTnit < = fastJnit;

ELSIF ((Execstatus = Powerjon) OR (Execstatus = Error))
THEN

ProcessTnit < = fullJnit:
ELSE

ProcessTnit < = idle;
END IF :
Acknowledgejrequest < — l ' /0 ' AFTER 10ns;
WAIT ON ETAT:

END PROCESS I N I T ls t;
Q ueuest: PROCESS
B E G I N Queuest

WAIT UNTIL (ETAT = Queue);
FOR i IN 0 TO nb-process LOOP

IF (Resourcesstatus(i) = notsxailable)
THEN

Requestjresource(i).ID < = processTD;
Requestjresource(i).intpt <=' 1',’ 0'after20ns;

END IF :
END LOOP:
WAIT ON E T A T :

END PROCESS Queuest;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180

R e q u e s t : P R O C E S S
V A R I A B L E i : integer;
B E G I N R equ ests

i := 0;
W A I T U N T I L {ETAT = Request);
while {i <= nbjprocess) L O O P

I F {Resourcesstatus(i) = notjavailable)
T H E N

Avail <= false:
E L S E

i := i 4 - 1 :
Avail < = true:

E N D I F :
E N D L O O P :
W A I T O N ETAT:

E N D P R O C E S S Requestst:
E N D B L O C K GRAPHE:

E N D COM P ;

Notice that some sections of this above VHDL code is not yet automated. For example,

the first part of the code referred to as “package” must be defined by the designer because

this section of code allows the designer to define the type of each input or output.

7.2 SPECIAL in MCM Design Flow

An example is selected from a real project involving satellite development. Three in­

dustrial design methods and SPECIAL are then used to implement that same example to

obtain a framework for comparison.

The UNH’s Institute for the Study of Earth, Ocean and Space (EOS) is building a light

satellite [FOR94] to understand the origin of Gamma Ray Bursts (GRBs). The Cooperative

Astrophysics and Technology SATellite (CATSAT) is a small space flight mission designed

to better understand this phenomenon using a multi-observation approach. The general

configuration of CATSAT includes:

• a set of sensors able to detect GRBs and to capture relevant parameters;

• a communication device.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

181

The CATSAT scientific instruments sort and store information from the sensors into

appropriate memory locations with three major subsystems: an Analog Electronics Unit

(AEU); a Digital Electronics Unit (DEU); and an Automatic Gain Control system (AGC).

The AEU prepares analog signals from individual sensors for conversion to digital channel

signals. The DEU accepts converted digital pulse amplitudes and sorts them by channel into

corresponding spectra. The AGC consists of gain control elements; each element regulates

the gain of a specific sensor. The AGC performs continuous sensor calibration to ensure

accurate measurements over time. This is accomplished by comparing sensor gains to

the reference energies of radioactive source photons. Each sensor gain is controlled by a

gain control element. This element consists of an up-down counter and a digital-to-analog

converter. The counter stores the value which is directly proportional to the gain. The

value drives a digital-to-analog converter regulating the sensor gains.

The Up-Down Counter which was selected for the presented experiment, has the follow­

ing specification:

The up-down counter is a synchronous digital circuit which increments or decre­

ments its output every T.Trig period of time. A reset command can be applied

any time to initialize the counter.

The presented up-down counter, depicted in Fig.7-2, is suitable for SPECIAL. Four

different approaches are investigated. The respective entry levels are:

1. Specification level using SPECIAL to synthesize into a behavioral description;

2. KTL behavioral level;

3. Gate level;

4. Layout level (VLSI).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IDLE
NONE1 m ode-increase_0 .Inactivity-count ns

2 actlvity?f»tcount

0 moda-dacrease_COr' PMULT_activity-count

2 activity ■notcount
PMULT_actlvlty-count1 mode-inc aase_i

0 ins

1 mods—dacraase.COfdPM ULT_actlvlty-count

Figure 7-2: CJp-Down Counter For CATSAT

In all of these methods as illustrated in Fig. 1-4, the targeted technology is MCM and the use

of synthesis processes is prioritized [HRVJ95]. To generate the MCM layout, two methods

are used: manual and automatic. The design environment used is provided by Mentor

Graphics and the list of used tools includes: Design Architect. Quick VHDL, QuickSim II,

Auto logic, IC Station, MCM station [Cor95].

The selected example has been implemented using four design flows. Results and analysis

are presented in order to position SPECIAL among the three others methods. The use of

synthesis processes in the Mentor Graphics™ design environment has been practiced as

much as possible. The highest level which can be synthesized is RTL with VHDL assistance.

Therefore, the VHDL code generated by SPECIAL needs to be adjusted to the requirement

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

183

manually

DESIGN
and
SYNTHESIS
proceduremanually

manually

IC LAYOUT
procedure

IC FABRICATION
(Make a die for MCM)

CMOSN Facility

INVOKE ICStab'an AND
GENERATE LAYOUT FILE

ICStation
INVOKE ICStation AND

GENERATE LAYOUT FILE
ICStation

WRITE RTL-LEVEL VHDL
DESCRIPTION

Design Architect VHDL Editor

GENERATE BEHAVIOR-LEVEL
VHDL DESCRIPTION
SPECIAL

IC LAYOUT AND FABRICATION
(make a die for MCM)

CMOSN Facility

TRANSFORM BEHAVIOR VHDL
TO RTL-LEVEL DESCERIPTION

Design Architect VHDL editor

INVOKE ENWrite AND DIRECT IT
TO WRITE AN EDIF NETLIST
Design Manager and ENWrite

COMPILE CHVL DESCRIPTION
AND SIMULATE THE FILE

System-1076 Compiler in the design
Architect and Quicksim Q

CREATE GATE-LEVEL SCHEMATIC
AND SIMULATE IT

Schematic capture in Design Architect
Component Library and QuickSim H

SPECIFICATION OF A SYSTEM

SYNTHESIZE THE VHDL DESCRIPTION
INTO A CATE-LEVEL DESCRIPTION

AND SIMULATE IT
Design Architect, Autologic and

_______ QuickSim H_____________

SETTING DESTINATION TECHNOLOGY
AND OPTIMIZE THE GATE-LEVEL
DESCRIPTION AND SIMULATE IT

Vendor Library, Design Architect, Autologic
and Quicksim II

INVOKE MCMStation AND GENERATE A MCM-D LAYOUT
MCM Station

Figure 7-3: Up-Down Counter: Design Methodologies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

184

of RTL. Basically, the structure of the resulting code is the same. A clock signal has to be

explicitly defined and all processors have to be guarded with control signals such as reset,

clock, activity mode, and state variable. An additional process has to be implemented to

manage the next state transition. Having given that new description, a synthesis process

is applied to generate a gate level description with some additional constraints such as the

width of counter output (12 bits). Using the Mentor Graphics’ IC Station, the layout is

automatically generated using the standard CMOSN library. Autoplace and autoroute rules

are defined within the library and sufficiently generate the layout. The layout is invoked

in the MCM environment and creates a die. The last step is to implement the counter as

an MCM board allowing a single package with multiple dies (10) (limited by the number of

I/O pins of the MCM package (172)). Using the same principles and the same set of tools,

three other designs were completed for the up-down counter:

• specification capture and a synthesis process to obtain the MCM implementation;

• an RTL-level description and a synthesis process;

• a schematic description to exercise optimization followed by synthesis;

• an IC layout description generated from a non-optimized schematic.

For a simple design such as the up-down counter, the accurate time spent is difficult to

determine since there was a learning curve to become familiar with the tools. Therefore, all

time comparisons provided below are relative. Let us label:

• methodl as the MCM circuit generated through SPECIAL;

• method2 as the MCM circuit obtained from the RTL description;

• method3 as the MCM circuit resulting from the schematic description;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

185

• method4 as the MCM circuit drawn from the IC layout description.

VHDL lines Gates Transistors
Methodl 196 1258
Method2 27 161 1102
Method3 - 61 622
Method4 - 70 708

Table 7.1: Design Sizes

VHDL Be­
havior

VHDL
RTL

Gates Transistors MCM Approx.
total
time
spent

Methodl 1 + analy­
sis

4 1 1 20 27 +
analysis

Method2 ~ 3 + anal­
ysis

1 1 20 25 +
analysis

Method3 ~ ~ 80 +
analysis

1 20 101 +
analysis

Method4 160 +
analysis
included

20 180

Table 7.2: Design Timing in Hours

Table 7.1 shows the size of the designs which clearly depends on the level of abstraction.

One can notice tha t method3 has the smallest number of transistors. The reason is that the

optimization a t that level is well understood. Also, during the design process at the gate

level, designers used some ad-hoc optimization features complemented with those from the

Mentor Graphics™ synthesis tool. Moreover, the time spent (see Table 7.2) is substantial

in comparison with the VHDL behavioral level method.

For the SPECIAL-oriented methodl, the VHDL generation at the behavioral level is

very efficient. However, because no synthesis tool commercially exists to translate from

that level to the RTL level, this transformation has to be accomplished manually increasing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

186

the design time. Methodl and method2 generate the design in a relatively short time

but with roughly twice the components. For prototyping, however, these two methods are

sufficient. The last method can be considered the worst because it consumes substantially

more time to sketch manually the design layout and has a larger number of transistors.

The described activities involved five students [JIA95, HEI95]. The evaluation of the

above approaches shows that the optimal method to design a circuit depends upon the

purpose of the circuit (prototype, final design). The SPECIAL tool is efficient to capture

specifications and translate them into a high-level behavioral description. However, there

is a need for a synthesis process to generate an RTL level code. W ith this gap filled, a top-

down design process can be performed automatically from the specification directly to an

MCM design. That would be very suitable for optimizing the prototype synthesis process.

7.3 Sample of Non Working Features in SPECIAL

The complexity of specification is limited with the first version of SPECIAL. Hierarchy

enabling multiple design descriptions is not defined as well as concurrently decomposable

activities. Indeed, for each state, the only representation to describe sub-activities is the

sequential syntax of VHDL. For example, if a designer wants to describe a simple computer

system, he (or she) is not able to specify it in a same tool environment session. No features

allows the designer to say that a computer system is composed by a CPU , a clock generator

and an input/output interface. These three sub-systems are indeed behaving concurrently.

Also, if the designer wants to specify the behavior of the CPU, a first restriction is that only

the sequential syntax of VHDL can be used and so it is not possible to describe a sub-unit of

the CPU such as the memory unit and the execution unit which are concurrent sub-systems.

Such a description can be easily described using a formalism such as SpecCharts [VNG91b]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright ow
ner.

Further reproduction
prohibited

w
ithout perm

ission.

•D

f
CD

T4

0
1
E

co
'O
CDn
Otr
5

CO
i ’

►a
HT
Oo
S•dce-t-

CO
3
CD

SYSTEM declaration: channel sendM_ext:addr_ha_scnd(meni:in Marray);
port RESET_IN : in bit;

____________ constraints: num.chip < - 3;_______________________________

connections: CPU.CLK: CLK.GEN.CLK;

lOJNTERFACE.sendKHY: CPU.recKHY;

CPU channel recKEY: blocking_rec (dcst: out byte);
port CLK : in bit;
variable: ACCUM, INSTR, P C : integer

NORMAL connect*°n: MEMORY_UNIT.scndM: EXEC_UNIT.readMi

MEMORY_UNIT j

channel sendM: .
addr_hs_send(mem: in Marrayi

signal M: Marray,______________ |

EXEC_UN1T

channel readM: addr_Hs_read(addn in integer, dest: out integer);
signal OPCODE, A DDR: integer,___________________________

loop
if sendM.req then

sendM(M);
elsif scndM_extreq then

sendM_ext(M);
end if;
wait on sendM.req,
sendM_eat_req;

end loop;

not(OPCODE-O)

FETCH
readM(PC, INSTR);
P C : - PC + 1 ; _

RESET
ACCUM:- 0 ;
INSTR : - 0 ;
P C : - 0 ; -

DECODE
OPCODE < - INSTR/IO;
ADDR < - INSTR mod 10;
wait for 30ns; A *

enc case;

EXECUTE
case OPCODE is
^ when 1 ->

ACCUM : - 0 ;
when 2 ->

ACCUM : - ACCUM t I;
when 3 ->

readM(ADDR, ACCUM);

CLK_GEN

port CLK : out bit

loop
CLK < - 'O’ ;
wait for 100ns;
CLK < - T ;
wait for 100ns;

end loop;

IO JN T E R F A C E
channel sendKEY:

blocking.send(data: in bute)

n u ll;

oo
• ^ t

188

as show in the Fig. 7-4.

As demonstrated in chapter 4, SpecChart is the most advanced tool to capture system

specification. However, SpecChart is not able to describe directly specification given in

section 7.1. The designer would have to go through a refinement stage in order to meet the

syntax of SpecChart.

7.4 Closing Remarks

The first version of SPECIAL is a prototype which applies the simplest form of the

VHLLS process. The chapter has illustrated its strengths as well as its weaknesses. Further

developments are needed to comply to the ultimate goal of having a VHLLS able to generate

a behavioral description from specifications described in many ways as defined in Chapter 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Conclusions and Future Plans

8.1 Conclusions

This thesis is organized into two parts. The first part is the most important because it

focuses on capturing the evolution of the design process in the design space. To perform

this task, a good understanding of the design space is required in order to characterize

this evolution. As a result, a formalism is proposed to model the design space and any

transformation processes in this space. For example, synthesis processes can be represented

by a mathematical notation following formal rules. Also, this formal model of the design

space allows the definition of metrics such as the distance of an evolution, the cardinal

of a tool characteristics set, etc... Using the above formalism, the current status of CAD

tools can be characterized and the use of the metrics allows an immediate comparison.

Furthermore, the same formalism allows the identification of the next generation of CAD

tools by highlighting characteristics which are not met by available tools. Having specified

the next generation of CAD tools, an evolution mechanism in the design space is defined

and referred to as VHLLS. Therefore, the entry description method of these tools can be

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

190

automatically transformed in a description accepted by today’s CAD tools.

From the set of characteristics defining the next generation of CAD tools, it was noted

in Chapter 4 that none of the description methods meet a characteristic called “Delay

specification”. This characteristic states that a designer can specify a time constraint al­

lowing the system to change its state automatically after a certain duration. Once this

characteristic has been identified, a minimal configuration is chosen to include the “Delay

specification” characteristic. This minimal configuration is sufficient to demonstrate the

feasibility of encapsulating time in the description model. So, a CAD tool called SPECIAL

has been realized to implement the characteristics specified by this minimal configuration

for the next generation of CAD tools.

8.2 Future Developments

Future developments need to focus on the next generation of VHLLS. This statement

implies that the comparison metrics for the next generation of CAD tools need to be refined

either by adding more characteristics, by ordering characteristics using a weighting scheme

(to be defined) or by developing a hierarchy of characteristics. Any of these refinements on

the characteristics set for the next generation of CAD tools will have direct im part: on the

evolution of VHLLS. For example, refining the characteristic “design for test” will lead to

a VHLLS which could generate Boundary Scan Description Language (BSDL) code. With

the same characteristic, another problem in testing micro-electronics devices is to generate

test patterns from a behavioral description of a system. So, the next generation of CAD tool

could help capturing the specification of that system and automatically generate behavioral

test patterns instead of extracting them from its behavioral description [SCG93]. Another

characteristic to address is the physical reconfigurability of computers. It is not clear yet

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

191

if the characteristics set introduced in this thesis contains all the elements to characterize

this future design aspect.

Considering the formal description of the design space as defined in this thesis, another

future, development will be to implement the second generation of SPECIAL. The first

step will be to implement the knowledge base and its knowledge manipulation mechanisms.

Thereafter, the other crucial characteristic to encapsulate in SPECIAL will be the “multi­

model representation” because existing description methods will have a framework to be

integrated in SPECIAL, increasing then the number of characteristics met.

The implementation of the previous suggestions will define the second version of SPE­

CIAL. This version will enable design cycle experiments. The conclusions of these experi­

ments will draw a road map for further developments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[AB94]

[AF94]

[ALL84]

[BCM+

[BLA97]

[BS91]

[CLA73]

Peter ARATO and Istvan BERES. A high-level datapath synthesis method for

pipelined structures. Microelectronics Journal, 25(3), 1994.

J. ALLEN and G. FERGUSON. Actions and events in interval logic. Technical

report, The University of Rochester, NY, 1994.

J. ALLEN. Towards a general theory of actions and time. Artificial Intelligence,

23:124-154, July 1984.

R. BRAYTON, R. CAMPOSANO, G. De MICHELI. R. OTTEN, and J. Van

EIJNDHOVEN. The Yorktown Silicon Compiler System. Silicon Compilation.

Addison-Wesley, 1988.

D. BLANCHARD. PLDs and FPGAs: A market report. Printed Circuit Design,

14(8), August 1997.

D. BELINA and A. SARMA. SDL with Application from Protocol Specifications.

Prentice Hall, 1991.

C. CLARE. Designing Logic Systems using State Machine. McGraw-Hill Inc.,

1973.

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Cor93a]

[Cor 9 3b]

[Cor95]

[CYR94]

[DGLW92]

[DON96]

[FOR94]

[FRE85]

[GHR93]

[GK83]

193

Programmable Electronics Performance Corp. Benchmark suite # 1, version 1.2,

March 1993.

Mentor Graphics Corporation. MCM station. Software Version 8.2_5, 1993.

Mentor Graphics Corp. Homepage: http: / / www. mentorg. com/. Software

Version 8.2_5, 1995.

W. CYRE. Conceptual representation of waveform for temporal reasoning.

IEEE transaction on computers, 43(2):186-200, Febrary 1994.

N. DUTT, D. GAJSKI, S. LINAND, and A. WU. High-Level Synthesis : In­

troduction to Chip and System Design. Kluwer Academic Publishers, Boston,

Massachusetts, 1992.

M. DONLIN. Graphical-code generators ease path the HDL design. Computer

Design, pages 94-99, Dec. 1996.

David J. FORREST. CATSAT Proposal. UNH, 1994.

M. FRENCH. Conceptual Design for Engineers. Design Council Books, London,

UK, 2nd edition, 1985.

D. GABBAY, I. HODKINSON, and M. REYNOLDS. Temporal Logic: Math­

ematical Foundations and Computational Aspects. Oxford University Press,

1993.

D. GAJSKI and R. KUHN. Gest editor’s introduction: New VLSI tools. IEEE

Computer, 16(12):11—14, Dec. 1983.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[GOL70]

[GVN93]

[HCG93]

[HEI95]

[HIL85]

[HOA78]

[HRVJ95]

PQEE93]

[Inc97]

194

A. GOLDMAN. A Theory of Human Action. Prentice-Hall, Englewood Cliffs,

NJ, 1970.

D. GAJSKI, F. VAHID, and S. NARAYAN. SpecCharts: a VHDL front-end

for embedded systems. Technical Report 93-31, University of California, Irvine,

June 1993.

T. HADLEY, V. CHAIYAKUL, and D. GAJSKI. A data structure for interac­

tive synthesis. Technical Report 93-6, Info, and Computer Science Dept., UCI,

January 1993.

K. HEIN. A theoretical and practical approach to multichip module design.

Master’s thesis, University of New Hampshire, December 1995.

P. HILFINGER. A high-level language and silicon compiler for digital signal

processing. In Custom Integrated Circuits Conference. 1985.

C. HO ARE. Communicating sequential processes. Comminications of the ACM ,

August 1978.

K. HEIN, A. RUCINSKI, N. VALVERDE, and Y. Jiang. MCM as a VLSI

successor in electrical engineering curriculum. In Proc. of the 4th ATW . May

1995.

IEEE. IEEE Standard VHDL Language Reference Manual. IEEE, New York,

NY, 1993. IEEE Standard 1076-1993.

Viewlogic Inc. Homepage: http: //www. viewlogic. com/. Software: Powerview,

1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[JC91]

[JIA95]

[JM94]

[KAT82]

[KM88]

[KM91]

[KR78]

[LSU89]

[MAN97]

[NEW91]

195

W. JAWORSKI and T. CUMMINGS. Programming normalization and op­

timization: Using infomaps as inspection and programming testing tool. In

Canadian Conference on Electrical and Computer Engineering, Quebec City,

Sept. 1991.

Y. JIANG. MCM design methodologies. Master’s thesis, University of New

Hampshire, May 1995.

W. JAWORSKI and A. MICHAILIDIS. Recovery and enhancement of system

patterns : InfoSchemata and InfoMaps. In Proc. of 3rd ATW, May 1994.

R. KATZ. A data base approach for managing VLSI design data. In Proceeding

of the 19th Design Automation Conference, pages 274-282, 1982.

D. KU and G. MIC HELL HardwareC - a language for hardware design. Tech­

nical Report CSL-TR-90-419, Standford University, 1988.

D. KU and G. De Micheli. Synthesis of ASICs with Hercule and Hebe, volume

High-Level VLSI Synthesis. Kluwer Academic Publishers, 1991.

B. KERNIGHAN and D. RITCHIE. The C Programming Language. Englewood

Cliffs: Prentice-Hall, 1978.

R- LIPSETT, C. SCHAEFER, and C. USSERY. VHDL: Hardware Description

and Design. Kluwer Academics Publishers, 1989.

R. MANIWA. Focus report: HDL add-in tools. Integmted System Design, pages

46-72, Apr. 1997.

R. NEWTON. Design technology challenges in the 1990s. In Design Technology

STAR, Oct. 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[PAW91]

[PB91]

[REI85]

[RYL49]

[SCG93]

[SOW84]

[TLW-90]

[TM91]

[VCSR94]

[VNG91a]

L96

Z. PAWLAK. Rough Sets. Theoretical Aspects o f Reasoning about Data. Kluwer

Academic Publishers, 1991.

J. PARDEY and M. BOLTON. Logic synthesis of synchronous parallel con­

trollers. In International Conference on Computer Design : VLSI in computer

and processors, 1991.

W. REISIG. Petri Nets: an Introduction. EATCS Monographs on Theorical

Computer Science Volume 4. Springer, 1985.

G. RYLE. The Concept o f Mind. Barnes and Noble Books, N.Y., 1949.

J.-F. SANTUCCI, A.-L. COURBIS, and N. GIAMBIASI. Behavioral testing of

digital circuits. Journal o f Microelectronic Systems Integration. March 1993.

J. SOWA. Conceptual Structures : Information Processing in Mind and Ma­

chine. ADDISON-WESLEY publishing company, 1984.

D. THOMAS, E. LAGNESE, R. WALKER, J. NESTOR, J. RAJAN, and

R. BLACKBURN. Algorithmic and Register-Transfer Level Synthesis: The

system Architect’s Workbench. Kluwer Academic Publishers, Boston, 1990.

D. THOMAS and P. MOORBY. The Verilog Hardware Description Language.

Kluwer Acadamic Publishers, 1991.

N. VALVERDE, A.-L. COURBIS, J.-F. SANTUCCI, and A. RUCINSKI. SPE­

CIAL: a specification language for generation of VHDL behavioral descriptions.

In Proc. of The 3d ATW, May 1994.

F. VALID, S. NARAYAN, and D. GAJSKI. SpecCharts : A language for system

level synthesis. In Proc. o f CHDL, Marseille, FRANCE, April 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[VNG91b]

[VNG91c]

[ZEI84]

197

F. VALID, S. NARAYAN, and D. GAJSKL System specification and synthesis

with the SpecCharts language. In Proc. o f ICC AD, 1991.

F. VALID, S. NARAYAN, and D. GAJSKL Translating system specification

to VHDL. In The European Conference on Design Automation, Amsterdam,

HOLLAND, February 1991.

B. ZEIGLER. Multifacetted Modelling and Discrete Event Simulation. Academic

Press Inc., Orlando, FI, 1984.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix A

SPECIAL

A .l Semantic of the Graphical Interface
A. 1.1 COM P ADD Semantic

CC = e l COMPADD F2

The condition for a transition is CC = el COMPADD F2 and drawn as in Fig. A-l.
The transition condition from state 1 to state 2 is: el COMPADD F2. el F2 are

expressed as explained in Chapter 6. If the system is in state I (in the example) and the
composed condition is true the system will switch to state 2. If one of these two statements
is not verified, this change of state does not occur. The following algorithm illustrates the
representation behavior of an event:

1. the operative part is computed ;

2. the computational variables are affected with their new value ;

3. the conditions of state change are consulted:

(a) if the condition el COMPADD F2 is verified then
• the time increases to t -f St ;
• the non-computational global variables are affected with their new value ;
• the state change is carried out ;
• the system executes this principle in item - 1 - for the new state.

El COMPADD F2

Figure A-l: COMPADD With Event and Fact

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

199

(b) if the condition e l COMPADD F2 is not verified then
• the time increases to t + <ft ;
• the non-comp utational global variables are affected with their new value ;
• the system stays in the same state ;
• the system revalues the condition with the same protocol like item - 3a - but

without the revaluation of the non-computational variables.

CC = el COMPADD e2

The condition for a transition is CC = el COMPADD e2 and drawn as in Fig. A-2.

El COMPADD E2

Figure A-2: COMPADD with two events

The transition condition from state 1 to state 2 is: el COMPADD e2. e l and e2 are
expressed as explained in Chapter 6. If the system is in state 1 (in the example) and the
composed condition is true the system will switch to state 2. If one of these two statements
is not verified, this state change is not carried out. The following algorithm illustrates the
representation behavior of a composed condition using COMPADD:

1. the operative part is computed ;

2. the computational variables are assigned their new value ;

3. the conditions of state change are consulted:

(a) if the condition el COMPADD e2 is verified then
• the time increases to t -|- 6 t ;
• the non-computational global variables are assigned their new value ;
• the state change is carried out ;
• the system executes this principle in item - 1 - for the new state.

(b) if the condition e l COMPADD e2 is not verified then
• the time increases to t + Jt ;
• the non-computational global variables are assigned their new value ;
• the system stays in the same state ;
• the system revalues the condition with the same protocol like item - 3a - but

without the revaluation of the non-computational variables.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

200

El COMPMULT F2

Figure A-3: COMPMULT With Event and Fact

A. 1.2 COMPMULT Semantic

CC = e l COMPMULT F2

The condition for a transition is CC = e l COMPMULT F2 and drawn as in Fig. A-3.
The transition condition from state 1 to state 2 is: e l COMPMULT F2. e l and F2 are

expressed as explained in Chapter 6. If the system is in state 1 (in the example) and the
composed condition is true the system will switch to state 2. If one of these two statements
is not verified, this change of state does not occur. The following algorithm illustrates the
representation behavior of an event:

1. the operative part is computed ;

2. the computational variables are assigned their new value ;

3. the conditions of state change are consulted:

(a) if the condition el COMPMULT F2 is verified then
• the time increases to t + St ;
• the non-computational global variables are assigned their new value ;
• the state change is carried out ;
• the system executes this principle in item - 1 - for the new state.

(b) if the condition el COMPMULT F2 is not verified then
• the time increases to t + St ;
• the non-computational global variables are assigned their new value ;
• the system stays in the same state ;
• the system revalues the condition with the same protocol like item - 3a - but

without the revaluation of the non-computational variables.

CC = FI COMPMULT F2

The condition for a transition is CC = FI COMPMULT F2 and drawn as in Fig. A-4.
The transition condition from state 1 to state 2 is: FI COMPMULT F2. FI and F2 are

expressed as explained in Chapter 6. If the system is in state 1 (in the example) and the
composed condition is true the system will switch to state 2. If one of these two statements
is not verified, this change of state is not carried out. The following algorithm illustrates
the representation behavior of an event:

1. the operative part is computed ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FI COMPMULT F2

Figure A-4: COMPMULT W ith Two Facts

2. the computational variables are assigned their new value ;

3. the conditions of state change are consulted:

(a) if the condition FI COMPMULT F2 is verified then
• the time increases to t -f £t ;
• the non-computational global variables are assigned their new value ;
• the state change is carried out ;
• the system executes this principle in item - 1 - for the new state.

(b) if the condition FI COMPMULT F2 is not verified then
• the time increases to t ■+■ 5t ;
• the non-computational global variables are assigned their new value ;
• the system stays in the same state ;
• the system revalues the condition with the same protocol like item - 3a - but

without the revaluation of the non-computational variables.

A .1.3 PIPE Semantic

CC = F I PIPE F2

The condition for a transition is CC = FI PIPE F2 and drawn as in Fig. A-5.
The transition condition from state 1 to state 2 is: F I PIPE F2. FI and F2 are expressed

as explained in Chapter 6. If the system is in state 1 (in the example) and the composed
condition is true the system will switch to state 2. If one of these two statements is not
verified, this change of state is not carried out. The following algorithm illustrates the
representation behavior of an event:

1. the operative part is computed ;

2. the computational variables are assigned their new value ;

3. the conditions of state change are consulted:

(a) if the condition F l is verified then
• the time increases to t + £t ;
• the non-computational global variables are assigned their new value ;
• the condition F2 is verified then

- the time increases to t -f St ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

202

FI PIPE F2

4 =>

FI

Figure A-5: PIPE with two facts

- the state change is carried out;
• the condition F2 is not verified then

- the time increases to t + 8 t ;
- the system stays in the same state ;

(b) if the condition F l is not verified then
• the time increases to t + £t ;
• the non-computational global variables are assigned their new value ;
• the system stays in the same state ;
• the system revalues the condition with the same protocol like item - 3a - but

without the revaluation of the non-computational variables.

CC = el PIPE F2

The condition for a transition is CC = el PIPE F2 and drawn as in Fig. A-6.
The transition condition from state 1 to state 2 is: el PIPE F2. el and F2 are ex­

pressed as explained in Chapter 6. If the system is in state I (in the example) and the
composed condition is true the system will switch to state 2. If one of these two statements
is not verified, this change of state does not occur. The following algorithm illustrates the
representation behavior of an event:

1. the operative part is computed ;

2. the computational variables are assigned their new value ;

3. the conditions of state change are consulted:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

203

El PIPE F2

Figure A-6: PIPE W ith Event and Fact

(a) if the condition el is verified then
• the time increases to t -i- St ;
• the non-computational global variables are assigned their new value ;
• the condition F2 is verified then

— the time increases to t + <ft ;
— the state change is carried out;

• the condition F2 is not verified then
— the time increases to t + St ;
— the system stays in the same state ;

(b) if the condition el is not verified then
• the time increases to t -f- <5t ;
• the non-computational global variables are assigned their new value ;
• the system stays in the same state ;
• the system revalues the condition with the same protocol like item - 3a - but

without the revaluation of the non-computational variables.

CC = F I PIPE e2

The condition for a transition is CC = F l PIPE e2 and drawn as in Fig. A-7.
The transition condition from state 1 to state 2 is: Fl PIPE e2. F l and e2 are ex­

pressed as explained in Chapter 6. If the system is in state 1 (in the example) and the
composed condition is true the system will switch to state 2. If one of these two statements
is not verified, this change state does not occur. The following algorithm illustrates the
representation behavior of an event:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

204

F1PIPEE2

Figure A-7: PIPE with a fact and an event

1. the operative part is computed ;

2 . the computational variables are assigned their new value ;

3. the conditions of state change are consulted:

(a) if the condition F l is verified then
• the tim e increases to t + £t ;
• the non-computational global variables are assigned their new value ;
• the condition e2 is verified then

— the time increases to t + St ;
— the state change is carried out;

• the condition e2 is not verified then
— the time increases to t + <5t ;
— the system stays in the same state ;

(b) if the condition F l is not verified then
• the time increases to t + 8 t ;
• the non-computational global variables are assigned their new value ;
• the system stays in the same state ;
• the system revalues the condition with the same protocol like item - 3a - but

without the revaluation of the non-computational variables.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

205

FILE

XXX.TXT

COMPILOR #1-1 COMPILOR #1-2 COMPILOR #1-3

FILE
FILE

XXX.MOD
XXX.GRAPH

COMPILOR #2
X-WINDOWS

FILE

XXX. VHDL

Figure A-8: Software Structure of SPECIAL

A. 2 Software Structure
A software was created to implement the function of SPECIAL. It consists of a graphic
interface using the X-windows protocol (in particular the xview libraries). Four compilers
written LEX and YACC perform the translation of graphical data into a VHDL code file
having the extension “.vhdl” . A list of intermediate files is generated, which are:

• “XXX.GRAPH” which is the binary form of the graphics;

• “XXX.TXT” which is a direct textual form of the graphics;

• “XXX.MOD” which implements the intermediate model described in chapter 5.

From the file “XXX.TXT” , the software can regenerate the file “XXX.GRAPH” which
improves the portability of this environment. So, from the graphic interface, a designer can
specify a system. By saving the design, the file “XXX.graph” is created. A compiler is then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

206

applied to this file to create a “XXX.TXT” file. A second compiler is applied to generate the
intermediate representation of the system under design. Finally, a last compiler translates
this intermediate model into a VHDL file.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix B

Basic Set Theory

This appendix is a brief overview of the set theory. Section B .l discusses about the language
used in the set theory. Section B.2 introduces the notion of classes over a set.

B .l The Basic Language of Set Theory
We assume the notion of set. A set E is a term having a relation: € (a 6 E means than a
is in E). Intuitively, E is a collection of objects a such as a E E except all the others.

The language which we shall use for set theory is the first-order predicate calculus
with equality. Higher order predicate calculus is an extension of the first-order one. The
basic language consists of all the expressions obtained from x = y and x E E by the
sentential connectives ^ (not), =*- (if . . . th e n . . .) , A (and), V (or), (if and only if),
and the quantifiers 3x (there exists x) and Vx (for all x). These expressions are called
formulae. For metamathematical purposes we can consider the connectives ^ and V as the
only primitive connectives, and the other connectives are considered as obtained from the
primitive connectives (i.e. <f> Aip is V For the same reason, we can consider 3 as
the only primitive quantifier. We also use the abbreviation x ^ y and x 0 E for ->x = y and
- ‘X E E. When we write 3\xcf> we read: there is exactly one x such that <j>, for the formula
3y\/x{x = y <=> <f>) where y is a free variable (i.e. a free variable can have different values).
Finally, we can write (3x E E)<p and (Vx 6 E)<p for 3x(x E E V (p) and Vx(x £ E =$■ <j>)
respectively, and read: “there is an x in E such that <fp, and “for all x in E , 0” .

A formula with free variables says something about the value of its free variables. A
formula without free variables makes a statement not about the value of some particular
variable, but about the universe which the language describes. A formula of the latter kind
is called a sentence.

Whenever we use a formula with free variables as an axiom or as a theorem we mean
to say that the formula holds for all possible values given to its free variables. Thus, if we
state a theorem 3C/((/ = V U W) we mean V W W 3 U {U = V U W)

By a theory we mean a set of formulae, which are called axioms of the theory. If T is
a theory, we write T b <f> for is provable from T ”.

When we refer to a formula as <f>(x) this means that we are interested in the relevant
cases where x is a free variable.

207

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

208

B.2 Classes
A class is given, by a formula <f>(x) as the class of objects x for which <f>{x) holds. Such
a class is denoted {x | 4>{x)}. The expression {x [<p(x)} is called a class term. The
formula may also contain free variables other than x. These other variables are called
parameter. Different values of the parameters may yield different classes. For example, the
class [x \ x is a natural number A x < y} is a class with no member if y = 0, has a single
number if y = 1, and so on. Note also that sets are classes too i.e. the set E is the class
{ x \ x e E }

Since {x | <f>(x)} is a class of all x ’s for which <f>(x) holds, we take the statement y 6
{x | 4>(x)} to stand for <f>(y) (where <f>(y) is the formula obtained from cf>(x) by proper
substitution of y for x). Since we consider two sets with the same members to be equal, we
should also consider two classes with the same member as equal. We can have the statement
{x | <f>{:r)} = {y | ip(y)} which stand for Vz(0 (z) <=>• ip(z)). Consequently, if y 6 {z | <p(x)}
then x E {y | ip(y)} and {x | <t>{x)} = {y | ip(y)}. Since the sets are classes, we admit also
the statement E = {x | <f>(x)} and {x | <f){x)} = E and let them stand for Vz(z 6 E <£(z)).
Saying that one class is a member of the other means that the first class is equal to a set
which is member of the other. Accordingly, we admit the statement {x | <f>(x)} 6 {y | ip(x)}
and let it stand for 3z(z = {x | <t*{x)} V z 6 {x | <fi(x)}), and similarly we let the statement
{ r | <f>[x)\ 6 y stand for 3z(z = {a: | <j>(x)} A z € y).

B.3 Relations
Relations, in the set theory, is an important notion. A class S is said to be a (binary)
relation if every member x of S is an ordered pair. We write them y S z for < y, z > 6 S.
Moreover, we say that a relation is an equivalence relation on a class A when there is a
function F on A such that

Vx, y 6 A, F{x) = F{y) o xR y (B.l)

The classes (u | u R x \ are called equivalent classes of the relation R. If R is such that its
equivalence classes are sets, then we can define F(x) = {u | uRx} and it is easily seen that
Expression B.l holds. We consider often equivalent classes as sets. The values of F{x) are
indeed sets and can be regarded as the representatives of the equivalence classes. Therefore,
as introduced in Section B.2, the class F(x) can be a class term of a set A*. So, we admit
that an equivalence class quotient of A under R, noted A* = A /R , is defined as

A* = (J {u | uRz} (B.2)
z € A

where y 6 {u | uRz} <=> {it | uRy} = {u | uRz}.

B.4 Fundamentals of Morphism
In the set theory, a structure is an “ordered pair” < A, R > where A is a class a n d R c A x A
(iZ is a binary relation on A). A is said to be the universe or the class (or the set, if
appropriate) of the structure < A, R > . < A, R > is said to be a structure on the class A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

209

The structure < B , S > is a substructure of < A, R > i £ B Q A and S = R | B (i.e. for all
x , y E B , y € B xSy & xRy).

A function F is a morphism or homomorphism of the structure < A, R > into the
structure < B ,S > if F is an injection of A into B and for all x, y 6 A, xR y <=>■ F(x)SF{y).
An isomorphism of the structure < A, R > onto the structure < B, S > if F is a bijection
of A onto B and for all x ,y 6 B , x S y F ~ l (x)RF~l (y).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C

VHDL Code of a RAM Cell

This appendix contains the VHDL code of the RAM cell described in Section 2.3. Most of
the code was automatically generated from a graphical description called Design Architect
from Mentor Graphics CAD environment. Section C.l contains the VHDL code from the
top level data flow of the RAM cell.

C .l Top Level VHDL code of the RAM Cell

NRST,• " "s.

DOUT

READY

Figure C-l: Context Diagram

This code defines the interface of the RAM cell. It is a description of Fig. C-l. So,
the corresponding VHDL code automatically generated by Design Architect is in two parts.
The first one is the entity which defines the interface of the RAM cell. In Fig. C-l, the
following entity declaration interprets the arrows shown.

210

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

211

— Component : ram

— Generated by System Architect version v8.5_2.2 by nav on Feb 27, 97

— Source views
— $DESIGNS/ram/ram_types/types

LIBRARY std ;
USE std. standard.all;
LIBRARY designs_ram_sdslocal ;
USE designs_ram_sdslocal.ram_types.all ;

ENTITY ram IS
PORT (

AD : IN address_type;
CS : IN bit;
DIN : IN data_type;
NRST : IN bit;
RD : IN bit;
WR : IN bit;
DOUT : OUT data_type;
READY : OUT bit

) ;
END ram ;

The second part of the VHDL description is the architecture of the description. This
description is graphically represented as shown in Fig. C-2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

212

NRST.

•READY

DOUT

Figure C-2: Dataflow in Mentor Graphics’ Design Architect

The VHD1 code models a block in the dataflow i.e. “control” and “storage” using
the statement component. The interconnections are made through particuliar variables in
VHDL called signal.

— Component : ram

— Generated by System Architect version v8.5_2.2 by nav on Feb 27, 97

— compatible :: AutoLogic II
— Source views
— $DESIGNS/ram/data_flow

ARCHITECTURE data_flow OF ram IS
COMPONENT control

PORT (
CS : IN bit;
NRST : IN bit;
RD : IN bit;
WR : IN bit;
en_err : OUT bit;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

en_read : OUT bit;
en_write : OUT bit;
READY : OUT bit

) ;
END COMPONENT ;

COMPONENT storage
PORT C

AD : IN address_type;
DIN : IN data_type;
en_err : IN bit;
en_read : IN bit;
en_write : IN bit;
DOUT : OUT data_type

>;
END COMPONENT ;

FOR ALL : control USE ENTITY designs_ram_sdslocal.control ;
FOR ALL : storage USE ENTITY designs_ram_sdslocal.storage ;

— Internal Signals
SIGNAL en_err : bit ;
SIGNAL en_read : bit ;
SIGNAL en_write : bit ;

BEGIN

instance_control : control
PORT MAP (

CS,
NRST,
RD,
WR,
en_err,
en_read,
en_write,
READY

);

instance_storage : storage
PORT MAP (

AD,
DIN,
en_err,
en_read,
en_write,
DOUT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

214

) ;

END data_flow ;
Notice that several signals have a none standard type such as bit, bit_vector. In VHDL,

the user can customize signal types and it is performed as follows:

— Component : ram_types

— Generated by System Architect version v8.5_2.2 by nav on Feb 27, 97

PACKAGE ram_types IS
SUBTYPE data_type IS bit.vector(3 DOWNTO 0) ;
SUBTYPE address.TYPE IS bit.vector(7 DOWNTO 0) ;

END ram.types ;
Therefore, for each block in Fig. C-2, a description needs to be provided. So, in the

case of the RAM cell, the block referred to as “control” is a state machine as shown in Fig.
C-3.

The corresponding description of Fig. C-3 is decomposed in two parts: the interface
definition and the description itself. So, the interface is:

— Component : control

— Generated by System Architect version v8.5_2.2 by nav on Feb 27, 97

— Source views :-
— $DESIGNS/ram/ram_types/types

LIBRARY std ;
USE std.standard.all;
LIBRARY designs_ram_sdslocal ;
USE designs_ram_sdslocal. ram.types. all ;

ENTITY control IS
PORT (

CS : IN bit;
NRST : IN bit;
RD : IN bit;
WR : IN bit;
en.err : OUT bit;
en.read : OUT bit;
en.write : OUT bit;
READY : OUT bit

);
END control ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

State Transition Diagram for control
wntê afOjV

Default Actions

en_ read <= 'O'N
en_w rite <= '0 ''

en_err <= 'OA
READY<='0 NRST = ’01

RST = ’0

INRST = 'O’ - l l

\NRST^m
INRST = '0- ~~g

mm

' / - - " Win

1 eo_wr3e<» *1
< , >y . y-x.vk-.v.’.

mm (WR = 'V \
n d R D = 'Cn -II

's\ ^ ’ ' (WR
and RD

»» -

(RD = ’O’ \
and WR = ’O’) \

or (RD = T \
and WR = ’in - 3

Figure C-3: State machine in Mentor Graphics’ System Architect

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

216

And, the state machine model is:

— Component : control

— Generated by System Architect version v8.5_2.2 by nav on Feb 27, 97

— sensitivity_attr :: ’transaction
— Source views
— $DESIGNS/ram/control/state_machine
— $DESIGNS/ram/ram_types/types

ARCHITECTURE state_machine OF control IS
TYPE control_state_type is (

start_state,
INIT1,
WAIT.ST,
R.W,
R,
w,
ERR

);

— SDS Defined State Signals
SIGNAL current_state : control_state_type : = start.state ;
SIGNAL next.state : control.state.type := start.state ;

BEGIN

clocked : PROCESS (
next.state

) •

VARIABLE prop .delay : time := 1 ns ;
BEGIN

current.state <= next.state aifter prop.delay ;
END PROCESS clocked ;

set.next.state : PROCESS (
current.state,
CS’transaction,
NRST’transaction,
RD’transaction,
WR’transaction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

217

BEGIN
next.state <= current.state;
CASE current.state IS
WHEN start.state =>

IF (NRST = ’O’) THEN
next.state <= INIT1;

END IF;

WHEN INIT1 =>
IF C NRST = ’I’) THEN

next.state <= WAIT.ST;
END IF;

WHEN WAIT.ST =>
IF (CS = ‘I*) THEN

next.state <= R.W;
ELSIF (NRST = ’O') THEN

next.state <= INIT1;
END IF;

WHEN R.W =>
IF C (WR = ’1’ and RD = 'O’)) THEN

next.state <= W;
ELSIF ((WR = 'O’ and RD = ’I’)) THEN

next.state <= R;
ELSIF ((RD = ’O' and WR = ’O’) or (RD = >1' and WR = *1’)) THEN

next.state <= ERR;
END IF;

WHEN R =>
IF (NRST = ’O ’) THEN

next.state <= INIT1;
ELSIF (TRUE) THEN

next.state <= WAIT.ST;
END IF;

'WHEN W =>
IF (NRST = 'O’) THEN

next.state <= INIT1;
ELSIF (TRUE) THEN

next.state <= WAIT.ST;
END IF;

WHEN ERR =>
IF (TRUE) THEN

next.state <= start.state;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

218

END IF;

WHEN OTHERS =>
NULL;

END CASE;

END PROCESS set.next.state ;

unclocked : PROCESS (
current.state,
CS’transaction,
NRST ’ transaction,
RD ’ transaction,
WR’ transaction

BEGIN
— Default Actions
en.read <= ’O ’;
en.write <= ’0’ ;
en.err <= ’0’ ;
READY<=’0’;

— State Actions
CASE current.state IS
WHEN start.state =>

READY<=)0*;
en_write<=’0’;
en_read<='01;
en.err<=’O ’;

WHEN INIT1 =>
en.read <= ’O’;
en_write <=’0’;

WHEN WAIT.ST =>
en.read <= ’O’;
en_write <= ’0 ’;

WHEN R =>
en.read <= ’1’;
READY <= ’1’ AFTER 60ns, ’0' after 61ns;

-WHEN W =>
ea_write <= ’1’ ;

WHEN ERR =>
en.err <= ’1’;

WHEN OTHERS =>
NULL;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

219

END CASE;

END PROCESS unclocked ;
END state_machine ;

For the block referred to as “storage” in Fig C-2, the corresponding description is a
customized description written directly in VHDL. It specifies a method of storing data.
The interface definition is:

— Component : storage

— Generated by System Architect version v8.5_2.2 by nav on Feb 27, 97

— Source views
— $DESIGNS/ram/ram_types/types

LIBRARY std ;
USE std.standard.all;
LIBRARY designs_ram_sdslocal ;
USE designs_ram_sdslocal.ram_types.all;

ENTITY storage IS
PORT C

AD : IN address_type;
DIN : IN data_type;
en_err : IN bit;
en_read : IN bit;
en_write : IN bit;
DOUT : OUT data_type

) ;
END storage ;

And, the model of the storage function is:

— Component : storage

— Generated by System Architect version v8.5_2.2 by nav on Feb 27, 97

— sensitivity_attr :: 'transaction

ARCHITECTURE spec OF storage IS
BEGIN

vhdl_storage : PROCESS (
AD'transaction,
DIN'transaction,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

220

en_read ’ transaction,
en.write ' transaction
en_err ' transaction)

constant T.READY.U
constant T_READY_D
constant T_ACCES
constant T_WRITE

: time := 60 ns;
: time := 1 ns;
: time := 40 ns;
: time := 5 ns;

VARIABLE prop.delay
CONSTANT nb.words
TYPE type_memoire IS ARRAY
VARIABLE M

: TIME := 1 ns;
: integer := 2**8;
(0 to nb_words-l) of BIT_VECT0R(0 to 3);
: TYPE_memoire;

function value(bv : in BIT_VECT0R) return natural is
variable n : natural := 0;

begin
for 1 in bv'low to bv'high loop
n := n*2;
if bv(l) = '1' then
n:= n+1;

end if;
end loop;
return n;

end value;
BEGIN

IF (en_write = '1') THEN
M(value(AD)) <= DIN after T.write;

ELSIF (en.read = '1') THEN
DOUT <= M(value(AD)) after T.acces;

ELSIF (en.err = ’1’) THEN
Assert FALSE
report "Wrong Values are observed on WR and RD on the rising edge of CS"
severity WARNING;

ELSE
NULL ;

END IF;
END PROCESS vhdl.storage ;

END spec ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IMAGE EVALUATION
TEST TARGET (Q A -3)

1.0

l . l

i£ a 28
1̂0
12 Um

|06
IM

2.5

2.2

2.0

1.8

1.25 1.4 1.6

150mm

6"

IIVMGE . In c
1653 East Main Street
Rochester, NY 14609 USA
Phone: 716/482-0300
Fax: 716/288-5989

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Spring 1998

	A Very High Level Logic Synthesis
	Norbert Ange Valverde
	Recommended Citation

	tmp.1525704849.pdf._xJID

