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ABSTRACT

A  V ery H ig h  L ev e l L ogic S y n th es is

by

N orbert A. VALVERDE 
University of New Hampshire, May, 1998

The evolution of Computer Aided Design (CAD) calls for the incorporation of design 

specifications into a microelectronics system development cycle. This expansion requires 

the establishment of a  new generation of CAD procedures, defined as Very High Level 

Logic Synthesis (VHLLS) . The fundamental characteristics of open-ended VHLLS are: (1) 

front-end graphical interface: (2) time encapsulation; and (3) automatic translation into a 

behavioral description. Consequently, the VHLLS paradigm represents an advanced cate­

gory of CAD-based microelectronics system design, built on a deep usage of expert systems 

and intelligent methods. Artificial Intelligence (AI) formalisms such as Knowledge Repre­

sentation System (KRS) are necessary to model properties related to the very high level 

of specification such as: dealing with ambiguities and inconsistencies, reasoning, computing 

high-level specification, etc. A prototype VHLLS design suite, called Specification Proce­

dure for Electronic Circuits in Automation Language (SPECIAL) , is defined, compared 

with today’s commercial tools and verified using numerous design examples. As a  result, a  

new family of formal and accelerated development methodologies has become feasible with 

a  better understanding of formalized knowledge driving these design processes.

xxiv
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C hapter 1

Introduction

The evolution of automatic design methodologies is moving to new ground. Understand­

ing this evolution is the primary purpose of this thesis. In addition, it is proposed a view 

to characterize the next generation of automatic design methodologies.

The influence of automation in the design space of microelectronics systems is affecting 

a larger scope of risky and uncertain design decisions than before. At the same time no 

single de facto strategic direction in design methodologies appears to be emerging, reflect­

ing the reality that the design is as much art as engineering. This chapter characterizes 

some directions in which the design of microelectronics systems is evolving, with a new 

formal representation of the design space and associated automation procedures selected as 

a gradient in advancing the knowledge about design processes.

1.1 Research Problem Statement

1.1 .1  R esearch M o tiv a tio n

The complexity of a design cycle governs the strategy undertaken by an electronic system

1
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Figure 1-1: Status of Electronic Design Technologies

developer. A common approach, the top-down approach, is to start with a  more abstract 

description when the complexity o f the system is higher. Fig. 1-1 shows the evolution 

of design practices over time highlighting that as complexity increased, design tools were 

developed to define a system at a higher level of abstraction [NEW91]. In the 1970s, it was 

common practice to design the whole system manually from the system level description 

to the fabrication of Printed Circuit Boards (PCBs) . In the early 1980s, some Computer 

Aided Design (CAD) tools were promoting physical synthesis to take over the manual mask
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design task. Physical synthesis from one library to another on the logic level, also referred to 

as technology mapping, is accomplished by deriving the behavioral description in terms of 

Boolean expressions, and resynthesizing it with a new library. Silicon compilation [BCM~88] 

is a  member of this physical synthesis class. In the meantime, a  new type of component 

emerged which was based on silicon. In the mid-1980s, Application Specific Integrated 

Circuit (ASIC) components became a valuable option for designers and increased the 

need for more automation in the electronics design flow. In late 1980s and early 1990s, 

logic synthesis emerged as an alternative to manual logic design which could also support 

other applications specialized in verification, test, libraries, etc . . . ,  tasks which are time 

consuming and cumbersome. Logic synthesis translates Boolean expressions into a  netlist 

of components from a given library of logic gates such as NAND, NOR, XOR, etc . . . .  

Within the past two years, behavioral synthesis, also referred to as register-transfer (RT) 

synthesis, has gained in popularity in CAD systems [BLA97]. RT synthesis starts with a 

set of states and a  set of register-transfers in each state. One state corresponds roughly 

to a clock cycle. Register-transfer synthesis generates the corresponding structure in two 

parts: (a) a datapath which emphasizes data processing and (b) a  unit control responsible 

for control signal scheduling. Application Specific Integrated Module (ASIM) components 

such as Field Programmable Gate Arrays (FPGAs) are highly dependent on this synthesis 

process to confine the design complexity. The design space discussed above is concisely 

encapsulated in Fig. 1-2 (also known as the Y diagram) [DGLW92] as we will discuss more 

thoroughly in Chapter 3.

The analysis of the evolution of electronics design technologies clearly indicates tha t 

from the 1970s the behavioral level is the highest level of abstraction in design automation 

commonly accepted as an entry level. Typically:
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• The microelectronics industry uses the RT level as its highest level of abstraction to 

initiate a  design process. This entry level is commonly offered by CAD vendors such 

as Mentor Graphics™  [Cor95], Viewlogic™ [Inc97], and others:

• Research (contrary to the above) is focused on High Level Synthesis (HLS) to trans­

late a  behavioral description into the RT level. HLS is the transformation of a  behav­

ioral description into a set of connected storage and functional units. Typically, the 

types of algorithm generally used in HLS axe partitioning, scheduling, and allocation 

[DGLW92, AB94].

Note that this observation is consistent with a  notion of research preceding the availability 

of commercial tools.

Another aspect of design is the complexity of tools used to facilitate the design flow. 

On one hand, tools alleviate certain steps such as the interpretation of a symbol as its
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corresponding physical representation, the placement and routing processes of components, 

etc. On the other hand, design needs to take into consideration a multiplicity of aspects, 

typically each with a  separate CAD tool. Therefore, for a  single design, a  suite, rather than 

one complex tool is used. For example, during a Multi-Chip Module (MCM) device design 

(further information on MCM design can be found in [HEI95, JIA95]), four main families 

of tools are involved in a  Mentor Graphics™ design environment [Cor93b]:

• Capture of the system description using VHSIC Hardware Description Language 

(VHDL) (a text editor and the package sys_1076™ to compile VHDL design files):

• Synthesis of the VHDL code into a hierarchical structure with the top level containing 

symbols of dies which are mounted on the substrate of an MCM device (Autologic™):

• Design of each die using a Very Large Scale Integration (VLSI) method (IC Station™ ): 

and finally

•  Preparation of the MCM device for fabrication (MCM Station™ ).

The total number of tools involved during this design task is 11 as illustrated in Fig. 1-3. 

Such mutation requires sophisticated training which emphasizes the tools5 functionalities 

instead of focusing on new design techniques and technologies.

In sum m ary- there is an  acute need to start the design process at a highest possible level 

of abstraction (as part of a  natural evolution of the CAD methodologies). This evolutionary 

step is driven by the mutation of the electronic design world where miniaturization [KAT82] 

and system-on-chip [KM91] are continuously sought. It must manage or even reduce, the 

complexity of new design processes. These statements are seconded by a  quotation:

“In order to move upward efficiently, we need to build other languages on top of
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VHDL to represent fam iliar concepts used by systems designers” , from DUTT et 

al. in “High-level synthesis : introduction to chip and system design” [DGLW92]

1.1.2 H y p o th es is

To meet the design challenge outline in the previous section, this research activity is 

envisioned to:

1. Introduce a new design process using a generalized synthesis approach as shown in  

Fig. 1-4. The emphasis in this thesis is on the front-end synthesis, called Very High 

Level Logic Synthesis (VHLLS);

2. Introduce the next generation of design automation tools as a practical consequence 

of a  generalized synthesis process;

3. Lessen or at least m aintain the complexity of microelectronics systems design by 

starting a  design process at a higher level of abstraction;

4. Incorporate a  high-level specification as the entry level in an automated design flow.

Indeed, item (1) represents our primary objective. Item (2) introduces the issue of 

feasibility to this problem. Therefore, the hypothesis of the research problem can be stated 

as follows: having (1), we can define (2) or mathematically ((1) =£• (2)). If ((1) =>■ (2)) is 

true then (3) and (4) are the properties of the new design methodology. In other words, 

(hypothesis ((1) =*► (2))) => ((3) A (4)) becomes a theorem.

In order to characterize the next generation of design automation tools, a list of desired 

properties [GVN93] is introduced. These properties are called characteristics of a design 

automation tool, and are dependent on the level of abstraction the tool is designed to work 

at. A set of characteristics is defined and denoted as C. This set should be a non-restrictive,
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but, bounded set, to keep the problem tractable C is then defined as a set of a finite 

number of elements. So, the elements of C allow a classification of design automation tools 

which indicate their characteristics or peculiar qualities. For the next generation of CAD, 

a  non-exhaustive proposed list of characteristics is as follows1:

lNote that the proposed schema does not preclude defining a different set of characteristics for the next 
generation of CAD tools.
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•  Sequentially Decomposable Activities: an action2 can be decomposable in a  sequence of 

sub-actions. The use of sequential actions is a common practice in engineering. When 

a system is defined, designers practice a  one step reasoning i.e. when one action 

is performed enabling changes to a  new known configuration of the system, the next 

action captures this new system configuration and brings the system into another one, 

and so on. An analogy of sequential action is any structured programming language 

such as C:

• Concurrently Decomposable Activities: an action2 can be decomposable in sub-actions 

which can be applied concurrently. The use of concurrent actions allows the system 

to perform actions at the same time and independently from one to another. In this 

case, shared resources become the bottleneck of the system performance. An analogy 

is parallel programming;

• State Transitions: a system can be described as a  set of states under which a transition 

function defines a state change. States are predefined configurations of a system. A 

transition is a mechanism of changing a predefined system configuration to another 

one. In engineering, the most common state transition mechanisms used me Moore3 

or Mealy4 Finite State Machine (FSM) ;

• Immediate Mode Change: at any instant and any system status, a system has the 

ability to apply an operational mode change instantly. In most systems, some external

2 Action or equivalently activity is a particular mode of system behavior. It may be a computation, which 
is possibly complex or time-consuming, or it may be recursively defined as a composition of sub-activities, 
where the sub-activities may be sequential or concurrent to one smother.

3In the Moore FSM, the output value is depending only on the state of the FSM

* In the Mealy FSM, the output value depends on the transition and the input values of the FSM.
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events must be treated instantaneously. A common use of this characteristic is when 

a system receives a  reset command, it needs to react at once even though the system 

is in the middle of a computation. So, this characteristic treats exceptional events 

which needs immediate attention:

• Activity Completion: a  system ends its current activity before starting a new one. Such 

mechanism is important when associated with sequential activities. In this case, an 

action must be completed before starting the next one. This is crucial when a designer 

uses a  description language which mixes concurrent and sequential statements with 

no completion mechanism defined, this is the case with VHDL:

• Delay Specification: time constraints can be specified. When the time constraint 

elapses, the system changes its status automatically. This characteristic avoids the 

definition of a  clock rate which is a critical constraint in a  synchronous system. There­

fore, the decision on the clock rate is then postponed until after the behavior of the 

system is validated. Indeed, if a designer needs to specify that the system under de­

sign must change its status after 40 ns, the ways of measuring these 40 ns are infinite

i.e. a  clock with a period of 25MHz can measure 40 ns as well as 50MHz, 75Mhz and 

any multiple of 25MHz. So, depending of the system, one clock rate may be better 

than another. There is no way to know the best fit before starting the system design:

• Asynchronous Activities: actions specified in a  system do not depend on a  global 

clock. These activities are reacting to an external change which are not correlated 

with any clocks. Interrupts are a good analogy to these asynchronous activities:

• Design for {Testability, Manufacturability, etc}: specific properties are added to the 

system to meet requirements for testability, manufacturing, etc. When a design is
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performed, the design methodology changes somewhat depending on the property to 

emphasize i.e. for space applications, a  property to emphasize is the test and fault- 

tolerance because no failure is allowed while the spacecraft is in space, whereas in 

consumer electronics, the design for manufacturing property is emphasized to mini­

mize cost:

•  Multiple Model Representations: a system can be represented using a  mixture of more 

than one description model. Depending on the type of system a  designer wants to 

design, a unique description model might not be sufficient or appropriate to specify 

the full system. So, the use of appropriate description models will lead to a better 

description of a  system:

• Reusability, a system or a sub-system is designed in such a way tha t it can be very 

easily reused for another projects. This characteristic is important to optimize the 

design process by reducing the time-to-market, eliminating repetitive activities, etc.

In summary, the acceptable design automation tool implementing the research vision 

outlined in Section 1.1.2 should conform to all the characteristics defined above. Table 1.1 

recapitulates these characteristics:
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Characteristics Checkmark

Sequentially Decomposable Activities
Concurrently Decomposable Activities

State Transitions /
Immediate Mode Change /

Activity Completion
Delay Specification /

Asynchronous Activities V”
Design for { Testability, Manufacturing, etc }

Multiple Model Representations s

Reusability /
Table 1.1: Acceptable Design Automation Tool Characteristics

It has to be stressed that in order to make the growing complexity of CAD tools 

tractable, not all the characteristics can be taken into consideration. A minimal config­

uration for the first generation of VHLLS is sufficient to demonstrate the feasibility of the 

proposed automatic process evolution. This first generation of VHLLS has been built upon 

an existing representation of the design space provided by the Y diagram. A new level 

of abstraction, called concept level, is introduced above the highest one defined in the Y 

diagram. This new level is indispensable in an attem pt to formalize design specifications 

and their associated properties. So, VHLLS represents the synthesis process that links the 

concept level to the system level, as explained in detail in Chapter 3. This first generation 

of VHLLS has to automate the transition from the concept level to the system level w ith a 

tool able to conform to the following characteristics:
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C h arac teris tics C h eck m ark

Sequentially Decomposable Activities
Concurrently Decomposable Activities

State Transitions
Immediate Mode Change

Activity Completion
Delay Specification /

Asynchronous Activities
Design for { Testability, Manufacturing, etc }

Multiple Model Representations
Reusability

Table 1.2: First Generation VHLLS Characteristics

For the purpose of comparison, the most currently available advanced high-level synthe­

sis tool, presented in Chapter 4, can be characterized such as:

C h arac te ris tic s C heckm ark

Sequentially Decomposable Activities
Concurrently Decomposable Activities *

State Transitions <r
Immediate Mode Change

Activity Completion ✓
Delay Specification

Asynchronous Activities
Design for { Testability, Manufacturing, etc }

Multiple Model Representations
Reusability

Table 1.3: Advanced High-Level Synthesis Tools Characteristics

The main difference between these two design methodologies is tha t the methodology 

characterized by Cmin meets the requirement of “Delay Specification” as opposed to Spec-
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Charts characterized, by CspecCharts■ Note that this set of characteristics gives a  method­

ology to classify design procedures and to compare them. The first metric which can be 

applied is simply to use the cardinal of the characteristics set (noted #C ) for a  design pro­

cedure. For example, # C min =  4 or #CspecCharts =  5 or # C  =  10. A method to classify 

these design procedures is to compare the cardinal of their characteristics set. So, from the 

above sets, we have:

ifcCmin <  #CspecCharts <  i fC

This means Cmin verifies fewer characteristics than CspecCharts and both of these methods 

do not meet the full requirement for the next generation of design automation tools. Other 

classification schemes can be considered by applying a weight coefficient to each element of 

the characteristics set. However, this issue goes beyond the scope of this thesis. Another 

issue related to the evolution of design automation tools can be characterized using the set 

of characteristics. A design automation tool is characterized by Ct-. Its next generation can 

be characterized by Ct_i such as # C t- <

1.1.3 R esearch  G oals

To implement the hypothesis stated in the previous section, the research goals are for­

mulated as follows:

1. The characterization of the design space along with a set of properties;

2. The formalization of a concept level in which high-level specifications are embedded:

3. The statement and formalization of an automatic process to migrate from the concept 

level to the system level which is called VHLLS and formally defined in Chapter 3 ;

4. The implementation of VHLLS, taking high-level specifications and translating them
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into a behavioral description at the system level.

1 .1 .4  M erits an d  C o n tr ib u tion s

A new design process is introduced a t the front-end of the generalized synthesis pro­

cess leading to the next generation of design automation tools. A characterization and 

form alization of the design space is necessary in order to bound the requirement of this 

new design process. As a  consequence, a  set of characteristics describing this new design 

process is introduced defining a metric to classify design automation tools. An unusual 

characteristic proposed among others is the delay specification which enables specification 

of time constraints for the system specifications independently from a clock. As a result 

of the introduction of this new design process, a  Concept Level is defined as a new level of 

abstraction, above the system level. A formalism is proposed to represent the evolution of a 

design description in the design space. This synthesis process, called VHLLS. is introduced, 

enabling a link between the concept level and the behavioral level with a  particular em­

phasis on time encapsulation. So far, commercial tools and research in design automation 

specify a global clock and use it to specify the remaining behavior of the system. A second 

approach ra n be taken considering tha t the measure of time is a  very important constraint 

which must be fixed as late as possible in order to choose the best clock rate for the system 

under design. To do the above, a set of restrictions is taken into consideration to reduce 

the domain of investigation. As a result, some metrics have been defined. In addition, a 

feasibility study has been performed to expand the representation of the design space which 

led to VHLLS.
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1.2 Thesis Organization

Chapter 2 describes the state of the art of the CAD domain in  microelectronics. It 

emphasizes, among other things, the availability and sophistication of commercial CAD 

tools. Chapter 3 refines the new level of abstraction in the design process and adopts the 

design space accordingly. Chapter 4 provides an overview of relevant research in high-level 

synthesis and description styles for specification purposes. Chapter 5 discusses the VHLLS 

process and suggests two approaches to implement it. Chapter 6 presents a  tool called 

SPECIAL which enables a designer to specify a  system. A VHLLS process defined in the 

previous chapter can then be applied to generate a VHDL description automatically. In 

Chapter 7, three typical examples show the benefits and limits of a  such approach. Finally, 

some conclusions and suggestions for future work in the area of VHLLS are proposed.
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Chapter 2

CAD Domain in Microelectronics

Having stated the aim of the research activity, an overview of the concepts behind the 

term “CAD domain’’ is provided in this chapter along with a  presentation of the status of 

commercial CAD tools. With these two fundamental elements, the principles of VHLLS are 

also stated.

2.1 Design Process Characterization

This section introduces the notions of design automation and design methodology. It 

is fundamental to understand the existential reason of these two notions in order to con­

ceptualize the motivation and direction of this research. Currently, designers perceive that 

available design methodologies will soon become obsolete because of the rapid rise of sys­

tem complexity. It should be stressed that this “unstable” phenomenon is typical for the 

whole CAD history (with no end in sight) leading then to a  new design approach called the 

Electronic System Design Automation (ESDA) approach.

In the field of microelectronics system devices have become increasingly complex, reach­

ing densities of millions of transistors per square centimeter. It has become more difficult

17
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to design such systems by handcrafting methods, that is, by representing each transistor 

or defining each signal in terms of logic gates. To manage the complexity, systems have 

to be designed a t abstract levels where functionalities and tradeoffs are easier to compre­

hend. Design automation enables integrated circuit designers an opportunity to optimize 

design efforts at these levels w ith superior productivity and competitiveness. Furthermore, 

design automation empowers engineers with the ability to  do rapid prototyping, consider 

mechanical and physical constraints, handle mixed-signal systems, etc. A consequence of 

this approach is the development of complex tools to autom ate the entire design process 

from concept to final implementation.

In the development of design automation methods and tools, a  typical goal is to apply 

the concepts of (1) first-silicon and (2) first-specification [DGLW92] to reduce the time- 

to-market cycle for new devices. The first silicon concept is based on the principle that 

prototyping1 is time consu m in g  and costly. Traditionally prototyping is a critical stage 

because it allows verification of the system functions. The first silicon concept requires a 

design process where simulation prevails over prototyping during the validation stage of the 

finalized system. The simulation process uses back-annotation2 to take into account the 

physical constraints of the circuit such as propagation delay, setting time, etc. Another 

important feature of the first silicon concept is automatic control of the physical design 

rules. Consequently, CAD tool assistance is crucial in  verifying both functionality and 

design rules of the entire chip design cycle. The second concept, first-specification, has as 

its goal the reduction of the number of design iterations involved to just one. As opposed

1A prototype is viewed as a first physical realization of a design in order to check its behavior against its 
specifications.

2It is a method for importing low level timing informations to the level of description of which a system 
is captured in. Its purpose is to have a more realistic simulation of the design.
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to the first-silicon concept, the first-specification concept requires accurate modeling of 

the design process and accurate estimation of the product’s quality measurements such as 

performance and cost.

Today, commercial tools are mature enough to operate with relative accuracy at the level 

defined by first-silicon. Researchers and toolmakers are currently attempting to meet the 

challenge of the first-specification concept. To address these issues, there are two competing 

philosophies:

•  top-down methodology : and

•  bottom-up methodology.

The top-down methodology, often referred to as “describe and synthesize’’, can be defined 

as a  method for modeling a whole system using a high-level of abstraction. A synthesis 

process is applied to refine the system model into lower subsystems and lower abstraction 

levels closer to the target technology. The bottom-up methodology, often referred to as 

“capture and simulate", is a method for modeling a system starting with the lowest mod­

ules of the system hierarchy, and building the whole system using a  combination of these 

modules. Simulation is performed on each module to ensure proper functionality. Modules 

are combined to form larger modules, creating new levels in the system hierarchy. The level 

of hierarchy terminates when a combination of modules reaches the top system level.

Currently, available tools promote the use of the bottom-up methodology when the 

description entry is a  schematic form. With the emergence of Hardware Description Lan­

guages (HDLs) 3 at the entry level, the top-down methodology becomes more effective. 

Often prominent toolmakers such as Mentor Graphics™ or Viewlogic™ combine both

3 HDLs are like programming languages but specialized in the description of microelectronics hardware.
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methodologies in their tool set. For example, during the design process of an FPGA, the 

design starts with a  VHDL description which promotes top-down methodology. Because the 

target technology is FPGA, designers must use a library of components and practice bottom- 

up methodology. The practical result therefore is a description with both methodologies 

mixed together. When a  description is technology independent, the top-down methodology 

is the most appropriate. It is even more appropriate when description entries are high-level 

specifications.
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A model describing design flow is shown in Fig. 2-1 (the original version was defined 

in [FRE85] and is described in Section 2.4) and illustrates a  top-down methodology from 

the statement of a need until completion. This model is considered idealistic because no 

feedbacks are defined. It is assumed that each state of this design flow corresponds to the 

optimum design solution. Fig. 2-1 also illustrates a  possible representation of the principles 

of first-specification and first-silicon. This idealistic model is composed of:

•  circles which usually represent some form of description of the evolving design, al­

though they sometimes represent a  stage. For example, the circle labeled “Need” 

is a statement of needs which initiates the design process whereas the circle labeled 

“selected scheme” is a form of design description:

• rectangles which indicate a  design activity such as analyzing the problem or performing 

a  detailed design;

•  arrows which sequence description forms and activities.

The first element in this design process is called “Need”. When a  consensus is established 

around a clear “statement of the problem” , the “conceptual design” activity can be applied 

to consider different concepts (or “schemes”) that can be used to solve the stated design 

problem. Brainstorming is required at this stage to find strategies to solve the stated 

problem. Thereafter, these strategies are translated into a description (“selected scheme”) 

which then depends strongly on the requirement of the high-level attributes of the design 

goal, including interface constraints, size, quality, anticipated cost, and device function. 

The conceptual design stage is the most “open-ended” stage of the design process. The 

result of this conceptual design is a  set of possible concepts o r schemes for the design. A 

“scheme” is defined as an outline of major functions in the design. A scheme should be
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relatively explicit about special features or components but does not require much detail 

beyond the established practices. The next stage of the design process is called either the 

“embodiment of schemes” or “preliminary design”. The first behavioral model is realized by 

implementing an initial solution. When a solution strategy is chosen, the following stages 

are a  refining process until the final product is completed at the physical level.

This model, even though it is not feasible, illustrates clearly the top-down, first specifi­

cation and first silicon concepts.

2.2 Commercial Tools

This section reviews some commercial tools which provides graphical tools to describe 

systems. A majority of these tools uses high-level synthesis to target programmable-logic 

components. Programmable-logic complexity is forcing designers into the world of HDLs 

and top-down design. The so-called “second wave of design engineers” axe slowly mov­

ing from schematics to HDLs. In  the workplace, designers are typically using a  mixture 

of schematics, Abel-like language, and other HDLs (usually reserving HDL for a well- 

understood function in the design). For these design engineers, moving toward HDLis a 

radical change in their mind set. In order to domesticate a new design style among design­

ers, some Electronic Design Automation (EDA) vendors (see Table 2.1 [DON96, MAN97]) 

provide them with graphical-entry tools facilitating the monitoring process of converting a 

state machine description into an HDL file.
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Company Product(s) Types o f  entry accepted HDLs gener­
ated

Alta Group 
of Cadence 
Design System

Hardware De­
sign System

Block diagrams, state ma­
chines

VHDL, Verilog, 
C

Aldec Active-CAD,
Active-HDL
editor

Hierarchical block diagrams, 
state machines, schematics

VHDL, Abel

Antares Antares En­
vironment 
Graphical Edi­
tor

Block diagrams, state ma­
chines

VHDL

Escalade DesignBook Block diagrams, state ma­
chines, waveforms

VHDL, Verilog

i-Logix Express StateCharts, activity charts, 
block diagram

VHDL, Verilog, 
C

Knowledge 
Base Silicon

flowHDL, block- 
HDL

Block diagrams, flow diagrams VHDL, Verilog

Mentor Graph­
ics

System Archi­
tect

State transition diagrams, 
state matrix, dataflow dia­
grams, schematics

VHDL, Verilog, 
C

Omniview Alchemist State diagrams, timing dia­
grams, flowcharts, tru th  tables

VHDL, Verilog, 
C

R-active Con­
cepts

Better State Pro StateCharts, state machines, 
Petri-nets

VHDL, Verilog, 
C, C-l—F

Synopsis COSSAP DSP 
suite, Design 
Source

Block diagrams VHDL. Verilog, 
C

Table 2.1: Graphical HDL Code-Generation Tool Vendors

These tools are commonly classified as Electronic System Design Automation (ESDA) 

tools. One can notice that, from the list of vendors in Tab. 2.1, every one generates 

automatically VHDL code. Also, the most common type of entry accepted by these tools 

is the state machine. Finally, the majority of these tools can be characterized using the list 

of characteristics defined in Chapter 1 as follows:
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C h arac te ris tics C heckm ark

Sequentially Decomposable Activities
Concurrently Decomposable Activities

State Transitions
Immediate Mode Change

Activity Completion
Delay Specification

Asynchronous Activities
Design for { Testability, Manufacturing, etc }

Multiple Model Representations
Reusability

Table 2.2: Advanced High-Level Synthesis Tools Characteristics

EDA vendors claim they can ease the schematic to HDL transition with tools that gener­

ate HDLs from graphical input. For example, Aldec™ has been promoting the use of state 

machines for programmable logic design with its Active State Editor™  tool. According 

to Aldec™, Active State Editor™  produces device-independent Complex Programmable 

Logic Device (CPLD) or Field Programmable Gate Array (FPGA) designs from graphical 

entry of bus-based state machines. In the Aldec™  environment, a  designer can specify 

combinational and sequential outputs, active clock edges, and default and trap states. The 

editor then converts these files into Abel and VHDL files which, according to Aldec™, are 

synthesis-ready.

From a designer point of view, ESDA tools are good learning tools. However, the code 

generated from these tools is far from being refined compared to the code written by an 

experienced HDL designer. Another criticism of ESDAs is that design engineers accustomed 

to working with schematics habitually tweak their design to correct behavioral, timing, and 

area problems. These designers have a hard time resisting the temptation to get into the 

code and fiddle with bits, even if they are not experienced HDL users. The danger here is
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that if the code is changed, it can disconnect from the original state-machine description. 

Once that happens, an error tagged during HDL simulation will not necessary connect to 

the original description and ESDA input is flawed.

In addition to code-generation capabilities, many ESDA tools provide a  block-diagram 

function to help keep track of the numerous files generated during the design process. For 

designers used to schematics, these functions can be a  useful learning tool because the top- 

down design methods are not just about learning code bu t a  whole new way of thinking 

about a  design.

The main drawback of ESDA tools, which is also true for automatic processes a t every 

level of abstraction, is the performance of the system under design (i.e. obtaining the 

most efficient design at the silicon level). It is nearly impossible to get the same level 

of optimization with an automatic process as with a  hand-written one. Then, the trade­

off’ becomes time versus performance. Another drawback is that EDA vendors provide 

tools optimized for a  specific architecture (FPGA, CPLD, Static Random Access Memory 

(SRAM) , . . . ) .  Often these vendors use benchmarks [Cor93a] provided by corporation like 

Programmable Electronics Performance Corporation (PREP) to promote these specialized 

tools. Therefore, when the targeted architecture needs to be changed it is not always a 

straightforward process to perform this kind of migration.

2.3 Case Study: RAM Cell

To illustrate the most advanced feature of today’s CADs, we define a RAM cell. Its 

specification4 is thus:

4 This specification is used as often as possible throughout this thesis to get a common illustration of 
description methods and thus ease their comparison.
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A list of control signals are defined: NRST (reset signal), CS (chip select),

RD (read command), WD (write command) enabling identification of which 

action the Random Access Memory (RAM) needs to perform. An address bus 

allows a unique location of the data stored and manipulated using a  data bus.

The normal operation of the RAM is to be in a  “wait state” watching for the 

condition ” CS =  T ’ ” to occur. When this condition is verified, the action of 

read or write is decoded from the combination of RD and W R (RD =  T ’ and 

WR =  !0! means the RAM is in the read mode, RD =  ’O’ and W R =  T ' means 

the RAM is in the write mode, and other conditions than these correspond to 

error conditions). The RAM comes back to the wait state upon completion of 

its task, desired to be within 1 ns. If within this period of time the condition 

" NRST =  ’O’ ” is true, the RAM has to wait for the condition ”NRST =  ’1’

" to be in the wait state again. When one inconsistency on the control signals 

occurs, the RAM goes back to an initial state automatically after a  desired time 

of 1 ns. When the RAM is in the initial state, a sequence of events caused by 

control signals (NRST =  ’O’, NRST =  T ’) brings it back to the wait state.

In the Mentor Graphics™  environment, a tool called System Architect™  can partially 

capture the above specification of the RAM. First, a context diagram has to be created 

allowing the specification of the Input/O utput interface as shown in Fig. 2-2. When the 

context diagram is defined, the functionality of the RAM needs to be described. In System 

Architect™ , the control functions and the data transformation have to be separated. As 

illustrated in the data flow diagram (Fig. 2-3), the control functions are described under 

the node “control” and the data transformations are performed under “storage”.

The control functions are described using a  Moore type state machine as shown in Fig.
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NRST.
N

DOUT

READY

""AD"''"

Figure 2-2: Context Diagram for RAM in the the Mentor Graphics™  Design Environment

2-4. A compromise has to be made for this state machine. In the specification, it has been 

defined that, for example, the RAM  goes into a wait state after 1 ns when the RAM  is in 

read or write mode. This requirement is not implemented with the description method used 

in this section. Instead, this implemented duration relies on the settle time of a  flip-flop 

component. The data transformation is described using the VHDL syntax to describe the 

storage function of the data. The following VHDL code is the description of the storage 

function input to System Architect™ (the full VHDL description generated by System 

Architect™  can be found in Appendix C):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

NRST..

•CS

-R D ------
-W R ------

•READY

en_
read en_

write en errAD
DOUT

DIN

Figure 2-3: Data Flow Diagram for RAM in the Mentor Graphics™ ’ Design Environment

A R C H IT E C T U R E  spec O F  storage IS
B E G I N  Architecture

 Description o f the storage activity o f  the R A M  cell
vhdlstorage  : P R O C E S S  ( sensitive list o f  this process statem ent

AD 'transaction.----- transaction is an attribute
D IN 'transaction , defined in V H D L  to notice
enjread'transaction,----- any change on a signal
enjwrite' transaction, 
enjerr'transaction)

 D efine  a list o f  constants : it is a nice way o f  programming
C O N ST A N T  T JL E A D Y .U  : T IM E  :=  60 ns;
C O N ST A N T  T -R E A D Y -D  : T IM E  :=  1 ns;
C O N STA N T T -A C C E S S  : T IM E  :=  40 ns;
C O N ST A N T  T .W R IT E  : T IM E  := 5 ns:
C O N STA N T nb-words : IN T E G E R  :=  2 * *8;
 D efine a new type : required in  V H D L when a table o f  vectors needs to be used
T Y P E  typejmemory IS  A R R A Y fO T O  nb.words -  1) O F B IT V E C T O R fO TO  3);
 D efine variables : special meaning in  V H D L  — it is used only in  a sequential
 statement and during simulation, the assignment o f  a variable is
 instantaneous whereas a signal has a delay
V A RIA BLE propjdelay : T IM E  := Ins;
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Slate Transition Diagram for control'

D efault Actions

e n _ re ad  <* '0^ 
en_w rite <= ‘0^ 
en _err <= 'CA 
R EA D Y cs’O

N RST = '01

NRST = ‘11
|N R S T » 'Q ’ - g

R>y
v ..̂ .v...

MS.!fflE£QY*<»
wrie<»,’1

1 ,>'VM

3C S  = M
(WR s  'V  \  

nd RD = ■Q") - i

(WR 
and RD

(RD = 'O’ \  
and  WR = '0‘) \  

or (RD = "TV 
and W R = T )  - 3

Figure 2-4: State Machine for RAM in the Mentor Graphics’ Design Environment
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V A RIA BLE M  : typejmemory;
 T his function  allows the conversion o f  a bit string to a natural number
F U N C T IO N  value{bv : IN  B IT V E C T O R ) R E T U R N  natural IS 
V A RIA BLE n  : N A TU R A L := 0:
B E G I N  process

F O R  I IN  Inflow TO  fnfhigh LO O P 
ii := n  * 2;
IF  bv(l) = ' 1'

T H E N
n := r t  +  I:

EN D  IF  ::
E N D  LO O P:
R E T U R N  n;

E N D  value;  end o f function
 Beginning o f the description o f  the storage function o f the R A M  cell
B E G IN

IF  (en.write — 1 ')  the operation o f  writing a data in the R A M
 is requested
T H E N

M (value(AD)) < =  D IN  A F T E R  T jw rite:----- store a data in the table M
EL SIF (enjread — 1 ')  the operation o f  reading a data is required

T H E N
DOUT <= M (value(AD)) A F T E R  Tjaccess: ----- provide a data to the RAM
 databus

ELSIF (en_err = ' 1 ')  an inconsistency occurs and raises an error
T H E N

A SSERT F A L S E  statement in VH D L fo r  simulation purposes
R E P O R T  n Wrong values for WR and RD when CS rises"
S E V E R IT Y  W A R N IN G :

ELSE
N U LL:

EN D  IF  ::
E N D  PR O C E SS vh d lsto ra g e :----- end o f  description

E N D  spec:

Notice that the above example presents a design methodology which can be characterized 

using the set of characteristics introduced in Chapter 1 as follows:
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Characteristics Checkmark
Sequentially Decomposable Activities " " 7

Concurrently Decomposable Activities
State Transitions

Immediate Mode Change /
Activity Completion
Delay Specification

Asynchronous Activities
Design for { Testability, Manufacturing, etc }

Multiple Model Representations
Reusability

Table 2.3: Mentor Graphics™ Front-End Design Tool Characteristics

As indicated before, in lieu of shortcomings of the current CAD tools, the following 

strategy is proposed. On top of exiting CAD tools, it is desired to create a  user friendly 

interface which would allow a seamless integration with existing CAD tools, and at the 

same time address the need for automation at the specification level.

Driven by the mutation of the electronics design methodologies, tools should become 

non-specialized description style environments for capturing high-level specifications. These 

environments should be graphically oriented because it is a common engineering practice to 

use sketches for describing the function of a system. Another important feature would be 

to encapsulate time without tightening the design with a  clock. The method of measuring 

time is a design issue which must not restrict the ability to find the best solution for a 

system. As noted during the discussion about ESDA tools, a drawback was stated that the 

code generated by these tools were not optimized. Therefore, an optimization process along 

the same principle as the one applied to schematics needs to be defined a t the specification 

level.
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2.4 VHLLS Role

The two previous sections discussed design automation, tools. Desired and logical prop­

erties for these tools is summarized as follows:

•  they must provide the reduction of the design cycle time:

•  they must provide an increased design quality:

•  they must alleviate the design complexity of today’s and tomorrow’s systems:

•  they must effectively maintain complex systems:

•  they must facilitate improved verification facilities.

As seen in Chapter 1. these items identify the characteristics of a design automation envi­

ronment. This section narrows down the design cycle to the area of interest typical for the 

early stage of this cycle.

The top-down methodology, as defined in Section 2.1, has been selected as an appropriate 

and suitable design methodology. This approach appears to be more natural and does not 

carry possible constraints stemming from lower levels which can reduce the spectrum of 

solutions, as in the case of the bottom-up approach. The objective of a  top-down approach 

is to start with high quality specifications and inject constraints as late as possible in the 

process. Moreover, this approach allows for a  deeper exploration of possible solutions so that 

problems can be solved more effectively and efficiently. Also, a top-down approach gives the 

opportunity to evaluate several candidate solutions before selecting the most appropriate 

one.
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Need

Working 
dr*wings 

etc —
I 5 ; 1 
* 8.

' form of description 
of the evolving dcag

| ) •  design sdivity

Figure 2-5: French’s Design Flow

As mentioned in Chapter 1, there is a  need for higher level of abstraction for design 

automation. For this purpose, a  new level of abstraction is added as an outer ring to the 

Y Diagram (Fig. 1-2). This level of abstraction is called the concept level. The purpose of 

our study is to sketch out the bridge between the concept level and the system level. These 

two notions are explained in more depth in Chapter 3. In this context, the concept level is 

defined as a part of the design space along with the system level. Furthermore, these levels 

under study axe the two highest levels. However, the concept level represents the early stage 

of a design flow and in that sense it precedes the system level. The corresponding model, 

introduced by French [FRE85], is depicted in Fig. 2-5. This model has been partially
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discussed in Section 2.1. Fig. 2-1 is the idealistic view of French’s design flow. The main 

difference is in the feedback loops which characterize a  refinement process of the “problem 

analysis” state. Indeed, during the design flow, the statement of a  “need” generates an 

iteration of “problem statement” in order to keep the project under feasible boundaries.

The concept level can be identified by the shaded zone in Fig. 2-5. The objective here 

is to develop a framework to automate the transition between a conceptual design and the 

embodiment o f a scheme. Indeed, the automation of these design flow sequences promotes 

creativity at the specification level. This automated transition is referred to as Very High 

Level Logic Synthesis (VHLLS).

D efinition 2.1 Very High Level Logic Synthesis (VH LLS) is a translation from a 

description at the Concept Level into a description at the System Level.

By introducing the extra layer in the Y diagram (other additional layers are expected 

in the future) and defining a proper synthesis process at this new layer, we are able to 

address several fundamental design paradigms in a practical manner. One of them is the 

encapsulation of time which becomes more universal and not clock driven. The next chapter 

reexamines the CAD domain using a  formal approach necessary for a better understanding 

of this matter.
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C hapter 3

Very High Level Logic Synthesis (VHLLS)

The previous chapters identify the need for higher abstraction levels during the design 

flow. This chapter introduces the corresponding design space and a  formalism associated 

with it. The samp methodology issues are addressed using a different, more formalized 

approach.

3.1 Design Space Fundamentals

As indicated before, according to Thomas [TLW~90] and Gajski [GK83], the design 

space is composed of three orthogonal domains of description:

•  behavioral;

•  structural;

• physical.

Fig. 3-1, commonly called the Y diagram, illustrates the three above domains. The behav­

ioral domain, referred to as dbhv, focuses only on the description of functions the system

35
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PHYSICAL DOMAIN

Figure 3-1: Formalization of Design Space

must perform (often referred to as the “black box" approach). In this domain, the input 

and output interfaces and their relationships are defined as a result. The physical domain. 

referred to as dphi, focuses on the physical structure of a system under consideration. In 

this domain, the function of the system is not relevant. The intermediate domain which 

bridges the behavioral and physical domains is called the structural domain and is referred 

to as d3tr. This domain corresponds to a  mapping (or synthesis) of the behavioral domain 

into a  set of components and connections under constraints such as cost, area, delay, etc. 

The system representation being in the structural domain, a second mapping process syn­

thesizes the design into the physical domain. The origin of the orthogonal domains is the 

final implementation, referred to as £t-mp, of a  system.

In these three domains, four levels of abstraction are defined:

•  system level (faya)i
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•  architectural level (£act)j

•  logic level (4gc);

• circuit level (£Cct)-

The relationship between the levels of abstraction and description domains is governed by 

design attributes.

D efin ition  3.1 In the design space, an a ttr ibu te  (a), element o f the set of attributes A 

(a £  A ), is either a form of representation or description by which a design is characterized. 

An attribute is dependent on the level of abstraction and the description domain.

The relationships between each level of abstraction and each description domain axe illus­

trated in Table 3.1 by their respective attributes. For example, electrical engineers are very 

f a m i l i a r  with schematics as a  medium to describe the function of a  system. A  schematic 

is characterized by being in the structural domain at the logic level. The most character­

izing attributes associated with this pair (structural domain, logic level) are gates, clocks, 

multivibrators, and flip-flops.

This section introduced the design space illustrated by the Y-diagram as shown in Fig. 3- 

1. The notions of level of abstractions and design domains were introduced. Each possible 

pair of level of abstractions and design domains is associated with a list of attributes. These 

attributes allow a clear distinction of each pair of level of abstractions and design domains. 

Note that the list of attributes is likely to evolve from a research effort on formalizing the 

design space. The next section proposes a  formal representation of this design space as well 

as its associated metrics.
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A bstrac tion  Level \  
D escription Do­
m ain

B ehav io ra l D om ain S tru c tu ra l D om ain P hysical D om ain

Extension f
Concept Level •  Natural language 

description
•  Sketches
•  Mappings
•  Duration relation­
ships
•  Math, equations

• Modules
•  Buses
• Networks

•  Boards
•  Boxes
•  Stacked MCMs

System Level •  Flowcharts
•  Algorithms
•  Regular Expressions

•  Processors
•  Controllers
•  Memories
•  Data Pipelines
• Buses

•  Boards
•  Chips
• MCMs

Architecture
Level

•  Register 
transfers

• ALUs
•  Multipliers
•  MUXs
• Registers
• Receivers
• Transmitters
• Buffers
• Memories

•  Chips
• Floorplans
•  Module Floorplans
• 3D-Chips

Logic Level • Boolean equations
•  Waveforms

• Sequencers

• Gates
• Clocks
• Multivibrators
• Flip-Flops

•  Modules
• Packaging pin out
• Cells

Circuit Level •  Transfer 
functions

• Transistors
• Connections
•  Resistors
• Capacitors
• Diodes

• Transistor layouts
• Wire segments

• Contacts
Implementation •  Functional Docu­

mentation
• Structural Docu­
mentation

• final design

Table 3.1: Levels of Abstraction in the Design Space
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3.2 Design Space Formalization

The design space is viewed as a  multi-dimensional space where the directions of that 

space are at least the description domain and the levels of abstraction. Mathematically, the 

design space can be expressed as:

D S  = < D .L , A, C.S.X > (3.1)

where:

• D  represents the description domains in the design space D S  such as D =  {dbh.v, d3tr- 

dphl}

•  L  represents the levels of abstraction in the design space DS: L  =  {£tmp, Zcct, tigc, 

tact, tsys}- Under L, an ordered relation <c is defined as:

'ix .y  6  L .x  <l y  <=► x is less abstract than y

So, the elements of L  can be ordered as follows:

timp ^L  ĉct ^ L  tigc tact ^-L t 3y3,

T hjs ordered relation (less abstract) is a relation to classify description regarding the 

amount of details provided to define a  system. So a  system description is less abstract 

t han another (of the same system) when the information provided for describing a 

system is more accurate. For example, a traffic light can be described as a  device to 

regulate traffic of terrestrial vehicles. However, a  less abstract description of a  traffic 

light is that a  traffic light is a  device which indicates to a  driver of a vehicle either (i)
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to cross a junction when it is green, (ii) to stop before the junction when it is red or 

(iii) to be careful while crossing the junction when it is yellow.

From now on, the term successor of a  level of abstraction x  is used to mention a 

level of abstraction y  such as y < l x . For example, £jmp is a  successor of £sy5. The 

term  immediate successor of a  level of abstraction x  is used to mention the level of 

abstraction y such as y < t  x  A ($z E L .y  <£, z  <£, x). For example, tact is the 

immediate successor of t sys. The term with the opposite meaning for successor is 

predecessor. t sys is a  predecessor of £«* and tact is the immediate predecessor of tigc.

• A represents a set of attributes such that a E A, a being an attribute. Table 3.1 

contains a non-exhaustive list of attributes. So, for example, an attribute can be 

ALUs, Flowcharts, or Chips;

• C  represents a set of characteristics (introduced in Section 1.1.2) such that c E C. c be­

ing a characteristic. For example, a characteristic can be “Sequentially Decomposable 

Activities”:

• Mapping 5 : D  x L —*• A* x C* associates in the design space D S  a level of abstrac­

tion from L  and a description domain from D  onto a set of attributes from A * and 

characteristics from C*.

A* is the set of equivalence classes of A  under R l  (A* =  A /R l) .  In other words, 

each element of A* is an equivalence class of the elements of A under the equivalence 

relation R l. R l  is defined as:

Vx, y E A ,x  R l  y  p(x) =  p(y)
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where p is defined, as: p : A  L x D .  So p defines a property that maps each attribute 

of A  onto a description domain from D  and a level of abstraction from L. For example, 

an element of A* taken from the Table 3.1 is a” =  {Gates, Clocks, Multivibrators, 

Flip-Flops} which is associated with the logic level and the structural domain. Note 

that each pair composed by a level of abstraction and a  design domain is mapped 

with an element of A* as shown in Table 3.1.

C* is the set of equivalence classes of C under R2 (C* =  C /R2). R2 is defined as:

V x.y  E C .x  R2 y <=> C(a:) =  C(y)

where C is defined as: £ : C  —*■ L  x D. (  defines a property that maps each char­

acteristic of C  onto a description domain from D  and a level of abstraction from L. 

Consequently, C* is a set of equivalence classes under the equivalence relation R2. For 

example, an element of C* is c* =  (Sequential Decomposable Activities, State Transi­

tions, Immediate Mode Change, Activity Completion} mapped with the system level 

and the behavioral domain.

For example. 6 ( d b h v -  ^ s y s )  =  ({Flowcharts, Algorithm, Regular expressions}, {Sequential 

Decomposable Activities, State Transitions, Immediate Mode Change, Activity Completion}):

•  \ : D x L - * D x L  represents an evolution in the design space D S  from a pair (aq, yi) 

composed by a description domain from D (xi 6 D) and a  level of abstraction from 

L  (j/i £ L) to another one Just following, an interpretation of an evolution

in D S  is given as well as some examples.

Using the formal representation of the evolution A in D S  introduced above, commonly 

used evolutions on D S  can be written in a  mathematical form. One of these evolutions is
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the reverse engineering process which consists of taking an existing design description at one 

level of abstraction and describing it again a t  a  higher level of abstraction. For example, if 

an engineer considers the description of a  VLSI component at the circuit level i.e. pages of 

transistors (a?i =  dstT, Vi =  ?cct)-. the only way to understand the function of tha t component 

is to translate these pages of transistors into a description at the gate level i.e. a  schematic 

composed of logic gates (xi = dstr, Vi = £igc)- This reverse engineering process can be 

applied until the engineer reaches a  level of abstraction suitable for the comprehension of 

the component behavior. So, the evolution A defines a reverse engineering process when:

3x, y 6 L  and z  E D  such that x < i y. A(x, z) =  (y, z)

Another common evolution on D S  is the synthesis process. In general, a  synthesis 

process is the action of combining abstract entities into a single or unified entity. In other 

words, a  synthesis process is a  process of refining a design by describing each function with a 

combination of less abstract functions. For example, at the system level (£sys), an addition 

between two integers i.e. z =  x  +  y, where x  and y axe integers in [0,15] and z  in [0,30], is 

synthesized at the logic level (£igc) as follows:

Zi = Xi © yi © Cj_i 

a  = xiyi +  XiCi-i -i- v id - i

where X{ and y,- axe four bits wide bit-string (xs and ys are equal to 0), t is an index evolving 

from 0 to 5, z  is a five bit wide bit-string, and c,- is the carry (c_i =  0). So, the evolution
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A defined for a synthesis process is expressed formally as follows:

Vx,y 6 L  and w ,z  e D  such that x  <l y,X{y,w) =  (x , z )

More specifically, Gajski et al. in their book [DGLW92] defines four synthesis processes as 

illustrated in Fig. 1-4. These synthesis processes are formalized, in a  general manner, as 

follows:

V x 6  L,  X^dbhvi =  {dst n x )

because Gajski defines a synthesis process per level of abstraction as an evolution from the 

behavioral domain onto the structural domain. These synthesis processes are the following:

•  System synthesis: A(dbhv,£sys) = {dstr,£sys) referred to as (b) in Fig. 1-4:

• Architecture synthesis: A(dbhv-^act) — (dstr,£act) referred to  as (c) in Fig. 1-4:

•  Logic synthesis: X{dbflv,£igc) =  (d3tr,i igc) referred to as (d) in Fig. 1-4:

• Circuit synthesis: A(dbhvi£cct) =  (dstr,£cct) referred to as (e) in Fig. 1-4.

Such formalism eases the characterization of a design process in D S  and gives a tool to 

compare design methods. In order to improve this characterization of design processes in 

D S, a  metrical space is defined. First, the notion of distance in D S  is defined allowing the 

introduction of a measure to evaluate a design process.

D efin ition  3.2 Letting L  x D  be a set of paired elements. The evolution d istance d \  

in D S  is defined as a function on (L x D) x (L x D) into the set of non-negative real 

numbers. d\ satisfies the following conditions:

1. Vx,y € D  x L ,d \(x ,y )  =  0 <=► x  =  y
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2. Vx,y 6  D x L ,d x{x,y) =  d \[y ,x )

3. V x , y , z £ D  x L,dx{x,y) < dx (x,z) +  dx(z,y)

The d \  function can be written as: d \  =  ||x—y|| where x . y  £ L xD . Using this distance func­

tion, any discrete point in D S  can be compared with any other point of D S. For example, a  

system synthesis process introduced above which is an evolution from the behavioral domain 

onto the structural domain a t the system level has a  evolution distance (simply referred to 

as distance) of 1. We write then dx ((dstr-iSya)-. (dbhv.^ays)) = ||(d3tr- ^sys) — (^6Au^sys)ll =  

IIA^/u^st/s) -  (<W,^sya)l|* Notice that if a  reverse engineering evolution is performed 

between the structural domain and the behavioral domain at the system level, the distance 

of this evolution gets the same value of one.

D efin ition  3.3 A unary evolu tion  Au is defined as:

• Vx 6 L.V y.z  6 D with y  ^  z, ||(y,x) — (z,x)|| =  ||Au(z,z) — (z,x)|| =  1, or

•  Vx,y 6 L, Vz 6 D with x  < t y  and x  is the immediate successor of y, ||(z,x) —(z,y)(| =  

II K{z ,y)  - (* ,y ) || =  1

A unary evolution has then the particularity of being an evolution having a distance of 1. 

Therefore, all the evolutions defining a synthesis process in the sense of Gajski (introduced 

above) are all unary evolutions. For example, logic synthesis is a  unary evolution because:

l|(^6/ivi ^ays) (^s£r, ̂ sys)|[ =  1

as opposed to an evolution from the behavioral domain at the system level to the structural 

domain a t the architecture level which has an evolution distance different from 1. This
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distance is written then as follows:

II(dfrhv-P-sys) ~  { d s tr t^ a c t) \ \  7̂  1

Having defined a unaxy evolution, an evolution can then be viewed as a  sequence of 

unary evolutions which brings the design from one point in D S  to the desired one.

Lemma 3.1 If  an evolution is not unary, then there may be a com position  of unary 

evolutions such as:

X(x, y) =  Au o . . .  o A„(x. y)

where ||(:rt--i,y t-i) -  (^i,2/t)ll =  IIAute.yt) - (x i ,y ,) | |  =  1 

P roof:

If Ao(a;o?yo) =  (*i:J/i) such that d \ ((x0,y0), (®i,yi)) =  1 then Ao(x0,t/o) =  Au(aro,yo) 

is true.

Let us assume that

An(-ri)? 2/0} =  (•^n- 2/n) =  A u O . . .  O \ u(xq, 2/0)> V* y
n

is true with d\  ( f e y , ) ,  (sf~i,yi+i) =  1.

The evolution An^ 1(x0,2/o) =  (*n-ri»I/n+i) can be written as a sequence of evolutions 

suchas An(2o?yo) =  (®n ,Vn) and X(xn,yn) =  (xn^ i , y n~i). The distance of the last evolution 

is 1 and then Au(ar„,yn) =  (xn- i , y n+i). So we get that

A n + l ( ® 0 i y o )  =  A u  °  A n { x n ,yT t) —  ( ® n - r l  •. t / n - i - l ) •
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Because

A n f c o ,  2 / 0 )  =  f e n i  Vn)  =  A u  o . . . o  A u ( x o , y o ) ,

Tl

we can rewrite An_i(x0,yo) =  (^n-L-2/n-i) as

An—i(x g , yo) =  A„ o A„ o . . .  o Aa(xo, yo) =  0 °  • • • °  Au(xo, yo)' v — /  > ill v II— — ̂
n n-t-1.

which, proves that an evolution is a  composition of unary evolutions.

□

Using this result, the notion of distance can be improved by saying that a distance of an 

evolution is the sum of the distances of each unary evolution which, composes this evolution.

P ro p o sitio n  3.1 The distance of an evolution is defined as:

V(x,y) E D x L, dx = ||A(x,y) -  (x,y)|| =  ||Aa(xi,yt) -  (x,,yi)||
t

where ||Au(xt-,yt-) -  (Xi,yi)(| =  1

As an illustration of the above notions, let us consider that the desired evolution in D S  

is the following:

A{dbh.vt^act) = {dstri @lgc)i

which is the evolution of todays commercial synthesis tools. One possible composition is:

Aufdft/ir, @act) =  {dstri @act)

Au(̂ sfcr? Pact) = {dstri Plgc)

Using this composition, its distance is then equal to:

IK^WunPact) ~~ (dstr,Plgc)\\ = 2
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This example shows that when an electrical engineer designs a  system at the architecture 

level using VHDL for synthesis and then applies a  synthesis process to this design in order 

to get a schematic, implicitly, he or she uses indeed two evolutions.

Notice that the decomposition of an evolution is not unique. Also, the feasibility of all 

evolutions is not guaranteed with today’s tools. Further research needs to be performed to 

characterize all the possible evolution decompositions. For example, the evolution from the 

physical domain to either the behavioral or structural domain at the system, architecture, 

and logical levels has not been performed so fax.

In this section, a  well-established design space, known as the Y-diagram (see Fig. 3- 

1) was presented. A formal description of it was proposed allowing a formal definition of 

design processes such as synthesis or reverse engineering processes. Moreover, the notion of 

evolution in the design space was defined as well as a formal characterization of the level of 

abstractions and design domains. Along with this formalization, some metrics which enable 

another method of comparison between design processes was defined.

3,3 Extended Design Space

Currently, toolmakers provide efficient CAD applications which perform Register Trans­

fer (RT) synthesis. However, there is still a  missing link between conceptual specification 

and system level description in the behavioral domain. In Fig. 3-1, an extra layer, called 

the Concept Level, has been added to the original Y diagram. This extra layer provides 

a framework for the introduction of the next generation of CAD tools which will be more 

characterized thanks to the formalism defined in the previous section.

D efinition  3.4 The concep t level, referred to as icpt, is a level o f abstraction characterized 

in each description domain by attributes more abstract than those at the system level.
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A classification of these attributes into the three description domains is shown in Table 3.1. 

The list of attributes in each domain is not exhaustive. For example, the attributes char­

acterizing the concept level in the behavioral domain are Natural Language Descriptions, 

Sketches, Mappings, Duration Relationships, etc. In other words, at the concept level, the 

behavior of a  system are specified using a  description methods such as natural language, 

sketches, and so on.

The addition of the concept level in L  extends the design space D S. So, the design space 

D S  becomes the Extended Design Space (EDS). Mathematically, the Extended Design Space 

can be expressed as:

E D S  — ^  D. Egxts Aext*. &exti ^ext ^  (3.2)

where:

•  D  represents the description domains in the extended design space E D S : D =  {dbh.v,

dstr-. dpfii}:

•  Lext represents the levels of abstraction in the extended design space EDS: Lext = 

L U {icpt} such that icpt is the immediate predecessor of i 3y3 {isy3 < l icpt)'*

• A-ext represents a set of attributes such that A  C Aext and the additional elements of 

Aext are attributes derived for Lext- Therefore, the extra attributes, as illustrated in 

Table 3.1, are natural language, sketches, modules, buses, boards, boxes and so on;

•  Ceit represents a  set of characteristics such that C C  Cext and the additional elements 

of Cext are characteristics derived for Lext- These extra characteristics, as introduced 

in Chapter 1, are among others delay specification, multiple model representations 

and so on;
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• $ext - D  x -* A%xt x Cext associates in the extended design space E D S  a  level 

of abstraction from L o t  and a  description domain from D  to a set of attributes from 

and characteristics from C^.t .

A^.t is the set of equivalence classes of Aext under Rlext (A^.t =  Aextf Rlext )• In. 

other words, each element of A ^  is an equivalence class of the elements o f Aext under 

the equivalence relation Rlext- Rlext is defined as:

Vx, y  £ Aexti-E Rlext y  ^  Pexti2») = Pext{y)

where pext is defined as: pext : Aext —► Lext x  D. So pext defines a property that maps 

each attribute of Aext onto a description domain from D  and a level of abstraction from 

Lext- For example, an element of A ^  taken from the Table 3.1 is a^.t =  {Modules, 

Buses, Networks} which is associated with the concept level and the structural domain.

Ce'xt is the set of equivalence classes of Cext under R2ext (C£xt — Cext! R^ext )- R2ext 

is defined as:

Vn, y  £  C ex tiK  R2ext y  ^  Cexti-z) =  Cext(y)

where Cex t is defined as: Cext : Cext -*• Lext * D- Cext defines a property that maps 

each characteristic of Cext onto a  description domain from D and a  level of abstraction 

from Lext- Consequently, C ^ t  is a  set of equivalence classes under the equivalence 

relation Rlext- For example, an element of C ^ .  is c ,̂.t =  {Sequential Decompos­

able Activities, State Transitions, Immediate Mode Change, Activity Completion, 

Concurrently Decomposable Activities, Asynchronous Activities, Multi Model Rep­

resentation, Reusability, Design for {Testability, Manufacturing, . . .  }} mapped with 

the concept level and the behavioral domain.
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As a  result, we can state tha t 5ext(d(,hV, icpt) = ({Natural language description, 

Sketches, Mappings, Duration relationships, Math, equations}, {Sequential Decom­

posable Activities, State Transitions, Immediate Mode Change, Activity Completion, 

Concurrently Decomposable Activities, Asynchronous Activities, Multi Model Repre­

sentation, Reusability, Design for { Testability, Manufacturing, ...} } );

• Â  : D  x Lext - f  D  x Lext represents an evolution process in the extended design space 

E D S  from a pair consisting of a  description domain from D  and a  level of abstraction 

from Lext to another one. Just following, an interpretation of an evolution in E D S  is 

given as well as some examples.

Note that, to simplify the notations from now on, the index ext is dropped from the 

above notation. Using the extended design space formalism, two new evolution processes 

can be introduced: Concept synthesis and Concept refinement. The composition of these 

two evolutions defines VHLLS as shown in Fig. 1-4. In a sense of synthesis defined by 

[DGLW92], the concept synthesis is defined as follows:

D efinition 3.5 The concept syn th es is  is an evolution from the behavioral to the struc­

tural domain such that:

^ c x t i f i b h v i c p t )  ~  ^ c p t—sy n t(d b h v i ic p t)  =  (d s tr - . ic p t)

The concept synthesis is on the top of other synthesis processes introduced in Section 3.2. 

Concept synthesis starts with a set of general information about a desired behavior through 

shared variables or message passing. It generates a structure of modules and networks. Each 

module can be described by a  behavioral description at the system level. This refinement 

process is performed through an evolution referred to as the concept refinement. This
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evolution is defined as follows:

D efin ition  3.6 The concept re finem en t is an evolution allowing the refinement of a 

system description from the concept level into the behavioral level such that:

) ^ e x t( d s tr ! ^cp t) =  ^ c p t - r e f t  {dstr? ^ cp t)  =  ifib h v .^ -sys)

For example, if we specify in a  natural language the behavior of a  traffic light by saying 

“A traffic light system regulates the flow of terrestrial vehicles at a  junction of two bidirec­

tional roads". Applying a  concept synthesis of this specification results in networks with 

four modules. Each module represents a traffic light. The concept refinement is considering 

each module and providing it a  behavioral description a t the system level such as a  flowchart 

specifying how the traffic light can change color.

Section 2.4 of the previous chapter describes the VHLLS process and provides a general 

definition of VHLLS. W ith the introduction of the above formalism to describe an evolution 

in the design space, we can provide a more formal definition of VHLLS.

D efin ition  3.7 Very H igh  Level Logic S yn th esis  (V H L L S ) is a composition of two 

evolutions: concept synthesis and concept refinement such as:

^ e x t(d b h v i f-cpt) =  ^ c p t—r e f t °  ^ c p t—s y n tif ib h v i^ c p t)  =  {fibhvi ^ s y s )

The definition of VHLLS leads toward the definition of a  new generation of CAD tools 

which can be characterized using the measurement schema for classification and comparison 

of design methodologies defined in this chapter. Chapter 4 illustrates tha t no commercial 

tools meet the characterization of CAD tools able to perform the VHLLS methodology.
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The next chapter seeks out a process to perform VHLLS. Methods under research are 

reviewed, classified and analyzed. As a  result, the definition of a new synthesis process 

more suitable for VHLLS is introduced in Chapter 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4

Formal Mechanisms for VHLLS

In the previous chapters, the rationale for a  VHLLS process is stated and formalized. 

As the next logical step, the implementation of a such process needs to be considered. To 

this end, formal mechanisms suitable to perform the VHLLS process are prescribed for con­

sideration in this chapter. In the scope of this research, two families of description models 

have been selected and introduced in Section 4.1. A separate section is entirely dedicated 

to each of these two families detailing the most relevant description models in each. As a 

concluding part of these two sections, a comparison of the presented methods is performed. 

Their advantages and disadvantages regarding their impact on the characterization of VH­

LLS (referred to as C in Chapter 1) are highlighted. These methods are then compared 

to the minimum characterization set (referred to as Cmin in Chapter 1. Cmin leads to a 

new generation tool called Specification Procedure for Electronic Circuits in Automation 

Language (SPECIAL)).

53
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4.1 Taxonomy

SPECIAL

SilagePetri Nets

SpecCharts State Action TablesAlgorithm State Machine

Microelectronics Based Methods

Hardware Description Language
v_
Specification and Description Language

Communication Sequential Processes

Model of a Microelectronics System

Programming or Control Based Methods

Figure 4*1: Taxonomy of Formal VHLLS Mechanisms

We consider the two most appropriate families of methods to specify and describe a 

microelectronics system as shown in Fig. 4-1:

• programming or control based methods (described in Section 4.2):

• microelectronics based methods (described in Section 4.3).

The first family of description methods (programming or control based methods) has taken 

its heritage from both the computer and automatic control process areas. For instance, 

the Petri nets method is a typical approach of solving control problems. I t is used to de­

scribe distributed systems with emphasis on concurrent, non-deterministic processes and
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on problems of communication and synchronization. In the computer area, the communi­

cation sequential processes method has been developed to overcome the limitations of the 

traditional programming languages with respect to programs running on a  multi-processor 

machine. The choice of investigating these methods is relevant because, at the concept level, 

many s imilarities appear between the two families: sequentiality, concurrence of processes, 

etc. This fam ily  (program m ing or control based methods) is important to investigate be­

cause the approach of tackling a design problem is culturally different compared with the 

microelectronics world. For instance, control methods decompose a problem more easily 

into concurrent sub-problems compared to a microelectronics problem which is decomposed 

into sequential sub-problems.

The second family of methods (microelectronics based methods) has taken its heritage 

from the microelectronics area. The most typical methods are the Hardware Description 

Languages (HDLs) and in particular two of the most popular ones: VHDL and Verilog™. 

These two description methods use the principle of programming language to describe hard­

ware behavior as presented in Section 4.3.1.

As defined in Chapter 1, the next generation of CAD must include the functionalities 

not only of todays commercial tools, but also additional features provided in the list of 

characteristics C. As indicated before, the tool to implement the next generation of CAD 

tools which meets the requirements of Cmin is called Specification Procedure for Electronic 

Circuits in Automation Language (SPECIAL). SPECIAL must have the ability to offer to 

designers the most suitable description methods from, at least, the two families under study.

Note that the next two sections present description methods from the two description 

families introduced above. These sections are self-contained with respect to the notation 

and symbols. The description of each of these methods is very brief. If the reader wishes
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to probe these methods further, references are provided. Also, each description method 

is illustrated using the case study introduced in Chapter 2. Comparisons of and remarks 

about these methods are made in the last sub-section of each family section.

4.2 Process Control Based Methods

This section presents description methods which originate in the automatic control the­

ory and algorithmic fields.

4.2 .1  A lg or ith m ic  S ta te  M ach in es

Introduced by Clare, the Algorithmic State Machine (ASM) chart [CLA73] is a dia­

grammatic description1 of the output function and the next-state of a  FSM. It resembles a 

conventional flow chart where a  control flow is expressed graphically while an operational 

behavior is described using textual assignment statements. So, ASM can be viewed as a 

super-set of FSM.

Three basic graphical components allow a  construction of ASM charts:

• state box: contains a list of either register operations or output signal names that the 

controller generates while in this state. The exit path  of the state box leads to other 

state boxes, decision boxes or conditional output boxes. The exit path is represented 

by a  rectangle;

• decision box: describes the effect of an input on the controller. Two exit paths can 

be taken regarding the enclosed condition: one when that condition is true, the other 

when it is false. The shape of the decision box is in a  diamond;

LA description in the form of diagram like an algorithmic chart
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conditional box: describes register assignments or outputs which are dependent on 

one or more inputs in addition to the state of the FSM. The rounded comers of a  

conditional box differentiate it from the state box.

RESET. MODE

C S -’T oal(R) and notfW)

Mem(addri <-<UtaSRST -  *0*

WATTING MODE

READ MODE

START

ERROR

Figure 4^2: RAM Description in ASM

Another structure, called block, is defined in the ASM chart. A block consists of one 

state box and the decision and conditional boxes connected to its exit path. One charac­
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teristic of a block is that it has one entrance and any number of exit paths represented 

by the structure of the decision boxes. One block describes the FSM operation during one 

state. So, an ASM chart is a  interconnection of blocks. Like the FSM, the timing model is 

a  one-phase synchronous clocking scheme. Therefore, delay specifications in ASM charts, 

as introduced in Chapter 1, are not possible due to its dependence on a  global clock.

As an example, we use the specifications of the RAM cell introduced in the case study 

in Section 2.3. The ASM chart can easily represent the sequence of events which initializes 

the RAM cell as shown in Fig. 4-2 from the "START’’ box until the diamond box labelled ~ 

CS =  ’! ’ ’’. This sequence is described using decision boxes. So, starting from the state box 

“START’, a reset sequence is applied using two decision boxes conditioned by the value 

of the reset signal. After the reset sequence, the RAM cell goes to a  wait mode for a chip 

select signal to occur. The wait mode is modeled by a  perpetual scanning operation of the 

signal CS. So, when the chip select occurs, the RAM cell is either in a read mode or write 

mode. In both modes, a  conditional box is used either to modify the outputs of the cell 

(read from the RAM) or to  apply a storage operation (write into the RAM). Finally, the 

RAM cell returns into the wait mode unless a reset is required.

4 .2 .2  C om m u n ica tion  S eq u en tia l P r o c esse s

The Communication Sequential Process (CSP) [HOA78] language was developed to 

overcome the limitations of the traditional programming languages with respect to programs 

ru n n in g  on multi-processor machines. This language follows the basic idea that systems can 

be decomposed into subsystems which operate concurrently and interact with each other as 

well as with their common environment.

A CSP program consists of processes P  which stand for the behavior pattern of an object
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CSP Desicnption

{Complex Commands}{Complex Commands}

Alternative Parallel

(decision making) (new processes)
Repetition 

(iteration behavior)

{Simple Conditions}

External A Internal external
Influence Influence Influence
(Inputs) (Internal behavior)

.-V
(outputs)

Figure 4-3: CSP Hierarchical Structure and Interactions
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as well as its environment and the system described by all the objects. So, within a system, 

processes act and interact w ith each other as they evolve concurrently as illustrated in Fig. 

4-3 (Note that a  plain arrow represents an inheritance from the starting box and a  dashed 

arrow shows the interaction between the elements of the graph).

Hence, a system is described using a list of command (represented in Fig. 4-3 by round 

brackets surrounding “Complex commands” or “Simple commands” i.e. { Complex com­

mands }) describing processes and their interaction with each other. A command specifies 

the behavior of a device executing the command. The command list specifies a sequential 

execution ordering of the com m ands in the list. There are two classes of commands. The 

first class refers to simple com m and s which contribute to altering the internal state of the 

executing process, affecting the external environment, and affecting both the internal state 

as well the external environment as in the input command. The second class refers to 

complex commands which are structured commands and involve the execution of all their 

constituent commands. This last class of commands contains the structure for decision 

making, parallel behavior of processes and implementation of interactive behavior.

In CSP some processes are created to encompass a  control construction. So, if event x  

and process P  are involved in constructing a command, (x  —>■ P) describes an object which 

first engages in event x  (meaning when x  occurs) and then behaves exactly as described 

by P. That can be referred to as guarded commands. Such a structure can lead to non- 

deterministic1 behavior which is a salient difference between CSP and most other languages.

Com m unication between concurrent processes is simply specified with explicit input 

and output commands. That is possible only under three main conditions: (i) the output

2The description of a system may lead to a case where the decision making mechanism does not generate 
a unique process activation.
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command in one process specifies another process as the destination of the data to be sent; 

(ii) the input command of a  process using data from other processes needs to include the 

source of the data to be received; and (iii) match of data type during communications 

between processes.

To illustrate the CSP description style, we use the case study introduced in Section 2.3. 

So, the description of the RAM cell becomes a  sequence of statements. The CSP description 

is as follows:

•  List of events denoted as a, b, c, d, e, / ,  g, out.ready, out.daut, in.ad, in.din  where

— a =  ” NRST = ’O’ ” meaning the reset command is active:

— b =  ” NRST = T : ” meaning the reset command is not active:

— c =  ” CS =  T ! ” meaning the RAM cell is selected;

— d — ” CS =  ’O’ ” meaning the RAM cell is not selected;

— e =  ” (WR = ’0’) and (RJD =  T ’) ” meaning the RAM is in read mode:

— f  = ~ (WR = T ’) and (RD =  ’O’) ” meaning the RAM is in write mode:

— g =  ” ((WR = '0 ') and (RD =  ’O’)) or ((WR = T )  and (RD =  ’1’)) ” meaning 

the RAM is in error mode;

— out.ready =  “output a  ready pulse” meaning the RAM cell is ready to send data  

out;

— out.daut =  “output dout” meaning the selected value is sent;

— in.ad =  “input ad” meaning the address of the data to provide or store is given;

— in.din =  “input din” meaning a data is provided to store;

— out.error =  “output error message” meaning an error occurs;
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• Definition, of the processes:

— W A I T  meaning that the RAM cell is in wait mode waiting for a read or write 

operation;

— R W  m ean in g  that the RAM cell is selected and needs to identify its mode of 

operation;

— R E A D  m eaning that the RAM cell is in read mode:

— W R I T E  m ea n in g  that the RAM cell is in write mode:

— E R R  m ean in g  that the RAM cell is in error mode:

• Specification of the RAM cell:

— ccRAlM =  {a, b} m eaning the alphabet of R A M  is a and b (list of events involved 

in the description of the process R A M ) ;

— R A M  =  (a —¥ b —► W A I T )  meaning that initially, the RAM cell needs to

acknowledge the event a following by the event b before applying process WAIT:

— a.W  A I T  =  {a.b.c} mean in g  the alphabet of W A I T  is a, b and c (list of events 

involved in the description of the process W A IT ):

— W A I T  =  f i W A I T .{ a -> b->  W A I T

| c -»• R W )

mea n in g  that either a reset sequence occurs or the RAM is selected;

— a R W  =  { e .f .g }  meaning the alphabet of R W  is e, /  and g (list of events 

involved in the description of the process R W ):

— R W  =  ( e -+  R E A D

| /  -»  W R I T E
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| g  -+ E R R )

meaning that the RAM cell is either in a  read, write or error mode;

— a R E A D  =  {out.ready. in.ad, out.daut} meaning the alphabet of R E A D  is out.ready, 

in.ad and out.dout (list of events involved in the description of the process 

R E A D ):

— R E A D  =  (out.ready —> in.ad —► out.dout —»■ W A I T )

meaning that the RAM cell is sending the data selected by the provided address:

— c tW R I T E  =  {out.ready, in.ad. in.din} meaning the alphabet of W R I T E  is 

out.ready. in.ad and in.din  (list of events involved in the description of the 

process W R I T E ) ;

— W R I T E  = (out.ready —> in.ad —f in.din -¥ W A I T )

m eaning that the RAM cell is receiving data to store a t the provided address:

— a E R R  = {out.error, a, b} meaning the alphabet of E R R  is out.err or, a and b 

(list of events involved in the description of the process E R R ):

— E R R  =  (out.error —> a —»• 6 —»• W A I T )

meaning that the RAM cell does not recognize the event sequence:

The description using CSP does not entirely follow the specification for RAM cell given 

in Section 2.3 because the specifications say that when the RAM cell is either in read or 

write mode, it has to wait 1 ns before going to the WAIT state unless a reset command 

occurs. For the above description, we overrule this specification issue by noticing that by 

going in a wait state immediately, if a  reset command is active, the RAM performs the reset 

cycle as well.
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4 .2 .3  P e tr i N e ts

Petri nets [REI85] were introduced by Petri in the early 1960s as a mathematical tool for 

modeling distributed systems and. in particular, notions of concurrency, non-determinism, 

communication and synchronization. There are many varieties of Petri nets from black and 

white nets, which are conceptually simple and straightforward to analyze, to more complex 

nets such as colored nets which allow the modeling of complex systems. A simple (black and 

white) Petri net is a bi-partite graph with nodes which may be places (drawn as circles) or 

transitions (drawn as rectangles or lines). Edges can connect places to transitions (known 

as input arcs, with the corresponding places known as input places) or transitions to places 

(known as output arcs, and the corresponding places known as output places). A Petri net 

can be marked by indicating tokens which are contained in each place at a point in time 

(drawn as dots). If all the input places of a transition contain (at least) one token, then 

the transition is eligible for firing. If it does fire then one token is removed from each of its 

input places and one token is added to each of its output places. A Petri net is executed by 

establishing an initial marking and then, a t each subsequent cycle, choosing a set of eligible 

transitions for firing. Notice that the ability of a transition to fire is determined solely by 

local conditions, namely the presence of tokens in the adjacent input places. This locality 

of reference is a desirable feature in modeling concurrent systems. Even with the simplicity 

of black and white nets, it is possible to model interesting concurrent systems.

Petri nets have already been used to specify the behavior of a system [PB91]. Such 

systems are synchronous parallel controllers. Having their specifications defined with Petri 

nets, a synthesis process can be applied targeting a VHDL description at the RT level. 

In the formalism defined in Chapter 3, the above synthesis process can be described as a
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composition of a system synthesis process and a system refinement or more formally:

^ s y a t—sy n th i.d b h v !^ sy s )  ~  A s tr iP s y s )

^ s y a t—r e f  t ( d s tr -  Pays) ~~ (Abhv'.Pact)

then X p e tr i—n e t—a y n th id b h v ;  Pays) =  ^ s y s t —r e f t  0 ^ s y s t—s y n th i^ b h v :  Pays) =  (d b h v i Pact)

A VHDL template has been defined to meet criteria such as a direct match with the Petri 

net schematics and also to be compatible with simulator and synthesis packages. The VHDL 

code generated is into the VHDL synthesis's subset.

As an illustration of Petri nets (Fig. 4-4), the RAM cell specifications introduced for the 

case study in Section 2.3 is used. The Petri net graph is a dynamic graph meaning tha t a 

token is moving from place P # i  to place P # j  e.g. in Fig. 4r4, initially one token in present 

at place P # 1  and can move to place P # 2 . W ith the token in P # l ,  the transition T # 1  

authorize the token to move to P # 2  when the condition associated with T #1 is verified. In 

the case of T #8 , the transition occurs in any circumstances but depending on the evaluation 

of the condition associated with the transition the token can go either in P #3  (when “NRST 

=  ’O’” is true) or in P # 2  (when “NRST =  ’O’”  is false). When the token is in one place, 

actions can be executed. In particular, when the token is either in P # 5  then the action of 

reading in the memory is activated or in P # 6  then the action of writing in the memory is 

activated or in P # 7  then an error alarm occurs. In the RAM example, each transition T # i  

has a condition associated with it as follows:

• T # 1  being: NRST= ’O’;

• T # 2  being: NRST= T ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66

Token

P # 1 T#1Transistion

P # 2

Place T # 2

P # 3

T # 3T # 4

Input ArcP # 4

T # 6T # 5 T # 7

P # 6 Output ArcP # 5
P # 7

T # 1 0

Figure 4-4: RAM Using Petri nets

•  T # 3  being: NRST= ’O’;

• T # 4  being: CS =  T ’;

•  T # 5  being: RD = T  AND WR= ’O’;

•  T #6  being: R D = ’O’ AND W R= T ’;

•  T # 7  being: (RD= ?0’ AND W R= ’O’) OR (RD = T ’ AND W R= T );

•  T # 8  being: NRST= ’O’;

• T # 9  being: NRST= ’0!:

• T # I0  being: True.

Once again, the specifications given for the RAM cell axe not fully implemented. Using 

Petri nets, no time delay can be specified.
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Level I

Level 2

Channels
Level 3

Figure 4-5: SDL Hierarchical Structure

Specification and Description Language (SDL) [BS91] is a  language for the specification 

and description of systems. This language, mainly used in the telecommunication field, is 

well suited for specifying real-time and interactive systems. In  a nutshell, SDL essentially 

specifies the behavior of the system and its interaction with its environment.

The basis for describing a system behavior (shown in Fig. 4-5) is a hierarchy (tree like) 

of dataflow Hia.gra.ms (to create the "branches” of the tree) and state machine at the leaf 

level. The element of the tree referred to as block represents the main structuring concept 

in SDL. A block helps partition a system description into sub-descriptions. So, block 

can be composed by interrelated sub-blocks B?+l. We say f?” is the n-th block at the level 

i  and Bf_l is the p-th block of the level t' +  l a  level under level i (e.g. in Fig. 4-5), we have 

three levels. Level 1 is the root level which represents the system description. A partition 

of level 1 is composed by three blocks a t level 2 (a sub-level of level 1). Level 3, in Fig. 4-5, 

represents the partition of only one block B \ into one block and one leaf. A leaf in the SDL 

tree as shown in Fig. 4-5 has one or more processes. A process is essentially a state machine 

which works concurrently with other processes. A mechanism for exchanging information
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between, blocks of the same level is modeled with arrow type of links called channels. In 

Fig. 4r5, rhannpls are represented with dashed arrows.

CONTROL 
[NRST. CS]RAM

CONTROL

COMMAND 
[Write] > STATUS

**[End of operation]

COMMAND
[Read]

READ RAM
WRITE IN RAM

STATUS
[End of operation]

COMMAND 
[Error] ,

ERROR

DISPLAY
[Warning]

Figure 4^6: RAM Specification Using SDL

As an illustration for SDL, the specification of the RAM cell, described in Section 2.3, 

is shown in Fig. 4r6. For the purpose of showing a  SDL description style, a partition is 

shown in Fig. 4-6 knowing that the RAM cell can be a  leaf by itself because the RAM cell 

can be described using a state machine. So, as shown in Fig. 4-6, there are four processes: 

CONTROL, READ, WRITE and ERROR. The Control process manages the read and 

write operations performed by READ and WRITE processes and for simulation purposes,
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the Error process was added to display warnings when an unexpected combination occurs 

on WR and RD signals.

For this description model, the RAM cell is also partially described regarding the specifi­

cations given in Section 2.3. Indeed, it is not possible to specify the RAM delay specifications 

using the SDL formalism.

4 .2 .5  E v a lu a tio n  o f  P ro cess  C o n tro l B ased  M eth od s

In Chapter 1, the automatic transition from concept level to system level is defined 

such that it embeds at least the characteristics from the set C. The properties of the 

above program m in g  or control based methods can be mapped with the list of concept level 

characteristics as shown in table 4.1.
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Sequentially Decomposable Activities

Concurrently Decomposable Activities

State Transitions

Immediate Mode Change

Activity Completion

D elay Specification

Asynchronous Activities

Design for { Test, manufacturing, etc }

Multiple Model Representations

Reusability

Table 4.1: Characteristics of Programming or Control Based Methods

Table 4.1 highlights that each method is a  specialized method. Notice that Petri nets and 

CSP contain the largest number of characteristics because they both address the problem 

of sequentially decomposable activities, concurrently decomposable activities, state transi­

tion and activity completion. Even though they have the same characteristics, a second 

level of comparison is possible. Indeed, the Petri nets model involves a dynamic graphical 

description of a system whereas CSP is a  static textual description style.

For each checked characteristics, a mechanism is defined. We immediately notice that the 

Petri nets and CSP methods have an advantage over ASM because the set of characteristics 

in ASM is contained in the two former ones ( C a s a t  C CP e tr iN e ts  and Ca s m  C Cc s p )- 

Indeed, ASM does not have the ability to concurrently decompose activities. This last
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remark implies that a description using ASM can be also described using Petri nets or 

CSP with a reasonable effort. On the contrary, Petri nets and CSP descriptions cannot be 

modeled with ASM without dramatic changes, which should lead to some modifications in 

the specifications.

In the case of SDL, its Csdl  shows that it is a complementary method in comparison 

with the other ones. In addition to the sequentially and concurrently decomposable activi­

ties. it also has the immediate change mode characteristic. This characteristic means that 

SDL has a built-in mechanism for emergency cases.

From Table 4.1, we can see that by using a multi-model representation description 

method, the combination of two of the four presented methods (ASM, Petri nets, CSP, 

SDL) can lead to a new description methodology having a characteristic set Ccombi greater 

than any of these methods i.e. if the new description method combines either Ccombi =  

C Pctrinets  U  CsDL  or C combl =  CcSP  U  CsD L, the Cardinal of C c o m b i  is then 5 { # C c o m b i  = 5 )  

versus # C s d l  = 3, # C p etrinets  = 4 and # C c s p  =  4.

Table 4.1 shows, for comparison purposes, the characteristics set C  for the most advanced 

description methodology in the next generation of CAD tools. Notice that the four described 

methods are far from meeting the requirements of the next generation of CAD tools. So, a 

strategy to define this next generation of tools is to consider one characteristic which is not 

addressed by other description styles. The minimal configuration of the next generation 

of tools, as introduced in Section 1.1.2, is considered with an emphasis on a  particular 

characteristic which is “Delay specification”. Because this new generation of CAD tools 

have the goal of verifying the characteristics referred to as “Multi-model representation”, 

the above minimum configuration does not need to verify the characteristics o f Ccombi in 

addition to the Delay specification characteristic. Later, a  combination of description styles
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will fill the gap in order to meet the requirement for a CAD tool having the characteristics 

C.

The next section reviews description methods from the microelectronics design methods 

introduced in Section 4.1 as the second family of description methods.

4.3 Microelectronics System Design M ethods

This section focuses on description methods defined specifically for the microelectronics 

domain. This section reviews description methods in order to identify a  good candidate to 

initiate the VHLLS with, at a minimum- the characteristics Cmm defined in Section 1.1.2.

4 .3 .1  H ardw are D e sc r ip tio n  Languages

Hardware Description Languages (HDLs) such as VHDL [IEE93], Verilog™ [TM91] 

and HardwareC [KM88] are used to describe hardware from the abstract to the architecture 

level and to be able to simulate, test, validate, and synthesize designs before implementa­

tion. They exhibit semantics common to high-level programming languages, such as data 

abstraction, behavioral operations, assignment statements and, control and execution or­

dering constructs to express conditional and repetitive behavior. The common denominator 

of these three HDLs is their software inheritance extended with hardware dependent fea­

tures i.e. in VHDL a  new category of variable types called signal is introduced. In general, 

specifications using these HDLs consist of a collection of concurrent processes which com­

municate with each other. Processes can be enclosed within a hierarchy of blocks. Blocks 

cn n be used to define structural relationships between the processes. A process specifies an 

algorithm as a set of sequential operations described in a  manner close to a programming 

language such as C for HardwareC [KR78] and ADA for VHDL [LSU89].
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A different philosophy has been taken in defining such languages. HardwareC is designed 

expressly to be a  HDL for synthesis purposes whereas VHDL and Verilog™ are simulation 

driven which gives them a  more general syntax to describe a  system. VHDL and Verilog™ 

describe relationships between the inputs and the outputs of a system in terms of behavior, 

dataflow, structure or any combination thereof as illustrated in the example a t the end of 

this section. The current progress on VHDL and Verilog™ has restricted their semantic 

to synthesis!s subsets which are com m o n ly  used in industry. Descriptions at the RT level 

in the behavioral domain (as defined in Chapter 3) can be synthesized with current tools 

as shown in Chapter 2. In chapter 6, VHDL is presented in more detail.

To illustrate HDL descriptions, VHDL code describing the RAM cell specified in Section

2.3 is presented. The code is composed of two parts. The first part is called entity and 

defines the interface of the RAM cell:

ENTITY RAM  IS
 PORT describes the interface of the RAM cell
 An input is specified using the keyword IN
 An output is specified using the keyword OUT
 A type is associated with each signed: a bit or a word (bit_vector)
PORT r

N R S T :  IN  bit:
C S : IN  bit;
RD : IN  bit;
W R : IN  bit:
AD : IN  BIT.VECTOR{0 TO 7);
D IN :  IN  BIT.VECTOR(0 TO 31:
DOUT : OUT BIT.VECTORfO TO 31:
READY : OUT bit);

 To make the description easier to modify, constant values can be defined
 For this description, several durations are specified
CONSTANT TJREADY.U : time := 60ns;
CONSTANT TJtEAD YJ) : time := Ins;
CONSTANT T-ACCESS : time := 40ns;
CONSTANT T-WRITE : time := 5ns;

END RAM :

The second part, called architecture, is the description of the behavior of the RAM cell 

using algorithmic features:
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ARCHITECTURE .4 OF RAM  IS
 Declaration of a constant which specifies the number of words the RAM can store
CONSTANT nb-words : INTEGER :=2**8;
 Define the structure of the RAM: 256 4-bits words can be stored
TYPE (ype_memoiy IS ARRAYfO TO nb.words -  1) OF BIT-VECTOR(0 TO 3);
 Declare the variable which models the storage function of the RAM
SIGNAL M  : t y p e j m e m o i r e :

 Definition of a function which convert the address into an index for M
 In other words, it converts a bit string in an integer
FUNCTION value(bv : IN BIT.VECTOR) RETURN natural IS 
VARIABLE n : natural : =  0:
BEGIN

FOR / IN  bv'low TO bv'kigh LOOP 
n := n * 2:
E l I>v(l) = ' 1'

THEN
n ~ n  + l;

END IF ;
END LOOP:
RETURN n:

END value:
 Definition a type which enumerates the states the control function
 of the RAM can be
TYPE Tmestate IS (InitO, In itl, Waiting, RW,R, W, Err);
 Declaration of a variable which represents the state the RAM controller is
 Note that an initial value is predefined
SIGNAL state : T y p e - S t a t e  := initO;
BEGIN

 Description of the RAM’s controller
 The process is executed when one of signals NRST,
 CS, state. RD.WR changes
main : PROCESS (NRST, CS , sfate, RD, WR)
BEGIN -  —main

 The case statement allows to check in which state
 the controller is
CASE state IS

WHEN InitO =>
 The controller is in state INITO
 It checks NRST to become ’0’ in order to change
 its state to INIT1
E  (NRST  = ' O')

THEN
state < =  Initl;

END IF :
WHEN In itl - >

 The controller is in state INIT1
 Next state is Waiting
IF  (NRST  = ' 1')

THEN
state < =  Waiting;

END IF ;
 The controller is in state ENTTl

with permission of the copyright owner. Further reproduction prohibited without permission.



 Next stace Is RW
W HEN Waiting =>

IF (CS  = ' 10 
THEN

state <=  RW :
END IF ;

W HEN RW  =>
 The controller is in state RW
 There is more than state. So. first the controller
 checks WR and RD to determine if the RAM is either in
 read mode implying the next state is R, or in write mode
 implying the next state is W, or else implying the next
 state is ERR
IF {WR  = ' O' AND RD =' I')

THEN
state <= R:

ELSIF {WR =' 1' AND RD = ' O')
THEN

state <= W :
ELSE

state <= Err:
END IF ;

WHEN R =>
 The controller is in state R
 A ready pulse is sent
 the data read in memory is sent out
Ready < = ' 1' AFTER TJtEAD Y.U ,'0' AFTER TJREADY.U + T-READY JD 
DOUT <=  M{value{AD)) AFTER T-ACCESS;
 If a reset occurs within 1 ns time frame then the controller goes
 in state Initl otherwise it goes to state waiting
WAIT UNTIL {NRST  = ' O') FOR Ins:

IF {NRST  = ' O')
THEN

state <= In i t l :
ELSE

state <= Waiting:
END IF ;

W HEN W =>
 The controller is in state W
 a data is store in memory
M{value{AD)) <= D IN  AFTER T-WRITE:
 If a reset occurs within 1 ns time frame then the controller goes
 in state Initl otherwise it goes to state waiting
WAIT UNTIL {NRST  = ' O') FOR Ins;

IF {NRST = ' O')
THEN

state <= Initl:
ELSE

state < =  Waiting;
END IF ;

W HEN Err =>
 The controller is in state ERR
 A warning is issued and the next state is ENITO
ASSERT false
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BRPOHT ”Wrong Value fa r  W R  and RD on rising edge o f CS" 
SEV ERITY  warning; 
state < =  InitO;

END CASE : ---- state
END PROCESS main;

END A:

HDLs are important to investigate because they can meet a  lot of requirement for VH- 

LLS. In fact, VHDL (the language of interest for the thesis) has the potential to perform 

some characteristics even though they are not a  part of the language. For example, VHDL 

does not have the “immediate mode change'1 characteristic built-in it but with good pro­

gramming skills, this characteristic can be implemented.

4 .3 .2  S ila g e

The Silage language [HIL85] was developed to address issues related to the specifica­

tion of Digital Signal Processing (DSP) systems. DSP systems are easily conceived of as 

data-flow graphs, where a set of data  values enters at the input nodes, computations are 

performed on them, and result values are delivered to the output node in the graph. Silage 

is essentially an applicative language in that it only specifies application of functions to 

manipulate a  set of data values without having any variables or assignment operators.

The basic data objects in Silage are streams of value, called signals. Each Silage descrip­

tion has to have signals coming in and some signals going out. The same Silage description 

is then applied over and over again to the infinite sequence of input samples. In other 

words, an expression such as (A + B )  is composed of a  stream of numbers denoted A and 

B as opposed to representing variables or array elements in conventional programming lan­

guages. A Silage program consists of a  set of definitions which defines new values as a 

function of other values. As the assignment of signals represents a  flow of data, the order 

of the definitions is not relevant. To refer to a signal in the previous sample interval, a
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delay operator is defined and noted For example, out =  in  +  in@l semantically means 

(V£: 0... +  oo) :: out(t) =  in{t) +  in (t — 1) (at an instant t, the value of the output is equal 

to the sum of the value of the input a t the same instant t and the input at the previous 

instant (t - 1)). Also multi-dimensional arrays of signals are possible. For tha t matter, 

operators such as sunt or max are defined over an entire array. Other constructions can be 

used as well: conditional expressions to select one expression from a set of expressions based 

on guarded conditions, stream manipulation operators enabling up or down sampling of a  

signal, and macro expansion grouping a set of definitions. However, recursion or iteration 

constructions are not allowed in Silage. These constructions are not been defined in Silage.

Silage cannot be used to describe the RAM cell specified in Section 2.3 because the 

normal use of a RAM does not need a constant data stream to operate. On the contrary, 

the RAM reacts to control signals. Good applications-for Silage are digital filters and other 

Digital Signal Processing (DSP) applications. For our purpose, it is interesting to talk 

about it because a  system under specification could use features from DSP. So, a language 

like Silage should be a  part of the set of description methods provided by the next generation 

of CAD tools.

4 .3 .3  S p ecC h arts

The SpecCharts language [VNG91a, VNG91b] consists of a hierarchy of states, repre­

sented in combined graphical and textual form, while catering to the expression of concur­

rent behavior and specification of constraints. This language combines the three aspects of 

system specification (control, behavior, and structure) into a single, unified environment. 

The concept of behavior is defined so as to describe a  system with principles from Finite 

State Machines (FSM) and VHDL. A hierarchy notion, called behavioral decomposition,

with permission of the copyright owner. Further reproduction prohibited without permission.



allows a  decomposition of behaviors into either processes (also referred to as concurrent 

behaviors), or states (also referred to as sequential behaviors) which are sequenced by con­

ditional arcs. At a leaf level in the hierarchy, a  behavior uses VHDL sequential statements 

to specify actions the system needs to accomplish.

In SpecCharts, a box represents a  behavior. A transition arc sequences sequential be­

haviors and a  dotted line identifies concurrent behaviors. A feature devoted to managing 

a hierarchical language has been developed in order to respond to an external event: hi­

erarchical activation/deactivation allowing a deactivation of any sub-behavior at any time. 

Another type of transition towards the next appropriate state is called transition imme­

diately and gives the option exiting the current behavior, then suspending its execution. 

For cases other than the immediate transition, a  mechanism is in place to flag a behav­

ior which has completed its actions, allowing other states to be aware of that completion. 

This is called behavioral completion. Associated with that behavioral completion mecha­

nism, a  transition on completion arc causes a  transition only when the source behavior has 

completed execution of its actions and the associated condition is true.

A translation process had been developed to generate a  VHDL description from the 

SpecCharts language [VNG91c]. Templates are defined to map SpecCharts with a VHDL 

structure. Each behavior is translated into a  block structure following the same hierarchy 

as SpecCharts i.e. a sub-behavior becomes a sub-block. Control statements defined in 

SpecCharts i.e. state activation/deactivation, are implemented as follows:

• a VHDL wait statement is sensitive to an activation by a parent of its behavior. 

During the activation mode, the resulting task is either activating/deactivating the 

proper sub-behavior or executing a  VHDL code;

• during a deactivation mode, the behavior has to deactivate a  sub-behavior either im-

with permission of the copyright owner. Further reproduction prohibited without permission.



mediately or after completion of actions depending of the type of transition requested;

• during an activation mode, the behavior is responsible for informing its parent upon 

completion of actions requested from it.

When an immediate transition occurs, a complete mechanism is activated to force current 

behavior and its sub-behavior to deactivate immediately and cease all signal assignments, 

thus preventing any signal assignments having the clause * after a time delay". The second 

type of transition is transition upon completion. In this case, it is verified that all statements 

within a behavior have been completed even if time delays are assigned to waveforms. So, 

a mechanism is implemented to evaluate the time of full completion of a  behavior. Timing 

variables are introduced to measure the time spent during a wait statement (global-time) 

and to measure the remaining time necessary to complete all actions within the current 

behavior (remain-time).

The RAM specification is used to illustrate SpecCharts as shown in Fig. 4-7. This 

description is similar to a  state machine where the initial state is marked with the dot 

extended with an arrow. The actions associated with each state are described in the box 

which model the state. In addition to the state machine, a declarative part is added at 

the top of the graph along with the name of the system. In Fig. 4-7, this declarative 

part contains the name RAM, the definition of the interface of the RAM cell and several 

constants.

Notice th a t SpecCharts has very advanced features such as a  complex mechanism for 

its hierarchical structure because, for a  characteristic like an “immediate mode change” 

the system under description must have all the processes stopped a t once in the whole 

hierarchy as well as canceling signal assignment associated with duration (for example, we 

saw in Section 4.3.1 the signal “ready” was assigned with a waveform such that ready was
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Figure 4-7: RAM Description Using SpecCharts
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getting the value ’1’ after 60 ns and ’O’ again after 61 ns). In this case, if the system must 

leave the read state after 30 ns, the signal ready does not have the time to complete its 

assignment. So, SpecCharts has a  mechanism to identify these waveform assignments and 

to cancel them.

4 .3 .4  S ta te  A c tio n  T ab les

State-Action Table [HCG93] provides a  concise tabular notation for state-based design 

descriptions, where the state sequencing of the design can be expressed clearly in a state 

table and the datapath operations can be expressed using textual assignment statements in 

each state.

In a state-action table, a  column defines the type of the values on it or attribute of a 

state and a row establishes relationships between these typed values. Therefore, a state is 

characterized using a set of attributes:

• PS identifies the present state:

• SCOND is the condition for a transition to a next state:

• NS defines the next state:

• ORDER specifies the ordering of actions within a given state, stipulating a  dependency 

between actions (known as chaining);

• CV is a list of conditions selecting proper actions to be executed;

• ACOND is the assignment condition for each action. The composition of these con­

ditions involves asynchronous input signals, clock signals or boolean expressions;

•  ACTIONS lists a  sequence of operations required in the given state. This can be done
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using functions as well as simple assignments. When using functions, operators can be 

used such as operator pipelining and multi-cycle operators. By nature a  function may 

be composed of a sequence of operations which can take place over multiple time steps 

and may have multiple return values. So, these two operators allow operations to take 

one or more states to complete an  operation (operator pipelining) and to partition a 

single operation into some number of sequential time steps:

•  A  C # allocates a  unique identifier to each row:

• TIMING is an attribute which is decomposed into four sub-attributes specifying tim­

ing constraints:

— AB  (Action-Based constraint) defines a timing constraint on the action contained 

in the same row:

— SB (State-Based constraints) defines the time needed for the considered state to 

have its actions finished:

— EB (Expression-Based constraints) defines a timing constraint which has to be 

applied between two actions in the same state:

— TB (Transition-Based constraints) defines a timing constraint which has to be 

applied for a transition between the present state and the next state.

A notion of hierarchy is also introduced in this methodology. Its main purpose is to represent 

multiple clock phases by classifying states and atomic actions.

As an illustration of the State-Action table description, we use again the case study 

described in Section 2.3. For each state of the RAM cell controller as shown in the column 

PS, a row is created. When one state has more than one next state, an new row is added 

accordingly as illustrated with state RW. A transition is controlled by a  condition in column
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PS SCOND NS ORDER CV ASCOND ACTIONS AC# ABEB SB TB
LNITC T INITL 0 (NRST =  ’O’) T 1
DNTT1 T WAIT 0 (NRST =  T ) T 2
WAIT T INITL 0 (NRST =  ’O’) T 3

RW 0 (CS = ’1’) T 4
RW T R 0 (R=’l ’ and W=’0’) T 5

W 0 (R=’0’ and W=’l ’) T 6
ERR 0 ((R=’0’ and W=’0’) ) 

or (R=’l ’ and W =’l ’))
T 7

R T WAIT 0 (NRST =  ’O’) T out <— Mem(addr) 8 8,Ins,2
W T WAIT 0 (NRST = ’O’) T Mem(addr) «- data 9 9,Ins,2

ERR T ERR 0 F T 10 10,Ins,1

Table 4.2: RAM Description in State-Action Table

CV. Actions are specified in the column ACTIONS shown for the state R, W and ERR. For 

these three states, another information is contained in the table which is a time constraint 

applied on the transition from state R  or W to INIT1 meaning that if a reset occurs, no 

m atter what, the state change is effective after I ns. The time constraint as defined in this 

description model does not meet the characteristic referred to as “delay specification” .

4 .3 .5  E valuation  o f  th e  M icro e lec tro n ics  B a sed  M eth od s

In the previous section, we reviewed typical description methodologies from the micro­

electronics field. Based on the characteristic set defined in Section 1.1.2, a  comparison is 

performed to evaluate which method would be the most appropriate to meet the require­

ment for the next generation of CAD tools. Table 4.3 shows the characteristic set for each 

of these methods as well as the desired characteristics C  of the next generation of CAD 

tools and the minimal configuration Cmm for the initial version of these future CAD tools.

Table 4.3 shows tha t SpecCharts meets a  larger number of characteristics. SpecCharts 

was defined as an extension of VHDL. It follows a bottom-up approach, meaning that 

SpecCharts helps the designer to  construct a VHDL code where a set of predefined structures
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C H D L C  Silage CSpecC harts C S ta te  A dionTaU es Cjnin c
Sequentially Decomposable Activities S s s V >r /
Concurrently Decomposable Activities / s >f /

State Transitions V / ✓ /
Im m ediate Mode Change / /

Activity Completion s < / >r /
D elay  Specification /

Asynchronous Activities S /
Design for { Test, manufacturing, etc } /

Multiple Model Representations /
Reusability ■/ /
Table 4.3: Characteristics of Microelectronics Based Methods

is provided. For example, describing a  system behavior which contains a state machine is 

becoming a  far easier task using SpecCharts than writing the VHDL. It helps minimize the 

chance of error during design. SpecCharts offer a lot more features than the commercial 

tools described in Chapter 2 because they embed more than just sequentially decomposable 

activities, state transitions and activity completion.

Like SpecCharts, the State Action Table description method is constructed following a 

bottom-up approach. These two methods have the same roots because they were developed 

in the same research laboratory (University of California, Irvine). State Action Tables are 

interesting because there is a  mechanism to set time constraint which is to set the period of 

time the system  has to stay in one state as opposed to the time encapsulation specified by 

the characteristic “delay specification” (it defines the maximum duration a system can stay 

in one state). However, these time constraints will be important to add in the formalism of 

the next generation of CAD tools.

The Silage description method is worth referring to because it is a common description

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission



method in microelectronics when the system has an important data stream to manipulate. 

It has been presented for informational purposes and additionally to stress tha t the next 

generation of CAD tools needs to provide this type of description method.

The last description method is HDL, with a particular emphasis on VHDL, because it 

is a more abstract description language than Verilog™ and HardwareC. In addition, it has 

been an international standard since its creation in 1987. Table 4.3 presents HDLs as a 

description language that meets few of the characteristics. As a  reminder, a  characteris­

tic is checkmarked when a mechanism is built in the description method to perform this 

characteristic. In the case of VHDL, even though very few characteristics Eire built-in, the 

syntax is flexible enough to allow a VHDL description of them. This is indeed a reason, 

SpecCharts and State Action Tables are defined upon VHDL and are able to out-shine most 

of the description methods in this chapter. However, the main disadvantage of VHDL is its 

absence of visual representation. Most hardware designers like to “see” a  design database 

rather than have it as a textual string. Also, a  VHDL description can become cumbersome 

very quickly.

As seen in the previous section and this one, no method meets the requirement for the 

minimal configuration of the next generation of CAD tools (moreover the next generation 

of CAD tools which meet the characteristics of C). Also, not all the presented description 

methods have the ability to automatically generate a description in the behavioral domain 

(any levels) such as CSP, Silage. On the contrary, SpecCharts and State Action Table 

descriptions provide a description method which is captured at the system level in the 

behavioral domain, and an evolution process (as defined in Chapter 3) allows an automatic 

translation of their descriptions into the architecture level in the behavioral domain using 

VHDL. Thereafter, a composition of evolutions automatically generates the design in a
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targeted technology.

The next chapter introduces one approach for meeting the m inim um  requirement for 

the next generation of CAD tools and implementations of the evolution process defined in 

Chapter 3 as VHLLS. Indeed, with the addition of more characteristics, the abstraction of 

the descriptions increases.
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C hapter 5

VHLLS Design Strategies

In Chapter 1. the notion of VHLLS has been introduced and characterized. In addition, 

motivations for developing a  such method have been outlined. This leads to a  minimal 

configuration, Cmin, for the next generation of CAD tool referred to as SPECIAL. Chapter 

2 contrasts a  conceptual view of VHLLS with commercial tools in order to give a  preliminary 

definition of VHLLS. Chapter 3 formalizes the design space as well as VHLLS. Chapter 4 

reviews the most significant description methods which have been considered as a VHLLS 

methodology. As a result, no methods satisfied the requirement of VHLLS as stated in 

Chapter 1.

The goal of this chapter is to propose a  framework for the implementation of the VHLLS 

methodology. To achieve this, two different strategies are investigated. As mentioned in 

the previous chapters, the VHLLS methodology is an evolution from the concept level in 

the behavioral domain to the system level in the behavioral domain. At the concept level, 

graphical methods are preferred because they are more widely used in the engineering field 

and they can carry more information than text. This does not mean that natural language 

should not be part of the input description, and SPECIAL has a  potential of addressing

87
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_ n

GRAPHICAL MODEL #NGRAPHICAL MODEL #2GRAPHICAL MODEL # 1

BASIC #nBASIC #2KNOWLEDGEBASE BASIC #1

TEST
VECTORS

(BEHAVIOR)

VHDL
DESCRIPTION

SYNTHESIS

— 4—
f »

TEST PHYSICAL
VECTORS DESCRIPTION
(LAYOUT)C - ■* J

Figure 5-1: Global Strategy: Specification-Behavior Synthesis

this requirement but this type of description is not considered in this thesis. The system 

level description in the behavioral domain uses the most popular HDL called VHDL, as 

introduced in Section 4.3.1. VHDL will be described in more details in Section 6.1.

The VHLLS methodology is performed in two steps: (1) concept synthesis, and (2) 

concept refinement (both introduced in Section 3.3). To reduce the translation complexity, 

an intermediate representation is introduced. Thus, the VHLLS processes can be viewed as 

shown in Fig. 5-1.

In this figure, the two strategies are represented and are as follows:
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• Basic VHLLS: for a given graphical representation, a specific translator can be created 

to generate the corresponding behavioral description;

• Advanced VHLLS: the necessary knowledge is extracted from each graphical repre­

sentation and put into a unified model. From this unified model, a  unique translation 

process is performed to generate the corresponding behavioral description.

In Fig 5-1, the upper boxes, referred to as graphical models, represent description mod­

els at the concept level in the behavioral domain. The other boxes can be viewed as transfer 

functions. The basic VHLLS strategy is represented by the link between a graphical model 

and a VHDL description through an intermediate representation shown as a  box labelled 

“BASIC” followed by a number. Notice that for each graphical representation, one inter­

mediate representation is necessary justifying a unique label for each box. The advanced 

VHLLS strategy is represented by the link between a graphical model and a VHDL de­

scription through an intermediate representation shown as a box labelled “KNOWLEDGE 

BASE”. This link has the property that all the graphical models lead to the same box and 

only one output of this transfer function is needed to generate the corresponding VHDL 

description.

To define these two strategies, a sub-set of the possible descriptions is chosen to meet the 

characteristics of the first generation of VHLLS processes as specified in Chapter 1. Indeed, 

the minimum set of characteristics, referred to as Cmin in Chapter 1 and shown in Table

5.1, is applied to define a graphical model which is presented in Chapter 6. This description 

is referred to as a  pseudo-state diagram because it uses the principle of a conventional state 

diagram where time is encapsulated. To implement this m inim al configuration of VHLLS 

starting from the pseudo-state diagram, we must define the meaning of the characteristic 

Delay Specification also referred to as time encapsulation. As a  consequence of this
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C h arac te ris tics C heckm ark

Sequentially Decomposable Activities /
Concurrently Decomposable Activities

State Transitions V
Im m ed ia te  M ode C hange

Activity Completion /
D elay  Specification /

Asynchronous Activities
Design for { Testability, Manufacturing, etc }

Multiple Model Representations
Reusability

Table 5.1: First Generation VHLLS Characteristics: Cmm

characteristic, the formulation of conditions in the context of the pseudo-state diagram 

must be examined. Therefore, Section 5.1 defines the notion of time and some fundamental 

notions about facts and events, and features associated w ith time encapsulation. Section

5.2 presents the basic VHLLS strategy whereas Section 5.3 presents the advanced VHLLS 

strategy.

5.1 Fundamental Definitions

Before presenting the two strategies for implementing VHLLS, we need to introduce 

some fundamental d efin it io n s  about the representation of time. Thereafter, we define the 

meaning of events and facts which axe fundamental for the representation of time for the 

VHLLS process.

5.1 .1  M od el o f  T im e

As mentioned earlier, we need to address the representation of time in the VHLLS 

process in order to encapsulate time. This process is accomplished by introducing a  formal
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representation of time. Furthermore, this approach involves constructing representations 

anH logical systems to handle time. The framework for handling time is in our case a 

temporal logic1.

In order to specify a temporal logic in a  semantical manner, the following list of items 

is defined [GHR93]:

1. the time flow of the logic:

2. the units of time needed to determine tru th  values:

3. the temporal connectives used:

4. the truth conditions for the connectives.

In order to elaborate on each of these elements from the above list, first a  temporal structure 

needs to be introduced. Let T  be a  discrete time set. For any ti and e  T , there exists an 

ordered relationship between t\ and denoted < such as t\ < t2 means t\ is before t%. Let 

to E T  be the first point of discrete time. In the temporal logic terms, a  logical expression 

referred to as a proposition p  can become true at an instant to 6 T. An assignment function 

h is also included in a  temporal structure to define either operators or predicates. Formally, 

the temporal structure can be defined as follows:

D efin ition  5.1 A tem poral stru ctu re  has the form (T ,< ,to ,h ), where T  is an indexed 

set, (T, <) is a flow of time, to E T , and h is an assignment.

In the above structure, the notation (T, <) is a generalization of time space without 

constraints imposed by to and h, and <  is a  binary relation within the indexed set T. Tem­

poral structure, (T, < , to, h) becomes time domain for proposition p  if  and only if  ||p||£, =  1

‘Temporal logic theory is an extension of the logic theory with time sensible operators and predicates.
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which means the proposition is true a t time to and through out the assignment h. p is said 

to be valid in (T , <, h) if Vi 6 T, ||p||* =  1. p  is said to be valid in (T, <) if and only if any 

h, p  is valid in (T, < , h ).

From the above discussion and the above temporal logic list, we have:

1. the time flow which can be interpreted as a  continuous increase of an index t(i) 6  T  

such as t{i — 1) <  t(i):

2. the unit of time follows the international unit of time i.e. seconds,milliseconds, mi­

croseconds, etc...

3. the temporal connectives represent temporal operators or predicates. By default, the 

eligible standard logical operators are A (and), V (or), -> (not), etc...

4. The truth conditions determine logical value of temporal expressions. The following 

notation is used for predicates with temporal expressions. Predicate 5  is defined as 

S(A, J3), where A, B  are propositions, and interpreted depending on the combination 

of temporal characteristics of A  and B . Formally, a connection between temporal 

characteristics of A  and B , and predicate S (A ,B )  is accomplished by using assignment 

h representing the equality “= ” . For example, if both A  and B  are true in the sense 

that in time B  is always true whenever A  is true then S(A, B) =  “A and B  are true 

in the sense that in time B  is always true whenever A is true”. In a more formal 

manner, the tru th  conditions for this connective can be defined as follows:

S{A .B ) is true at n  ( “now”) if for £ <  n, A is true at £ and for all points between £ 

and n, B  is true.

Having introduced the general definition of the time flow, we can now introduce the 

model of time for a  VHLLS methodology. In the microelectronics domain, the time flow
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T im e Domain D efinitions Com m ents
( r ,< ) Generalization of the structure 

of time
also known as time flow

(T ,< ,h) Structure of time under the as­
signment h

the time flow is associated 
with an assignment mecha­
nism which allows the defini­
tion of temporal expressions

(T. < , t0 ,h) Structure of time It is a  constraint version of 
(T, < , h) meaning that the as­
signment definitions of tem­
poral expressions are effective 
only at the instant £o

(Z \< ,= ) Structure of time under the as­
signment

Same as (T ,<,h) with h =
q rt

(r,<,=,r«) Structure of time which em­
beds branching future

Same as (T .< .h ) with h = 
“= “ and in addition, the no­
tion of future is embedded as 
well as its uncertainty with a 
non-unique value of future in­
stant a

Table 5.2: Time Domains

can be characterized as follows: there is a  single time path going from a system state in the 

past to the one in the present. For example, a  RAM cell is in an idle state waiting for a 

chip select signal. As soon as the chip select signal is active, the RAM cell switches to fetch 

mode. Considering the instant when the chip select signal becomes active as a reference 

point, referred to as present or now (noted n), the past of n  { it 6 T  such as t < n) is 

linear because all the states of the RAM axe known. However, future system states are not 

predictable in terms of both time and state, and depend strongly on events coming from 

the external world to the system. Such an interpretation of the future can be modeled 

with the notion of branching future. In other words, taking the same example as above, 

the state of the RAM cell after n  (now) (V< 6 T  such tha t t > n  represents the future) 

cannot be identified. So, depending on possible events, the RAM state will be in one state
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or another. The potential of future behaviors are modeled using the notion of branching 

future also referred to as planned future. This flow of time can be modeled using a linear 

representation2 of time (T, < , =) adding the future branching representation Ta such as 

(T, < ,= .T a), a 6  T. In Fig. 5-2, the time increases linearly when going from the left to 

the right. The planned future behaviors are represented by broken line i.e. branches, for 

instance, they occur at time instants t and s. So, in the first case, a = t and temporal 

structure (T, < , =,Tt) is obtained. For the second case, a =  s the temporal structure 

(T, < ,= .T S) is defined. W ith this notation, T  is the set of moments of time, and <  is an 

irreflexive and transitive relation within T  and a 6  T . An illustration is given in Fig.5-2. 

Axiomatically, (T, <,= ,Ta) has the following properties:

Planned future at s

Linear
Past

Branching FuturePast Future

Planned future at t

Figure 5-2: Branching Future

1. <  is irreflexive and transitive, i.e.

(a) Vx 6 T. -i(x < x)

(b) Vx, y ,z  ET, {x  < y f \ y  < z  =& x  < z)

2[mear representation is interpreted as a straight line which models the constant evolution of time (same 
pace).
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2. The past is linear:

Vx, y , z E T , ( x < z A y < z = > x < y V y < x \ / x  = y)

3. for each branch in Fig. 5-2 generalized by the corresponding Ta, the following prop­

erties hold:

(a) a 6 T

(b) Ta Q T

(c) a 6 Ta

(d) (Ta, <) is a linearly ordered flow of time

(e) Vx, y , z e T , { x E T a / \ x < y / \ y < z A z € T a =>y€  Ta)

(f) -<3x 6 T  such as ((Vy 6  Ta, (x  < y)) A (Vy E Ta, (y <  x)))

4. Note that fo r any  x  E T  the past of x  is the actual history but the future may be 

branching and unknown.

Therefore, a notion of time is defined allowing a  representation of the time flow, an illus­

tration of the past, and the present, and an uncertainty of the future. This uncertainty is 

dependent on unpredictable changes modeled by the branching future. It has to be stressed 

that the conclusions were derived from a formal model of time, and not using casual per­

ception of the reality.

In the VHLLS process, a corresponds to the instant where the system changes its state. 

Ta corresponds to time interval Ta =  [01, 02] where the system is in a certain state where ai 

is known and represents the instant when the system changes its state. 02 remains unknown.

5 .1 .2  F acts and  E ven ts

As stated in the previous section, temporal connectives are specified in the defined model
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time. For the purpose of this research, two major notions: fact and events are formally 

clarified and analyzed. Intuitively, a  general interpretation [SOW84] of an event might be 

as follows: events are the means by which agents (i.e. input signals) classify certain useful 

and relevant patterns of change. Another interpretation from Goldman [GOL70] is that in a  

common sense, an event corresponds to a change in an element, caused or partially caused 

by a stress. Definitions proposed by Allen and Ferguson [AF94] assume that knowledge 

representation of events and facts can be effectively partitioned into two types of formulae:

• event formulae state that something happened that (possibly) resulted in a  change:

• fact formulae represents everything else, but typically describe some properties of the 

universe (possibly temporally qualified).

A representation of events can be performed using time intervals included in T. In par­

ticular, events occur over intervals of time, and cannot be reduced to some set of valid 

properties (holding true) at one instant [AF94]. Therefore, an event occurs in an indivisible 

time interval (Let 1.1' be two time intervals. An event occurring over interval I  implies tha t 

there exists no interval / '  such as / '  C I)- That indivisible time interval is referred to as an 

instantaneous interval as opposed to a  time interval (or duration). The set of instantaneous 

intervals is noted H and the set of time intervals is noted T.

The temporal logic introduced in Section 5.1.1 is classified as a  first-order predicate 

calculus3 which contains several categories. The following four items are the basic categories 

for modeling in this type of logic:

• TIME-REPRESENTATION {G TS  standing for Global Time Set) being G T S  =  HUT

3First order predicate calculus uses first order variables such, as x, y, etc... Second order predicate calculus 
uses second order variables such as $(z) where $(z) is any formula in this logic.
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where E is the set of instantaneous intervals and T the set of time intervals;

•  PROPERTY for denoting propositions;

•  OCCURRENCE for modeling modifiers and qualifiers of events as predicates acting 

on temporal expressions;

• TEMPORAL EXPRESSION themselves.

An important predicate for PROPERTY is the predicate HOLDS which asserts that a 

property p holds (i.e. is true) during time interval I. Thus, HOLDS(p, /)  is true if and only 

if property p  is true during I. Another important type is the type OCCURRENCE. Indeed, 

the OCCURRENCE type is divided into two subtypes, processes and events as illustrated in 

Fig. 5-3. Note that the purpose of Fig. 5-3 is for clarification of notion introduced here. It 

should be noted that TIME-REPRESENTATION and TEMPORAL EXPRESSIONS axe 

affecting all categories in the depicted Fig. 5-3. Finally, subtrees with dotted circles in Fig.

LOGIC THEORY

TEMPORAL LOGIC OTHER LOGIC (Modal. Boolean. ...)

TIME-REPRESENTATION PROPERTY OCCURRENCE TEMPORAL EXPRESSION

HOLDS PROCESSES EVENTS

GTS Logic Driven By Temporal IntervalsIntervals Actions *: Logic Driven By Instantaneous Intervals

Conditions

Events

Figure 5-3: VHLLS Temporal Logic Hierarchy
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5-3 depict class hierarchy. So, another element of Fig. 5-3 called Processes refer to activities 

not involved in a culmination or anticipated results. Events describe activities tha t involve 

a  product or outcome. Using the above notions, a characterization of these two subtypes 

of OCCURRENCE over the set of time representation G TS  is:

• the set of intervals from the event subtype (see Fig. 5-3 contains indivisible intervals. 

In other words, an event occurs over the smallest time interval possible (i.e. i 6  5). 

This interpretation is consistent with the definition of an event introduced before.

• the combined features of events and PROPERTY(IES) where the PROPERTY type 

is defined as follows: if a proposition is true over an interval I  then for all sub-interval 

I ' ( / ' C /) , a property holds over I'.

There are two main notions introduced: Conditions and Actions (as indicated by dotted 

circles in Fig. 5-3. In the condition class, three sub-classes are identifiable: Life-Time. 

Facts and Events (Life-Time in Fig. 5-3). Before going further in the description of that 

condition class, a basic set of mutually exclusive primitive relations tha t can hold between 

temporal intervals is introduced. Each of these relations is represented by a predicate in 

the TEMPORAL LOGIC. These relationships4 with time intervals I 1. I 2 €  T  are:

• D U R IN G (I\, I2 ) =  “time interval I\ is fully contained within l 2 r,~

• S T A R T S (I\, I 2 ) =  “time interval I \  shares the same beginning as I 2 , but ends before 

I2  ends” ;

•  F I N I S H E S i h - h )  =  “tim e interval I\  shares the same end as I 2 , but begins after 

I 2 begins”;

4Note that the relationships follow the notation of truth conditions S(A, B)  =  “statement”.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



•  B E F 0 R E ( I \ , l 2 ) =  “time interval I \  is before interval 1 %, and they do not overlap”;

•  O V E R L A P {Iu h )  =  “tim e interval A starts before A, and they overlap”;

• M E E T S i L . h )  =  “time interval A is before h ,  but there is no interval between 

them, i.e., A ends where /2 starts” ;

• EQ U AL(I\, I2 ) =  “time interval A and I2 are the same”.

Including the inverse of each of these relationships (in the same order as in the list: 

IN C L U D E S, S T A R T E D  -  B Y , F I N I S H E D  -  B Y , A F T E R , O V E R L A P P E D  -  B Y ,  

M E T  — BY) ,  there are a total of 13 relationships between intervals as shown in Table 5.3. 

These are referred to as the Allen’s classification[AF9A].

By relating the sub-classes of the Condition class from Fig 5-3 to the Allen’s classifi­

cation, a Fact is a  PROPERTY type, an Event is an EVENT type and a Life-Time is a 

TIME-REPRESENTATION type. A life-time is the maximum duration that a  system can 

stay in a certain state. An action corresponds to a PROCESS type. Using the Allen's 

classification, a  definition of these notions can be formulated.

D efinition 5.2 A fa c t  is interpreted as a temporal predicate F(p, I). This predicate be­

comes true if and only if the proposition p is true over the whole interval I. Therefore, let 

p be a proposition and I  6 T  be a temporal interval such as:

(F(p,I)

v r ,r  er,

(1) B E F O R E W , I) A B E F O R E (I,  / ”)

(2) AH O L D ^ p , I')

(3) A H O L D U P ) )
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Temporal Relationships Interpretation Inverse Relationships

DURING(A,A>)

 n-------
f---------------- 1

' 12 '
— n --------------------------------------------------

i-----------------1

1-------------- 5 -------------1

INCLUDES(/2,A)

STARTS (A ,/2)
---------------------------------------------------n —

i------------------- 1

' 12 '

STARTED-BY(/2.A)

FEN1SHES(/i , / 2) FINISHES-BY(/2. A)

BEFORE(A; A)

— n —I------------- 1
12 AFTER(/2,A)

OVERLAP(Ar A)

— n
i---------------1

12 O VERL APPED-B Y(/2. A )
— n —i-------------- 1

MEETS(A,A) 12
t r

MET-BY(/2,A)

EQUAL(A,A) 12 EQUAL(A,A)

Table 5.3: Temporal Relationships

Definition 5.3 An even t is interpreted as a temporal predicate e(p. i). This predicate be­

comes true if and only if the proposition p happens over instantaneous interval i. Therefore, 

let p be a proposition and i 6  5  such as:

(e(p, i) ^

G H,

(1) B E F O R E (i', i) A B E F O R E (i, i~)

(2) AO CCU R(^pA')

(3) AO C C L T R hp,r))

Definition 5.4 A life-tim e is a time interval Id. E l  associated with each state of a system. 

Interval Id determines the duration the system can check conditions in order to change its
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state. When the time reference n (now) 5 passes the upper limit o f this time interval, the 

system has to change to a predefined state.

For the purpose of modeling a pseudo-state diagram as defined in the previous section, 

an event type predicate as shown in Fig. 5-3 is introduced. The main rationale for this 

predicate is to express the transition condition from a state s* to Sj noted cond%i.

D efinition  5.5 A tran sition  condition predicate denoted condtJt (p,i) is true when the 

proposition p holds at i E H or using the above notation:

cond^i (p, i) =  “proposition p holds at i E H ”

Another predicate needed is derived from the PROPERTY type as shown, in Fig. 5-3 

is defined to characterize the snapshot of the system during time interval /  and denoted 

S T A T E {I ,Si).

D efinition  5.6 A s ta te  predicate denoted S T  A T  E ( I , s )̂ holds when the system is in state 

Si during I  E T  or using the above notation:

S T A T E ( I . S i )  = “the system is in state s t- during I  E T ”

As a result, a change from one state to another can be formalized with the model of 

this transition expressed using the above temporal formalism. Let m, n  6 K, / ,  / '  E T be 

natural numbers and time intervals respectively. Furthermore, the following expressions for 

transition conditions can be stated:

1. the transition condition is a  fact if and only if

3i E S, S T A T E (I , sn) A F(I' ,p)  A I N( I ,  i) A i) => 3m, cond\“ (p, i).

5 Refer to  Fig. 5-2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



102

The predicate I N  {I, I') is defined as:

I N ( I ,  I')  =  S T  A R T S  (I, T) V D U R IN G {I , T) V F I N I S H E S { I ,  T)

2. the transition condition is an event if and only if

3i e  3 , S T A T E ( L s n ) A e(p,i) A IN( I . i )  =► 3m .conds3™(p.i)

3. the condition is a life-time of the state sn if and only if

3i  e  5, 

S T  A T E  (Id, sn) A M E E T S (Id, I ’) A O V E R L A P S(Id, i) A O V E R L A P S (i, / ')

=>• 3m, cond*™ (p, i)

4. the transition condition is a  composition of facts and events when the following is 

valid. In this case, a new generic predicate is introduced to represent a fact or an event. 

Using the Global Time Set (GTS),  introduced earlier, this new generic predicate is: 

ExcitSi( I ,r ,p , t ) .

Definition. 5.7 let I , I ' , t  6 G T S  and p be a proposition, E xc itSi(I , I ',p , t) is defined 

as: 

ExcitSi( I ,T ,p ,t)  =  S T A T E ( I , Si) A j  F(p,V)e(p,I ' )  } A I N ( L t )  A IN(I ' , t ) .

We note tha t for an event described just above in this list (item 2), the condition
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I N { I ', £) is redundant because in this case, by definition, I' is equal to £ and then 

I N { I £) is always true. Using this new predicate, a list of transition conditions can 

be defined:

(a) COMPMULT:

3fi, £251 £ GTS,

ExcitH( I , I i , p \ , t \ )  A ExcitSi(I, h i & i h )  A E Q U A L S { t i ,  t) A E Q UALSfa . t )

=>• 3] ,a m d s3Ji (t,pi  AP2):

(b) COMPADD:

3£i, £2 € GTS ,

ExcitSi(I , I i ,p i ,  t\) V E x c i t (f , ̂ 2?P2* ̂ 2)

=> 3j, (c o n d ^ ^ p i V P2) A t\ < £2) V (con^(£2,Pi VP2) A £1 > £2):

(c) PIPE (sequential operations):

h-. t £ GIT 15,

ExcitSl( I , I i , p i , t i )  A E xcit,t (I, l2,P2, £2) A ( A F T E R S ,  h )  V MEETS{I i ,  I2))

=S- 3j ,  concfsi (£2,Pi | P2)-

In this section, fundamentals have been introduced and defined allowing a better under­

standing of the notion of time. Time modeling is crucial to meet the characteristic referred 

to as “Delay specification” introduced in Chapter 1. As a consequence, operators or pred­
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icates must be defined to encapsulate time. Having defined these notions, the next two 

sections focuse on the two strategies presented in the introductory section of this chapter 

extensively using the above notions.

5.2 Fundamental VHLLS Design Methodology

This section presents the first strategy to implement the VHLLS process. It is based 

on the mathematical model defined by Zeigler [ZEI84]. The principle of this strategy is 

to perform a  translation process from the concept level in the behavioral domain into the 

system level in the behavioral domain as specified in Chapter 3.

5 .2 .1  E xten d ed  Zeigler F orm alism

When we make specifications with a pseudo-state graph, we must consider having vari­

ables which we refer to descriptive variables of the system. They compose a  set of variables 

characterizing the system. In this variable set, two types of variables exist: input variables 

and non-input variables. An input variable can be modified only out of the system. A 

non-input variable can be of two types : state variables and non-state variables. A subset of 

state variables characterize one state. A non-state variable is a set of descriptive variables 

not included in the other sets. The state variables allow the identification of the future 

system state. The non-state variables are for computing purposes at a given instant. These 

statements can be represented as follows:

descriptive variables(Vd) <

input variables{Vi) 

state variables{Vs) 

non — state variables{Vn-.s)
> non — input variables{Vn-i)
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cond

not(cond)

N2N1

Figure 5-4: Waiting Interpretation

or in a  more mathemical form as: Vd =  Vi U Vre_t- and Vn - i  = Vs U Vn - s -  The transition 

from one state to another is modeled by a transition function which is a function of inputs 

and state variables such as:

r : : S  x Vi ->• S

The principle of r- is for the evaluation of the present state variables associated with the 

input variables to compute the future state. At this stage of the representation, we must 

express the action of waiting in a state when, a t a given instant, no transition conditions 

hold. We represent this action with a  transition from a state to itself with a transition 

condition which is a complement of all transition conditions applicable for the current state. 

This allows us to continuously poll the transition condition until one holds thus implying a 

system change into the future state. This type of loop is called a  waiting loop.

The introduction of an output function allows a mapping from each state to a set of 

actions:

: S  x Vi y Vji—j

After introducing the fundamentals to model the pseudo-state diagram, we must consider 

the notion of time where the system is forced to leave a state. Being inspired by the Zeigler 

theory [ZEI84], we modify the transition function into two sub-functions. The first one is
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the external transition function rext which has the same behavior as the function defined 

above rz. The second one is named internal function r,-nt which uses the notion of state 

life-time Id  as defined in section 5.2. When the time index (f) is in Id , the state change 

depends on state conditions. As soon as t is not in Id the internal transition is applied. 

Id can be expressed as [f,-n(s). tin (s) + ia(-s)] where identifies the instant the system 

enters s E S  and ta is a  function which associates a life-time to the same state s. So 

when t  >  tin(s) -I- ta(s),  an automatic state transition is applied. Therefore, the function ta 

associates a  duration with each state of the system allowing the definition of its life-time: 

ta : S  —>■ T I M E  where T I M E  is defined as being a positive natural number associated 

with a  time unit (for example, In s 6  T I M E ) .  These two transition functions are:

1. Text : S  x  I  -> 5  where rext is applicable when the current time index t verifies 

DURING(£,/rf)

2. Tint : S  -> S  where r,nt is applicable when the current time index t verifies A F T E R (t, Id)

So, when the system is in s 6 S  and is in a waiting loop, we have t E [£ in (s ), tin(s) +  ta(s)} =  

Id and then Text is applicable. When t > tin{s) +  ta{s), the state life-time is “over” . 

Therefore, the internal transition function Tim is triggered off. For effective management of 

this mpcha.nism. Zeigler associates at each state, a variable e (for elapsed time), initialized 

a t ta(s) when the system comes into a state, and is decreased proportionally by time spent 

in the state.

Having introduced the mechanism for the life-time notion, a  loop on a state needs to 

be more specific. We can have either a waiting loop or a loop for a  state reexecution. The 

waiting loop allows the time index to evolve in time without a  state change. A loop for 

reexecution is, indeed, an external transition from a state to itself. So, for the latter loop, the
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elapsed time variable e associated with the considered state is initialized, as opposed to the 

waiting loop, where e decreases to model the evolution of the time. Having the notion of time 

evolution, a  fact F(p, I)  in a state variable is verified at t when t 6 I.  However, to capture 

an event condition e[p, i). the easiest way to recognize a sudden change is to “remember” 

the instant i ', defined in definition 5.3, and verify OCCURC-p, i')A  OCCUR(p, i). But, in 

our representation, we do not keep any values from the past. To solve this problem, we 

must create another state variable for each state and input variable. This new variable 

can take the value RISE, FALL or STABLE. We can defined other values to fill our needs. 

These variables, called behavioral variables, are computed at each instant. So, for the 

input variables, the behavioral variables axe up-dated every time a change occurs in them. 

When a  state change caused by one of the transition functions occurs, an operation allows 

the computation of the behavioral variable values associated with all the state variables. 

However, if the system takes the waiting loop of a state then all the behavior variables 

related to state variables get the value STABLE. Because we represent the event notion 

in this fashion, we have a system uniformly modeled using the fact notion. So, an event 

condition e(p,i) becomes a fact F{p',I) as follows: p' =  pA p'E V E N T  and I  =  [i'. i] where 

E V E N T  =  R I S E  V F A L L . Thus, all conditions can be checked the same way at a given 

instant.

The pseudo-state machine where time is encapsulated is a deterministic system. There­

fore, the system under specification can be only in one state a t the time. So, to prevent 

conflicts in the choice of the future state, the notion of priority is introduced. To treat 

these conflicts, we define a  priority function T such as T : S  x S  —> X. The greatest priority 

transition is the one with the highest numeric value. To solve a  conflict, only the transitions 

involved in the conflict are in concurrence. An illustration of the behavior of this function
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is as follows:

T e x t{ S \ ,  C O n d \) —  i?2j 

Text(Si,cond2 ) =  S3 ;

T~ext{S\, condz) — Si,

r ( S u S2) = l; 

r ( 5 i . 5 3 ) =  3 : 

r(5i,54)=2.

The system is in state 5 \. Suppose that at t. cond\ and ccmdz hold. A conflict occursrtbe 

system can go into either S2 or S4. The resolution of this conflict consists of comparing 

the transition priorities for S2 and 64. In our example, we have r(S i, 54) >  T(S i , S 2 )- 

Therefore, the future state is 54. Notice that only the priorities of the transitions in conflict 

have been considered.

5 .2 .2  S y n ta x  an d  Sem an tic  U sin g  Ziegler F orm alism

To define properly the syntax and the semantic of the proposed VHLLS process, a  model 

needs to be defined. So, the model Mzeigler of the pseudo-state diagram (introduced in the 

preambule of this chapter) inspired by the Zeigler theory is the following:

M z e ig le r  —  <  S ,  I . F , 0 .  , T g x ti ip z i â? T ^

where

• S  represents the node set of the model corresponding to a set of state sub-sets of the 

system:

• I  represents the input variable set of the internal model corresponding to the input 

variable set of the real system;
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•  F  represents the conditional transition of one node to another. The composition of 

these conditions are realized with the input and state variables. This corresponds in 

reality to a  state change condition in the system;

•  O represents the action set associated with nodes. These actions represent the active 

part associated with states of the system. These actions are written in VHDL. The 

operative part can only modify the values of the state, non-state and output variables. 

We can have no actions associated with a node. Notice that states " included" in the 

same node are characterized by the same operative part;

• Tint- S -v S is the internal transition function. It is in relationship with the life time 

of a node:

• Text- S x F - + S  describes the conditional transitions:

•  ipz: S -¥ O associates, a t each node, an operative part which is a  list of actions;

• ta - S —*■ T I M E  associates a  life-time to each state:

• T: S x S -> allows only one possible transition.

In the rest of this section, we illustrate each notion this model implies in order to 

represent a pseudo-state diagram  with time encapsulated. So, the following illustrates the 

syntax and semantics to represent all the notions introduced by Mzdgier-

5.2.2.1 A ctions A ssociated  W ith  a  System  State

Using the model Mzeigler, we can associate each system state with either actions or 

nothing. This is expressed by the output function tpz. This function is defined for each 

state. For this initial study, actions are described in a  sequential manner using VHDL in
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the sequential mode. So, the result of the function links with each state s E S  a. sequence 

of activities the system needs to perform when it is in s. If the system is in a  state s E S  

and no action is associated with 5  then the result at the request ipz{s) is the empty set (0). 

As an illustration of the output function ipz, let us consider the following:

1. A state s E S  has a list of actions to perform, so ipz looks like:

$z(s)  =

action i : 

actioni;

2. A state s E S  does not have a n y th in g  to perform in s, so ipz looks like:

V>-(s) =  0

For this initial study, these two cases are the only form of descriptions the output 

function can have.

5.2.2.2 S tate  Life-Time Function

T h is  function is defined as ta : S  —i► T I M E .  The TIME type has already been defined. 

Each state is associated to its life-time through this function. The range of possible values 

is in [0 ns; oo ns]. A life-time of 0 ns  means the system needs to change state as soon as 

the actions associated with it have been completed. On the other hand, a time-life of oc ns 

means the system can stay in a  given state indefinitely if no transition  conditions apply. 

As an illustration of the life-time function, several cases are presented. Let s E S,

1. ta(s) =  20 ns  means that the system stays in s up to 20 ns;
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2. ta(s) =  0 ns  means that the  system changes state as soon as the actions associated 

with s have been completed:

3. ta(s) = o o  ns means that the system changes state only if a transition condition holds.

5.2.2.3 Transition Functions

There are different ways of expressing the transition from one system state to another. 

In fact, this depends on the nature of the transition. To take into consideration these 

different ways we defined, in section 5.2.1, the following three functions:

•  Tint is the internal transition function. This function is related to the life-time function. 

Tim is automatically applied to produce a transition from a state si to a  state S2 

(si, S2 6 S) when the time given by the function ta. £a(si), has elapsed. In other words, 

£ being the time index and si a  given system state, if £ g Id{s\) then Tint(si) =  S2-

• Text is the external transition function. This function is in relationship with conditions 

made up of Vs and Vi. The condition is a parameter of the external transition function 

along with a state. These two parameters allow the computation of a future state as 

long as the time index is within /^(s). So, £ being the time index and si a  given system 

state, if £ E Id{si) and cond (the transition condition) holds true then Text{s\.ccmd) — 

s2.

•  r  is the priority function. Because the pseudo-state diagram is deterministic, T allows 

decision making when the transition functions can compute more than one future 

state. So, each transition is weighted, enhancing its importance relative to the other 

ones, thus it may be in conflict. When conflicts occur, we check the priority using T 

and the next system state corresponds to the one with the highest priority. Let’s say
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that we have s i, s2 , 3 3  6  S . and two possible transitions, defined as rext(si,cond2) — 

3 2  and Text(si,candz) =  S3, if, at t, candz and candz hold true then we consult 

r(sx ,s2) < r (« i ,s 3). If this query is true then Text candz) =  S3 is applied otherwise 

Texti.3!'. cond2 ) =  s2- By default, the internal transition has the lowest priority which 

m ean s that if at the same instant, the life-time of the current state elapsed and a 

transition condition holds, then the external transition is applied prior to the internal 

one.

5.2 .3  In terp reta tio n  o f  C o n d itio n s

This section gives an interpretation of notions defined in section 5.2.1 and shows the 

method of defining transition conditions.

5.2.3.1 Simple Conditions

For the model M;e,-gjer̂  a  fact and an event are represented in the same way. To enhance 

the difference between them, we added a new variable to each state and input variable. This 

variable can have, for instance, three values: FALL, RISE and STABLE. This variable is 

viewed as a boolean attribute describing the state or input variable evolution. The syntax 

is to put a quote and the a ttribu te name after a  type or object instantiation name. One 

attribute which has a  behavior sim ilar to our behavioral variables is EVENT in VHDL. 

This attribute returns a  boolean value. It returns a true value (at the instant and only 

for that instant) when a variable changes its value during a  simulation cycle. In the model 

Mzeigier, an event is a combination of two facts. The first one considers the past of a 

variable and the second one, a  given time. So when we want to capture an event such as 

the increase in value of a state variable or input variable (u), we interpret this event as
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t/E V E N T  and v[i') < v{i) (v{i) represents the value of v at the time index i) e.g. v 'R IS E  

becomes v 'E V E N T  and v =  1 where v is a boolean variable. By the same token, when 

we want to capture an event such as the decrease in value of a state variable or input 

variable (u), we interpret this event as t /E V E N T  and v(ir) > v(i) e.g. v1 F A L L  becomes 

1/ E V E N T  and v = 0 where v is a  boolean variable. It becomes obvious that, for a fact 

condition, the state or input variables which constitute the condition must be stable.

5.2.3.2 Com posed Conditions

For each operator defined in section 5.2.1, each term must obey the rules described in section

5.2.2.I. Three operators were defined:

• COMPADD:

• COMPMULT:

• PIPE.

In the model M zeigier, the composition of conditions is viewed as a single condition from 

the standpoint of the external transition function. Therefore, when we have:

7~cxt 1 ? COnd} S2

, where the condition cond can be expressed as:

• cond =  condi C O M P A D D  cond2  which means that the condition transition is per­

formed when either condi or cond2 holds under life-time constraints. Formally, the 

COMPADD operator is defined in section 5.2;

• cond = condi C O M P M U L T  cond2 which means that the condition transition is
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performed when condi and condi hold at the same time under life-time constraints. 

Formally, the COMPADD operator is defined in section 5.2;

In contrast to the above operators, the PIPE operator defines a sequence of two con­

ditions such as cond =  condi P IP E  condi. This means that to have cond holding, condi 

must hold true first and then condi is evaluated. Conceptually, this operator can be viewed 

as a combination of two t with a virtual state between the initial state and the final state. 

So, when we have:

Text[s ir condi P IP E  condi) =  s2

, we rewrite this transition function as follows:

Let s\ being a virtual state of the system,

Text(si.condi) = s\

Texti^l'! condi) =  s 2

The properties of the new virtual state are:

•  ta(s\) =  ta(si) — e where e is the elapsed time of being in

•  T i n t ( s % )  =  Ti n t ( S l )

5 .2 .4  E xam p le  o f  th e Z eigler M o d e l

This example uses the specification of the RAM introduced in Chap. 2. This system is 

composed of seven states: IN IT Q ,IN IT l,W A IT ,R /W .R ,W ,E R R .  For each state, we 

define the transition functions, the output function, the transition priority and their life­

time. So for INITO, we have:
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•  t^ I N I T O S N S K T  =' O'”) =  IN IT  1

•  TintilNITO) =  0

•  ta(INITO) = oo

•  r ( IN I T O J N I T l )  = 0  

For IN IT l ,  we have:

• TexttfN IT l. ~ N S K T  =' 1'” ) =  W A IT

•  Tint( IN IT l)  = 0

• ta(IN IT l)  =  oc

• r ( IN I T l ,  WAIT)  =  0 

For WAIT,  we have:

• T extiW A IT ^C S  = ' 1'") =  R /W

• TextiWA IT ." N R S T  =' O'") =  I N I T l  

.  r i7U(VFA/T) =  0

• ta(W A IT ) =  oc

• r(VFA/r,i?/VF) =  1

•  r(W A lT , I N I T l )  = 0 

For R /W , we have:

•  TextiR/W^iRD = ' 1') COMPMULT (W R  =' 0')”) =  i*

• TextiR/WSiRD = ' O') COMPMULT {WR  = ' 1')”) =  ^
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•  T ex tiR /W ,

s ( ( R D  = '  1') C O M P M U L T  { W R  = '  T ) ) C O M P A D D  {{R D  = '  O') C O M P M U L T  { W R  

O'))” ) = E R R  

•  rint{R /W ) =  0

• ta{R /W ) =  oc

•  T { R / W , W )  =  0

•  r{R /W ,R ) = 1

• T {R fW ,E R R ) = 2 

For R. we have:

• T ^ R . " N R S T  = ' O'”) =  /JV7T1

•  Tint{R) =  W A I T

• ta{R) = Ins

• r ( A  W A IT )  =  0

•  r  {R,  I N I T l )  =  1 

For W , we have:

• Tezt(W,',N R S T  = ' O'”) = IN I T l

• rint{W) =  W A IT

• tB(Wr) =  Ins

•  r(W, W A I T )  =  0
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• r(W, I N I T 1 ) =  1 

For E R R , we have:

•  Ti n t ( E R R )  =  I N I T Q

• ta(ERR) =  I n s

• r  (E R R , W A IT ) = 0

5.3 Intelligence Built-In VHLLS Design Methodology

This section presents an evolution of the previous VHLLS model toward an “intelligence” 

built-in model. This model is built on a knowledge base which gives the VHLLS model extra 

features such as reasoning ability and greater flexibility with the specification description 

to capture. So, the first part of this section reviews a few knowledge based methods. Of 

these methods, one has been identified as more appropriate to our problem and is applied 

for the VHLLS model.

5 .3 .1  K n ow led ge R epresen tation

Among knowledge based methods, three have been selected for their main characteris­

tics. These three methods are: Rough Sets, InfoSchemata and Conceptual Graphs. The 

rough set method can optimize the amount of knowledge needed to describe a universe. 

The InfoSchemata method has the very useful ability of organizing knowledge in an ab­

stract manner. Indeed, the knowledge is classified in a  few levels of abstraction and a 

relationship between each of them creates the meaning of the knowledge base. Finally, the 

conceptual graph method has built-in operators that allow the knowledge base to evolve, ex­

pand and manipulate knowledge. Note tha t all the following sections which review methods
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to represent knowledge axe self contained regarding symbols and notations.

5.3.1.1 Overview O f th e  Rough Sets Theory

In this section, an overview of the concept of rough set theory is presented. Thereafter, 

a  simple example illustrates the whole idea of this method.

Rough set theory [PAW91] defines a universe of objects (U). In this universe, there 

exist relationships between objects. Each relationship classifies these objects into families. 

Having classified objects into subsets according to relations R  (families), a knowledge base 

can be defined. This base is given by K =  (U, R') where R ’ is a family of equivalence 

relations over U.

The goal of this theory is to classify and manipulate knowledge in a universe. To do so, 

notions and relations are defined. When a set of objects included in U is given, the goal 

is to know what represents this set in the universe and to associate its families in order 

to characterize it. Basic sets are defined as having the following approximations of sets : 

R-lower approximation of a set X (set of objects classified without ambiguity as elements of 

X), R-upper approximation of a set X (set of objects possibly classified as elements of X), 

R-boundary of X ({R-upper}fl{R-lower}), R-positive region of X (equal to {R-lower}), R- 

negative region of X (U-{R-upper}). Properties are derived from these notions. For practical 

utilization of this theory, data tables are constructed. Some operations can be applied 

to this representation, such as a reduction of attributes in data  tables. In the process of 

model building, it should be possible to identify and eliminate redundant attributes without 

losing any essential information. Another functionality is decision rules. Non-redundant 

descriptions characterize potentially important patterns in data. The patterns axe expressed 

as decision rules linking the presence, or absence, of specific conditions (attributes) with an
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outcome.

To illustrate the Rough set theory, the example which follows presents the manipulation 

and optimization of a  knowledge base. Assume the following decision table:

u a b c d e
1 1 0 0 1 1
2 1 0 0 0 1
3 0 0 0 0 0
4 1 1 0 1 0
5 1 1 0 2 2
6 2 1 0 2 2
7 2 2 2 2 2

where a, b, c and d are condition attributes (input) and e is a  decision attribute (output). 

The attribute c appears to be dispensable so the column c can be removed. The next step 

is the computation of the core value of that decision table:

U a b d e
1 - 0 - 1
2 1 - - 1
3 0 - - 0
4 - 1 1 0
5 - - 2 2
6 - - - 2
7 - - - 2

where means ’do not care’. Therefore by assigning a proper value to these the 

resulting table is:

U a b d e
1 1 0 X 1
2 1 0 X 1
3 0 X X 0
4 X 1 1 0
5 X X 2 2
6 X X 2 2
7 X X 2 2
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Because decision rules 1 and 2 are identical, and so are rules 5, 6 and 7, the final table

is:

u a b d e
1 , 2 1 0 X 1
3 0 X X 0
4 X 1 1 0

5,6,7 X X 2 2

This solution is referred to as minimal. Therefore, this method would be useful for 

classifying a knowledge base described using either InfoSchemata or Conceptual graph. 

That, in turn, would allow the use of another knowledge base optimization method which 

retains the meanings of both  methods.

5.3.1.2 Overview o f th e  InfoSchem ata Theory

InfoSchemata [JM94] defines a  methodology for representing and developing knowledge 

bases. As shown in Fig. 5-5, InfoSyntax, InfoSchema (abstractions at the general level) and

InfoSchema/InfoMap Technology

InfoSyntax

InfoSchemata

InfoMaps

InfoFactory

C InfoCases ) --*■(  InfoFarm )
( InfoProcesses ) --*■(  InfoRun )

Figure 5-5: InfoSchema/InfoMap Structure

InfoFactory compose a framework to capture and manipulate knowledge.
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InfoSyntax defines the syntax used to model concepts within the InfoSchema/InfoMap 

methodology. Two levels of abstractions characterize that method: the InfoSchema level 

and the InfoMap level.

In the InfoSchemata approach (“pattern” and “schemata” are synonymous terms), a 

vocabulary [JC91] can be used to derive schemata. These schemata are described in terms 

of sets and the relationships between them. The general format of the universal schema is 

given in the following:

Universal schema ::= [ [A] {set_name}

[Y] {set_name}

<Z >  {set_name}

(W) {set_name}

<U > {set.name} ]

Within the InfoSyntax, a hierarchy of relationships is defined allowing a mapping between 

sets which assigns specific set roles (Tab. 5.4): A, Y, Z, W, and U.

A::= partition :
Y::= K - identifier: 0  - identity:

H - hierarchy: I - generalization;
P  - aggregation;

Z::= X - qualifier; M - association;
F - flow; G - guard or goal:
S - sequence; V - value or instance;

W::= L - sequential state transitions;
C - concurrent state transitions;

U ::= User defined

Table 5.4: Set Roles

An InfoMap is created by enumerating sets and populating relationships defined by
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the InfoSchemata. This instantiation process implies that set roles are also instantiated to 

specify a role allocated to a role member (Tab.5.5).

Legal Set Role Legal Set Element Role
A v-column marker
K id-unique identifier
0 o-column marker
H h-root tree; l..n-part marker
P w-whole; c-part: v-visible: h-hidden part
I p-parent; c-child
X x-qualifier marker
M v-row market; k-key attribute
F u-used input; o-produced output
G t-true; f-false; T-implied true; F-implied false
S l-.n-position in sequence, integer
V instance, value, string
L s-source; d-destination; 1-loop; a-assertion;

e-exemption
C c-concurrent

Table 5.5: Member Roles

Set roles and associated set member roles are the core of InfoSchemata and InfoMap 

notation.

Therefore, using these mappings between concepts, knowledge can be synthesized. The 

manipulation o f this knowledge can be realized through an InfoProcess which examines, 

partitions, and merges knowledge.

5.3.1.3 O verview  o f the C onceptual Graphs Theory

Conceptual graphs were introduced by Sowa in 1984 [SOW84] to represent and manip­

ulate knowledge. In the process of capturing knowledge, a particular notion of perception 

is crucial. This notion allows the creation of a  working model that represents and interprets 

sensory input. Two components constitute this working model, they are: a sensory input 

composed of a  mosaic of percepts and a  conceptual graph to fit percepts together. The basic
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goals of perception mechanisms are:

•  to generate sensory icons to capture external stimulations;

•  to compare these icons with percept to see if they match, called associative comparator.

• to generate a close approximation of the input and build a conceptual graph to store 

it, called assembler.

• conceptual m echanism s process concrete concepts that have associated percept and 

abstract concepts that do not have any associated percept.

The process of perception generates a  structure u called a  conceptual graph in response 

to some external entity or scene e:

•  the entity e gives rise to a sensory icon s:

• the associative comparator finds one or more percept p\, pi- . . . .  pn tha t matches all 

or parts of s:

• the assembler combines the percept pi, p i, . . . .  pn to form a working model that 

approximates s:

•  if such a working model can be constructed, the entity e is said to be recognized by 

the percept pi, p2 , . . . .  pn;

• for each percept pi in the working model, there is a concept c,- called the interpretation 

of pi;

•  the concepts ci, C2, . . . ,  Cn are linked by conceptual relations to form the conceptual 

graph u.
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Conceptual relations specify the role that each percept plays : one percept may match a 

part of an icon to the right or left of another percept. A representation and interpretation 

of a conceptual graph are:

• a linear form: [Conceptl] -* (Rel) —»■ [Concept2];

• a graphical form s im ilar to the linear form is illustrated in Fig.5-6.

CONCEPT 1 CONCEPT2

Figure 5-6: Basic Conceptual Graph: Graphical Representation

having the m ea n in g : the Rel of a Conceptl is a Concepts e.g. with the following inter­

pretation: “the Instrum ent of A P P L Y  concept is D E V IC E  concept”, the corresponding 

conceptual graph is shown in Fig.5-7.

APPLY DEVICE

Figure 5-7: Inst of APPLY is DEVICE: a Conceptual Graph Representation

A conceptual graph is a finite, connected, bipartite graph. The two kinds of nodes of 

the bipartite graph are concepts and conceptual relations:

• Concept nodes: represent any entity, action or state that can be described in lan­

guages. For an AI standpoint, this kind of node encodes information in networks or 

graphs : concepts are a basic unit for representing knowledge;
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• Conceptual relation nodes: show the roles that each, entity plays. In other words, 

these nodes show how the concepts are interconnected.

As an illustration, two examples of concept nodes are given from [CYR94]:

• [DEVICE] embraces all hardware elements:

• [VALUE] covers the notions of data and message as well as software (commands and 

programs).

Two examples of conceptual relation nodes are given from the general conceptual graph 

theory:

• (Inst) links an [ENTITY] to an [ACT] in which the entity is causally involved:

• (Dur) links a  [STATE] to a [TIME-PERIOD], during which the state persists.

Every conceptual relation has one or more arcs, each of which must be linked to some 

concept. If a  relation has n axes, it is said to be n -adic and its arcs are labeled 1, 2,

. . .  n. The term monadic is synonymous with 1-adic, dyadic with 2-adic, and triadic with 

3-adic. A single concept by itself may form a conceptual graph, but every arc of every 

conceptual relation must be linked to some concept. To be consistent, some assumptions 

are necessary such as (i) concepts are discrete units, (ii) combinations of concepts are not 

diffuse mixtures, but ordered structures, and (iii) only discrete relationships are recorded 

in concepts. Continuous forms must be approximated by patterns of discrete units.

A conceptual graph has no m eaning in isolation. Only through the semantic network, 

concepts and relations which link context, language, emotion and perception, make sense. 

A conceptual graph can be displayed using two representations. The first one is in a linear 

form with:
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•  [...] representing a concept;

•  (...) representing a  conceptual relation.

Some concept or relation must be the head of this representation. A variable is noted as 

*x. Relations connected to the concept head are listed on subsequent lines after the symbol 

The end of a graph is signaled by a  period Finally, a comma represents the 

end of subsequent lines. The second representation is graphical where a  square is a  concept, 

a circle a conceptual relation and an arrow puts in place the relations between nodes. 

These possible representations of a  conceptual graph are illustrated as follows:

• Linear representation:

[ACTION : is reset] -

—► (Agnt : by) -> [EVENT : #  interruption],

-* (Obj) -» [COUNTER : #timer].

• Graphical representation (see Fig.5-8).

EVENT: (Sntenuption < -----------^ -------ACTION: is reset ---------------- > ^ Obj ------ COUNTER: ((timer

Figure 5-8: Example of Semantic Network in Conceptual Graphs

The notion of type in conceptual graphs is a classic one and means family resemblance. 

One type principle reads: ’’the logical type or category to which a concept belongs is the set 

of ways in which it is logically legitimate to operate with it” [RYL49]. Here we introduce 

the function type which maps concepts into a set T , whose elements are called type labels.
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Concepts c and d axe of the same type if type(c) = type(d). As an illustration, let a  concept 

c, c =  [Type Label] type(c) = Type Label.

In conceptual graphs, different meanings for knowledge or concepts can be classified to 

express generality or instantiation of an concept. Two kinds of markers cam be identified: 

individual and generic markers. An analogy can be drawn with nouns in natural language 

where individual markers are like determinate nouns (example: the city) especially proper 

nouns (example Durham) in that they designate a specific object, whereas generic markers 

can be seen as indeterminate nouns (example: a city) which designate a  class of objects with 

a s im ilar set of characteristics (buildings, streets, ...). In conceptual graphs, an individual 

marker is specified by an identifier like [Type Label : ident] and a  generic marker by an 

asterix like [Type L ab e l: *] or simply [Type Label]. Here we introduce a  function referent 

which corresponds to the identifier of a  concept (ex: referent(Type Label) =  ident).

Individual concepts correspond to constants in logic and progra m m in g  languages, and 

generic concepts correspond to variables. In fact, variables like *x or *y in the linear notation 

are simply the generic marker *, followed by an identifier to indicate cross references e.g.:

[COUNTER : #tim er]: in the concept "counter", we consider the "timer" to be a  type 

counter of which referent(COUNTER) =  #timer.

[COUNTER : *t]: in the concept "counter”, we consider a counter.

A formula operator $  is introduced which translates a conceptual graph into a logical 

formula. The operator $  maps conceptual graphs into formulae in first-order predicate 

calculus. If u is any conceptual graph, then is a formula determined by the following 

construction:

•  if u contains k generic concepts, then assign a  distinct variable symbol x \,X 2 , ■ ■ ■ ,Xk 

to each one;
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•  for each concept c of u, let identifier(c) be the variable assigned to c if c is generic, or 

referentfc) if c is individual;

•  each concept c represented as a monadic predicate whose name is the same as type(c) 

and whose argument is identifier(c);

•  each n-adic conceptual relation r  of u represented as an n-adic predicate whose name 

is the same as type(r). For each i from 1 to n, let the ith  argument of the predicate 

be the identifier of the concept linked to the tth arc of r.

• then has a  quantifier prefix 3x i3x2 . . .  Bx/t and a body consisting of the conjunction 

of all the predicates for the concepts and conceptual relations of u.

Therefore, if a conceptual graph is as follows:

u =  [RESET] -

-> (Agnt) -+ [EVENT]

->• (Obj) ->■ [MEMORY]

-> (Nval) ->• [VALUE],

Then the resulting is:

=  3 x ,y ,z ,w [R E SE T (x)  A Agnt(x,y) A E V E N T (y)  A O bj(x.z) A M E M O R Y (z)  A 

N val(x,w )  A VALUE{w)]

The notion of canonical graphs is defined to distinguish the meaningful graphs that 

represent real or possible situations in the external world. Certain conceptual graphs are 

canonical. New graphs may become canonical or be “canonized” by any of the following 

three processes:

•  perception: any conceptual graph constructed by the assembler in matching a sensory 

icon is canonical:
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• formation rules: new canonical graphs may be derived from other canonical graphs 

by means of the rules copy, restrict, join, and simplify,

• insight: arbitrary conceptual graphs may be assumed to be canonical.

In a  knowledge-based system, insight corresponds to the introduction of new graphs by a 

knowledge engineer who encodes information more efficiently. The formation rules are a 

generative grammar for conceptual structures. All deductions and computations on con­

ceptual graphs involve some combination of these rules.

These formation rules are described in the following list. Let u and v be conceptual 

graphs, w derives from them, then the formation rules axe:

•  copy rule: an exact copy of a canonical graph is also a  canonical graph, w = u:

• restrict rule: replace the type label of a concept with the label of a subtype. This rule 

may also convert a generic concept into an individual concept. For any concept c in 

u, type(c) may be replaced by a subtype : if c is generic, its referent may be changed 

to an individual marker. These changes are permitted only if referent(c) conforms to 

type(c) before and after the change:

• join rule: merge identical concepts. If a concept c in u is identical to a concept d in v, 

then let w be the graph obtained by deleting d and linking to c all arcs of conceptual 

relations that had been linked to d;

• simplification rule: if conceptual relations r  and s in the graph u are duplicates, then 

one of them may be deleted from u together with all its arcs.

5.3.1.4 Suitable Knowledge Representation

The knowledge bases, previously presented, specific strengths axe:
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•  Optimization capabilities of the knowledge base in the rough set methodology;

•  Good organ ization  of the knowledge emphasizing a hierarchy and partition of the 

knowledge in the InfoSchemata approach. It is very convenient when someone has to 

create and manipulate a  knowledge base:

• Good structure of the knowledge base with an enhancement of the evolution of the 

knowledge base in the conceptual graphs methodology.

For the purpose of the VHLLS synthesis process, the most important criterion to consider 

is the ability to improve and increase the potential of this process without redefining the 

whole process. So, for that matter, the conceptual graph approach is the most suitable 

method for our research problem.

5 .3 .2  Syn tax  an d  S em a n tics  U s in g  C on ceptual G raphs Form alism

In the pseudo-state graph, encapsulated time is a  very important notion. Therefore, to 

build a  conceptual graph, notions coming from state diagrams and time must be captured. 

When a state graph is analyzed, some concepts come out such as transitions from one state 

to another. To make sure that a  state graph behaves in a deterministic way, one relation 

seems critical: priority between two transitions.

The purpose of using conceptual graphs is to build a knowledge base capturing all the 

information necessary to generate a VHDL description. Another interest is that conceptual 

graph methodology is a representation flexible enough to be used to describe other specifi­

cation models using a unique methodology. The main objective for a  global environment is 

to provide specification descriptions which designers me looking for, such as state diagrams, 

petri nets, timing diagrams and so on. An embryo of this global environment is introduced
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in chapter 6 and we call it Specification Procedure for Electronic Circuits in Automation 

Language (SPECIAL). Furthermore, conceptual graphs can expand the spectrum of this 

knowledge base further. Conceptual graphs offer a  way to grapple with the information 

within the knowledge base and go further with specification methods like those using natu­

ral language as a  com m unica tio n  vector. All these options are objectives and a  direction to 

follow. Currently, the problem is to set up a knowledge base using conceptual graphs and 

to find a  way of generating a behavioral description in VHDL. Therefore, the first step is 

to define canonical graphs, conceptual types, and conceptual relations for this problem.

The first canonical conceptual graph to be defined is the TRANSITION concept which 

captures a transition from a beginning state to an ending state. A transition is controlled 

by a condition. The canonical conceptual graph is the following:

[TRANSITION] -

—> (Beginning) —»■ [STATE],

(Ending) ->• [STATE],

-> (Inst) -»• [PROPOSITION].

In this graph, conceptual relations are defined as follows:

• Beginning specifies the state from which the transition leaves:

•  ending specifies to what state the transition goes:

•  Inst, for instrument, links a  transition to a proposition which controls the state change.

In this conceptual graph, the instrument of a transition is a PROPOSITION concept which 

is a type of symbolic information. To construct this proposition, some time constraint 

relations must be introduced. This corresponds, in fact, to a  way of encapsulating the time
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in our pseudo-state graph. Therefore, the relations defined by Allen [ALL84] (introduced 

in Section 5.2) and introduced in a  conceptual graph by Cyre [CYR94] are:

• Meets: relates two intervals I \  and I 2 . The idea of this interval relation is that the

interval I\ finishes when the other one I2  starts:

[INTERVAL] -► (Meet) -> [INTERVAL ]:

• Overlaps: relates two intervals I\ and I2 . In this relation, I\ has to start before I 2  

and they overlap:

[INTERVAL] -)■ (Overlaps) -> [INTERVAL ];

• In: relates two intervals I\ and I 2 '.

[INTERVAL] -)• (In) -> [INTERVAL ].

This relation is in fact a  union of several interval relations. However, it is very con­

venient to define this relation as summarizing the situation in which one interval is 

wholly contained in another. Then In(/i, I 2 ) is equivalent to:

During(/i, I 2 ) V Starts(/i, I 2 ) V Finishes(/i, h)-

Other relations are introduced. They are specific to the pseudo-state diagram model:

• Fact: relates an interval /  to a  proposition p. The proposition p is a  logic proposition 

independent of time. The interval /represents the time interval when p is verified:

[INTERVAL] -* (Fact) -> [PROPOSITION ]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



133

This can be interpreted as: the fact in an interval is a  proposition. More formally, a 

fact F(p, I) as defined in definition 5.2 is: let p be a  proposition and /  € T  such as 

F(p, I) = > V I',r  E T :

-  BEFORE{I',  I) A BEFORE(I ,  F )  A

-  HOLD{-rpA')/\

-  H O L D (^p .F ).

• Event: relates an instant i to a proposition p. The proposition p is a  logic proposition 

independent of time. The instant i  represents the moment when p is verified:

[INSTANT] (Event) -)• [PROPOSITION ]

where the INSTANT concept is a  subconcept of INTERVAL. This can be translated 

as: the event at an instant is a  proposition. More formally, an event e(p, i), as defined 

in definition 5.3 is: let p be a proposition and t E E such as e(p, i) =>■ Vi', f g c :

-  BEFORE{i' ,i)  i\ BEFORE{i ,F)/ \

-  OCCUR(->p, i') A

-  OCCUR(-'p, i”).

So, to represent "NRST =  T0’ ” as a  fact, the corresponding conceptual graph represen­

tation is as follows:

[INTERVAL :#I] -► (Fact) -»• [PROPOSITION :# ”NRST =  !0: "]

To represent NRST’RISE as an event, the corresponding conceptual graph representation
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is as follows:

[INSTANT :#i] -» (Event) -+ [PROPOSITION :# ”NRST,RISE”]

Having presented the concept of TRANSITION from one state to another one, it seems 

important to introduce the concept of STATE:

[STATE] -

-»■ (Link) [TYPE]

-»■ (Name) -»■ [WORD].

At this point, this concept is defined using an identification name relation which links 

a  STATE concept to a WORD concept, na m in g  the state. Another relation which is the 

Link relation is defined allowing a  linkage between a STATE concept and a TYPE concept. 

The concept TYPE identifies whether the state is associated with an action or not, the 

“action”. for now, being defined as a sequence of actions. Future improvements may have 

as one objective: to define a  hierarchical structure allowing the introduction of other kinds 

of actions associated with a state (example: concurrence).

Therefore, when a state called “INITO” having no actions associated with it, the corre­

sponding conceptual graph model is as follows:

[1 : STATE ] -

-> (Link) [TYPE : #none]

(Name) -* [WORD : #INIT0].

An important requirement for a state diagram is to guaranty the sequentiality of this 

representation. This requirement is addressed by the conceptual relation <prior between 

two transitions:
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[TRANSITION] -»• <prior -»• [TRANSITION].

This relation, orders transitions when there is a  need. When more than one transition 

leaves the same state, then a  process has to choose which transition the system takes 

during a transition conflict. <prior links [TRANSITION: *x] to [TRANSITION: *y] where 

the transition *x has a  higher priority than *y e.g let the transition # 1  have the highest 

priority compare to the tra n sitio n  # 2 , the corresponding conceptual graph representation 

is:

[TRANSITION: #1] -»• <prior ->• [TRANSITION: #2]

5 .3 .3  E xam ple o f  th e  C o n cep tu a l G raphs M od el

To illustrate this knowledge based approach, the case study defined in Section 2.3 is 

used to build the knowledge base of the RAM cell. First, the instantiation of the STATE 

concept is performed. It follows the definition of the transition between each state with the 

expression of the condition for a  transition. So, the concept TRANSITION is instantiated 

for each transition and the concept PROPOSITION contains the condition of transition 

having time encapsulated. Finally, the priority relations between TRANSITION concepts 

are specified.

[1 : STATE ] -
—>• (Link) -> [TYPE : #none]
-> (Name) -> [WORD : #INIT0].

[2 : STATE] -
—► (Link) —>■ [TYPE : #none ]
-»■ (Name) -> [WORD : #INIT1].

[3 : STATE] -
-)• (Link) -> [TYPE : #none ] 

(Name) [WORD : #WAIT].
[4: STATE] -

->• (Link) ->• [TYPE : #none ]
->• (Name) -)• [WORD : #R /W ].
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[5 : STATE] -
-> (Link) -+ [TYPE : #action]
-»> (Name) -»• [WORD : #R].

[6 : STATE] -
-»• (Link) -*■ [TYPE : #action ]
-> (Name) -4 [WORD : #W ].

[7 : STATE] -
—>■ (Link) -»• [TYPE : #action ]
-> (Name) -» [WORD : #ERR].

[8 : TRANSITION : *t_l] -
—>■ (Beginning) -> [1 ]
—► (Ending) -)• [2]
-»• (Inst) -»■ [PROPOSITION: -

[INSTANT : * ti] -»• (In) ->• [INTERVAL :{[0. . .  t] | [tl2 . •. t]}] 
[INSTANT : *t ]-►(>) —»> [INSTANT : * t L]
[INTERVAL :#I] -»• (Fact) -)• [PROPOSITION :#"NRST =  'CF ”] 
[INSTANT : * t t] -»■ (In) -»• [INTERVAL : #1  ].
]•

[9 : TRANSITION : *t_2] -
-> (Beginning) -*■ [2 ]
-¥ (Ending) —>■ [3]
-»> (Inst) -+ [PROPOSITION: -

[INSTANT : *t_2 ] -»• (In) -»■ [INTERVAL : *[t_l . . .  t] ]
[INSTANT : *t ] —»•(>) -+ [INSTANT : *t_2 ]
[INTERVAL : #  I] ->• (Fact) -> [PROPOSITION : #  "NRST =  T ’ ”] 
[INSTANT : *t_2 ] —¥ (In) [INTERVAL : #  I ].
]•

[10 : TRANSITION : *t_3] -
—> (Beginning) —>■ [3 ]
-*• (Ending) ->• [2]
-+ (Inst) -»• [PROPOSITION: -

[INSTANT : *t_3 ] -»• (In) -+ [INTERVAL : *[t_2 - - -1] ]
[INSTANT : *t ]->•(>) -»• [INSTANT : *t_3 ]
[INTERVAL : #  I] -> (Fact) -> [PROPOSITION : # ”NRST =  ’O’ ”]
[INSTANT : *t_3 ] -> (In) -*■ [INTERVAL : #  I ].
]•

[11 : TRANSITION : *t_4] -
-> (Beginning) -> [3 ]
—► (Ending) ->• [4]
-+ (Inst) -»• [PROPOSITION: -

[INSTANT : *t_4 ] -»• (In) -» [INTERVAL : *[t_2 . . .  t] ]
[INSTANT : *t ]->•(>) -»• [INSTANT : *t_4 ]
[INTERVAL : #  I] -> (Fact) -> [PROPOSITION : #  ”CS =  T ? ”]
[INSTANT : *t_4 ] ->• (In) -+ [INTERVAL : #  I ].
]•
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[12 : TRANSITION : *t_5] -
—>■ (Beginning) —► [4 ]
—>• (Ending) —> [7]

(Inst) -> [PROPOSITION: -
[INSTANT : *t_5 ] ->■ (In) -)• [INTERVAL : *[t_4 . . .  t] ]
[INSTANT : *t ]-»■(>) ->• [INSTANT : *t_5 ]
[INTERVAL : # ! ] - > •  (Fact) -+ [PROPOSITION :

# { ” W R=RD=’0’ ” | "W R =R D =T' ” }] 
[INSTANT : * t s] -¥  (In) -+ [INTERVAL :# I ].
]•

[13 : TRANSITION : * t6] -
—y (Beginning) —>■ [4 ]
—>• (Ending) —> [5]

(Inst) -J- [PROPOSITION: -
[INSTANT : * t6] —>■ (In) -+ [INTERVAL : * [t4 . . . t]]
[INSTANT : *t ]-»>(>) -»• [INSTANT : * t6]
[INTERVAL :# ! ] - > •  (Fact) [PROPOSITION : #  "W R =?0! A K D = T  '] 
[INSTANT : * t6] -»• (In) -+ [INTERVAL : #  I ].
]-

[14 : TRANSITION : *t_7] -
-»■ (Beginning) —> [4 ]
-¥ (Ending) —> [6]

(Inst) ->• [PROPOSITION: -
[INSTANT : *t_7 ] -)• (In) -)• [INTERVAL : *[t_4 . . .  t] ]
[INSTANT : t ] —►(>) -* [INSTANT : * t7]
[INTERVAL : #  I] -> (Fact) -» [PROPOSITION : #  "W R =T ; A R D =T ’ n] 
[INSTANT : * t7] ->• (In) ->• [INTERVAL : #  I ].
]•

[15 : TRANSITION : *t_8] -
—»■ (Beginning) —> [5 ]
->• (Ending) —> [2]
-»• (Inst) -> [PROPOSITION: -

[INSTANT : * t 8] ->■ (In) -»• [INTERVAL : * [t6 . . .  t]]
[INSTANT : *t ] —>(>) ->• [INSTANT : * t8]
[INTERVAL : #  I] (Fact) -)■ [PROPOSITION : #  ”NRST =  ’O’”] 
[INSTANT : * t8] ->• (In) -)• [INTERVAL : #  I ].
]•

[16 : TRANSITION : *t_9] -
—► (Beginning) —> [6 ]
-»• (Ending) -»• [2]
->• (Inst) -»■ [PROPOSITION: -

[INSTANT : * t9] ->• (In) ->• [INTERVAL : * [t7 . . .  t]]
[INSTANT : *t ] - > ( > )  -)■ [INSTANT : * t9]
[INTERVAL : #  I] -)• (Fact) -)• [PROPOSITION : #  ”NRST =  ’0’”] 
[INSTANT : * t9] —>• (In) -»• [INTERVAL : #  I ].
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[17 : TRANSITION : *t_10] -
—► (Beginning) -> [7 ]
—»■ (Ending) —> [1]
-»• (Inst) -»• [PROPOSITION: -

[INTERVAL : * [t5, t5 +  Ins]] -+ (Meet) -»• [INTERVAL : *T] 
[INTERVAL : * [ts, ts +  Ins]] -* (Overlaps) —¥ [INSTANT : * tio] 
[INSTANT : * t 10] -+ (Overlaps) ->• [INTERVAL : *V ]
]•

[18 : TRANSITION : *t_Ll] -
—)• (Beginning) —»• [5 ]
—»■ (Ending) —> [3]
-»> (Inst) -»■ [PROPOSITION: -

[INTERVAL : * [t6, t6 +  Ins]] -»■ (Meet) -► [INTERVAL : *P] 
[INTERVAL : * [t6, t6 +  Ins]] -)• (Overlaps) -*■ [INSTANT : * t u ] 
[INSTANT : * t u ] -»■ (Overlaps) -)• [INTERVAL : *F ]
]•

[19 : TRANSITION : * t 12] -
—¥ (Beginning) —» [6 ]
—y (Ending) —»• [3]
-»• (Inst) -»■ [PROPOSITION: -

[INTERVAL : * [t7, t7 +  Ins]] -»■ (Meet) -»• [INTERVAL : *V] 
[INTERVAL : * [t7, t7 +  lnsj] —> (Overlaps) —t [INSTANT : * t i2] 
[INSTANT : * t 12] -+ (Overlaps) -»• [INTERVAL : *V ]
]-

[10 ] —̂ (>  .prior) -¥  [11]
[12] —>■ (>  .prior) -> [13]
[13] -»■ (>  -prior) —>• [14]
[16] —>• (>  .prior) —¥ [18]
[17] -)• (>  -prior) -+ [19]

5.4 Conclusion

As illustrated in Fig. 5-1, the main problem with the basic VHLLS approach6 is that for 

each representation in the conceptual phase a specific translator has to be implemented to 

generate the intermediate description and another one to generate the behavioral description 

[VCSR94]. To avoid having a  specific translation for each description model, the creation

6 defined in the preamble of this chapter.
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of a  knowledge base can reduce the number of translations from the intermediate model to 

the behavioral description to one. This idea is also conducive for updating the knowledge 

base when a new representation is added to the description style set. Another advantage 

of using a knowledge base is that reasoning abilities are built into it. This approach can be 

applied, in turn, in such a  way that it leads to the optimization of the device specification 

and by conducting this activity we have a prelim in ary  optimization at the behavioral level. 

Finally, as shown in Fig. 5-1, the knowledge base can also be used to generate test vectors at 

the behavioral level, allowing for critical time-saving (it is not the purpose of this thesis to 

demonstrate the use of a knowledge base to generate test vectors: Further work is required). 

The automation of this task can replace either a  manual approach or an Automatic Test 

Pattern Generator (ATPG) approach. At the behavioral level, the former one is unrealistic 

for the industry environment and the latter one is an NP-complex problem as shown in 

[SCG93].
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Chapter 6

Specification Procedure for Electronic 

Circuits in Automation Language 

(SPECIAL)

This chapter illustrates the VHLLS from specification to a behavioral description in 

VHDL. First, VHDL is briefly introduced followed by the graphical interface used to model 

the pseudo-state diagram. Finally, the structure of the VHDL code is presented. This 

structure is a template of code.

6.1 Introduction to VHDL

This section presents VHDL fundamentals to help understand the translation of the 

VHLLS process. In this section, the subset of VHDL shown is only enough to understand 

the VHDL templates of section 6.2.3. The remaining notions of VHDL are very similar to 

ADA and can be found in the IEEE standard [IEE93].

140
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6 .1 .1  B L O C K  S ta tem en t

A block statement defines an internal block representing a portion of a  design. This 

statement allows the use of concurrent statements in order to define interconnected blocks 

and processes that describe the overall behavior or structure of a  design. Concurrent state­

ments execute asynchronously with respect to each other.

concurrent-statement ::= 
block-statement 
| process-statement 
| concurrent-assertion-statement 
| concurrent-procedure-call 
| concurrent-signal-assignment-statement 
| component-instantiation-statement 
| generate-statement

Blocks may be hierarchically nested to support design decomposition. The blocks prop­

erties are :

•  declaration encapsulation :

•  hierarchy support.

The syntax of a  block statement is the following :

block-statement ::=
Wocfc-label:
B LO C K  {{guard-expression)] 

block-header 
block-declarative-part 

B E G IN
block-statement-part 

EN D  B LO C K  [block-labeL] ; 
block-header ::=

[ generic-clause 
[ generic-map-aspect ;]]
[ port-clause
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[ port-map-aspect ;]] 
block-declarative-part ::=

{ block-declarative-item } 
block-statement-part ::=

{ concurrent-statement }

6.1 .2  P R O C E S S  S tatem en t

A process statement defines an independent sequential process representing the behavior 

of some portion of the design. This statement, in the same manner as the block statement, 

is a concurrent statement (seen above). The execution of a process statement consists of a 

repetitive execution of its sequence of statements. After the last statement in the sequence 

of statements is completed, the execution mechanism immediately continues with the first 

statement of the sequence of statements. A process statement is said to be a passive process 

if neither the process itself nor any procedure of which the process is a  parent, contains 

a  signal assignment statement. To control its execution, VHDL has an instruction named 

WAIT (see below) allowing a change to a  passive process statement until an event on the 

sensitivity list of WAIT modifies the process statement to be active. The syntax of a process 

statement is the following :

process-statement ::=
[process-label : ]

P R O C E S S  [(sensitivity-list)]
process-declarative-part

B E G IN
process-statement-part 

E N D  P R O C E S S  [process-label] 
process-declarative-part ::=

{ process-declarative-item } 
process-declarative-item ::= 

subprogram-declaration 
| subprogram-body 
| type-declaration 
| subtype-declaration
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| constant-declarat ion 
| variable-declaration 
| file-declaration 
| alias-declaration 
| attribute-declaration 
| attribute-specification 
| use-clause 

process-statement-part ::=
{ sequential-statement }

6.1 .3  W A IT  S ta tem en t

The wait statement causes the suspension of a  process statement or a  procedure. The syntax 

of this statement is the following :

wait-statement ::=
W A IT  [sensitivity-clause][condition-clause][timeout-clause] : 

sensitivity-clause ::= O N  sensitivity-list 
sensitivity-list ::= signal-name {, signal-name } 
condition-clause ::= U N T IL  condition 
condition ::= boolean-expression 
timeout-clause ::= F O R  ftme-expression

The sensitivity clause defines the sensitivity set of the wait statement. The execution of a 

wait statement causes the time expression to be evaluated to determine the timeout interval. 

It also causes the execution of the corresponding process statement to be suspended, where 

the corresponding process statement is the one that either contains the wait statement or is 

the parent of the procedure that contains the wait statement. The suspended process will 

resume, at the latest, immediately after the timeout interval has expired. The suspended 

process may also resume as a  result of an event occurring on any signal in the sensitivity 

set of the wait statement. If such an event occurs, the condition in the condition clause is 

evaluated. If the value of the condition is TRUE, the process will resume. If the value of 

the condition is FALSE, the process will re-suspend. Such re-suspension does not involve
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the recalculation of the timeout interval.

6.2 SPECIAL

This section introduces the graphical language for modeling the pseudo-state diagram which 

encapsulates time.

6 .2 .1  Syntax

As defined in the chapter 1, the hypothesis restricts the domain of consideration to 

a pseudo-state diagram without hierarchy and actions associated with a state written in 

VHDL. Through these hypotheses, a  specification language is defined.

The first step in a design flow is to define inputs and outputs by their relationships. 

When a designer wants to specify sequential circuits, the behavior of this system is usually 

transcribed with nodes and arrows. A node represents a state of the system in which 

either actions (written in VHDL), a  graph type representation, or other representations 

to be defined (Petri net, timing diagram, . . . )  can be associated. Therefore, within the 

study's restriction, the system has only actions associated with a  node. The second notion 

is an arrow, which represents the capability of changing state. The system behavior can be 

controlled by a condition associated with an arrow entailing a  transition from one node to 

another. This type of arrow is called a  conditional arrow. This representation is close to a 

state graph. Therefore, in order to refer to this last model, a node is designated as a  state 

and an arrow represents a conditional transition from one state to another.

Therefore, the behavior of the system is controlled by these conditions which axe sensitive 

to input variables of the system and variables computed in actions associated with a state. 

These actions can also contain variables:
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•  for intermediate computations, called computational variables. They can be ’’local” 

to a  state or "global”:

•  to represent an output: output variables.

Consequently, four variables types are defined:

•  input variables;

•  local variables;

•  global variables (they can be either variables intervening in the composition of condi­

tions or global computational variables);

• output variables.

Thus, the composition of conditional transitions is performed with the input variables 

and the global variables. The other variable types (local and output) cannot be used. A 

conditional transition is expressed by means of two notions: fact and event.

6 .2 .2  S em an tics

Once the notions and notations for the specification language have been defined, rela­

tions are specified. As we defined in Chapter 5, we have two categories of conditions: simple 

and composed conditions. This section defines the semantics for expressing these conditions 

with the specification language SPECIAL.

6.2.2.1 Sim ple Conditions

This section presents the simple conditions which axe: facts, events and life-time.
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6.2.2.1.1 Fact Relation: A fact is verified when the time interval defining the maxi­

mum duration in a  given state, and the interval defining a  fact are related as in Fig.6-1.

Figure 6-1: T im in g  Representation: Fact Verified

A fact is not verified elsewhere as illustrated in Fig. 6-2

Figure 6-2: T im ing Representation: Fact Not Verified

One generic case relating the user interface with the representation of a fact illustrated 

and interpreted is shown in Fig.6-3.

Figure 6-3: Graphical Representation of Fact

So, the transition condition from state 1 to state 2 (Fig.6-3) is a  fact. In order to 

express it, we must write it as: F  =  ”var =  val” where var is an input variable or a  non-
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computational variable and val is a  value which affects var. If  the system is in state 1 

(as in the example) and fact F is true, the system will switch to state 2. If one of these 

two statements is not verified, this change of state will not be carried out. The following 

algorithm illustrates the representation behavior of a  fact:

1. the operative part is computed :

2. the computational variables are assigned their new value :

3. the conditions of state change are consulted:

(a) if the fact F is verified then

• the time increases to t +  <5t :

• the non-computational globed variables are assigned their new value :

• the state change is carried out ;

• the system executes this principle in item - 1 - for the new state.

(b) if the fact F is not verified then

• the time increases to t +  tft :

• the non-computational global variables are assigned their new value :

• the system stays in the same state ;

• the system revalues the fact F with the same protocol as in - 3a - but without 

the revaluation of the non-computational variables.

6.2.2.1.2 E vent R ela tio n : An event is verified when the time interval defining the

duration in a given state, and the instant of the event, are related as in Fig.6-4. An event

is not verified elsewhere, as illustrated in Fig.6-5.
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Figure 6-4: Timing Representation: Event Verified

Figure 6-5: Timing Representation: event Not Verified

A generic case relating the user interface to the representation of a event is illustrated 

and interpreted as shown in Fig.6-6.

Figure 6-6: Graphical Representation of Event

So, the tran sition  condition from state  1 to state 2 is an event. In order to express it, 

we must write it as: E =  "up(var)" or " down(var)" where var is an input variable or a 

non-computational variable. If the system is in state 1 (in the example) and event E is true 

the system will switch to state 2. If one of these two statements is not verified, this change 

of state is not carried out. The following algorithm illustrates the representation behavior 

of an event:

1. the operative part is computed ;

2. the computational variables are assigned their new value ;

3. the conditions of state change are consulted:
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X ns

Figure 6-7: Life-Time Notion.

(a) if the event E is verified then

• the time increases to t 4- £t :

• the non-computational global variables are assigned their new value :

• the state change is carried out:

•  the system executes this principle in item - 1 - for the new state.

(b) if the event E is not verified then

• the time increases to t 4- <Jt :

• the non-computational global variables are assigned their new value :

• the system stays in the same state ;

• the system revalues the event E with the same protocol as in - 3a - but 

without the revaluation of the non-computational variables.

6 .2 .2 .1.3 Life-Tim e Relation: A generic case relating the user interface with the rep­

resentation of a time condition is illustrated and interpreted in Fig.6-7. So, the transition 

condition from state 1 to state 2 is a  time. In order to express it, we must write it as: T  

=  ”X unit" where X is an numerical value and unit is a  time unit (ex: s, ms, /is, ns, . . . ) .  

If the system is in state 1 (as in the example) and time T is over, the system will switch 

to state 2. If one of these two statements is not verified, this change of state is not carried 

out. The following algorithm illustrates the representation behavior of a time life notion:
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1. the operative part is computed :

2. the computational variables are assigned their new value ;

3. the conditions of state change are consulted:

(a) if the time T is over then

• the time increases to t +  <Jt :

• the non-computational global variables are assigned their new value :

• the state change is carried out:

• the system executes this principle in item - 1 - for the new state.

(b) if the time T is not verified then

• the time increases to t +  £t :

• the non-computational global variables are assigned their new value :

• the system stays in the same state :

• the system revalues the time T with the same protocol as in - 3a - but 

without the revaluation of the non-computational variables.

6.2.2.2 Com posed Conditions

We have defined the notions of fact and event. Now, we attem pt to associate these condi­

tions, the result shall be called a composed condition (CC). We know that simple conditions 

are Boolean, so we can use operators from Boole’s algebra. We suggest a few operators.

6.2.2.2.1 COM P AD D  Operator:

CC =  S C i  COMPADD S C 2■
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CC is true when S C  1 is true or S C 2 is true. Notice that this is similar to the OR 

operator, except that the time notion introduces constraints we must consider. We will see 

all the possibilities implied by this composition.

Note: The COMPADD operator is associative and commutative.

Let proposition pi and P2 be respectively in S C  1 and S C 2- In our representation, we use 

the logic operator V as OR from the classical logic OR. We characterize CC according to 

the different types SC\ and SC2.

•  first case: SC\ =  F {I\, p\) and SC2 =  F ( /2, P2) facts.

CC =  F (I\. pi) COMPADD F ( /2- P2) is a fact F ( / \p ')  with:

p ' =  pi V p2
< :

r  = h u i 2

• second case: SC  1 =  e(ti, pi) and SC2 =  e fa , P2) events.

CC =  e(fi, pi) COMPADD e(f2, P2) is an event e tf.p f)  with:

{ Pr = Pi V P2 

t' =  ti  or t' =  t2

•  th ird  case: SCi =  F ( /,p i)  and SC2 =  e(t,P2) a fact and an event.

CC =  F ( /,p i)  COMPADD e(t,p2)is an event or fact with:

r

P' =  Pi V p2
<

V

and is expressed by the predicate T R U E  defined before: T R U E [R ! ,p ') .
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We ran represent this formalization by a graphical representation:

CC is verified when one of the five cases in Fig. 6-8 holds;

i -------1 I 2 1 I------------ 1
I - 2 - !  i- 2 - h h - S h

>dI------ —-H I------------1
f i  j fi

note: The dash lines mean the second condition E2 or F2 can 
occur at anv time

'  *dI  ------1--------- I----12----- 1 I----- ------ 1el el el
I I I

Figure 6-8: Ttue Conditions of COMPADD Operator

CC is not verified when, in for one of the possible combinations shown in Figs. 6-9, 
6-10. 6-11. one of the cases holds.

FI
h [di  ------1 i------------ 1

i—=^-1 | n  |

i — 1 i---- —------1
F2 , ^ - 1  ^

1 '

Figure 6-9: False Condition: F I COMPADD F2

One Illustration of the behavior of COMPADD is proposed (its other possible combina­

tion can be found in Appendix A.1.1). For example, the condition for a transition is CC = 

FI COMPADD F2 and drawn as in Fig. 6-12.

The transition condition from state 1 to state 2 is: F I COMPADD F2. F I  and F2 

axe expressed as explained above. If the system is in state  1 (as in the example) and the
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el
I e2

I

.
e l el

I I c2
I

Figure 6-11: False Condition: e l COMPADD e2

composed condition is true the system will switch to state 2. If one of these two statements 

is not verified, this change of state does not occur. The following algorithm illustrates the 

representation behavior of a composed condition using COMPADD:

1. the operative part is computed ;

2. the computational variables are assigned their new value :

3. the conditions of state change are consulted:

(a) if the condition FI COMPADD F2 is verified then

FI COMPADD F2

Figure 6-12: COMPADD With Two Facts
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• the time increases to t -F Jt ;

• the non-computational global variables are assigned their new value :

• the state change is carried out;

• the system executes this principle in - 1 - for the new state.

(b) if the condition F I COMPADD F2 is not verified then

• the time increases to t -I- £t ;

• the non-computational global variables are assigned their new value :

• the system stays in the same state ;

• the system revalues the condition with the same protocol as in - 3a - but

without the revaluation of the non-computational variables.

6.2.2.2.2 COM PM ULT Operator:

CC =  SC i COMPMULT SC 2.

CC is true when S C  i is true and SC 2 is true. Notice tha t this is similar to the AND 

operator except tha t the time notion introduces constraints we must consider. We will see 

all the possibilities implied by this composition.

Note: The COMPMULT operator is associative and commutative.

Let propositions p\ and p2 be respectively in SC\ and SC 2. In our representation, we use 

the logic operator A as AND from the classic logic AND. We characterize CC according to 

the different types S C i  and SC 2.

• first case: S C i =  F {I\, p\) and SC 2 = F{I2, p2) facts.
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p' = Pi A p2 

/ '  =  A n l 2  ;

= [ ti,t2]

second case: S C i =  e(ti, pi) and S C 2 = e(t2, p2) events.

CC =  e{t\, pi) COMPMULT e(t2, p2) is an event e(tf.p') with:

P  — Pi A P2

third case: SC i =  F (/,p i)  and SC 2 =  e(t,p2) a  fact and an event. 

CC =  F {I.p i) COMPMULT e(£,p2) is an event or fact with:

p' =  Pi A P2 

(/ €  I  and t' = t

We can represent this formalization by a graphical representation:

• the two terms of COMPMULT are a  fact, the composed condition is verified when 

the one of the cases shown in Fig. 6-13;

'4  ‘ 4 >4I =------ 1 I------------- 1 I-----=------ 1
n { Fi ( ( fi l
. , P2 . , R ,

!4 *4 14I---------------1----------- I------ - I I -  — i  I------ *------- 1
t f i   ̂ t f i  t t f i  l  t n

.  F2 . P2 P2 P2

Figure 6-13: Ttue Condition: F I COMPMULT F2
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the two terms of COMPMULT are an event, the composed condition is verified when 

the one of the cases shown in Fig. 6-14;

i
| - - - - - - -   1 , ‘d  ‘d
Cl

d . I, LI I----•— - i
el e l

L» I If 2 e2 e2
1 I I

Figure 6-14: True Condition: e l  COMPMULT e2

• the two terms of COMPMULT are an event and a fact, the composed condition is 

verified when the one of the cases shown in Fig. 6-15:

1------------------1el
 ̂ F2 |

i. ‘‘  i

I------- -—el
1

( P2

-4 1------ ^ ---------1el
|  P2 |

el1
, P2

14

el
, - 
el i i iel el

i-5-I t F2? ] ( P I  ( t PI j

— . i— —— H ,------ f i -------- 1
I4

Figure 6-15: True Condition: e l COMPMULT F2

All other possible cases express a composed condition which is false.

Now, it is shows the behavior of COMPMULT with one possible combination (the other 

possibilities can be found in Appendix A.1.2). For example, the condition for a transition 

is cond = e l COMPMULT e2 and drawn as in Fig. 6-16.
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El COMPMULT E2

Figure 6-16: COMPMULT W ith Two Events

The transition condition from state 1 to state 2 is: e l COMPMULT e2. e l and e2 

are expressed as explained above. If the system is in state 1 (as in the example) and the 

composed condition is true the system will switch to state 2. If one of these two statements 

is not verified, this change of state is not carried out. The following algorithm illustrates 

the representation behavior of a composed condition using COMPMULT:

1. the operative part is computed;

2. the computational variables are assigned their new value;

3. the conditions of state change are consulted:

(a) if the condition e l COMPMULT e2 is verified then

• the time increases to t +  (it ;

•  the non-computational global variables are assigned their new value ;

•  the state change is carried out;

• the system executes this principle in item - 1 - for the new state.

(b) if the condition e l COMPMULT e2 is not verified then

• the time increases to  t  +  (it ;

•  the non-computational global variables are assigned their new value ;
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• the system stays in the same state ;

•  the system revalues the condition with the same protocol as in - 3a - but 

without the revaluation of the non-computational variables.

6.2.2.2.3 P IP E  O perato r:

CC =  S C i  PIPE S C 2.

CC is true when S C \  is true and S C 2 becomes true before the life-time associated with 

the considered state has elapsed. We will see how to express this operation. We characterize 

CC according to different types S C i and S C 2.

• first case: S C i  =  F{I\. pi) and S C 2 =  F (I2. pz) facts.

We have particular relationships between I \ , I 2 and Id (Id was defined in section 5.1.2 

and represents the time interval [t, t -I- ta(S)] where t is the input instant in the state 

S). Thus, with Ii =  [ti, ^i], I 2 = [t2 ,t!2\ and Id as defined before, in order to  verify 

this association, we must have:

I\ U Id 7̂  0 

i I2 U Id ^  0 ’ 

and if i < t2

to create the sequence of two facts:

• second case: S C \ — e(t\, p\) and S C 2 =  e(t2, pz) events.

In order to verify this composition, we must have t\ < t2, in the same way t\ and 

t2 6  Id to create the sequence of two events;

• third case: S C \  =  F(I\, pi) and S C 2 = e(t2, P2 ) a fact and an event.
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For this association, particular relationships exist between fy, £2 and Id- Thus, with. 

h  — [£1, £'i] and Id. defined before, in order to verify this association, we must have:

*
h  u  i d 

' h  €  Id :

and if 1 < £2 

to create the sequence of a  fact and an event ;

•  fourth case: SC\ =  e(£i, pi) and SC 2  = F(I2, P2) an event and a fact. For this 

association, particular relationships exist between £1, I2 and Id- Thus, with I2 =  

[£2,£'2] and Id defined before, in order to verify this association, we must have:

r

I2  U Id 7̂  0 

i ti E Id ;

and t\ <  £2

to create the sequence of an event and a  fact.

One illustration of the behavior of PIPE is shown below (the other possibilities can be 

found in Appendix A.1.3). For example, the condition for a transition is cond = e l PIPE  

e2 and drawn as in Fig. 6-17.

The transition condition from state 1 to state 2 is: e l PIPE e2. e l and e2 are ex­

pressed as explained previously. If the system is in state 1 (as in the example) and the 

composed condition is true the system will switch to state 2. If one of these two statements 

is not verified, this change of state does not occur. The following algorithm illustrates the 

representation behavior of a composed condition using PIPE:
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El PIPE E2

O '

1 2

Figure 6-17: PIPE With Two Events

1. the operative part is computed:

2. the computational variables are assigned their new value:

3. the conditions of state change are consulted:

(a) if the condition e l is verified then

• the time increases to t + <5t ;

•  the non-computational global variables axe assigned their new value ;

•  if the condition e2 is verified then

— the time increases to t +  <Jt ;

— the state change is carried out:

• if the condition e2 is not verified then

— the time increases to t  +  <5t ;

— the system stays in the same state ;
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(b) if the condition e l is not verified then

• the time increases to t 4- 6 t  ;

• the non-computational global variables are assigned their new value ;

• the system stays in the same state :

• the system revalues the condition with the same protocol as in item - 3a - 

but without the revaluation of the non-computational variables.

6.2.2.3 Priority Notion

All the reasoning about state change has been done for a  single condition (simple or com­

posed) implying a transition from one state to another. There is also a case in which several 

conditional arrows axe associated with a  state. Therefore, the possibility exists for going 

to several states. However, the pseudo-state graph is deterministic; it cannot have many 

possible transitions: so we must have a  system with exclusive transitions. Thus, we intro­

duce the priority notion onto each arrow. This notion signifies that if, at a  given instant, 

we have several conditions verified for the considered state, we choose the arrow with the 

greatest priority. We represent this notion with a numeric value associated with each arrow 

(Fig. 6-18).

6 .2 .3  T ranslation  in V H D L

This section presents the general structure of VHDL code generated from the internal 

model. The translation of basic elements defined in the internal model will be described. 

These basic elements are :
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condl

cond2

Figure 6-18: Priority Representation

•  model states :

•  variables used in the specification language ;

•  state changes ;

•  global structure of VHDL code.

6.2.3.1 S ta tes in VHDL

In addition to the existing types in VHDL, a  node type is defined corresponding to the 

node set S. To represent the set S in VHDL, for example S={Ari,iV2, . . a type NODE is 

defined as:

type NODE is (N 1 .N 2 , . . . ) .

A signal named STATE is of type NODE. With this signal, the system controls the change 

state and when a  modification occurs in it, this causes the activation of the new node 

operative part. To change a  new STATE value requires a  specific process. This process 

is the main process and is in relationship with all processes implementing actions of each
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node. This relationship requires the declaration of the variable STATE as a  signal because, 

in VHDL there is not other solution for exchanging information in the concurrent mode. 

Therefore, the signal STATE is declared as:

signal STATE : NODE { :=  initial value }.

In VHDL, the behavior of a  transition from one node N to another, M, is as follows. The 

system is, at any given instant t, a t a  node N. In the main process, when the STATE 

assignment takes a new value M at t with STATE <= M, the system will be in this state 

at t 4- £t. This change implies a process activation containing the operative part of M. By 

convention, this process is called state process and its label is the name of the state itself. 

The structure of the state process is as follows:

State : process 

begin

wait until (STATE =  node); -  the process wait until it activation 

: -  action description of a  node

wait on STATE; 

end process:

6.2.3.2 Variable Description in  VHDL

In the specification language, four types of variables are defined:

• in p u t;

•  state ;

• computational;
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• output :

In VHDL, by definition, input and output variables are included in the signal class. In 

addition, according to their particular utilization, state variables are also included in this 

class for the reason explained above. In VHDL, input and output signals are in the header 

of a VHDL code. However, state variables must be declared, and the syntax is :

signal signal name : type { :=  initial value } ;

Computational variables are included in the variable class in VHDL. The behavior of this 

variable class is different than that of signals. Variables have no delay when there is an 

assignment. The syntax of this declaration type is as follows:

variable var_name : type { :=  initial value } :

6.2.3.3 S tate Changes

The transition from one state to another is computed in a process named "main process” . 

This process represents a  VHDL description of internal and external functions from the 

internal model. In the main process, if the system is in a state characterized by a node, 

and a state change condition is verified, then the transition to another state (characterized 

by a new node or the same one) is computed. When the new node is known, the state 

process associated at the new node is activated. The main process perpetually scrutinizes 

the input and state variables. When conditions are verified, a node change (also known as 

system state change) occurs. It is this process which puts the system in a  wait state when 

no transition conditions are verified. The main process functions as:

• the system is in a  state characterized by a  node N. Thus, the value of the STATE 

variable is N. The main process observes, a t any given instant t, all variables used to
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create the transition conditions of the node N;

• if no conditions are true a t this instant t, the main process (and thus the system) is in 

the w ait m o d e  realized by the instruction WAIT (i.e. structure of the main process);

• if one or more conditions are true at this instant t, the main process computes a state 

change assigning the signal STATE at a  new state characterizing a node M led by a 

transition having the highest priority. Consequently, actions associated with M are 

evaluated. Thus, computational variables (variables in VHDL) and output variables 

(signals in VHDL) receive their new value respectively at t 4- £t and t+2£t.

The main process structure contains the instruction CA SE. A CASE statement selects for 

execution one of a number of alternative sequences of statements: the chosen alternative is 

defined by the value of an expression. The expression must be of a  discrete type, or of a 

one-dimensional character array type. The syntax of CASE is the following:

casejstatement ::=

case expression is

case_statement_alternative 

{ case_statement_altemative } 

end  case ; 

case_statement_alternative ::= 

w hen choices =>

sequence_oLstatements

The main process structure is illustrated through a  simple example. Let an internal model 

make up of three nodes N 2 , N z . Let transition conditions condi, cond.2 be associated
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respectively with, a  transition from to N 2 and from N 2 to W3. The main process corre­

sponding to this model is as follows:

TTICLITI • PROCESS  
BEG IN  

CASE STATE  IS
W H E N  N , =>-

EF not(condl)
TH E N

 the system is in N i
WAIT U N TIL (condl):
 If concLl is not true the system stays
 in this state

EN D  IF ;
IF (condi)

TH EN
 If concLl is true
STATE <= N 2;
 then the system changes state
 represented by N_2

EN D  IF ;
W H E N  No =>

IF not(cond2)
TH EN

 the system is in a state ofA^
WAIT U N TIL (cond2)
 If cond_2 is not true the system stays
 in this state

EN D  IF ;
IF (cond2)

 If cond_2 is true
T H E N

STATE <= N 3:
 then the system changes of state
 represented byN 3

EN D  IF :
EN D  CASE :

END PRO CESS main',

6.2.3.4 Global Software Structure

Having defined the basic elements of a  VHDL description obtained from a design specifica­

tion with the specification language, a global software structure can be proposed represent-
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ing the place of these elements.

In the entity specification (ENTITY), all input and output variables are declared with 

their type and their input-output mode. The architecture specification (ARCHITECTURE) 

contains in it declarative part : variables, signals, constants used in all processes (main and 

state processes) and types defined as describing systems nodes. The body of the architecture 

contains the internal model view. All processes are included in a  BLOCK structure. This 

BLOCK structure will be useful later when we want to insert the notion of hierarchy in the 

state graph representation of the specification language. Therefore, the global software will 

be :

E N T IT Y  O F model-name IS
P O R T  (variable — declaration^ variable — declaration] 

m o d e(I/0 )  
type;
[variable — declaratian[.variable — declaration] :
m ode(I/0 )
type: ]
):

E N D  model-name :
A R C H IT E C T U R E  behavioral OF model-name IS 
declaration of signals, variables, constants, types 
B E G IN  

B LO C K  : {block — name}
B E G IN  

m a in : PR O C E SS 
B E G IN  

CA SE S T A T E  IS
W H E N  N i ^  . . .
W H E N  N 2 =► . . .

EN D  C A SE :
E N D  P R O C E S S  :
S ta te l : PR O C E SS 
B E G IN

EN D  P R O C E S S  state  1;
State2 : PR O C E S S
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B E G IN

E N D  P R O C E SS state2:

E N D  B L O C K :
E N D  behavioral;

6 .2 .4  E xam p le  o f  S P E C IA L  Front E n d

To illustrate SPECIAL and its translation process, the example of the RAM described 

in chapter 2 is used. Fig. 6-19 is a snapshot of the SPECIAL graphic interface.

As seen in chapter 5, two strategies are defined to perform this translation into a VHDL 

code. For the RAM, these two models are fully developed in the example in section 5.2.4 

for the basic VHLLS model, and in the example in section 5.3.3 for the advanced VHLLS 

model.

The resulting VHDL code generated by SPECIAL is the following:

E N T IT Y  OF RAM IS
PORT (NRST : IN  bit:

C S :  IN  bit:
RD : IN  bit:
W R: m b it:
AD : m  BIT.VECTOR(Oto7);
D IN  : m  BIT.VECTOR(Oto3);
D O U T : O UT BIT.VECTOR{Oto3);
READY : OUT bit
);

C O N STA N T TJtEAD Y.U  : TIM E := 60ns;
C O N STA N T TJREADYJ) : T IM E  := Ins;
CO N STA N T T^A C C E SS  : TIM E := 40ns;
CO N STA N T T .W R IT E  : TIM E := 5ns;

E N D  RAM ;
ARCH ITECTURE behavioral OF RAM IS 
CO N STA N T nb-words : IN TEG ER  := 2 * *8 ;
T Y P E  typejmemory IS A R R A Y fQ TO nb-words -  1) OF B IT .V E C T O R ^  TO 3); 
T Y P E  Type^stateis(InitQ , In i t l ,  W ait — st, R /W , R , W, Err);
SIG NAL state : T yp e^ta te  := initO;
VARIABLE M : typejmemory;
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Bye) File) Options r )  Delete Craph) Create Node) Delete Object) Traps late)

*
INITO

NONE

NONE

ATTENTE

NONE

NONE ACTIONACTION

ERR
ACTION

EERIE, Nfmss FRANCE N. VALVERDE

Figure 6-19: RAM Description With SPECIAL
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FU N C T IO N  value(bv : IN B IT .V E C T O R ^  TO 7)) R E T U R N  natural IS 
VARIABLE n  : NATURAL := 0:
B E G I N  process

FO R  I IN  to'low  TO bu'high LOOP 
n : = n *  2;
IF bv(l) =' 1'

T H E N
n := n + 1;

E N D  IF ::
E N D  LOOP:
R E T U R N  n.

END value:
B EG IN  

BLOCK : {R A M  — Block}
B E G IN  

TTICLITI • PROCESS  
B E G IN  

CASE S T A T E  IS
W H E N  In itQ  =>

IF no t(N R ST  =' O')
THEN

W AIT U N T IL  N R S T  =' O';
END IF :
S T A T E  <= In itl:

W H E N  In it l  =>
IF not(N R ST  =' 1')

THEN
W AIT U N TIL  N R S T  =' 1':

END IF :
ST A T E  <= W ait — st;

W H E N  W a i t  =>
IF not(CS  =' 1')

T H E N
W AIT U N T IL  C S  =' 1';

END IF :
ST A T E  <= R /W :

W H E N  R /W  =>
IF not((W R  =' O' A N D  R D  =' 1') OR  

{W R  = ' O' A N D  RD  =' O') OR  
(W R =' 1' A N D  RD  =' 1') OR  
(W R  =' 1' A N D  RD  = ' 0'))
THEN

W AIT U N T IL  ((W R  =' O' AND RD  = ' 1') OR  
(W R  =' O' A N D  RD  = ' O') OR  
(W R  =' 1' A N D  RD  =' 1') OR  
(W R =' 1' A N D  R D  =' O'));

END IF :
IF (W R  =' O' A N D  RD  =' 1')
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T H E N
state <£= R;

ELSIF (W R  =' 1' AN D  R D  = ' O')
T H E N

state •£= W ;
ELSIF (W R  =' 1' A N D  R D  = ' 1')

TH EN
state •$= E r r ;

ELSIF (WR = ' O' AND R D  = ' O')
TH EN

state 4= E rr ;
E N D  IF ;

W H EN  R  =>
S I  n o t(N R S T  = ' O')

T H E N
W AIT UN TIL N R S T  =' O' FOR Ins:

E N D  IF :
IF N R S T  =' O'

T H E N
S T A T E  <= In it l:

ELSE
S T A T E  <= W A IT :

E N D  IF ;
W H EN W =»

s  not (N R S T  = ' O')
T H E N

W AIT UNTIL N R S T  =' O' FOR Ins:
E N D  IF :
S I  N R S T  = ' O'

T H E N
S T A T E  «= In it l:

ELSE
S T A T E  *= W A IT :

E N D  IF :
W H EN E rr

IF not(true)
T H E N

W AIT FOR Ins:
E N D  IF ;
S T A T E  <= InitQ:

E N D  CASE :
END PROCESS :
R  — p :  PROCESS  
B EG IN  

W AIT UNTIL (S T A T E  = R);
Ready <*=' 1' A FTER  T  -  R E A D Y  -  U,
'O' A F T E R  T  -  R E A D Y - U  + T -  R E A D Y  -  D;
D O U T  <f= M (value(AD)) A FT E R  T  -  A C C E SS:
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W A IT  O N  S T A T E ;
E N D  P R O C E S S  R - n :
W - p : P R O C E S S  
B E G IN  

W A IT  U N T IL  {ST A T E  =  W):
M(value{AD)) <= D IN  A F T E R  T  -  W R IT E ;
W A IT  O N  S T A T E :

EN D  P R O C E S S  W - n :
E rr  — p : P R O C E S S  
B E G IN  

W A IT  U N T IL  {ST A T E  = Err):
A SSER T F A L S E
R E P O R T  "Wrong values for WR and RD when CS rises" 
S E V E R IT Y  W A R N IN G :
W A IT  O N  ST A T E :

EN D  P R O C E S S  W - o :
E N D  B L O C K  :

EN D  behavioral:

6.3 Conclusions on SPECIAL

In Section 1.1.2, for meeting the challenges about defining a new generation of CAD 

tools, the following enumeration was proposed:

1. the hypothetical introduction of a new design process using a generalized synthesis 

approach as shown in Fig. 1-4. The emphasis in this thesis is on the front-end 

synthesis, called VHLLS:

2. if (1) is proven then the next generation of design automation tools is introduced as 

a practical consequence of a generalized synthesis process;

3. therefore, the complexity of microelectronics systems design is lessened, or at least 

maintained, by starting a design process at a higher level of abstraction:

4. and, a  high-level specification is incorporated as the entry level in an automated design 

flow.
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Item (1) represents our prim ary objective. Item (2) introduces the issue of feasibility to 

this problem. Therefore, the hypothesis of the research problem can be stated as follows: 

having (1), we can define (2) or mathematically ((1) => (2)). So, Chapters 2 and 3 identify 

the need of introducing a new generation of CAD tools and define a  formalism to characterize 

them. Chapter 4 reviews exciting methods in order to identify description methodologies 

which can be classified as the next generation of CAD tools. To have ((1) =>- (2)) true, 

Chapters 5 and 6 define a  framework enabling system specifications in a  graphical manner 

and a translation process of these specifications allowing the generation of the system at 

a lower level of abstraction. As a  result, the implication of getting (3) and (4) has been 

partially demonstrated. Indeed, to keep this problem feasible, the domain of investigation 

was restricted to a minimal configuration of the design space referred to as Cmtn (it is the 

minimal set of characteristics, a  next generation CAD tool must meet).

C h arac te ris tic s C h eck m ark
Sequentially Decomposable Activities V
Concurrently Decomposable Activities

State Transitions ~ T
Im m ed ia te  M ode C hange

Activity Completion

Delay Specification >r
Asynchronous Activities

Design for { Testability, Manufacturing, etc }
Multiple Model Representations

Reusability

Table 6.1: First Generation VHLLS Characteristics

We can state then:

T heorem  6.1  Under the minimal configuration defined by Cmin, the following relation is
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verified by the SPECIAL environment:

(hypothesis({ 1) =* (2))) =► ((3) A (4))

P roof: This thesis constitutes the proof.

As an illustration for this new generation o f CAD tools, next chapter is advocated to 

illustrate SPECIAL using three examples.
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Chapter 7

VHLLS Examples

The previous chapters introduce the notions needed to implement VHLLS. As a result, 

a  CAD tool called Specification Procedure for Electronic Circuits in Automation Language 

(SPECIAL) is defined and implemented as illustrated in Chapters 5 and 6. This chapter 

illustrates SPECIAL using three examples. The first one shows the method of capturing 

specifications using SPECIAL. The second example identifies where SPECIAL fits in a real 

design flow. The last example illustrates some limitations of this first version of SPECIAL.

7.1 Process Controller

The behavior of a computer system can be described as a set of asynchronous, concur­

rent, and interactive processes, where a process for this example is viewed as a  device defined 

as an identifiable sequence of related actions. This process performs a single execution of a 

program. It can be in one of these major states:

• Busy or executing;

• Idle and ready to begin execution;

175
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START

NONE

1 E xec_Status=com plete

Figure 7-1: Process Controller Specification
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• Idle while execution is temporarily suspended;

• Idle but not ready to begin execution.

This process uses shared system resources. The execution of a  process is suspended if 

a  resource it requires has been preempted by other processes. To make sure that a process 

is properly executed, a process controller must verify that all the resources are available 

before te llin g  the process to s tart the execution of the program. The time allocated for the 

program execution must not exceed 10ms. If the resources are not available, the process 

makes a request for them and samples their availability every 50ns until ail the resources 

are ready to deliver their services. One approach to specifying the behavior of this process 

controller is shown in Fig. 7-1.

The translation process led to the following VTIDL description:

PACKAGE process-ctrl-package IS
CONSTANT nb-process : integer 4;
TYPE status IS (not-available, available):
TYPE Resource^statusJtype IS array(0 TO nbprocess) OF status:
TYPE Process J D  IS 
RECORD

ID  : bitJuector(Z DOWNTO 0): 
in tp t: bit:

END :
TYPE Requestjresourcesdype IS array(0 TO nb.process) OF Process^!D: 
TYPE ActivejprocessJtype IS (Idle, FastJnit, FullJnit, Start, Resume, Stop): 
TYPE ExecJStatusJtype IS (IdleJ^nit, I  dle^uspended, Busy .Completed, 
Error, Power.on);

END process.ctrl jpaclzage:
USE work.processjctrl^package.all:
ENTITY ctrl-process IS 

PORT
(
ExecJiequest. Processjready : IN BOOLEAN:
Acknowledgejrequest: OUT B IT :
Resources^tatus : IN Resource^statusjtype:
Exec^status : E l  ExecJStatusJype:
PROCESSED : IN bit.vector(3 DOW NTO 0);
Requestjresaurce : OUT RequestresourcesJype;
PR O C E SSJinit: OUT Active ̂ process.type-,
Activejrrocess : OUT ActivejprocessJtype
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);
END :
ARCHITECTURE CO M P  OF ctrljrrocess IS 
BEG IN  

GRAP H E : BLOCK 
TY PE NOEUD  IS 
(
START,
IN  IT  1, Exec, Queue. Request 
);
SIGNAL E T A T : NOEUD:
SIGNAL
A va il: BOOLEAN:
BEGIN  

PRINCIPAL : PROCESS 
BEGIN  

CASE ETAT  IS
W HEN IN IT1 =>

IF not(P ROC ESS-Ready = true)
TH EN

WAIT UNTIL (Process-Ready = true);
END IF ;
ETAT  < =  Request:

W HEN Exec = >
IF not(Exec-Status =  Completed)

TH EN
WAIT TTNTTL (ExecJStatus =  Completed) FOR 100ns;

END IF :
IF (ExecJStatus =  Completed)

TH EN
ETAT < =  START:

ELSE
ETAT < =  Request:

EN D IF :
W HEN Queue = >

IF not (true)
THEN

WAIT UNTIL false  FOR 50ns:
END IF :
S I  (false)

TH EN
null;

ELSE
ETAT  < =  Request;

END IF ;
W HEN Request = >

IF (not(Auail =  true))
TH EN

WAIT UNTIL Avail =  true FOR 0ns:
END IF :
IF ((Avail =  true))

TH EN
ETAT  < =  Exec;

ELSE
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ETAT <=  Queue;
END IF :

WHEN START  = >
IF (not(Exec-Request =  true))

TH EN
WAIT UNTIL (ExecTtequest =  true);

END IF :
ETAT < =  INIT1;

END CASE :
END PROCESS PRINCIPAL;
E x e c s t : PROCESS
B E G I N  Execst

WAIT UNTIL (ETAT  =  Exec);
IF (Exec^status =  IdleJLnit)

THEN
Active-process < =  Start;

ELSIF (Execstatus =  Idlesuspended)
THEN

Active-process < =  Resume:
ELSE

ASSERT false
REPORT " Error : Process found BUSY' when it should be IDLE7 
SEVERITY ERROR:
Active-process < =  fullJnit;

END IF :
WAIT ON E T A T :

END PROCESS E xecst;
I N I T l s t : PROCESS 
BEGIN -  - I N I T ls t  

WAIT UNTIL (ETAT  =  IN  ITT):
IF ((Execstatus — Idlesuspended.) OR (Execstatus  =  IdleJnit))

THEN
ProcessTnit < =  fastJnit;

ELSIF ((Execstatus =  Powerjon) OR (Execstatus  =  Error))
THEN

ProcessTnit < =  fullJnit:
ELSE

ProcessTnit < =  idle;
END IF :
Acknowledgejrequest < — l ' /0 '  AFTER 10ns;
WAIT ON ETAT:

END PROCESS I N I T ls t;
Q ueuest: PROCESS
B E G I N  Queuest

WAIT UNTIL (ETAT  =  Queue);
FOR i IN 0 TO nb-process LOOP

IF (Resourcesstatus(i) =  notsxailable)
THEN

Requestjresource(i).ID < =  processTD;
Requestjresource(i).intpt <=' 1',’ 0'after20ns;

END IF :
END LOOP:
WAIT ON E T A T :

END PROCESS Queuest;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



180

R e q u e s t : P R O C E S S  
V A R I A B L E  i  : integer;
B E G I N  R equ ests

i  :=  0;
W A I T  U N T I L  {ETAT =  Request); 
while {i <=  nbjprocess) L O O P

I F  {Resourcesstatus(i) =  notjavailable) 
T H E N

Avail <= false:
E L S E

i  :=  i  4 -  1 :
Avail < =  true:

E N D  I F  :
E N D  L O O P :
W A I T  O N  ETAT:

E N D  P R O C E S S  Requestst:
E N D  B L O C K  GRAPHE:

E N D  COM P ;

Notice that some sections of this above VHDL code is not yet automated. For example, 

the first part of the code referred to as “package” must be defined by the designer because 

this section of code allows the designer to define the type of each input or output.

7.2 SPECIAL in MCM Design Flow

An example is selected from a real project involving satellite development. Three in­

dustrial design methods and SPECIAL are then used to implement that same example to 

obtain a framework for comparison.

The UNH’s Institute for the Study of Earth, Ocean and Space (EOS) is building a  light 

satellite [FOR94] to understand the origin of Gamma Ray Bursts (GRBs). The Cooperative 

Astrophysics and Technology SATellite (CATSAT) is a small space flight mission designed 

to better understand this phenomenon using a multi-observation approach. The general 

configuration of CATSAT includes:

•  a set of sensors able to detect GRBs and to capture relevant parameters;

•  a  communication device.
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The CATSAT scientific instruments sort and store information from the sensors into 

appropriate memory locations with three major subsystems: an Analog Electronics Unit 

(AEU); a Digital Electronics Unit (DEU); and an Automatic Gain Control system (AGC). 

The AEU prepares analog signals from individual sensors for conversion to digital channel 

signals. The DEU accepts converted digital pulse amplitudes and sorts them by channel into 

corresponding spectra. The AGC consists of gain control elements; each element regulates 

the gain of a specific sensor. The AGC performs continuous sensor calibration to ensure 

accurate measurements over time. This is accomplished by comparing sensor gains to 

the reference energies of radioactive source photons. Each sensor gain is controlled by a 

gain control element. This element consists of an up-down counter and a digital-to-analog 

converter. The counter stores the value which is directly proportional to the gain. The 

value drives a digital-to-analog converter regulating the sensor gains.

The Up-Down Counter which was selected for the presented experiment, has the follow­

ing specification:

The up-down counter is a  synchronous digital circuit which increments or decre­

ments its output every T.Trig period of time. A reset command can be applied 

any time to initialize the counter.

The presented up-down counter, depicted in Fig.7-2, is suitable for SPECIAL. Four 

different approaches are investigated. The respective entry levels are:

1. Specification level using SPECIAL to synthesize into a behavioral description;

2. KTL behavioral level;

3. Gate level;

4. Layout level (VLSI).
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Figure 7-2: CJp-Down Counter For CATSAT

In all of these methods as illustrated in Fig. 1-4, the targeted technology is MCM and the use 

of synthesis processes is prioritized [HRVJ95]. To generate the MCM layout, two methods 

are used: manual and automatic. The design environment used is provided by Mentor 

Graphics and the list of used tools includes: Design Architect. Quick VHDL, QuickSim II, 

Auto logic, IC Station, MCM station [Cor95].

The selected example has been implemented using four design flows. Results and analysis 

are presented in order to position SPECIAL among the three others methods. The use of 

synthesis processes in the Mentor Graphics™  design environment has been practiced as 

much as possible. The highest level which can be synthesized is RTL with VHDL assistance. 

Therefore, the VHDL code generated by SPECIAL needs to be adjusted to the requirement
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of RTL. Basically, the structure of the resulting code is the same. A clock signal has to be 

explicitly defined and all processors have to be guarded with control signals such as reset, 

clock, activity mode, and state variable. An additional process has to be implemented to 

manage the next state transition. Having given that new description, a  synthesis process 

is applied to generate a gate level description with some additional constraints such as the 

width of counter output (12 bits). Using the Mentor Graphics’ IC Station, the layout is 

automatically generated using the standard CMOSN library. Autoplace and autoroute rules 

are defined within the library and sufficiently generate the layout. The layout is invoked 

in the MCM environment and creates a die. The last step is to implement the counter as 

an MCM board allowing a single package with multiple dies (10) (limited by the number of 

I/O  pins of the MCM package (172)). Using the same principles and the same set of tools, 

three other designs were completed for the up-down counter:

• specification capture and a synthesis process to obtain the MCM implementation;

• an RTL-level description and a synthesis process;

•  a schematic description to exercise optimization followed by synthesis;

• an IC layout description generated from a non-optimized schematic.

For a simple design such as the up-down counter, the accurate time spent is difficult to 

determine since there was a learning curve to become familiar with the tools. Therefore, all 

time comparisons provided below are relative. Let us label:

• methodl as the MCM circuit generated through SPECIAL;

• method2 as the MCM circuit obtained from the RTL description;

• method3 as the MCM circuit resulting from the schematic description;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



185

• method4 as the MCM circuit drawn from the IC layout description.

VHDL lines Gates Transistors
Methodl 196 1258
Method2 27 161 1102
Method3 - 61 622
Method4 - 70 708

Table 7.1: Design Sizes

VHDL Be­
havior

VHDL
RTL

Gates Transistors MCM Approx.
total
time
spent

Methodl 1 +  analy­
sis

4 1 1 20 27 +  
analysis

Method2 ~ 3 +  anal­
ysis

1 1 20 25 +  
analysis

Method3 ~ ~ 80 +  
analysis

1 20 101 +  
analysis

Method4 160 +
analysis
included

20 180

Table 7.2: Design Timing in Hours

Table 7.1 shows the size of the designs which clearly depends on the level of abstraction. 

One can notice tha t method3 has the smallest number of transistors. The reason is that the 

optimization a t that level is well understood. Also, during the design process at the gate 

level, designers used some ad-hoc optimization features complemented with those from the 

Mentor Graphics™  synthesis tool. Moreover, the time spent (see Table 7.2) is substantial 

in comparison with the VHDL behavioral level method.

For the SPECIAL-oriented methodl, the VHDL generation at the behavioral level is 

very efficient. However, because no synthesis tool commercially exists to translate from 

that level to the RTL level, this transformation has to be accomplished manually increasing
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the design time. Methodl and method2 generate the design in a relatively short time 

but with roughly twice the components. For prototyping, however, these two methods are 

sufficient. The last method can be considered the worst because it consumes substantially 

more time to sketch manually the design layout and has a  larger number of transistors.

The described activities involved five students [JIA95, HEI95]. The evaluation of the 

above approaches shows that the optimal method to design a circuit depends upon the 

purpose of the circuit (prototype, final design). The SPECIAL tool is efficient to capture 

specifications and translate them into a high-level behavioral description. However, there 

is a need for a synthesis process to generate an RTL level code. W ith this gap filled, a top- 

down design process can be performed automatically from the specification directly to an 

MCM design. That would be very suitable for optimizing the prototype synthesis process.

7.3 Sample of Non Working Features in SPECIAL

The complexity of specification is limited with the first version of SPECIAL. Hierarchy 

enabling multiple design descriptions is not defined as well as concurrently decomposable 

activities. Indeed, for each state, the only representation to describe sub-activities is the 

sequential syntax of VHDL. For example, if a designer wants to describe a simple computer 

system, he (or she) is not able to specify it in a same tool environment session. No features 

allows the designer to say that a computer system is composed by a  CPU , a clock generator 

and an input/output interface. These three sub-systems are indeed behaving concurrently. 

Also, if the designer wants to specify the behavior of the CPU, a first restriction is that only 

the sequential syntax of VHDL can be used and so it is not possible to describe a sub-unit of 

the CPU such as the memory unit and the execution unit which are concurrent sub-systems. 

Such a description can be easily described using a formalism such as SpecCharts [VNG91b]
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connections: CPU.CLK: CLK.GEN.CLK;

lOJNTERFACE.sendKHY: CPU.recKHY;

CPU channel recKEY: blocking_rec (dcst: out byte); 
port CLK : in bit;
variable: ACCUM, INSTR, P C : integer

NORMAL connect*°n: MEMORY_UNIT.scndM: EXEC_UNIT.readMi

MEMORY_UNIT j

channel sendM: .
addr_hs_send(mem: in Marrayi 

signal M: Marray,______________ |

EXEC_UN1T

channel readM: addr_Hs_read(addn in integer, dest: out integer); 
signal OPCODE, A DDR: integer,___________________________

loop
if sendM.req then 

sendM(M); 
elsif scndM_extreq then

sendM_ext(M);
end if;
wait on sendM.req, 
sendM_eat_req; 

end loop;

not(OPCODE-O)

FETCH 
readM(PC, INSTR); 
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RESET 
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P C : -  0 ;  -
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loop 
CLK < -  'O’ ; 
wait for 100ns; 
CLK < - T ;  
wait for 100ns; 

end loop;
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as show in the Fig. 7-4.

As demonstrated in chapter 4, SpecChart is the most advanced tool to capture system 

specification. However, SpecChart is not able to describe directly specification given in 

section 7.1. The designer would have to go through a refinement stage in order to meet the 

syntax of SpecChart.

7.4 Closing Remarks

The first version of SPECIAL is a prototype which applies the simplest form of the 

VHLLS process. The chapter has illustrated its strengths as well as its weaknesses. Further 

developments are needed to comply to the ultimate goal of having a VHLLS able to generate 

a behavioral description from specifications described in many ways as defined in Chapter 1.
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Chapter 8 

Conclusions and Future Plans

8.1 Conclusions

This thesis is organized into two parts. The first part is the most important because it 

focuses on capturing the evolution of the design process in the design space. To perform 

this task, a  good understanding of the design space is required in order to characterize 

this evolution. As a result, a formalism is proposed to model the design space and any 

transformation processes in this space. For example, synthesis processes can be represented 

by a mathematical notation following formal rules. Also, this formal model of the design 

space allows the definition of metrics such as the distance of an evolution, the cardinal 

of a tool characteristics set, etc... Using the above formalism, the current status of CAD 

tools can be characterized and the use of the metrics allows an immediate comparison. 

Furthermore, the same formalism allows the identification of the next generation of CAD 

tools by highlighting characteristics which are not met by available tools. Having specified 

the next generation of CAD tools, an evolution mechanism in the design space is defined 

and referred to as VHLLS. Therefore, the entry description method of these tools can be
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automatically transformed in a description accepted by today’s CAD tools.

From the set of characteristics defining the next generation of CAD tools, it was noted 

in Chapter 4 that none of the description methods meet a characteristic called “Delay 

specification”. This characteristic states that a designer can specify a time constraint al­

lowing the system to change its state automatically after a certain duration. Once this 

characteristic has been identified, a minimal configuration is chosen to include the “Delay 

specification” characteristic. This minimal configuration is sufficient to demonstrate the 

feasibility of encapsulating time in the description model. So, a CAD tool called SPECIAL 

has been realized to implement the characteristics specified by this minimal configuration 

for the next generation of CAD tools.

8.2 Future Developments

Future developments need to focus on the next generation of VHLLS. This statement 

implies that the comparison metrics for the next generation of CAD tools need to be refined 

either by adding more characteristics, by ordering characteristics using a weighting scheme 

(to be defined) or by developing a hierarchy of characteristics. Any of these refinements on 

the characteristics set for the next generation of CAD tools will have direct im part: on the 

evolution of VHLLS. For example, refining the characteristic “design for test” will lead to 

a VHLLS which could generate Boundary Scan Description Language (BSDL) code. With 

the same characteristic, another problem in testing micro-electronics devices is to generate 

test patterns from a behavioral description of a system. So, the next generation of CAD tool 

could help capturing the specification of that system and automatically generate behavioral 

test patterns instead of extracting them from its behavioral description [SCG93]. Another 

characteristic to address is the physical reconfigurability of computers. It is not clear yet
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if the characteristics set introduced in this thesis contains all the elements to characterize 

this future design aspect.

Considering the formal description of the design space as defined in this thesis, another 

future, development will be to implement the second generation of SPECIAL. The first 

step will be to implement the knowledge base and its knowledge manipulation mechanisms. 

Thereafter, the other crucial characteristic to encapsulate in SPECIAL will be the “multi­

model representation” because existing description methods will have a framework to  be 

integrated in SPECIAL, increasing then the number of characteristics met.

The implementation of the previous suggestions will define the second version of SPE­

CIAL. This version will enable design cycle experiments. The conclusions of these experi­

ments will draw a road map for further developments.
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A ppendix A

SPECIAL

A .l Semantic of the Graphical Interface
A. 1.1 COM P ADD Semantic

CC =  e l COMPADD F2

The condition for a transition is CC = el COMPADD F2 and drawn as in Fig. A-l.
The transition condition from state 1 to state 2 is: el COMPADD F2. el F2 are 

expressed as explained in Chapter 6. If the system is in state I (in the example) and the 
composed condition is true the system will switch to state 2. If one of these two statements 
is not verified, this change of state does not occur. The following algorithm illustrates the 
representation behavior of an event:

1. the operative part is computed ;

2. the computational variables are affected with their new value ;

3. the conditions of state change are consulted:

(a) if the condition el COMPADD F2 is verified then
• the time increases to t -f St ;
• the non-computational global variables are affected with their new value ;
• the state change is carried out ;
• the system executes this principle in item - 1 - for the new state.

El COMPADD F2

Figure A-l: COMPADD With Event and Fact
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(b) if the condition e l COMPADD F2 is not verified then
• the time increases to t +  <ft ;
• the non-comp utational global variables are affected with their new value ;
• the system stays in the same state ;
• the system revalues the condition with the same protocol like item - 3a - but

without the revaluation of the non-computational variables.

CC =  el COMPADD e2

The condition for a transition is CC = el COMPADD e2 and drawn as in Fig. A-2.

El COMPADD E2

Figure A-2: COMPADD with two events

The transition condition from state 1 to state 2 is: el COMPADD e2. e l and e2 are 
expressed as explained in Chapter 6. If the system is in state 1 (in the example) and the
composed condition is true the system will switch to state 2. If one of these two statements
is not verified, this state change is not carried out. The following algorithm illustrates the 
representation behavior of a composed condition using COMPADD:

1. the operative part is computed ;

2. the computational variables are assigned their new value ;

3. the conditions of state change are consulted:

(a) if the condition el COMPADD e2 is verified then
• the time increases to t -|- 6 t ;
• the non-computational global variables are assigned their new value ;
• the state change is carried out ;
• the system executes this principle in item - 1 - for the new state.

(b) if the condition e l COMPADD e2 is not verified then
• the time increases to t +  Jt ;
• the non-computational global variables are assigned their new value ;
• the system stays in the same state ;
• the system revalues the condition with the same protocol like item - 3a - but 

without the revaluation of the non-computational variables.
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El COMPMULT F2

Figure A-3: COMPMULT With Event and Fact

A. 1.2 COMPMULT Semantic

CC =  e l COMPMULT F2

The condition for a transition is CC = e l COMPMULT F2 and drawn as in Fig. A-3.
The transition condition from state 1 to state 2 is: e l COMPMULT F2. e l and F2 are 

expressed as explained in Chapter 6. If the system is in state 1 (in the example) and the 
composed condition is true the system will switch to state 2. If one of these two statements 
is not verified, this change of state does not occur. The following algorithm illustrates the 
representation behavior of an event:

1. the operative part is computed ;

2. the computational variables are assigned their new value ;

3. the conditions of state change are consulted:

(a) if the condition el COMPMULT F2 is verified then
• the time increases to t +  St ;
• the non-computational global variables are assigned their new value ;
• the state change is carried out ;
• the system executes this principle in item - 1 - for the new state.

(b) if the condition el COMPMULT F2 is not verified then
• the time increases to t +  St ;
• the non-computational global variables are assigned their new value ;
• the system stays in the same state ;
• the system revalues the condition with the same protocol like item - 3a - but 

without the revaluation of the non-computational variables.

CC =  FI COMPMULT F2

The condition for a transition is CC = FI COMPMULT F2 and drawn as in Fig. A-4.
The transition condition from state 1 to state 2 is: FI COMPMULT F2. FI and F2 are 

expressed as explained in Chapter 6. If  the system is in state 1 (in the example) and the 
composed condition is true the system will switch to state 2. If one of these two statements 
is not verified, this change of state is not carried out. The following algorithm illustrates 
the representation behavior of an event:

1. the operative part is computed ;
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FI COMPMULT F2

Figure A-4: COMPMULT W ith Two Facts

2. the computational variables are assigned their new value ;

3. the conditions of state change are consulted:

(a) if the condition FI COMPMULT F2 is verified then
• the time increases to t -f £t ;
• the non-computational global variables are assigned their new value ;
• the state change is carried out ;
• the system executes this principle in item - 1 - for the new state.

(b) if the condition FI COMPMULT F2 is not verified then
• the time increases to t ■+■ 5t ;
• the non-computational global variables are assigned their new value ;
• the system stays in the same state ;
• the system revalues the condition with the same protocol like item - 3a - but 

without the revaluation of the non-computational variables.

A .1.3 PIPE Semantic

CC =  F I PIPE F2

The condition for a transition is CC = FI PIPE F2 and drawn as in Fig. A-5.
The transition condition from state 1 to state 2 is: F I PIPE F2. FI and F2 are expressed 

as explained in Chapter 6. If the system is in state 1 (in the example) and the composed
condition is true the system will switch to state 2. If one of these two statements is not
verified, this change of state is not carried out. The following algorithm illustrates the 
representation behavior of an event:

1. the operative part is computed ;

2. the computational variables are assigned their new value ;

3. the conditions of state change are consulted:

(a) if the condition F l is verified then
• the time increases to t +  £t ;
•  the non-computational global variables are assigned their new value ;
• the condition F2 is verified then

-  the time increases to t -f St ;
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FI PIPE F2

4 =>

FI

Figure A-5: PIPE with two facts

-  the state change is carried out;
• the condition F2 is not verified then

-  the time increases to t +  8 t ;
-  the system stays in the same state ;

(b) if the condition F l is not verified then
• the time increases to t +  £t ;
• the non-computational global variables are assigned their new value ;
• the system stays in the same state ;
• the system revalues the condition with the same protocol like item - 3a - but

without the revaluation of the non-computational variables.

CC =  el PIPE F2

The condition for a transition is CC =  el PIPE F2 and drawn as in Fig. A-6.
The transition condition from state 1 to state 2 is: el PIPE F2. el and F2 are ex­

pressed as explained in Chapter 6. If the system is in state I (in the example) and the
composed condition is true the system will switch to state 2. If one of these two statements 
is not verified, this change of state does not occur. The following algorithm illustrates the 
representation behavior of an event:

1. the operative part is computed ;

2. the computational variables are assigned their new value ;

3. the conditions of state change are consulted:
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El PIPE F2

Figure A-6: PIPE W ith Event and Fact

(a) if the condition el is verified then
• the time increases to t -i- St ;
• the non-computational global variables are assigned their new value ;
• the condition F2 is verified then

— the time increases to t +  <ft ;
— the state change is carried out;

• the condition F2 is not verified then
— the time increases to t +  St ;
— the system stays in the same state ;

(b) if the condition el is not verified then
• the time increases to t -f- <5t ;
•  the non-computational global variables are assigned their new value ;
• the system stays in the same state ;
• the system revalues the condition with the same protocol like item - 3a - but 

without the revaluation of the non-computational variables.

CC =  F I PIPE e2

The condition for a transition is CC = F l PIPE e2 and drawn as in Fig. A-7.
The transition condition from state 1 to state 2 is: Fl PIPE e2. F l and e2 are ex­

pressed as explained in Chapter 6. If the system is in state 1 (in the example) and the 
composed condition is true the system will switch to state 2. If one of these two statements 
is not verified, this change state does not occur. The following algorithm illustrates the 
representation behavior of an event:
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F1PIPEE2

Figure A-7: PIPE with a fact and an event

1. the operative part is computed ;

2 . the computational variables are assigned their new value ;

3. the conditions of state change are consulted:

(a) if the condition F l is verified then
• the tim e increases to t +  £t ;
• the non-computational global variables are assigned their new value ;
• the condition e2 is verified then

— the time increases to t +  St ;
— the state change is carried out;

• the condition e2 is not verified then
— the time increases to t + <5t ;
— the system stays in the same state ;

(b) if the condition F l is not verified then
• the time increases to t + 8 t ;
• the non-computational global variables are assigned their new value ;
• the system stays in the same state ;
• the system revalues the condition with the same protocol like item - 3a - but 

without the revaluation of the non-computational variables.
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FILE

XXX.TXT

COMPILOR #1-1 COMPILOR #1-2 COMPILOR #1-3

FILE
FILE

XXX.MOD
XXX.GRAPH

COMPILOR #2
X-WINDOWS

FILE

XXX. VHDL

Figure A-8: Software Structure of SPECIAL

A. 2 Software Structure
A software was created to implement the function of SPECIAL. It consists of a graphic 
interface using the X-windows protocol (in particular the xview libraries). Four compilers 
written LEX and YACC perform the translation of graphical data into a VHDL code file 
having the extension “.vhdl” . A list of intermediate files is generated, which are:

•  “XXX.GRAPH” which is the binary form of the graphics;

• “XXX.TXT” which is a direct textual form of the graphics;

• “XXX.MOD” which implements the intermediate model described in chapter 5.

From the file “XXX.TXT” , the software can regenerate the file “XXX.GRAPH” which 
improves the portability of this environment. So, from the graphic interface, a designer can 
specify a system. By saving the design, the file “XXX.graph” is created. A compiler is then
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applied to this file to create a  “XXX.TXT” file. A second compiler is applied to generate the 
intermediate representation of the system under design. Finally, a last compiler translates 
this intermediate model into a  VHDL file.
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A ppendix B 

Basic Set Theory

This appendix is a  brief overview of the set theory. Section B .l discusses about the language 
used in the set theory. Section B.2 introduces the notion of classes over a set.

B .l The Basic Language of Set Theory
We assume the notion of set. A set E  is a term having a relation: € (a 6  E  means than a 
is in E). Intuitively, E  is a collection of objects a such as a E E  except all the others.

The language which we shall use for set theory is the first-order predicate calculus 
with equality. Higher order predicate calculus is an extension of the first-order one. The 
basic language consists of all the expressions obtained from x  = y  and x  E E  by the 
sentential connectives ^  (not), =*- (if . . . th e n  . . . ) ,  A (and), V (or), (if and only if), 
and the quantifiers 3x (there exists x) and Vx (for all x). These expressions are called 
formulae. For metamathematical purposes we can consider the connectives ^  and V as the 
only primitive connectives, and the other connectives are considered as obtained from the 
primitive connectives (i.e. <f> Aip is V For the same reason, we can consider 3 as 
the only primitive quantifier. We also use the abbreviation x  ^  y and x  0 E  for ->x = y  and 
- ‘X E E. When we write 3\xcf> we read: there is exactly one x such that <j>, for the formula 
3y\/x{x = y <=> <f>) where y is a free variable (i.e. a free variable can have different values). 
Finally, we can write (3x E E)<p and (Vx 6 E)<p for 3x(x E E  V (p) and Vx(x £  E  =$■ <j>) 
respectively, and read: “there is an x  in E  such that <fp, and “for all x  in E , 0” .

A formula with free variables says something about the value of its free variables. A 
formula without free variables makes a statement not about the value of some particular 
variable, but about the universe which the language describes. A formula of the latter kind 
is called a sentence.

Whenever we use a formula with free variables as an axiom or as a theorem we mean 
to say that the formula holds for all possible values given to its free variables. Thus, if we
state a theorem 3C/((/ =  V  U W ) we mean V W W 3 U  {U =  V  U W )

By a theory we mean a set of formulae, which are called axioms of the theory. If T  is
a theory, we write T  b  <f> for is provable from T ”.

When we refer to a formula as <f>(x) this means that we are interested in the relevant 
cases where x  is a free variable.
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B.2 Classes
A class is given, by a formula <f>(x) as the class of objects x for which <f>{x) holds. Such 
a class is denoted {x  | 4>{x)}. The expression {x  [ <p(x)} is called a class term. The 
formula may also contain free variables other than x. These other variables are called 
parameter. Different values of the parameters may yield different classes. For example, the 
class [x \ x  is a natural number A x  < y}  is a class with no member if y = 0, has a  single 
number if y  =  1, and so on. Note also that sets are classes too i.e. the set E  is the class 
{ x \ x e E }

Since {x | <f>(x)} is a class of all x ’s for which <f>(x) holds, we take the statement y  6 
{x  | 4>(x)} to stand for <f>(y) (where <f>(y) is the formula obtained from cf>(x) by proper 
substitution of y for x). Since we consider two sets with the same members to be equal, we 
should also consider two classes with the same member as equal. We can have the statement
{x  | <f>{:r)} =  {y | ip(y)} which stand for Vz(0 (z) <=>• ip(z)). Consequently, if y 6  {z | <p(x)}
then x  E {y | ip(y)} and {x | <t>{x)} =  {y | ip(y)}. Since the sets are classes, we admit also 
the statement E = {x  | <f>(x)} and {x  | <f){x)} =  E  and let them stand for Vz(z 6  E  <£(z)). 
Saying that one class is a  member of the other means that the first class is equal to  a set 
which is member of the other. Accordingly, we admit the statement {x  | <f>(x)} 6  {y | ip(x)} 
and let it stand for 3z(z =  {x | <t*{x)} V z 6  {x | <fi(x)}), and similarly we let the statement 
{ r | <f>[x)\ 6  y stand for 3z(z =  {a: | <j>(x)} A z € y).

B.3 Relations
Relations, in the set theory, is an important notion. A class S  is said to be a (binary) 
relation if every member x  of S  is an ordered pair. We write them y S  z  for <  y, z > 6  S. 
Moreover, we say that a relation is an equivalence relation on a class A when there is a 
function F  on A such that

Vx, y  6  A, F{x)  =  F{y) o  xR y  (B.l)

The classes (u | u R x \ are called equivalent classes of the relation R. If R  is such that its 
equivalence classes are sets, then we can define F(x)  =  {u | uRx} and it is easily seen that 
Expression B.l holds. We consider often equivalent classes as sets. The values of F{x)  are 
indeed sets and can be regarded as the representatives of the equivalence classes. Therefore, 
as introduced in Section B.2, the class F(x)  can be a class term of a set A*. So, we admit 
that an equivalence class quotient of A  under R, noted A* =  A /R , is defined as

A* =  ( J  {u | uRz}  (B.2)
z € A

where y 6  {u | uRz} <=> {it | uRy} =  {u  | uRz}.

B.4 Fundamentals of Morphism
In  the set theory, a structure is an “ordered pair” <  A, R >  where A is a class a n d  R  c  A x A 
(iZ is a binary relation on A). A is said to be the universe or the class (or the set, if 
appropriate) of the structure < A, R > . < A, R  > is said to be a structure on the class A.
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The structure <  B , S  > is a substructure of < A, R > i £ B Q A  and S  =  R  | B  (i.e. for all 
x , y  E B , y  €  B  xSy  &  xRy).

A function F  is a morphism or homomorphism of the structure <  A, R  > into the 
structure < B ,S  > if F  is an injection of A  into B  and for all x, y  6  A, xR y  <=>■ F(x)SF{y).  
An isomorphism of the structure < A, R  > onto the structure < B, S  > if F  is a bijection 
of A  onto B  and for all x ,y  6  B , x S y  F ~ l (x)RF~l (y).
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Appendix C

VHDL Code of a RAM Cell

This appendix contains the VHDL code of the RAM cell described in Section 2.3. Most of 
the code was automatically generated from a graphical description called Design Architect 
from Mentor Graphics CAD environment. Section C.l contains the VHDL code from the 
top level data flow of the RAM cell.

C .l Top Level VHDL code of the RAM Cell

NRST,• " "s.

DOUT

READY

Figure C-l: Context Diagram

This code defines the interface of the RAM cell. It is a description of Fig. C-l. So, 
the corresponding VHDL code automatically generated by Design Architect is in two parts. 
The first one is the entity which defines the interface of the RAM cell. In Fig. C-l, the 
following entity declaration interprets the arrows shown.
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—  Component : ram

—  Generated by System Architect version v8.5_2.2 by nav on Feb 27, 97

—  Source views
—  $DESIGNS/ram/ram_types/types

LIBRARY std ;
USE std. standard.all;
LIBRARY designs_ram_sdslocal ;
USE designs_ram_sdslocal.ram_types.all ;

ENTITY ram IS 
PORT (

AD : IN address_type;
CS : IN bit;
DIN : IN data_type;
NRST : IN bit;
RD : IN bit;
WR : IN bit;
DOUT : OUT data_type;
READY : OUT bit

) ;
END ram ;

The second part of the VHDL description is the architecture of the description. This 
description is graphically represented as shown in Fig. C-2
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NRST.

•READY

DOUT

Figure C-2: Dataflow in Mentor Graphics’ Design Architect

The VHD1 code models a block in the dataflow i.e. “control” and “storage” using 
the statement component. The interconnections are made through particuliar variables in 
VHDL called signal.

—  Component : ram

—  Generated by System Architect version v8.5_2.2 by nav on Feb 27, 97

—  compatible :: AutoLogic II
—  Source views
—  $DESIGNS/ram/data_flow

ARCHITECTURE data_flow OF ram IS 
COMPONENT control 

PORT (
CS : IN bit;
NRST : IN bit;
RD : IN bit;
WR : IN bit; 
en_err : OUT bit;
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en_read : OUT bit; 
en_write : OUT bit; 
READY : OUT bit

) ;
END COMPONENT ;

COMPONENT storage 
PORT C

AD : IN address_type; 
DIN : IN data_type; 
en_err : IN bit; 
en_read : IN bit; 
en_write : IN bit; 
DOUT : OUT data_type

>;
END COMPONENT ;

FOR ALL : control USE ENTITY designs_ram_sdslocal.control ;
FOR ALL : storage USE ENTITY designs_ram_sdslocal.storage ;

—  Internal Signals
SIGNAL en_err : bit ;
SIGNAL en_read : bit ;
SIGNAL en_write : bit ;

BEGIN

instance_control : control 
PORT MAP (

CS,
NRST,
RD,
WR,
en_err, 
en_read, 
en_write,
READY

);

instance_storage : storage 
PORT MAP (

AD,
DIN, 
en_err, 
en_read, 
en_write,
DOUT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



214

) ;

END data_flow ;
Notice that several signals have a none standard type such as bit, bit_vector. In VHDL, 

the user can customize signal types and it is performed as follows:

—  Component : ram_types

—  Generated by System Architect version v8.5_2.2 by nav on Feb 27, 97

PACKAGE ram_types IS
SUBTYPE data_type IS bit.vector(3 DOWNTO 0) ;
SUBTYPE address.TYPE IS bit.vector(7 DOWNTO 0) ;

END ram.types ;
Therefore, for each block in Fig. C-2, a description needs to be provided. So, in the 

case of the RAM cell, the block referred to as “control” is a state machine as shown in Fig. 
C-3.

The corresponding description of Fig. C-3 is decomposed in two parts: the interface 
definition and the description itself. So, the interface is:

—  Component : control

—  Generated by System Architect version v8.5_2.2 by nav on Feb 27, 97

—  Source views :-
—  $DESIGNS/ram/ram_types/types

LIBRARY std ;
USE std.standard.all;
LIBRARY designs_ram_sdslocal ;
USE designs_ram_sdslocal. ram.types. all ;

ENTITY control IS 
PORT (

CS : IN bit;
NRST : IN bit;
RD : IN bit;
WR : IN bit; 
en.err : OUT bit; 
en.read : OUT bit; 
en.write : OUT bit;
READY : OUT bit

);
END control ;
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State Transition Diagram for control
wntê afOjV

Default Actions

en_ read  <= 'O'N 
en_w rite <= '0 '' 

en_err <= 'OA 
READY<='0 NRST = ’01

RST = ’0

INRST = 'O’ - l l

\NRST^m
INRST = '0- ~~g

mm

' /  - - " Win

1 eo_wr3e<» *1
< ,  >y . y-x.vk-.v.’.

mm (WR = 'V \
n d R D  = 'Cn -II

's\ ^  ’ ' (WR 
and  RD

»» -

(RD = ’O’ \  
and WR = ’O’) \  

or (RD = T  \  
and WR = ’in  - 3

Figure C-3: State machine in Mentor Graphics’ System Architect
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And, the state machine model is:

—  Component : control

—  Generated by System Architect version v8.5_2.2 by nav on Feb 27, 97

—  sensitivity_attr :: ’transaction
—  Source views
—  $DESIGNS/ram/control/state_machine
—  $DESIGNS/ram/ram_types/types

ARCHITECTURE state_machine OF control IS 
TYPE control_state_type is ( 

start_state,
INIT1,
WAIT.ST,
R.W,
R, 
w,
ERR

);

—  SDS Defined State Signals
SIGNAL current_state : control_state_type : = start.state ; 
SIGNAL next.state : control.state.type := start.state ; 

BEGIN

clocked : PROCESS ( 
next.state

) •

VARIABLE prop .delay : time := 1 ns ;
BEGIN

current.state <= next.state aifter prop.delay ; 
END PROCESS clocked ;

set.next.state : PROCESS ( 
current.state,
CS’transaction,
NRST’transaction,
RD’transaction,
WR’transaction
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BEGIN
next.state <= current.state;
CASE current.state IS
WHEN start.state =>

IF ( NRST = ’O’ ) THEN 
next.state <= INIT1;

END IF;

WHEN INIT1 =>
IF C NRST = ’I’ ) THEN 

next.state <= WAIT.ST;
END IF;

WHEN WAIT.ST =>
IF ( CS = ‘I* ) THEN 

next.state <= R.W;
ELSIF ( NRST = ’O' ) THEN 

next.state <= INIT1;
END IF;

WHEN R.W =>
IF C (WR = ’1’ and RD = 'O’) ) THEN 

next.state <= W;
ELSIF ( (WR = 'O’ and RD = ’I’) ) THEN 

next.state <= R;
ELSIF ( (RD = ’O' and WR = ’O’) or (RD = >1' and WR = *1’) ) THEN 

next.state <= ERR;
END IF;

WHEN R =>
IF ( NRST = ’O ’ ) THEN 

next.state <= INIT1;
ELSIF ( TRUE ) THEN

next.state <= WAIT.ST;
END IF;

'WHEN W =>
IF ( NRST = 'O’ ) THEN 

next.state <= INIT1;
ELSIF ( TRUE ) THEN

next.state <= WAIT.ST;
END IF;

WHEN ERR =>
IF ( TRUE ) THEN

next.state <= start.state;
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END IF;

WHEN OTHERS =>
NULL;

END CASE;

END PROCESS set.next.state ;

unclocked : PROCESS ( 
current.state,
CS’transaction, 
NRST ’ transaction, 
RD ’ transaction,
WR’ transaction

BEGIN
—  Default Actions 
en.read <= ’O ’; 
en.write <= ’0’ ; 
en.err <= ’0’ ;
READY<=’0’;

—  State Actions 
CASE current.state IS 
WHEN start.state =>

READY<=)0*; 
en_write<=’0’; 
en_read<='01; 
en.err<=’O ’;

WHEN INIT1 =>
en.read <= ’O’; 
en_write <=’0’;

WHEN WAIT.ST => 
en.read <= ’O’; 
en_write <= ’0 ’;

WHEN R =>
en.read <= ’1’;
READY <= ’1’ AFTER 60ns, ’0' after 61ns; 

-WHEN W =>
ea_write <= ’1’ ;

WHEN ERR =>
en.err <= ’1’;

WHEN OTHERS =>
NULL;
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END CASE;

END PROCESS unclocked ;
END state_machine ;

For the block referred to as “storage” in Fig C-2, the corresponding description is a 
customized description written directly in VHDL. It specifies a method of storing data. 
The interface definition is:

—  Component : storage

—  Generated by System Architect version v8.5_2.2 by nav on Feb 27, 97

—  Source views
—  $DESIGNS/ram/ram_types/types

LIBRARY std ;
USE std.standard.all;
LIBRARY designs_ram_sdslocal ;
USE designs_ram_sdslocal.ram_types.all;

ENTITY storage IS 
PORT C

AD : IN address_type;
DIN : IN data_type; 
en_err : IN bit; 
en_read : IN bit; 
en_write : IN bit;
DOUT : OUT data_type

) ;
END storage ;

And, the model of the storage function is:

—  Component : storage

—  Generated by System Architect version v8.5_2.2 by nav on Feb 27, 97

—  sensitivity_attr :: 'transaction

ARCHITECTURE spec OF storage IS 
BEGIN

vhdl_storage : PROCESS (
AD'transaction, 
DIN'transaction,
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en_read ’ transaction, 
en.write ' transaction 
en_err ' transaction)

constant T.READY.U 
constant T_READY_D 
constant T_ACCES 
constant T_WRITE

: time := 60 ns; 
: time := 1 ns;
: time := 40 ns; 
: time := 5 ns;

VARIABLE prop.delay 
CONSTANT nb.words 
TYPE type_memoire IS ARRAY 
VARIABLE M

: TIME := 1 ns;
: integer := 2**8;
(0 to nb_words-l) of BIT_VECT0R(0 to 3); 
: TYPE_memoire;

function value(bv : in BIT_VECT0R) return natural is 
variable n : natural := 0; 

begin
for 1 in bv'low to bv'high loop 
n := n*2;
if bv(l) = '1' then 
n:= n+1; 

end if; 
end loop; 
return n; 

end value;
BEGIN

IF (en_write = '1') THEN
M(value(AD)) <= DIN after T.write;

ELSIF (en.read = '1') THEN
DOUT <= M(value(AD)) after T.acces;

ELSIF (en.err = ’1’) THEN 
Assert FALSE
report "Wrong Values are observed on WR and RD on the rising edge of CS" 
severity WARNING;

ELSE 
NULL ;

END IF;
END PROCESS vhdl.storage ;

END spec ;
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