
Studying and Analysing Transactional
Memory Using Interval Temporal Logic

and AnaTempura

PhD Thesis

Amin Mohammed El-kustaban

Software Technology Research Laboratory
Faculty of Technology
De Montfort University

United Kingdom

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

May 2012

Department or School Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
University Web Site URL Here (include http://)

Declaration of Authorship

I, AMIN EL-KUSTABAN, declare that this thesis titled Studying and Analysing Transactional

Memory Using Interval Temporal Logic and AnaTempura and the work presented in it are

my own and original. It is submitted for the degree of Doctor of Philosophy at De Montfort

University. The work was undertaken between July 2008 and February 2012.

i

To my lovely family..

Abstract

Transactional memory (TM) is a promising lock-free synchronisation technique which offers a

high-level abstract parallel programming model for future chip multiprocessor (CMP) systems.

Moreover, it adapts the well established popular paradigm of transactions and thus provides

a general and flexible way to allow programs to read and modify disparate memory locations

atomically as a single operation. In this thesis, we propose a general framework for validat-

ing a TM design, starting from a formal specification into a hardware implementation, with

its underpinning theory and refinement. A methodology in this work starts with a high-level

and executable specification model for an abstract TM with verification for various correctness

conditions of concurrent transactions. This model is constructed within a flexible transition

framework that allows verifying correctness of a TM system with animation. Then, we present a

formal executable specification for a chip-dual single-cycle MIPS processor with a cache coher-

ence protocol and integrate the provable TM system. Finally, we transform the dual processors

with the TM from a high-level description into a Hardware Description Language (VHDL),

using some proposed refinement and restriction rules. Interval Temporal Logic (ITL) and its

programming language subset AnaTempura are used to build, execute and test the model, since

they together provide a powerful framework supporting logical reasoning about time intervals

as well as programming and simulation.

Acknowledgements

All thankfulness to God, the Beneficent, the Merciful, the One, on who all depend, and none is

like Him.

Gratitude and many thanks must be expressed to :

• My first supervisor Dr. Ben Moszkowski for his constructive criticism, experienced guid-

ance during the preparation of this thesis.

• My second supervisor Dr. Antonio Cau for hours of discussions and the patience with

which he checked and corrected many technical errors.

• My advisor Professor Hussein Zedan for his inspirational leadership and advice.

• My family for their encouragement and full support during the preparation of this thesis.

• All our colleagues at the STRL for the valuable discussions during all these years.

• My friend Mr. Moussa Barkhadleh for his help and support throughout the period of my

study.

iv

Publications

1. Amin El-kustaban, Ben Moszkowski and Antonio Cau . Formalising of Transactional

Memory using Interval Temporal Logic (ITL). To appear in Proceedings of the Spring

World Congress on Engineering and Technology (SCET 2012) , IEEE , Xi’an, China,

May 2012.

2. Amin El-kustaban, Ben Moszkowski and Antonio Cau. Specification Analysis of Trans-

actional Memory using ITL and AnaTempura. In Proceedings of The International Multi-

Conference of Engineers and Computer Scientists 2012 (IMECS’12), pp176-181, News-

wood Limited,Hong Kong, March 2012.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

Publications v

List of Figures x

List of Tables xii

List of Abbreviations xiii

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Research Objectives . 2
1.3 Research Methodology . 3
1.4 Success Criteria . 5
1.5 Thesis Outline . 5

2 Background 8
2.1 Multiprocessor . 8

2.1.1 Computer Architecture Taxonomy 9
2.1.2 Single-Chip Multiprocessor . 11

2.2 Memory Synchronisation . 12

vi

Contents vii

2.2.1 Lock-Based Techniques . 12
2.2.2 Lock-Free Techniques . 14

2.3 Transactional Memory . 16
2.3.1 Transaction notion . 16
2.3.2 Hardware, Software and Hybrid TM Implementations 20

2.4 Formalisation of Transactional Memory . 23
2.4.1 Motivation . 23
2.4.2 Related Work . 24

2.5 Summary . 28

3 Preliminaries and Formal Logical Framework 29
3.1 Introduction . 29
3.2 Framework Design . 30
3.3 Interval Temporal Logic . 33

3.3.1 Syntax of ITL . 33
3.3.2 Semantics of ITL . 34
3.3.3 Derived Construct . 36
3.3.4 Applications . 38
3.3.5 Justification of ITL for TM . 39

3.4 Tempura and Refinement . 40
3.4.1 Tempura and AnaTempura . 40
3.4.2 Refinement of ITL into Tempura . 41
3.4.3 Refinement Mapping Technique . 42

3.5 Summary . 44

4 Abstract Model of Transactional Memory 45
4.1 Introduction . 45
4.2 Computational Model for TM . 47
4.3 Formalisation of TM Safety Properties . 58

4.3.1 Read Consistency . 59
4.3.2 Conflict Free . 64
4.3.3 Strict Serialisability . 68

4.4 Verification of Abstract TM Model . 71
4.5 Summary . 81

5 Validation and Refinement of a TM System 82
5.1 Introduction . 82

Contents viii

5.2 Example of TM System . 83
5.2.1 Cache and Coherency Specification 85
5.2.2 Specification of the TM System . 92

5.3 Execution and Validation . 103
5.3.1 Executable Specification of the TM System 104
5.3.2 Queue Example . 105
5.3.3 Queue with TM Execution and Animation 110

5.4 Verification Using Refinement Mapping . 116
5.5 Summary . 123

6 Specification of Chip Dual Processor 124
6.1 Introduction . 124
6.2 CDP Architecture Overview . 126
6.3 Microprocessor . 129
6.4 Cache Structure and Specification . 136
6.5 Snoopy Bus Structure and Specification . 143
6.6 Discussion . 147
6.7 Refinement and Validation . 148

6.7.1 VHDL Structure and Modeling . 150
6.7.2 Restrictions and Refinement Rules . 151
6.7.3 Transformation and Validation . 154

6.8 Summary . 161

7 Conclusion and Future Work 162
7.1 Summary of Thesis . 162
7.2 Contributions . 164
7.3 Success Criteria Revisited . 165
7.4 Limitations . 167
7.5 Future Work . 168

Bibliography 169

Appendix A. Executable Specification of Abstract TM 180

Appendix B. Executable Specification of CDP 190

Contents ix

Appendix C. VHDL Code of CDP 195

List of Figures

2.1 Deadlock problem. 13

3.1 Part 1 of framework. 31
3.2 Part 2 of framework. 32

4.1 Framework’s main part. 46
4.2 The proposed TM abstract model. 50
4.3 Local consistency. 60
4.4 Doomed consistency. 62
4.5 Lazy conflict. 65
4.6 Eager conflict. 66
4.7 Mixed conflict. 67
4.8 Strict and Non-Strict Serialisability. 70
4.9 Safety proof. 71

5.1 Proposed framework. 83
5.2 Cache and Tag Blocks . 86
5.3 Transactional states diagram . 87
5.4 State diagram for the Request-Cache in the MESI protocol 90
5.5 State diagram for the Snooped-Cache in the MESI protocol 91
5.6 The proposed TM abstract model. 94
5.7 First core part of tmimp executable specification 106
5.8 Second core part of tmimp executable specification 107
5.9 Concurrent queue algorithm . 108
5.10 Queue example: memory initialize . 109
5.11 Queue example: produce and consume the first shared counter 109
5.12 Queue with TM system tmimpq output before modification 112
5.13 Queue with TM system tm′

impq output after modification 114

x

List of Figures xi

6.1 Proposed framework. 125
6.2 Chip dual processor. 126
6.3 Abstract view of MIPS processor architecture. 129
6.4 Specification of Control Unit. 133
6.5 MIPS 32-bit instruction formats. 133
6.6 Specification of Instruction Decode Unit. 135
6.7 Cache interfaces structure. 137
6.8 Specification of bus-side controller of the transactional cache. 141
6.9 Specification of the bus interface. 142
6.10 Part of snoopy bus specification. 145
6.11 Example of VHDL program. 150
6.12 The VHDL equivalent of the control unit specification. 155
6.13 Part of the VHDL equivalent of the instruction decode specification. 156
6.14 Example of the shared counter. 157
6.15 Output of the shared counter execution (part 1). 158
6.16 Output of the shared counter execution (part 2). 159
6.17 Output of the shared counter execution (part 3). 160

1 Core part of TM executable specification . 182
2 Part 1 of example 1 . 184
3 Part 2 of example 1 . 185
4 Part 1 of example 2 . 186
5 Part 2 of example 2 . 187
6 Part 1 of example 3 . 188
7 Part 2 of example 3 . 189

8 Specification of Execution Unit (part1). 190
9 Specification of Execution Unit (part2). 191
10 Transactional Cache. 191
11 Allocate two locations in the transactional cache. 192
12 Allocate the second location for xcommit entry in the transactional cache. 193
13 Queue operations. 194

14 The VHDL equivalent of the Execution Unit formula (part 1). 195
15 The VHDL equivalent of the Execution Unit formula (part 2). 196
16 Transactional Cache (part 1). 196
17 Transactional Cache (part2). 197

List of Tables

3.1 Syntax of ITL . 34
3.2 ITL derived constructs . 37

4.1 Glossary Table . 47
4.2 The invocation actions of the tmspec’s transactional operations 51
4.3 The response actions of tmspec’s transactional operations 54
4.4 Formal TM safety properties . 69

5.1 The invocation actions of tmimp . 95
5.2 The response actions of tmimp’s transactional operations 97
5.3 The response actions of the modified specification tm′

imp 115
5.4 The initial values of tm′

imp and tmspec . 119

6.1 The proposed refinement rules for Tempura/VHDL transformation 153

xii

List of Abbreviations

CDP Chip Dual Processor

CMP Chip Multiprocessor

FIFO First In First Out

HTM Hardware Transactional Memory

ILP Instruction Level Parallelism

ITL Interval Temporal Logic

LT Load Transaction

LTX Load Transaction eXclusive

MESI Modified Exclusive Shared Invalid

MIMD Multiple Instructions Multiple Data

MIPS Millions Instructions Per Second

SMP Symmetric Multi-Processor

ST Store Transaction

STH Sequential Transactional History

STM Software Transactional Memory

TH Transactional History

TM Transactional Memory

xiii

List of Abbreviations xiv

VHSIC Very High Speed Integrated Circuit

VHDL VHSIC Hardware Description Language

VLSI Very Large Scale Integration

UMA Uniform Memory Access

Chapter 1

Introduction

1.1 Motivation and Problem Statement

The technology revolution in Very Large Scale Integration (VLSI) has enabled today’s re-

searchers to design and implement Chip Multiprocessor (CMP), where two or more processors

with a shared memory are integrated on a single chip. In actual fact, CMP or multi-core has

become the mainstream architecture for microprocessor chips. In the next few generations, the

number of processors that can be implemented on a single chip will significantly increase [1].

Consequently, parallel programs are required in order to gain the full features of multiple pro-

cessors. The primary challenge in a system which runs multiple processes is how to control

access to shared data in order to ensure correct behaviour and data consistency [2–4].

1

Chapter 1. Introduction 2

The memory synchronisation which deals with this challenge can involve lock-based, lock-free

or wait-free techniques. However, using locks can lead to deadlock, convoying and priority

inversion problems [5, 6]. Although lock-free and wait-free techniques could be used to avoid

the problems with locks, at present they are still too complex to use and compose [7].

Transactional memory (TM) is a promising lock-free technique that can avoid lock-based prob-

lems and offer a high-level abstract parallel programming model for future CMP systems. In

addition, TM can simplify parallel programming by transferring the burden of correct synchro-

nisation from a programmer to a compiler and/or hardware. Moreover, it adapts the popular

well established paradigm of transaction, thus providing a general and flexible way of allow-

ing parts of a program to atomically read and modify disparate memory locations as a single

operation, independently of others, while executing tasks concurrently [8, 9].

There have been several recent proposals on how to implement the TM in hardware [6, 10, 11],

software and hybrid hardware-software combinations [12, 13]. However, a formal underpinning

encompassing the specification, design, and implementation of TM still needs much effort. In

addition, formal verification of any newly suggested TM implementation is required, in order

to check that the new proposed ideas satisfy the correctness conditions of TM [7, 14].

1.2 Research Objectives

The main aim of this investigation is to develop a unified formal framework for specifying,

validating, verifying and implementing a TM system using a single well-defined formalism that

Chapter 1. Introduction 3

can capture the concurrent transaction’s behaviour and reason about TM safety properties in a

uniform manner.

To achieve this main aim, the following objectives are required:

• Produce a specification of an abstract transactional memory model and its executable

version for validation.

• Develop a verification technique to proof the correctness satisfaction of a transactional

memory model.

• Produce a specification of a shared memory environment.

• Develop a transactional memory design in a hardware description language.

The novelty of our approach is that it can correctly develop a TM system starting from a high-

level specification which can then be transformed by a sequence of refinement steps down to a

low-level hardware implementation, all in a single logical formalism, namely Interval Temporal

Logic (ITL) [15–17], its executable subset, Tempura, and its simulation and the animation tool,

AnaTempura [17, 18].

1.3 Research Methodology

The adopted research methodology follows the constructive research approach. The construc-

tive method refers to contribution to knowledge being developed as a new solution for identified

Chapter 1. Introduction 4

problem. We develop a formal framework for known problems which are the formal spec-

ification, verification and implementation of transactional memory. The methodology of the

proposed approach is made up of four steps as follows:

• Step 1: Background review

The research study starts with a critically review of published work on the following:

Firstly, shared memory environment and memory synchronisation techniques. Then,

transactional memory both in term of definition and realisation. Finally, proposed for-

mal frameworks of specification and verification of transactional memory. This review

serves for the identification of our research aim. Moreover, it serves the purpose of un-

derstanding all approaches related to the research problem. A comprehensive study of

previous work helps to recognise their weakness and boundaries.

• Step 2: Architecture

This research stage concentrates on the design of the framework. The main components

of the framework, the relation between them and how they can serve the research aim are

identified. Moreover, the logical formalism and the main techniques that are used in the

proposed framework are described in this stage.

• Step 3: Computational model and TM properties

This stage of investigation focuses on producing an abstract transactional memory model.

This model serves as a basis to our research aim. In this stage, the standard TM safety

properties and other TM criteria are discussed. Reasoning about different TM aspects

Chapter 1. Introduction 5

helps to develop a general and flexible abstract TM model. In addition, the TM safety

conditions are required for the correctness verification and validation of the abstract TM

model.

• Step 4: Evaluation

This step presents the capability of the proposed framework and its components in vali-

dation and verification of a chosen TM system from the literature.

1.4 Success Criteria

In order to measure the success of our research, the following success criteria are formulated:

• The formal specification of TM safety properties.

• The simplification of the formal verification for TM.

• The capability of the validation process in the proposed approach using ITL framework.

• The realisation capability of the proposed approach. For example, the possibility to build

a TM system from high-level specification to low-level hardware.

1.5 Thesis Outline

This thesis report is organised into 7 chapters. We now briefly summaries each chapter:

Chapter 1. Introduction 6

• Chapter 1 gives a short overview and outlines the motivations, research objectives and

methodology, success criteria and structure of this thesis.

• Chapter 2 presents a comprehensive and original description of the most relevant aspects

of the memory synchronisation concept and transactional memory. The chapter starts

with a brief overview of the classification of multiprocessors systems, lock-free and lock-

based techniques. Then, the transactional memory basics are presented in the following

sections. Finally, the formalisation of transactional memory and related work are dis-

cussed.

• Chapter 3 shows the proposed framework design and its stages. In addition, the syntax

and semantics of the Interval Temporal Logic (ITL), as the formal foundation of the pro-

pose framework, are given. At the end of the chapter, the relationship between the ITL

and transactional memory is discussed.

• Chapter 4 proposes a computational model for an abstract transactional memory and for-

malises different properties of transactional memory. In this chapter, animation, through

testing is illustrated using AnaTempura. Moreover, a correctness verification for the ab-

stract model is illustrated as well.

• Chapter 5 describes a specification of the original hardware transactional memory system

and the cache coherency protocol that is used as a conflict detection method by this sys-

tem. The validation and verification for this specification are discussed at the end of this

chapter.

Chapter 1. Introduction 7

• Chapter 6 explains the structure and the executable specification of a chip-dual-processor.

In addition, the integration of this chip with the TM system, that is correctly proven in

chapter 5, is shown. In this chapter, refinement and restriction rules for transferring the

high-level specification to the low-level hardware language is described.

• Chapter 7 discusses the significant conclusion of this research and presents several major

areas and new directions for future work.

Chapter 2

Background

2.1 Multiprocessor

A multiprocessor is a system consisting of multiple processing units connected via an intercon-

nection network and the software needed to make the processing units work together. Multi-

processor can enhance the throughput of the computers by executing more than one program

at the same time. Moreover, the execution time of individual programs can (sometimes) be

improved by executing them with multiple processors [19]. In this section the classification of

multiprocessor and some background about chip multiprocessor is presented.

8

Chapter 2. Background 9

2.1.1 Computer Architecture Taxonomy

The well-known classification of computer architecture was developed by Flynn in 1966 [20].

A concept called stream of information is used in his classification approach. There are two

kinds of information flow into a processor which are data and instructions. In actual fact, Flynn

defined the following four classes of computer architecture [20](see also [19, 21]):

• Single Instruction-stream, Single Data-stream (SISD): The (most) popular and conven-

tional computer architecture in the last decades was a uniprocessor or Von Neumann

architecture which is classified as SISD computer. The instructions on SISD systems are

executed sequentially via only one Central Processing Unit (CPU). This class has been

prevalent in the computer industry for over fifty years, and many programming languages

(e.g., Pascal and C), compilers, operating systems and programming methodology are

based on this class .

• Single Instruction-stream, Multiple Data-stream (SIMD): This class is considered as a

model of parallel computing that consists of two parts: instructional unit to issues in-

structions, and multiple processing elements to execute the same operation on different

data. The two types in this class are array processors and vector computers. The ar-

ray processors consist of a set of identical processors each having a local data memory.

Processors are connected in a network and synchronously perform the same operation

in parallel. Vector computer contain pipelined vector elements. These elements allow

operations on all vectors at the same time. The Cray Y-MP vector machine in the Cray

processor family is a popular system of this type.

Chapter 2. Background 10

• Multiple Instruction-streams, Single Data-stream (MISD): In this category, different in-

structions can be executed on the same data at the same time. In actual fact, no practical

MISD machine has been developed so far.

• Multiple Instruction-stream, Multiple Data-stream (MIMD): This class is also considered

as a model of parallel computing that consists of multiple small processors and a global

memory connected together via some interconnection network. Several operations are

executed in parallel on different data. The shared memory of MIMD class allows each

processor to read or modify any location of its space. In addition, all the processors can

work on the solution for a common problem by using the global memory.

The class of MIMD architectures can be divided into two categories based on the type of

memory organisation: distributed memory systems and shared memory systems.

Distributed Memory

In distributed memory architecture, which are commonly called multi-computer, each

processor as an associated individual memory and can only access its own memory. Com-

munication between processors is implemented by sending a message between them. For

this reason, these architectures are often called message-passing machines. Systems em-

ploying distributed memory architecture can have an unlimited number of processors;

which is an advantage of this type.

Shared Memory

In shared memory MIMD systems, or multiprocessor, each processor can access any

memory address. They communicate through a bus and cache memory controller. The

Chapter 2. Background 11

shared memory may reside in one place, or it may be physically distributed in such a way

that a one or more processors owns a part of the shared memory. Since the shared-memory

multiprocessor systems have a common characteristic which is the identical access time

of the memory for each processor, these systems are called Uniform Memory Access

(UMA) or Symmetric Multi-Processor (SMP).

2.1.2 Single-Chip Multiprocessor

After years of advancement in integrated-circuit processing technology, it becomes possible to

fabricate single chips with 1 billion transistors. In the past, most microprocessors designers

used the increased transistor budgets to build larger and more complex uniprocessor. However,

several problems arose which have made this approach to microprocessor design difficult to

continue [1, 3]:

• The microprocessor designers used additional transistors to extract more Instruction Level

Parallelism (ILP) from programs in order to perform more work per clock cycle. These

processors can extract ILP by finding non-dependent instructions that appear near each

other in the program code. Unfortunately, there is only a finite amount of ILP present

in any particular sequence of instruction. Consequently, instructions from the same se-

quence are interdependent. Furthermore, the increasing use of visualisation and multime-

dia applications tends to increase the number of active processes or independent threads

instead of ILP.

Chapter 2. Background 12

• The microprocessor area increases with the core’s complexity. Moreover, the complexity

increases the design time and verification cost. In addition, they must be designed and

verified as single large units.

• The microprocessor can require increasingly long cycle times.

Recently, researchers propose two ways of using the increasing gate density and cost of wires

in advanced integrated circuit effectively: simultaneous multithreading and chip multiprocessor

[1].

2.2 Memory Synchronisation

In a multiprocessor and parallel programs environment, several processes can be running con-

currently. For example, these could be a window manager, anti-virus program, word-process

program, and internet application. When the processes require access to shared memory, the

problem of how to ensure correct behaviour and data consistency arises. Memory synchronisa-

tion techniques solve this with lock-based and lock-free concepts.

2.2.1 Lock-Based Techniques

Lock-based ones are the conventional way to synchronise processes accessing a shared object

through mutual exclusion that was firstly proposed by Dijkstra in 1965 [22–24]. Mutual ex-

clusion concept is based on a shared variable together with routines to atomically acquire and

Chapter 2. Background 13

release the lock and guarantees that no more than one process can exclusively access and modify

a certain section of code at a time.

Lock-based techniques are implemented through a combination of software algorithms and low

level hardware primitives support for a type of atomic read-modify-write operation such as Test

And Set (TAS) and Fetch And Add (FAA). However, lock-based concepts have a number of

well known drawbacks:

• Deadlock: This can appear when processes acquire locks while waiting for the releasing

of locks held by other processes, so that no process can make progress (see Fig. 2.1).

FIGURE 2.1: Deadlock problem.

• Convoying: This can appear when a process holding a lock enters into a delay situation

such as an infinite loop, page fault or interrupt and blocks all other processes.

• Priority inversion: This appears when a high priority process is delayed and is waiting to

acquire a lock held by a low priority process.

Chapter 2. Background 14

2.2.2 Lock-Free Techniques

Lock-free (non-blocking) concept addresses these problems by allowing multiple processes to

read and modify shared data concurrently without corrupting it [25]. Lock-free techniques do

not use mutual exclusion and therefore do not face the problems that locking can cause. They

rely on hardware atomic primitives such as Compare & Swap (CAS) or the pair Load -Linked

Store-Conditional (LL-ST) [26].

Load-Linked & Store-Conditional

This technique involves a pair of instructions that can be used to implement atomic operations to

cache able memory location. The first instruction load-linked (LL) loads a memory location into

a register. This can be followed by an arbitrary sequence of instructions not involving a memory

operation. Then a second special instruction, store-conditional (SC), is used to store the same

location. The SC only succeeds if no other processor has written to that register since when

the LL instruction was last executed. Thus a successful SC indicates a successful read-modify-

write operation to the memory location. If the SC fails, the entire operation must be retried.

Success or failure of the store-conditional is indicated by condition codes. Microprocessor

vendors whose support LL-SC technique, such as the MIPS family, advise the programmers to

kept the number of instructions between LL and SC instructions small to reduce the probability

of SC failure [27].

Chapter 2. Background 15

Implementations of lock-free methods do not block any process, even if some processes can be

delayed, and guarantee that at least one process will make progress at any given time. However,

lock-free implementations can exhibit starvation as the progress of other processes could cause

one process to never finish [28].

Wait-freedom

Wait-free techniques are lock-free and prevent starvation as well. Every process is guaranteed to

complete its task in a bounded number of steps [28]. A data structure is wait-free if and only if

every operation on the structure completes after it has executed a finite number of steps, regard-

less of the execution speeds on other processes. Wait-free condition provides fault-tolerance:

no process can be prevented from completing an operation by undetected halting failures of

other processes, or by arbitrary variations in their speed [28]. However, wait-free techniques

are more difficult to design and less efficient.

Obstruction-freedom

In a concurrent system, a non-blocking synchronisation algorithm is said to be obstruction free

if and only if every operation on the structure is completed after executing a finite number of

steps that do not contend with any concurrent operation for access to any memory location.

Obstruction-freedom rules out the occurrence of deadlocks, but livelocks may occur if a group

of processes abort each others’ atomic operations and consequently no single one makes any

progress [29].

Chapter 2. Background 16

2.3 Transactional Memory

Transactional memory (TM) is a promising lock-free technique that enables parts of a program

to execute with atomicity and isolation, without regard to other concurrently executing tasks.

Moreover, TM allows programs to read and modify disparate primary memory locations atom-

ically as a single operation. In addition, TM supports lock-free implementations of complex

data structures in a simple and efficient way [8].

2.3.1 Transaction notion

The concept of transactions is not new. Transactions have their roots in database systems and

are commonly used in them, often defined as a series or list of actions. The actions that can

be executed by a transaction include reads and writes of database objects [30]. Transactions

allow a parallel program concurrent access and modification of shared data, yet still produce

consistent, correct and deterministic results. The transaction notion is defined by the following

four attributes of database transaction, known as ACID [5, 7, 30]:

• Atomicity: This ensures that either all of the operations in a transaction are executed

successfully or none of them are. In other words, if one operation of the transaction fails,

the entire transaction must fail without leaving behind any evidence that it has executed.

A transaction that completes successfully, commits and one that fails aborts.

Chapter 2. Background 17

• Consistency: This property refers to the requirement that the data in database or memory

should be in a consistent state. This means that if a transaction succeeds, only committed

data will be stored permanently, else the old data before the change will be restored,

leaving data in a predictable and consistent state.

• Isolation: This requires that execution of a transaction does not affect the result of con-

currently executing transactions, and this result must be similar to a result in which these

transactions are executed serially.

• Durability: This requires that once a transaction commits, its modifications to the data

are stored on a durable media such as disk .

The difference between transactions in database and memory are the access time and the dura-

bility property. Data in database is stored on a disk rather than in memory which a much longer

time to access is required. TM accesses main memory which cannot perform much computation

at access time. The durability property is not important in TM since data in memory does not

last after program terminates. This can simplify the TM implementation.

TM is proposed to avoid lock-based problems and simplify parallel programming by transfer-

ring the burden of correct synchronisation from a programmer to a compiler and/or hardware.

However, not all memory synchronisations can be replaced by using transactions in a parallel

program. Locking is often required to coordinate independent tasks, for example, by ensuring

that one task waits for another to finish, or by limiting the number of processes performing a

Chapter 2. Background 18

task. Most TM techniques use busy-waiting in such situation because of aborts. This is ineffi-

cient since an aborted transaction rolls back its entire operation [7].

As an illustration of the transaction attributes, the following examples will be presented and

used again in the execution and animation section for testing and validating our proposed model.

These examples are based on standard ones for database [31, 32].

Example 1: Single Transaction

The transfer of money from one bank account A to another account B needs the following steps:

read(A)

write(A , A-100)

read(B)

write(B, B+100)

These steps will be composed into one transaction and executed as a single unit. The transac-

tion correctness properties guarantee that a transaction either executes to completion or never

happens at all.

Example 2: Bank Account

The same bank accounts are used but now more than one operation is performed at the same

time. For example, 1000 is first deposited in an empty account A and then two transactions are

made on this account at the same time, as follows: T1 transfers all of the 1000 from account

Chapter 2. Background 19

A to account B, and before the confirmation of the transfer is sent, T2 withdraws 100 from

account A.

T1

read(A) T2

write(A, A-1000) read(A)

read(B) write(A, A-100)

write(B, B+1000) TryCommit()

TryCommit()

The transaction correctness properties guarantee that one of the two conflicting transactions

will abort and appear as never having happened at all, and the other transaction will execute to

completion and commit.

Example 3: Airline Reservation

Consider the example of an airline reservation system where multiple transactions can read the

database at the same time. As an illustration, consider three transactions that are invoked in

parallel from different terminals to make a reservation.

The first transaction needs to make a reservation for two seats together or not at all. The trans-

action starts reading, from the global database list, the number of seats that have status zero

which means that these seats have not yet been reserved. Then, it writes one to the status of

these seats to make them reserved. The second and third transaction needs to reserve just one

seat each. So, they each read the number of some seat from the global database list that has

Chapter 2. Background 20

status zero and change it to one. The problem occurs where the seat number of the second or

the third transaction is one of the two seat numbers that have been read by the first transaction.

T1

read(statusA) T2 T3

write(statusA, 1) read(statusA) read(statusA)

read(statusB) write(statusA, 1) write(statusA, 1)

write(statusB, 1) TryCommit() TryCommit()

TryCommit()

Two situations appear in this example: the conflict between T1 and T2, and the conflict between

T3 with T1 and T2. The correctness properties of the transaction system guarantee that just

one of the three conflicting transactions will commit the change of a seat’s status, with other

transactions aborting and appearing as if they never happened at all.

2.3.2 Hardware, Software and Hybrid TM Implementations

Transactional memory can be implemented in hardware (HTM), software (STM) or as a hybrid

hardware-software combination (HyTM) [6, 12, 13]. The maintenance and validation of read

sets are considered the main overhead for software transactional memory systems. The hard-

ware implementation improves the performance and reduces the program overhead. Neverthe-

less, the hardware transactional memory systems cannot support a large transactions because

the limitation of cache capacity. The hybrid hardware-software transactional memory technique

was proposed to address the limitation of hardware capacity [7].

Chapter 2. Background 21

Hardware Transactional Memory

Most proposals for HTM present two aspects of hardware systems that are strongly related to

HTM. Firstly, hardware buffers such as a cache store speculative data (also known as memory

consistency models). Secondly, cache coherency mechanism guarantee that multiple processors

have a coherent view of locally cached data. HTM has some advantages over STM, such as high

performance, lower overhead and better energy consumption [33]. The disadvantage of HTM

is the size limitation of the transaction data set [7].

Many researchers have proposed a HTM such as TCC [10] and logTM [34] . However, Her-

lihy and Moss [6] wrote a widely cited paper that was the first hardware proposal to imple-

ment atomic read-modify-write disparate memory locations as a single operation (TM). Their

approach incorporated a new transactional cache and instructions, and modified the cache co-

herency protocol and the snoopy bus arbitration.

Software Transactional Memory

Most recent work in STM systems, especially those integrated with a compiler has focused on

reaching a level that makes them convenient for experimentation and prototyping. The perfor-

mance of those systems has been enhanced by developing many programming techniques such

as hashing methods, dynamic TM, conflict resolution policies and direct/deferred update. The

advantages of STM are flexibility, modifiability and easy integration with existing programming

Chapter 2. Background 22

language [7]. Shavit and Touitou [35] wrote the first published paper to describe the implemen-

tation of software TM. The idea of this paper is that the concurrent objects being accessed by a

transaction were pre-determined, preventing two transactions from deadlocking.

Hybrid Hardware/Software Transactional Memory

HyTM is a STM-based alternative to unbounded TM in a HTM. This approach proposes to

overcome the disadvantages of limitation of HTM data sets, and complication of Unbounded

TM (UTM) to be included in the multiprocessor chips as well as enhancing the performance of

STM implementations using best effort HTM. The first proposed work on a HyTM model was

by Lie in 2004 [36]. Lie avoids bounded transaction sizes in HTM by executing the transactions

firstly in HTM, and if unsuccessful, it executes the transactions in STM. The results of this

approach show that it can be easily integrated in existing hardware.

Chip Multiprocessor with Transactional Memory

To help researchers with fast software development and evaluation, many Chip Multiprocessor

(CMP) have been implemented as prototypes, such as Stanford Hydra [37], Stanford ATLAS

[2] and Berkeley RAMP [38]. However, the CMPs that have been implemented with hardware

transactional memory are ATLAS [2] and RAMP [38].

Recently, researchers at Stanford University built ATLAS [2], the first prototype of a CMP with

TM. The design has been mapped in a multi-FPGA board (Xilinx XC2VP70) and operates at

Chapter 2. Background 23

100MHz. The prototype includes 8 PowerPC cores and a ninth core that handles the operating

system and input/output devices. ATLAS uses the TCC architecture for hardware-bus transac-

tional memory as a simple mechanism to replace the complex cache coherency protocol. The

data cache design is attached to the PowerPC cores through IBM’s processor local bus, and

has 32-byte cache lines that can be one, two, or four-way set associative (each way is 8 KB,

resulting in cache sizes of 8, 16, or 32 KB). ATLAS was implemented to allow for fast software

development and evaluation. It also allows the researchers to study the use of transactions in

the operating system.

Researchers at Berkeley and Stanford built RAMP [38]. This prototype consists of eight CPUs

with 32KB L1 data-cache with transactional memory support. The CPUs are hard coded Pow-

erPC405 unit with emulated floating point units connected through the central control FPGA. A

separate, 9th processor runs the operating system (PowerPC Linux). Like ATLAS, RAMP uses

the TCC architecture for hardware-bus transactional memory. RAMP runs 100x faster than as

simulator running on as Apple 2GHz G5 (PowerPC).

2.4 Formalisation of Transactional Memory

2.4.1 Motivation

Transactional memory (TM) is a an active research area and many recent works have proposed

efficient implementation techniques to enhance its performance. Although some of the proposed

Chapter 2. Background 24

new ideas may improve the throughput of the TM, at the same time its correctness criteria can

be lost in the process [39]. Even a minimal effort to formalise and verify of TM can detect the

violation of TM correctness properties [40]. Guerraoui and Kapalka state that ”Without such

formalisation, it is impossible to check the correctness of these implementations” [41]. Thus,

formalisation will help us to understand the new TM systems better, proving their correctness

and classifying new policies [39].

Researchers have proposed various formal frameworks for proving that a TM implementation

satisfies its specifications [42–45], but these are still hard to understand and use. In addition,

most of these researchers assume the correctness criteria from database transactions (e.g. se-

rialisability [30]). However, these criteria specify only some parameters of TM properties and

do not clarify the semantics of conflict detections and contention management [7]. Recently,

researchers have concentrated on generalising the correctness specification of TM for safe de-

velopment of software on top of transaction memory [40].

2.4.2 Related Work

Earlier work on TM’s formalisation and verification can be divided into the following two parts:

• Pure semantics for describing general correctness of the TM systems with some illustra-

tions for special properties (e.g. sequential specifications and opacity) [39, 41]).

• A compositional method for defining the TM semantics and proving that a transactional

memory implementation satisfies its specifications (e.g. [40, 42, 45]).

Chapter 2. Background 25

Correctness of the TM systems

Scott [39] is the first to suggest sequential specifications to capture many semantics of transac-

tional memory. The conventional notion of sequential histories (i.e. each invocation is imme-

diately followed by its response) is considered in Scott’s work and the transactional memory

semantics are defined using these histories. Scott’s approach has the following features:

• Transactional memory is modelled as mapping from objects to values.

• A sequential specification is defined that expresses the following requirements: Firstly,

each read returns the right value in any successful transaction. Then, a commit succeeds

if it ends an isolated transaction.

• The circumstances in which two transactions cannot both succeed are specified by pre-

senting four practical policies for detecting conflicts: Lazy invalidation conflict, Eager

W-R conflict, Mixed invalidation conflict and Eager invalidation conflict.

• Arbitration functions are provided to ensure progress of transactions.

Guerraoui and Kapalka [41] present a new safety condition called opacity to verify the cor-

rectness of a TM implementation and its graph characterisation. They extend the notion of

serialisability (defined later in Subsection 4.3.3) to include the concept that aborted transac-

tions should not access an inconsistent state of the memory, which can be doomed (can’t finish

successfully) in Software Transactional Memory (STM) (due to infinite loops, or exceptions).

Their investigation followed these stages:

Chapter 2. Background 26

• Modelling a TM system, which is based on [46], in a formal way with their notion of

opacity.

• Defining opacity as a safety property and deducing that the proposed TM model satisfies

this property.

• Proving that opacity requires a lower complexity than other TM implementations which

always observe a consistent state and impose an additional cost of per-operation valida-

tion.

Guerraoui and Kapalka [40, 43] extend this framework by handling non-transaction code with

the opacity condition. In addition, they introduce a checker model using a strict serialisability

with respect to opacity as a safety condition. However, two aspects are still missing from these

papers; the nested transactions and the contention management strategies (i.e. when transaction

should commit). These two aspects cannot be achieved by the opacity property alone. In

addition, these works merely focused on the STM implementations and did not deal with the

HTM and Hybrid implementations.

Compositional Method, for TM Verification

Cohen et al. [42] present a methodology, supported by tools, to formally verify that a TM

implementation satisfies its specification. The notion of an admissible interchange of transac-

tion operations is used in this work to model the approaches of conflict detection (which was

characterized by Scott [39]) and to build a checker model. Their approach follows these stages:

Chapter 2. Background 27

• Proposing a general model for abstract TM, based on the model of fair discrete systems.

• Presenting proof rules, based on abstraction mapping, to verify that an implementation of

a TM correctly specifies its abstract specification.

• Demonstrating the proof rule and the verification method by modelling TCC [10] in

TLA+ [47] and proving its correctness with the model checker TLC [47].

• Extending the theorem prover TLPVS of [48] to obtain mechanical proof of correctness.

The methodology of Cohen et al. [42] is clear and the tools are well known. In addition,

the abstract TM model is built upon strong safety conditions in [39]. Some of the loose ends

had been subsequently completed (e.g. dealing with non-transaction operations) [49]. Others

such as nested transactions have not been dealt with. Also, some safety conditions and con-

flict detection policies have been assumed such as read local consistency and mixed conflict

detection. Moreover, there is no validation method for the specification of the proposed abstract

TM model. In addition, its specification methods make the TM systems more abstract than real

design and may miss many details as a result.

Tasiran [45] presents a compositional method for verifying software transactional memory im-

plementations. His approach begins with previous work (e.g. [50]) on verifying that semantic-

level descriptions ensure atomicity and serialisability. This previous work (which concentrates

on the top algorithmic level and is called small-step semantics) is taken as a starting point, and

then the Bartok STM implementation [51] that satisfies these properties is proven. The new ad-

dition of this work verifies that the algorithm-level description (actually programmed in Java or

Chapter 2. Background 28

C#) is correctly implemented by STM code. Assertions like those for sequential programs are

used. This technique allows the properties required of the STM implementation to be checked

using the Spec# language and the Boogie verification tool. The OTFJ language is employed to

model the program using software transactions and manual proof of correctness of STM imple-

mentation. It was a novel method in STM semantics and verification. Unfortunately, this work

focuses only on the STM implementations and neglects the hybrid and HTM.

2.5 Summary

TM is a hot research area. It was developed to solve memory synchronisation problems in a

shared memory environment such as a chip multiprocessor which is the mainstream architecture

for microprocessor design. There have been several proposals for TM design and enhancement.

However, designing TM without formalisation may violate its correctness.

In this chapter a comprehensive description of memory synchronisation concepts and transac-

tion notations with examples are presented. In addition, the main kinds of TM implementation

and some real existing chip multiprocessor with TM are illustrated. Moreover, the importance

and benefits of TM formalisation are given. This chapter is concluded with brief descriptions

and limitations of the recent works of TM’s formalisation and its correctness verification meth-

ods.

Chapter 3

Preliminaries and Formal Logical

Framework

3.1 Introduction

As we mentioned previously in Subsection 2.3.2, many new TM systems have recently been

proposed in order to gain the full performance potential of multi-core systems. The correctness

validation of some of these TM systems presently relys on micro-benchmarks and simulation

tools without the use of formal proof techniques and validating in real shared memory environ-

ments [7]. As a result, correctness testing is not exhaustive. However, formal proof without

using simulation in the design process is quite hard. Moreover, simulation provides powerful

and more accessible tools for rapid prototyping and validating [52, 53].

29

Chapter 3. Preliminaries 30

A TM design framework soundly based upon formal techniques with support for simulation

could improve reliability. Such a methodology should contain powerful logical operators to

capture concurrent behaviours of transactions at specific points in time. In this chapter, we

overview a comprehensive framework for specifying, validating, verifying and implementing a

TM system in ITL work-bench.

3.2 Framework Design

Our proposed approach involves two main parts: The first part concerns the development of

framework’s main components which are a general and provable abstract TM model and TM

safety properties. This model can serve as a basis for verifying the correctness of a hardware

or software transactional memory system. However, we focus here only on the hardware trans-

actional memory systems and leave the other TM types for the future work. The second part

concerns the verification of the correctness of a TM system regarding the provable TM model

from the first part and then transforming it from a high-level specification to a low-level hard-

ware implementation.

The validation process in our framework is for a testing the proposed TM model by executing

real examples and using simulation with animation. In actual fact, this stage has many features:

First, it helps us to get the specification right. Second, it gives initial indicators for satisfying

TM safety conditions. Finally, it makes the proposed TM model more understandable and

enable the reader to gain better insight into this model.

Chapter 3. Preliminaries 31

FIGURE 3.1: Part 1 of framework.

As shown in Fig. 3.1, the development of the framework’s main parts involves four steps: First,

a high-level abstract specification for a TM model and standard TM safety properties are ex-

pressed in ITL. Second, an executable version of the abstract TM model is refined from the first

step by using a sound refinement calculus that can transform the ITL specification into a set of

modules in Tempura (an executable subset of ITL) [18, 54]. Third, a validation for the abstract

TM specification is simulated and animated by executing real examples on the executable TM

version using AnaTempura. Steps one to three are repeated until the abstract TM model meets

most of the TM aspects without violating the standard TM properties. However, the validation

step is not enough to prove the correctness of the TM model, which requires that all possible

behaviours of the TM model satisfy the properties, but does help to simplify the formal veri-

fication step. Fourth, the validated specification of the abstract TM model is formally proven

against the TM safety properties by using propositional reasoning, ITL inference rules and the

definition of ITL operators.

Chapter 3. Preliminaries 32

FIGURE 3.2: Part 2 of framework.

When we specify and validate the specification of a particular TM system, the first three steps

of our framework’s first part are imported in the second part, as shown in Fig. 3.2. However,

the abstract TM model is replaced in the second part with a TM system. As soon as we get

the right specification of the TM system, it is formally verified against the abstract provable

TM model by using a refinement mapping technique in step 4. In actual fact, we propose to

prove the TM system against the abstract TM model instead of the TM safety properties in

order to simplify the formal verification step. To increase the degree of confidence and make

a real evaluation, we then add the integration step to combine the provable TM system with

a shared memory environment such as Chip Dual Processor (CDP). Finally, the CDP with the

TM system is refined into a hardware description language such as VHDL using proposed

Chapter 3. Preliminaries 33

refinement and restriction rules. Once we obtain a description of the hardware, a commercially

available synthesis tool can be used to produce a netlist which can then be implemented in

silicon [52].

3.3 Interval Temporal Logic

Interval Temporal Logic (ITL) is an important temporal logic for both propositional and first

order logical reasoning about intervals of time. ITL is useful in the formal description of linear

discrete systems for several reasons. It is a flexible notation for discrete linear order. Also,

ITL, unlike most temporal logics, has the capability of handling both sequential and parallel

composition. A powerful and extensible specification framework is also offered by ITL for rea-

soning about properties involving safety, liveness and projected time. In addition, Tempura and

AnaTempura provide an executable framework with animation for experimenting and develop-

ing ITL specification [15, 17, 18, 55, 56].

3.3.1 Syntax of ITL

The syntax of ITL (integer expressions and first order formulae) is defined in Table 3.1, where:

z denotes an integer value, a is a static (global) variable which do not vary over time, A is a

state variable which can change within an interval, v a static or state variable, g is a function

symbol, h is a predicate symbol, and f is a formula.

Chapter 3. Preliminaries 34

TABLE 3.1: Syntax of ITL

Expressions

exp ::= z | a | A | g(exp1, . . . , expn) | ©A | fin A

Formulae

f ::= h(exp1, . . . , expn) | ¬f | f1 ∧ f2 | ∀v · f | skip | f1; f2 | f ∗

3.3.2 Semantics of ITL

Time is modelled as finite and infinite sequence of states represented in ITL using an interval

σ, which is the key notion of ITL. An interval σ is divided into a finite or infinite sequence of

one or more states σ0σ1 Where each state σi maps each variable to some value. The length,

|σ|, of an interval σ is equal to one less than the number of states in the interval.

We first describe the semantics informally and then give a rigorous definition of ITL’s operators.

Informal Semantics

All formulae are evaluated over the whole interval. For example, f1 ∧ f2 is true over σ, iff f1

and f2 are true over σ. Similarly ∀ represents the universal quantifier. Here is the informal

semantics of the various useful ITL constructs:

• skip : unit interval (length 1).

Chapter 3. Preliminaries 35

• f1; f2 : holds if the interval can be decomposed (”chopped”) into a prefix and suffix

interval, such that f1 holds over the prefix and f2 over the suffix, or if the interval is

infinite and f1 holds for that interval.

• f ∗ : holds if the interval is decomposable into a finite number of intervals such that for

each of them f holds, or the interval is infinite and can be decomposed into an infinite

number of finite intervals for which f holds.

Formal Semantics

Let us assume the truth-values tt and ff are associated with true and false, respectively. We also

write σ ∼v σ′ to denote that the intervals σ and σ′ are identical with the possible exception of

their mappings for the variable v. Moreover, let σ =σ0σ1σ2 . . . be an interval and:

• A prefix interval of σ is σ0 . . . σk (where 0 ≤ k ≤ |σ|)

• A suffix interval of σ is σk . . . σ|σ| (where 0 ≤ k ≤ |σ|)

• A subinterval of σ is σk . . . σl (where 0 ≤ k ≤ l ≤ |σ|)

In addition, letM[[. . .]] be the meaning (semantic) function from formulae to {tt ,ff } then:

Chapter 3. Preliminaries 36

Mσ[[¬f]] =tt iff not (Mσ[[f]] = tt)

Mσ[[f1 ∧ f2]] =tt iff (Mσ[[f1]] = tt) and (Mσ[[f2]] = tt)

Mσ[[skip]] =tt iff |σ| = 1

Mσ[[∀v · f]] =tt iff for all σ′ s.t. σ ∼v σ′,Mσ′ [[f]] = tt

Mσ[[f1; f2]] =tt iff (exists a k ≤ |σ| , such that

(Mσ0...σk [[f1]] = tt) and (Mσk...σ|σ| [[f2]] = tt))

or (σ is infinite and (Mσ[[f1]] = tt))

Mσ[[f
∗]] =tt iff if σ finite

then (exist n ≥ 0,l0, . . . , ln s.t. l0 = 0 and ln = |σ| and

for all 0 ≤ i < n, li < li+1 and (Mσli ...σli+1
[[f]] = tt))

else (exist n ≥ 0, l0, . . . , ln such that l0 = 0 and

Mσln ...σ|σ|
[[f]] = tt and

for all 0 ≤ i < n, li < li+1 and (Mσli ...σli+1
[[f]] = tt))

or

(exist an infinite number of li such that l0 = 0 and

for all 0 ≤ i, li < li+1 and (Mσli ...σli+1
[[f]] = tt))

3.3.3 Derived Construct

The following ITL derived constructs will be used for simplicity.

• The predicates true and false: true =̂ 0 = 0 and false =̂ ¬true.

Chapter 3. Preliminaries 37

• The logical disjunction: f1 ∨ f2 =̂ ¬(¬f1 ∧ ¬f2).

• The logical implication: f1 ⊃ f2 =̂ ¬f1 ∨ f2.

• The equivalence: f1 ≡ f2 =̂ (f1 ⊃ f2) ∧ (f2 ⊃ f1).

• The existential quantifier: ∃v.f =̂ ¬∀v.¬f .

• The infinite and finite interval: inf =̂ true; false and finite =̂ ¬inf .

• The next: © f =̂ skip; f .

• The more and empty: more =̂ © true and empty =̂ ¬more.

• Some useful operators in the following table:

TABLE 3.2: ITL derived constructs

3 f =̂ finite; f Eventually.

2 f =̂ ¬3¬f Henceforth.

3a f =̂ 3(f ; true) Some subinterval.

2a f =̂ ¬3a ¬f All subintervals.

3m f =̂ 3(more ∧ f) Some nonempty subinterval.

2m f =̂ 2(more ⊃ f) All nonempty subintervals.

3f f =̂ (f ∧ finite); true Some finite prefix.

2f f =̂ ¬3f ¬f All finite prefix.

fin f =̂ 2(empty ⊃ f) Final state.

halt f =̂ 2(empty ≡ f) Exactly in the final state.

Chapter 3. Preliminaries 38

3.3.4 Applications

Interval Temporal Logic and its executable subset Tempura have been applied to specify and

verify behavioural conditions of diverse kinds of systems. Example include a bomb disposal

control robot system, hardware/software co-design, a large scale hardware system, security and

trust policies [18, 57–59]. Some of these applications and others related to this research will be

presented in this section.

The term reactive systems refers to a variety of types of concurrent and real time systems, which

do not necessarily terminate and usually contain a number of parallel actions. ITL is suitable for

the specification of reactive systems. Cau et al. [60] present a compositional formal framework

for modelling general systems and its suitability to Information Systems. They use ITL to

compositionally model an information system, which can be regarded as a reactive system.

One of the primary challenges chip design faces today is the validation and simulation of in-

creasingly complex systems. Throughout the 1990s, formal specification and verification has

become as a promising complement to conventional simulation. Although there are many for-

mal methods for the specification and the verification of hardware, ITL is developed for hard-

ware verification. Coleman et al. [58] describe some benefits of ITL and Tempura in an ap-

plication that is relevant to specifying, verifying and designing a large scale hardware. They

develop an ITL specification and simulation of a general-propose multithreaded dataflow com-

puter known as EP/3. In addition, they suggest some solutions for problems encountered during

the specification of the EP/3 such as a missing data structure and the way to represent inter

processor communication in ITL.

Chapter 3. Preliminaries 39

Mixed hardware/software systems (heterogeneous systems) are fast gaining popularity because

of the benefits to performance, cost, power consumption and size. The big challenges of this

system are the design and analysis. Hybrid hardware/software transactional memory is an ex-

ample of this approach. Zedan and Cau [61] propose a single logic framework with a supporting

tool, AnaTempura, for hardware/software co-design. ITL and its executable subset Tempura are

used in this approach to perform validation and analysis system’s behaviours of interest com-

positionally within a single logical framework. The ability to capture and validate subsystem

properties, which is the main topic of the work, is performed by inserting assertion points at

suitably chosen places in the code to divide it into several code-chunks. Then the properties of

interests are validated over this behaviour. Voice over IP is presented as an application for this

framework.

3.3.5 Justification of ITL for TM

As we already noted, our framework for TM is based on ITL. Our selection of ITL is justified

as follows:

• Transactions can be regarded as a set of intervals each with a specific beginning and

ending state. A transaction in the history of concurrent transactions can be expressed and

reasoned about in a compositional way using ITL’s operators for subinterval such as 3a

and 2a .

Chapter 3. Preliminaries 40

• The order of transactions with their relevant operations is significant for ensuring the

conflict-free property (see Section 4.3). The skip and chop operators are well suited for

formalising this, thus demonstrating that ITL can easily handle transactions ordering.

• The specification of the end time of each committed transaction is also important for

verifying the strict serialisable safety condition (see Section 4.3). The ITL’s fin and

chop operators can be used for this purpose.

3.4 Tempura and Refinement

3.4.1 Tempura and AnaTempura

Tempura is developed by Ben Moszkowski as a programming language based on temporal

logic [17]. Tempura provides an executable framework for suitable ITL specifications of digital

circuits, parallel programs and other dynamic systems. One of the main features of Tempura is

its similarity with conventional imperative programming languages. For example, Tempura has

as in-place assignment. Moreover, it contains iteration constructs such as a While statement.

However, there are some differences that let the dealing with Tempura is travail such as the

length of a formula interval and the values of the variables (in the formula and throughout the

interval) should be specified before executing the formula.

AnaTempura is developed as an integrated workbench for ITL that offers specification, vali-

dation and run-time verification in the form of simulation. In addition, it provides a powerful

Chapter 3. Preliminaries 41

visualisation function to enhance the ease of using the tool. Moreover, it supports animation of

the system execution’s behaviour as well as draws timing diagrams during run time which are

helpful into analysis of the system behaviour. AnaTempura consists of two main parts which are

the Tempura Interpreter and Monitor. The Tempura Interpreter is used to execute Tempura files.

The Monitor allows users to analyse the program at run-time with respect to a specification

[62].

3.4.2 Refinement of ITL into Tempura

To transform an ITL abstract system specification into Tempura code, we use a set of sound

refinement laws that have been derived in [18, 54]. The refinement relation v is defined on a

system: A system X is refined by the system Y , denoted X v Y , if and only if Y ⊃ X . The

following are some useful example of refinement rules:

• The conditional If-Then-Else is introduced with the following rule.

(if-1) (f0 ∧ f1) ∨ (¬f0 ∧ f2) v if f0 then f1 else f2

• The characteristics of the chop construct (;) rule are described as follows:

(;-1) empty; f ≡ f ≡ f ; empty

(;-2) (f0; f1); f2 ≡ f0; (f1; f2)

(;-3) f0; (f1 ∨ f2); f3 ≡ (f0; f1; f3) ∨ (f0; f2; f3)

Chapter 3. Preliminaries 42

• The While formula and the non-terminating loop rules are introduced as follows:

(while-1) (f0 ∧ f1) ∗ ∧ fin(¬f0) v while f0 do f1

(while-2) f0
∗ v f0 ∗ ∧ inf ≡ while true do f0

• Some other formulae rules are introduced as follows:

(repeat) f0; (¬f1 ∧ f0) ∗ ∧ fin(f1) ≡ repeat f0 until f1

(assignment) ©A = exp ≡ A := exp

3.4.3 Refinement Mapping Technique

To prove that a TM system satisfies specification of an abstract one, we use the abstract mapping

method of Abadi and Lamport [63] which is described as follows:

LetC andA be two systems that denote respectively concrete and abstract systems. According

to the refinement mapping technique, a specification of system C implements a specification of

system A (equivalently C refines A), denoted C vF A, iff every observable behaviour allowed

by C is also allowed by A (possibly with stuttering which means that C may require several

steps to matchA). In other words, to verify that C vF A, it suffices to prove that if C allows the

behaviour ((e0, x0); (e1, x1); . . .) andA allows the behaviour ((e0, y0); (e1, y1); . . .) (where e

is a state of the externally visible component, while x and y are internal states) then there exists

a function F such that F (ei, xi) = (ei, yi) preserves the state machine behaviour and liveness.

Chapter 3. Preliminaries 43

Let us consider the specification ofC = (Sc, Ic, Nc, Lc) andA = (Sa, Ia, Na, La) where S, I,N

and L denote the following:

• S: A state space.

• I: The set of all initial states.

• N : The next-state relation (a transition relation).

• L: A supplementary property of the specification which represents the fairness constraints

on the abstract model such as asserting that certain actions must eventually occur, ensur-

ing the liveness property that operations that should complete eventually do complete.

Then C vF A can be established iff we can reason about the following refinement mapping:

• R1: ∀ s ∈ Sc: F e(s) = s , F e preserves the externally visible state component.

• R2: F (Ic) ⊆ Ia , F takes concrete initial states into abstract initial states.

• R3: if (s0; s1) ∈ Nc then (F (s0); F (s1)) ∈ Na, A state transition allowed by C is

mapped by F into a [possibly stuttering] transition allowed by A.

• R4: F (Lc) ⊆ La, where Pc is the liveness property defined by C, F maps the states

behaviour allowed by C into the states behaviour that satisfyA’s supplementary property.

This lead to the following theorem:

Theorem 3.1. If there exists a refinement mapping from C to A, then C vF A.

Chapter 3. Preliminaries 44

3.5 Summary

In this chapter, we presented an overview for the proposed TM formal framework. The foun-

dation of the uniform formal TM framework is ITL. Its formal syntax and semantics are given.

Our reasons for using ITL and its executable subset AnaTempura are discussed as the relation-

ship between the ITL and transactional memory. We concluded the chapter with some of the

refinement rules of ITL into Tempura and overview a refinement mapping technique.

Chapter 4

Abstract Model of Transactional Memory

4.1 Introduction

Transactional memory designs have varying criteria and aspects that may define the program-

ming model and performance of a given TM system such as its conflict detection and resolution

policies. In addition, the safety properties in proposed transactional memory systems are quite

diverse and differ. So the formal verification of different TM systems needs as a reference a

general, flexible and provable abstract TM model which can support most of these features and

properties.

As shown in the framework’s main parts in Fig. 4.1, this chapter focuses on development of a

provable abstract TM model and TM safety properties. We propose a computational model for

45

Chapter 4. Abstract Model of Transactional Memory 46

an abstract TM and a formalisation for the standard safety properties discussed by the TM com-

munity using ITL and its executable subset AnaTempura. Since altogether, ITL and AnaTem-

pura provide a powerful framework supporting logical reasoning about time intervals as well as

programming and simulation.

FIGURE 4.1: Framework’s main part.

We first give a high level specification of a general TM abstract model and its safety conditions

which are based on well-known published papers on generalising the safety of TM such as

[39, 41, 42]. The generality of the proposed TM model gives us the capability to use it as a

standard and match it to different TM systems.

One advantage of AnaTempura that it can be used to validate our proposed TM specification

model before we prove properties about the model. In fact, this helps us to get the right specifi-

cation. We then verify that the proposed TM specification model satisfies these safety conditions

using a mathematical proof.

Chapter 4. Abstract Model of Transactional Memory 47

4.2 Computational Model for TM

In this section, we present an abstract model to specify TM similar to [39, 41, 42]. The main

difference is that we represent the history of events as a time interval and each sequence of

events as a subinterval. This simplifies dealing with various TM correctness properties. For

example, we can prove certain properties which were just assumed in work by others [42].

Table 4.1 explains some terms used in the following sections which have not been introduced

yet.

TABLE 4.1: Glossary Table

Term Definition
Commit A transaction successfully completes and all the temporary updates by

this transaction are made visible to other transactions.
Abort A transaction fails and discards any updates.
Conflict There are two concurrent transactions accessing (and at least one mod-

ifies) the same object(s) and one of them needs to abort.
Doomed Transaction A transaction has a conflict with another transaction. It may continue

to execute new read and write events, but it must eventually abort.
Doomed Consistency A TM safety property used to ensure that even the doomed transac-

tions do not observe an inconsistent state.
Inconsistent read state A state when a read operation responds with i.e., a value that may

cause illegal actions such as an infinite loop or divided by zero.

Processes and Transactions

An interval σ is a finite or infinite sequence of one or more states s0, s1, s2, Each state has

concurrent observable events E. Each such event Et
p belongs to process p and transaction t. A

sequence of events forms a transaction Tr that is issued sequentially by a process. Process p

Chapter 4. Abstract Model of Transactional Memory 48

cannot invoke a new transaction Tr1
p until the preceding transaction Tr0

p terminates. Also, a

transaction Tr t
p , which has a unique identifier (t, p) (helps in capture properties of each trans-

action invoked by the same process), cannot invoke the next operation (©Et
p) until the previous

operation Et
p gets a response and cannot invoke an operation after it gets a commit or abort

response. If a transaction aborts and requests again it is modelled as a new transaction. Here

are the ITL formulae for representing the proposed abstract TM tmspec as a group of processes,

the transactions of an individual process and the events of an individual transaction:

tmspec =̂
∧n
p=0 Processp

Processp =̂ Tr0
p ; Tr1

p ; ...; Tr t
p

Tr t
p =̂ Et

p,0; E
t
p,1; ...; E

t
p,m

(4.1)

Events and Objects

The atomic read and write events of this model can access a set of base objects obj. An object

is a high-level representation of memory and initially all values val ∈ N of these objects are

uninitialized and hence equal to ⊥, so obj → val ∪ {⊥} . An event E is either an invocation

by a transaction or a response as follows: Let p, q ≤ |Processes| ; s, t ≤ |Tr | ; x , y ≤ |Locations|

; u, u′, v ∈ N. Where |L| represents length of the list L minus one.

• Rt
p(x): a read operation by transaction t in process p. The response gives the current

value u of object x and has the form R̂t
p(x, u).

Chapter 4. Abstract Model of Transactional Memory 49

• W t
p(x, u

′): a write value u′ operation to object x by transaction t in process p. The

response is ok. When the value written is of no importance and has no relevance, we

write the above as W t
p(x) and regard both of the two forms as equivalent.

• tryCom t
p: a commit request by transaction t in process p. If the attempt to commit

succeeds, the response is comt
p (or the notation⊕tp) and it makes all the temporary updates

visible by other transactions. If it fails, the response is aborttp (or the notation ⊗tp) and it

discards any update.

• tryAbort tp: an abort request by transaction t in process p, the response is⊗tp and it discards

any update.

Note: As there are no other events that interleave an invocation and its response, we will regard,

for the sake of simplicity, the invocation and its response as a single form, such as (where noev

means no event and 2m see Table 3.2):

∀x, u · 2f (fin R̂t
p(x, u) ≡ 3(Rt

p(x) ∧ (©2m noevtp) ∧ R̂t
p(x, u)))

∀y, u′ · 2f (fin W t
p(y, u

′) ≡ 3(W t
p(y, u

′) ∧ (©2m noevtp) ∧ oktp))

Main Components

As shown in Fig. 4.2, the proposed TM abstract model tmspec has four main state variables

which are:

• Mem[obj] : Persistent memory (0 ≤ obj < |Locations|); initially ⊥.

Chapter 4. Abstract Model of Transactional Memory 50

• Pp : Process status ∈ {free: It does not have a transaction in progress, busy: It has an

active or doomed transaction } ; where (0 ≤ p < |Processes|) ; initially free.

• T tp : Transaction status ∈ {idle : It has not been issued, active: It is in progress, doomed :

It is in progress but it has a conflict with another transaction and cannot commit, finished :

It is committed or aborted}; where (0 ≤ t < |Tr|) ; initially idle.

• Et
p,i : Event type ∈ {noev, r, w, ok, tryCom, tryAbort, ⊕,⊗} ; where (0 ≤ i < |E|);

initially noev.

FIGURE 4.2: The proposed TM abstract model.

Chapter 4. Abstract Model of Transactional Memory 51

Transition Behaviour

The states transition of the tmspec are, for better readability, partitioned into two tables: Ta-

ble 4.2 lists all possible invocation states of the tmspec, while Table 4.3 lists all possible re-

sponses for invocation of transactional operations states. Both tables describe the preconditions

under which each transition can be taken and describe the effects of the transition on other

variables. The formal description of the two tables and their relation are illustrated later in this

section and in Appendix A. The formula ConflictDetRes() in Table 4.2, which is defined later

on in this section(see Equation 4.2), concerns the conflict detection and resolution mechanisms.

While ε and εr in this formula refer to the mechanism type of conflict detection and resolution

that is used by a TM system (their definitions and more details in Subsection 4.3.2, see Equa-

tions 4.9 to 4.15). The skip formula, in the precondition column of both tables, describes that

we use an interval of two states.

TABLE 4.2: The invocation actions of the tmspec’s transactional operations

Case∗ Preconditions Actions Event out
Rt
p(x) s0 Pp=free ∧ T tp=idle skip ∧ ©Pp=busy ∧

ConflictDetRes(p, t , ε, εr)
Rt
p(x)

s1 Pp=busy∧ T tp=active skip ∧ stable(Pp) ∧
ConflictDetRes(p, t , ε, εr)

s2 Pp=busy∧
T tp=doomed

skip ∧ stable(Pp) ∧
stable(T tp)

s3 Otherwise skip ∧ AbortTran(p, t) ⊗
W t
p(x, u

′) s4 same as read case same as read case W t
p(x, u

′)

tryComt
p s5 T tp=active skip ∧

ConflictDetRes(p, t , ε, εr)
tryComt

p

s6 ¬T tp=active skip ∧ ©T tp=doomed

tryAbort tp s7 - skip tryAbort tp
*For better readability the conditions for each state’s actions are divided into two columns: case and

preconditions.

Chapter 4. Abstract Model of Transactional Memory 52

In Table 4.2, the transitions s0 − s4 deal with read and write transactional operations. Instead

of adding a new operation for opening a transaction, s0 is concerned with the beginning of a

new transaction as follows: If process p is free and transaction t is idle, then p can invoke t

by transferring the status of p to busy and t to active. This prevents other transactions being

created until the existing one terminates. Transaction t can invoke an operation at the beginning

state of t and as long as its status does not equal finished. The action of (s1) is an invocation

for an operation using the same active transaction that may become doomed in the next state

and cannot commit if a conflict with other transaction is detected, while the action of (s2) is an

invocation for an operation using the same doomed transaction that should stabilise its status in

order to eventually abort. The following definition for doomed transaction:

Definition 1 (Doomed Transaction). Status of a transaction T tp in tmspec is changed from active

or idle to doomed only iff a conflict with another transaction T sq has been detected by a conflict

detection mechanism. Transaction T tp which has a doomed status must eventually be aborted.

The concurrency control mechanism, i.e. conflict detection and resolution, is essential part

in the TM systems implementation in order to detect and resolve conflicts between concur-

rent transactions accessing (and at least one modifies) the same object(s). There are many

approaches to maintain conflict detection and resolution such as lazy (at commit time) and ea-

ger (at object access time). In our proposed abstract TM model, we firstly use lazy approach

and then involve other conflict detection and resolution approaches. We now show the ITL

formula of the conflict detection and resolution mechanism in tmspec denoted ConflictDetRes():

Chapter 4. Abstract Model of Transactional Memory 53

Let p, q ≤ |Processes| and p 6= q ; s, t ≤ |Tr | ; x , y ≤ |Locations| ; u ∈ N

ConflictDetRes(p, t , ε, εr) =̂ 2a (ConflictDet(p, t , ε) ⊃ ConflictRes(p, t , q , s , εr)) (4.2)

The formula ConflictDetRes(p, t, ε, εr) captures a conflict and resolves it by using two sub-

formulas which are:

• ConflictDet(p, t , ε) to check whether transaction t in process p conflicts with the concur-

rent transactions that have been issued by other processes (where ε specifies the type of

detection). The following formula represents the lazy approach (εl) that detects a conflict

when transaction t tries to commit (tryComt
p) before transaction s (T sq = active) and

there exist, in the previous states, operations write an object in t and read the same object

in s.

ConflictDet(p, t , εl) =̂ (3W t
p(y, u

′) ∧3Rs
q(y)); (T

s
q = active ∧ tryComt

p ∧ empty)

(4.3)

• ConflictRes(p, t , q , s , εr) to resolve a conflict between two concurrent transactions by

aborting one of them (where εr specifies the resolution approach). The following formula

changes the status of a transaction, which has conflict and still active, to doomed (can’t

commit).

ConflictRes(p, t , q , s , εrl) =̂ (3 tryComt
p ∧ ¬3 tryComs

q) ∧ ©T sq = doomed

Chapter 4. Abstract Model of Transactional Memory 54

The possible approaches of conflict detection such as lazy, eager and mixed, and approaches of

conflict resolution such as eager and lazy arbitration are explained in detail in the next section

(see Section 4.3). As shown in Table 4.2, we replicate instances ConflictDetRes() to preserve

the generality of this TM model. For example, if ε = εl (Lazy), then ConflictDetRes() will be

activated at commit time (tryCom), while the others will be neglected.

TABLE 4.3: The response actions of tmspec’s transactional operations

Case∗ Preconditions Actions Event out
Rt
p(x) ŝ0 ∃ { a local write W t

p(x, u
′) ∧

no write in between}
skip ∧ u=u′ R̂t

p(x, u)

ŝ1 2(¬W t
p(x)) ∧

(InconsRead(p, t) ∧
T tp=doomed)

skip ∧ u=⊥ ∧ AbortTran(p, t) ⊗

ŝ2 2(¬W t
p(x)) ∧

¬(InconsRead(p, t) ∧
T tp=doomed)

skip ∧ u=Mem[x] R̂t
p(x, u)

W t
p(x, u

′) ŝ3 - skip ∧ Assign temporary u′ to x ok
tryComt

p ŝ4 T tp=active skip ∧ CommitTran(p, t) ⊕
ŝ5 T tp=doomed skip ∧ AbortTran(p, t) ⊗

tryAbort tp ŝ7 - skip ∧ AbortTran(p, t) ⊗
* For better readability the conditions for each state’s actions are divided into two columns: case and

preconditions.

Transitions ŝ0 − ŝ2 , in Table 4.3 list the three possible actions for responding to a transactional

read operation Rt
p(x). Transition ŝ0 returns u′, if there is a previous W t

p(x, u
′) operation for the

same object x and it is issued by the same transaction t and process p. Transition ŝ1 returns

⊥ and aborts transaction t, if there isn’t a previous W t
p(x, u

′), transaction t status is equal to

doomed and there is an inconsistent read state InconsRead(). This condition is used to prevent

the doomed transaction in the proposed abstract TM accessing an inconsistent state and then

causing illegal actions such as divided by zero (more details see Subsection 4.3.1).

Chapter 4. Abstract Model of Transactional Memory 55

Here is the ITL formula of InconsRead():

InconsRead(p, t) =̂ 3(R̂t
p(y, v) ∧ v = v′) ∧ ©2(¬W t

p(y))

∧ fin
(
R̂t
p(x, u) ∧ ¬(v = v′)

) (4.4)

The combination of InconsRead() with T tp = doomed indicates that transaction t has a con-

flict because a response value of one of the previous R operations in the same transaction has

been changed by another committed transaction and the doomed transaction t may access an

inconsistent value.

Transition ŝ2 returns a value of x from memory if there is not a previous W t
p(x, u

′) and there

isn’t an inconsistent read access.

We formalise these three possible actions in ITL formula denoted ValidRead() as follows:

ValidRead()

=̂ 2a (((fin(R̂t
p(x, u)) ∧ f0) ⊃ u = u′)

∧ ((fin(R̂t
p(x, u)) ∧

(
¬f0 ∧2(¬W t

p(x))
)
∧ f1) ⊃ (u = ⊥ ∧ fin⊗tp))

∧ ((fin(R̂t
p(x, u)) ∧

(
¬f0 ∧2(¬W t

p(x))
)
∧ ¬f1) ⊃ u = Mem[x]))

(4.5)

where f0 and f1 are defined as follows:

f0 =̂ W t
p(x, u

′) ∧ ©2(¬W t
p(x))

f1 =̂ fin(T t
p = doomed ∧ InconsRead(p, t))

Chapter 4. Abstract Model of Transactional Memory 56

The formula ValidRead() assigns an object x in the read response operation R̂t
p(x, u) to value

u (initially ⊥) that equals to one of the three followings choices: firstly, it equals to u′ if there

exists an operationW t
p(x, u

′) such that 1)Rt
p(x) andW t

p(x) operations are issued by transaction

t and process p, 2) W t
p(x) precedes Rt

p(x) where their order satisfies (W t
p(x) ∧ finRt

p(x)), and

3) no W t
p(x) in between. Secondly, it equals to ⊥ if there is no local write and there exists an

operation R̂t
p(y, v) such that 1) Rt

p(y) and Rt
p(x) operations are issued by transaction t and pro-

cess p, 2) Rt
p(y) precedes Rt

p(x) where the order satisfies (Rt
p(y)∧ finRt

p(x)), and 3) a conflict

is detected because of that the value of y has been updated by a concurrent committed transac-

tion. Finally, it equals to u′′ if there is no local write and no conflict with other transactions is

detected. The value u′′ is equal to the value of location object x in the global memory.

Transitions ŝ4 − ŝ6 respond to tryCom and tryAbort instructions. The actions are either com-

mitting a transaction (making all the temporary updates in the event list E permanent by trans-

ferring the updated object’s value to the corresponding memory location) using CommitTran()

formula or aborting a transaction (undoing any update) using AbortTran() formula, as follows:

(note: more details for the following formula in Appendix A)

CommitTran(p, t) =̂ ©T t
p = finished ∧ ©E t

p = ⊕ ∧ ©Pp = free

∧UpdateMemory()

(4.6)

AbortTran(p, t) =̂ ©T t
p = finished ∧ ©E t

p = ⊗ ∧ ©Pp = free (4.7)

Definition 2 (Memory Update). In the tmspec model, the value of a memory location such as

Mem[x] is permanently updated with a value such as u′′ by CommitTran() formula only iff β

Chapter 4. Abstract Model of Transactional Memory 57

is satisfied:

β =̂ (((W s
q (x, u

′′) ∧ ©2(¬W s
q (x))

)
∧ fin⊕sq

)
∧ ©2(¬W i

j (x)) ∧fin⊕ij)

The formula β states that there is a finite interval that ends with a commit event in its last state

and a previous write event state for an object such as x with a value such as u′′ by the process’s

q transaction s. Also, there is not another finite interval that has a sequence of both a write event

for the same object x and a commit event at the end.

To guarantee that each invocation event is followed by a response and each active transaction

eventually finishes, we categorise the events described in Tables 4.2 and 4.3 into two parts as

follows: (for their definitions, see Fig. A.1 in Appendix A)

• TranInvOp() for read and write invocation of transactional operations, and the formula

TranResOp() for its response.

• TranInvEnd() for tryComit and tryAbort invocation of ending a transaction, and the

formula TranResEnd() for its response.

According to these categories, the sequence of invocation and response events that form trans-

action Tr t
p and described in 4.1 can be modelled in the following ITL formula:

Trtp =̂ ((TranInvOp(p, t , op); TranResOp(p, t)) ∗;

TranInvEnd(p, t , op); TranResEnd(p, t))

Chapter 4. Abstract Model of Transactional Memory 58

In addition, the complete specification of the abstract TM model tmspec that described in 4.1

can be modelled with the initial values in the following ITL formula:

tmspec =̂
∧n
p=0 Processp

Processp =̂ Pp = free ∧ T t
p = idle

∧ ((TranInvOp(p, t , op); TranResOp(p, t)) ∗;

TranInvEnd(p, t , op); TranResEnd(p, t)) ∗

(4.8)

To ensure the validity of our proposed TM abstract model tmspec, we build an executable spec-

ification for tmspec (see Fig. A.1 in Appendix A) by refining the high-level TM abstract spec-

ification written in ITL into a set of Tempura modules using the refinement rules in [18, 54].

Then we simulate and analyse this model using AnaTempura (see Appendix A).

4.3 Formalisation of TM Safety Properties

Many TM correctness conditions have been proposed in the literature with varying degrees of

precision and rigour. However, the basic correctness property for concurrent transactions is

serialisability [7, 64]. A transactional history (TH) is serialisable if the result of all committed

concurrent transactions in TH that are generated by a TM system is identical to a result in some

sequential transactional history (STH) which represents the same transactions executed serially

Chapter 4. Abstract Model of Transactional Memory 59

(more details in this section). In this section, we use ITL to formalise some correctness condi-

tions that can lead to the serialisability property and other criteria which have been considered

for TM. We will consider all subintervals in finite time.

4.3.1 Read Consistency

A TM system shows only a single memory image to the concurrent transactions. Each trans-

action is allowed to read from and write into each memory location. Also, more than one

transaction may read the same memory location at the same time. However, transactions exe-

cuting at the same time need to access a consistent state, i.e., a state produced by a sequence

of previously committed transactions [40]. One of the inconsistent read states arises when the

value returned by each read operation is not the value written by the last committed write op-

eration in that location. The read consistency property can deal with such cases and go on to

ensure that transactions run in such a way that they appear to be executed one at a time, or

serially, rather than concurrently. In this section, we show three conditions which are needed to

preserve the read consistency.

Local Read Consistency

The order of read and write operations within a transaction should be preserved in the same

way that appear in the program. This can be violated if the read operation returns the last value

that is written by the last committed write of a different transaction regardless of the last write

Chapter 4. Abstract Model of Transactional Memory 60

by the same transaction to the same location. In this case the later read will appear as executed

before the early write operation. The local read consistency property guarantees that each read

operation returns the last write by the same transaction to the same location.

Example:

where p ≤ |Processes| ; t ≤ |Tr| ; x ≤ |Locations| ; u, u′ ∈ N

Processesp =̂W t
p(x, u); ok; R

t
p(x); R̂

t
p(x, u)

This example shows that the response comes from the process’s local write and not from global

memory, because the same location has been written by the same transaction. So, it satisfies the

local consistency commitment (see Fig. 4.3).

FIGURE 4.3: Local consistency.

Definition 3 (Local Consistency). Each committed or aborted transaction in tmspec satisfies

local read consistency iff each read operation is responded to with a value that has been written

by a previous write operation for the same variable and in the same transaction.

We now show how to express local consistency as an ITL formula denoted Local Cons:

Chapter 4. Abstract Model of Transactional Memory 61

Local Cons =̂ ¬3a (ϕ ∧ u 6= u′)

ϕ is defined as follows: ∀x

ϕ =̂
(
(W t

p(x, u
′) ∧ skip); 2(¬W t

p(x)); (R̂
t
p(x, u) ∧ empty)

)
The local formula states that if a finite subinterval has a write event state for an object such as x

with a value such as u′, ends with a read response event for the same object x with a value such

as u and no other write event for the same object occurring in between, then u′ should equal u.

Remark 1. My supervisor Dr. Ben Moszkowski has suggested the following alternative ITL

formula for representing the local read consistency property:

Local Cons =̂ ∀x · 2f ((fin R̂t
p(x, u))

⊃ 3
(
(W t

p(x, u) ∧ skip); 2(¬W t
p(x))

))

This kind of formula is further discussed in his interesting paper [55]. This formula states that

if a finite prefix subinterval ends with a read value, then the same transaction previously wrote

this value. No other transaction occurred in between. In actual fact, this formal representation

is simpler than the first one. It uses fewer terms and precisely describes the local read property.

Because of the lack of time, it will be considered in the future work.

Doomed Read Consistency

Guerraoui and Kapalka [41] extend the notion of strict serialisability to include the concept

that even aborted transactions should not access an inconsistent state of the memory which can

cause infinite loops, or exceptions (divided by zero). In this model we add this extension, called

doomed consistency, as one of the safety conditions that can lead finally to strict serialisability

Chapter 4. Abstract Model of Transactional Memory 62

(where defined later in Subsection 4.3.3) with the property that even doomed transactions do

not observe an inconsistent state (see Fig. 4.4).

Here is an example will initially y=4, x=2.

p 6= q ≤ |Processes| ; s, t ≤ |Tr | ; x , y ≤ |Locations| ; u ∈ N

Processesp =̂ Rt
p(y); R̂

t
p(y, 4); R

t
p(x); R̂(x, 4); W

t
p(z, 1/(y − x))

Processesq =̂W s
q (y, 6); ok; W

s
q (x, 4), ok, tryCom

s
q,⊕sq

A case with divided-by-zero clearly occurs in this example when the value of x is changed by

transaction s, where x-y=0 and z=1/0.

FIGURE 4.4: Doomed consistency.

Definition 4 (Doomed Consistency). Each transaction in tmspec satisfies doomed consistency

iff a later R operations does not access an inconsistent state that comes when the response value

of one of the previous R operation in the same transaction has been changed.

We now show how to express doomed consistency as an ITL formula denoted by Doomed Cons:

Chapter 4. Abstract Model of Transactional Memory 63

Doomed Cons =̂ ¬3a (ψ ∧ ¬(u = ⊥ ∧⊗tp))

where ψ is defined as follows: ∀ x, y and p 6= q

ψ =̂ 2(¬W t
p(x))

∧ (((Rt
p(y) ∧ empty; 3W s

q (y)
)
∨
(
W s
q (y) ∧ empty; 3Rt

p(y)
))

∧ fin(⊕sq ∧ T tp = active)) ; fin(R̂t
p(x, u))

Global Read Consistency

Definition 5 (Global Consistency). A transaction in tmspec satisfies the global consistency con-

dition iff each R(x, u) in the successful transaction (no conflict or not doomed) returns the

most recent W (x, u′′) in any committed transaction.

We now show how to express global consistency as an ITL formula denoted by Global Cons:

Global Cons =̂ ¬3a (α ∧ u 6= u′′)

where α is defined as follows: ∀ x, y and p 6= q 6= j

α =̂ 2(¬W t
p(x)) ∧ ((

(
W s
q (x, u

′′) ∧ skip; 2(¬W s
q (x))

)
∧fin⊕sq)∧©(¬3a (3W i

j (x) ∧ fin⊕ij)))

; fin(R̂t
p(x, u) ∧ ¬(T t

p = doomed ∧ InconsRead(p, t)))

The global formula states that if a finite subinterval has the following sequences: Firstly, a finite

subinterval that has a commit event in its last state (fin ⊕) and a previous write event state for

an object such as x with a value such as u′′ by the process’s q transaction s. Secondly, there is

no other finite subinterval that has a sequence of write event for the same object x and commit

event at the end. Finally, if there is a read response event for the same object x with a value such

Chapter 4. Abstract Model of Transactional Memory 64

as u and there are no a local write for the same object and a conflict detection , then u should

equal u′′.

4.3.2 Conflict Free

A conflict appears when concurrently executing transactions perform operations on the same

location and at least one of them modifies the data. Scott [39] presents practical policies for

detecting conflicts to describe the STH ’s characteristic of different classes of TM systems.

Although these conflict policies are meant to serve as strong conditions [41], he does not include

the case of write for the same object by two concurrent transactions (as shown in this section).

Also, Scott introduces arbitration functions to ensure progress by specifying which of the two

conflicting transactions will fail. We augment Scott’s policies for detecting and solving conflicts

by adding a case for exclusive read which is used in shared memory systems.

Conflict Detection

There are two main methods to handle conflict detection: lazy (sometimes referred to as late

or optimistic) and eager (sometimes referred to as early or pessimistic). Lazy conflict detection

is based on the concept that the TM system delays the detection until a transaction requests

to commit, while the concept of eager is that the TM system detects conflicts as soon as they

occur.

Here we formalise the classes of conflict detection which are denoted by (ε):

Chapter 4. Abstract Model of Transactional Memory 65

• Lazy Conflict (εl): Process p’s transaction t and process q’s transaction s conflict if there

exist operations writeW an object in s and readR the same object in t such that s commits

before the end of t (see Fig. 4.5).

FIGURE 4.5: Lazy conflict.

εl =̂ fin(tryComs
q) ∧ (3W s

q (y, u
′) ∧3Rt

p(y) ∧ fin(T tp = active)) (4.9)

• Eager Conflict (εe): Process p’s transaction t and process q’s transaction s conflict if t and

s have a lazy conflict or if there exist operations read R an object in s and write W the

same object in t such that W precedes R or vice versa, but neither transaction has ended

(see Fig. 4.6).

εe =̂ εl∨ ((fin(Rs
q(y)) ∧ (3W t

p(y) ∧ fin(T tp = active))
)

∨
(
fin(W t

p(y)) ∧ (3Rs
q(y) ∧ fin(T sq = active))

))
(4.10)

Chapter 4. Abstract Model of Transactional Memory 66

FIGURE 4.6: Eager conflict.

• Strong Eager Conflict (εes): Some systems use exclusive read operation to prepare for

writing. This formula can detect a conflict for such instructions. The exclusive read

operation is treated like a write in εe as follows: transactions t belongs to process p and

transaction s belongs to process q conflict if t and s have a lazy conflict or if there exist

operations read R an object in s and write W or R the same object in t such that W or R

precedes R or vice versa, but neither transaction has ended.

εes =̂ εl∨ ((fin(Rs
q(y)) ∧ (3(W t

p(y) ∨Rt
p(y)) ∧ fin(T tp = active))

)
∨
(
fin(W t

p(y) ∨Rt
p(y))) ∧ (3Rs

q(y) ∧ fin(T sq = active))
))

(4.11)

• Mixed Conflict (εm): Process p’s transaction t and process q’s transaction s conflict if t

and s have a lazy conflict or if there exist operations write W an object in t, read R and

write W the same object in s such that R precedes the two instances of W , but neither

transaction has ended (see Fig. 4.7).

Chapter 4. Abstract Model of Transactional Memory 67

FIGURE 4.7: Mixed conflict.

εm =̂ εl∨ ((fin(W t
p(y)) ∧ (3(Rs

q(y) ∧ ©3W s
q (y)) ∧ fin(T sq = active))

)
∨
(
fin(W s

q (y)) ∧ (3(Rs
q(y) ∧ ©3W t

p(y)) ∧ fin(T tp = active))
))

(4.12)

Conflict Resolution

Transactional memory systems have a contention management policy (arbitration) to resolve a

conflict between two transactions by aborting one of them. Scott [39] suggests three arbitration

functions:

• Eagerly aggressive arbitration (εre): Whoever started early fails.

εre =̂ fin⊗tp ∧(3T tp = active; 3T sq = idle) (4.13)

• Eagerly own arbitration (εro): Whoever owns the conflict object first wins.

εro =̂ fin(Rt
p(y) ∨W t

p(y, u)); fin⊗tp ∧T sq = active (4.14)

Chapter 4. Abstract Model of Transactional Memory 68

• Lazily aggressive arbitration (εrl): Whoever tries to commit first wins.

εrl =̂ fin⊗tp ∧(¬3 tryComt
p ∧3 tryComs

q) (4.15)

Transaction t in process p is called conflict-free if there is no transaction s in process q and

p 6= q such that s is conflicting with t to which t loses at arbitration.

ConflictFree(ε, εr) =̂ ¬3a (ε ∧ ¬εr)

ε =̂ εl ∨ εe ∨ εes ∨ εm

εr =̂ εre ∨ εrl ∨ εro

To help the reader follow the formulae of all previous safety properties, we collect them in one

place, as shown in Table 4.4.

4.3.3 Strict Serialisability

Papadimitriou [65] augments the strength of serialisability by adding the requirement of real

time ordering of the committed transactions. A TM system satisfies this property if:

• Each read in every successful transaction satisfies the read consistency conditions.

• The committed transactions can be ordered serially according to the order of their com-

mitted operations.

• Every read and write operation in serially ordered committed transactions appear serially

according to their transactions’ ordering.

Chapter 4. Abstract Model of Transactional Memory 69

TABLE 4.4: Formal TM safety properties

Read Consistency
Local Cons =̂ ¬3a (ϕ ∧ u 6= u′)

ϕ =̂
(
(W t

p(x, u
′) ∧ skip); 2(¬W t

p(x)); (R̂
t
p(x, u) ∧ empty)

)
Doomed Cons =̂ ¬3a (ψ ∧ ¬(u = ⊥ ∧⊗tp))

ψ =̂ 2(¬W t
p(x))

∧(((Rt
p(y) ∧ empty; 3W s

q (y)
)

∨
(
W s
q (y) ∧ empty; 3Rt

p(y)
))

∧ fin(⊕sq ∧ T tp = active)) ; fin(R̂t
p(x, u))

Global Cons =̂ ¬3a (α ∧ u 6= u′′)

α =̂ 2(¬W t
p(x)) ∧ ((

(
W s
q (x, u

′′) ∧ skip; 2(¬W s
q (x))

)
∧fin⊕sq)∧©(¬3a (3W i

j (x) ∧ fin⊕ij)))
; fin(R̂t

p(x, u) ∧ ¬(T t
p = doomed ∧ InconsRead(p, t)))

ConflictFree(ε, εr)
=̂ ¬3a (ε ∧ ¬εr)

where ε =̂ εl ∨ εe ∨ εes ∨ εm
εr =̂ εre ∨ εrl ∨ εro
εl =̂ fin(tryComs

q) ∧ (3W s
q (y) ∧3Rt

p(y) ∧ fin(T tp = active))

εe =̂ εl∨ ((fin(Rs
q(y)) ∧ (3W t

p(y) ∧ fin(T tp = active))
)

∨
(
fin(W t

p(y)) ∧ (3Rs
q(y) ∧ fin(T sq = active))

))
εm =̂ εl∨ ((fin(W t

p(y)) ∧ (3(Rs
q(y) ∧ ©3W s

q (y))
∧fin(T sq = active)))
∨ (fin(W s

q (y)) ∧ (3(Rs
q(y) ∧ ©3W t

p(y))

∧fin(T tp = active))))
εre =̂ fin⊗tp ∧(3T tp = active; 3T sq = idle)
εro =̂ fin(Rt

p(y) ∨W t
p(y, u)); fin⊗tp ∧T sq = active

εrl =̂ fin⊗tp ∧(¬3 tryComt
p ∧3 tryComs

q)

We formalise this property as follows: Let σ : s0, s1, s2, ... be a finite or infinite sequence of

states. Each state is a mapping from variable to value and because an event E is represented

by a variable you can represent the concurrent observable events by a set of variables with

Boolean indications whether they occurred in the state or not. Each sequence of events formed

a transaction Tr that is issued sequentially. The sequence σ is called transactions history TH .

Chapter 4. Abstract Model of Transactional Memory 70

FIGURE 4.8: Strict and Non-Strict Serialisability.

Moreover, let σ′ be obtained from σ by serialising the concurrent committed transactions in

TH . Since we have preserved each transaction in an independent list in the proposed model

tmspec, which means each transaction with its events is considered as one block, we do not need

to reorder events to transfer the TH to the STH . Instead, the events of each transaction can be

collected by specifying the process and transaction for each event.

Definition 6 (Strict Serialisability). The TH can be strictly serialised, if we can obtain σ′ from

σ with respect to Ser(TH) as follows:

Ser(TH) =̂ (Trtp; Tr
s
q)

≡ Trtp ∧ Trsq

∧ {p 6= q}

∧ {The order of transactions over σ′ is the

order of the committing events for the

same transactions (fin⊕tp; fin⊕sq) over σ}

∧ {all Rt
p and Rs

q over σ respects Read-Consistency property}

∧ {all ⊕tp and ⊕sq over σ respects Conflict-Free property}

Chapter 4. Abstract Model of Transactional Memory 71

4.4 Verification of Abstract TM Model

There have been several recent approaches proposed for verifying the correctness of TM sys-

tems, which use a model checker based on algorithms [43, 64]. However, this method has

limitations because of state explosion for large scale concurrent systems, namely the exponen-

tial growth of the global state space in the number of components [66]. Instead, we use a

compositional technique based on the mathematical verification method. This method could

perhaps allow us in the future to do a mechanical verification using special-purpose theorem

provers such as PVS or KIV [48, 66, 67].

We propose a simplification of the verification approach by viewing the tmspec model from

the viewpoint of TM safety properties. This simplification approach shifts the burden of the

verification from a global level to the local components that may violate the safety properties.

In actual fact, the main safety condition studied by the TM community is strict serialisability

with respect to doomed consistency. However, the verification of this property depends on two

other properties, which are read-consistency (Local Cons, Doomed Cons and Global Cons)

and conflict-free properties, see Subsection 4.3.1.

FIGURE 4.9: Safety proof.

Chapter 4. Abstract Model of Transactional Memory 72

In the tmspec case, the two main components that can affect the read consistency, detection

conflict and correct resolution of conflict are ValidRead() and ConflictDetRes(). Therefore

we must firstly verify that each of these components satisfies the corresponding property as

follows:

Lemma 4.1. ValidRead() ⊃ Local Cons

Lemma 4.2. ValidRead() ⊃ Doomed Cons

Lemma 4.3. ValidRead() ⊃ Global Cons

Lemma 4.4. ConflictDetRes(ε, εr) ⊃ ConflictFree(ε, εr)

To prove these lemmas, we simplify the lhs of each part using an assumption to reduce the

big formula and then we mathematically prove that new formula satisfies the rhs by using

propositional reasoning, the ITL (semantic) inference rules and the definition of ITL operators.

Moreover, some definitions are used in this verification approach to cover the relationship be-

tween the model’s components. For example, the definitions of doomed transaction (Definition

1) and memory update (Definition 2) show the relationship between the CommitTran() and the

ValidRead().

Chapter 4. Abstract Model of Transactional Memory 73

Before starting the proof of these lemmas, we will remind the readers about the definition 4.5

of formula ValidRead() in Section 4.2:

ValidRead()

=̂ 2a (((fin(R̂t
p(x, u)) ∧ f0) ⊃ u = u′)

∧ ((fin(R̂t
p(x, u)) ∧

(
¬f0 ∧2(¬W t

p(x))
)
∧ f1) ⊃ (u = ⊥ ∧ fin⊗tp))

∧ ((fin(R̂t
p(x, u)) ∧

(
¬f0 ∧2(¬W t

p(x))
)
∧ ¬f1) ⊃ u = Mem[x]))

(4.16)

where f0 and f1 are defined as follows:

f0 =̂ W t
p(x, u

′) ∧ ©2(¬W t
p(x))

f1 =̂ fin(T t
p = doomed ∧ InconsRead(p, t))

Proof: [Lemma 4.1]

We start by assuming that process p’s transaction t has a local write W t
p(x). According to that

assumption the ValidRead() formula can be simplified as follows:

ValidRead()

≡

{ assuming W t
p(x), then 2(¬W t

p(x)) = False }

1. 2a (((fin(R̂t
p(x, u)) ∧ f0) ⊃ u = u′)

∧ ((fin(R̂t
p(x, u)) ∧ (¬f0 ∧ False) ∧ f1) ⊃ (u = ⊥ ∧ fin⊗tp))

∧ ((fin(R̂t
p(x, u)) ∧ (¬f0 ∧ False) ∧ ¬f1) ⊃ u = Mem[x]))

Chapter 4. Abstract Model of Transactional Memory 74

{ 1, propositional reasoning }

2. 2a (((fin(R̂t
p(x, u)) ∧ f0) ⊃ u = u′) ∧ True ∧ True)

{ 2, propositional reasoning }

3. 2a (¬ ((fin(R̂t
p(x, u)) ∧ f0) ∧¬(u = u′)))

{3, definition of 2a }

4. ¬3a ¬ (¬ ((fin(R̂t
p(x, u)) ∧ f0) ∧¬(u = u′)))

{4, propositional reasoning }

5. ¬3a ((fin(R̂t
p(x, u)) ∧ f0) ∧u 6= u′)

f0 ≡ {definition of f0 (4.16)}

5.1. W t
p(x, u

′) ∧ ©2(¬W t
p(x))

{5.1, definition of ITL operators © and ITL inference rules}

5.2. W t
p(x, u

′) ∧ (skip; 2(¬W t
p(x)))

{5.2, ITL inference rules}

5.3. (W t
p(x, u

′) ∧ skip); 2(¬W t
p(x))

{5.1,5.3, substituting f0(5.3) in 5 }

6. ¬3a ((fin(R̂t
p(x, u)) ∧ (W t

p(x, u
′) ∧ skip); 2(¬W t

p(x))) ∧u 6= u′)

{6, definition of ITL operators fin}

7. ¬3a ((W t
p(x, u

′) ∧ skip; 2(¬W t
p(x)); R̂

t
p(x, u) ∧ empty)∧u 6= u′)

{1-7, where 7 is equivalent to Local Cons (see Table 4.4, page 69) }

ValidRead() ⊃ Local Cons

Chapter 4. Abstract Model of Transactional Memory 75

Proof: [Lemma 4.2]

We start by assuming that process p’s transaction t doesn’t have a local write 2(¬W t
p(x)) and

transaction t is doomed fin(T t
p = doomed) . According to these assumptions the ValidRead()

formula can be simplified as follows:

ValidRead()

≡

1. 2a (((fin(R̂t
p(x, u)) ∧ False) ⊃ u = u′)

∧ ((fin(R̂t
p(x, u)) ∧

(
¬f0 ∧2(¬W t

p(x))
)
∧ f1) ⊃ (u = ⊥ ∧ fin⊗tp))

∧ ((fin(R̂t
p(x, u)) ∧

(
¬f0 ∧2(¬W t

p(x))
)
∧ False) ⊃ u = Mem[x]))

{ 1, propositional reasoning }

2. 2a (True∧ ((fin(R̂t
p(x, u)) ∧

(
¬f0 ∧2(¬W t

p(x))
)
∧ f1)

⊃ (u = ⊥ ∧ fin⊗tp)) ∧ True)
{2, let ε ≡ ¬f0 ∧2(¬W t

p(x)) }

3. 2a (((fin(R̂t
p(x, u)) ∧ ε ∧ f1) ⊃ (u = ⊥ ∧ fin⊗tp)))

ε ≡ { simplifying ε, where W(x) and W(x,u’) are regarded as equivalent }

3.1. ¬f0 ∧2(¬W t
p(x))

{3.1, definition of f0 (4.16)}

3.2.
(
¬W t

p(x, u
′) ∨ ¬(skip; 2(¬W t

p(x)))
)
∧2(¬W t

p(x))

{3.2, propositional reasoning}

3.3.
(
¬W t

p(x, u
′) ∧2(¬W t

p(x))
)
∨
(
¬(skip; 2(¬W t

p(x))) ∧2(¬W t
p(x))

)

Chapter 4. Abstract Model of Transactional Memory 76

{3.3, propositional ITL}

3.4. 2(¬W t
p(x)) ∨ (empty ∧ ¬W t

p(x))

{3.4, propositional ITL}

3.5. 2(¬W t
p(x))

{3.1,3.5, replacement of ε by 3.5 in 3}

4. 2a (((fin(R̂t
p(x, u)) ∧2(¬W t

p(x)) ∧ f1) ⊃ (u = ⊥ ∧ fin⊗tp)))

{4, propositional ITL}

5. ¬3a ¬ (¬ ((fin(R̂t
p(x, u)) ∧2(¬W t

p(x)) ∧ f1) ∧¬(u = ⊥ ∧ fin⊗tp)))
{5, propositional reasoning}

6. ¬3a ((fin(R̂t
p(x, u)) ∧2(¬W t

p(x)) ∧ f1) ∧¬(u = ⊥ ∧ fin⊗tp))

f1 ≡ {definition of f1 (4.16)}

6.1. fin(T t
p = doomed ∧ InconsRead())

{Definition 1 of doomed transaction, we assume

a weakest conflict detection type (lazy) is used (4.3), (4.4)}

6.2. fin⊕sq ∧(3W s
q (y) ∧3Rt

p(y) ∧ fin(T tp = active))

{6.2, propositional ITL}

6.3. (((Rt
p(y) ∧ empty; 3W s

q (y)
)
∨
(
W s
q (y) ∧ empty; 3Rt

p(y)
))

∧ fin(⊕sq ∧ T tp = active))
6.4. ≡ f ′

1

Chapter 4. Abstract Model of Transactional Memory 77

{6.1,6.4, substitution of f1 in 6 by 6.4 and definition of fin }

7. ¬3a ((2(¬W t
p(x)) ∧ f ′

1; fin(R̂
t
p(x, u))) ∧¬(u = ⊥ ∧ fin⊗tp))

{1-7, 7 is equivalent to Doomed Cons (see Table 4.4, page 69) }

ValidRead() ⊃ Doomed Cons

Proof: [Lemma 4.3]

We start by assuming that process p’s transaction t doesn’t have a local write 2(¬W t
p(x))

and transaction t isn’t doomed fin(T t
p 6= doomed) . According to these assumptions the

ValidRead() formula can be simplified as follows:

ValidRead()

≡

1. 2a (((fin(R̂t
p(x, u)) ∧ False) ⊃ u = u′)

∧ ((fin(R̂t
p(x, u)) ∧

(
¬f0 ∧2(¬W t

p(x))
)
∧ False) ⊃ (u = ⊥ ∧ fin⊗tp))

∧ ((fin(R̂t
p(x, u)) ∧

(
¬f0 ∧2(¬W t

p(x))
)
∧ ¬f1) ⊃ u = Mem[x]))

{ 1, propositional reasoning }

2. 2a (True ∧ True ((fin(R̂t
p(x, u)) ∧

(
¬f0 ∧2(¬W t

p(x))
)
∧ ¬f1)

⊃ u = Mem[x]))
{2, simplification of ¬f0 ∧ (2(¬W t

p(x)), see 3.5 in proofs of (4.2) }

3. 2a ((fin(R̂t
p(x, u)) ∧ (2(¬W t

p(x)) ∧ ¬f2)

⊃ u = Mem[x])

Chapter 4. Abstract Model of Transactional Memory 78

{Assuming that there is a previous write by a committed transaction

in location x with value u′′. The u = Mem[x] term is rewritten as follows:}

3.1. Mem[x] = u ′′ ⊃ u = u′′

{ 3.1, Definition 2 of updating a memory location}

3.2. (((W s
q (x, u

′′) ∧ ©2(¬W s
q (x))

)
∧ fin⊕sq

)
∧©(¬3a (3W i

j (x) ∧ fin⊕ij))) ⊃ u = u′′

{ 3.2, propositional ITL }

3.3. (((W s
q (x, u

′′) ∧ skip; 2(¬W s
q (x))

)
∧ fin⊕sq

)
∧©(¬3a (3W i

j (x) ∧ fin⊕ij))) ⊃ u = u′′

{3.1,3.3, simplification }

3.4. ≡ γ ⊃ u = u′′

{ substitution u = Mem[x] in 3 by 3.4 }

4. 2a ((fin(R̂t
p(x, u)) ∧ (2(¬W t

p(x)) ∧ ¬f1) ⊃ γ ⊃ u = u′′)

{ 4, propositional reasoning }

5. 2a ((fin(R̂t
p(x, u)) ∧ (2(¬W t

p(x)) ∧ γ ∧ ¬f1) ⊃ u = u′′)

{5,propositional reasoning and definition of ITL operator 2a }

6. ¬3a ((fin(R̂t
p(x, u)) ∧ (2(¬W t

p(x)) ∧ γ ∧ ¬f1) ∧u 6= u′′)

Chapter 4. Abstract Model of Transactional Memory 79

{6, definition of ITL operators fin and definition of f1 (4.16)}

7. ¬3a (((2(¬W t
p(x)) ∧ γ; fin(R̂t

p(x, u) ∧ ¬(T t
p = doomed ∧ InconsRead(p, t))))

∧u 6= u′′)

{1-7, 7 is equivalent to Global Cons (see Table 4.4, page 69) }

ValidRead() ⊃ Global Cons

Proof: [Lemma 4.4]

Let us simplify the formula ConflictDetRes() (see Section 4.2) of (4.4):

ConflictDetRes(ε, εr)

≡ 2a (ConflictDet(p, t , ε) ⊃ ConflictRes(p, t , q , s , εr))

{propositional reasoning and the definition of ITL operator 2a }

¬3a ¬ (¬(ConflictDet(p, t, ε) ∧ ¬ConflictRes(p, t, q, s, εr)))

Then,

¬3a (ConflictDet(p, t, ε) ∧ ¬ConflictRes(p, t, q, s, εr))

{ The ε and εr are equivalent to ConflictFree() (see Table 4.4, page 69) }

ConflictDetRes(ε, εr) ⊃ ConflictFree(p, t , ε, εr)

Chapter 4. Abstract Model of Transactional Memory 80

Strict Serialisability

As we mentioned previously in Section 4.3, strict serialisability with respect to doomed consis-

tency is considered the primary standard safety condition. According to its definition (see Sub-

section 4.3.3), it depends on the correctness of the two main components that are responsible for

violating the read consistency and conflict free safety conditions which are ConflictDetRes()

and ValidRead() . Since we have already established the correctness of these components (see

Section 4.4), strict serialisability can be simply proved.

Overlap between two transactions such as Trtp and Trsq means that the two transactions execute

concurrently at the same states. Here is the formal definition of overlap: p 6= q

overlap(Trtp, T r
s
q) =̂ Trtp ∧ Trsq

=̂ (Trtp; Tr
s
q) ∨ (Trsq; Tr

t
p)

Theorem 4.5. The Transaction History TH σ can be serialised with respect to Ser(TH) if

there is no overlap and conflict over σ.

Proof: [Theorem 4.5] (by contradiction)

Let p and q be processes, t and s be transactions, u and u′ ∈ N and x be a memory location, such

that t and s have an overlap and conflict ((W t
p(x, u); R̂s

q(x, u
′)) ∧ fin⊕sq; fin⊕tp). We assume

that σ can be serialised with respect to Ser(TH) and obtain a contradiction. According to Defi-

nition 6, σ′ can be obtained from σ and satisfies that each commit respects the ConflictDetRes()

formula (that satisfies ConflictFree()) which is violated here. Since transaction s will detect a

conflict with t and resolve it by changing the status of t to doomed, the response to the request

Chapter 4. Abstract Model of Transactional Memory 81

to commit by transaction t will respond with abort (fin⊗sp) instead of (fin⊕sp). Consequently,

we conclude that σ cannot be serialised.

4.5 Summary

In this chapter a general and flexible TM formal abstract model is presented. In addition, stan-

dard safety properties studied by the TM community are specified such as conflict free, read

consistency and strict serialisability . Some additional conflict detection and resolution policies

are specified to make the proposed TM model more general. For example, the strong-eager-

conflict policy is specified in order to detect a conflict in TM systems that use a read exclusive

instruction. Also, the eager-own-arbitration is specified in order to solve a conflict in the TM

systems that use a cache coherency protocol. ITL and its executable subset AnaTempura are

used to specify and validate the specification of the abstract TM. The major benefit of the val-

idation process is ensuring the specification correctness of the proposed abstract TM model.

Moreover, a mathematical verification method to prove that the proposed abstract TM satisfies

the standard TM conditions is used.

Chapter 5

Validation and Refinement of a TM System

5.1 Introduction

Although a variety of methodologies for verifying the correctness of transactional memory sys-

tems have been developed, most of them only capture the main algorithmic aspects of those

systems. In addition, the specification methods for TM systems are more abstract than real

designs and may overlook many details as a result.

As shown in the framework’s Fig. 5.1, this chapter focuses on the steps inside the circle. We

have the objective to eventually transform a provably correct TM system into a hardware design.

Therefore in this chapter we show a concrete specification, close to reality and more than just an

abstract concept, for the chosen TM system. Then, for the sake of reassurance and understand-

ability, we validate the ITL specification of this TM system with animation using AnaTempura

82

Chapter 5. Validation and Refinement of a TM System 83

and by applying a concurrent data structure example. Moreover, we show how this stage in

our framework helps to note a possible violation for doomed consistency within the chosen

TM system. Finally, the correctness of the concrete specification model is demonstrated using

refinement.

FIGURE 5.1: Proposed framework.

In this chapter, the provable abstract TM model described in the previous chapter is used as a

basis for verifying the correctness of the chosen TM system.

5.2 Example of TM System

We provide, as an example, a TM system tmimp which is firmly based on the original hardware

transactional memory proposal by Herlihy and Moss [6]. In this section, important features of

Chapter 5. Validation and Refinement of a TM System 84

the system tmimp are briefly described. Then, an ITL specification for tmimp is presented.

The system tmimp detects a conflict between concurrent transactions using a coherency protocol

and resolves conflicts by refusing to load data that already belongs to another active transaction.

There is also a transactional cache in tmimp for local transactional operations. Cache lines in

the transactional cache have, in addition to a regular tag, a transaction tag which can hold one

of the following values: xcommit, xabort, normal or empty. A line marked as xcommit indicates

that the line contains data that was valid before entering the transactional mode, and may be

used to recover from an aborted transaction. An xabort tag indicates that the line contains data

that was modified within the transaction; it is not visible to other processors (more details in the

next section).

In addition, Herlihy and Moss [6] propose three instructions for accessing memory transition-

ally (they actually only access the transactional cache): Load-Transaction (lt): reads the value

of a memory location into a private cache and then into a private register, Load-Transaction-

Exclusive (ltx): reads the value of a memory location into a private cache and then into a

private register which will be updated shortly, and Store-Transaction (st): tentatively writes a

value into a private cache.

To make the transaction’s tentative changes permanent and to simplify the writing of correct

transactions, two more instructions were added: commit and validate. These two instructions

are maintained by adding two flags for each process: transaction active Active and transaction

status Status . The Active flag indicates whether a transaction is in progress, while the Status

flag indicates whether that transaction is active (true) or aborted (false). The Active is implicitly

Chapter 5. Validation and Refinement of a TM System 85

set after the first lt or ltx instruction is executed and the object is read. The Status flag is

initially equal to true and resets when a conflict is detected by another concurrent transaction.

While the Active only resets when a transaction commits or a transaction aborts itself. The

commit and validate instructions return an indicator of Status flag; when this flag equals false

, it discards all changes to the write set; when it equals true, commit changes the write set to

become permanent.

5.2.1 Cache and Coherency Specification

As we mentioned in the previous chapter (Section 4.2), the conflict detection mechanism is

considered one of the most likely parts which may violate the correctness of a TM system. The

tmimp example depends on a transactional cache and a coherency protocol to detect a conflict

between concurrent transactions. Thus, we present in this section a specification description for

a full associative cache structure and a Modified-Exclusive-Shared-Invalid (MESI) coherency

protocol [4] that will be used in the tmimp specification.

Cache Structure

A full associative cache is a type of cache structure that allows a block from the main memory

or other cache to be placed in any location in the cache. This is called fully associative because

a block in the main memory may be associated with any entry in the cache and the entire cache

must be searched every time data is accessed.

Chapter 5. Validation and Refinement of a TM System 86

FIGURE 5.2: Cache and Tag Blocks

As shown in Fig. 5.2 the main state variables for the transactional cache are the data block

Cache and its assistance components tag block Tag and flag Hit. The tag block is divided into

the address, coherency status and transactional status of each data block. The coherency part

for preserving the data consistency between each cache block and the main memory will be

described in detail later in this section. Four states for a tag’s transactional part are added to the

regular coherency states to expand the task of preserving data consistency from a single cache

block to a group of cache blocks. As shown in Fig. 5.3 the four transactional part states are:

• empty: The cache line does not contain a valid entry. It goes from empty to xabort or

xcommit, if its location is chosen by a transaction to receive the first or second copy of a

transactional data.

Chapter 5. Validation and Refinement of a TM System 87

FIGURE 5.3: Transactional states diagram

• normal: The cache line contains a valid entry, which is not in a transactional mode and

can be used by a local or external process. Also, it goes from normal to xabort or xcommit,

if its location is chosen by a transaction to receive the first or second copy of transactional

data.

• xcommit: The cache line contains data that is in a transactional mode. It can be used locally

to recover from an aborted transaction. It goes from xcommit to empty if the transaction

is successfully committed, otherwise it goes to normal.

• xabort: The cache line contains data that is in a transactional mode. It can be modified by

the transaction. It goes from xabort to empty if the transaction is unsuccessfully commit-

ted, otherwise it goes to normal.

The Hitp flag indicates the absence of the requested address in process p’s local cache, where

it is set when the requested address is found in the Tagp’s address part, the coherency for the

Chapter 5. Validation and Refinement of a TM System 88

same address is valid and the transactional status is not equal to empty. For example, if a

transactional operation is invoked by process p and the requested address equals x then the Hitp

flag for process p equals true if there exists an index i such that the following hold:

1. Tagp[i][address] = x. The tag address of location i in cache p equals x.

2. ¬(Tagp[i][coherency] = invalid). The tag coherency status of location i does not equal

invalid.

3. ¬(Tagp[i][transactional] = empty). The tag transactional status of location i does not

equal empty.

In the other case where there is missing data in the local cache, the Hitp flag is reset. The cache

miss problem is handled as follows: As soon as missing data is detected and in the same state,

a request is issued to retrieve the block containing the requested data from the main memory or

other cache and the Hitp flag is reset. In the next state and before invocation a new operation,

the Hitp flag is checked. Since it is found false, the same operation will be re-invoked to access

the data that is retrieved in the previous state and then the Hitp flag is set. For example, if a

transactional operation op is invoked by process p then the following specification should be

satisfied to handle cache miss state:

p =̂ op; ((¬Hitp ∧ op) ∗∧ fin Hitp)

Chapter 5. Validation and Refinement of a TM System 89

MESI Coherency Protocol

The tag block in a cache data structure has a coherency status part for each data block to retain

all copies of a main memory location in multiple caches consistent when the contents of that

memory location are modified. Herlihy and Moss [6] proposed that any protocol capable of

detecting conflicts can also detect transaction conflicts at no extra cost. Many protocols for

cache coherency have been proposed [4, 68]. Here we use one of these coherency protocols that

is close to Goodman’s popular snoopy protocol for a shared bus [4].

Modified-Exclusive-Shared-Invalid (MESI) is a write-invalidate snoopy protocol used in many

current systems. Most coherence protocols, including MESI, incorporate a write-invalidate

strategy with write-back policy. The choice of this protocol was due to the efficiency and easy

support for memory synchronization.

The following description is adapted from the one by Culler and Singh [4]. The protocol uses

four states to encode the state of a cache block that resides in a processor’s cache. These four

states are:

• invalid : The cache line does not contain a valid entry.

• shared : The cache line contains a valid entry, which may be shared with other processors.

The cache line is unmodified, i.e. it contains the same data as the corresponding memory

location.

Chapter 5. Validation and Refinement of a TM System 90

• modified : The cache line contains data that has been written to by the processor. The

corresponding memory location has not been updated yet and therefore does not hold the

actual value. The cache line is held exclusively by this cache, therefore read and write

operations can be performed on this line without notification of the other processors.

• exclusive: The cache line is held exclusively by the respective cache, but is not modified.

The purpose of this enhancement is to reduce snooping traffic in shared-memory systems

by avoiding snooping messages for non-shared data. Systems running applications that

do not or rarely communicate with each other profit especially from this enhancement.

FIGURE 5.4: State diagram for the Request-Cache in the MESI protocol

The state diagram for the MESI protocol is divided into two diagrams: Fig. 5.4 shows the state

diagram for the request operations, denoted by Request-Cache, which means a cache issues

a request for either retrieving a data or invalidating other copies, while Fig. 5.5 shows the

Chapter 5. Validation and Refinement of a TM System 91

FIGURE 5.5: State diagram for the Snooped-Cache in the MESI protocol

state diagram for the snooping operations, denoted by Snooped-Cache, which means a cache

snoops and handles demands of other caches. For example, if process p invokes ltx(x) operation

(Request-Cache) and process q’s cache snoops others (Snooped-Caches) then before p becomes

owner of the x line and changes its state to exclusive, all other caches holding this line such as

q should convert x’s coherency status to invalid.

The system tmimp combines a tag’s transactional status part with tag’s coherency status part

for detecting a conflict. In example just considered, where process q has the requested line

x and this line is in transactional mode (transactional status equals xabort), which means that

the line x is still being used by an unfinished transaction and can’t be used by others, then

before converting the x’s coherency status to invalid , its transactional status is read and the

transactional mode case indicates that there is a conflict between the request process which is p

and the owner which is q.

Chapter 5. Validation and Refinement of a TM System 92

5.2.2 Specification of the TM System

An interval σ is a finite or infinite sequence of one or more states s0, s1, s2, ..., sn. Each state

has concurrent observable events E. An event Ep that belongs to process p is either an invoke-

response for the load and store transactional operations op, denoted by TraInvResOp(p,op), or

an invoke-response for ending and status validating transactional operations ope, denoted by

TraInvResEnd(p,ope).

The invocation and response events of transactional operations TraInvResOp(p,op) are described

as follows:

• ltp(x): a load-transactional-operation reads the current value of x from Cachep by pro-

cess p. If Cachep doesn’t have x, a request is issued and the immediate interim response

is ⊥.

• ltxp(x): a load-transactional-exclusive-operation is the same as lt but also invalidates any

copies of x in other caches.

• stp(y, u): a store-transactional-operation by process p to write a value u to location y in

Cachep. We assume that each operation st has been preceded by ltx, so there is no data

missing.

The invocation and response events of TraInvResEnd(p,ope) are described as follows:

• commitp: a commit request that is issued by process p. If the attempt to commit succeeds,

it will change all xabort entries of the tag Cachep to normal and all the xcommit entries to

Chapter 5. Validation and Refinement of a TM System 93

empty. If it fails, all xabort entries will be changed to empty and all the xcommit entries to

normal.

• abortp: an abort request that is issued by process p. It changes all xabort entries to empty

and all the xcommit entries to normal.

• validatep: a validate for transaction status. If the transaction is active, then no action or

else the same as abortp.

Components of tmimp

As shown in Fig. 5.6, the main components of tmimp are:

• Memimp [obj] : Global memory, where obj: (0 ≤ obj < |Locations|), initially ⊥.

• Cache[obj] : Each process has its own cache, (0 ≤ obj < |Cache|), initially ⊥. Also,

each cache has a Hit flag and each data block in the cache has a Tag.

• Active: An array [1..p] of booleans recording which process is in progress, initially all

false.

• Status: An array [1..p] of booleans recording which transaction is aborted, initially all

true.

• Eimp : Event array for each process as an auxiliary history to record each event, initially

noev.

Chapter 5. Validation and Refinement of a TM System 94

FIGURE 5.6: The proposed TM abstract model.

Transition Behaviour

The state transition for the tmimp is, for better readability, partitioned into two tables: Table 5.1

lists all possible invocation states of tmimp involving TranInvResOp() (m0 −m2) and TranIn-

vResEnd() (m3 −m5), while Table 5.2 lists all possible responses for invocation of transactional

operations m0 and m1. Both tables describe the preconditions under which the transition can

be taken and describe the effects of the transition on other variables.

The output of the m0 and m1 is cleared in the event list column of the second table, while the

output of m2 −m4 is either commit or abort. Each one of the first two invocation cases of

Table 5.1 m0 and m1 has one possible response from the transitions list k0 − k9 in Table 5.2.

Chapter 5. Validation and Refinement of a TM System 95

The following definitions will be considered to make conjunctions between the two tables:

TranInvResOp(p, op) =̂
∨9
i=0 k̂i ∨m2

k̂i =̂ ki ∧
∨1
j=0mj

TranInvResEnd(p, ope) =̂
∨5
i=3mi

(5.1)

TABLE 5.1: The invocation actions of tmimp

Invocation Cases
Case Preconditions Actions

TranInvResOp(p, op)
m0 ¬Activep ∧ Statusp skip ∧ ©Activep = true

∧FindData()
m1 Activep skip ∧ stable(Activep)

∧FindData()
m2 otherwise skip ∧ AbortRes(p)

TranInvResEnd(p, ope)
m3 ¬Statusp ∨ ope = abort skip ∧ AbortRes(p)
m4 ope = commit ∧ Statusp skip

∧CommitRes(p, ope)
m5 ope = validate ∧ Statusp skip ∧ stable(Activep)

In Table 5.1 the transitions m0 −m2 deal with the ltx, lt and st transactional operations. The

actions are invocations for an operation using a new transaction, invocation for an operation

using the same transaction or aborting a transaction. For example, the preconditions for m1

are an invocation of a transactional operation op and the process status flag Active equals true.

The actions of m1 are a determination of interval length and a retrieving of requested data.

The formula FindData() (defined later in Fig. 5.7) searches for the requested data in the local

cache and responds with one of the possible cases in Table 5.2. Transitions m3 −m5 deal

with commit, abort and validate instructions. The actions are either committing a transaction

(making all the tentatively updates permanent using CommitRes()) or aborting a transaction

Chapter 5. Validation and Refinement of a TM System 96

(undoing any update using AbortRes()). Here are the formal definitions of CommitRes() and

AbortRes() (see transactional states diagram Fig. 5.3):

CommitRes(p, ope)

=̂ © Statusp = true ∧ ©Activep = false ∧ ©Eimp = ⊕

∧ ∀ i < |Cache| : ((Tagp[i][transaction] = xabort

⊃ ©Tagp[i][transaction] = normal)

∧ (Tagp[i][transaction] = xcommit

⊃ ©Tagp[i][transaction] = empty))

AbortRes(p, ope)

=̂ © Statusp = true ∧ ©Activep = false ∧ ©Eimp = ⊗

∧ ∀ i < |Cache| : ((Tagp[i][transaction] = xabort

⊃ ©Tagp[i][transaction] = empty)

∧ (Tagp[i][transaction] = xcommit

⊃ ©Tagp[i][transaction] = normal))

Table 5.2 describes all possible responses of the FindData() formula mentioned in Table 5.1.

The list of possible response k0 − k9 are categorised into two main parts, which are the cache’s

data response actions for hits HitRes() and misses MissRes() (defined later in Fig. 5.8).

The following abbreviations are used in Table 5.2:

• Hit is a flag to indicate that an invocation is a success and a new operation can be invoked.

Chapter 5. Validation and Refinement of a TM System 97

TABLE 5.2: The response actions of tmimp’s transactional operations

Response Cases
Case∗ Preconditions Actions Event

MissRes(p, ltx , x)

k0 Statusp ∧ ¬ReqReady ©Hit=false∧
ReqData(p, op, x)

ltx(x)

k1 Statusp∧ ReqReady∧
MemRes

©Hit=false∧
Allocate2Loc(p)∧
Cache[ft]=Memimp[x]∧
Cache[sd]=Memimp [x]∧
UpdateTag(p, x , ft , sd)

ltx(x, u)
u=
Memimp

[x]

k2 Statusp ∧ ReqReady∧
¬MemRes

©Hit=false∧
Allocate2Loc(p)∧
Memimp [x]=Bus∧
Cache[ft]=Bus∧
Cache[sd]=Bus∧
UpdateTag(p, x , ft , sd)

ltx(x, u)
u=Bus

k3 ¬Statusp ©Hit=true∧
BusyRes(p, op, x)

ltx(x, u)
u= Ran-
dom

HitRes(p, ltx , x ,⊥)

k4 Statusp ∧ ©Hit = false∧ ltx(x)
Tagp[i][c] = shared∧ ReqInvOther(p, op, add)
¬ReqReady

k5 ¬(Tagp[i][c] = shared) ©Hit = true ∧ ltx(x, u)
∨ (Tagp[i][c] = shared u = Cache[ft] ∧
∧ ReqReady UpdateTag(p, x , ft , sd)
∧ Statusp)

k6 Tagp[i][c] = shared ∧ ©Hit = true ∧ ltx(x, u)
ReqReady ∧ BusyRes(p, op, x) u= Ran-

dom
¬Statusp

MissRes(p, lt , x) k7 The same as one of k0-k3 The same as one of k0- k3 lt(x)

HitRes(p, lt , x ,⊥) k8 no further condition The same actions as k5 lt(x, u)

HitRes(p, st , x , u) k9 for simplicity we assume
that each st has ltx be-
fore, so there is no miss

Cache[ft]=u∧
UpdateTag(p, x , ft , sd)

ok

* For better readability the conditions for each state’s actions are divided into event and preconditions.
* This table associated with Fig. 5.7 later on.

Chapter 5. Validation and Refinement of a TM System 98

• ReqReady is a flag to indicate that there is a request for owning data and the response is

ready to be received.

• MemRes is a flag to indicate that the missing data is retrieved from the main memory, or

from another cache and the data is ready in a state variable called Bus.

• Allocate2Loc(p) is a replacement technique that searches for two locations in Cachep

when this cache needs space for a new entry. It first searches for an empty entry, then

for a normal entry and finally for a xcommit entry. If the normal or the xcommit entry is

in modifying state, it issues a request to write back the replacement data cache block, see

Appendix B.

• UpdateTag(p,x,ft,sd) updates the tag’s coherency and transactional status of the two loca-

tions ft and sd according to the MESI protocol and the transactional operations.

• ReqData(p,op,x) is a task that brings data of address x from one of the other caches or

from the main memory after invalidating other copies to prevent conflict in the case of

ltx and st. Moreover, ReqData() works as ConflictDetRes() in tmspec, where it detects a

conflict with x when it finds x in another cache with transactional status equal to xabort.

In addition, it solves the conflict by resetting its Statusp .

Here is the formal definition of ReqData() formula:

(note: a=address, c=coherency and t=transactional).

Chapter 5. Validation and Refinement of a TM System 99

ReqData(p, op, x)

=̂ ©ReqReady = true

∧ ((©MemRes = false

∧ ((z ∧ © Statusp = false) ∨ (¬z ∧ z′ ∧ stable(Statusp))))

∨ (¬z ∧ ¬z′ ∧ z′′ ∧ ©Bus = Mem[x] ∧ ©MemRes = true

∧ stable(Statusp)))
z =̂ ∃i < |Cache|, p 6= q :

Tagq [i][a] = x ∧ Tagq [i][t] = xabort

∧ (Tagq [i][c] = modified ∨ (Tagq[i][c] = shared ∧ ¬(op = lt)))

∧ ©Bus = ⊥

z′ =̂ ∃i < |Cache|, p 6= q :

Tagq [i][a] = x ∧ Tagq [i][t] = normal ∧ Tagq [i][c] = modified

∧ ((¬(op = lt) ∧ ©Tagq [i][c] = invalid)

∨(op = lt ∧ ©Tagq [i][c] = shared)) ∧ Bus = Cacheq[i]

z′′ =̂ ∀q < |Processes| : ∃i < |cache| :

(z′′′ ∧ ©Tagq [i][c] = invalid) ∨ (¬z′′′ ∧ stable(Tagq[i]))

z′′′ =̂ Tagq [i][a] = x ∧ Tagq [i][t] = normal

∧Tagq [i][c] = shared ∧ ¬(op = lt)

• ReqInvOther(p,op,x) is similar to the ReqData(), but just invalidates other copies of x and

does not transfer any data.

• BusyRes() is a formula that is activated when its transaction has a conflict (Status equals

false) and there is an invocation of a transactional operation op. BusyRes() keeps the

Chapter 5. Validation and Refinement of a TM System 100

status of transactional flag Status , drops all xabort entries and sets all xcommit entries to

normal.

Here is the formal definition of BusyRes():

BusyRes(p,op,add)

=̂ stable(Statusp)

∧ ∀ i < |Cache| : ((Tagp[i][transaction] = xabort

⊃ ©Tagp[i][transaction] = empty)

∧ (Tagp[i][transaction] = xcommit

⊃ ©Tagp[i][transaction] = normal))

The formula MissRes(p,ltx,x) in Table 5.2 deals with missing data that has address x in local

cache Cachep for the ltx operation case. Where,

• k0 issues a request for retrieving the missing data using ReqData().

• k1 or k2 retrieves a block containing the missing data from the main memory or the other

caches respectively. They first allocate two locations (ft and sd) in Cachep using the

Allocate2Loc(p) formula and then copy the retrieved data in the first and second location

with transactional status xabort and xcommit, respectively. In addition, the transition k2

updates the main memory data location to preserve data consistency.

• k3 keeps the status of transactional flag Status , undoes any tentatively update using

BusyRes and returns arbitrary data when a conflict is detected by ReqData() that is is-

sued by k0.

Chapter 5. Validation and Refinement of a TM System 101

The MissRes(p,ltx,x) transitions are activated when there is no valid copy of the requested ad-

dress x in Cachep and the following formula holds:

¬ (∃i < |Cache| : Tagp[i][address] = x

∧ ¬(Tagp[i][coherency] = invalid

∨ Tagp[i][transactional] = empty))

(5.2)

Otherwise the HitRes(p,ltx,x,⊥) states are activated. Where,

• k4 issues a request for invalidating other copies of x in the other caches using ReqIn-

vOther(). Although, the transition of k4 implies that there is a valid copy of x in Cachep ,

its coherency state is shared and the operation is ltx which means that Cachep should

own x exclusively and other copies should be invalidated.

• k5 reads the value of address x from Cachep when its coherency state is not shared or a

response for invalidating other copies without conflict detection is received.

• k6 discards any update by its transaction using BusyRes and returns arbitrary data when

ReqInvOther() that is issued by k5 detects a conflict and resets the transactional status flag

Status .

• k7 deals with the MissRes(p,lt,x) case of the lt operation. Although, k7 can be as one of

the ltx operation’s states k0 − k3 , the only difference is the ReqData() and UpdateTag()

tasks. In case of lt theReqData() is more weaker than ltx, for example to retrieve x at

Chapter 5. Validation and Refinement of a TM System 102

case of lt it is sufficient to regard in the other cache the x’s coherency status shared and

neglect x’s transactional status.

• k8 reads the value of address x from Cachep as in case k5. The activation of the formula

HitRes(p,lt,x,⊥) is only the condition for this state.

• k9 deals with the HitRes(p,st,x,u) case of st operation. For simplicity, we assume that

there is a ltx operation before any st, so there are no preconditions and miss cases for a

st operation.

A sequence of events of the form ((TranInvResOp(p, op)) ∗; TranInvResEnd(p, ope)) is is-

sued sequentially by process p and this sequence is called a transaction.

The complete tmimp system description can be modelled with the initial values in the following

ITL formula:

tmimp =̂
∧n
p=0 Processesp

Processesp =̂ Activep = false ∧ Statusp = true ∧ Hitp = true

∧ ((TranInvResOp(p, op)

; ((¬Hitp ∧ TranInvResOp(p, op)) ∗∧ fin Hitp)) ∗

; TranInvResEnd(p, ope)) ∗

(5.3)

As we explained previously, the Hitp flag indicates the success of the invocation of a transac-

tional operation. If it equals true, a new operation can be invoked by the same transaction. If the

Hitp flag equals false, the same invocation should be repeated until Hitp equals true. However,

Chapter 5. Validation and Refinement of a TM System 103

there is a special case that sets the Hitp flag to true even with invocation failure. This is when a

conflict detection with other concurrent transactions occurs. The setting of the Hitp flag in this

case prevents the repetition of the same conflicted invocation.

5.3 Execution and Validation

To demonstrate and validate the correctness of the tmimp’s specification and make such exam-

inations for TM safety properties, we use refinement rules for making the ITL specification of

tmimp executable [17, 18]. Then we use the executable specification version of tmimp to execute

one of the most highly studied concurrent data structures, the lock-free FIFO queue [25, 69],

using AnaTempura. In addition, some animation is provided to make it more understandable

and enable the reader to gain better insight into the TM system. The animator is written in

Tcl/Tk [70] using Expect [71]. The Tempura file is accompanied by a Tcl/Tk file which defines

the graphics.

In fact, many lock-free queue algorithms have been proposed based on atomic instructions such

as Compare-And-Set (CAS) and Load-Linked Store-Conditional (LL-SC) [25, 67, 72]. We will

use an approach based on transactional memory, with some modification such as an additional

shared counter. Our approach can give initial indicators for satisfying TM safety conditions but

cannot guarantee the correction satisfaction of all cases.

Chapter 5. Validation and Refinement of a TM System 104

5.3.1 Executable Specification of the TM System

The formal specification of tmimp, that was first discussed in Subsection 5.2.2, is refined into

AnaTempura so that it can be executed. As shown in Fig. 5.7 the main state variables of tmimp

are represented as follows:

• Active is a list of processes statuses with state values {false, true}.

• Status is a list of transactions statuses with values {false, true}.

• Eimp is an auxiliary history list for each process to record each state with one of the

following possible values {noev, lt, ltx, st, ok, commit,⊕, abort,⊗}.

• Memimp is a list of objects for representing the global memory.

• Cache is a list of object for each process. Each cache has a Tag list and Hit flag.

To help the understanding, the executable specification is written in functional form and divided

into two main parts which are invocation Fig. 5.7 and response Fig. 5.8 of an operation.

The checking of the transaction’s start is placed in the invocation of an operation part. If process

status flag Active of process p is false and transaction status flag Status of the same process

is true, then p can invoke a new transaction by setting the status of p and an operation can be

invoked too. Otherwise the same transaction can be used to invoke an operation. This prevents

other transactions from being created until the existing one terminates.

Chapter 5. Validation and Refinement of a TM System 105

The FindData() is a recursion function that triggers either the HitRes() function when the re-

quested address is found in the local cache, or the MissRes() otherwise. Fig. 5.8 shows the main

actions and responses of the HitRes() and MissRes() functions that were explained in Subsection

5.2.2.

Some auxiliary functions are used in the executable model of the tmimp such as the AddEv()

that is used to record each operation and its response in their process p event list Eimp. The

function FlushEvList() clears the event list of the process p after finishing the execution of a

transaction belonging to p and before initialising a new transaction.

The complete executable specification of tmimp that described in the ITL formula 5.3 can be

represented in Tempura as follows:

tmimp =̂
∧n
p=0 Processesp

Processesp =̂ Activep = false ∧ Statusp = true ∧ Hitp = true

∧ ((repeat TranInvResOp(p, op) until Hitp) ∗

; TranInvResEnd(p, ope)) ∗

(5.4)

5.3.2 Queue Example

A concurrent queue is an abstract data structure that consists of two processes. The producer

process adds the element x to the rear terminal position, if the queue is not full. The consumer

process retrieves the element from the front terminal position, if the queue is not empty [25].

Chapter 5. Validation and Refinement of a TM System 106

State variables:
Activep : Process flag, where p: (0 ≤ p < |Processes|), initially false.
Statusp : Transaction flag, where p: (0 ≤ p < |Processes|), initially true.
Memimp[obj] : List of object, where obj: (0 ≤ obj < |Locations|), initially ⊥.
Cachep[obj] : List of object for each process (0 ≤ obj < |Cache|), initially ⊥.
Tagp[a∪c∪t] : Tag for each Cachep[obj] to maintain coherency, where a ∈ obj, c ∈ {invalid , shared ,modified},
t ∈ {normal, xabort, xcommit, empty}, initially [⊥ ∪ invalid ∪ empty].
Hitp: Hit flag, where p: (0 ≤ p < |processes|), initially true.
Eimp : List of events for each process ∈ {noev, lt, ltx, st, validate, ok, commit,⊕, abort,⊗}, initially noev .

Transaction operations:

TranInvResOp(p, op, add, val) =̂
{skip∧
if ((¬Activep) ∧ (Statusp))

then {MakeProBusy(p) ∧ FindData(p, op, add, val, 0)}
else if (Activep)

then {stable(Activep) ∧ FindData(p, op, add, val, 0)}
else AbortRes(p, op)

}

TranInvResEnd(p, ope) =̂
{skip∧

if (Statusp)
then if (ope = commit)

then CommitRes(p, ope)
else {stable(Statusp) ∧ stable(Activep)}

else AbortRes(p, ope)
}

FindDatat(p, op, add, val, i) =̂
{if i = |Locations|
then if (¬ReqReady ∧ Statusp)

then {ReqData(p, op, add) ∧Hit := false ∧AddEv(p, op, add,⊥)}
else MissRes(p, op, add)

else if (Tagp[i][a] = add ∧ ¬(Tagp[i][c] = invalid ∨ Tagp[i][t] = empty))
then if (op = ltx ∧ Tagp[i][c] = shared ∧ ¬ReqReady ∧ Statusp)

then {ReqInvOther(p, op, add) ∧Hit := false ∧AddEv(p, op, add, val)}
else {HitRes(p, op, add, val, i) ∧Hit := true}

else FindData(p, op, add, val, i+ 1)
}

MakeProBusy(p) =̂ {Activep := true}

FIGURE 5.7: First core part of tmimp executable specification

Chapter 5. Validation and Refinement of a TM System 107

HitRes(p, op, add, val, i) =̂
{∃ft, sd, allocate : {
if Tagp[i][t] = normal

then (ft = i ∧ sd = AllocateXcom(p, empty1 , i , 0) ∧ allocate = 1)
else if Tagp[i][t] = xabort

then (ft = i ∧ sd = FindSDcopy(p, xcommit , add , 0) ∧ allocate = 0)
else (ft = FindSDcopy(p, xabort, add, 0) ∧ sd = i ∧ allocate = 0)

∧if op = st
then {Cache(p, 0, write, val, ft, sd, allocate, 0, 0, 0) ∧ stable(Statusp)

∧ UpdateTag(p, op, add, ft, sd, allocate)
∧AddEv(p, op, add, val)}

else if (op = lt ∨ (op = ltx ∧ (Tagp[ft][c] 6= shared ∨ (Tagp[ft][c] = shared ∧ Statusp))))
then {Cache(p, read, 0,⊥, ft, sd, allocate, 0, 0, 0) ∧ stable(Statusp)

∧ UpdateTag(p, op, add, ft, sd, allocate)
∧AddEv(p, op, add, u = CacheOut)}

else BusyRes(p)}
}

MissRes(p, op, add) =̂
{Allocate2Loc(p)
∧if (Statusp)

then {Hit := false ∧ stable(Statusp)
∧ if (MemRes)

then {Cache(p, 0, write,Mem[add], ft, sd, 0, 1, 0, 0)
∧ UpdateTag(p, op, add, ft, sd, allocate)
∧AddEv(p, op, add, u = Mem[add])}

else {Memory(write, add,Bus)
∧ Cache(p, 0, write, Bus, ft, sd, 0, 1, 0, 0)
∧ UpdateTag(p, op, add, ft, sd, allocate)
∧AddEv(p, op, add, u = Bus)}}

else { BusyRes(p) ∧ Hit := true }
}

CommitRes(p, op) =̂
{Statusp := true ∧MakeProFree(p)
∧ UpdateTag(p, op,⊥,⊥,⊥,⊥)
∧AddEv(p, op,⊥,⊕)}

AbortRes(p, op) =̂
{Statusp := true ∧MakeProFree(p)
∧ UpdateTag(p, op,⊥,⊥,⊥,⊥)
∧AddEv(p, op,⊥,⊗)}

MakeProFree(p) =̂ {Activep := false ∧ FlushEvList(p)}

FIGURE 5.8: Second core part of tmimp executable specification

Chapter 5. Validation and Refinement of a TM System 108

Consider the FIFO queue system shown in Fig. 5.9. It stores its elements in memory, which,

for simplicity, we will assume is a fixed queue with two additional memory elements for the

indices (head = mem[0], tail = mem[1]).

proc Initialize() ≡
{head = 0; location of head in memory
mem[head] = 3; first location of queue
tail = 1; location of tail in memory
mem[tail] = 3; first location of queue
mem[2] = 0; } start shared counter

proc Producer() ≡ proc Consumer() ≡
{Phead = read(mem[head]); {Chead = read(mem[head]);
Ptail = read(mem[tail]); Ctail = read(mem[tail]);
if (Ptail − Phead = Qsize) if (Chead = Ctail)

then Abort() then Abort();
else else

{Pshared = read(mem[Ptail − 1]); {Cshared = read(mem[Chead]);
write(mem[Ptail], Pshared+ 1); write(mem[head], Chead+ 1);
write(mem[tail], P tail + 1); Commit(); }
Commit(); } }
}

FIGURE 5.9: Concurrent queue algorithm
The left process, produces a shared counter by reading the number at the end of the queue,
incrementing it, then extending the queue and putting the incremented one at the end of the
queue. The right process, consumes the shared counter, for simplicity, by just reading the first
element in the queue and decreases the head of the queue.

The first index points to the head of the queue and the second points to the tail. Initially, both

head and tail are equal and contain the location of the first room of the queue which equals 3

and the queue is empty (see Fig. 5.10).

Chapter 5. Validation and Refinement of a TM System 109

FIGURE 5.10: Queue example: memory initialize

If the producer process, after reading head and tail, finds that the queue is full, then it fails.

Otherwise, it will read and increment the shared counter (initially at mem[2]) at the point of

memory entry (tail − 1) and stores the incremented shared counter at the memory entry tail,

and then increments tail. If the consumer process, after reading head and tail, finds that the

queue is empty, by checking the equality of head and tail, then it fails. Otherwise, it will read

the shared counter at the memory entry head, and then increment head (see Fig. 5.11).

FIGURE 5.11: Queue example: produce and consume the first shared counter

Chapter 5. Validation and Refinement of a TM System 110

5.3.3 Queue with TM Execution and Animation

To execute the concurrent queue algorithm using the tmimp executable specification and for

seeking simplicity, we just used two concurrent processes to represent the producer and con-

sumer. Two additional functions are used:

• QueueFullCheck() for the producer process that checks if the queue is full.

• QueueEmptyCheck() for the consumer process that checks if the queue is empty.

Moreover, seven state variables and two static variables (memory address) head and tail are

used. The state variables are Phead, Chead with the initial value Mem[head], Ptail, Ctail with

initial value Mem[tail] and Pshared, Cshared equal to⊥. Here is the complete executable form

of a concurrent queue algorithm with TM: tmimpq =̂ PRODUCERspec ∧ CONSUMERspec

PRODUCERspec

=̂ Activep = false ∧ Statusp = true ∧ Hitp = true

∧ (((repeat TranInvResOp(p, lt , head ,⊥) until Hitp);

(repeat TranInvResOp(p, ltx , tail ,⊥) until Hitp);

QueueFullCheck()) ∗;

(repeat TranInvResOp(p, ltx ,Ptail − 1 ,⊥) until Hitp);

(repeat TranInvResOp(p, st ,Ptail ,Pshared + 1) until Hitp);

(repeat TranInvResOp(p, st , tail ,Ptail + 1) until Hitp)

; TranInvResEnd(p, commit)) ∗

Chapter 5. Validation and Refinement of a TM System 111

CONSUMERspec

=̂ Activec = false ∧ Statusc = true ∧ Hitc = true

∧ (((repeat TranInvResOp(c, ltx , head ,⊥) until Hitc);

(repeat TranInvResOp(c, lt , tail ,⊥) until Hitc);

QueueEmptyCheck()) ∗;

(repeat TranInvResOp(c, ltx ,Ctail − 1 ,⊥) until Hitc);

(repeat TranInvResOp(c, st , tail ,Chead + 1) until Hitc)

; TranInvResEnd(c, commit)) ∗

As shown in Figs. 5.12 and 5.13, the user interface for the graphical output is divided into four

parts:

1. The timer axis which represents the state number.

2. Two processes where P0 represents the producer specification PRODUCERspec and P1

represents the consumer specification CONSUMERspec .

3. Two caches, where each process owns its local memory and contains 7 locations.

4. An area between the process number and its cache for showing the transaction number

and its sequence of operations and responses.

We can notice clearly the memory synchronization in the output concurrent execution between

the CONSUMERspec and PRODUCERspec processes. The PRODUCERspec process starts by

producing a shared counter and updating the value of tail, while the CONSUMERspec process

Chapter 5. Validation and Refinement of a TM System 112

aborts its self because of the refusal from the PRODUCERspec to revoke head. As soon as the

ownership of head and tail of the queue is revoked by the producer, the consumer owns these

variables, updates the head and consumes the shared counter.

FIGURE 5.12: Queue with TM system tmimpq output before modification
This model represents the lazy resolution for conflict. It is cleared in the beginning that P1

continues to execute after it has a conflict and returns random data (0), because the owning
of location 0 by P0. It is re-invoked because the queue is empty. The same thing for P0, it
continues to execute and aborts its self at the commit time.

The graphical animation has facilities to execute this example step by step. We can therefore

check and validate that the TM safety conditions such as read local and global consistency are

satisfied. However, the doomed consistency safety condition may be violated. The reason is

that the tmimp detects a conflict early and then it responds with random values, for simplicity

we represent the random value by 0, and continues to execute after it has been aborted (resolve

the conflict at commit time) which is called orphan transaction, see Fig. 5.12.

Chapter 5. Validation and Refinement of a TM System 113

In actual fact, this situation may violate the doomed consistency condition and cause illegal

action. However, the original proposed TM system by Herlihy and Moss [6], cover this case

by using explicit validate instruction which is considered as overhead and depends on the soft-

ware developer. Although this case can appear in our proposed tmspec, the ValidRead function

protect the aborted transaction to fail in such erroneous case.

To cover the previous case, we suggest an implicit validate trigger for each read. This trigger can

stimulate the abort function as soon as it detects that Status flag is converted to false. Although,

this solution will transfer the conflict resolution mode from lazy to eager, the satisfaction of the

TM safety conditions will be granted and the side effect will appear in the performance, see

Fig. 5.13.

In the specification of tmimp in Subsection 5.2.2, the modification will be in the formula

BusyRes() which is responsible for letting the aborted transaction continue to execute. The

formula BusyRes() is used after checking that Status is false in each transactional operation

invocation state. Also, it keeps Status stable, drops all xabort entries, sets all xcommit entries

to normal and returns arbitrary data. The stability of Status , which is false in this case, and

Active lets the aborted transaction continue to execute in the next state.

The predicate Abort(p) is similar to BusyRes(p), but Abort(p) sets Statusp to true and resets

Activep . So, if we exchange each BusyRes(p) with Abort(p), the aborted transaction will not

continue to execute (see Fig. 5.13). To distinguish the tmimp before and after the modification,

we will call the modified model tm′
imp. Table 5.3 shows tm′

imp.

Chapter 5. Validation and Refinement of a TM System 114

FIGURE 5.13: Queue with TM system tm′
impq output after modification

This model after modifying the lazy to eager. It is noticed in the beginning that P1 re-invoked
many times because the conflict with P0. The same thing for P0 later.

Moreover, although, a case appears in favour of running two concurrent transactions which

abort each other. We add a priority condition for the producer to solve this issue. However,

this solution makes another problem which is the starvation property. Where, in some cases the

consumer continues aborting its self while the producer has not reached the maximum size of

the queue. In the next chapter we will use a priority queue to solve this problem.

Chapter 5. Validation and Refinement of a TM System 115

TABLE 5.3: The response actions of the modified specification tm′
imp

Response States
Case∗ Preconditions Actions Event

list

MissRes(p, ltx , x)

k0 Statusp ∧ ¬ReqReady ©Hit=false∧
ReqData(p, op, x)

ltx(x)

k1 Statusp ∧ ReqReady ∧
MemRes

©Hit=false∧
Allocate2Loc(p)∧
Cache[ft]=Memimp [x]∧
Cache[sd]=Memimp [x]∧
UpdateTag(p, x , ft , sd)

ltx(x, u)
u=
Memimp

[x]

k2 Statusp ∧ ReqReady ∧
¬MemRes

©Hit=false∧
Allocate2Loc(p)∧
Memimp [x]=Bus∧
Cache[ft]=Bus∧
Cache[sd]=Bus∧
UpdateTag(p, x , ft , sd)

ltx(x, u)
u=Bus

k3 ¬Statusp ©Hit=true ∧
AbortRes(p)

⊗

HitRes(p, ltx , x ,⊥)

k4 Statusp ∧ ©Hit = false ∧ ltx(x)
Tagp[i][c] = shared ∧ ReqInvOther(p, op, add)
¬ReqReady

k5 ¬(Tagp[i][c] = shared) ©Hit = true ∧ ltx(x, u)
∨ (Tagp[i][c] = shared u = Cache[ft] ∧
∧ ReqReady UpdateTag(p, x , ft , sd)
∧ Statusp)

k6 Tagp[i][c] = shared ∧ ©Hit = true ∧ ⊗
ReqReady ∧ AbortRes(p)
¬Statusp

MissRes(p, lt , x) k7 The same as one of k0-k3 The same as one of k0- k3 lt(x)

HitRes(p, lt , x ,⊥) k8 no further condition The same actions as k5 lt(x, u)

HitRes(p, st , x , u) k9 for simplicity we assume
that each st has ltx be-
fore, so there is no miss

Cache[ft]=u∧
UpdateTag(p, x , ft , sd)

ok

* For better readability the conditions for each state’s actions is divided into case and preconditions.
* This table is variant of Table 5.2. Differences are shown in bold.

Chapter 5. Validation and Refinement of a TM System 116

5.4 Verification Using Refinement Mapping

Now we have three TM specifications: the correctness verified tmspec, the one proposed by

Herlihy and Moss [6] which we called tmimp and the modified version tm′
imp. The third one

tm′
imp differs from tmimp only in a state that may violate the doomed consistency safety con-

dition. We prove in this section the correctness of tm′
imp and mention the state that invalidates

the correctness of tmimp. The abstract mapping method of Abadi and Lamport [63] is used to

prove that tm′
imp satisfies specification of tmspec. They use a refinement mapping technique

that maps states of two systems and that satisfies certain properties.

Theorem 5.1. tm′
imp vF tmspec

Before starting the proof, we will remind the readers about the following briefly description of

the refinement mapping rules which are discussed in Subsection 3.4.3: Let C and A be two

systems that denote respectively concrete and abstract systems. According to the mapping

technique, a specification of systemC implements a specification of systemA denotedC vF A,

iff there exists a mapping function F between C and A states, such that the following all hold:

• R1: The external visible state components are preserved by F .

• R2: Every initial C state has an F−mapped initial A state.

• R3: Every C transition can be emulated by an A transition.

• R4: F maps behaviours allowed by C into behaviours that satisfy A’s supplementary

property.

Chapter 5. Validation and Refinement of a TM System 117

Proof: [Theorem 5.1]

In this section we sketch a proof, using the previous refinement mapping rules, showing that

tm′
imp vF tmspec. In fact, tm′

imp contains more state components and uses different data repre-

sentations and components than tmspec. For example, only tm′
imp has a cache. We construct a

function F to facilitate applying the mapping rule R1 of the externally observed components of

tm′
imp {Memimp, Active, Status , Eimp} and tmspec {Mem, P , T , E }: where F maps states

of tm′
imp to states of tmspec such that for any state s of tm′

imp the following hold:

• Since there is a difference in the memory and data consistency behaviour in the two spec-

ifications, we can’t directly map the value of location x in Mem to the same location in

Memimp . The permanent value of any Memimp’s location doesn’t move from cache to

memory until it has been requested by another cache or its cache location has been over-

written. This definition facilitates mapping each value of the Mem to Memimp . (note:

0 ≤ p < |Processes| , 0 ≤ i < |Cache|, a=address, c=coherency and t=transactional):

∀ memory address x ∈< |Locations|,

F (s).Mem[x] =

Cachep[i] if (Tagp[i][a] = x

∧Tagp[i][c] = modified

∧Tagp[i][t] = normal)

Memimp[x] otherwise

(5.5)

Chapter 5. Validation and Refinement of a TM System 118

• tm′
imp uses a flag which is called Active for each process to indicate whether that process

is in progress true or not false. This task is accomplished in tmspec by using a state

variable called P for each process with state values free and busy. The mapping between

the two is: F (s).Pp = Activep

Pp =

 false if Pp = free

true otherwise

(5.6)

• In addition, tm′
imp uses another flag which is called Status for each transaction to indicate

whether that transaction is active true or aborted false. For the same task, tmspec uses

a state variable called T for each transaction with states values {idle, active, doomed,

finished }. The mapping between the two is as follows: F (s).Tp = Statusp

Tp =

 false if Tp = doomed

true otherwise

(5.7)

• In case of a list of events or output of each operation E, we consider the following map-

ping for tmspec and tm′
imp : W=st, tryCom = commit and tryAbort = abort. In

addition, the ltx and lt read operations in tm′
imp are equivalent to R in tmspec. How-

ever, there is one difference appearing in the ltx case which is stronger in the conflict

detection. This difference is solved by using an eagerly-strong conflict detection type

εes , which is discussed in Subsection 4.3.2, with R instruction in this case to emulate ltx.

After applying this definition, we can use F (s).Eimpp = Ep.

Chapter 5. Validation and Refinement of a TM System 119

R ≡

 ltx if ε = εes

lt otherwise

(5.8)

R2 stipulates equality of the initial state between tm′
imp and tmspec. We notice the applicable of

this rule from their specifications and the following Table 5.4:

TABLE 5.4: The initial values of tm′
imp and tmspec

State variables Initial value

tmspec

Mem ⊥
Pp free according to Definition 5.6 = false
Tp idle according to Definition 5.6 = true
Ep noev

tm′
imp

Memimp ⊥
Activep false
Statusp true
Eimpp noev

To validate R3, we will consider each of the tm′
imp transition states that are described in Ta-

ble 5.2. (where k̂i ≡
∨1
j=0mj ∧ ki):

• k̂0: This transition is the first one which can possibly respond to a missed read-exclusive

operation ltx. The preconditions are that the requested data that has address x does not

exist in the local cache, the transaction status is still active and no data-request has been

issued. The action issues a data request for address x from either other caches or from

the main memory. ReqData(p) detects the tag status of the x in the other caches and

resets the status of the local transaction flag Statusp if it finds the x in another cache q

with transactional status equal xabort which means that x is being used (for writing or

Chapter 5. Validation and Refinement of a TM System 120

reading) by another concurrent transaction. Otherwise, the ReqData(p) keeps the status

of the local transaction flag Statusp stable. Actually, the task of ReqData(p) is similar to

the ConflictDetRes(p,ε) task of the invocation states in the tmspec with conflict detection

type ε equals εes (strong-eager-conflict) and resolution type (εr) equals (εro) eagerly-

own-arbitration. In addition, the preconditions of the invocation states in tmspec can be

emulated by the preconditions of k̂0. So, we can match (k0 ∧m0) to s0 and (k0 ∧m1) to

s1.

• k̂1: This transition receives the requested data for address x from the main memory, places

in local cache, updates its tag to maintain coherency and adds ltx (x , u) to the output list

(where u = Memimp [x]). The preconditions are no local data (no write before by the same

transaction) and that the local transaction flag Status is true. This can be emulated by the

tmspec transition ŝ2, whose output list is equal to R(x , u = Mem[x]) and its preconditions

are that there is no local write and ¬(Tp = doomed).

• k̂2: The actions and preconditions of k̂2 are similar to k̂1 the only difference is that the

requested data for address x comes from some other cache and not from the main memory.

According to Definition 5.5, this transition can be emulated by the tmspec’s transition ŝ2.

• k̂3: This aborts the transaction that has a local transaction flag Status equal to false

and outputs ⊗. The flag is reset by k̂0 after detecting a conflict with another concurrent

transaction. This transition can be matched with the tmspec transition ŝ1 that aborts the

doomed transaction and outputs ⊗. In tmspec, one of its invocation states can change the

Chapter 5. Validation and Refinement of a TM System 121

status of its active transaction to doomed after detecting a conflict with another concurrent

transaction.

In this case, the tmimp cannot be mapped to the tmspec, since there is no state in tmspec

that allows the aborted transaction to continue to execute without checking the violation

of doomed consistency. If we assume that the following situation happens in the tmimp:

the local transaction flag Statusp equal to false, there is a doomed inconsistency state

and there is no validate instruction following this state. Then, the tmimp will issue the

BusyRes(p) that allows to continue executing the aborted transaction and the divided by

zero or illegal action may happen.

• k̂4: The transition issues a request to own x exclusively by invalidating other copies of

x using ReqInvOther(). ReqInvOther() detects the tag status of the x in other caches and

resets the status of the local transaction flag Statusp if it finds the x in another cache

q with transactional status equal to xabort. This task is similar to ConflictDetRes(p) in

tmspec as well as ReqData() in k̂0 without retrieving data. So, it can be handled like k̂0.

• k̂5: This reads the value u of x from the local cache and outputs ltx(x, u). In simple

terms, its preconditions are that x’s coherency status is equal to exclusive or modified

which means that x is preparing for write or it is already updated. Transition ŝ0 in the

tmspec reads the value u of x from the previous write instruction by the same transaction

and outputs R(x, u). So, we can say that ŝ0 allows k̂5.

Chapter 5. Validation and Refinement of a TM System 122

• k̂6: This aborts the transaction that has a conflict with other concurrent transactions. The

conflict is detected by k̂4. Similar as k̂3 , this transition can be emulated by ŝ1. This case

cannot be mapped to the tmimp for the same reasons mentioned in k̂3.

• k̂7 and k̂8 : These transitions deal with the lt operation. According to Definition 5.8 these

transitions can be handled like k̂0 − k̂3 and k̂5, respectively.

• k̂9: This deals with st operation and outputs ok. In this transition there is an assumption

that there is a successful ltx before each st which means that there is no conflict with

each st. Transition ŝ3 in the tmspec deals with the write operation and outputs ok when

its transaction isn’t doomed. So, the two transitions can be matched.

• m2: This aborts any invocation that does not match the preconditions of (m0 ∧ m1). It

matches s3.

• m3: This aborts a transaction if the value of its Status flag is false or the it issues an abort

operation . It emulates ŝ5 if Status equals false and ŝ7 there is an abort request.

• m4: This commits a transaction with regarding its Status flag. It matches ŝ4.

• m5: it returns the status of Status without action.

To verify rule R4, we can obtain the validity of this rule from the complete specification of

tm′
imp. TraInvResEnd() follows each sequence of transactional operations invocation to com-

mit or abort any active transaction. This behaviour can be mapped to TranInvEnd() followed

by CommitTran() or AbortTran() in tmspec to commit or abort any active or doomed transac-

tion.

Chapter 5. Validation and Refinement of a TM System 123

5.5 Summary

The main feature of the proposed formal TM model is the ability to use it as a basis for proving

the correctness of a variety of TM systems. In this chapter a case study, a specification for

the original well-known HTM system proposed by Herlihy and Moss is given using ITL. To

validate the correctness of this specification, we show an executable version and use it to execute

one of the most highly studied concurrent data structures, the lock-free FIFO queue, using

AnaTempura. However, we found a violation for the doomed consistency safety condition in

this specification, and discussed for a workaround which aborts each doomed transaction. The

integration of this workaround with the specification of the selected TM system is correctly

proved using a refinement mapping technique that maps all its possible states with the states of

the provable abstract TM model.

Chapter 6

Specification of Chip Dual Processor

6.1 Introduction

The main reason for proposing TM techniques is to solve memory synchronization problems in

a shared memory environment such as a CMP. Therefore the integration of TM techniques with

such environments is essential in TM design and evaluation [1].

Moreover and as mentioned previously, we would like to transform a high-level TM system

specification in ITL such as tm′
imp in Chapter 5 to lower-level or to a real hardware design

expressed in a Hardware Description Language (HDL). However, the HDL for a TM system

as a single unit, independent of a shared memory environment, is not considered sufficiently

worthwhile to be regarded as a final hardware product. So, we extend our formal framework to

support a specification of a shared memory system.

124

Chapter 6. Specification of Chip Dual Processor 125

As shown in the framework’s Fig. 6.1, this chapter focuses on the steps inside the circle. We

describe a fully executable specification of a Chip-Dual-Processor (CDP) using AnaTempura

and integrate within the executable specification of the verified transactional memory model

tm′
imp, which is described in the previous chapter as a case study. We then transform the

dual processors with the TM system from a high level description into a hardware description

language, using proposed refinement and restriction rules.

FIGURE 6.1: Proposed framework.

We start the specification of CDP with a simple single-processor design and then incrementally

add features and components until we reach our final model. A structure overview of the CDP

is presented and system components are listed first before we get deeper into the design details.

Formulae and schematics will be used as necessary to describe the functionality of major system

modules in the course of our discussions.

Chapter 6. Specification of Chip Dual Processor 126

6.2 CDP Architecture Overview

The proposed CDP architecture model consists of 2 processors connected by a snoopy bus.

Each processor has a full associative cache (transactional memory), in addition to a regular

direct mapped data cache as shown in Fig. 6.2. This model also supports normal load (lw) and

store (sw) instructions for non-transactional operations, plus transactional memory instructions

such as load transactional for exclusive (ltx), load transactional (lt) and store transactional (st)

[1].

FIGURE 6.2: Chip dual processor.

Each processor contacts the data cache through the processor-side of the cache interface, and

each processor contacts the other processor and the memory through bus-side of the cache

Chapter 6. Specification of Chip Dual Processor 127

interface and snoopy bus. The arbitration of the snoopy bus and memory driver on the chip are

controlled by the Centralised Bus Arbitration Mechanisms (CBAM), which will be explained

in the snoopy bus section. The specification of the CDP is a large ITL formula. The general

structure of the formula is as follows:

CDP() =̂

∃MemData,DataBus ,AddBus ,CmdBus ,Queue,Grant ,

CacheData,CacheTM ,TagPro,TagBus ,Pc, InsMem,RegFile,

Active, Status :{

init() ∧

repeat (
skip ∧

((Processor1 (Pc1) ∧ (Pc1 ≤ progsize1)) ∨

(StablePro1 () ∧ (Pc1 > progsize1))) ∧

((Processor2 (Pc2) ∧ (Pc2 ≤ progsize2)) ∨

(StablePro2 () ∧ (Pc2 > progsize2)))∧

CacheBusInterface1 () ∧

CacheBusInterface2 () ∧

CentraliseBusArbitration() ∧

MemoryInterface()

) until ((Pc1 > progsize1) ∧ (Pc2 > progsize2))

}

The main state variables of CDP are the memory data block MemData, snoopy bus components

Chapter 6. Specification of Chip Dual Processor 128

DataBus, AddBus, CmdBus, Queue,Grant and processor and data cache components Cache-

Data, TagPro, TagBus, Pc, InsMem, RegFile, Active, Status . Each component is defined as a

list of one or more dimensions, so we can specify the size of the component and the number of

the processor that it belongs to. The individual tasks for each of them will be shown later in this

chapter.

The init() formula initialises the values of the variables. The repeat statement repeats executing,

in parallel, the formulae (between () of repeat) until the program counter Pc for both of the two

processors equal to their size of a program progsize. If the Pc of just one processor Processor()

reaches the end of the program, the other one can continue to execute until it reaches the end of

its program as well.

The CentraliseBusArbitration() formula coordinates the usage of the bus by the processors and

manages the connection between the CacheBusInterface() of the two processors with each to-

gether and with the MemoryInterface() of the memory block. We separate the CacheBusInter-

face() part of Processor() formula to keep its data cache block active when its processor reaches

to the end of the program and processor’s components are stable. The skip formula describes

that we use an interval of two states, namely the stable states of the CDP before and after each

clock cycle. The overall structure of each processor’s main formulae and the control flow and

representation of the data are similar to the model in [58]. More details for these components

and formulae are given in the following sections.

Chapter 6. Specification of Chip Dual Processor 129

6.3 Microprocessor

In our model, the processor’s architecture is based on the Million-Instructions-Per-Second

(MIPS) architecture which is a simpler 32-bit version of the real MIPS R2000 Microproces-

sor [69, 73]. This has a single-cycle data path design, but on cache misses, the running program

counter freezes until the missing data is retrieved from the main memory. The reason for not

having a pipeline is obviously to simplify the internal processor design. Such a design does not

affect the behaviour of the cache coherency and memory synchronisation, as memory access

patterns and times are highly similar to those of pipelined designs.

FIGURE 6.3: Abstract view of MIPS processor architecture.

As we show in Fig. 6.3, the data path of this processor consists of five major functional entities

which are: instruction fetch, instruction decode, execute unit, control unit and cache-processor

Chapter 6. Specification of Chip Dual Processor 130

interface for regular data-cache and transactional cache unit. To execute an instruction on MIPS,

we must start by fetching it from the instruction memory using the Program Counter Pc. Then,

according to an MIPS instruction classification in Fig. 6.5, it is decoded by specifying the

register’s number in the register file RegFile and then fetches register operands. Once the

operands have been fetched, three actions can be done according to the instruction class. Firstly,

if the instruction is load or store then the operands will be used to calculate a memory address.

Secondly, if the instruction belongs to the arithmetic-logic class then the operands will be used

to compute an arithmetic result. Finally, they can be used to compare each other for a branch

instruction. The execution unit output is written back into the register if the instruction is

arithmetic-logical, used as an address if the instruction is (load or store) or used to determine

the next address of a branch operation. The general specification of the five entities and the

main state variables is represented in the formula Processor() as follows:

Processor() =̂

∃ ReadData1 ,ReadData2 ,RegWr ,RegDst ,MemtoReg ,

ALUSrc,ALUOp,Zero,ALU result ,CachRead ,

CachWrite,CachDataRead , Inst :{

InstFetch() ∧

InstDecode() ∧

ControlUnit() ∧

ExecuteUnit() ∧

CacheProIntererface()

}

Chapter 6. Specification of Chip Dual Processor 131

The state variables of the formula Processor() represent the major connections between the five

entities or formulae. The description of the first four formulae is shown below with some parts

of their executable specification and the formula CacheProIntererface() will be described in the

cache interface section (see Section 6.4).

Instruction Fetch

The formula InstFetch() uses the instruction memory InsMem, the program counter Pc, and

subformula adder to specify the next value of Pc. The instruction memory is used to store the

predetermined instructions that are to be executed by the processor. The high-level represen-

tation of instructions should be converted into their MIPS binary equivalents and stored in the

instruction memory sequentially starting at the address zero.

The subformula adder controls the flow of the program execution in the next state. It works in

much the same way as purpose the Hit flag of the specification tmimp in the previous chapter.

It freezes the Pc when the requested address is missed in the local cache and a request for a bus

is issued, so in the next state the same instruction will be invoked again. The adder sets the Pc

to the branch address BranchAdd that is resident in the branch instruction if there is a branch

instruction and the compare result is zero. Otherwise, it increments the Pc by four because each

instruction has a four byte long.

Chapter 6. Specification of Chip Dual Processor 132

adder =̂ (Opcode = branch ∧ Zero = false ∧ ©Pc = BranchAdd)

∨ (¬(Opcode = branch) ∧ CachBusReq ∧ ©Pc = Pc)

∨ (¬(Opcode = branch) ∧ ¬CachBusReq ∧ ©Pc = Pc + 4)

Here, the variable Opcode is the last 6 bits of each instruction to specify the instruction’s type.

For the transactional memory instructions, we use a branch instruction after each commit oper-

ation. In addition, we reserve register number zero for the instruction commit. If the transaction

commit succeeds, register number zero is set else it is reset. The branch instruction compares

one to the value of register number zero. If the result of the comparison is zero, the next in-

struction will be invoked, otherwise the same transaction will be invoked again.

Control Unit

The formula ControlUnit() in Fig. 6.4 examines the instruction’s Opcode bits and generates

eight control signals used by other stages of the processor. The executable specification of the

control unit is shown in Fig. 6.4. The binary flag R format represents the class of arithmetic

and logic instructions such as add, sub, or and and. Moreover, Fig. 6.4 shows the integration

of the load and store transactional operation LT, LTX, ST with non-transactional instructions in

this entity. This specification will be used again later in this chapter.

Chapter 6. Specification of Chip Dual Processor 133

ControlUnit()
=̂ ∃ R format ,LT ,LTX , ST ,LW , SW ,Bne :{

if Opcode=”000000” then R format=t else (R format=f) ∧
if Opcode=”100011” then LW=t else (LW=f) ∧
if Opcode=”101011” then SW=t else (SW=f) ∧
if Opcode=”000001” then LT=t else (LT=f) ∧
if Opcode=”000010” then LTX=t else (LTX=f) ∧
if Opcode=”000011” then ST=t else (ST=f) ∧
if Opcode=”000101” then Bne=t else (Bne=f) ∧
RegDst=R format ∧
ALUSrc=(LT ∨ LTX ∨ ST ∨ LW ∨ SW) ∧
MemtoReg=(LT ∨ LTX ∨ LW) ∧
RegWr=(LT ∨ LTX ∨ R format ∨ LW) ∧
CachRead= LW ∧
CachWrite= SW ∧
ALUOp[opLen-1]= R format∧
ALUOp[opLen-0]= Bne

}

FIGURE 6.4: Specification of Control Unit.
(t and f are abbreviations of true and false)

Instruction Decode

The formula InstDecode() decodes the fetched instruction from the instruction memory. We

will illustrate the MIPS instruction formats to help understanding the decode stage. An MIPS

instruction is a list of 32 boolean positions and is classified into three types. As shown in

Fig. 6.5, the MIPS instruction classes are:

FIGURE 6.5: MIPS 32-bit instruction formats.

Chapter 6. Specification of Chip Dual Processor 134

• R type: This represents the arithmetic and logic instruction classes such as add, sub, or

and and. It uses two registers which are specified by the rs and rt fields at positions 25:21

and 20:16. In addition, it uses a destination register to write the result at position 15:11

(rd). Position 5:0 specifies which instructions are in an R type.

• Load-Store: This load instruction uses a destination register to write data from the main

memory at position 20:16 (rt) while the store instruction uses a register which is read at

position 20:16 (rt). Both of them use a base address register at position 25:21 (rs) and a

16bit offset at position 15:00.

• Branch: This compares two values then jumps to the offset. It uses two registers, which

are specified by the rs and rt fields, at positions 25:21 and 20:16. Also, it uses a 16bit

offset at position 15:00.

As shown in Fig. 6.6, The formula InstDecode() uses a register file RegFile with length 32 and

width 32-bit (MIPS contains thirty two 32-bit registers) to temporarily store the data that comes

from Arithmetic Logic Unit (ALU) or cache as follows: Firstly, it decodes the fetched instruc-

tion which is called Inst, which is a list of 32 boolean positions, by specifying the two registers

to be read using ReadAddrReg1 and ReadAddrReg2 at positions 25:21 and 20:16 of Inst for

R type and store instructions, and the two destination registers by similar use of WriteAddr-

Reg1 and WriteAddrReg2. For a load it is in Inst’s boolean positions 20:16, while for an R type

instruction it is in Inst’s boolean positions 15:11. To specify a sublist in Tempura, we only need

to specify the number of the first and the last location of the sublist. We use a static variable

Chapter 6. Specification of Chip Dual Processor 135

length, which equals 32, and subtract it from the bit position number, to match the hardware

specification.

InstDecode() =̂
∃WrData,AddrWr ,ReadAddrReg1 ,ReadAddrReg2 ,
WriteAddrReg1 ,WriteAddrReg2 , InstImmedValue :{
ReadAddrReg1 =Inst[(length-1)-25 to length-21] ∧
ReadAddrReg2 = Inst[(length-1)-20 to length-16] ∧
WriteAddrReg1 = Inst[(length-1)-15 to length-11] ∧
WriteAddrReg2 = Inst[(length-1)-20 to length-16] ∧
InstImmedValue= Inst[(length-1)-15 to length-0] ∧
ReadData1=RegFile[Conv Integer(ReadAddrReg1)] ∧
ReadData2=RegFile[Conv Integer(ReadAddrReg2)] ∧
if MemtoReg then (WrData= CachDataRead)

else (WrData= ALU result) ∧
if RegDst then (AddrWr=WriteAddrReg1)

else (AddrWr=WriteAddrReg2) ∧
if Reset then forall i<rows:

© RegFile[i]=Conv Std Logic Vector(i)
else if RegWr then (© RegFile[Conv Integer(AddrWr)]= WrData)

else StableOther(-1)
}

FIGURE 6.6: Specification of Instruction Decode Unit.
(t and f are abbreviations of true and false)

Secondly, the formula InstDecode() fetches two operands from RegFile and puts them in the

output state variables ReadData1 and ReadData2 by using Conv Integer() subformula that

accepts list of booleans and returns integer number. Finally, the formula InstDecode() uses two

subformulae to write back into RegFile. The first one checks RegDes to select which field of the

instruction is used to indicate the register number to be written. The second checks MemtoReg

to select which data (R-type from execution unit ALU result, Load from cache CachDataRead)

will be written in the register file. The three state variables RegDes, MemtoReg and RegWr are

Chapter 6. Specification of Chip Dual Processor 136

set by ControlUnit(). The function Conv Std Logic Vector(i) converts the integer i to a list of

boolean(bits), whereas the function Conv Integer(AddrWr) converts the list of boolean AddWr

to an integer. These functions help to access lists using an index.

Execute Unit

The formula ExecuteUnit() describes the data ALU that handles all arithmetic and logical oper-

ations and also contains a branch address adder used for Pc’s relative branch instruction. It has

a subformula that selects the data (a register file or a sign-extended unit) for the ALU input, see

Appendix B.

6.4 Cache Structure and Specification

As shown in Fig. 6.7, the cache diagram consists of cache data block, dual tags, comparators,

a bus-side controller, a processor-side controller and a bus interface. In addition to the trans-

actional cache, a direct mapped data cache type is used as a regular cache. The direct mapped

cache is the simplest form of cache and the easiest to check for a hit. Since there is only one

possible place that any memory location can be cached, there is nothing to search. It works

for non-transactional load and store instructions. Both caches are accessed directly by the pro-

cessor. The data block is placed in one of the two caches, not both. The write policy used in

this design is write-back, which copies a block back to memory in two cases: first when it is

replaced and second when it is invalidated by another processor, as will be explained in the next

Chapter 6. Specification of Chip Dual Processor 137

section. Using a write-back policy to reduce bus traffic and thereby allowing more processors

in a single bus.

FIGURE 6.7: Cache interfaces structure.

The purpose of using dual tags with two controllers is to allow the two controllers to access

simultaneously the array of the tags. This will increase the processor performance and effective

bus bandwidth; the processor will only be locked out from accessing the cache if the bus side

controller performs a tag check while being hit. Doing so, the processor needs to update both

copies in the two tags. Each tag consists of two parts, the address and the coherency status.

The tag coherency status part is a sublist of 2 booleans wide to represent one of four MESI

states (modify, exclusive, shared and invalid). The bus interface works as a layer between the

processor and snoopy bus. It receives two sets of inputs: the first one is from the processor

when it issues memory requests. The second input is from the bus; in every bus transaction

Chapter 6. Specification of Chip Dual Processor 138

the bus interface captures the address and command from the bus. Then, it sends the address

and the command to the bus side controller in order to use it according to the cache coherence

protocol.

Cache Specification

The specification of the cache structure uses three main state variables (CacheData, TagPro,

TagBus) and two main interface formulae which are CacheProInterface() to connect the cache

with the processor and CacheBusInterface() to connect the cache with the snoopy bus. Each

interface monitors external events from its side. In either case, when an operation occurs, the

interface uses the controller to access the cache tag, and then gets the result from the comparator.

The CacheProInterface() deals with the processor’s loads and stores transactional and non-

transactional instructions. It receives the command and the address from the processor and

triggers one of the two cache’s processor side controllers according to the type of commend as

follows:

CacheProInterface() =̂ (ProContreg() ∧ (sw ∨ lw))

∨(ProConttm() ∧ (st ∨ lt ∨ ltx)))

The processor-side controller of regular cache ProContreg() deals with non-transactional load

lw and store sw instructions. It performs two checks. First, it compares a portion of the address

with the tag processor-side TagPro, and uses the remaining address as an index for the tag.

Second, it checks the tag coherency status (modify tt, exclusive ft, shared tf, and invalid ff) for

Chapter 6. Specification of Chip Dual Processor 139

the same index. Then the appropriate operations are performed on the data and the tag status

according to the command.

For example, when a store sw instruction hits the data, the results of checking the tag status

will be one of three cases. The first is modify, where the controller asserts a write variable

to update the data cache block. The second is exclusive, where it will convert the tag’s block

status of both TagPro and TagBus to modify and then update the data block. The third is shared,

where it will assert the bus request flag CacheBusReq and send the address and commend to the

bus interface. In the next state, the controller checks the ReqReady flag, that is set by the bus

interface when it gets the snoopy bus, if it is true then the controller converts the tag’s block

status of both TagPro, TagBus from shared to modify and then updates the data block.

The processor-side controller for the transactional cache ProConttm() deals with the following

transactional instructions: load lt, ltx, store st, commit a transaction commit, abort a transaction

abort and validate the status of a transaction validate. It handles the hit and miss data cases

as FindData() formula in tmimp. The difference here is at cases of requesting miss data and

requesting to invalidate other copies. In these cases, the ProConttm() sets the CacheBusReq

and sends the address and the command to the bus interface.

The CacheBusInterface() deals with commands and addresses that come from the snoopy bus

using the bus-side controller of both transactional formula BusConttm and regular cache for-

mula BusContreg . In addition, it handles request commands by a cache to use the snoopy bus

Chapter 6. Specification of Chip Dual Processor 140

via the BusInterface() subformula.

CacheBusInterface() =̂ BusContreg() ∧ BusConttm() ∧ BusInterface() (6.1)

On every bus state, the bus-side controller BusContreg() receives the command and the address

from bus lines and makes two comparisons, with tag address and tag coherency statuses of the

tag bus-side TagBus. If the check fails (and the coherency status is invalid), no action needs to

be taken. If the check hits, the bus-side performs a sequence of operations according to MESI

protocol.

As shown in Fig. 6.8, the bus-side controller for transactional cache BusConttm() has two

different responses to deal with bus commands CmdBus, if the following are satisfied: the data

on the bus is not issued by the same cache (Grant flag is false), it finds a tag’s block address

part equal to AddBus, coherency status of the same block is not invalid and its transactional

status is not empty. The two possible responses are: firstly, setting the busy out state variable

BusyOut, if the tag’s block transactional status is not normal, which means that this cache block

is used by a transaction. Secondly, issuing a request to write back the requested data by setting

BusReqWB flag and transferring the data block from the cache to write back buffer BuffWB, if

the tag’s coherency status is modified and transactional status is normal. Also, it changes its

tag’s coherency status to invalid, if the CmdBus is read for exclusive readFxtm or invalid other

copy invCopytm , otherwise it changes the tag’s coherency status to shared.

The BusInterface() deals with a request by the processor-side or bus-side controller to acquire

Chapter 6. Specification of Chip Dual Processor 141

BusConttm(CmdBus,AddBus, p, i) =̂
{if (¬Grantp ∧ i < cachelength)

then if (TagBusp [i][a] = AddBus
∧¬(TagBusp [i][c] = invalid ∨ TagBusp [i][t] = empty))
then if TagBusp [i][t] = normal

then {©HitBus = t ∧ ©BusyOut = f ∧
if CmdBus = readtm

then UpdateTag(AddBus , p, shared)
else UpdateTag(AddBus , p, invalid)

∧
if TagBusp [i][t] = modify
then {©BusReqWBp = t∧

©BuffWB = Cache(read, i, p)}
else ©BusReqWBp = f

}
else {

©HitBus = f ∧ ©BusReqWBp = f ∧
if (CmdBus = readtm ∧ TagBusp [i][t] = shared)

then ©BusyOut = f
else ©BusyOut = t

}
else BusConttm(CmdBus,AddBus, p, i+ 1)
}

FIGURE 6.8: Specification of bus-side controller of the transactional cache.

the bus line . There are three cases for demanding to acquire the bus: Firstly, missing a data in

the local cache or requesting to exclusively own a data, in this case the CacheBusReq flag is set

by the processor-side controller. Secondly, replacing the data cache block, the ProReqWB flag

is set. Finally, responding to the bus command to get a data cache block, the BusReqWB flag is

set by the bus-side controller.

As shown in Fig. 6.9 the BusInterface() performs a sequence of steps for the first case as follows:

1) waits for bus grant, 2) puts address AddCache and command CmdCache on bus, 3) waits for

Chapter 6. Specification of Chip Dual Processor 142

BusInterface(p) =̂
{if (CachBusReqp ∧Grantp)

then if (¬BusDataReady)
then {©AddBus = AddCache∧

©CmdBus = CmdCache∧
©ReqReady = f }

else {©ReqReady = t∧
if (CmdCache = readFxtm∨

CmdCache = readtm∨
CmdCache = invCopytm)
then if (¬BusyIn)

then {©BuffInData = BusData ∧ © Statusp = t}
else ©Statusp = f

else ©BuffInData = BusData}
∧
if (ProReqWBp ∧Grantp)
then {©AddBus = AddCache ∧ ©CmdBus = write ∧ ©DataBus = BuffWB}
∧
if (BusReqWBp ∧ SendBlk)

then ©DataBus = BuffWB
}

FIGURE 6.9: Specification of the bus interface.

acknowledgment BusDataReady, and 4) transfers data from BusData to BuffInData. In case

of transactional operations and after it receiving acknowledgment BusDataReady, it checks the

BusyIn (indicates conflict detection with other concurrent transaction) and sets the BusyIn flag

if BusyIn is true, otherwise it is reset.

In the second case, the BusInterface() 1) waits for the bus grant, 2) puts the write command,

address and data on the bus. In the final case, It waits for acknowledgement to send the data

cache block SendBlk and then transfers data from BuffWB to BusData.

Chapter 6. Specification of Chip Dual Processor 143

6.5 Snoopy Bus Structure and Specification

We use an asynchronous snoopy bus system that uses a handshaking protocol for coordinating

usage rather than a clock (synchronous). The advantages of choosing asynchrony are the ability

to accommodate a wide number of processors and devices of differing speeds, and the cache-

to-cache handshake is simple; the disadvantage is that the design requires extra hardware and

signals [69].

The snoopy bus structure consists of three components: A data bus with 32-bit width, address/-

command lines with four bus cycles for non-transactional operations (read : for shared cache

line, readFx : read for exclusive, invCopy : invalid copies in other caches, and write). We also

add four cycles bus for transactional operations: (readtm , readFxtm , invCopytm and BusyIn:

for refusing a transactional request when responding by busy signals BusyOut), and the cen-

tralised bus arbitration, which contains a hardware queue and a group of signals. This group

of signals works according to the following sequence: when the processors need to get the bus,

they assert their bus request signals. The arbitration checks all bus signal requests every cycle

and puts the asserted one in the queue. When the bus is empty, the arbitration removes the first

requested processor in the queue and responds by asserting its grant signal. Upon receiving the

grant signal, the selected processor places one of the commands mentioned above on the bus

command and the address on the bus address line [4].

Chapter 6. Specification of Chip Dual Processor 144

Snoopy Bus Specification

As mentioned previously in the specification of CDP, the main formula for coordinating usage

of the bus by the two processors is CentraliseBusArbitration(). Its specification uses four main

state variables (DataBus, AddBus, CmdBus, Queue, Grant) and two main subformulae which

are CheckReqBus() to check the bus availability and the request of acquiring the bus from the

processors. and CheckWbRes() to check and mange the response for a cache request by another

cache or the memory. Here is the formula of CentraliseBusArbitration().

CentraliseBusArbitration() =̂ CheckReqBus() ∧ CheckWbRes() (6.2)

In every bus cycle, each cache checks the address bus AddBus against its tags using the the

formula CacheBusInterface(), and the bus arbitration CheckWbRes() detects the result of the

snoop from all caches by checking their BusReqWB and BusyOut flags. As shown in Fig. 6.10,

one function of the snoop result is to inform the main memory or a cache that is holding a

modified copy of the block to respond to the request. The design guarantees that the snoop

results are available after three clock cycles from the issue of the address on the bus. In the

first cycle, the CacheBusInterface() of each cache checks the address against the tags. If the

check hits, it requests to write back the data by setting the BusReqWB flag. In the second

cycle, the CheckWbRes() delays for one cycle because the bus-side controller may not be able

to access its tag when the processor-side controller updates the same tag. In the third cycle, the

CheckWbRes() firstly checks the command bus CmdBus and the BusyOut flag of each cache. If

CmdBus equals to one of the transactional commands and one of the caches responds with busy,

Chapter 6. Specification of Chip Dual Processor 145

CheckWbRes(p) =̂
{if (p = numPro)

then (©Delay = 0 ∧ ©BusDataReady = f)
else if (Grantp ∧ CachBusReqp)

then if (Delay = 3)
then if (CmdBus = readFxtm ∨ CmdBus = readtm∨

CmdBus = invCopytm) ∧ (BusyOut [0] ∨ BusyOut [1])
then (©BusyIn = t ∧ ©BusDataReady = t)
else (©©BusDataReady = t∧

if (BusReqWB [0] ∨ BusReqWB [1])
then © SendBlk = t
else ©MemSendBlk = t)

else ©Delay = Delay + 1
else CheckWbRes(p + 1)

}

FIGURE 6.10: Part of snoopy bus specification.

the CheckWbRes() sets the BusyIn flag to inform the request that a conflict has been detected. If

CmdBus isn’t one of the transactional commands or there is no busy response from the caches,

the CheckWbRes() checks the BusReqWB of each cache. If there is a BusReqWB which equals

true, the CheckWbRes() sets the SendBlk flag to inform the cache that is holding a modified

copy of the block to transfer the data. Otherwise, the CheckWbRes() sets the MemSendBlk to

order the main memory to transfer the data. The possibility of the processor changing the tag

state during the second cycle doesn’t exist, because the bus side controller has priority and it

changes the state of both tags directly after it hits.

Chapter 6. Specification of Chip Dual Processor 146

Bus time cycle

As shown in Figs. 6.9 and 6.10, the description of the time bus cycle for the readFxtm , as a

sample, transition is as follows:

• T0: Processor1 () requests the bus by setting the CacheBusReq flag and waiting for the

bus grant.

• T1: The bus arbitration CentraliseBusArbitration() sets the grant line Grant[1] = true

when the bus is empty; if not, it places the processor number in the queue list Queue .

• T2: The cache bus-interface BusInterface() of the Processor1 () puts the command and

the address on the bus.

• T3: The cache bus-side controller which holds a modified copy sets the write-back flag

BusReqWB .

• T4: The bus arbitration delays for one cycle.

• T5: The bus arbitration checks the write-back flags and sets the SendBlk.

• T6: The cache bus-interface, which holds the modified copy, places the data block on the

bus. Also, the bus arbitration sets the BusDataReady.

• T7: The cache bus-interface of the Processor1 () receives the data from DataBus.

Chapter 6. Specification of Chip Dual Processor 147

6.6 Discussion

Deadlock

In the SMP the deadlock occurs when each of two cache controllers has an outstanding transac-

tion that the other needs to respond to, and both are refusing to handle requests. The proposed

specification avoids this situation by dividing the bus-interface into two parts which work si-

multaneously. The first part works with processor-side controller which attempting to issue its

request. The second part works with bus-side controller which services incoming transaction

which may cause it to flush blocks onto the bus.

For example, suppose that a bus read instruction for a block B appears on the bus while a

processor P1 has a readFx request outstanding to another block A and is waiting for the bus. If

P1 has a modified copy of B, its controller supplies the data and changes the state from modified

to shared while it is waiting to acquire the bus.

Livelock

The traditional livelock problem in an invalidation-based cache-coherent memory system is

caused by all processors attempting to write to the same memory location. It is possible that

the block is brought into the cache in a modified state, but before the processor is able to

complete its write the block is invalidated by a bus readFxtm request from another processor.

The processor misses again and this cycle can repeat indefinitely.

Chapter 6. Specification of Chip Dual Processor 148

The proposed specification guarantees that this kind of livelock cannot happen because the bus

arbitration does not grant the other requests before getting acknowledgment that the first request

has received the data block. Moreover, the other request needs five cycles (as explained in the

previous section) before it invalidates the data which has been received by the first request.

Starvation

With multiple processors competing for a bus, it is possible that some processors requests may

be repeatedly granted by the bus while others processors are ignored and therefore become

starved. The proposed solution for this problem is to use a priority queue in the bus arbitration.

6.7 Refinement and Validation

Modern hardware design is largely based on using HDLs and once we have the specification of

our model in form of a HDL, hardware synthesis can be performed automatically using several

commercially available synthesisers.

The transformation process between a Tempura specification and a HDL specification should be

based on sound techniques such as a refinement calculus. The refinement relation v is defined

on a system as follows: A system X is refined by the system Y, denoted X v Y, if and only

if the formula Y ⊃ X is valid. In actual fact, the denotational, ITL-based semantics of the

HDL should be given to formally verify that the HDL specification refines its ITL/TEMPURA

Chapter 6. Specification of Chip Dual Processor 149

behaviour specification. However, this is out of this thesis’s scope and requires much effort and

time. We therefor instead propose refinement laws based on some restriction rules to partially

accomplish the transformation. To validate this transformation, we execute a shared counter

example on both specifications and match the results.

There are two major hardware descriptive languages currently on the market: VHDL, which is

an acronym of VHSIC (Very High Speed Integrated Circuit) Hardware Description Language,

and Verilog. We have chosen VHDL is selected to be used as the hardware description language

in this work for the following reasons:

1. There is a similarity in its behavioural description with AnaTempura.

2. It has the capable of handling large designs.

3. Most designs of Field Programmable Gate Array (FPGA) are in VHDL. This facility

allows automated synthesis, via several commercially available synthesisers, of a VHDL

description on a chip and testing it against the circuit.

4. We have previous experience in writing of VHDL code.

Moreover, the VHDL has many features: Firstly, designs may be decomposed into sub-designs,

and interconnected between those sub-designs. Secondly, behavioural specification can use

either a familiar programming language or an actual hardware structure to describe an element’s

operation. Thirdly, timing and clocking can be modelled. VHDL allows the use of explicit time

delays. In particular, it is possible to say that a statement is executed after a certain time delay

[74, 75].

Chapter 6. Specification of Chip Dual Processor 150

6.7.1 VHDL Structure and Modeling

VHDL Code Structure

As shown in Fig. 6.11, VHDL code is composed of at least three fundamental sections [75]:

• Library declaration: This contains a list of all libraries to be used in the design, such as

ieee.

• Entity: This is the VHDL representation of such a block and can be considered to be at

the top of the design hierarchy.

• Architecture: An implementation of the entity containing VHDL code which describes

the circuit behaviour.

FIGURE 6.11: Example of VHDL program.

Chapter 6. Specification of Chip Dual Processor 151

VHDL Modeling Styles

An architecture block can be written in one of the VHDL modeling styles as follows:

• Dataflow: represents the concurrent execution style. It describes the circuit in terms

of the flow of data and operations through the circuit. Its style architecture includes:

operators logical, relational and mathematical. In addition to the concurrent assignments

statements.

• Behavioural: represents the sequential execution style. However, it contains concurrent

statements with section of sequential statements that describe the output of the circuit.

• Structural: represents the interconnection of components. It describes the circuit in term

of components. The main topics associated with this style are: components declaration

and port mapping, in addition to signals for interconnection.

6.7.2 Restrictions and Refinement Rules

Restrictions

In order to make the transformation from Tempura to VHDL more straightforward and accord-

ing to the mutual properties for both Tempura and VHDL, we list the following rules concerning

restrictions:

Chapter 6. Specification of Chip Dual Processor 152

1. The architecture section and its dataflow design style only concerns executing the state-

ments concurrently an arbitrary ordered (involved the process statements).

2. The delay mechanisms such as delta and inertial delays are not considered here, so we

only handle the terminated computation.

3. The synthesieble types only are considered (no scalar type) which are either the in and

out signals in the entity declaration, or the signals in the architecture declaration.

4. The binary numbers in VHDL such as ’1’ and ’0’ represents the Boolean type in Tempura

(true and false).

5. The terminated computation of the VHDL state that happened between two clock events

is equivalent to a one Tempura state.

6. Signal assignment statements with more than one waveform are not considered here. We

will consider the output at the end time of the clock.

7. The signals that regarded as out signals in VHDL are not used as an input or checked in

the corresponding Tempura.

Chapter 6. Specification of Chip Dual Processor 153

Refinement Rules

The following rules enable the transformation of Tempura constructs into VHDL constructs

with regards to the previous restrictions. Where f is a formula and A and B are state variables

(Tempura) and signals (VHDL).

TABLE 6.1: The proposed refinement rules for Tempura/VHDL transformation

VHDL Tempura
{1} A <= f0; B <= f1 v A = f0 ∧B = f1
{2} A <=′ 1′; B <=′ 0′ v A = true ∧B = false
{3} f1 WHEN f0 ELSE f2; v if f0 then f1 else f2
{4} PROCESS v if f0 then (skip; f1) else f2
BEGIN
WAIT UNTIL clock’EVENT AND clock = ’1’;
IF f0THEN f1 ELSE f2 END IF;
END PROCESS
{5} label:FOR i IN 0 TO j GENERATE v (

∧j
i=0 f0)

f0
END GENERATE
{6} PROCESS v (forall i < j :{skip; f0})
BEGIN
WAIT UNTIL clock’EVENT AND clock = ’1’;
FOR i IN 0 TO j LOOP
f0
END LOOP;
END PROCESS
{7} L ((n− 1)− x downto n− y) Represent sublist L, length n

v L[x to y]
{9} CONV STD LOGIC VECTOR(i,l) v Conv Std Logic Vector(i,l)
{10} CONV INTEGER(i) v Conv Integer(i)
{11} X&Y v Concatenate(X,Y)

Chapter 6. Specification of Chip Dual Processor 154

6.7.3 Transformation and Validation

To simplify the transformation process and its correctness validation of the proposed CDP spec-

ification, we start the transformation with the main formulae that represent the major functional

entities of the processor data path, such as the control and execution units, and then gradually

transfer other formulae such as the centralised bus arbitration until we reach our final model.

After each transformation, we validate its correctness by executing a shared counter example

on both specifications and comparing their results.

Mentor-Graphics 6.3 is used as an editing and simulation tool for VHDL code since it is easy to

learn and use and it supports more than one synthesis tool such as Precision and LeonardoSpec-

trum.

In this section, transformation of two formulae of the CDP specification is shown, as an exam-

ple, which are the control and instruction decode units. The other VHDL codes of the CDP are

shown in Appendix C.

Control Unit

The VHDL equivalent of the control unit specification in Tempura that is presented in this

chapter (see Section 6.3), is shown in Fig. 6.12.

Chapter 6. Specification of Chip Dual Processor 155

FIGURE 6.12: The VHDL equivalent of the control unit specification.

Chapter 6. Specification of Chip Dual Processor 156

Instruction Decode

The VHDL equivalent of the instruction decode entity that is presented in this chapter (see

Section 6.3), is shown in Fig. 6.13.

FIGURE 6.13: Part of the VHDL equivalent of the instruction decode specification.

Chapter 6. Specification of Chip Dual Processor 157

Shared Counter Example

To validate the correctness of the Tempura and VHDL specification of the CDP, we execute a

simple shared counter example on both specifications and compare their results.

FIGURE 6.14: Example of the shared counter.

As shown in Fig. 6.14 , a simple shared counter example which increments the counter (ini-

tialised to 0) 6 times is transferred from high-level to assembly and then to machine language in

order to be executed on both specifications. It reads the shared counter from its address in the

main memory (&counter) into a local register (register number 4) using ltx and then it incre-

ments the counter by 1. The commit instruction then attempts to make the temporary update of

Chapter 6. Specification of Chip Dual Processor 158

the shared counter permanent by checking the Status flag . To simplify the control flow of the

program after executing a commit instruction, we let commit to set or reset register number

2 in the register file of each processor according to the status of the transaction flag Status.

The branch statement bne, that follows the commit instruction, can check register number 2

and return back to execute the transaction from the initial statement if it is reset, transaction

aborted, otherwise continue the program.

FIGURE 6.15: Output of the shared counter execution (part 1).

Figs. 6.15 to 6.17 show the AnaTempura and Mentor-Graphics output results of executing the

shared counter example on the executable and VHDL specification of CDP. Fig. 6.15 shows the

Chapter 6. Specification of Chip Dual Processor 159

cache value of the shared counter in the first processor after changing from zero to one at state

11 (clock 11) , where each processor needs 8 states to read a value from the main memory into

its cache and two states to update it, see Section 6.5.

FIGURE 6.16: Output of the shared counter execution (part 2).

As shown in the Fig. 6.16, the value of the shared counter in the main memory (location 5) will

not be updated until the second processor issues a request for the counter and the first processor

sends the new value of the counter at state 16 (clock 16), see Section 6.4.

Chapter 6. Specification of Chip Dual Processor 160

FIGURE 6.17: Output of the shared counter execution (part 3).

Fig. 6.17 shows the final value of the shared counter in cache2 after updating its value from 5 to

6 at state 51. The rest of the states to check the final value of the increment times of the shared

counter and end the while loop.

Chapter 6. Specification of Chip Dual Processor 161

6.8 Summary

In this chapter, an extension to the proposed formal TM framework is presented which is a spec-

ification of a shared memory system with dual processors CDP is presented using AnaTempura.

The major benefit of this extension is the ability to evaluate the provable TM system in a real

shared memory environment. In addition, the integration process of the provable TM system

with a shared memory system is more complex at the low-level description than the high-level

one. Moreover, the formal specification of a shared memory system that is integrated with a

TM technique can eventually be verified correct.

We faced some difficulties in the specification of the CDP using AnaTempura such as its limi-

tations (no memory model, no data structures, it cannot represent all ITL operators and system

can run only one time). Even so, it has some advantages such as being closer to a normal

programming language and having a simulation tool which can represent results graphically.

Also in this chapter, a refinement of rules based on some restrictions for transferring the ex-

ecutable specification of CDP with TM to the hardware description language VHDL and its

validation are presented.

Chapter 7

Conclusion and Future Work

7.1 Summary of Thesis

In this thesis, a general and flexible formal TM framework that allows specifying, validating,

verifying and implementing a TM system is developed. In addition, modelling and verification

of the standard safety properties in the TM community are provided. The main feature of this

framework is that it can specify, validate and analyse a TM system’s behaviour within a single

logical formalism, namely ITL and its executable subset, AnaTempura.

The construction of the framework’s main part which is a provably correct abstract TM model

involves four stages: Firstly, a computation model for an abstract TM is specified. Secondly,

various TM correctness conditions such as the read-consistency and strict serialisability are

specified. Moreover, a new conflict detection policy such as strong-eager-conflict and a new

162

Chapter 7. Conclusions And Future Work 163

arbitration function such as the eager-own-arbitration are modelled. Thirdly, a set of sound

refinement rules are used to transform the abstract TM specification into an executable model.

This model is validated and animations through testing using AnaTempura are given. Fourthly,

a simplification of the mathematical verification method is proposed and used to prove the

correctness of the proposed abstract TM.

As a case study, the well-known, original Hardware TM (HTM) system of Herlihy and Moss

[6] was selected. We provide its correctness in three steps: Firstly, a concrete specification,

close to reality, is given. Secondly, a validation to get the right specification was presented,

but a violation for the doomed consistency in this model was captured and a modified model

proposed. Thirdly, the correctness of the modified HTM system is proven by using a refinement

mapping technique which maps its transition behaviour states with the provably abstract TM

model states.

A unique characteristic of the proposed framework is that it can integrate the provable HTM

system within a real shared memory environment and transform them both to the low-level

hardware description language VHDL. The shared memory system CDP is built by specifying

dual single cycle MIPS processor, a direct-mapped data cache equipped with a MESI cache

coherency protocol with each processor and snoopy bus protocol. The similarity in the VHDL

behaviour description with AnaTempura allows for a straightforward construction of the CDP

with TM from their specifications.

Chapter 7. Conclusions And Future Work 164

7.2 Contributions

This thesis develops a unified formal framework for specifying, validating, verifying and im-

plementing a TM system using a single well-defined formalism. This framework involves:

• A general computational model for an abstract TM.

• A formal description of the standard TM safety conditions such as policies for doomed

consistency, strict serialisability, and conflict detection and resolution.

• An executable version for the abstract TM model.

• A verification technique for correctness of a TM model based on a mathematical proof.

• A high-level specification of a selected TM system from the literature to serve as a case

study, and its executable version.

• A correctness verification for the TM case study by using a refinement mapping technique

that maps its transition behaviour states to the provably correct abstract TM model states.

• A formal executable specification for a chip-dual single-cycle MIPS processor with an

MESI cache coherence protocol, as a shared memory environment, and integration of the

TM case study which we have verified.

• A transformation of the dual processors with the TM system from a high level description

into a hardware description language, using proposed refinement and restriction rules.

Chapter 7. Conclusions And Future Work 165

7.3 Success Criteria Revisited

A set of criteria are presented in Chapter 1 to judge the success of the proposed research. This

section revisits these measures of success.

• The formal specification of the TM safety properties.

This important criterion to verify and validate the correctness of the proposed approach.

The most common correctness requirement in TM community which is strict serializ-

ability with respect to doomed consistency is formalised. In addition, many other safety

conditions that can help to verify the correctness such as global and local consistency are

formalised (see Chapter 4).

• The simplification of the TM formal verification.

The research investigation shows correctness verification for a TM system by constructing

a provably correct abstract TM model and mapping its states to the transition behaviour

states of the target TM system using refinement mapping rules. The correctness verifica-

tion of the abstract TM is simplified by viewing the TM model from the viewpoint of TM

safety properties. This simplification approach shifts the burden of the verification from a

global level to the local components that may violate the safety properties (see Chapters

4 and 5).

• The capability of the validation process in the proposed approach using ITL framework.

Chapter 7. Conclusions And Future Work 166

The work-bench of ITL, including its executable subset, Tempura, and its simulation and

the animation tool, AnaTempura, help to define, execute and simulate properties of inter-

est efficiently and correctly. In additional to the benefits of the ITL operators in capturing

the concurrent behaviours of transactions, the proposed approach uses this work-bench

in the construction of abstract TM, case study and CDP with TM to get the right speci-

fication and validate its correctness. For example, the specification of the case study is

validated by running a concurrent data structure example in Chapter 5. A violation of TM

safety property is captured and a modification for the case study is proposed.

• The realisation capability of the proposed approach. For example, the possibility to build

a TM system from high-level specification to low-level hardware.

Quite a lot attention is paid to the practical part of the approach during the develop-

ment. The infrastructure of the shared memory environment is built to make our approach

worthwhile. The main components of our approach that involve the provably correct ab-

stract TM model and the formal specification of the TM safety properties in additional to

the high-level specification and low-level hardware description of the CDP are efficient

enough for real practice in designing , verifying and implementing many proposed TM

systems. The validation of the high-level specification of the case study and its transfor-

mation to low-level implementation by running a real concurrent shared counter example

show that our approach is a practical one (see Chapter 6). One of the main advantages of

the infrastructure of CDP and TM is to help the researchers to develop various models of

interactions between transactions and non-transactional code.

Chapter 7. Conclusions And Future Work 167

7.4 Limitations

The proposed research described in this thesis has the following limitations:

• The generality of the proposed abstract TM model gives us the capability to use it as

a standard and match it to different TM systems. However, this generality is not quite

enough and cannot be matched to all existing proposed systems. There are still other

TM aspects should be imported to the provable abstract TM such as nested transactions,

mechanisms of updating the memory.

• Applying a TM system on our framework in order to check its correctness and then trans-

form it to hardware level needs much effort in the specification stage. Its specification

should be close to reality and more than just an abstract concept. However, the cost of

building a specification close to implementation is where the complexity lies. In actual

fact, our proposed framework requires much effort in order to understand a TM system

before applying it.

• The verification and the refinement into Tempura and VHDL stages in the proposed

framework are still manual, which is more complex as a result.

Chapter 7. Conclusions And Future Work 168

7.5 Future Work

ITL and TM are both challenge. The thesis provides a foundation for future research in this

promising area. Many aspects and properties of TM rely on the history of concurrent trans-

actions to be correctly investigated such as the relationship between transactional and non-

transactional access. In [55] the time reversal technique was proposed for compositional verifi-

cation. This technique can be used also in the compositional verification of TM properties.

Moreover, here are some tasks for future investigation:

• Verify the correctness of different HTM systems. Moreover, investigate and prove the

correctness of Software TM (STM) and Hybrid TM (HyTM) systems.

• Provide mechanical verification using special-purpose theorem provers such as PVS or

KIV.

• Expand the generality of the provable abstract TM model to involve the other impor-

tant aspects of the TM design such as nested transactions, mechanisms of updating the

memory and more conflict management policies.

• Soundly prove the refinement rules of the transformation from AnaTempura to VHDL.

Bibliography

[1] K. Olukotun, L. Hammond, and J. Laudon. Chip Multiprocessor Architecture: Techniques

to Improve Throughput and Latency. Morgan and Claypool, 1st edition, 2007.

[2] N. Njoroge, J. Casper, S. Wee, Y. Teslyar, D. Ge, C. Kozyrakis, and K. Olukotun. AT-

LAS: A Chip-Multiprocessor with Transactional Memory Support. In Proceedings of the

Conference on Design Automation and Test in Europe, pages 3–8. EDA Consortium, April

2007.

[3] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The Case for a Single

Chip Multiprocessor. In Proceedings of the 7th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS-VII), pages 2–11.

ACM, October 1996.

[4] D. Culler, J. Singh, and A. Gupta. Parallel Computer Architecture: A Hardware/Software

Approach. Morgan Kaufmann, 1st edition, 1998.

[5] J. Larus and C. Kozyrakis. Transactional Memory. Communications of the ACM,

51(7):80–88, December 2008.

169

Bibliography 170

[6] M. Herlihy and J. Moss. Transactional Memory: Architectural Support for Lock-Free

Data Structures. SIGARCH Computer Architecture News, 21(2):289–300, May 1993.

[7] J. Larus and R. Rajwar. Transactional Memory. Morgan and Claypool, 2nd edition, 2010.

[8] J. Larus and C. Kozyrakis. Is TM the Answer for Improving Parallel Programming?

Communication of the ACM, 51(7):80–88, July 2008.

[9] M. Tremblay. Transactional Memory for a Modern Microprocessor. In Proceedings of the

twenty-sixth annual ACM symposium on Principles of distributed computing, PODC ’07,

pages 1–1. ACM, 2007.

[10] L. Hammond, V. Wong, M. Chen, B. Carlstrom, J. Davis, B. Hertzberg, M. Prabhu, H. Wi-

jaya, C. Kozyrakis, and K. Olukotun. Transactional Memory Coherence and Consistency.

In Proceedings of the 31st Annual International Symposium on Computer Architecture,

page 102. IEEE Computer Society, Jun 2004.

[11] A. El-Kustaban, A. El-Mahdy, and O. Ismail. A CMP with Transactional Memory: De-

sign and Implementation Using FPGA Technology. In Proceeding of the International

MultiConference of Engineers and Computer Scientist, IMECS ’07, pages 1680–1685.

Newswood Limited, 2007.

[12] V. Marathe, W. Scherer III, and M. Scott. Adaptive Software Transactional Memory. In

Proceedings of the 19th International Conference on Distributed Computing (DISC 2005).

LNCS, Springer, September 2005.

Bibliography 171

[13] A. Shriraman, M. Spear, H. Hossain, V. Marathe, S. Dwarkadas, and M. Scott. An Inte-

grated Hardware-Software Approach To Flexible Transactional Memory. In Proceedings

of the 34rd Annual International Symposium on Computer Architecture, ISCA ’07, pages

104–115. ACM, 2007.

[14] T. Harris, A. Cristal, O. Unsal, E. Ayguade, F. Gagliardi, B. Smith, and M. Valero. Trans-

actional Memory: An Overview. Micro, IEEE, 27(3):8 –29, May-June 2007.

[15] B. Moszkowski. Some Very Compositional Temporal Properties. In E.-R. Olderog, editor,

Programming Concepts, Methods and Calculi, volume A-56 of IFIP Transactions, pages

307–326. IFIP, North Holland, 1994.

[16] B. Moszkowski. Compositional Reasoning about Projected and Infinite Time. In Proceed-

ings of the First IEEE International Conference on Engineering of Complex Computer

Systems (ICECCS 1995), pages 238–245. IEEE Computer Society Press, 1995.

[17] B. Moszkowski. Executing Temporal Logic Programs. Cambridge University Press, Cam-

bridge, England, 1986.

[18] A. Cau, B. Moszkowski, and H. Zedan. Interval Temporal Logic, 2012. [Webpages]

http://www.tech.dmu.ac.uk/˜STRL/ITL/index.html.

[19] H. El-Rewini and M. Abd-El-Barr. Advanced Computer Architecture and Parallel Pro-

cessing. John Wiley and Sons, 2005.

[20] M. J. Flynn. Very high-speed computing systems. IEEE, 54(12):1901–1909, December

1966.

Bibliography 172

[21] R. Duncan. A Survey of Parallel Computer Architecture. Computer, 23(2):5–16, February

1990.

[22] E. W. Dijkstra. Solution of a problem in concurrent programming control. Communica-

tions of the ACM, 8(9):569–, 1965.

[23] E. W. Dijkstra. Cooperating Sequential Processes. In F. Genuys, editor, Programming

Languages: NATO Advanced Study Institute, pages 43–112. Academic Press, 1968. Orig-

inally appeared as EWD123 in 1965.

[24] L. Lamport. A New Solution of Dijkstra’s Concurrent Programming Problem. Communi-

cation of the ACM, 17(18):453–455, 1974.

[25] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann,

2008.

[26] K. Fraser. Practical Lock-Freedom. PhD thesis, University of Cambridge, 2003.

[27] E. Jensen, G. Hagensen, and J. Broughton. A New Approach to Exclusive Data Access

in Shared Memory Multiprocessor. Technical Report UCRL-97663, Lawrence Liverome

National Laboratory, November 1987.

[28] M. Herlihy. Wait-Free Synchronization. ACM Transactions on Programming Languages

and Systems, 11(1):124–149, 1991.

[29] M. Herlihy, V. Luchango, and M. Moir. Obstruction-free Synchronization: Double-ended

queues as an example . In Proceedings of the 23rd IEEE International Conference on Dis-

tributed Computing System, ICDCS ’03, pages 522–529. IEEE Computer Society, 2003.

Bibliography 173

[30] R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw- Hill, New

York, 2000.

[31] G. Taubenfeld. Synchronization Algorithms and Concurrent Programming. Pearson Edu-

cation. Pearson/Prentice Hall, 2006.

[32] G. Taubenfeld. Concurrent Programming, Mutual Exclusion. In Encyclopedia of Algo-

rithms. 2008.

[33] D. Porter and E. Witchel. Understanding Transactional Memory Performance. In Pro-

ceedings of the 2010 IEEE International Symposium on Performance Analysis of Software

Systems, pages 97–108. IEEE Computer Society, March 2010.

[34] K. Moore, J. Bobba, M. Moravan, M. Hill, and D. Wood. LogTM: Log-based Transac-

tional Memory. In Proceedings of the 12th International Symposium on High-Performance

Computer Architecture, pages 254–265. IEEE Computer Society, February 2006.

[35] N. Shavit and D. Touitou. Software Transactional Memory. In Proceedings of the 14th

ACM Symposium on Principles of Distributed Computing, pages 204–213. ACM, 1995.

[36] S. Lie. Hardware Support for Unbounded Transactional Memory. Master’s thesis, Mas-

sachusetts Institute of Technology, May 2004.

[37] L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Chen, and K. Olukotun. The Stanford

Hydra CMP. IEEE Micro., 20(2), 2000.

[38] J. Wawrzynek and D. Patterson et al. RAMP: Research Accelerator for Multiple Proces-

sors. IEEE Micro, 27(2):46–57, 2007.

Bibliography 174

[39] M. Scott. Sequential Specification of Transactional Memory Semantics. In Pro-

ceedings of the First ACM SIGPLAN Workshop on Languages, Compilers, and

Hardware Support for Transactional Computing. Jun 2006. [Online]. Available:

http://www.cs.rochester.edu/u/scott/papers/2006 TRANSACT formal STM.pdf.

[40] R. Guerraoui, T. Henzinger, M. Kapalka, and V. Singh. Generalizing the Correctness of

Transactional Memory. In Preliminary Program and Challenge Problems Exploiting Con-

currency Efficiently and Correctly, CAV 2009 Workshop, Grenoble, France, 2009. [On-

line]. Available: http://www.cs.utah.edu/ec2/kapalka.pdf.

[41] R. Guerraoui and M. Kapalka. On the Correctness of Transactional Memory. In Pro-

ceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP’08), pages 175–184. ACM, 2008.

[42] A. Cohen, J. O’Leary, A. Pnueli, M. Tuttle, and L. Zuck. Verifying Correctness of Transac-

tional Memories. In Proceedings of the 7th International Conference on Formal Methods

in Computer-Aided Design (FMCAD), pages 37–44. IEEE Computer Society, November

2007.

[43] R. Guerraoui, T. Henzinger, and V. Singh. Completeness and Nondeterminism in Model

Checking Transactional Memories. In Proceedings of the 19th Conference on Concur-

rency Theory (CONCUR 2008), pages 21–35. Springer, August 2008.

Bibliography 175

[44] A. Sinha and S. Malik. Runtime Checking of Serializability in Software Transactional

Memory. In Proceeding of the IEEE International Symposium on Parallel Distributed

Processing (IPDPS), pages 1–12. IEEE, April 2010.

[45] S. Tasiran. A Compositional Method for Verifying Software Transactional Memory

Implementations. Technical Report MSR-TR-2008-56, Microsoft Research, Redmond,

USA, April 2008. [Online]. Available: http://research.microsoft.com/pubs/70570/tr-2008-

56.pdf.

[46] W. Weihl. Local Atomicity Properties: Modular Concurrency Control for Abstract Data

Types. ACM Transactions on Programming Languages and Systems, 11(2):249–282, April

1989.

[47] L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Soft-

ware Engineers. Addison-Wesley, 2002.

[48] A. Pnueli and T. Arons. TLPVS: A PVS-based LTL Verification System. In Proceedings of

an International Symposium In Verification-Theory and Practice, pages 84–98. Springer-

Verlag, 2003.

[49] A. Cohen, A. Pnueli, and L. Zuck. Verification of Transactional Memories

that Support Non-Transactional Memory Accesses. In TRANSACT ’08: 3rd

Workshop on Transactional Computing, February 2008. [Online]. Available:

http://www.unine.ch/transact08/papers/Cohen-Verification.pdf.

Bibliography 176

[50] K. Moore and D. Grossman. High-level small-step operational semantics for transactions.

In Proceeding of the 35th ACM Symposium on Principles of Programming Languages,

pages 51–62. ACM, 2008.

[51] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing Memory Transactions. In

Proceedings of the 2006 ACM SIGPLAN conference on Programming language design

and implementation, pages 14–25. ACM, 2006.

[52] J. Dimitrov. Developing Semantics of Verilog HDL in Formal Compositional Design of

Mixed Hardware / Software Systems. PhD thesis, Software Technology Research Labora-

tory, De Montfort University, 2002.

[53] A. Cau, R. Hale, J. Dimitrov, H. Zedan, B. Moszkowski, M. Manjunathaiah, and

M. Spivey. A Compositional Framework for Hardware/Software Co-Design. Design Au-

tomation for Embedded Systems, 6(4):367–399, 2002.

[54] A. Cau and H. Zedan. Refining Interval Temporal Logic Specifications. In Proceedings

of the 4th International AMAST Workshop on Real-Time Systems and Concurrent and

Distributed Software: Transformation-Based Reactive Systems Development, ARTS ’97,

pages 79–94. Springer-Verlag, 1997.

[55] B. Moszkowski. Compositional Reasoning using Intervals and Time Reversal. In Pro-

ceedings of the 18th International Symposium on Temporal Representation and Reasoning

(TIME 2011), pages 107–114. IEEE Computer Society, 2011.

Bibliography 177

[56] Zhenhua Duan, Xiaoxiao Yang, and Maciej Koutny. Framed Temporal Logic Program-

ming. Science Computer Program., 70(1):31–61, 2008.

[57] A. Cau, C. Czarnecki, and H. Zedan. Designing a Provably Correct Robot Control System

using a ‘Lean’ Formal Method. In Anders P. Ravn and Hans Rischel, editors, Proceedings

of the 5th International Symposium on Formal Techniques in Real-Time and Fault Tolerant

Systems (FTRTFT’98), pages 123–132. Springer Verlag, 1998.

[58] A. Cau, N. Coleman H. Zedan, and B. Moszkowski. Using ITL and TEMPURA for Large

Scale Specification and Simulation . In The 4th Euro micro Workshop on Parallel and

Distributed Processing, pages 493–500. IEEE Computer Society Press, 1996.

[59] H. Janicke, A. Cau, F. Siewe, and H. Zedan. Deriving Enforcement Mechanisms from

Policies. In Proceedings of the 8th IEEE International Workshop on Policies for Dis-

tributed Systems and Networks, POLICY ’07, pages 161–172. IEEE Computer Society,

2007.

[60] H. Zedan, A. Cau, and B. Moszkowski. Compositional modelling: The formal perspective.

In David Bustard, editor, Proceedings of Workshop on Systems Modelling for Business

Process Improvement, pages 333–354. Artech House, 2000.

[61] H. Zedan and A. Cau. Voice Over IP: Correct Hardware/Software Co-design. In 8th IEEE

Workshop on Future Trends of Distributed Computer Systems (FTDCS 2001), 31 October,

2 November 2001, Bologna, Italy, Proceedings, pages 194–200. IEEE Computer Society,

2001.

Bibliography 178

[62] F. Siewe. A Compositional Framework for the Development of Secure Access Control

Systems. PhD thesis, Software Technology Research Laboratory, De Montfort University,

Leicester, 2005.

[63] M. Abadi and L. Lamport. The Existence of Refinement Mappings. Theoretical Computer

Science, 82(2):253–284, 1991.

[64] M. Emmi, R. Majumdar, and R. Manevich. Parameterized Verification of Transactional

Memories. In Proceedings of the 2010 ACM SIGPLAN conference on Programming

language design and implementation (PLDI 2010). ACM, 2010.

[65] H. Papadimitriou. The Serializability of Concurrent Database Updates. J. ACM,

26(4):631–653, 1979.

[66] W.P. de Roever, F. Boer, U. Hannemann, J. Hooman, and J. Zwiers. Concurrency Verifi-

cation: Introduction to Compositional and Noncompositional Methods. Cambridge Uni-

versity Press, 2001.

[67] G. Schellhorn and S. Baumler. Formal Verification of Lock-Free Algorithms. In Proceed-

ings of the 9th International Conference on Application of Concurrency to System Design

(ACSD 2009), pages 13–18. IEEE Computer Society, 2009.

[68] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The Directory-

Based Cache Coherence Protocol for the DASH Multiprocessor. In Proceedings of the

17th annual international symposium on Computer Architecture, ISCA ’90, pages 148–

159. ACM, 1990.

Bibliography 179

[69] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Morgan

Kaufmann, San Francisco, 3rd edition, 2003.

[70] B.Welch. Practical Programming in Tcl and Tk. Prentice Hall, New Jersey, 2nd edition,

1997.

[71] D. Libes. Exploring Expect. O’Reilly and Associates, 1995.

[72] H. Gao, Y. Fu, and W. Hesselink. Verification of a Lock-Free Implementation of Mul-

tiword LL/SC Object. In Proceedings of the 8th IEEE International Conference on De-

pendable, Autonomic and Secure Computing, DASC ’09, pages 31–36. IEEE Computer

Society, 2009.

[73] D. Patterson and J. Hennessy. Computer Organization and Design - the Hardware /Soft-

ware Interface. Morgan Kaufmann, 3rd edition, 2007.

[74] P. Ashenden. The VHDL Cookbook. Department of Computer Science University of

Adelaide, South Australia, 1990.

[75] D. L. Perry. VHDL: Programming by Example. McGraw-Hill, 2002.

Appendix A. Executable Specification of

Abstract TM

In order to validate the correctness of the proposed abstract TM tmspec and make such exami-

nations for TM safety properties, we build an executable specification for tmspec.

The main components of the tmspec are represented in Tempura as follows: Processes’ sta-

tus P is represented as an array with state values {free, busy}. Also, transactions’ status

T is represented as an array with states values {idle, active, doomed, finished}. In addi-

tion, events E is represented as an array of lists recording each event with possible values

{noev, r, w, ok, tryCom, tryAbort,⊕,⊗}.

As shown in Fig. 1, the transaction operations described in Tables 4.2 (page 51) and 4.3 (page

54) are represented as four main functions: Firstly, the TranInvOp(p, t , op, ε, εr) to deal with

the invocation operations (op) read and write . The ε and εr in any functions to specify the type

of conflict detection and resolution respectively. Secondly, the TranResOp(p, t) to response

the last operation by transaction t and process p. Thirdly, TranInvEnd(p, t , op, ε, εr) to deal

180

Appendix A. Executable Specification of Abstract TM 181

with the invocation operations tryCom and tryAbort. Finally, the TranResEnd(p, t) to commit

or abort transaction t and release process p.

Some auxiliary functions are used in the executable model of the tmspec such as the AddEv()

that is used to record each operation op and its response in their process p event list Et
p. This

helps to check read consistency and detect conflicts between the concurrent active lists at run

time. Also, it stores the object and its value if op is write, read or response for read. The function

FlushEvList() clears the event list of the process p after finishing the execution of transaction t

belonging to p and before initialising a new transaction.

As shown in Fig. 1, there are others functions to represent the main formulae of tmspec such

as the conflict detection and resolution formula ConflictDetRes(), that uses one of conflict

detection types which are explained in detail in the previous section, and the response actions

of read operation ValidRead().

Appendix A. Executable Specification of Abstract TM 182

State variables:
Pp : Process status ∈ {free, busy} ; where (0 ≤ p < |Processes|); initially free
T tp: Transaction status ∈ {idle, active, doomed, finished}; where (0 ≤ t < |Tr|); initially idle
Et
p : An array of lists recording each event ∈ {noev, r, w, ok, tryCom, tryAbort,⊕,⊗}; initially noev

Mem[obj] : Persistent memory (0 ≤ obj < |Locations|); initially ⊥

Transaction operations:

TranInvOp(p, t, op, ε, εr) =̂
{skip∧ TranResOp(p, t) =̂
if (Pp = free) ∧ (T tp = idle) {skip∧

then {MakeProBusy(p) if Et
p = w

∧AddEv(p, t, op) then AddEv(p, t, ok)
∧ ConflictDetRes(p, t , ε, εr)} else if Et

p = r

else (stable(Pp) ∧AddEv(p, t, op) then {u := ValidRead(p, t)
∧ if T tp = active ∧AddEv(p, t, u)}

then {AddEv(p, t, op) else stable(Et
p)}

∧ ConflictDetRes(p, t, ε, εr)}
else stable(Et

p) ∧ stable(T tp))}

TranInvEnd(p, t, op, ε, εr) =̂ TranResEnd(p, t) =̂
{skip ∧AddEv(p, t, op)∧ {skip∧
if (op = tryCom ∧ T tp = active) if (T tp = doomed) ∨ Et

p = tryAbort

then ConflictDetRes(p, t, ε, εr) then AbortTran(p, t)
else T tp := doomed} else CommitTran(p, t)}

CommitTran(p, t) =̂ AbortTran(p, t) =̂
{T tp := finished {T tp := finished

∧AddEv(p, t,⊕) ∧MakeProFree(p)
∧MakeProFree(p) ∧AddEv(p, t,⊗)}
∧ UpdateMemory()}

MakeProBusy(p) =̂ MakeProFree(p) =̂
{Pp := busy} {Pp := free ∧ FlushEvList(p))}

FIGURE 1: Core part of TM executable specification

Appendix A. Executable Specification of Abstract TM 183

Testing with Animation

We use the executable specification tmspec, which is refined into AnaTempura, to execute some

examples. In addition, some animation for our model is provided to make it more understand-

able and enable the reader to gain better insight into the TM system.

As shown in Figs. 2- 7, the user interface for the graphical output is divided into five parts:

Firstly, the timer grade which represents the number of state. Secondly, three processes where

each contains the number of the process and is covered by a unique colour. Thirdly, the global

memory block, that is represented for the permanent write. Finally, a transaction number and its

sequence of operations and responses are shown in the space between the process number and

the memory. Although there are differences between database and memory transactions such

as the computation time in memory which is negligible relative to access time in the database,

for the sake of simplicity we use the bank account and airline reservation examples that are

described in Chapter 2 to illustrate the validation of our model.

Appendix A. Executable Specification of Abstract TM 184

Example 1: Bank Account

Bank accounts are accessed simultaneously by more than one operation. The conflicts between

two operations should be detected and resolved:

FIGURE 2: Part 1 of example 1
P0 invokes T0 to deposit 1000. After P0 commits T 0

0 , the 1000 is resident in the memory
location [2]. Then P1 invokes T 0

1 to transfer the 1000 from location [2] to location [3]. In the
same period, P2 invokes a transaction to withdraw 100 from location [2].

Appendix A. Executable Specification of Abstract TM 185

FIGURE 3: Part 2 of example 1
When T 0

2 invokes TryCommit, the tmspec responds with commit and changes the value of lo-
cation [2] in the memory to 900 . Also, the tmspec detects a conflict between write operation
in T 0

2 and read in T 0
1 . Since the resolution policy of this model is Lazily, which says whoever

tries to commit first wins, it responds to T 0
2 with commit and to T 0

1 with abort. The effect of
T 0
1 ’s transferring steps is deleted, as if it never happened at all, and location [2] still equals 900.

The global read consistency is satisfied here, since the successful T 0
2 returns the most recent

W 0
0 (2, 1000) in a committed transaction.

Appendix A. Executable Specification of Abstract TM 186

Example 2: Airline Reservation

Multiple transactions can read a specific location at the same time but only one can modify it.

Here, more than one conflict should be detected and resolved.

FIGURE 4: Part 1 of example 2
P0 invokes T0 to make a reservation for two seats (locations [1] and [2]) by writing 10 to these
locations. Then T 0

1 and T 0
2 are invoked at the same time from different terminals to reserve seat

[2] by writing 11 and 12, respectively.

Appendix A. Executable Specification of Abstract TM 187

FIGURE 5: Part 2 of example 2
Only T 0

1 is committed and the others are aborted. The explanation is as follows: When T 0
1 and

T 0
2 issue a tryCommit operation at the same state, the tmspec detects a conflict in write operation

between them. Here, a special case appears which is detected as a conflict at the same time
between T 0

1 and T 0
2 which are invoked at the same state as well. We cover this case by adding a

priority policy P0, P1, P2 to the resolution function. So, this policy commits T 0
1 and aborts T 0

2 ,
while lazily aggressive policy aborts T 0

0 because of the conflict with the committed transaction
T 0
1 . So, we can observe that seat [2] equals 11 which means that it is reserved by T 0

1

Appendix A. Executable Specification of Abstract TM 188

Example 3: Doomed Consistency Validation

To illustrate doomed consistency and how the tmspec reacts when the doomed transaction tries

to access an inconsistent value, we show the execution of three concurrent transactions. Trans-

actions T 0
0 and T 0

2 try to read the value of object B that is modified by the third transaction T 0
1 .

However, T 0
0 has early read for object A which is modified later by T 0

1 .

FIGURE 6: Part 1 of example 3
T 0
0 starts by reading the value of object A (location [2]). Then, it is suspended for a period

until T 0
1 changes the values of object A (location [2]) and object B (location [3]) to 5. When

T 0
1 commit, T 0

0 resumes its operations by reading object B. Also, T 0
2 is invoked to read object B

which is responded to with 5 (global consistency).

Appendix A. Executable Specification of Abstract TM 189

FIGURE 7: Part 2 of example 3
When T 0

0 attempts to read the value of object B (location [3]), it gets abort. However, when
T 0
2 attempts to read B, it is responded with 5 and then commit. The reason for aborting T 0

0 is
the inconsistent state that is captured by InconsRead() function, which validates the doomed
consistency of every reading response. The inconsistent read case appears when T 0

0 attempts
to get a response for reading object B, InconsRead() finds that T 0

0 issues a reading operation
before this for object A and its value is changed later by T 0

1 .

Appendix B. Executable Specification of

CDP

Figs. 8 and 9 show the executable specification of the microprocessor’s execution unit .

FIGURE 8: Specification of Execution Unit (part1).

190

Appendix B. Executable Specification of CDP 191

FIGURE 9: Specification of Execution Unit (part2).

Fig. 10 shows the executable specification of the transactional full associative cache .

FIGURE 10: Transactional Cache.

Appendix B. Executable Specification of CDP 192

Figs. 11 and 12 show the executable specification of the replacement technique Allocate2Loc()

and AllocateXcommit(). The function Allocate2Loc() searches for two locations in Cachep

when this cache needs space for a new entry.

FIGURE 11: Allocate two locations in the transactional cache.

Appendix B. Executable Specification of CDP 193

FIGURE 12: Allocate the second location for xcommit entry in the transactional cache.

Appendix B. Executable Specification of CDP 194

Fig. 13 , shows the executable specification of the queue operations part in the centerlised bus

arbitration.

FIGURE 13: Queue operations.

Appendix C. VHDL Code of CDP

Figs. 14 and 15 show the equivalent VHDL code of the executable specification of the micro-

processor’s execution unit .

FIGURE 14: The VHDL equivalent of the Execution Unit formula (part 1).

195

Appendix C. VHDL Code of CDP 196

FIGURE 15: The VHDL equivalent of the Execution Unit formula (part 2).

Figs. 16 and 17, show the equivalent VHDL code of the executable specification of the transac-

tional full associative cache .

FIGURE 16: Transactional Cache (part 1).

Appendix C. VHDL Code of CDP 197

FIGURE 17: Transactional Cache (part2).

	Declaration of Authorship
	Abstract
	Acknowledgements
	Publications
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Research Objectives
	1.3 Research Methodology
	1.4 Success Criteria
	1.5 Thesis Outline

	2 Background
	2.1 Multiprocessor
	2.1.1 Computer Architecture Taxonomy
	2.1.2 Single-Chip Multiprocessor

	2.2 Memory Synchronisation
	2.2.1 Lock-Based Techniques
	2.2.2 Lock-Free Techniques

	2.3 Transactional Memory
	2.3.1 Transaction notion
	2.3.2 Hardware, Software and Hybrid TM Implementations

	2.4 Formalisation of Transactional Memory
	2.4.1 Motivation
	2.4.2 Related Work

	2.5 Summary

	3 Preliminaries and Formal Logical Framework
	3.1 Introduction
	3.2 Framework Design
	3.3 Interval Temporal Logic
	3.3.1 Syntax of ITL
	3.3.2 Semantics of ITL
	3.3.3 Derived Construct
	3.3.4 Applications
	3.3.5 Justification of ITL for TM

	3.4 Tempura and Refinement
	3.4.1 Tempura and AnaTempura
	3.4.2 Refinement of ITL into Tempura
	3.4.3 Refinement Mapping Technique

	3.5 Summary

	4 Abstract Model of Transactional Memory
	4.1 Introduction
	4.2 Computational Model for TM
	4.3 Formalisation of TM Safety Properties
	4.3.1 Read Consistency
	4.3.2 Conflict Free
	4.3.3 Strict Serialisability

	4.4 Verification of Abstract TM Model
	4.5 Summary

	5 Validation and Refinement of a TM System
	5.1 Introduction
	5.2 Example of TM System
	5.2.1 Cache and Coherency Specification
	5.2.2 Specification of the TM System

	5.3 Execution and Validation
	5.3.1 Executable Specification of the TM System
	5.3.2 Queue Example
	5.3.3 Queue with TM Execution and Animation

	5.4 Verification Using Refinement Mapping
	5.5 Summary

	6 Specification of Chip Dual Processor
	6.1 Introduction
	6.2 CDP Architecture Overview
	6.3 Microprocessor
	6.4 Cache Structure and Specification
	6.5 Snoopy Bus Structure and Specification
	6.6 Discussion
	6.7 Refinement and Validation
	6.7.1 VHDL Structure and Modeling
	6.7.2 Restrictions and Refinement Rules
	6.7.3 Transformation and Validation

	6.8 Summary

	7 Conclusion and Future Work
	7.1 Summary of Thesis
	7.2 Contributions
	7.3 Success Criteria Revisited
	7.4 Limitations
	7.5 Future Work

	Bibliography
	Appendix A. Executable Specification of Abstract TM
	Appendix B. Executable Specification of CDP
	Appendix C. VHDL Code of CDP

