
Correct synthesis and integration of
compiler-generated function units

Thesis by
Martin Ellis

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

University of Newcastle upon Tyne
Newcastle upon Tyne, UK

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Newcastle University eTheses

https://core.ac.uk/display/153776413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Computer architectures can use custom logic in addition to general pur-
pose processors to improve performance for a variety of applications. The
use of custom logic allows greater parallelism for some algorithms. While
conventional CPUs typically operate on words, fine-grained custom logic
can improve efficiency for many bit level operations. The commodifica-
tion of field programmable devices, particularly FPGAs, has improved
the viability of using custom logic in an architecture.

This thesis introduces an approach to reasoning about the correctness of
compilers that generate custom logic that can be synthesized to provide
hardware acceleration for a given application. Compiler intermediate
representations (IRs) and transformations that are relevant to genera-
tion of custom logic are presented. Architectures may vary in the way
that custom logic is incorporated, and suitable abstractions are used in
order that the results apply to compilation for a variety of the design
parameters that are introduced by the use of custom logic.

Contents

1 Introduction 1

1.1 Hardware Acceleration for High-Level Languages 2

1.1.1 Function Units . 3

1.1.2 Reconfigurable Function Units 4

1.1.3 Hardware/Software compilers for Function Units 5

1.2 Correctness of Hardware/Software Compilers 5

1.2.1 Correctness for Hardware Acceleration 6

1.2.2 Correctness for Conventional Compilers 8

1.2.3 Inadequacy of Current Techniques 9

1.2.4 Specific Problems in Hardware/Software Compilation . 11

1.3 Thesis Outline . 13

1.3.1 Scope . 13

1.3.2 Hardware/Software Interface 14

1.3.3 Methodology and Thesis Structure 17

2 Background 19

2.1 FPGA Structure and Design Flow 20

2.1.1 FPGA structure . 20

2.1.2 FPGA Design Flow . 22

2.2 Compiler Intermediate Representations 23

2.3 Hardware Acceleration using FPGAs 25

2.3.1 Types of RFU . 25

2.4 Logics, Meta-logics, and Logical Frameworks 27

2.4.1 Formal Systems . 27

2.4.2 Formal Semantics . 31

3 Machine Support for Reasoning 33

3.1 The Isabelle System . 34

i

ii Contents

3.1.1 Isabelle/Pure . 34

3.1.2 Isabelle/HOL . 37

3.2 Representation of key concepts 42

3.2.1 Memory representation 42

3.2.2 Number representation 45

3.3 Representation and Reasoning about Hardware 48

3.3.1 Hardware Representations 49

3.3.2 Modelling Hardware in HOL 52

4 Intermediate Representation 57

4.1 Requirements for a Hardware/Software IR 58

4.1.1 Representation of Fine-Grained Parallelism 58

4.1.2 Flexibility for Hardware/Software Compilation 59

4.2 Analysis of Existing Representations 59

4.2.1 Static Single Assignment Form 60

4.2.2 SSA in Isabelle/HOL . 63

4.2.3 Pegasus . 67

4.3 Formal Definition of a Hardware/Software IR 72

4.3.1 Abstract Syntax . 72

4.3.2 Semantics . 79

5 A Netlist-Level HDL 87

5.1 Need for a Netlist Language 88

5.2 Requirements from a Netlist language 89

5.3 Abstract Syntax . 89

5.3.1 An abstract syntax for hardware 89

5.3.2 An example design of a Full Adder 91

5.4 Netlist Semantics . 92

5.4.1 Primitives . 92

5.4.2 Abstraction and Instantiation Semantics 92

5.4.3 Composition Semantics 93

5.4.4 Component Semantics 94

5.5 Semantics of a Full Adder design 95

5.5.1 Half Adder Semantics 96

5.5.2 Full Adder Semantics 97

5.6 Correctness of a Full Adder design 99

5.6.1 Half Adder correctness 99

Contents iii

5.6.2 Full Adder correctness 100

6 Sequential and Iterated Logic 103

6.1 Approaches to Modelling Sequential Logic 104

6.1.1 Summary of Approaches to Modelling Time 104

6.1.2 Constructive Approaches 105

6.1.3 Declarative Approaches 108

6.1.4 Selection of an Approach to Modelling Time 111

6.2 Temporal Modelling of Sequential Logic 112

6.2.1 Adding Synchronous Logic to the Netlist Language . . . 113

6.2.2 An Abstract Register 116

6.3 Iterated Logic . 120

6.3.1 Adding Bit Vectors to the Netlist Language 121

6.3.2 Bit Vector Semantics . 124

6.3.3 Adding a Row Construct to the Netlist Language 126

6.3.4 Semantics of the Row Construct 129

7 Compilation Correctness 135

7.1 Data Flow Between Hyperblocks 135

7.1.1 Assumptions . 136

7.1.2 Two Phase Bundled Data Convention 137

7.1.3 Hyperblock Synchronisation 138

7.2 Example Hyperblock . 139

7.2.1 Overview . 139

7.2.2 Intermediate Representation of the Hyperblock 139

7.2.3 Netlist Implementation 141

7.3 Correctness Criteria . 144

7.3.1 Auxiliary Functions . 145

7.3.2 Correctness Conditions 147

8 Discussion and Conclusions 151

8.1 Formulation of the IR . 151

8.1.1 Comparison of SSA Representations 152

8.2 Co-design of an IR and Netlist Language 153

8.2.1 Developing a Netlist Language 153

8.3 Formulation of the Netlist Language 155

8.3.1 Representation of Signal Bindings 155

8.3.2 Theorem Proving Techniques 156

iv Contents

8.3.3 Temporal Abstraction in Higher Order Logic 156

8.3.4 Well-Formed Circuits 157

Bibliography 161

Chapter 1

Introduction

Contents
1.1 Hardware Acceleration for High-Level Languages 2

1.1.1 Function Units . 3

1.1.2 Reconfigurable Function Units 4

1.1.3 Hardware/Software compilers for Function Units . . 5

1.2 Correctness of Hardware/Software Compilers 5

1.2.1 Correctness for Hardware Acceleration 6

1.2.2 Correctness for Conventional Compilers 8

1.2.3 Inadequacy of Current Techniques 9

1.2.4 Specific Problems in Hardware/Software Compilation 11

1.3 Thesis Outline . 13

1.3.1 Scope . 13

1.3.2 Hardware/Software Interface 14

1.3.3 Methodology and Thesis Structure 17

High-level programming languages allow concepts in a given application domain
to be represented and manipulated without reference to a particular computer
architecture [Hor75]. Programs written in such languages are translated into
an executable format by a compiler tool chain, usually including a compiler,
an assembler and a linker [Sch03]. The compiler typically performs (so called)
optimisations on the program to improve the performance of the executable on
the targeted computer architecture (henceforth, architecture) [ASU86].

If the resulting executable is considered too slow, there are several alternatives
for improving its performance. The original program could be modified to
implement a more efficient algorithm. Parts of the high-level program can be
re-written in a lower level language to exploit the underlying architecture in
a way that the compiler did not. A third alternative is that the underlying
architecture be modified to improve the performance of that application.

Broadly speaking, this thesis is about the extension of existing architectures
with custom hardware logic to improve application performance. However, a
more precise statement will require further introduction.

Extending an architecture can be accomplished by adding a function unit with
hardware logic dedicated to a particular task. The term hardware acceleration

1

2 Introduction

refers to the technique of improving performance by making a program use a
function unit for some processing which would otherwise be done using a gen-
eral purpose CPU [How06]. Performance improvements can arise from greater
computational efficiency of dedicated logic [AS93], and from using a function
unit to execute many parts of a computation in parallel [LEM04].

A variety of architectures that allow custom function units to provide hardware
acceleration have been developed, some examples of which are described in
Section 2.3.1, Types of RFU.

While it is certainly possible to design function units for an architecture using
a hardware description language — such as VHDL [IEE02] or Verilog [IEE01]
— there have been a number of efforts to use compilers to synthesise hardware
logic from sequential implementations of algorithms written in languages based
on traditional high level programming languages. This technique is sometimes
referred to as hardware/software compilation.

Several examples of hardware/software compilers, including both those de-
scribed in literature from research projects and those that are commercial
products, are described in Chapter 2. Such products and literature claim vary-
ing improvements in performance and automation for a variety of applications.
However, such quantitative issues are not the focus of this thesis.

Instead, this thesis addresses issues of a qualitative nature: here, the focus is
on establishing the correctness criteria for the hardware/software compilation.
More specifically, the aim is to ensure that a program that has been modified
to use a custom function unit has similar behaviour to that of the unmodi-
fied program. Of course, to do this, it is necessary to consider the behaviour
of the function unit as well as that of the program itself. By drawing from
methodologies and techniques in both compiler verification and hardware ver-
ification, this thesis presents the development of a formal framework within
which propositions about the behavioural similarities of such systems can be
constructed and verified.

This chapter is organised as follows: Section 1.1, Hardware Acceleration for
High-Level Languages, provides an introduction to the use of function units for
hardware acceleration. It also motivates the use of hardware/software com-
pilers for compiling certain parts of a program into a function unit design
that can be used to provide hardware acceleration. Section 1.2, Correctness
of Hardware/Software Compilers, uses existing compiler correctness concepts
to introduce an intuitive notion of correctness for hardware/software compil-
ers; describes some of the problems in their specification and verification, and
illustrates why existing compiler verification techniques need to be extended
for hardware/software compilers. Thus, it forms the motivation for this the-
sis. Section 1.3, Thesis Outline, outlines the approach used in this thesis:
that is, how it adapts existing compiler verification techniques to suit hard-
ware/software compilers.

1.1 Hardware Acceleration for High-Level Languages

This thesis addresses various problems of how to ensure the correctness of
hardware/software compilers: that is, how to ensure a hardware logic design

1.1. Hardware Acceleration for High-Level Languages 3

and software generated by a compiler from an algorithm in a high level language
implement that algorithm faithfully. The motivation for this work — explained
in Section 1.2, Correctness of Hardware/Software Compilers — is predicated
on there being sufficient reason to use hardware/software compilers in the first
place.

This section motivates and introduces concepts of using such compilers to gen-
erate hardware acceleration from high level languages. It is structured as fol-
lows: Section 1.1.1 introduces the use of function units to provide hardware
acceleration. Section 1.1.2 describes the use of reconfigurable logic to provide
hardware acceleration. Hardware/software compilers typically target recon-
figurable logic, and are introduced in Section 1.1.3. It motivates the use of
hardware/software compilers by describes some of the benefits of their use as
an approach to producing function unit designs.

1.1.1 Function Units

The term function unit is used somewhat loosely in this thesis. However, this
section serves to provide at least an intuitive understanding of the terminology
associated with function units as used in this thesis.

Here, the term function unit refers to a unit of dedicated logic that is used for
computations, but that is not part of the general purpose processor (GPP) in
a given instruction set architecture (ISA).

There are many existing examples of architectures that use a dedicated function
unit to improve the performance of particular types of computations, and it
should be clear that this idea is not new. Examples of types of applications
that have been accelerated by the use of function units include:

• floating point arithmetic: many architectures improve the perfor-
mance of such arithmetic using floating point units (FPUs);

• multimedia applications: examples include the MMX extensions — and
subsequent SSE, SSE2 and SSE3 extensions — developed by Intel for
the IA-32 architecture (see [Int05], Chapters 9 to 12 respectively); the
3DNow! [AMD00a], 3DNow! Enhanced [AMD00b] and 3DNow! Profes-
sional [AMD02] extensions developed by AMD;

• cryptographic applications: such as the SafeNet EIP-25 cryptographic
co-processor for the ARM architecture that provides accelerated perfor-
mance for various algorithms associated with public key cryptography
[ARM04];

• digital signal processing (DSP): for example, portable music players
may include a DSP co-processor in addition to a GPP to implement part
of an audio codec.

In some cases, function units have been integrated into the architecture by
putting it in the same physical chip as the processor [WH95]. In other cases, the
function unit has been connected by means of one of the system buses [WAL+93].
The definition used here includes both such uses, although it is noted that such
a definition may make the decision as to whether a given part of an ISA con-
stitutes a function unit or part of the GPP rather subjective.

4 Introduction

All of the examples given above have been implemented in ASICs — Appli-
cation Specific Integrated Circuits. ASICs are designed to perform a specific
type of computation, and can perform that computation very fast and efficiently
[CH00]. As such, ASICs have a fixed purpose, which cannot be altered after
fabrication. Their manufacture is associated with high non-recurring engineer-
ing (NRE) costs and a long manufacturing cycle. Furthermore, any changes to
the design requires refabrication of the ASIC.

Board-level circuits — circuits constructed from smaller components, usually
connected via ‘tracks’ on a circuit board — are also hard to modify, some-
times requiring a redesign of the board layout or even a replacement of the
board [CH00].

1.1.2 Reconfigurable Function Units

An alternative to using ASIC techniques for function units is to use a field pro-
grammable logic device, such as one or more Field Programmable Gate Arrays
(FPGAs) [BR96]. An FPGA consists of an array of uncommitted logic blocks,
connected by reconfigurable interconnect resources. Logic blocks — also known
as Configurable Logic Blocks (CLBs) [Xil05a] or Logic Elements (LEs) [Alt05] 1

— contain resources that can be configured to implement combinational and
sequential logic. Thus, a hardware designer may describe a circuit in a Hard-
ware Description Language (HDL) and synthesise the design into a format that
can be mapped onto the logic blocks and routing resources provided by a given
FPGA. The FPGA design flow process is described further in Section 2.1.2,
FPGA Design Flow.

FPGAs tend to fall into one of two categories: those based on anti-fuse tech-
nology, and those that are SRAM-based [BR96]. Anti-fuse FPGAs may be
configured only once. That is, although they may be programmed ‘in-the-
field’, they are not reconfigurable. SRAM-based FPGAs can be configured and
reconfigured many times: the behaviour of its reconfigurable logic blocks and
the interconnections between them can be repeatedly changed.

SRAM-based FPGAs have the advantage that they can be reconfigured in-
circuit. Since they are SRAM-based, their behaviour can be changed by down-
loading a new configuration, just as the behaviour of a general purpose com-
puter can be changed by loading a new program [Hau98]. Unlike anti-fuse FP-
GAs, most SRAM-based FPGAs lose their configuration when powered down,
requiring reconfiguration when next powered up (although there are excep-
tions to this that use Flash or other non-volatile memory to store the FPGA
configuration [Lat05]).

The concept of using FPGAs to implement ‘customisable compute engines’ was
introduced in the late 1980s [GSAK00] and within approximately 10 years,
it had been demonstrated that they could provide speed improvements by
factors of between 10 and 100 over conventional high performance worksta-
tions [FGL01].

1The terminology varies according to both the details of the implementation and the
respective manufacturer.

1.2. Correctness of Hardware/Software Compilers 5

1.1.3 Hardware/Software compilers for Function Units

While traditionally FPGA configurations are synthesised from a design ex-
pressed in a hardware description language (HDL), it is also possible, and
sometimes advantageous, to perform synthesis from an algorithm expressed in
an high-level programming language (HLL), such as C. Thus the larger part
of a program may be compiled to executable object code for a general purpose
processor, while certain program hot-spots that need to run efficiently may be
synthesised for the FPGA, such that the FPGA is used to provide hardware ac-
celeration for those hot-spots. Examples of synthesis from high-level languages
are given in Section 2.3.

While the purpose of using a function unit is to improve performance for a given
(type of) application, it may not be obvious which parts of the application
should be accelerated in order to achieve optimal (or even satisfactory) results.
A developer may want to experiment with the choice of whether particular
functions should be implemented in hardware or in software, and it is desirable
to be able to do such experimentation with minimal changes to the program
design.

Using a traditional HDL to design the function unit, and a software program-
ming language to implement the rest of the program would require the devel-
oper to write two implementations of a function — one in the HDL and one
in the HLL — in order to evaluate whether the function should be hardware
accelerated.

By using a language that can be both synthesised to an FPGA and compiled
efficiently, the required source code changes can be minimised. Thus synthesis
from a HLL can reduce development effort. One study showed that synthesis
from a C-based language yielded productivity improvements of a factor of 10
over hand-written HDL [FGL01].

1.2 Correctness of Hardware/Software Compilers

It has been claimed that — despite the potential benefits outlined in the previ-
ous section — the adoption of hardware/software compilers in the “real world”
is predicated on their ability to produce hardware with comparable perfor-
mance to hand-coded designs [FGL01]. That is, that they produce hardware
designs for function units that make efficient use of available (reconfigurable)
hardware resources.

A stronger assumption is behind the motivation for this thesis: that the adop-
tion of hardware/software compilers is predicated not only on their ability to
produce both efficient hardware designs and object code; but also their ability
to produce correct output, and hence that engineers have confidence in their
tools.

The purpose of this section is to introduce compiler correctness in the context of
hardware/software compilers; and to motivate the development of the formal
framework for specifying and reasoning about their correctness presented in
this thesis.

Section 1.2.1, Correctness for Hardware Acceleration, compares the two as-

6 Introduction

sumptions given above and provides an argument for the latter, stronger as-
sumption pertaining to correctness. Section 1.2.2, Correctness for Conventional
Compilers introduces concepts of formal methods for compiler development,
based on the Vienna Development Method (VDM), a systematic approach to
software development originally developed for the purpose of compiler speci-
fication and verified design [BJ78]. Some fundamental difficulties in applying
such techniques directly to the development of hardware/software compilers
are highlighted in Section 1.2.3, Inadequacy of Current Techniques. It is these
difficulties that are addressed in this thesis. Section 1.2.4, Specific Problems in
Hardware/Software Compilation describes further problems in applying formal
methods to hardware/software compilers. This thesis does not address these
issues directly, but resolving the issues addressed by this thesis is likely to be
a prerequisite to solving those problems.

1.2.1 Correctness for Hardware Acceleration

Scope

The differences between the assumptions introduced at the start of this section
are two-fold. The first difference is that the latter assumption — that made in
this thesis — assumes that it is the properties of the entire system that should
be evaluated, and not just that of a function unit. It would be pointless to
use a function unit for a particular computation if the cost of initialising the
function unit, and then retrieving a result from it, was not amortised by the
improved performance of the function unit for that particular computation. To
illustrate: it may take several CPU cycles to swap the endianness of a value,
but only one cycle to achieve the same result in a reconfigurable function unit.
If the CPU is being clocked several times faster than the reconfigurable logic
(which is not implausible) then the resulting system may still be faster if the
operation is performed in software, even though a dedicated function unit may
implement that particular operation more efficiently.

The distinction between performance of the function unit itself, and that of the
resulting system (which includes software and hardware) is obvious enough that
drawing attention to it here seems pedantic. However, the distinction helps to
clarify the second difference between the assumptions: that hardware/software
compilers must be able to produce correct output.

The correctness of a hardware/software compiler is that the resulting program
and function unit behave in a similar manner as the original program would
have, had it been compiled entirely as software, with no hardware synthesis.
This definition is not perfect, because if a program measures the time it takes
to complete an operation then its behaviour may vary when the program is
hardware accelerated. It also leaves open the interpretation of ‘behaviour’
in this context: obviously it should not refer to temporal properties of the
program, because that is exactly what the use of hardware acceleration is
supposed to modify!

In summary, just as it is more useful to consider the performance of the resulting
system, than just that of the function unit, it is also more useful to consider
the correctness of the resulting system, rather that just the correctness of the

1.2. Correctness of Hardware/Software Compilers 7

function unit design itself. This gives confidence that a program will exhibit
similar behaviour regardless of whether any given part of the program is realised
in hardware or software.

Requirement for correctness

The assumption that the wider adoption of hardware/software compilers is
predicated, in part, on their correctness can be justified by consideration of the
implications of bugs within such a compiler.

Debugging optimised code can be difficult, even when a compiler is not ex-
hibiting any bugs [Cop94]. When a compiler generates incorrect code, it may
be necessary to trace the program to find that point that an error occurs —
which may occur long before the bug manifests, and in logically unrelated code
— and examining the output of the compiler, possibly stepping through the
program machine instruction by machine instruction [Eis97]. Assuming the
source of the bug can be found and traced to the compiler, it remains to either
fix the compiler; get a new compiler; or work around the compiler bug [Cop94].

Debugging FPGA designs becomes more difficult with the increasing logic ca-
pacities of FPGAs. This is due to “limited observability”: meaning that it is
harder to see how a design behaves in the FPGA. Traditional hardware de-
bugging techniques — involving logic analysers or oscilloscopes — can only be
used to the extent that an FPGA package provides enough spare pins that may
be connected to, and used to monitor, internal signals [GNH01].

The difficulties in managing compiler bugs and design errors in FPGAs are com-
bined for hardware/software compilers that exhibit bugs. If a hardware/software
compiler produces incorrect output then the task of finding, and working
around, the error will be particularly difficult. This is because the developer
may have to examine both the executable object code and the hardware design
that the compiler outputs.

Complexity also arises due to the need to examine not just the individual
outputs, but also the way in which the software interacts with the function
unit. Compiler bugs would require strong hardware and software debugging
skills to track down.

While it may be important to be able to mark regions of code as good can-
didates for hardware acceleration, it is possible that a developer may not
have specified the hardware/software interface precisely when using a hard-
ware/software compiler. In some cases, it would be more appropriate for the
compiler to do fine-grained partitioning, perhaps by synthesising only part of
an expression into hardware. It can be also be argued that they should not have
to specify the interface, because this would represent unnecessary commitment
to a particular amount of reconfigurable logic, thus reducing the portability of
the code.

If the selection of code to synthesise to hardware is semi-automated, the pro-
grammer may not even know whether the code that they are attempting to
modify was implemented in software or in a function unit. However, this ap-
proach means that the developer will not be familiar with the hardware software
interface: their intuitive understanding of it will be weaker, because they did

8 Introduction

not design it directly. Thus, debugging a hardware/software system developed
this way is likely to be difficult.

Although bugs may exist in the code, it is important that the use of a hard-
ware/software compiler does not introduce more bugs. That is, bugs in the
program should be reproducible using a conventional compiler, in order that
traditional debugging techniques can be used. To rephrase more positively, it
is important that a hardware/software compiler preserve the semantics of the
original source program correctly.

If a hardware/software repeatedly generates incorrect results, the cost and
complexity of debugging errors may make the traditional approach of separate
hardware and software design more cost effective.

1.2.2 Correctness for Conventional Compilers

A formal (mathematical) definition of a programming language makes it pos-
sible to formulate a precise statement of the correctness criteria of a compiler
for that language [Jon76]. Hence compiler development should begin with a
precise description of the source and target languages of that compiler followed
by the formal development of a compiling algorithm [Bjø82].

A formal definition of a programming language can be expressed in terms of
the following ‘views’ of the language [Jon90a]:

• Concrete syntax, which may be written in BNF, together with some
indication of operator (or more generally, token) precedence;

• Abstract syntax, which defines a representation for programs which is
an abstraction of the concrete syntax;

• Context conditions, which characterise a subset of all well-formed pro-
grams, such as programs which are both well-formed and well-typed;

• Semantic domains, which are used to represent an abstract state that
would be manipulated by an abstract interpreter for the language;

• Semantic functions (or rules), which manipulate the semantic do-
mains according to a program’s representation in the abstract syntax.

Typically, the semantic domains for the source and target languages are differ-
ent. For example, a high level source language may model state in terms of a
stack, a heap, local and global variables, while a low level target language may
model state in terms of registers and a flat (linear) view of memory. Since the
semantic domains of the models are often different, it stands to reason that the
semantic functions or rules that operate upon them must also be different. The
exception to this is where a language is both the source and target language of
a compiler.

In order to ensure operations in the target language correctly implement opera-
tions in the source language, it is necessary to determine a relationship between
both the semantic domains of the two languages, and between the operations
defined by each language.

To relate the semantic domains, it may be possible to define a retrieve function
that maps an abstract state of the target language to its equivalent in the source
language. Thus, the domain of the retrieve function represents the semantic
domains of the target language, and its co-domain represents the semantic

1.2. Correctness of Hardware/Software Compilers 9

domains of the source language. Retrieve functions may be defined where a
given state in the target machine language corresponds to a single state in the
source language.

Where a compiler’s source language is a higher level language than its target
language — perhaps assembly language, which may require several operations
to complete a single source level operation — it may be reasonable to define a
retrieve function.

The correctness condition for a compiler is formulated as a property of both
the retrieve function and the compilation algorithm. For example, a retrieve
function that maps a series of stack frames for the target architecture to the
environment for a given block of code in the source language must be used with
a compilation algorithm that uses a stack discipline for procedure calls.

The correctness condition of a compiler specified in terms of a retrieve function,
retr, and a compilation algorithm, comp, is illustrated in Figure 1.1. The
source language state, σ, is a value within the semantic domains of the source
language before the execution of program p. The target machine language state
m-σ, is a value within the semantic domains of the target language, such that
retr(m-σ) = σ.

σ σ′

m-σ m-σ′

retr

exec (p)

m-exec (comp (p))

Figure 1.1: Conventional compiler correctness

The semantic rules of the source and target languages are represented as the
functions exec and m-exec respectively, and are higher order functions that
yield a function from initial state to final state for a given program. The
correctness condition is that the retrieve function and the compilation function
commute:

exec(p) (retr(m-σ)) = retr(m-exec(comp(p))(m-σ))

1.2.3 Inadequacy of Current Techniques

Unfortunately, the techniques for specifying and developing compilers outlined
in the previous section cannot be applied directly to hardware/software com-
pilers. The limitations of these techniques in the context of hardware/software
compilers are identified here and motivate the development of the formal frame-
work presented in this thesis (which is introduced in Section 1.3, Thesis Out-
line).

The form of the correctness condition given above assumes a single target lan-
guage for the compiler. This means the target language has a single state
representation and a single set of semantic functions or rules. However, hard-
ware/software compilers must target two languages: a hardware description

10 Introduction

language, within which a function unit design is described; and a software lan-
guage, into which the remainder of the program is compiled. In this context,
the hardware description language does not exclude low-level representations
such as a netlist language or an FPGA configuration bit-stream. The software
language may be assembly language, object code, or a higher level language
for which there exists a compiler to the relevant ISA.

Modelling hardware and software behaviour separately

It is possible to define a single ‘universal’ target language which can contain a
representation of the parts of the program that will be compiled to software,
together with parts of the program that have been synthesised into a hardware
representation. It is argued here that — while this combined approach may be
suitable for an implementation — adopting this approach directly is not suit-
able for specification and modelling in the development of hardware/software
compilers. Instead, the hardware language and software language should be
modelled separately.

One of the reasons for the possible discrepancy between the compiler implemen-
tation and its associated specification and modelling is that the formal model
must capture not only the details of the representation of both the hardware
and software language; but also the semantics of each language and the repre-
sentation of state (the semantic domains) of each language. In contrast, most
of these details do not appear in the implementation, which need only capture
the hardware and software representations (and transformations thereof).

There are several advantages to modelling the hardware and software sepa-
rately. The semantics of these languages may be very different. To be confi-
dent that the model is accurate, it should be as simple as possible to relate to
the hardware and software that it describes. However, it would be difficult to
model the behaviour of a computer program on a given ISA and a hardware
design accurately using the same set of semantic rules.

A GPP has sequential behaviour: it steps through a program instruction by
instruction, and from a given state, it is a reasonable modelling assumption
that there may only be a single successor state (ignoring I/O and undefined
behaviour). Conversely, a low-level model of hardware may define concurrent
behaviour. Many signals may change value simultaneously. Furthermore, if
exact component and signal propagation delays are not known, it may not
be possible to predict the exact behaviour of the device from a given initial
state. This situation can occur, for example, when elements in a logic design
for reconfigurable hardware have not yet been allocated to physical resources.

In a circuit with entirely synchronous (clocked) timing, where the data-flow
path between registers consists entirely of combinational logic, it may be possi-
ble to determine the ‘next state’ of a circuit, provided that the state is modelled
as the values of each signal during each clock cycle. However, for complex cir-
cuits, a circuit that is synchronous may operate in a globally asynchronous
manner, where synchronous components are composed together using a hand-
shaking interface [RC03]. In this context, a model of the hardware that sup-
ports concurrency is beneficial because it affords a compositional approach to
circuit design.

1.2. Correctness of Hardware/Software Compilers 11

Although the same argument could be applied to software: where many threads
execute in parallel, the assumption of sequential behaviour is no longer neces-
sarily valid. However, concurrency in the source language is not considered in
this thesis.

The difference between these models can be likened to different programming
language paradigms. It might be considered unusual to attempt to use the
semantic rules for a logic programming language when modelling an imper-
ative language, and likewise should be considered so for modelling hardware
constructs with semantics rules for a software language. Thus, the formal
framework developed in this thesis uses a separate set of semantic rules to
describe the behaviour of hardware and software.

Separating hardware state from software state

An argument similar to the above — that the semantics of hardware and soft-
ware languages should be modelled separately — can be constructed for mod-
elling the state of those languages.

There are a variety of ways for modelling state in software languages, depending
on the level of abstraction being considered. In a hardware language, state may
be modelled by the values of signals, registers and memories. Modelling the
languages separately allows a more natural representation of state for hardware
and software.

1.2.4 Specific Problems in Hardware/Software Compilation

The use of a formal framework such as that presented in this thesis need not
be limited to compiler specification. Indeed, there are many more problems to
be solved in hardware/software compiler verification.

This section describes several specific problems in hardware/software compiler
verification. A framework similar to that presented here is likely to be a prereq-
uisite for solving these problems. It is expected that such a formal framework
could also be extended, and used in later stages of the formal development of
a compiler.

Compiler development

A framework that includes formal definitions of a source language, a target
software language and a target hardware description language may be extended
to support the formal development of a verified compilation algorithm, or other
transformations such as optimisations. Extending the formal framework to
model these algorithms is necessary to allow verification of hardware/software
compilers to the extent that current techniques can be used for the verification
of conventional software compilers.

Of course, reasoning about the actual implementation of the compilation algo-
rithm and transformations is only possible if there is a formal semantics for the
implementation language. One might consider extending the formal framework
to include not only formal definitions of the source and target languages, but

12 Introduction

also a formal definition of the implementation language. However, the focus of
this thesis is on compiler specification, and not on implementation correctness,
and such an approach is not attempted here.

Source code portability

Another way that the formal framework could be usefully extended would be to
support the identification of programs that contain either self-modifying code
or self-examining code. Ideally the identification should be based on a static
analysis of the program text, and not dynamically, at run-time.

Self-modifying and self-examining code can be difficult to detect statically in
programs for Von Neumann architectures, and in general, it is not possible to
translate self-modifying and self-examining programs automatically [JSW99].
In this sense, such programs are not portable.

Dynamic analysis to monitor changes to the program may be appropriate for
where program code is generated at run time [CK94], but may not be appropri-
ate for hardware accelerated systems in general. Some of the reasons translating
such code may not be practical are: that a function unit may not be imple-
mented in reconfigurable logic; the long synthesis times for hardware design
making reconfiguration to reflect changes in the program impracticable; and
the difficultly in detecting whether the function unit needs to be re-synthesised.

Self-modifying programs — or programs that exhibit self-modifying behaviour
by modifying memory whose contents is later executed — include just-in-time
compilers, such as Java virtual machines and .NET interpreters [MB03] and
dynamic linkers that ‘patch’ addresses in the program area. The technique
may also be used to make a program more efficient [Hen01].

Self-modification/examination is not the only behaviour that makes verified
software/hardware compilation difficult. For example, if a program makes an
indirect branch to a given address, and that address could have been modified
at run-time, then it is necessary to ensure the branch is to a valid instruction
and that the program will continue to behave in a similar manner to a non-
accelerated version of the same program.

A common example of an indirect branch is a the result of compiling a switch
(or case) statement. Where the cases are over consecutive enumerable values,
the statement may be compiled as an indirect branch where the switch value
is used as an index into a jump-table.

Target machine portability

A retargetable compiler is a compiler that can compile programs for more
than one target architecture [HF95]. The target-specific parts of a retargetable
compiler are independent of each other, and support for new targets may be
added (and support for old targets removed) without affecting support for other
targets.

Retargetable compilers can support different targets by having a machine de-
scription for each target architecture from which a compiler backend, or code
generator, is produced [Sta02, HF95].

1.3. Thesis Outline 13

It seems beneficial for hardware/software compilers that target FPGAs to be
retargetable in the sense that it be possible to support new FPGAs or hardware
acceleration products. By making a compiler retargetable, a single compiler
code base could feasibly be used to provide support for a range of hardware
acceleration products based on FPGAs, where each product may provide a
different type of FPGA, or different number of FPGAs. Higher end FPGAs
may provide greater logic capacity, or dedicated logic units that can improve
the performance of particular operations [Xil03]. For example, FPGAs may
contain dedicated multipliers to provide faster multiplication.

In order to verify synthesis to FPGAs with dedicated logic units, a specification
of the behaviour of each dedicated logic unit must be available.

The framework for describing hardware/software languages developed in this
thesis supports two compilation targets. It is expected that it could be extended
to support two targets described by machine descriptions — one for the GPP
and one for the FPGA. Again, however, such an approach is not attempted
here.

1.3 Thesis Outline

Some of the benefits of hardware/software compilers — particularly of those
that target reconfigurable function units — were introduced in Section 1.1.
The motivation for verifying the correctness of hardware/software compilers
was introduced in Section 1.2. Existing techniques for compiler verification
were outlined and the limitations of such techniques in the context of hard-
ware/software compilers were discussed.

This section outlines the approach taken to extending these existing techniques
as presented in this thesis, and the rationale for that approach.

1.3.1 Scope

This thesis presents an approach to the formal specification of hardware/software
compilers. It focuses on those aspects of compiler specification that are specific
to hardware/software compilers.

These aspects represent the compiler stages that find parallelism within the
algorithm, and transformation into a combination of software and hardware
intermediate representations (IRs). Specifically, the approach used here consid-
ers only hardware/software compilers for imperative, sequential programming
languages.

Topics where formal specification techniques for conventional compilers can be
applied directly to hardware/software receive little attention here. For the com-
piler frontend, these include pre-processing, lexical analysis and parsing. For
the compiler backend, these include register allocation for, and code generation
from an IR, for a given GPP. Topics related to other parts of the tool-chain,
such as the assembler and linker are similarly out of the scope of this thesis.

Two approaches to achieving performance improvements using custom function
units have already been identified here. The first is to ensure that the function

14 Introduction

unit provides better computational efficiency for a given task than a general
purpose processor. This could mean ensuring that the function unit uses fewer
logic resources or clock cycles to complete a given computation than the GPP.
The second is to ensure that the function unit provides sufficiently greater
parallelism for a given computation that its use amortises the overhead of
‘invoking’ the function unit. That is, that the time to pass data to and from the
function unit is less than the net improvement in execution time of dedicated
logic over the GPP.

Techniques that employ the former approach include methods such as bit-width
optimisations that reduce the amount of logic generated by reducing word size
where it will not affect the output, thus eliminating redundant logic [BSWG01].

The latter approach requires the derivation of parallelism from a sequential
implementation of an algorithm. Unlike methods that adopt the former ap-
proach, it requires the translation from a sequential language with its asso-
ciated semantic rules into a language that supports parallelism (and possibly
non-determinism) and hence, with very different semantics. As such, it is a
fundamental technique in hardware/software compilers, and thus this approach
receives more attention in this thesis than the former.

It should be clarified that considering the derivation of parallelism from se-
quential implementations of algorithms here is not with the intent to render
existing HDLs obsolescent.

Hardware/software compilers ease the process of co-design: where it is not
clear how an algorithm should be partitioned into hardware and software, such
compilers reduce the overhead in re-implementing a sequential algorithm in
hardware, and updating the hardware/software interface to match. However,
they still require the use of a GPP in the targeted system, the implementation
of which is assumed to be described in an HDL. Furthermore, just as assembly
language skills may be required to analyse and tune the output of a traditional
compiler, hardware design skills may be required to analyse and tune the output
of hardware/software compilers.

The approach taken in this thesis assumes that there exists a means of identi-
fying which parts of a program should be realised in software, and which parts
should be realised in hardware. As existing solutions to this problem exist
— such as the use of pragmas in the source language, or the use of profiling
information to determine partitioning — this issue receives little attention here.

1.3.2 Hardware/Software Interface

Compilers for high-level languages typically parse the source code of a program
and construct a representation of the program in an abstract syntax tree. The
abstract syntax tree is then converted into a compiler intermediate represen-
tation (IR). The program in its IR form undergoes a series of analyses and
transformations. These include optimisations (and the analyses necessary for
those optimisations), and code-lowering : the process of reducing the semantic
gap between the IR and the target architecture [Muc97]. The IR may allow the
many high-level language constructs to be represented, while the target archi-
tecture may provide a relatively primitive set of operations. Code-lowering is

1.3. Thesis Outline 15

used to map high-level language constructs into a lower-level language, which
may still be independent of the target architecture. After these transforma-
tions are complete, the compiler’s code generator converts the simplified IR
into object code for the target architecture.

Multiple Intermediate Representations

A compiler may use more than one IR. The use of more than one representa-
tion is useful where there is a significant semantic difference between the source
language and the target language. By lowering code through several represen-
tations with decreasing levels of abstraction from the target machine, the task
of compilation is divided into simpler compilation tasks between IRs.

Another reason to use more than one IR is that some representations may by
more apt for a given transformation (or analysis) than another. For example,
it is easier to re-order expression trees if the sub-expressions (sub-trees) have
no side-effects [App97].

The framework in this thesis defines more than one representation for both
of the above reasons. This approach reduces the complexity of transforma-
tion from an imperative, sequential language which has substantially different
semantics to a hardware design language. The use of different IRs also simpli-
fies the specification of transformations that make parallelism inherent in an
algorithm expressed in a sequential language explicit.

Synthesis from an Intermediate Representation

It is assumed that hardware designs for a function unit are to be synthesised
from the IR form of a program.

This assumption permits the use of techniques that are conducive to produc-
ing efficient hardware and software. By synthesising from an IR form of the
program, existing compiler analyses and optimisations may be applied before
hardware synthesis. Furthermore, it allows the use of optimisations that modify
the program that cross the phrase structure of the language.

Examples of optimisations that may be usefully applied before hardware syn-
thesis include dead code elimination, common sub-expression elimination, strength
reduction and loop unrolling. Code elimination optimisations may prevent re-
dundant hardware being generated and using an unnecessarily amount of logic
in the function unit. This, in turn, may prevent other parts of the program
being hardware accelerated. Strength reduction may allow more efficient logic
to be generated. Loop unrolling may be used to achieve better parallelism in
the resulting hardware.

One of the implications of performing hardware synthesis from an IR is that
the part of the program representation that is synthesised to hardware may
not correspond directly to the source text. However, this is the case for the ob-
ject code output produced by existing software-only compilers, is not expected
to present problems in verification because existing compiler verification tech-
niques support reasoning about compilation algorithms that provide such kinds
of optimisations [Jon69].

16 Introduction

Further rationale for the assumption that the hardware/software compiler should
produce a relatively low level hardware design generated from an IR is given
towards the end of Section 3.3.1, in the section entitled Summary of Hardware
Representations.

Hardware/Software Partitioning

A program that is to be compiled into a combination of hardware and software
must be partitioned into those parts that will be compiled to object code and
those that will be synthesised into a hardware design. In order to represent
this partitioning, it is necessary to annotate parts of the IR to indicate which
compiler backend should be used for each part of the program: that is, whether
the compiler should use code generation or hardware synthesis for each part.

If partitioning is to be specified manually — perhaps by pragmas in the source
language — it is necessary that each IR supports these annotations and that
they be propagated through each transformation. It should be noted though
that such annotations may be subject to modification by optimisations and
other transformations on the IR.

Hardware synthesis from an IR may allow higher levels of automation in the
selection of which parts of a program are to be synthesised into hardware.
This would mean that the hardware/software interface may not necessarily be
precisely defined by the programmer, but rather by analysis of the program
text (probably in addition to pragmas or profiling information) to determine a
suitable partitioning.

Synthesis from an IR allows sub-expressions in the source text to be synthesised
into hardware, while the outer (nesting) expression is compiled into software
that uses a function unit for those sub-expressions that have been realised in
hardware. Thus, the partitioning of a program into hardware and software may
cross the phrase structure of the source language.

Memory Interface

There are practical problems associated with a function unit efficiently sharing
access to memory with a GPP. Some of these problems are discussed here.
As such, the methodology used here considers techniques that can be used to
transform the program such that the function unit does not require a memory
interface.

If a function unit has direct access to the system memory, it is important to en-
sure that there can be no interference that can cause the program to behave dif-
ferently to the way it would had it been compiled into software only. This may
be particularly difficult where the function unit may access program memory
in a Harvard architecture, or index into system memory using a program value
as a memory index on a von Neumann architecture. Such behaviour would
be characteristic of self-modifying or self-examining code, the problems with
which were discussed in Section 1.2.4, Specific Problems in Hardware/Software
Compilation.

1.3. Thesis Outline 17

A memory controller in the function unit may also require the use of some
of the logic in the function unit, which may be undesirable as it introduces
extra complexity and uses logic resources that could otherwise be used for
computation.

1.3.3 Methodology and Thesis Structure

In order to apply formal specification techniques to analyses and transforma-
tions, it is necessary to provide a formal definition of each language (or IR). A
formal definition — and thus formal semantics — of each language is required
to formulate a precise statement of the behaviour of a program in its corre-
sponding representation. Furthermore, formal definitions are required in order
to formulate a precise specification of transformations: that is, what it means
to preserve the semantics of a program as it is translated from one IR language
into another.

Chapter 2 describes the design flow for FPGAs, which have a significant rôle
in hardware/software compilation, because they are reconfigurable. It presents
background literature on compiler IRs and hardware/software compilers, and
also some general background in formal semantics and reasoning in the context
of compiler development.

Chapter 3 addresses some of the practical issues that arise when using an ma-
chine support to model and reason about hardware compilation. In particular,
it introduces the Isabelle system and Isabelle/HOL — the automated theorem
proving environment and formulation of higher order logic used to denote and
verify most of the formulae and propositions in subsequent chapters (excep-
tions to this are in reference to existing literature). The use of higher order
logic to model the behaviour of hardware circuits is also introduced.

This thesis presents two IRs in the order in which similar representations could
be used in a hardware/software compiler. A formal semantics of each IR is
given, together with examples of program fragments expressed in that IR.

The first IR is presented in Chapter 4, and is based on both existing IRs for
conventional compilers, and on existing IRs for hardware/software compilation.
No specific HLL is assumed, but it is intended that it be relatively simple to
target this IR as the first stage of compilation from the abstract syntax tree
representation of a program in an HLL.

The translation into this IR reveals some of the inherent instruction level par-
allelism (ILP) in the program being compiled. Once made explicit, this par-
allelism can be exploited by generating function units that provide concurrent
evaluation of program constructs that are identified as being candidates for
concurrent evaluation.

The second IR — presented in Chapter 5 and Chapter 6 — is a low level
language for modelling hardware logic designs. It is intended to represent a
language that could be translated into a netlist format, or limited subset of an
HDL, in a straight-forward manner.

The features of the netlist language that provide support for representing the
primitives in the first IR are described in Chapter 6. An approach to modelling
the behaviour of combinations of these primitives is discussed by appeal to

18 Introduction

existing literature that adopts a different approach, but shares the common
goal of correct hardware compilation.

Chapter 7 presents an example of a program fragment expressed in the first
intermediate representation. It also presents a design in the netlist representa-
tion that is conjectured to provide a hardware implementation of that program
fragment. The example supports an explanation of the what it means in general
for a design in the netlist language to correctly implement part of a program
in the intermediate representation.

Chapter 8 concludes with a discussion of the work presented in this thesis in
the context of related literature, and describes a number of practical issues that
arose during its development.

Chapter 2

Background

Contents
2.1 FPGA Structure and Design Flow 20

2.1.1 FPGA structure 20

2.1.2 FPGA Design Flow 22

2.2 Compiler Intermediate Representations 23

2.3 Hardware Acceleration using FPGAs 25

2.3.1 Types of RFU . 25

2.4 Logics, Meta-logics, and Logical Frameworks 27

2.4.1 Formal Systems 27

2.4.2 Formal Semantics 31

The use of hardware/software compilers for FPGAs has been described as a
‘meeting point’ between the electronic design automation (EDA) industry and
the high performance computing (HPC) industry [Mor05]. In order to increase
the level of design abstraction presented to hardware designers, EDA tools
have been developed that allow hardware synthesis from languages based on
C. This technique is sometimes known as high-level synthesis, and examples
of such tools based on the approach include Celoxica’s DK Design Suite and
Mentor’s Catapult C. Meanwhile, in order to improve the performance of ex-
isting applications, vendors to the HPC industry have developed tools that
allow languages used for HPC applications to target hardware and software
using conventional software development techniques: providing software devel-
opers with familiar compile/debug development cycle. Tools that fall into this
category include SRC Computers’ Carte Programming Environment.

The different skill sets and expectations of the EDA community and the HPC
community account for the different tool sets. This chapter describes the fun-
damental concepts behind those tool sets.

Section 2.1, FPGA Structure and Design Flow describes the structure of an
FPGA, showing how a custom logic design can be mapped into an FPGA con-
figuration. It describes a conventional design flow for FPGA designs using
EDA tools. Section 2.2, Compiler Intermediate Representations introduces a
variety of intermediate representations used in compilers that are typical of
those used in the compilation of high level languages and, consequently, in

19

20 Background

hardware/software compilers. Section 2.3, Hardware Acceleration using FP-
GAs describes several approaches to using FPGAs for hardware acceleration,
including hardware/software compilers that use such representations.

2.1 FPGA Structure and Design Flow

This section describes how custom logic designs can be reified using FPGAs.
More specifically, the discussion here pertains to SRAM-based FPGAs, which
are typically more useful for hardware acceleration because they can be re-
configured, due to the volatile nature of their configuration. However, there
is little reason why the techniques described in this thesis should not apply
to FPGAs with non-volatile configurations. Given that SRAM-based FPGAs
are commodity items, and that their reconfigurability allows a traditional com-
pile/test/debug cycle, it is reasonable to assume their use in hardware/software
compilation here. Even if a non-reconfigurable FPGA were to be targeted, a
design would likely be tested on an SRAM-based FPGA first.

The structure of the reconfigurable fabric in FPGAs, and the availability of ad-
ditional dedicated logic within the FPGA such as multipliers, varies between
different models and manufacturers. Likewise, the techniques for implementing
logic designs in FPGAs — the design flow — varies. One aspect that affects
the design flow is the method used for design entry. The design may be cre-
ated in various ways, including the use of schematic entry; by describing the
required design in an HDL; by instantiating existing IP cores for which no hu-
man readable design is readily available; through the use of hardware/software
compilers; or by a combination of any of these techniques.

Rather than provide a taxonomy of FPGAs and their associated tool support,
this section serves to provide illustrative examples of typical FPGAs and tool
sets. This is sufficient to provide the required background for this thesis in
FPGA structure and design flow.

A broader view on the topic can be found in tutorials and surveys on the
topic [BR96, Hau98]. More specific information can be found by consulting
manufacturers’ data-sheets for specific FPGAs.

2.1.1 FPGA structure

The Xilinx Spartan-3E family [Xil05b] of FPGAs are similar to those used in
existing FPGA-based hardware acceleration products. The family of FPGAs
is described here briefly to illustrate the structure of a typical FPGA, and to
show how a logic design can be reified in reconfigurable logic 1.

It is important to note that logic designs can be implemented in reconfigurable
logic, because the ability to do so forms a major assumption of this thesis.
This section is intended to provide an intuitive understanding of how a logic

1This particular family was selected for discussion here in favour of those known by the
author to be used in existing hardware acceleration products only because of the clarity of
its datasheet. Structurally, it is similar enough to those used in existing products for the
purposes of the high-level discussion here. Thus, it is reasonable to assume that they may
be appropriate for use in hardware acceleration products (even if they are not already).

2.1. FPGA Structure and Design Flow 21

In
p

u
t/

O
u

tp
u

t
B

lo
ck

s

Input/Output Blocks

D
ed

ic
at

ed
 M

u
lt

ip
li

er

B
lo

ck
 R

A
M

Digital

Clock

Multiplier
Configurable Logic Blocks

and interconnect

Figure 2.1: High-level view of a Spartan-3E FPGA

design can be mapped onto reconfigurable hardware. After this section, no
further reference is made to the process of creating an FPGA configuration
from a logic design. Instead the focus is on producing correct logic designs for
hardware acceleration. Ensuring that a logic design is correctly mapped into
an FPGA configuration falls outside the scope of this thesis.

Structure

The high-level structure of a Spartan-3E FPGA is shown in Figure 2.1. The
design is comprised of a matrix of configurable logic blocks, known as CLBs,
which can be used to implement both combinational and sequential logic. These
can also be used for data storage, known as distributed RAM.

Several units of logic dedicated to specific tasks are interspersed within the
matrix of CLBs. These include blocks of RAM — Block RAMs — which pro-
vide more space-efficient data storage than the multi-purpose CLBs. They also
include dedicated multipliers, which can be used to implement faster multipli-
cation than can be achieved using the CLBs.

The matrix is surrounded by a set of programmable input/output blocks which
connect the pins of the FPGA package to the internal signals of the FPGA.

Configurable Logic Blocks are comprised of four slices. Each slice contains
two SRAM-based Look-Up Tables (LUTs) and two single bit storage elements.
They also contain dedicated carry logic to improve the performance of arith-
metic operations, and multiplexers to simplify logic that is implemented across
several slices.

Each LUT has four logic inputs and one logic output, and has sixteen bits of in-

22 Background

ternal storage. They can be used to implement combinational logic, distributed
RAM or shift registers.

When used to implement combinational logic, the four logic inputs form a
four bit address that selects one of the sixteen stored bit values, which be-
comes available on the single output. Thus, any Boolean function of up to four
Boolean values can be implemented using a LUT, simply by loading its sixteen
bit RAM with the appropriate binary representation of the truth table for that
function.

When using LUTs to implement distributed RAM, each LUT contains one bit
of up to four values represented as bit vectors. The remaining bits for each
value are stored in nearby LUTs, and each of the four values can be selected
by applying the same four bit address to the inputs of those LUTs.

The two single bit storage elements may be used as either D-type flip-flops —
to implement a register, for example — or as level-sensitive transparent latches.
These are used to implement sequential logic.

The interconnections within a slice — between the LUTs and the storage ele-
ments — are reconfigurable. These connections are largely controlled by mul-
tiplexers, with configurable ‘select’ values. These also control connections to
other slices within the same CLB.

The routing between CLBs is controlled by configurable switch matrices. Each
switch matrix is connected to horizontal and vertical signal lines of various
lengths that connect nearby CLBs. They also connect adjacent CLBs to al-
low signals to be routed from CLBs with relatively low connectivity to better
connected CLBs.

2.1.2 FPGA Design Flow

The ISE Design Tools [Xil05c] provided by Xilinx support a complex design
flow. The design flow supports a variety of design entry techniques, and allows
different FPGAs to be targeted.

The terminology here is somewhat awkward. ‘Design’ may be used as a verb,
to refer to the process of designing hardware logic; or as a noun, to refer to
the product of this design process. ‘Design flow’ is commonly used to refer to
development steps with tool support. Thus, it is appropriate to say that design
flow typically begins with design entry, even if the process of designing logic
begins much earlier.

The design entry techniques supported by the ISE Design Tools include HDL
entry for VHDL and Verilog; graphical schematic input; and an IP core gener-
ator that produces various designs which can be tailored to a particular design
by instantiating design templates with appropriate parameters. A design may
include components described in more than one of these formats.

HDL of mixed levels of abstraction can be used. Some of a design may be
described physically, at a very low level of abstraction, in terms of the loca-
tions of individual primitives on the FPGA. Other parts of a design may be
described structurally, where the components are instantiated and connections
between them are defined explicitly. In a structural description, an instantiated

2.2. Compiler Intermediate Representations 23

component may be a complex device such as an Arithmetic Logic Unit (ALU),
and need not be a primitive directly provided by the FPGA. A higher level of
functional abstraction still is a behavioural description of a device, from which
a structural description must be inferred.

Once a design has been entered, the next stage in the design flow is synthesis.
This process combines the various design formats used into a single structural
netlist format, such as the Electronic Design Interchange Format (EDIF) or
Native Circuit Description (NCD). Part of this process includes behavioural
synthesis that translates any parts of a design expressed in behavioural HDL
into a structural format.

After synthesis, the resulting netlist may be combined with a set of design
constraints into a Native Generic Database (NGD). In the ISE Design Tools,
this process is known as translation. Typical uses of design constraints include
requiring that a given signal be connected to a named pin on the FPGA, and
applying a maximum timing constraint for a given signal.

The resulting design with associated constraints forms the input to the map
process. This matches the components in the structural description of the
design with types of FPGA primitives provided by the targeted FPGA.

Once mapped, the next stage of implementation is Place And Route (PAR). In
the previous stage, the types of primitives required for each part of the design
were identified. The PAR stage selects actual resources in the target FPGA
for those primitives. ‘Place’ refers to the selection of specific FPGA primitives,
while ‘route’ refers to finding a configuration for the reconfigurable interconnect
that will connect the placed primitives according to the netlist.

2.2 Compiler Intermediate Representations

Typically, compilers for high-level languages produce assembly language out-
put, which is then passed to an assembler in order to produce object code.
After any pre-processing stages, compilation proceeds by a combination of lex-
ical analysis and parsing, in order to build a parse tree representation of the
program.

The structure of the parse tree is largely determined by the concrete and ab-
stract syntax of the high-level language.

Compilers generally transform the program into a corresponding assembly lan-
guage output via a series of IRs. This section considers the purpose of us-
ing IRs in compilation, and provides a brief account of IRs relevant to hard-
ware/software compilers.

IRs serve several purposes in compilers for high-level languages. One such
purpose is to allow the development of compilers that support more than one
target architecture — known as retargetable compilers — and compilers that
support more than one source language. Developing a suitable representation
that allows this flexibility, and that can be used to produce efficient object
code, is traditionally known as the UNCOL (UNiversal Computer-Oriented
Language) problem [Con58].

Without the use of an IR, the compiler must translate directly from the source

24 Background

Target 2 (e.g. PPC)

Target 1 (e.g. x86)

HLL 1 (e.g. C)

HLL 2 (e.g. Ada)

HLL 3 (e.g. Pascal)

(a) Without an IR: one compilation algorithm for each com-
bination of source language and target architecture.

Target 2 (e.g. PPC)

Target 1 (e.g. x86)

IR (UNCOL)

HLL 1 (e.g. C)

HLL 2 (e.g. Ada)

HLL 3 (e.g. Pascal)

(b) Without an IR: one compilation algorithm for each source language and one
for each target architecture.

Figure 2.2: A compiler IR helps to support multiple source languages and
multiple target architectures.

language into the target language and thus a separate compiler is required for
each combination of source language and target language. Translating a source
language program into an IR first, and then translating that IR into the target
language, requires one compilation algorithm for each source language and one
for each target language.

To restate this: without the use of an IR, the number of compilation algorithms
required to allow compilation from n source languages into m target architec-
tures is n∗m. Using a single IR, the number of compilation algorithms required
to support n source languages and m target architectures is n+m. Therefore
using an IR requires fewer compilation algorithms if more than one architecture
and more than one source language are to be supported. Figure 2.2 illustrates
this concept for three high-level languages and two target architectures.

It is often beneficial for a compiler to use more than one IR, and to translate the
program between these representations during compilation. This is, in part,
because some representations are better suited to performing some types of
analyses and optimisations than others. For example, a low-level representation
in which registers and addressing modes are explicit may be used to improve
register allocation (by reducing the number of ‘spills’ into memory). Higher
level representations may be more suited to dependence analysis [Muc97].

An additional benefit of using multiple intermediate representations is that
their use divides the compilation task into several simpler tasks. Rather than
compile from a high-level representation into a low-level representation in one
step, the compiler can repeatedly translate the program into lower level rep-
resentations, in several stages, before code generation. This reduces the com-
plexity of a given compilation stage.

2.3. Hardware Acceleration using FPGAs 25

2.3 Hardware Acceleration using FPGAs

In Chapter 1, the performance benefits of using function units to support GPPs
were introduced. These were identified as being the result of increased compu-
tational efficiency, due to function units having logic dedicated to a particular
task; and the result of increased parallelism. It is noted that, depending upon
our interpretation of ‘computational efficiency’, these concepts may not be en-
tirely distinct. FPGAs have been used to implement function units that provide
both improved computational efficiency [AS93] and parallelism [LEM04].

In this section, the rationale for using FPGAs to implement reconfigurable func-
tion units (RFUs) is discussed. Different architectures of systems with RFUs
are considered, along with techniques used for hardware/software compilation
for such architectures. Finally, some examples of applications that have been
shown to benefit from the use of RFUs are described.

Custom logic designs can provide performance improvements over GPPs. How-
ever, the performance advantages of dedicated function units must be weighed
against the cost implications of their use. While GPPs are commodity items,
specialised function units do not enjoy the same market share. This is be-
cause a given custom logic design typically only benefits one application, or
one class of applications. Thus specialised function units are likely to be more
expensive. However, FPGAs are now commodity items: although the market
share for individual logic designs for FPGAs may be small, FPGAs themselves
are not specialised to a particular application, and benefit from commodity
economics [DeH94].

FPGAs also obviate the need for ASIC mask production, and so benefit from
lower non-recurring engineering (NRE) costs and improved time-to-market for
each application.

A given collection of fixed-purpose function units is less than optimal for most
applications, because the hardware resources used to implement them are not
utilised in applications that do not benefit from those function units. Although
RFUs have some overhead in hardware resources — due to their reconfigurable
nature — they can be used to provide performance improvements to many
types of application [Hau98].

Performance improvements can also be achieved by increasing the clock fre-
quency of a GPP [HP02]. However, this technique is of limited use. Increasing
the clock frequency results in an increase in the power consumption of the
GPP. This may have a negative impact on battery life for mobile devices, and
cause heat dissipation problems in higher end processors. The use of FPGAs
to implement function units has been shown to allow increased performance
without commensurate power consumption [BJC+03].

2.3.1 Types of RFU

The way in which an RFU is integrated into a system, and the degree of cou-
pling between RFUs and the GPPs of that system, varies between the different
ISAs that include reconfigurable logic. Furthermore, while the description of
FPGAs in Section 2.1 provided an intuitive understanding of how hardware

26 Background

can be ‘reconfigurable’, the granularity of the reconfigurable logic used is not
always as fine-grained as the example given there. In this section, different
designs for systems containing RFUs are considered.

RFU Coupling

Some systems have included reconfigurable logic as part of the processor,
where the reconfigurable logic is directly connected to the rest of the pro-
cessor. Examples of such systems include PRISC (PRogrammable Instruction
Set Computers) [RS94], Nano [WHG94], DISC (Dynamic Instruction Set Com-
puter) [WH95] and OneChip [WC96]. Such processors — known as reconfig-
urable instruction set processors (RISPs) — provide instruction formats that
allow the RFU to be used as if it were any other function unit on the proces-
sor [BD02]. In some systems, the RFU shares general purpose registers with
the rest of the processor.

The overhead of transferring data between the RFU and other function units,
and of invoking the operations implemented on the RFU, is relatively low
on RISPs due to the proximity and tight coupling of general purpose and
reconfigurable logic. However, the size of logic designs is limited because the
reconfigurable logic shares the same die as the rest of the processor.

RFUs on RISPs are usually used to provide custom instructions on small
amounts of data. This is because the tight coupling makes it efficient to transfer
small amounts of data to the RFU, while the limited amount of reconfigurable
logic available in a RISP limits the amount of data that the RFU can process
at any given time. Examples of custom instructions include multiply and ac-
cumulate operations (MAC); variable length coding and decoding (VLC and
VLD); error correction logic and other bit-level operations [AS93]. Applica-
tions that benefit from bit-level operations also include static and dynamic
code generation [ATB05, Eng96].

Another approach, using a less tightly coupled RFU, is to use a co-processor
with reconfigurable logic. Examples of this approach include the Garp [HW97],
Napa [GS98] and Prism-II [WAL+93] architectures.

This approach permits designs to use more reconfigurable logic, compared to
RISP designs. Synchronisation and data transfer with the co-processor can be
achieved using similar protocols to those used for other co-processors, such as
external floating point units [BD02]. The RFU then operates in parallel with
the GPP. As such, the approach can reduce the overhead of invoking opera-
tions on the function unit compared to RISPs, because the RFU may perform
operations that take many cycles to complete without needing to synchronise
or interrupt the processor [CH00].

RFUs may also be connected as an attached processor via a system bus, such as
the PCI bus [LTS99], or as if they were another processor in a multi-processor
system. This allows for large amounts of reconfigurable logic to be used. Just
as for using an RFU as a co-processor, the RFU may operate in parallel to the
CPU. However, using this technique, the RFU has no access to the GPP’s data
cache, and synchronisation and setting up data transfers have greater overhead.

Some classifications of reconfigurable computing platforms also distinguish be-

2.4. Logics, Meta-logics, and Logical Frameworks 27

tween RFUs that are connected via a system bus and internal to a system, and
those that are connected to external stand-alone reconfigurable units [Hau98].

An RFU may be supported by a memory store dedicated to the RFU. In
addition this, RFUs may have an interface to the system memory, optionally
with their own address generator.

RFU Granularity

Not all reconfigurable hardware used for hardware acceleration is as fine-grained
as the use of FPGAs described in Section 2.1. That section considered logic
that is reconfigurable at a bit level. In contrast, reconfigurable data path units
(RDPUs) have higher granularity.

Fine-grained architectures can be less efficient due to the routing overhead:
the flexibility of allowing data paths with a width of one bit incurs significant
penalty due to the large amount of routing resources required. Using wider
data paths reduces routing overhead, and also the size of the configuration for
the reconfigurable logic [Har01].

RDPUs have fixed purpose logic units which are implemented in dedicated
logic for improved efficiency. The RaPiD architecture provides a number of
ALUs, multipliers, registers and memory modules in a linear array connected
by a reconfigurable 16 bit data path [ECF+97].

2.4 Logics, Meta-logics, and Logical Frameworks

In Section 1.2.2, it was noted that formal definitions of source and target lan-
guages are required to precisely formulate the correctness criteria — or the
specification — of a compilation algorithm. An example of the structure of a
formal definition was provided, that included definitions of the concrete and
abstract syntax; context conditions; semantic domains; and semantic functions
or rules.

The purpose of a formal language definition is two-fold. Firstly, the definition
serves as a means to allow programmers to reason about the correctness of a
program written in that language. Secondly, the definition may also form the
basis of the formal development of a compilation algorithm.

The correctness property of a compilation algorithm is that it preserves the
semantics of a program. Where the compilation algorithm has a different source
and target language, this property must be expressed with respect to a relation
between both the semantics and semantic domains of each language.

In this section, formal frameworks are considered in which language definitions
may be described, and compilation algorithms specified and verified.

2.4.1 Formal Systems

Formal systems can be used to represent logical systems (or simply, ‘logics’) us-
ing syntactic techniques. This allows formal reasoning within a logical system,
and also reasoning about logics represented by the formal system. The use

28 Background

of exclusively syntactic techniques allows reasoning to be formulated as proofs
that can be verified by computer programs, without reference to the intuition
that underlies the logic.

Logics are represented within a formal system by a formal language, and a set of
inference rules for reasoning about expressions within that language. Examples
of logics that can be represented by formal systems include propositional logic,
predicate logic [GT96] and the logic of partial functions [BFL+93].

Some logics that can be defined by a formal system are sufficiently expressive
that they themselves can be used as a formal system for describing logics. When
defining a logic within a formal system, it is often important to distinguish
between the object logic that is the being defined, and the meta-logic of the
formal system used to define the object logic. When referring specifically to
the formal languages of each logic, it is useful to distinguish between the object
language and the meta-language.

Various definitions of the term ‘formal system’ exist, and there are different
ways in which a formal system can be modelled [Smu61]. The term is used
less specifically here than in earlier work relating to formal systems in which
the syntax of the logic under construction is described using a context-free
grammar. This is because the primary interest in using formal systems here
is in order to construct logics to model the formal semantics of programming
and hardware description languages. Assuming the underlying formal system
is sound, it is the properties of logics and their ability to model the formal
semantics of programming languages that is of interest.

It may, therefore, appear to be a digression to consider such foundational rea-
soning techniques here. However, when reasoning within an object logic using
Isabelle/HOL — the theorem prover used to model the languages presented in
Chapter 4 to Chapter 6 — it is necessary to be aware of the distinction between
the meta-logic and the object logic.

For the purpose of the discussion that follows, a formal system is considered
to define a logic in terms of the following attributes:

• an alphabet used for constructing sentences within the formal system;
• alphabets used to identify variables and predicates;
• a grammar that can generate expressions from these alphabets;
• a finite set of axioms, each of which is generated by the grammar;
• a finite set of inference rules for deriving new theorems.

The first three of these attributes are used to characterise a set of expres-
sions that are considered to be meaningful within the object logic. These are
discussed below in Formal Languages. The remaining attributes are used for
reasoning about such expressions within the object logic, and are discussed in
Formal Reasoning.

Formal Languages

Formal systems define a formal language that can be used to represent expres-
sions in the object logic. The formal language is defined in terms of alphabets
used to represent elementary terms and operators in the object logic, and in

2.4. Logics, Meta-logics, and Logical Frameworks 29

terms of a grammar used to construct expressions from elementary terms and
other expressions.

A number of different alphabets can be used to define a formal system, de-
pending on the logic to be modelled. For example, constants, variables and
predicate identifiers may be taken from different alphabets. Allowing expres-
sions in the formal system to contain variables allows an expression to represent
many sentences within the formal system, by using different instantiations for
each variable.

Meta-variables can represent non-terminal elements of the grammar in an ex-
pression. Expressions that contain arbitrary terms are known as sentential
forms. Expressions that contain no meta-variables are called sentences.

Sentences and sentential forms denote sets of expressions within the grammar.
If there are no derivations of a given sentence or sentential form, then it denotes
an empty set of expressions. On the other hand, they can denote an infinite set
of expressions. For example, if ?P and ?Q are meta-variables, and ¬ and −→
are in the alphabet of a formal system with an infinite number of identifiers,
then the sentential form ((?P −→ ?Q)−→ ¬ ?Q) −→ ¬ ?P denotes an infinite
set of expressions (which, in this case, are presumably theorems).

A grammar generates an enumerable, possibly infinite set, of expressions. The
expressions can be viewed simply as strings over the relevant alphabets. Alter-
natively, they can be viewed as trees of an abstract syntax [McC63b].

For simple formal systems, each expression generated by the grammar is con-
sidered to be a well-formed formula (wff). It is assumed that there is a decision
procedure (a total Boolean function) that determines whether or not a given
expression is generated by the grammar: that is, whether it is in the set of
well-formed formulae.

In more complex formal systems, only a subset of the expressions generated by
a context free grammar are considered well-formed. For example, a grammar
may allow the use of integer numbers and Boolean values in a formula, but
not admit a formula in which an integer number is tested for equality with a
Boolean value. Such formal systems can be described using context sensitive
grammars.

Alternatively such systems may be described using a context free grammar,
together with a set of Boolean functions defined over terms that represent
syntactic entities in the formal system. The Boolean functions characterise the
set of well-formed formulae within the formal system, and are known as context
conditions. These are predicates in the meta-logic being used to describe the
formal system that characterise terms in the formal system according to the
syntactic entity that they represent.

Formal Reasoning

Formal systems define a finite set of axioms — propositions that are assumed
to be true — and a set of rules for deriving new theorems from those axioms
and from other theorems already derived. Thus formal systems admit formal
reasoning in the object logic: a proof can be represented by a description of
the derivation of a given theorem from a set of assumed axioms, theorems, and

30 Background

lemmas.

Axioms are theorems, and it is assumed that each axiom is a well-formed
formula. Theorems derived by applying inference rules to axioms and existing
theorems are also assumed to be well-formed.

Inference rules are represented as a set of assumptions (or premises), together
with a single expression which represents the conclusion of the inference rule.
Expressions used in the assumptions and the conclusion of an inference rule
are typically sentential forms because the use of variables allows systems with
an infinite number of theorems to be constructed.

Formal systems may introduce notation for delimiting premises, and for the
implication operator (typically denoted by ⊃, −→, and =⇒) used to separate
the premises in an inference rule from its conclusion. Where only a single
implication operator exists in an inference rule, it is sometimes written as a
judgement, using a horizontal rule to separate the conclusion from the premises.
For example, an inference rule with n premises may be denoted as follows:

rule

prem-1
· · ·
prem-n
conc

Inference rules are applied using syntactic techniques, and make no reference to
an interpretation of the axioms and theorems to which they are applied. This
makes it possible to check proof derivations using a machine. Proof checking
algorithms may be implemented as total Boolean functions, and are terminat-
ing.

A proof of a given theorem may be represented as a sequence describing the
order in which inference rules can be applied to existing theorems in order to
derive that theorem.

Computer Aided Verification

Reasoning within an object logic using a formal system can be an onerous
task: the derivation of a proof for a proposition can be long, even for those
that seem to be ‘obviously true’. Furthermore, the exact derivation for the
proof of a given proposition may not be obvious — some ‘exploration’ is often
necessary in order to find an appropriate derivation.

One of the advantages of reasoning within a formal system is that proofs of
theorems can be checked by a computer program. Given the complexity of
constructing proofs within a formal system, it is not surprising that many pro-
grams that can verify proofs also provide some level of automation for exploring
and constructing proofs.

The level of automation that can be provided by a computer program varies
according to the object logic. If the object logic is decidable, and the computer
to be used for the verification task sufficiently powerful, then proofs of theorems
in the logic can be automatically derived. For example, a tableau-based decision
procedure can be used to automatically determine whether a statement in
propositional logic is a theorem.

2.4. Logics, Meta-logics, and Logical Frameworks 31

Modal logics are rather more expressive than propositional logic, yet deci-
sion procedures for them can still be developed [Var97, Grä01]. Modal logics
can be used to model and reason about certain behavioural properties of la-
belled transition systems, or state machines. Such methods have been used in
model checking programs such as NuSMV [CCG+02] for verifying properties
of control-path hardware circuits and concurrent systems.

The logics that are sufficiently expressive to formulate many interesting mathe-
matical statements have no decision procedure. These include first order logic,
and higher order logics.

For logics which are in general undecidable, only a limited amount of automa-
tion can be provided. Although theorem provers for such logics cannot verify,
or find proofs for arbitrary theorems, they can assist the user by providing a
number of tools to reduce the amount of work required to construct a proof of a
given theorem. These tools include term rewriting and simplification; decision
procedures for terms which are decidable; and proof management for forward
and backward reasoning.

Examples of theorems provers that provide some form of automation for con-
structing proofs are HOL [Gor85], Coq [DFH+91], LEGO [LP92] and PVS [ORS92].

2.4.2 Formal Semantics

Formal reasoning about programming languages requires a formal system in
which the definitions of programming languages can be expressed. Further-
more, in order to reason about particular programs in a given programming
language, it is necessary to have a definition of that programming language
expressed in a formal system[Win93].

One can, of course, reason about an algorithm independently of the languages
in which it has been, or could be, implemented. This approach is typical in
compiler verification literature (such as [BJ82] or [KN04]), where the focus is on
the definitions of source and target languages and the compilation algorithm,
rather than on the implementation of that algorithm.

The formal semantics of a programming language can be expressed using a
number of different styles [Jon03], including the operational and denotational
styles.

The operational technique is, to a great extent, attributable to John Mc-
Carthy [McC63a]. McCarthy introduced an interpretation function, or i func-
tion, that mapped a program and an initial memory state to final program
states. Thus the type of his i function was Program × Σ → Σ.

The interpretation function was defined recursively in terms of an exec function,
of type Stmt × Σ → Σ, that evaluates the side effect caused by a program
statement; and an eval function, of type Expr × Σ → Value that evaluates
expressions. McCarthy applied this technique to provide a semantics of a subset
of ALGOL [McC66].

Where operational semantics are defined such that the execution rules of the
program are directed by the syntactic structure of the program, they are re-
ferred to as structural operational semantics [Plo81].

32 Background

Denotational semantics is an alternative technique to operational semantics
for formalising the meaning of programming languages. The technique was
pioneered by Christopher Strachey [Str66], and later given a mathematical
basis by Dana Scott [SS71, Sco70].

Using denotational semantics, the semantics of a given program is expressed
as a function from initial state to final state: Program → (Σ → Σ). Super-
ficially, this appears to be a simple currying of McCarthy’s i function, found
by introducing an extra lambda abstraction for the program representation.
However, the two models are very distinct, due to the possible recursion (or
other iteration) that may occur in the program.

In the presence of unbounded recursion, the denotation of a program — the
semantic function representing it — may be a partial function. Thus in this
case, no type for the semantic function could be given. Dana Scott introduced
the concept of computational domains to model limited program recursion,
and thus allow the semantic function to be typed, and therefore, given a solid
mathematical basis.

The formal semantics of a simple compiler intermediate representation are de-
fined in Chapter 4, and of a simple low-level hardware description language in
Chapter 5 and Chapter 6.

Chapter 3

Machine Support for Reasoning

Contents
3.1 The Isabelle System . 34

3.1.1 Isabelle/Pure . 34

3.1.2 Isabelle/HOL . 37

3.2 Representation of key concepts 42

3.2.1 Memory representation 42

3.2.2 Number representation 45

3.3 Representation and Reasoning about Hardware 48

3.3.1 Hardware Representations 49

3.3.2 Modelling Hardware in HOL 52

Formal reasoning refers to logical reasoning based on a formal system of the
kind introduced in Section 2.4.1. Using formal reasoning, expressions may be
proved to be theorems within that formal system, by applying inference rules
to existing axioms and theorems in a purely syntactic manner.

Formal reasoning about programming languages requires a formal system in
which programming language definitions may be expressed, including the se-
mantics of those languages. Such definitions were discussed in Section 2.4.2,
and may be used to define the formal semantics of a language. Within a for-
mal system, propositions about language definitions may be expressed, and
properties of the defined languages may be verifiable using formal reasoning.

In order to reason formally about hardware/software compilation, a formal
system is required in which language definitions that model both hardware
and software can be expressed. There is, of course, no requirement that the
same language be used to describe both hardware and software. It is only
required that the semantics of the two languages be modelled in the same
formal system.

There are various approaches to defining the both formal semantics of languages
that model hardware, and those that model software. This chapter considers
the use of various approaches to constructing formal models for hardware and
software languages; how the choice of approach can affect reasoning within and

33

34 Machine Support for Reasoning

about a formal model; and also how the choice of approach can affect reasoning
that relates the software and hardware models.

When compiling custom function units, it is reasonable to consider both the
correctness of the compiler and that of the compiler output (consisting of object
code and a hardware model for the custom function unit) with respect to an
initial source text. In order to address either of these considerations formally,
it is necessary to have both a formal semantics of the software and hardware
languages involved, and also a means to relate those semantic descriptions.
The latter is necessary to define a notion of hardware behaving ‘equivalently’
to software.

One complexity that arises when relating the hardware and software models
— and in the translation from one to the other — is that the translation
considered here is not ‘complete’: only a part of a program is to be implemented
in hardware, while the remaining (presumably larger) portion of the program
should be compiled into object code. During execution, the general purpose
processor and the custom function unit need to exchange data, and modelling
the behaviour of the resulting system requires that this interface is modelled.

The chapter is structured as follows: Section 3.1, The Isabelle System describes
Isabelle, the theorem proving environment used to construct language defini-
tions presented later in this thesis, and for reasoning about definitions in those
languages. Section 3.2, Representation of key concepts addresses the represen-
tation of semantic objects that are relevant to both hardware and software
languages, including numeric values and addressable memory stores. Finally,
Section 3.3, Representation and Reasoning about Hardware considers how hard-
ware logic and its behaviour may be represented in a formal system.

3.1 The Isabelle System

The logic used for modelling the languages developed in this thesis is Is-
abelle/HOL [NPW05]: a formulation of higher order logic included with the
Isabelle theorem prover [NPW02].

3.1.1 Isabelle/Pure

The Isabelle theorem prover implements a formal system called Isabelle/Pure,
which is used as a meta-logic to define objects logics, such as Isabelle/HOL [Pau05].
In addition to the attributes of a formal system given on page 28, Isabelle/Pure
provides a number of features specifically for the purpose of defining object log-
ics. These allow the user to:

• define a concrete syntax for object logics, using infix and ‘mixfix’ gram-
mar declarations and syntax macros, each with associated precedence
rules;

• define an abstract syntax for object logics, using higher-order constants
(discussed below);

• define inference rules that can be applied directly to terms in the object
logic, rather than the representation of those terms in the meta-logic.

3.1. The Isabelle System 35

Isabelle/Pure Types

The formulations of higher order logic provided by both Isabelle/HOL and
Gordon’s HOL system bear some similarity to that of Cambridge LCF [Pau87],
the predecessor of Gordon’s HOL system from which it evolved. Each system
uses the formula structure of propositional logic, and terms are based on the
lambda calculus [Gor00].

The type systems used by each theorem prover are based on a modified version
of Church’s simple type theory [Chu40]. This includes aspects of the lambda
calculus and Whitehead and Russell’s original type theory. One such modifica-
tion, due to Robin Milner, was to move type variables from meta-language into
the logic: whereas a ‘term’ with a type variable in Church’s notation denoted
a family of terms with different type instantiations, Milner used the notation
to denote a single polymorphic term. A type inference algorithm which can
be used to find the type of a term based on the generic type of the constants
within that term is also due to Milner [Mil78]. Both Isabelle and the HOL
system provide type inference in a similar manner.

The syntax of types (classified into sorts) in Isabelle is given by the following
ML definition:

datatype typ = Type of string * typ list
| TFree of string * sort
| TVar of index name * sort

The Type(t, Ts) ML datatype constructor is used to apply the Isabelle type
constructor t to a list of type operands, Ts. The expression Type(‘‘fun’’,
[A, B]) represents the type of functions from type A to type B. A number of
built in type constructors are included, and new constructors may be intro-
duced. Isabelle/HOL provides a number of types, including fun (as above);
bool (for Boolean values); product types; disjoint sum types; natural and inte-
ger numbers, and sets.

The TFree datatype constructor is used for representing explicit, named type
variables. Type variables may be bound according to their context. The TVar
is used for unknown types, which can be considered as free type variables. They
represent universally quantified type variables, that is schematic or generic type
variables, that have not yet been instantiated. Free type variables can become
bound by type unification.

Both the higher order logic based theorem provers and the LCF based theorem
provers provide logics in which all functions are total functions. However, the
latter category require the use of domain theoretic techniques to ensure that
functions are total, by interpreting terms as members of a Scott domain [Sto77].
However, Gordon claims that this technique is ‘overkill’ for the purpose of hard-
ware verification, noting that primitive recursion is usually sufficient[Gor00].

Isabelle/Pure Terms

Terms in Isabelle/Pure are represented by the following ML datatype:

36 Machine Support for Reasoning

datatype term = Const of string * typ
| Free of string * typ
| Var of indexname * typ
| Bound of int
| Abs of string * typ * term
| op $ of term * term;

Constants are terminal symbols in the grammar of the (meta- or object-) logic,
and are represented using the Const constructor for terms. The type associated
with a constant represents the generic type of that constant used for type
inference.

The Free and Var constructors denote free variables and scheme variables
respectively. Free variables are named by a string, while scheme variables
are identified by an indexname: a name with a natural number subscript.
Scheme variables differ from free variables in that they may be instantiated
in unification, and that the numeric subscript supports a simple renaming
mechanism.

The Const, Free and Var constructors represent the predicate calculus style as-
pects of the Isabelle/Pure syntax. The remaining three constructors — Bound,
Abs and the infix operator $ — represent the lambda calculus syntax con-
structs. Specifically, they represent bound variables (identified by de Bruijn
indices); lambda abstractions and function application respectively.

Isabelle/Pure Syntax

The Isabelle/Pure meta-logic defines a few primitive types and constants.
These frequently appear in formulae, even when developing a theory in one
of the object logics that Isabelle defines. As a consequence, some familiar-
ity with the meta-logic is necessary when working with theories defined in an
object logic.

The ML representation for the type of functions with domain A and co-domain
B is Type(‘‘fun’’, [A, B]), assuming the ML identifiers correspond with
the types that they define. However, ML representations are not usually seen
by an Isabelle user. Instead, the user uses a concrete syntax when working
with expressions in the logic. The concrete syntax for above is denoted in the
concrete syntax as A⇒B.

Implication within the meta-logic is denoted by P=⇒Q, where P and Q are
Boolean terms. Implication in the meta-logic can be used to represent inference
rules of the object logic. In inference rules with more than one assumption,
the assumptions are normally surrounded by ‘Strachey’ brackets, and delimited
with semi-colons. To provide an example, an inference rule could be denoted
by [[P=⇒Q ; P]] =⇒ Q. This representation is an alternative representation
for the formula P=⇒(Q=⇒(P=⇒Q)), or simply as P=⇒Q=⇒P=⇒Q because
implication associates to the right. The rule form shown on page 30 is supported
by the Isabelle pretty printer.

Isabelle/Pure uses the notation
V

x . P x to denote meta-level universal quan-
tification. This is sufficient to define the usual universal (∀) and existential (∃)
quantifiers in object logics [Pau04].

3.1. The Isabelle System 37

3.1.2 Isabelle/HOL

Isabelle/HOL is an object logic provided with the Isabelle system. The use of
Isabelle/HOL seems appropriate for reasoning about hardware/software com-
pilation because Isabelle/HOL has been used to formulate aspects of imper-
ative programming languages [Nip98, Nip03]. Furthermore, it is similar to
the logic provided by Gordon’s HOL system[Gor85] — the logic upon which
Isabelle/HOL is based[NPW05] — which was originally developed for the pur-
pose of hardware verification [Gor00].

The Isabelle/HOL object logic defines a number of built-in types. For each
type defined within the logic, one can typically also expect to find definitions
of the following:

• some constants(s) that inhabit the given type;

• operators and other functions on values of that type, and functions that
return values of that type;

• syntax-related definitions to improve the readability of expressions that
include terms of the given type;

• proofs of some general properties of terms of the given type.

A type may also have some theorem proving tactics associated with it, although
their definitions are extra-logical : for Isabelle/HOL, these are implemented as
functions in Standard ML.

Isabelle/HOL provides various means for defining new types, described below in
Isabelle/HOL types. Conceptually, new types are defined as subsets of existing
types. In order to ensure consistency when defining new types, it is necessary
to prove that the new type is inhabited, by showing that there is at least one
value of that type [NPW05]. This property is proved by the Isabelle system
automatically for all of the types introduced in this thesis.

New constants can also be defined in Isabelle/HOL. Defined constants repre-
sent values, including higher order values. They can be referred to by name, or
by any syntactic translations that have been defined for that constant. Con-
stant definitions are of the form c ≡ e, where c is a new constant and e is an
expression. If c is a function, then its arguments may appear on the left hand
side. Thus the definition c x y ≡ e x y is equivalent to c ≡ λx. λy. e x y.

New definitions cannot introduce inconsistency in the logic, nor change the
behaviour of existing definitions. Isabelle rejects definitions that do not satisfy
this requirement. The rules for new definitions are similar to those of the
HOL system, and are described in the Isabelle tutorial [NPW02, §6.1.1]. To
summarise briefly, it is required that arguments (x and y in the example) are
distinct (unique) variables; that any variables, or type variables, on the right
hand side also appear on the left hand side. Furthermore, constant definitions
cannot be recursive.

This section is intended to describe only those aspects of the Isabelle/HOL logic
that are required for comprehension of the definitions and proofs presented in
subsequent chapters. More comprehensive treatments can be found in the
Isabelle documentation [NPW02, NPW05].

38 Machine Support for Reasoning

Isabelle/HOL types

Boolean values The Boolean type, bool, is available in Isabelle/HOL. The
values are denoted by True and False. The usual logical operators are defined
including the infix operators for conjunction (∧) and disjunction (∨). “If and
only if” is denoted by object level equality (=), which has an unusually high
precedence — even higher than negation (¬). Implication is denoted by a long
right arrow (−→), and is distinct from meta-level implication (=⇒). Boolean
terms are also used in the condition of if . . . then . . . else . . . expressions,
which are similar to those of Standard ML, and other functional programming
languages.

Higher order properties of the logic are established by reflection between formu-
lae and Boolean terms, meaning that they are isomorphic [Pau90]. Universally
(∀) and existentially (∃) quantified expressions are also of type bool.

Available inference rules include reflexivity, substitution, modus ponens (elim-
ination of object-level implication) and an introduction rule for implication.
The Hilbert description operator (ε x. P x) is specified, although it is not used
directly in this thesis. However, its presence ensures that the logic is classical,
and standard theorems of classical logic are available as derived rules.

Natural numbers The natural numbers are represented by the type nat.
Values of this type are denoted by 0 and Suc n for some natural number n 1. A
natural number can also be represented using the decimal notation for natural
numbers (that is, Arabic numerals, but no sign or decimal separator). Addition
(+), subtraction (-) and multiplication (∗) are defined 2.

For natural numbers, 0 - n = 0 is a theorem. Tactics such as arith can be
used to prove many properties of arithmetic. However, this class of arithmetic
is undecidable in general.

Pairs and Tuples Tuples of values are represented by nesting elements of
a more primitive ‘pair’ type. Pairs associate to the right, and hence the tuple
(0, 1, 2) is an abbreviation for (0, (1, 2)). Elements in a pair can be different
types. They can be extracted from the pair using the functions fst and snd, for
the left and right element respectively.

Lists Finite lists of values can be represented using the list type in Isabelle/HOL.
The list type is parametrised by a single type variable, representing the type of
elements in the list. Thus, all elements within a list must be of the same type.

Literal list values are denoted by square brackets containing a comma-delimited
list of terms representing list elements. The list may be of arbitrary (but finite)
length, and may contain no elements. The empty list is denoted by [] or by
Nil, although the latter notation is usually only seen when performing case
distinction in proofs (such as in the base case for list induction).

1Occasionally Zero appears in proofs, although this is used for distinguishing cases and
is not a constant of the logic.

2Division, the modulus operator and the ‘divides by’ relation are also available, but not
used here.

3.1. The Isabelle System 39

The Cons operator can also be denoted by one of two infix notations: the
notation for consing a term x with a list xs which has elements of the same
type as x is x ·xs. List can also be appended to other lists. The notation for
appending a list ys to a list xs is xs@ys.

The standard hd and tl functions decompose the consed list into its constituent
head and tail. The hd function is underspecified for the empty list: it returns
an arbitrary element of the correct type.

Elements within a list can be accessed by their index within the list. This
avoids repeated explicit use of the hd function. The n’th element of a list xs

can be accessed by xs[n] or by xs!n. These notations are interchangeable.

Other functions on lists defined by Isabelle/HOL include higher order functions
map, zip and foldl. The map function has the type (α⇒β)⇒(α list⇒β list), where
α and β are type variables, and is used to apply a function to all elements in a
list of type α.

The zip function α list⇒β list⇒(α list×β list) constructs a list of pairs, where
the left and right elements in the n’th pair are the n’th elements of the first
and second lists arguments respectively. In this thesis, the first and second list
arguments always have the same number of elements.

The foldl function provides iteration over lists. It applies a given two argument
function for each element in the list. Its type is (α⇒β⇒α)⇒α⇒β list⇒α, and
is defined by recursion on the list:
foldl f a [] = a

foldl f a (x ·xs) = foldl f (f a x) xs

The given function f is first applied to an initial value a:α, and the element at
the head of the list. The function f is then applied to the subsequent elements
in the list, except that each time, the result of the previous application of f is
used instead of the initial value.

The foldl function applies f to list elements from left to right (head to tail).
Isabelle/HOL also defines a similar function foldr, which applies the function
from right to left (tail to head).

In this thesis, list iteration is used to define functions on lists that associate
the names of signals in a circuit with their values. Signal names in a circuit are
assumed to be unique at a given level of abstraction. These functions can be
defined using either foldl or foldr: the choice is rather arbitrary here, because
of the assumption that signal values are unique, and the values of f used. Only
function foldl is actually used here 3.

Strings Isabelle/HOL defines a string type as a list of characters. Characters
are, in turn, defined by a pair of ‘nibbles’, each of which may have one of sixteen
values. Thus, strings are represented using a single octet character encoding.
Values of the string type are denoted here in a sans-serif typeface to distinguish
them from identifiers: for example the string containing the single character

3Considering the order of elements in the list raises the question of whether the a list is
the most appropriate data type for this purpose. However, the use of list iteration functions
provides for executable semantic functions which aids the validation of the semantics.

40 Machine Support for Reasoning

‘A’ is written A. This notation was introduced because it is more compact than
the standard Isabelle notation ′′A ′′.

Bit values Bit values (or signal values) within a circuit are considered to
be distinct from the Boolean values. This is in contrast to the majority of
the hardware verification work performed using the HOL system, in which bit
values are represented as Boolean values.

Bit values are denoted by the terms 0 and 1. The operators on bit values
appear similar to the corresponding Boolean operators, but have a subscript to
denote the type. They include bit-wise ‘And’ (∧b), bit-wise ‘Or’ (∨b), bit-wise
‘Exclusive Or’ (⊕b), and the unary operator bit-wise ‘Not’ (¬b).

The bit type is defined in the Word section of the Supplemental Isabelle/HOL
Library [Ska05]. A word is represented by a bit list. For convenience, words are
interpreted as natural numbers. This is sufficient for the arithmetic used here.
The left-most bit is considered the most significant: 10 represents the natural
number two.

The library provides a theory about the correspondence between bit values
and the numbers that they represent. As a short-hand notation, the natural
number represented by a bit list bs is written �bs�.

Defining New Types

Type Synonyms In Isabelle/HOL, new types are defined as some, possibly
improper, subset of an existing type (although axiomatic definitions are pos-
sible, that approach is subject to the usual caveats with respect to ensuring
soundness). Given that all types must be inhabited, this excludes the most
trivial subset: the empty set. The simplest type definition is a type synonym,
which gives another name to an existing type. Therefore, the new type name
refers to a type with exactly the same members as the original type.

A type synonym is a ‘shallow’ type definition, in the sense that the two type
names are interchangable. Internally, the distinction between the two synonyms
is often lost, and the Isabelle system usually presents the name of the original
‘super’-type back to the user. The principle advantage of using type synonyms
is to improve the readability of theories and proof scripts.

Type synonyms are useful whenever an existing type has the properties required
to model a specific concept in a theory, and is sufficient for that purpose. For
example, in order to model an abstraction of time in a hardware circuit, a type
that has a well-founded order is often appropriate, where the least element can
be used to represent the time that the circuit was reset. Thus, the natural
numbers are often sufficient for modelling time for hardware modelling, and a
new type time can be defined as being synonymous with the natural numbers
using the types keyword in Isabelle/HOL:
types

time = nat

Datatypes Datatypes can be defined to represent a class of values where each
value in that class belongs to one, and only one, of a finite and fixed number

3.1. The Isabelle System 41

of sub-classes. Each sub-class is identified by a datatype constructor - conven-
tionally an identifier with an upper case initial character. They are similar to
the datatype construct in Standard ML, and other functional programming
languages. The bit type is defined thusly, using a datatype declaration:
datatype bit =

Zero (0) |
One (1)

The type of values in each sub-class can be different. Datatypes can be
parametrised with type variables, and the type of a sub-class can be defined in
terms of the type parameters.

Mutually recursive datatypes are allowed, and must be declared simultane-
ously: declarations of mutually recursive datatypes occur in the same top-level
datatype clause, and are separated by the and keyword.

Functions on datatype values can be checked for primitive recursion by ensuring
that the datatype constructor of one of its arguments has been ‘removed’, before
each recursive function application using that argument. Primitive recursive
functions usually have a definition for each datatype constructor. They can
also be underspecified by omitting a definition the definition for a datatype
constructor, as is the case with the list function hd. In this case, the function
behaves arbitrarily on values for which no defining clause was given. Functions
on mutually recursive datatypes are also defined simultaneously.

Case distinction between datatype constructors need not always be performed
on function arguments. The case . . .of . . . construct can be used within an
expression to distinguish between datatype constructors, and define a result
value for the whole expression based on the datatype constructor of a value.
Case expressions are similar to the case construct in Standard ML: clauses for
each constructor are separated by a vertical bar (|), and patterns containing
the constructor are separated from the result expression with a function arrow
(⇒).

Optional Values and Maps A datatype that is predefined in Isabelle/HOL
is option, which can be used to add a ‘distinguished element’ to an existing
type [NPW02]. The option datatype has two constructors: Some ’v and None.
The Some constructor can be used to denote a value of the polymorphic type
’v, and the None constructor can be used to denote the absence of such a value.

A function returning an option can be used to model maps in Isabelle/HOL. In
this context, None is used to denote a value for which the map has no value.
The Isabelle/HOL syntax for a map from type ’a to type ’b is ’a⇀’b.

Records Isabelle/HOL provides a means for defining records. Records can
be considered as tuples, where each component (known as a field) is identified
by a name, rather than by its position in the tuple. Hence, they are similar
to records in high-level programming languages. Record types are introduced
using the record keyword, and declare a name and type for each field:
record r t =

field1 :: type1

field2 :: type2

42 Machine Support for Reasoning

Once a record type has been declared, values of that type can be declared. For
example, a value belonging to the record type above can be declared using the
form r ≡ (| field1=val1, field2=val2 |), assuming the values val1 and val2 are of
type type1 and type2 respectively.

Field selectors for record values are functions on record values that return a
value of the type of the corresponding field. The field selector has the same
name as the field itself. Using the examples above, field1 r reduces to val1.

The record syntax of Isabelle/HOL is adapted to include an operator for up-
dating records, µ. The operator is applied to a record value, a field selector
and a value of the appropriate type for that field. The expression µ(r, f 7→v)

denotes the record r updated at f with the new value v. This syntax differs
from the Isabelle convention of r(f:=v).

3.2 Representation of key concepts

Comparing the behaviour of a conventional program to that of a program which
makes use of a custom function unit is a complex task if it is not easy to relate
the semantic objects in the software language definition, the semantic objects
in the hardware language definition, and the model of their interface. For
example, consider that it might be desirable to model machine words as natural
numbers in the software semantics, perhaps to enjoy the benefits of reasoning
about natural numbers when considering indexed memory access. On the other
hand, in the hardware model it may be more appropriate to represent a machine
word as a bit vector, an abstraction closer to those provided in hardware netlist
languages.

It is clear that there may be a disparity between the preferred way of modelling
a concept in the software semantics, and that of the same concept in the hard-
ware semantics. For each such disparity, there are two approaches to ensuring
that it still be possible to reason about those models. The first approach is
to use a common representation for each concept (such as bit vectors in the
example above), and attempt to ‘make do’ with a less natural representation.
The second approach is to use the most natural representation within each
model, and attempt to resolve the differences between models when relating
them. Thus there is some trade-off in the modelling: using a common rep-
resentation makes relating the hardware and software models simpler at the
cost of greater difficultly in reasoning about the individual models. Likewise,
using the most natural representation in each model makes reasoning about it
or using it easier, while making relating models more complex.

This section reviews the different approaches to representing two of the most
important types of semantic objects in a compiler intermediate representation:
addressable memory and machine words.

3.2.1 Memory representation

Addressable memory refers to random access memory, where the value at a
location specified by a given offset may be stored or retrieved. Thus, the
representation chosen for it affects the formal model of the stack, the heap,

3.2. Representation of key concepts 43

and global data areas. The program itself is also stored in addressable memory:
branch instructions can specify the address of the next instruction to execute.
In the context of a von Neumann architecture, all of these memory areas are
regions in a single addressable memory space.

Memory Regions

Each of these memory areas can also be considered as being divided further
into memory regions. An example of a type of region within an area of memory
is a branch table (or jump table). These can be stored within a global memory
area, and can be addressed using the index of the required value as an offset to
the base address of that jump table within the memory map. Such a region is
independent from other memory regions: it does not make sense to access the
region using any other base address.

Certain stack frames have a similar property, depending on how the function
that created the stack frame has been compiled. If the size of the stack frame
is not modified throughout the execution of a function, then it will have fixed
size. Local variables in that function can be addressed via a fixed offset from
the stack pointer. If that is the only way that local variables are addressed in
a given function, then it can also be considered as an independent region in
the sense used above.

Identification of independent memory regions is an important consideration
when designing hardware/software compilers for systems where the custom
function unit does not have direct high-speed access to a memory interface.
In these systems, there is greater overhead in transferring data to the custom
function unit, and performance improvements are achieved by pre-loading the
function unit with the required data [BL00]. Transferring the data to the
custom function unit, must be initiated explicitly by the program where the
function unit does not have direct access to the program memory.

Independent regions of memory may be appropriate candidates for transfer to
the custom function unit. This is likely to be feasible only when the region is
small enough to be stored in the limited memory resources of a function unit,
and when the time required to transfer data is less than the execution time
saved by using a function unit.

One complexity that arises when considering stack frames is that they typically
include pointers into frames higher up in the stack. However, while traditional
compilers can assume that the values on the stack are stored in a linear and
contiguous memory region, this assumption is not valid when certain local
variables have been transferred to the custom function unit.

Where a compilation targets a custom function unit, the local variables for
a given function (or group of functions) may be transferred to the function
unit, and any pointers transferred to the function unit may not be valid in any
memory region attached to the function unit. Thus care must be taken with
values that represent pointers to memory locations, and values that are used
as offsets to an index into a memory region.

The problem of pointers within the stack can be generalised to a more funda-
mental problem: the need to consider the type of the values that are manipu-

44 Machine Support for Reasoning

lated by a program. As a result, it is appropriate to consider modelling types
of intermediate values used within the computation, in addition to modelling
the actual values used.

Modelling Addressable Memory

Memory regions can be modelled in several ways. In order to consider which
models are appropriate, it is necessary to consider the properties required in a
model of memory regions. It is also necessary to consider the target architecture
in order to avoid a mismatch between the model and the architecture.

One property of memory regions is that they must be able to model arrays and
branch tables. For this, the model (and hence the underlying architecture) must
support access using indexed addressing: that is, addresses can be constructed
by adding an offset to a base address. Memory access via an ‘opaque’ token may
be sufficient for addressing local scalar variables, but in general, is inadequate
for modelling the semantics of intermediate representations that are typically
used by compilers.

The simplest approach to providing indexed addressing is to use natural num-
bers to represent memory locations. This allows an index to be the result of an
arbitrary arithmetic expression. This is the approach adopted in the languages
developed in this thesis.

A memory region could be modelled as a function from such locations to the
individual values stored at each location. Alternatively, it could be modelled
as a list of values where the index of each element corresponds to the memory
address.

Regardless of which representation is used, it should be noted the valid ad-
dresses within a memory area may not be contiguous. For example, in a system
where the stack grows downwards, and the heap grows upwards, there may be
a ‘gap’ in the memory map. Attempting to use addresses within this gap may
result in a segmentation fault, which in turn, could cause a program to be
terminated by the operating system. Alternatively, the target system may not
have enough memory such that there is a memory location for every possible
data value that can be computed as an index.

Furthermore, it is should be considered that in general, memory regions in a
program are likely to contain uninitialised values. For example, values that
can be observed within the current stack frame could have been stored by
a function that was called prior to that currently being executed. Thus not
only will some addresses refer to invalid areas of memory, others will refer to
uninitialised areas of memory.

If a memory region is modelled as a function from locations to values, it is
necessary to consider whether it be a total function or a partial function. Given
that the memory map for a program is not contiguous, and that locations may
not have been initialised, intuitively it may seem appropriate that a partial
function be used to model the memory map.

Being a logic of total functions, it is not possible to define partial functions
directly in Isabelle/HOL. Instead, they can be represented as a total function
that returns an optional value of type α option, where option is a datatype

3.2. Representation of key concepts 45

parametrised on a single type α, with constructors Some α and None, and
where α represents the range of the partial function being represented. In
Isabelle/HOL, this is referred to as a map. Where the partial function being
represented evaluates to a value v for a given argument, the Isabelle/HOL
representation of that function evaluates to Some v. Where the partial function
is not defined for a given argument, the Isabelle/HOL representation of that
function returns None.

Alternatively, a finite map could be used instead of a partial function, because
the domain includes only a finite number of locations. Wildmoser provides
a definition of finite maps based on lists in Isabelle/HOL [WN04]. One of
the features of the definition is that it supports the generation of executable
Standard ML code.

The purpose of Wildmoser’s definition is to support the verification of par-
ticular programs, rather than the purpose of this work: the consideration of
the properties of a compilation algorithm. As such, Wildmoser’s definition is
unnecessarily complex for the purpose here.

Instead, it suffices to use a total function for modelling memory here. The
reasons for this are as follows. Firstly, the ability to execute them efficiently
within a theorem proving environment is of limited value, because the aim
here is not to verify individual programs. Thus the use of the existing finite
map theories for code generation to Standard ML merely adds unnecessary
complexity.

Secondly, this work makes various assumptions about the memory safety of pro-
grams to be compiled for an architecture with a custom function unit. Specifi-
cally, it is assumed that programs do not use self-modifying (or self-examining)
techniques that could affect the separating out parts of the program that can
be executed in a custom function unit. These properties are similar to the
property that a program does not use uninitialised or attempt to access invalid
memory locations, and establishing that this class of properties holds for a
given problem is beyond the scope of this thesis. This means that all memory
accesses are assumed to be valid here.

Under these assumptions, total functions are used to model the memory space
of a program in this thesis. This is consistent with existing literature that
uses Isabelle/HOL to relate the semantics of different programming language
definitions [Nip98].

Approaches to the problem of establishing memory safety properties for a given
program, or for all programs that have certain static properties, can be found
in literature that describes proof-carrying code [Nec97, WNKN04, App01] and
typed intermediate languages [SA01, XH01, Cra03].

3.2.2 Number representation

The type of semantic object used to model the memory map of a program was
discussed in the previous section, and the use of a total function to represent
it was considered to be adequate for the purposes here. Furthermore, it noted
that, because of the requirement for address arithmetic, natural numbers form
a suitable domain for that function.

46 Machine Support for Reasoning

The purpose of this section is twofold. Firstly, it identifies several alternative
representations for numeric values, including those that are appropriate for use
as the domain of the memory map. Secondly, it considers a suitable range for
the function representing the memory map.

There is, of course, some overlap between these two concepts. The range of the
memory map function represents the values that can be stored by a program.
It should be clear that, in general, some of the values stored by a program
will be numeric values, and that some of those values will represent memory
locations.

The sets of values used to represent locations and values form part of the
language definitions used in the specification of a compilation algorithm. Where
the target of the compilation algorithm is a low-level language, perhaps with a
similar level of abstraction to assembly language, these values typically model
machine words in a physical system.

Machine words can represent only a finite set of values, due to their repre-
sentation as a bit vector : an ordered set of bit values of fixed length. When
producing a language definition, it is necessary to consider whether locations
and values will be modelled by a finite type, or approximated by a type with
an infinite number of values. The use of approximations in a formal treatment
of a language definition can allow larger verification problems to be tackled, at
the cost of having a definition that is not ‘fully formal’ [ST99].

The need to address this issue arises from the requirement to specify the se-
mantics of operators, such as assembly language instructions, that manipulate
machine values. Were it not for this requirement, it would be sufficient to
represent machine words using an abstract type, and the semantic functions
for primitive operators could be omitted from the definition. Nipkow provides
some examples of the use of an abstract type to represent values in language
definitions defined in the Isabelle/HOL logic, where the semantics of the oper-
ators on values are not defined [Nip98, NPW02].

Instead, it is necessary to define a type for machine words that is not abstract.
In the Isabelle/HOL framework, it is conventional to do so by defining a sub-
type of an existing type [NPW02, §8.5]. Where machine words are represented
using a finite type, they can be represented as a finite subset of the natural
numbers or integers.

Rauch and Wolff describe two different approaches to the formalisation of
machine words that store integer values that are interpreted using the twos-
complement system [RW03]. Each assumes that machine words of length n

represent values between −2n−1 and 2n−1− 1, denoted here by Zmin and Zmax

respectively.

In one approach, termed the partial approach, operators on machine words are
partially defined: an operator is defined if and only if the result of the operation
can be represented by a machine word. In this approach, the expression Zmax+1

is undefined.

In the other approach, the wrap-around approach, operators are defined such
that their behaviour more accurately represents the usual machine implemen-
tation of those operators. In this approach, Zmax + 1 = Zmin.

3.2. Representation of key concepts 47

An alternative to the use of a finite subset of numbers is to represent machine
words as a list of bit values [Mel93]. Additionally, machine words can be
represented as a sub-type of bit value lists. In this case, the sub-type includes
only bit value lists of the same length as a machine word. In Isabelle/HOL,
this type can be denoted by m word = {x :: bit list. length x = n}, where n is
the length of a machine word. The wrap-around approach is appropriate when
using bit lists to represent machine words [RW03].

It is more convenient to define some operators on machine words in terms of
their bit list representation, rather than in terms of the integer that it repre-
sents. For example, an operator that performs an n+1 bit rotation on a register
and the carry flag can be defined on a register reg represented by a bit list, and
a carry flag represented by a single bit as follows:

rotateLeft reg carry ≡ (tl reg @ [carry], hd reg)

A definition based upon the numerical interpretation of the value stored in the
register would vary depending upon whether a twos-complement or unsigned
interpretation was being used. Furthermore, it would be less clear that the
definition represented a bit rotation because of the need to use arithmetic
operators on the numeric value.

When defining semantic functions that operate on bit lists representing machine
words, it is appropriate to ensure that words produced by semantic functions
are the correct length, in order to ensure that the intuition underlying the
semantics is faithfully represented.

The means for ensuring that semantic functions on machine words produce ma-
chine words of the correct length vary according to the formal framework being
used. For example, using the Vienna Development Methodology [Jon90b], a
machine word type could be defined as a bit list with invariant length. It would
then be necessary to discharge a series of proof obligations in order to show
that semantic functions that return machine words respect that invariant.

In formal frameworks that provide a restricted form of dependent types [Pie02],
ensuring the correct length of a list can be reduced to type checking. In this
approach, the type of a list can be an indexed type, where the index corresponds
to the length of that list. Furthermore, the types that appear in the signatures
of functions on lists include variables denoting the length of lists upon which
they operate.

For example, the hd function can be defined with the type Πn::N1.bit list(n)⇒bit,
where N1 denotes the non-zero natural numbers. The type indicates that the
function operates on lists of any length n. In a similar manner, tl can be defined
with the type Πn::N1.bit list(n)⇒bit list(n-1), indicating that the resulting list
from tl is one element shorter than the argument. Thus the task of ensuring
that the rotateLeft function above returns a machine word of the correct length
is reduced to type checking.

The Isabelle/HOL system does not support dependent types. The methodology
for verifying the validity of machine words produced by semantic functions is
less obvious in this framework, particularly where a separate type (such as
m word, rather than simply a bit list of fixed length) is used to represent machine
words.

48 Machine Support for Reasoning

However, Paulson briefly mentions a useful relationship between dependent
types and existential quantification [Pau90, §5]. An expression with dependent
types can be rewritten as a proposition that a witness value exists that satisfies
the properties of the dependent type.

Using the definition of the m word type on the preceding page, the Isabelle
system defines two constants, namely Rep m word and Abs m word (cf. [NPW02,
§8.5]. Rep m word is a function of type m word⇒bit list, and is specified for all
values of type m word. Its range is a subset of all bit lists: namely those of
length n, where n is that used in the definition of m word.

The Abs m word function is of type bit list⇒m word. Where its argument is a
bit list within the sub-type defined by the m word type definition, Abs m word

simply returns the corresponding value from that type. Its behaviour is under-
specified on arguments that are not also a member of the sub-type.

The Isabelle system defines properties that characterise this relationship be-
tween Abs m word and Rep m word, namely that machine words are isomorphic
with their representation as a bit list. Specifically, given that m word repre-
sents the subset of bit lists of the same length as machine words, it asserts the
following as theorems:

1. Abs m word (Rep m word m w) = m w
2. bs ∈ m word ⇒ Rep m word (Abs m word bs) = bs
3. Rep m word m w ∈ m word

The assumption in the second theorem notes that the isomorphism exists only
between machine words and bit lists for bit lists that are of the correct length.
Thus, where Abs m word is used to convert a semantic object of the bit list
type into a machine word, it is useful to ensure that the bit list is always of
the correct length.

In summary, although it is not possible to verify bit list length properties in
Isabelle/HOL using type checking alone, such properties can still be verified
using the theorem prover. One approach to this is to define semantic functions
in terms of bit lists, rather than on machine words, and verify the bit level
properties of those functions as auxiliary lemmas, before using the Abs m word

function to create semantic objects of the appropriate type.

3.3 Representation and Reasoning about Hardware

This section considers how hardware logic can be represented by expressions in
higher-order logic, and more specifically, the Isabelle/HOL framework which
was introduced in Section 3.1.2. It also describes briefly how it is possible
to use formal reasoning to analyse the behaviour of circuits represented by
higher-order logic expressions.

The concepts introduced in this section form the basis of the definition of a
structural netlist representation, which is introduced in Chapter 5 and further
developed in Chapter 6. These chapters provide a formal semantics for the
netlist representation, and are given in Isabelle/HOL. Thus, this thesis does
not consider how to target commonly used HDLs, such as VHDL or Verilog,
for which there are existing EDA synthesis tools.

3.3. Representation and Reasoning about Hardware 49

Section 3.3.1, Hardware Representations discusses the rationale for using a new
representation in this thesis, in favour of using an existing HDL to represent
hardware. Section 3.3.2, Representing hardware in HOL describes how higher
order logic can be used to model hardware behaviour.

3.3.1 Hardware Representations

When designing a hardware/software compiler it is necessary to select which
language will be targeted for describing the hardware logic design for the RFU.
As the logic design produced by such a compiler is to be implemented using
reconfigurable hardware, it is appropriate to represent that design in an HDL
that can be translated into a configuration for the targeted reconfigurable logic
device. The generated design could be synthesisable, for example, expressed in
a synthesisable subset of an HDL, or it could be a structural description of the
required design.

An obvious approach for a hardware/software compiler would be to target
an existing HDL, as supported directly by existing synthesis tools for recon-
figurable logic. The hardware/software toolchain can then convert the logic
design generated by the compiler into a reconfigurable hardware configuration
using existing EDA tools, just as it converts the assembly language generated
by the compiler into object code using an assembler.

The use of an existing reconfigurable logic toolchain would likely greatly reduce
the cost of the development of a new hardware/software compilation toolchain.
However, in the context of this thesis, the cost or convenience of compiler im-
plementation represents only one factor in the selection and design of hardware
representation.

In order to specify the correctness of a compilation algorithm precisely, a formal
semantics of each language or representation used by the compiler is required.

Formal Semantics of Existing HDLs

Typically, HDLs supported by reconfigurable hardware synthesis tools do not
have a formally defined semantics. Such HDLs are thus unsuited to the pur-
pose here: the consideration of the correctness criteria of a hardware/software
compiler.

However, to state that commonly used HDLs have no defined semantics would
be inaccurate. For example, the simulation semantics of VHDL and Verilog
— two HDLs commonly supported by tool sets for FPGAs — are described in
their respective language manuals [IEE02, IEE01] albeit in natural language,
rather than a form conducive to formal reasoning. Furthermore, the mapping
between language constructs in these HDLs and hardware designs is described
in the synthesis manual for each language [IEE04b, IEE04a].

There have been various attempts to retrospectively construct a formal seman-
tics of these two languages. For VHDL, these include an operational semantics
for a zero-delay subset [vT95]; a process algebraic approach [BM95], and an em-
bedding in the Nqthm theorem proving system by Boyer and Moore, including
a LISP implementation [Rus94].

50 Machine Support for Reasoning

A number of attempts to provide a tractable semantics for Verilog have also
been made. In 1995, Mike Gordon identified Verilog as “a relatively simple
real-world language in need of theoretical support”, and provided an outline of
how a formal semantics for a simplified version of Verilog, which he named V,
might be defined [Gor95].

Schneider and Xu later described a formal semantics for a subset of Verilog that
they called V−, in recognition of Gordon’s definition [SX98]. Their semantics
were based on Duration Calculus, extended to allow reasoning about events
with zero duration and the causality between them, and about behaviours over
non-finite time intervals.

An operational semantics of a subset of Verilog was later developed, having
been prototyped in the logic programming language Prolog [Bow99, BHX00].
The Prolog implementation was used in the validation of the semantics, as it
provided an executable model in which the behaviour of a hardware design
under those semantics could be determined mechanically. In particular, the
use of Prolog allowed exploration of the different behaviours that might arise
due to the non-determinism present in the semantics.

Correctness in Hardware Synthesis

The semantics of VHDL and Verilog as defined in their respective language
reference manuals are ‘simulation semantics’, meaning that they specify an ab-
stract interpreter for those languages. The formal semantics that have been
defined retrospectively for these languages also include the notion of a simula-
tion cycle.

An alternative to defining the semantics of HDLs in terms of a simulation cycle
is to represent hardware designs directly as expressions within a formal system,
such as higher order logic. This technique is the subject of Section 3.3.2.

The extent to which semantic definitions based on a simulation cycle model
are conducive to formal reasoning about hardware designs appears to be rather
limited. At least, such approaches appear limited when compared with the for-
mal reasoning admitted by techniques that represent hardware designs directly
as expressions within a logic. For example, Gordon’s HOL system has been
used to model and verify a microprocessor architectures at different levels of
abstraction [Fox02, Fox01a]. However, formal reasoning using models of the
simulation semantics for VHDL and Verilog appears to have been conducted
only on much simpler hardware designs [KB95a].

Furthermore, there do not appear to be any results that demonstrate that
the behaviour of a hardware design according to those formal semantics is
consistent with the behaviour of a lower level hardware design derived from the
transformations described in the synthesis manual for those languages. That
is, whether the behaviour according to the formal semantics commutes with
respect to both the transformations described in the synthesis manual for each
language, and a model of the primitives targeted by the those transformations.
Therefore, even where a formal semantics exists, it may not be clear that the
design will implement the modelled behaviour when synthesised according to
the rules in the synthesis manuals.

3.3. Representation and Reasoning about Hardware 51

The fact that the majority of existing tools for producing configurations for
reconfigurable hardware use languages with no formal semantics cannot be
overlooked. Even if a hardware/software compiler were developed and shown
to be correct, the process of generating a logic design for the function unit is
still susceptible to any flaws elsewhere in the toolchain.

However, this problem can be mitigated by reducing the assumptions made of
other components in the toolchain. For example, if a hardware/software com-
piler generates a netlist-level description of a logic design, then it is no longer
necessary to rely on synthesis tools that generate a netlist-level representation
from high-level HDLs — the bugs in the synthesis tool cannot manifest if the
tool is never invoked.

Summary of Hardware Representations

In this section, a number of requirements have been identified for a hardware
representation to be used for formal reasoning about hardware/software com-
pilation. To summarise, with only limited correctness guarantees for existing
synthesis tools, a representation for this purpose should:

• be sufficiently expressive that it can be used for representing logic designs
for function units;

• have a formal semantics suited to reasoning about the correctness of
designs;

• have both abstract representation (for manipulation in the compiler) and
a concrete representation (which forms the input to subsequent tools in
the toolchain); and

• have a relatively low-level representation, that can be translated in a
straight-forward manner into a format suitable input for tools that map
designs onto a targeted technology.

To elaborate on the third requirement: just as manipulating an assembly lan-
guage representation of a program within the compiler would be inappropri-
ate for compilation into software, it would be inappropriate to use a conven-
tional HDL as an intermediate representation for logic designs. Representations
based on text-based representations would require parsing during each compiler
phase. Representations based on abstract data types allow the program repre-
sentation to be annotated with information that is derived from pragmas and
analyses, and with information that supports optimisations.

The last requirement listed avoids relying on a correct high level synthesis tool
for hardware. This raises the question of whether one should assume a correct
high level synthesis tool when developing a hardware/software compiler, and
then proceed to applying similar techniques to the development of the synthesis
tool. However, this only shifts most of the proof burden into a separate tool:
at some point it is necessary to address the problem of reducing a high level
representation into a low level representation.

A netlist level hardware representation is presented in Chapter 5 and Chapter 6,
and is intended to satisfy each of these requirements. It is based on existing
techniques for modelling and reasoning about the behaviour of hardware using
higher order logic. These techniques are introduced in the next section.

52 Machine Support for Reasoning

3.3.2 Modelling Hardware in HOL

This section describes the use of higher order logic for representing and rea-
soning about hardware designs. It is intended to provide sufficient explanation
that readers who are not familiar with the approach can follow the presentation
of the netlist language in later chapters. For a more detailed account of this
approach, the reader is referred to more thorough treatments [Gor86, Mel93].

Representing hardware in HOL

The use of higher order logic for specification and verification of hardware de-
signs was originally proposed as part of the VERITAS project after previous
approaches based on first order logic [HD86]. The description of the approach
given here assumes slightly higher level circuit primitives: rather than consid-
ering a circuit at the transistor level, the primitives used here are logic gates.
This is a more appropriate level of abstraction where the primary target tech-
nology is likely to be that of an FPGA.

In this approach, digital logic designs are represented directly as predicates
within the logic. That is, components are represented by a HOL term of type
bool — the Isabelle/HOL type for Boolean values. Free variables in the term
represent the external signals of that component.

To illustrate the technique, its application to a logical And gate and Xor gate
(illustrated in Figure 3.1) is demonstrated here.

A

B
O

A

B
O

Figure 3.1: And gate and Xor gate

The external signals of both components are labelled A and B and O. These
become free variables in the HOL representation of each component. In Is-
abelle/HOL, a parametrised constant can be defined for each component. Each
parameter becomes a schematic variable representing one of the external sig-
nals. These are logically free variables that can be instantiated later. Constants
to represent the And gate and Xor gate can be defined as follows:

MAnd A B O ≡ A ∧ B = O (3.1)

MXor A B O ≡ A ⊕ B = O (3.2)

The symbols ∧ and ⊕ are infix Boolean functions with a truth table that
corresponds to that of the logic gate that it is used to represent. The names
MAnd and MXor are constants with an arity equal to the number of external
signals, and their definitions (the right hand side of the structural equality) are
the Boolean terms that represent the And and Xor gate respectively.

The intuition behind the representation is straight-forward: the Boolean values
True and False correspond to the binary logic levels that signals in the circuit
may take. The Boolean term on the right hand side of the structural equality
has the value True if, and only if, the combination of signals represented by

3.3. Representation and Reasoning about Hardware 53

its free variables can be simultaneously observed on the external signals of the
logic gate.

For example, if either of the inputs A or B to the And gate is logical False, then
the only way the Boolean expression MAnd can hold is if the value of the output,
labelled O and represented by the Boolean variable O, is also False. Likewise,
if the Boolean variable O is True, then the values of A and B must both be
True in order to for the term MAnd to hold. In this respect, MAnd is True only
when the values of A, B and O represent signals that may be simultaneously
observed on the external pins of the And gate.

An important property to note is that, for these gate level primitives, the
term used to represent the primitive in a circuit is identical to the term that
specifies the behaviour of the primitive. In the context of the examples above,
although the Boolean operators (which are simply HOL constants with an arity
of two) are used to denote components within the circuit, the semantics of those
operators also form the specification of the components that they denote. Thus,
HOL terms can be used not only to represent circuits and components, but also
to specify them.

The sections that follow show how more complex components can be repre-
sented. For more complex components, there may be a number of designs that
satisfy the required behaviour of a component. In such designs, the represen-
tation of a circuit as a term in higher order logic is not necessarily identical to
the term that represents a specification of its desired behaviour.

In practise, the specification of components is seldom the same as the rep-
resentation of a component that satisfies that specification. The process of
verification involves showing that the term that specifies a components be-
haviour is a logical entailment of the term that represents the structure of the
component.

The variable names used to denote external signals are not significant: a HOL
term representing a circuit can be modified to refer to a different set of external
signals by consistently replacing each occurrence of a free variable with a new
free variable.

Terms denoting circuits can be in either curried or uncurried form. In the
examples above, they are shown in the curried form.

Composition

Circuits that consist of a number of components can be represented by compos-
ing the terms representing each component using conjunction. As an example,
a term that represents a half-adder (illustrated in Figure 3.2) can be either be
denoted as shown in Equation 3.3, or as shown in Equation 3.4.

MhalfAdd A B C S ≡ (A∧B = C) ∧ (A⊕B = S) (3.3)

MhalfAdd A B C S ≡ MAnd A B C ∧ MXor A B S (3.4)

A term representing a number of components is True only when each of its
conjuncts that represent a component is True. The underlying intuition is that
the new term is True when the signals represented by all of the free variables
in that term may be observed simultaneously in the represented circuit.

54 Machine Support for Reasoning

A

B
S

C

Figure 3.2: Half adder

By using the same variable names in the expression that represents the And gate
as those in the expression that represents the Xor gate, the connections between
those two components can be represented. Components that are connected to a
common signal can be represented in HOL, by ensuring that the same variable
name is used in the expressions that model those components.

Likewise, if two components are not directly connected, then the free variables
in the HOL terms representing them can be modified as described above, until
they contain no common free variables.

Thus far, the HOL bool type has been used to represent both signal values,
components and their specification. It is important that components and their
specifications have the type bool, because this is used as part of the verification
process in which the specification is shown to be a logical entailment of the
term representing the component,

However, there is no requirement that the type bool be used to represent signal
values. The bit value type introduced on page 40 can be used to represent
signal levels instead. In this case, the half adder can be represented as follows:

MhalfAdd A B C S ≡ (A∧b B = C) ∧ (A⊕b B = S)

In this expression, A, B, C and S are all bit values, but the complete HOL term
is still of type bool. If MAnd and MXor were defined in terms of bit values
rather than Boolean values, then the definition given in Equation 3.4 would be
equivalent to the above definition.

Using the syntax introduced on on page 40 to denote the integer value of a bit
list v by �v�, the specification for the half adder can be denoted in terms of
arithmetic:

halfAdd A B C S ≡ �A� + �B� = �[C, S]�

This states that the sum of A and B, which are both one bit values, is equal to
the two bit output value where the carry bit C is the most significant bit. The
verification condition for this component is then formulated as:

halfAdd A B C S =⇒MhalfAdd A B C S

Abstraction

Figure 3.3 shows an implementation of a full adder: its external behaviour is
characterised by the possible combinations of values at the external pins —
A, B, C in, S and C — which represent two inputs to be added; a carry in value;
the sum output and the resulting carry output respectively.

3.3. Representation and Reasoning about Hardware 55

s
1

1
c

c
2

Cin

B

A

S

C

Figure 3.3: Full adder

halfAdd

halfAdd

A

B

Cin S

Cout

Figure 3.4: Full adder

The specification of a component should be described in terms of its exter-
nal behaviour and without reference to its internal signals. In the full adder,
the internal values — s1, c1 and c2 — cannot be observed externally. Thus,
when reusing the full adder, their values should not be of concern: any set
of internal values is allowed provided the component satisfies its specification.
A specification of the arithmetic properties of a full adder can be written as
follows:

fullAdd A B C in C S ≡ �A� + �B� + �C in� = �C, S�

Since the specification of a component is expressed in terms of the free variables
in the HOL term specifying that component, the internal values should not be
visible as free variables in the term representing its structure. The following
definition of a full adder shows how existential quantification is used to hide
internal signals. Only the internal signals are bound by the quantifier, while
the remaining terms are free.

MfullAdd A B C in C S ≡ ∃ c1, c2, s .

(A ∧ B = c1) ∧ (A ⊕ B = s1) ∧
(C in ∧ s1 = c2) ∧ (C in ⊕ s1 = S) ∧
(c1 ⊕ c2 = C out)

(3.5)

The above definition is more complex that it need be. It can be seen that the
implementation of the full adder is simply two half adders and a further gate.
A better definition would reuse the definition of the half adder, allowing the
correctness of the full adder to be shown using lemmas about the correctness
of the half adder implementation.

MfullAdd A B C in C S ≡ ∃ c1, c2, s .

MhalfAdd A B c1 s1 ∧
MhalfAdd C in s1 c2 S ∧
MXor c1 c2 C out

(3.6)

This definition is illustrated by Figure 3.4.

The use of existential quantification can cause problems during circuit verifi-
cation. The verification condition for a circuit with specification Spec and an

56 Machine Support for Reasoning

implementation Imp is Imp=⇒Spec. Where the HOL term includes existentially
quantified terms to represent internal values, it is necessary to ensure that a
set of witness values can be found that makes the antecedent true, and hence
satisfy the implementation model.

If there no set of internal values that satisfies the model, then (since Imp is an
existentially quantified term) the antecedent will be false, and the verification
condition will become trivially true. This could lead to an incorrect hardware
design apparently being verified as correct, unless care is taken to ensure that
witness values can be found to satisfy the model.

Sequential logic

The discussion of the examples presented above has not addressed how to model
the behaviour of a circuit over a period of time. It has been possible to avoid
this issue by assuming the logic gates have zero delay, and by considering only
combinational circuits that have no ‘feedback’ connections.

However, this class of circuits is more limited than circuits used to implement
many digital logic designs, including processors and function units. Such de-
signs typically use sequential logic, in order that the circuit can maintain some
state information. This state can vary over time, and changes to the state are
triggered by signal events. In synchronous designs, the rise or fall of a clock
signal usually effects a change in state. The state may be maintained by read-
ing and writing to a clocked register or memory. In asynchronous designs, a
change in state can happen as a result of handshaking between components.
Fortunately, the approach described thus far is easily extended for sequential
logic in order to model the behaviour of circuits over time.

Time, being a linear property, is typically modelled as a natural number (as
a nat in Isabelle/HOL) that is monotonically increasing. The granularity with
which time is measured varies depending on the purpose of the model: in a
model of a synchronous circuit, each time unit may represent one clock cycle.
In this approach, combinational logic is assumed to have zero delay (or rather,
the issue of signal timing is deferred until a ‘place and route’ process).

In a transistor level model intended for reasoning about the temporal order
of signal events, each unit of time may represent a much smaller duration,
perhaps smaller than the delay of a single transistor gate. Intuitively, this
usage is similar to the femto-second time unit in VHDL: that is, it must be
capable of finer granularity than other time units used in the model.

In order to model sequential logic, the behaviour of a signal over time can be
modelled as a function of time: either as nat⇒bool or as nat⇒bit. Where the
granularity of time is sufficient to model gate delay, the behaviour of the And

gate could be characterised by the following specification, in which A and B

are of type nat⇒bool; n ranges over time, and δ represents the gate delay.

∀n. A n ∧ B n = O (n+δ)

Where the gate delay is ignored, and the granularity of time is the duration
of a clock cycle, the definition given in Equation 3.1 can be applied, with the
understanding that A, B and O now refer to the behaviours of each signal,
rather than to their value directly.

Chapter 4

Intermediate Representation

Contents
4.1 Requirements for a Hardware/Software IR 58

4.1.1 Representation of Fine-Grained Parallelism 58

4.1.2 Flexibility for Hardware/Software Compilation . . . 59

4.2 Analysis of Existing Representations 59

4.2.1 Static Single Assignment Form 60

4.2.2 SSA in Isabelle/HOL 63

4.2.3 Pegasus . 67

4.3 Formal Definition of a Hardware/Software IR 72

4.3.1 Abstract Syntax 72

4.3.2 Semantics . 79

Compilers may transform a program in a high-level language into one or more
intermediate representations (IRs) before translating it into the target lan-
guage, rather than translate the source program directly into the target lan-
guage [Muc97]. The use of an IR allows the task of compilation to be decom-
posed into smaller stages. An IR may be considered as an ‘abstract language’
— a language that does not necessarily have a concrete syntax — which is used
as the target language for at least one compilation stage and as the source lan-
guage for the next stage.

One of the benefits of using an IR was described in Section 2.2; the use of IRs
improves modularity, decoupling the front-end of a compiler from the back-
end. This reduces the number of compilation algorithms that need to be im-
plemented for retargetable compilers. This is particularly advantageous for
hardware/software compilers, where the target architecture may change dur-
ing the life-cycle of an application, for example, to use new components with
greater reconfigurable logic capacity as they become available.

In order to provide a precise specification of each compiler stage, a formal
definition of each IR is required. This chapter presents a formal definition of
an IR, including its abstract syntax and semantics. It is designed such that
a fragment of the program in the representation may be passed on to either
a compiler’s software back-end, or to the hardware back-end. This means
that it must be sufficiently flexible that it be possible to generate code for

57

58 Intermediate Representation

any part of a compilation unit expressed in the representation, and that it be
possible to generate a logic design for those parts that are to be implemented
in reconfigurable logic.

This chapter presents a formal definition of an intermediate representation,
including its abstract syntax and semantics. It is designed such that a fragment
of a program in the representation may be passed on to either the compiler’s
code generation backend, or to a backend that generates hardware designs.
More specifically, the intention is that it be sufficiently flexible that any part
of a compilation unit expressed in the representation may be passed to the
code generator, but there is no requirement that it be possible to generate a
hardware design for an arbitrary compilation unit.

In Section 4.1, Requirements for a Hardware/Software IR, the requirements for
an intermediate representation appropriate for reasoning about retargetable
hardware/software compilation are discussed. Section 4.2, Analysis of Existing
Representations describes two existing IRs that satisfy an approximation of
these requirements. These two representations form the basis of the formal
definition developed here, which is presented in Section 4.3, Formal Definition
of a Hardware/Software IR.

4.1 Requirements for a Hardware/Software IR

In designing an IR, it is appropriate to ensure that it be usable at some stage
in compilation: an IR is useless if it cannot be targeted by a parser or existing
compilation stage. Furthermore, the design of an IR has implications for the
specification of a compilation stage in which it is used. In other words, in
designing an IR to be used as the source of a compilation stage that is intended
to be formally verified, it is necessary to ensure that it be possible to relate the
semantics of that IR to that of the target of the compilation stage.

A similar requirement is that IRs intended for initial compilation stages have
semantics that can be related to the source language, and IRs intended for late
compilation stages have semantics that can be related to a model of the target
architecture. These requirements are, of course, in addition to those related
to the analyses or optimisations that the IR is intended to support. In this
section, the requirements specific to IRs for hardware/software compilation are
considered.

4.1.1 Representation of Fine-Grained Parallelism

Techniques for hardware/software acceleration may be broadly classified into
two categories [BD02]. One approach is to develop hardware acceleration for
specific source language constructs (such as ‘case’ statements). The other ap-
proach is to use data-flow analysis to group operations that could be combined
and implemented in a function unit. The latter approach receives the focus
here.

Using data-flow based techniques, operations that can be either combined, or
executed in parallel may be grouped together and compiled for a reconfigurable
function unit. In each case, the use of the function unit to execute those opera-

4.2. Analysis of Existing Representations 59

tions can provide hardware acceleration. In order to group together operations
that may be executed in parallel, it is necessary to consider IRs that permit
analyses required to identify such parallelism, and also IRs in which that par-
allelism may be represented explicitly.

IRs in which parallelism may be represented include the Value Dependence
Graph [WCES94]; Dependence Flow Graphs [PBJ+91]; Static Single Assign-
ment, and variations including Gated Single Assignment [OBM90], Thinned
Gated Single-Assignment (TGSA) [Hav93] and Predicated Static Single As-
signment (PSSA) [CSC+99].

4.1.2 Flexibility for Hardware/Software Compilation

An ideal IR is sufficiently flexible that it can be used to cover a wide variety
of target architectures from a variety of source languages. In the context of
hardware/software compilers, the required flexibility is that it be possible to
generate object code and a hardware design that can be used for a reconfig-
urable function unit. Furthermore, the IR should enable an improvement in
the performance of compiled programs relative to that achieved by compiling
to a similar architecture without reconfigurable logic.

An IR for conventional hardware architectures may be sufficiently flexible that
it can be used to target architectures that differ in a number of ways, including
instruction set complexity (both RISC and CISC); capability (such as the avail-
ability of floating point hardware); supported memory addressing techniques
and machine word size [Sta02]. Using such an IR, many intermediate compila-
tion stages can be described independently of these variations, deferring these
problems to a machine-specific translation compilation stage.

In designing and evaluating an IR for retargetable hardware/software compila-
tion, the flexibility of the IR with respect to all the above variations in target
architectures should be considered. However, additional design parameters are
introduced when reconfigurable logic is used, and it is appropriate to evaluate
the extent to which an IR provides abstractions that support retargetability
for hardware/software compilation. These design parameters include those re-
lated to the capacity and type of reconfigurable logic used, and also the way
in which it is integrated into the architecture. Various options for these design
parameters were discussed in Section 2.3.1.

4.2 Analysis of Existing Representations

This section describes two existing intermediate representations. Both IRs al-
low the explicit representation of fine-grained parallelism. However, neither
appears to satisfy all of the requirements for an IR for retargetable hard-
ware/software compilation identified in the previous section. Nevertheless,
both satisfy many of the identified requirements, and the two representations
form the basis of the IR that is developed in Section 4.3.

The abstract syntax and semantics of each of the two representations are de-
scribed here. These are accompanied by an explanation of which aspects of

60 Intermediate Representation

the representation make it inappropriate for the formal framework developed
in this thesis.

4.2.1 Static Single Assignment Form

Static Single Assignment representations allow the explicit representation of
data flow and control flow dependencies, and have been described as ‘the pre-
ferred intermediate representation in modern optimising compilers’ [Gle04].

A procedure is in Static Single Assignment (SSA) form if, and only if, each
variable has at most one assignment in the static program text [RWZ88]. This
is a property of the program source only: a program in SSA form may still
make repeated assignments to a variable during its execution due to iteration
or other control flow constructs present in the program.

Abstract Syntax

A procedure can be represented as a list of tuples where each tuple represents
an operator, a number of arguments and optionally, a label. This representa-
tion is illustrated in Figure 4.1a. This can then be converted into SSA form
by creating a new variable for each assignment to a variable in the original
(non-SSA) program text. The new variable names created by this process are
usually denoted by the original variable name with a unique subscript for each
assignment.

A basic block may use a variable that has been assigned in any one of its
preceding basic blocks. However, SSA form requires that the assignments in
those predecessors must be to unique variables. In order to use a variable that
has been ‘split-up’ into a number of subscripted variables, it is necessary to
select the appropriate subscript of the variable in question, based on the flow
of control that lead to that basic block in which it is used. The SSA form
introduces φ−nodes that perform that selection. A new variable subscript is
introduced for each φ−node to store the value selected by that φ−node.

Figure 4.1 exemplifies the translation. A simple program that cumulatively
computes the product of two unsigned integer values, X and Y, is shown in
Figure 4.1a. It iteratively adds X to a variable, P, which is initialised to zero.

There are two assignments to P in the program text: the first performs the
initialisation, the second increments the value for each loop iteration. In order
that each assignment is to a unique variable, assignments to P are represented as
P0 and P2 in SSA form in Figure 4.1b. Note that, in the tuple representation,
both the block that initialises P, and the loop body that increments P, are
predecessors of the loop body. The loop body must contain a φ−node for P
because its value may have been defined in either predecessor. The result of
the φ−node is assigned to P1.

Figure 4.2 illustrates the same program using a more appropriate representation
for SSA form. Using this notation, each basic block is a Directed Acyclic
Graph (DAG) that represents the Data Flow Graph (DFG) of the basic block.
Data flow through the program is represented by solid lines, while dotted lines
represent control flow dependencies.

4.2. Analysis of Existing Representations 61

P ← 0
X ← . . .
Y ← . . .

.loop CMP Y,0
JEQ .end
P ← P + X
Y ← Y - 1
JMP .loop

.end

(a) An example of a program

in a tuple-based IR.

P0← 0
X ← . . .
Y0← . . .

Y1← φ(Y0, Y2)
Y0 = 0 ?

P1← φ(P0, P2)
P2← P1 + X
Y2← Y1 - 1

False

True

(b) The same program in Static

Single Assignment (SSA) form.

Figure 4.1: Static Single Assignment

Const 0 X Y

φ Const 0

=

φ

+

Const 1

−

False

True

Figure 4.2: Static Single Assignment form showing data-flow and parallelism

A basic block may have either one or two immediate successors. In the case
of one immediate successor, the control dependency is represented as a single
dashed arrow to the next basic block. In the case of two immediate successors,
the control dependencies is represented by a dashed arrow to each of the two
possible successors. One of the two arrows is labelled ‘True’ and the other
‘False’. A node in the basic block DFG is used to evaluate a Boolean condition
that is used to determine which of the respective branches to take.

Using this representation, the instruction-level parallelism inherent in the al-
gorithm is made explicit. For example, it can be seen that the addition and
subtraction operations in the loop body may be computed in parallel.

62 Intermediate Representation

Memory Access

The example given shows a computation that uses only local, scalar variables.
Memory accesses that require indexing into memory require special treatment.
The problem is that if the memory locations used are not known at compile
time, then it is not possible to know exactly which memory operations com-
mute. That is, it is not possible to determine whether they may be represented
as parallel operations in the IR, and consequently whether it is safe to swap
the order of memory accesses in the generated code.

Compilers work around this problem by using conservative transformations on
the program. If it can be established that two operations definitely commute,
then their order may be swapped. If there is a possibility that the operations do
not commute, then a data-dependency is introduced to prevent the evaluation
order being changed during the optimisation and code-generation phases of the
compiler.

A naive compiler may simply assume that no memory operations commute.
This is a simple approach, but may lead to the generation of inefficient code.
Optimising compilers may use region analysis [BTV96] to identify the regions
of memory that a memory access may use or modify. Where it can be es-
tablished that two memory operations use or modify non-overlapping regions,
those operations can be said to commute.

In order to represent the data dependencies introduced by memory opera-
tions that cannot be shown to commute, some SSA representations introduce
a third type of arrow to denote dependencies between such memory opera-
tions [Muc97].

When generating the code for a basic block with no memory operations, the in-
struction order may be any topological sort of the DAG representing that basic
block [Gle04]. For a basic block with memory accesses, the extra dependencies
affect the partial order of operations, and must be taken into account.

Another approach to modelling data dependencies introduced by memory op-
erations is to use the functional store approach [Ste95]. Using this technique,
nodes in the DFG may represent not just operations on scalar values as shown
above, but also memory operations. Thus a new type of node is introduced in
the graph. While condition nodes evaluate to Boolean values and arithmetic
and logic nodes evaluate to scalar values, memory write nodes evaluate to a
memory region that may be indexed by location. These memory regions may
then form one of the inputs to a memory read operation ‘further down’ the
DAG.

Using the functional store approach, consecutive memory write operations are
denoted by the result of the first memory write forming an input to the second.
The order of memory operations is preserved because the first memory write
appears earlier in every topological sort of the DAG.

Some of the literature that adopts the functional store approach assumes that
memory appears as a single contiguous storage area [BG04, Gle04]. In those
approaches, a basic block may use at most one memory region, and define at
most one memory region.

An alternative approach is to allow a number of memory regions to be used

4.2. Analysis of Existing Representations 63

and defined within a single basic block. While this can be used to model a
single memory region as above, it also allows compilers that perform region
analyses to model ‘parallel’ memory accesses by determining that two opera-
tions affect non-overlapping regions, and therefore commute. In conventional
compilers, parallel memory operations enable later optimisations to reorder
memory operation instructions to improve the efficiency of generated code.

In hardware/software compilers, memory region analyses may allow the com-
piler to assign a memory region either to the main system memory, or — if the
region is small enough — to memory in the function unit. This is particularly
advantageous for function units without direct access to the system memory
bus. In such cases, memory accesses are likely to be slow, and it is desirable
to reduce the number of memory transfers between the function unit and the
processor.

Formalisations

An Abstract State Machine (ASM) semantics of an SSA representation similar
to that described above has been defined by Glesner [Gle04]. The ASM seman-
tics allow the non-deterministic aspects of the evaluation of a program in SSA
form to be modelled. Specifically, the semantics allow the DAG to be evalu-
ated in any valid topological sort that respects the dependencies introduced by
memory operations.

An alternative semantics formulated in the Isabelle/HOL framework is defined
by Blech [Ble04, BG04]. The definition provides semantic functions that define
an abstract interpreter for SSA form. In this respect, they form a denotational
semantics of SSA form, describing a deterministic evaluation strategy for the
representation. This is in contrast to the ASM semantics which model non-
deterministic evaluation and form an operational semantics of the SSA form.

Isabelle/HOL forms the logical basis of the language definitions developed in
this thesis, including the software IR developed in Section 4.3 which is based
on the SSA form. Consequently, the semantics of the SSA representation as
defined by Blech are described in the next section.

4.2.2 SSA in Isabelle/HOL

In the Isabelle/HOL formulation by Blech, the DAG that represents data-flow
within a basic block is represented as a list of trees. The root of each tree
corresponds with a exactly one node in the DAG representation. Specifically,
the roots of the trees correspond to the lowermost nodes in the DAG (if it is
drawn in a similar manner to Figure 4.2). These have no outward data-flow
arcs to nodes within the same basic block, except arcs that cross the outer
boundary of the basic block (as depicted graphically) and re-enter at the top.
The leaves of each tree correspond to the uppermost nodes in the DAG. The
only nodes that may be φ−nodes are leaves.

In the multiplication example illustrated above, there are no common sub-
expressions. In terms of Figure 4.2, this means that no DAG node has more
than one outward (downward) data-flow arc. It is possible to represent basic

64 Intermediate Representation

.lbl X ← A + M
Y ← A - N

(a) A basic block with a com-

mon sub-expression.

M A N

+ −

(b) The same basic block in

SSA form.

M 1 A 2 A 2 N 3

+ 4 − 5

(c) The same basic block

represented as a term-

graph.

Figure 4.3: Term-graph representation of a basic block

blocks without common sub-expressions using a list of trees. The directed arcs
in the DAG correspond to child-to-parent links in a graphical representation
of a tree 1.

The natural representation for basic blocks using SSA form is as a DAG. How-
ever, there are advantages to using a tree representation. Most notably, a tree
representation allows a simple representation in the Isabelle/HOL framework,
and writing a denotational semantics as recursive functions over a tree structure
appears more intuitive that writing functions over a DAG.

In general, a DAG node may have more than one outward arc, and nodes in the
corresponding ‘tree’ list would require more than one parent. To accommodate
this structure in a tree representation, the DAG is represented as a term graph
[BN99].

Figure 4.3 illustrates the term-graph approach to representing a DAG. The
tuple representation of the basic block shown in Figure 4.3a contains a sub-
expression ‘A’ that is common to both instructions. Figure 4.3b shows the
DAG representation of the same basic block. Note that, in this format, the
addition and subtraction nodes may not be used as the root node of a tree
representation directly, because an ‘A’ node would have to appear as a child in
both the ‘+’ tree and ‘−’ tree. The information that the ‘A’ nodes, which need
to be duplicated in each tree, correspond to the same DAG node would be lost.

To represent the DAG as a term-graph, each node in the DAG is labelled
with a unique identifier, in this case a number that corresponds to the variable
assigned by that node. Each node in the DAG without a direct arc to another
node within the same basic block is used as the root of a tree. A list of trees
may then used to represent the DAG.

Each node in the trees is associated with the identifier for the corresponding
operation in the DAG. The identifiers are unique within each tree. However,
they are not necessarily unique across all trees because an expression may
appear in more than one tree. Each tree contains all of the expression tree
that is required to compute the final value of its root node.

1In order that a graphical representation of the trees appears visually similar to the DAG
shown in Figure 4.2, the trees should be drawn with the leaves at the top and the root at
the bottom of the diagram.

4.2. Analysis of Existing Representations 65

Formalisation

The Isabelle/HOL formulation defines a program as a list of basic blocks within
the program’s control flow graph (CFG):

types cfg = basic block list

Basic blocks are identified by the ordinal number corresponding to their po-
sition in the list. Ordinals are natural numbers because programs, and hence
the list, are assumed to be of finite size.

Variables are identified by values of type id, which is defined simply as a syn-
onym for the type of natural numbers. Basic blocks within a program are
represented using a datatype with a single datatype constructor, ‘NEW ’:

datatype basic block = NEW id id (id×nat) (id×nat) (ssa tree list)

The structure of the DAG corresponding to each basic block is represented as a
list of trees of type ssa tree list, using a term-graph representation as described
on the preceding page. The structure of these trees is described below. At this
point, it suffices to note that each node is associated with the id of the variable
assigned by that node or, if the node represents a memory store operation, the
memory state resulting from the evaluation of that node.

The meaning of the five values associated with the basic block datatype is as
follows. The first value denotes the variable in the basic block whose value is
used to determine which of the two possible successor basic blocks should be
executed after the current block. This value corresponds to one of the numbers
that label nodes as illustrated in Figure 4.3c.

For example, in the multiplication example illustrated in Figure 4.2, the equal-
ity test would assign a variable with the result of the evaluation of the condition.
Specifically, if the condition evaluates to true, the variable assigned by the con-
dition node takes the value 1, otherwise it takes the value 0. The first value in
the definition of the containing basic block would be the variable id associated
with the node that represents the comparison.

The second value denotes the identifier associated with the node that represents
the final memory state after executing the node. The node associated with that
identifier is expected to be either a node representing a memory store operation
or, if the basic block has no such operations, a ‘MEMORY ’ node that represents
the initial state of the memory before the execution of the basic block.

The third and fourth values in the definition of the basic block are both pair
types. These represent the necessary control flow information about the two
successor basic blocks. For basic blocks with only one successor, these values
may be the same.

Recall that the basic block that should be executed after the current block is
determined by the result of evaluating the condition node identified by the first
value in the basic block’s definition. The third value determines (in a manner
described below) how execution will proceed after the current basic block if
the condition node evaluates to true (that is, any non-zero value). The fourth
value determines how execution should proceed if the condition node evaluates
to false (zero).

Within each pair, the first element is the identifier of the successor basic block

66 Intermediate Representation

associated with the corresponding condition. Basic blocks are identified by the
same type as variables: id. By virtue of the fact that this type is a synonym
for the natural numbers, this value can be used as an index for the control
flow graph, cfg. However, if id was redefined as a different type, it would be
necessary to change the type used for the successor basic block.

The second value in each pair represents the ‘rank’ of the current basic block
in the φ−nodes of the corresponding successor basic block. Each φ−node in
a basic block will have one inward data-flow arc for each predecessor of that
basic block. A φ−node is defined using a list, where each element in the list is
the identifier of the node associated with the source of the data-flow arc. The
predecessor associated with an element in the list of a φ−node is also associated
with the corresponding element in the definition of all other φ−nodes within
the same basic block. The term ‘rank’ refers to the position in this list: the
predecessor basic block defines its rank in the φ−nodes of each successor.

This concept is better explained by considering an abstract interpreter for
the representation. After evaluating a basic block, an interpreter determines
the successor basic block by using the node identified by first value in the
basic block’s definition as a condition. It then determines whether to use
the successor information from the third or fourth value (both of which are
pairs), depending on the result of that condition. The first value from the pair
determines the next basic block. The second value is used in the evaluation of
the φ−nodes in the next basic block.

The fifth value in the definition of a basic block is the ssa tree list that represents
the DAG that comprises the basic block. The ssa tree type is declared using a
datatype constructor for each node type:

datatype ssa tree =
CONST val id |
PHI (nat list) val id |
NODE operat ssa tree ssa tree val id |
LOAD ssa tree ssa tree val id |
STORE ssa tree ssa tree ssa tree memory id |
MEMORY memory id

The id corresponds to the name of the variable that is assigned by that node.
This corresponds to the label in the term-graph representation.

Each node type that evaluates to a scalar value includes a value, val . Nodes
that evaluate to a memory value include a memory, defined as:

types

memory = nat ⇒ val

The reason for the inclusion of val and memory in the abstract syntax of the
representation, is that in Blech’s formulation, the semantic functions for tree
evaluation recursively traverse the tree, and return a new tree in which each
val and memory has been replaced with the appropriate value.

After evaluating the list of trees, a global mapping from identifiers to values
is updated, by traversing the resulting trees once more, to read each val and
id. The single, global memory state is also updated from the node with the id

that corresponds to the second value in the definition of the basic block.

4.2. Analysis of Existing Representations 67

4.2.3 Pegasus

Pegasus is an intermediate representation designed specifically for the pur-
pose of hardware/software compilation, and has a formally defined operational
semantics [BG02b]. It is based on the Predicated-SSA and Gated-SSA rep-
resentations, and therefore allows the explicit representation of fine-grained
parallelism.

A representation of a program in the Pegasus IR is constructed by grouping its
basic blocks into hyperblocks. A hyperblock is a group of instructions with a
single point of entry, but any number of exit points. Each exit point represents
a branch, either to another hyperblock, or back to the start of the current
hyperblock.

A set of basic blocks may be grouped into a hyperblock only if they are ‘re-
ducible’. A set of basic blocks is reducible if and only if the control flow arcs
between the basic blocks may be classified into forward and backward arcs,
such that the following conditions hold. Firstly, the forward arcs (and the
nodes that they connect) form a DAG with an entry node, where every other
basic block is reachable from that entry node. Secondly, arcs that cause a
basic block to dominate itself, either by branching back to itself or one of its
predecessors, are classified as backward arcs. Thirdly, that the set of forward
arcs and backward arcs be disjoint [Muc97].

In general, a program may be partitioned into hyperblocks in more than one
way. At one extreme, each basic block can be considered as a hyperblock.
This can result in a program being represented by many small hyperblocks.
Alternatively, basic blocks may be grouped together into hyperblocks. In this
case, the same program may be represented by fewer, but larger hyperblocks.
The control flow graph may be divided into a minimal number of hyperblocks
by computing minimal CFG intervals. Using this approach, inner loops that
are not reducible are mapped directly into hyperblocks.

Conditional evaluation may be represented within a hyperblock, but each con-
trol flow path through the hyperblock is evaluated speculatively. This means
that all the alternative branches within a hyperblock are evaluated in parallel,
regardless of whether their evaluation is necessary for that particular execution
of the hyperblock.

Pegasus Abstract Syntax

Pegasus represents data-flow within each hyperblock as a DAG, in a similar
manner to the SSA form illustrated in Figure 4.2. A (simplified) representation
of the multiplication example from the previous section in the Pegasus IR is
illustrated in Figure 4.4. For the purposes of this example, it is assumed that
the only variable that is ‘live’ on exit from the program fragment is P. This
means that P is the only variable that is used later elsewhere in the program.

The boxes with a heavy outline represent hyperblocks. Note that the basic
block that tests the value of Y has been grouped into a hyperblock with the
body of the loop. Thus the body of the loop, which decrements Y and computes
the sum of X and P, is executed speculatively in parallel with the evaluation of

68 Intermediate Representation

0 1

_

P

X

X

+ =

Y

YP

!

X P Y

. . . 0 . . .

P

Figure 4.4: The multiplication example in the Pegasus IR.

the condition Y = 0. Solid lines between nodes represent data-flow of values,
such as machine words. Dotted lines between nodes represent data-flow of
Boolean values.

The upward-pointing triangular-shaped nodes at the top of the larger hyper-
block are merge nodes. They are used where a variable used by a basic block
may have been assigned by more than one of the basic block’s predecessors.
They are required here because the hyperblock with the condition and loop
body uses values that may have been defined by two predecessors: itself, and
the initialisation block.

The downward-pointing triangular-shaped nodes at the bottom of hyperblocks
are called eta nodes. Eta nodes are used to ‘steer’ values to the basic block
in which they are used. If a basic block assigns a variable that is used in n
successor basic blocks, then there are n corresponding eta nodes for that vari-
able in the basic block that makes the assignment. Each eta node is connected
to a merge node in a successor basic block that uses a given variable. In the
example, the assignment of P in the condition and loop body hyperblock may
be used in two places: in the next iteration of the condition and loop body
hyperblock, or any hyperblock that succeeds it (not shown).

Eta nodes may be grouped by the successor hyperblock to which they direct
values. In the illustration, these groups are identified by colour. Eta nodes in
the main hyperblock that pass information back into the same hyperblock are
white. The eta node used to pass the value of P to a successor hyperblock is
coloured grey. Eta nodes within a hyperblock with the same colour are referred
to as eta groups here.

Eta nodes have one value input, one Boolean input, and one value output.
When the Boolean input is true, the value at the input is passed to the merge

4.2. Analysis of Existing Representations 69

node to which its output is connected. When the Boolean input is false, the
node is said to ‘consume’ its input. Where the Boolean input is not illustrated,
it is implicit, and is assumed to become true when execution of the hyperblock
completes. This is used in the initialisation hyperblock in the example, because
it only defines values which are used by the immediately dominated hyperblock.

There is no concurrency between hyperblocks: only one hyperblock may be
executed at any given time. Thus, for each execution of a hyperblock, there
may only be one successor hyperblock. All eta nodes that may pass a value to
that successor are assumed to do so during the execution of the basic block.
This means that if one of the Boolean inputs to an eta node becomes true
during the execution of a hyperblock, then the Boolean input to all eta nodes
in the same eta group should be true at some point in the execution of the
basic block. The term active eta group is used here to refer to an eta group in
this state.

Only one eta group may be active at for a single execution of a hyperblock. It
is assumed that the Boolean inputs to eta nodes in other eta groups are false
for the duration of the hyperblock’s execution. Therefore, the successor of a
hyperblock is determined by the active eta group.

Merge nodes and eta nodes have a similar purpose to φ−nodes in SSA repre-
sentation, in the sense that they select a single value from a number of reaching
definitions.

Memory Access

In contrast to the SSA formulation described in Section 4.2.2, Pegasus does not
use the functional store approach for modelling memory operations. Instead,
it uses an implicit global memory.

Two new types of node are introduced to represent load and store operations on
the global memory, denoted by =[] and []= respectively. Nodes representing
load operations have one input value, the memory location to be addressed,
and one output value, which takes the value of that memory location. Nodes
representing store operations have two input values: the memory location to
be addressed, and the value to be stored. Store nodes have no outputs values.

Dependencies between memory operations are denoted using a new type of edge
between nodes, illustrated here using dashed lines between memory operation
nodes. These edges are said to carry a token value: a memory operation may
not occur until it receives a token and relevant inputs, and when the operation
completes, it emits a token on any number of edge-carrying tokens.

Two further node types are introduced for managing the flow of tokens between
memory operation nodes. The first is a node that emits a token at the start
of the execution of a hyperblock. These are required in order that a token can
be passed to the first memory operation. This node is denoted by the symbol
used to represent tokens: an asterisk (*).

The following example code fragment requires the use of two store operations,
and can be used to illustrate the token edges, and the token node:

M[A] ← X

70 Intermediate Representation

A <m>

+

[]=

X *

+

B Y

[]=

(a) The token value and memory op-

eration dependencies.

+

[]=

X

[]=

+

1*<m> Y

=[]

...

0 P

(b) The ‘V’ token merge operator.

Figure 4.5: Dependencies between memory operations in Pegasus.

M[B] ← Y

In general, the two assignments do not commute because if A and B are equal,
then the order of these instructions affects the result of their execution. Thus,
if the compiler cannot determine than A and B have different values, then it
must preserve the order of these assignments. Figure 4.5a illustrates the repre-
sentation of these store operations in the Pegasus IR. Note that the assignment
to M[B] cannot occur until the relevant store operation receives a token from
the store operation that implements assignment to M[A].

The second type of node for managing token flow is the V -node. A V -node
has a number of token inputs, and a single token output. It is used where a
memory operation depends on more than one memory operation. The V -node
waits until tokens are available on all of its inputs, and then emits a single
token on its output.

The use of the V -node can be demonstrated by the Pegasus representation of
the following code:

M[0] ← X

M[1] ← Y

· · · ← *P

In this instance, the two store operations commute. However, if the compiler
detects that M may alias P, or does not perform alias analysis, then the final
instruction does not commute with either of the store instructions. Thus it has
a memory dependency on both of the store instructions. Figure 4.5b shows the
Pegasus representation for these instructions. A V -node is used to merge the
tokens from the two store operations, and the load operation from address P
cannot occur until both store operations have emitted tokens.

4.2. Analysis of Existing Representations 71

Pegasus Semantics

The formal semantics of Pegasus [BG02b] are expressed using the operational
semantics style attributed to Plotkin [Plo81]. This approach provides a non-
deterministic evaluation strategy for Pegasus programs, and allows parallelism
in the evaluation of different sub-graphs of a hyperblock to be modelled.

The intuition behind the semantics is that nodes produce and consume data,
where ‘data’ includes (among other things) program values and memory ac-
cess tokens. Most types of node both produce and consume data, although
nodes that define constants and that produce initial tokens consume no data.
This style of semantics has been used to model the behaviour of asynchronous
circuits [DN97] and dataflow architectures [Vee86].

The protocol between producers and consumers is implemented using a syn-
chronous version of the Two-Phase Bundled Data convention [Sut89]. The
bundled data corresponds to the edges between nodes in the Pegasus represen-
tation. The stages in the handshake protocol can be interpreted to determine
whether or not a value is available for consumption, or whether the value on
that edge has already been consumed.

The two-phase bundled data protocol works as follows. When a node produces
data, it signals the data on its output, and asserts a ‘request’ signal. It must
maintain this output signal until the consumer returns a corresponding ‘ac-
knowledge’ signal. At this point the producer may return the request signal to
its initial state. When the consumer is ready to for another value, it returns
the acknowledge signal to its initial state.

The semantics use an abstraction of the implementation of the protocol. There
is one semantic domain, σ, representing the state of all edges. The value of an
edge e, denoted by σ(e), may be any of the following:

• Numbers, for which the representation is not specified;
• Boolean values, denoted by T and F;
• memory access tokens, denoted by τ ;
• the undefined value, ⊥, which represents the absence of any value that

can be consumed;
• a don’t care value, 4, used to represent the existence of an arbitrary

value;
• a wait value used during the non-strict evaluation of Boolean expressions;
• node names, which are used to implement control flow between functions.

Two auxiliary functions are defined to simplify notation with ⊥. These are
def(e), which is true when the edge e has a value available for consumption,
and erase(e), which is used to consume a value by updating the state such that
the edge takes the undefined value. These functions are defined as:

def(e) ≡ (λσ. σ(e) 6= ⊥)

erase(e) ≡ (λσ. σ[e 7→ ⊥])

The predicate def characterises edges where the corresponding request signal
has been asserted, but not acknowledged. The state update function erase

corresponds to the effect of raising the acknowledge signal, which leads to the
producer ceasing to assert the request signal.

72 Intermediate Representation

The don’t care value is used where a node must produce a value (and hence
participate in a request/acknowledge handshake), but will have no affect on
the result of the program. For example, since each node in a hyperblock is
evaluated speculatively, memory load operations are evaluated and expected
to output a value. However, there is no purpose to fetching data from memory if
it will not be used, and doing so would reduce the performance of the program.
Consequently, memory load operations are predicated according to whether
control flow in a sequential implementation would reach that load operation.
If that predicate evaluates to false, then memory load operations emit the
don’t care value. Evaluation of unnecessary function calls is avoided similarly.

The semantics of a node that implements Boolean negation are expressed using
the following rule:

o = Not(i)
def (i) ¬def (o)

σ′ = σ [o 7→ Not (σ(i))] ◦ erase(i)

The annotation to the left of the rule shows that the rule refers to a node that
implements the Not function, with input i and output o. The precondition
indicates that the semantic rule is only applicable where the node has an input
value ready, def (i), and that node that will consume the output value has
already consumed the previous value, ¬def (o). When these preconditions are
met, the effect of the node is to update the output to be the Boolean negation
of the input (denoted by an update of σ), and to consume the input (denoted
by erase).

4.3 Formal Definition of a Hardware/Software IR

This section presents the semantics of an intermediate representation intended
to support verifiable hardware/software compilation according to the require-
ments identified in Section 4.1. The IR is based on the IRs presented in Sec-
tion 4.2, although these have been adapted into a form that is more appropriate
to the logical framework used and developed in this thesis.

4.3.1 Abstract Syntax

The form of the semantics for the IR presented here are (superficially, at least)
most similar in appearance to Blech’s SSA semantics, as described in Sec-
tion 4.2.2. This is because they are presented in the Isabelle/HOL framework,
and consist largely of recursive functions on an abstract syntax representation
of a program.

The abstract syntax is presented here using a top-down approach: starting
with the top level abstract syntax construct for representing entire programs,
then the representation of blocks within the program, and concluding with the
nodes within a block that represent operators.

4.3. Formal Definition of a Hardware/Software IR 73

Program Representation

Programs in the intermediate representation are represented as a finite number
of hyperblocks, which have a similar form to those in the Pegasus representa-
tion. Pegasus does not appear to define a construct in the abstract syntax for
representing an entire program, and the formal semantics only appear to cover
evaluation within a hyperblock. Hyperblocks need to be uniquely identifiable.
It suffices to represent a program using a list of hyperblocks, each identified by
its index in the list:

types

prog = hblock list

Hyperblock Representation

In Blech’s formulation of SSA, each basic block may have no more than two
successors. In Pegasus, hyperblocks can have more than two successors. Each
eta node is allocated to a single eta group (as described on page 68), and
eta groups have a one-to-one correspondence with successor hyperblocks. A
hyperblock may include an arbitrary number of eta groups, and hence, may
have an arbitrary number of successors. It is therefore a generalisation of the
representations that only allow up to two successors, and is the form adopted
here.

In general, a node may be involved in the evaluation of more than one eta group.
For example, in Figure 4.4 the merge nodes labelled P and Y, the constant
node 0, and the node that implements an equality test must be evaluated
in order to determine which eta group is applicable, and hence which of the
hyperblocks’ successors should be executed next.

Blech’s term-graph representation demonstrates how a basic block may be rep-
resented as a list of SSA trees. The basic blocks in that representation can be
considered to be similar in structure to an eta group in Pegasus, where each
eta node in that group corresponds to the root of an SSA tree 2.

However, a list of SSA trees is not in itself sufficient to represent all of the
required information about an eta group. The full representation of an eta
group is represented by a record type, η-group. Deferring the definition of that
type, the abstract syntax construct for a hyperblock may be defined simply as
a list of the eta groups within that hyperblock:

types

hblock = η-group list

As per hyperblocks within a program, eta groups within a hyperblock are
identified by their position within the list that defines the hyperblock.

Eta Group Representation

The relationship between an eta group, and the successor hyperblock to which it
corresponds, can be represented by identifying the successor hyperblock within

2Represented as DAGs, basic blocks can also be considered to be loosely similar in struc-
ture to an entire hyperblock, but this comparison is not very useful here.

74 Intermediate Representation

the definition of the eta group. It is also necessary to include the condition
under which that eta group becomes the active eta group, as defined on page 69.

It can be seen from Figure 4.4 that a single Boolean value is used as the
Boolean input to all eta nodes within an eta group. The larger hyperblock in
the figure shows two eta groups: one has a single, grey coloured eta node, ‘P’.
The successor hyperblock associated with this eta group is not shown in the
figure. The other eta group has white coloured eta nodes, and the successor
hyperblock associated with that eta group is the containing hyperblock itself.
The figure shows the value resulting from the evaluation of the ‘=’ node forming
the input to single eta node in the grey former eta group, and the value resulting
from the evaluation of the ‘!’ node forming the Boolean input to the eta nodes
in the latter eta group.

A single Boolean value is sufficient for the Boolean input to every eta node
within an eta group. This is because of the condition that the Boolean input
to every eta node within an eta group must have the same value. That is, it
must be true for all eta nodes in the active eta group, and false for every other
eta node in the hyperblock. This condition is discussed below in Satisfiability
of Eta Group Correctness Conditions.

The relationship between an eta group and its corresponding successor hyper-
block is represented in the abstract syntax using two fields of the η-group record
type: next-block, and cond. The next-block field is a natural number that identi-
fies the successor hyperblock associated with the eta group by its index in the
hyperblock list, of type prog, that represents the whole program. The cond field
represents an SSA tree that evaluates to a Boolean value. This value is used
as the Boolean input for all eta nodes in that eta group.

The full definition of the η-group type is as follows:
record η-group =

next-block :: nat
cond :: boolTree
η-bool :: (boolTree × name) list
η-word :: (wordTree × name) list

η-mem :: (memTree × name) list

The first two fields have been described above. The other three fields require
some explanation. In Blech’s formulation of SSA trees, described on page 66, a
single datatype was used to represent an SSA tree, with a datatype construc-
tor for each type of node. Without the addition of appropriate functions to
characterise well-formed trees, this representation allows poorly typed trees to
be represented. For example, it is possible to construct an SSA tree in which
nodes that would be expected to produce a scalar value, such as addition nodes,
to be used as a memory operand on a node that represents a memory load or
store operation.

The computed value of each node is stored in the abstract syntax construct in
Blech’s representation. That value may be a machine word or a representation
of the memory. In order to retrieve that value, two functions are defined on the
ssa tree datatype. One of those functions returns the machine word only if the
node evaluates to a machine word. Otherwise its behaviour is underdefined.
The other returns a representation of the memory if the node evaluates to such
a representation, and its behaviour is underdefined otherwise.

4.3. Formal Definition of a Hardware/Software IR 75

For this thesis, an alternative approach is preferred. Three mutually recursive
datatypes are used to represent SSA trees. One datatype is used to represent
trees that evaluate to Boolean values. Another is used to represent trees that
evaluate to scalar values, which form an abstraction of machine words. The
third is used to represent trees that evaluate to a representation of the memory.
These datatypes are called boolTree, wordTree and memTree. These types are
used in the η-bool, η-word and η-mem fields of the η-group record type.

The SSA trees are required to be mutually recursive because nodes may have
a different type of input from their output. For example, a node that tests
for equality has two scalar inputs and a Boolean output. The definition of the
datatypes used to construct these trees is given on page 77.

The use of mutually recursive datatypes enforces a limited form of type safety.
This increases the relative proportion of syntactically valid programs for which
a suitable semantics can be given. This approach also reduces the need for
underdefined functions in the semantics.

Eta groups, and hence hyperblocks, may include an arbitrary number of all
three kinds of tree. The root element of all three kinds of tree represent eta
nodes.

The only remaining aspect of the η-group type definition that requires expla-
nation is the name associated with each tree, or viewed alternatively, with the
eta node at the root of each tree.

The significance of the name associated with each eta node is perhaps best
explained by reference to the graphical representation of programs in the Pe-
gasus IR. The name associated with the eta node in the abstract syntax is
not, as one might expect, the label on the eta node as shown in the graphical
representation. Instead, it corresponds to the identifier of the merge node in
a successor hyperblock for which the eta node is a source of data. Thus it is
assumed that each eta node has exactly one outward edge. If a value is required
by two merge nodes in the successor hyperblock, two eta nodes are required.

Two auxiliary functions are defined as synonyms for fst and snd for retrieving
the tree and name associated with an element in a list of SSA trees in an eta
group definition. These are:

get-tree ≡ fst

get-γ-name ≡ snd

These are intended to improve readability in the semantic functions for the
representation. The name of the function, get-γ-name, is a reference to the
related γ−nodes in the PDW representation [OBM90].

Satisfiability of Eta Group Correctness Conditions

There are two significant conditions on the representation of eta groups raised
by the above description of their abstract syntax. The first is that a single
Boolean value should form the Boolean input to all the eta nodes in a given
eta group. The second is that the Boolean value used to determine the active
eta group is ‘one-hot’. This means that, for a given hyperblock evaluation, the
Boolean input to all of the eta nodes in exactly one eta group is true, and that

76 Intermediate Representation

the Boolean input to every eta node in every other hyperblock is false. These
conditions are discussed here.

The condition that a single Boolean value should form the Boolean input to all
the eta nodes in a given eta group is not, strictly speaking, a well-formedness
condition of the abstract syntax for eta groups presented above. Although it is
possible to graphically depict an eta group for which the constituent eta nodes
have different Boolean inputs, such an eta group cannot be represented in the
abstract syntax presented above.

The Pegasus representation does not have an explicit representation of eta
groups [BG02b]. However, the Figure 4 in the cited paper illustrates hyperblock
where eta nodes are visually grouped together according to the hyperblock to
which those nodes forward values, suggesting that eta nodes are grouped at an
intuitive level, even if this is not explicit in the representation.

Recall from on page 68 that an eta group is defined by a set of eta nodes that
forward data to a common successor hyperblock, rather than by the Boolean
condition used as inputs to those eta nodes. In terms of the Isabelle model,
this means that eta groups within a hyperblock have unique values of next-block.
Hence, an eta group can be determined from the Pegasus representation, by
simply grouping eta nodes by successor hyperblocks.

The abstract syntax for an eta group is based on the assumption that a single
Boolean value is sufficient for the Boolean input to every eta node within that
eta group. It is necessary to justify this assumption in order for the abstract
syntax to be viable for an intermediate representation.

The identification of an appropriate Boolean input for each eta group would
then be left to the compilation algorithm. Furthermore, it is a correctness
condition on the compiler that, for a given hyperblock evaluation, there should
only be one eta group for which that input is true, and hence that such Boolean
values are one-hot.

These conditions must also be satisfiable in order to justify the viability of
the representation. An informal argument of the adequacy of a single Boolean
value for controlling all eta nodes within an eta group, and the satisfiability of
these correctness conditions is given here.

Again, recall from on page 67 that programs can be partitioned into hyper-
blocks in different ways. A compiler could translate each basic block into a
hyperblock, because hyperblocks are a generalisation of basic blocks that can
have more that two successors (that is, more than two points of exit), and
provide for speculative execution. A hypothetical compiler that adopts this
approach can be considered in order to demonstrate the requirements of the
representation.

A basic block in Blech’s representation can have either one or two successor
basic blocks. If a basic block has only one successor, then it can be converted
into a hyperblock with only a single eta group. The Boolean value used to
control the eta nodes within that group is simply the constant true. If a basic
block has two successors, then the translation into a hyperblock will need to
create two eta groups: one for each successor. Hence, there is one eta group for
each exit from the hyperblock. The eta nodes that need to be in each group
are determined by variables that are live on entry to each successor.

4.3. Formal Definition of a Hardware/Software IR 77

The eta nodes in one eta group will be controlled by a Boolean value derived
from the branch condition at the end of the basic block, and the other with its
logical negation. The logical negation can be represented simply by connecting
the branch condition to an eta node via an inverter.

Using this strategy, a single Boolean value is sufficient to for controlling each
eta group. Furthermore, the one-hot property of eta groups is guaranteed,
because there are only two eta groups where the Boolean value controlling
each eta group is the logical negation of the other.

A more sophisticated approach that allows basic blocks to be grouped into a
hyperblock is described in Section 2.3 of the cited paper about Pegasus. The
technique involves representing mapping control flow between basic blocks into
data flow within a hyperblock. In this strategy, an eta group is again created
for each exit from the hyperblock.

A more complex example involves forming a hyperblock from two basic blocks,
one of which immediately dominates the other. In this case, there are two
Boolean values that control the eta groups representing the exits from the
dominated block, and hence the hyperblock. One of those values is the logical
conjunction of the branch condition of the dominator block and the branch
condition of the dominated block. The other is the logical conjunction of
the branch condition of the dominator block and the negation of the branch
condition of the dominated block. The only other eta group in the hyperblock
is controlled by the logical negation of the branch condition of the dominator
block. Again, only one of the Boolean values controlling eta groups can be
true.

Where a basic block is compiled into a hyperblock that contains more than one
predecessor to that basic block, disjunction is used on the exit conditions of
each predecessor. This is illustrated in the Pegasus paper.

SSA Tree Representation

The datatypes used to represent SSA trees are defined as follows:

datatype boolTree =
BoolMonBoolOp boolMonadicBoolOp boolTree id
| BoolMonNatOp boolMonadicNatOp wordTree id
| BoolDyNatOp boolDyadicNatOp wordTree wordTree id
| BoolMerge name id
and wordTree =

Const word id
| WordOp wordOp wordTree wordTree id
| BoolToWord boolTree id
| Load wordTree memTree id
| WordMerge name id
and memTree =

Store wordTree wordTree memTree id

| MemMerge name id

Each node in an SSA tree is associated with an id, as required by the use of a
term-graph representation. It is sufficient for the purposes here to define id as
a synonym of the type nat.

78 Intermediate Representation

Other types that appear in the type definition of SSA trees are name and word.
Both of these types are also defined as synonyms of the type nat. This choice
is rather arbitrary however. The word type could also be defined in terms
of integers; a bit list representing a machine word; or as a restricted set of
integers or natural numbers. The name type is used to represent the labels
that identify eta nodes. Any type that provides sufficient unique identifiers
would be sufficient for name.

Eta nodes themselves are not represented in the SSA trees. The only informa-
tion that needs to be associated with eta nodes is the γ-name, which is already
included in the η-group abstract syntax construct. The only place that an eta
node could appear in an SSA tree is as the root node. The eta nodes are
therefore elided because no extra information needs to be represented in the
abstract syntax, and their presence becomes implicit.

SSA trees include merge nodes for each of the three primitive types in the
IR: namely Booleans, machine words and memory regions. These nodes are
represented by the BoolMerge, WordMerge, and MemMerge datatype constructors
respectively. The name associated with a merge node represents the γ-name of
that node. That is, it corresponds directly with the label of a merge node in
the graphical notation of Pegasus.

The names associated with eta nodes — or rather, the names associated with
SSA trees in the η-group type — are expected to refer to the names associated
with these merge nodes. Programs that do not meet this assumption are not
considered well-formed.

Formal definitions of small languages expressed in higher order logic often ne-
glect to explicitly name operators that exist in the language [NPW02, Nip98].
Instead, the operators are represented in expressions as an anonymous higher
order functions that determine the behaviour of the implied operator. This
technique has the advantage that the language definition is abstracted over the
primitive operators it provides.

In contrast, an initial set of named primitive operators is used here. The
reason for naming operators explicitly is that this methodology assumes that
most, if not all, operators in the IR will be associated with a hardware circuit
design with equivalent behaviour. In order to specify the translation of a
program represented in the abstract syntax into a hardware representation, it
is necessary to name operators rather than use anonymous functions. This
is because within the logic, it is not possible in general to derive a suitable
hardware implementation for an operator from a term representing a function.

An initial set of primitive operators includes operators that produce both ma-
chine word and Boolean and values. Two dyadic operators that produce ma-
chine words are Add and Sub. There are both monadic and dyadic operators
that produce Boolean values. A monadic operator on machine words is the
Test For Zero operator, TFZ. The single monadic operator on Boolean val-
ues is BNot, which provides logical negation. Dyadic operators that produce
Boolean values are the arithmetic comparison operators, equal, Eq; less than
or equal, LtEq; and greater than, Gt. Thus an initial set of primitives is defined
as:

datatype wordOp = Add | Sub

4.3. Formal Definition of a Hardware/Software IR 79

datatype boolMonadicBoolOp = BNot
datatype boolMonadicNatOp = TFZ

datatype boolDyadicNatOp = Eq | LtEq | Gt

An alternative approach would be to use anonymous functions and define extra-
logical functions over the structure of the higher order terms used to represent
the abstract syntax. Such an approach is taken by Gordon et al. [GIOS05] to
semi-automatically derive a description of a hardware circuit for a given func-
tion in higher order logic. In practical terms, the extra-logical functions they
use are functions written in Standard ML over data structures that represent
terms in higher order logic.

Gordon’s approach has the advantage that it admits greater automation in the
derivation of hardware designs. The disadvantage of that approach is that it is
not possible to reason about the extra-logical functions that operate on higher
order terms, because they necessarily fall outwith the logical framework used
to represent the language definition.

The focus of this work is the development of a logical framework for reasoning
about the functions that derive hardware circuit designs from a program repre-
sentation. Thus the use of named primitives is justified by the requirement to
be able to reason about the compilation in the same logical framework as the
definition of the IR, and of the hardware representation presented in Chapter 5
and Chapter 6.

4.3.2 Semantics

A denotational semantics of the IR is presented here. The semantics strongly
resemble that of Blech’s formulation of SSA: a function is defined to model the
state transition effected by executing a block. This function is used repeatedly
by another function which also determines the order in which blocks should be
executed.

The semantics are presented here by first defining the semantic domains of
the representation, which model the state of a program during execution. The
initialisation function that determines the initial state of the semantic objects
used in the execution of a program from its abstract syntax representation
is also given. Finally, the semantic functions that define the relevant state
transitions for a given program are specified.

Semantic Domains

In Blech’s SSA formulation, each node in an SSA tree was associated with
the value that had been computed for it. These values were omitted from the
abstract syntax definition of this IR, as defined on page 77. Instead, the state
of each block is maintained as a separate semantic object, Σb:

record Σb =
σ-bool :: name⇒bool
σ-word :: name⇒word

σ-mem :: name⇒(word⇒word)

80 Intermediate Representation

Each field in the record type determines the state of all the nodes in the basic
block of a given type. That is, the σ-bool field maps the identifiers associated
with nodes that evaluate to Boolean values to the value of that node at a given
point in the execution of the block. Likewise, the σ-word field maps identifiers
associated with nodes that produce word values to the last value computed by
that node.

The σ-mem field allows different memory regions to be used by a basic block.
Each memory region is indexed by a machine word. The result of using a
previously unassigned memory location within a region, or of using an invalid
memory location is underspecified. Examples of regions that might be used in
a basic block include a single stack frame; the entire stack; a page in memory;
or the entire memory store of the target machine.

The memory values within a basic block, represented in the σ-mem field, are
likely to contain largely duplicated information. This is due to the use of the
functional store approach, where a new memory node is must be introduced
for each store operation on a given memory region.

One of the advantages of representing the state of a block separately to that of
the representation of the block itself is that it is clearer that the semantic func-
tions do not affect the structure of the program, only the state of the program.
This is significant, because in hardware/software compilation self-modifying
programs are particularly problematic. This is because their behaviour will
vary depending on which parts of the program have been compiled as a hard-
ware function unit and which have been compiled as object code.

The state of the entire program is simply the combined state of each of its
constituent hyperblocks. Just as a program is represented by a list of its
constituent hyperblocks, the state of the program is represented as a list of the
current state of each hyperblock:

types

Σp = Σb list

Thus, for a program p with current state σp, the i’th hyperblock is denoted by
p[i], and its state is denoted by σp[i].

The initial state of a program is determined by the function init-Σ. This simply
creates a list of hyperblock states of the same length as the list of hyperblocks
that represents the program, by recursion on the latter. No initialisation of the
program memory is assumed, and therefore the initial state of each hyperblock
is an arbitrary value.

init-Σ [] = []
init-Σ (b·bs) =
(|σ-bool = arbitrary , σ-word = arbitrary , σ-mem = arbitrary , . . . = ()|)·
init-Σ bs

Overview of Semantic Functions

The semantic functions defined here, and later in this thesis, are identifiable by
the letter ‘m’ which prefixes each function name. The prefix is a reference to
the fact that the function gives the meaning to an abstract syntax construct.

4.3. Formal Definition of a Hardware/Software IR 81

The remainder of each name usually denotes the syntactic construct for which
the function gives a semantics.

A more commonly used notion in literature on denotational semantics, is to
use “Strachey” brackets when writing semantic functions over syntactic terms
and contructs. For example, the semantics of a term t would be denoted by
M[[t]].

The more commonly used notation is avoided here for two reasons. Firstly,
such a notation would unnecessarily complicate the language definition within
the Isabelle/HOL framework. Secondly, the semantic functions presented here
do not have a one-to-one correspondence with syntactic constructs. Instead,
some of the functions have a polymorphic definition, and are used to define
the semantics of more than one syntactic construct. This approach results in
a shorter, simpler language definition here.

The semantic functions for the IR fall into two categories: those that model
the control flow from one hyperblock to the next; and those that model the
data flow within a hyperblock. Naturally, there is some overlap between these
categories, because data values are usually used to determine a successor hy-
perblock.

Top-level Semantic Functions

At the ‘top-level’ of the language definition, a function is introduced to define
the semantics of executing a given number of hyperblocks. More accurately,
the function repeatedly evaluates the state transition effected by the current
hyperblock and determines the next hyperblock to be executed until it has
completed a given number of repetitions. The function is called step, and
assumes a function mHblock (defined on the next page) to that can be used to
evaluate the state transition that results from the execution of a hyperblock.
It is defined by recursion on the remaining number of iterations, as follows:

step p σ 0 = σ
step p σ (Suc n) = (let (curr , σp) = σ in step p (mHblock p[curr] curr σp) n)

The first parameter of the function, p, is a list of the hyperblocks that represent
the program. Hence, p is of type prog as defined on page 73. The second
parameter, σ, is a pair that represents the first hyperblock to be executed,
denoted by curr, which is an index into p; and the current state of the program,
denoted by σp, which is of type Σp. The final parameter, n, denotes the number
of hyperblock evaluations that should performed. The value returned by step is
a pair of the same type as σ: it determines the next hyperblock to be executed
after n hyperblock executions, and the state of the program at that point. The
value returned by mHblock is also a pair when applied to the arguments as
shown above.

The function is defined to model a known, finite number of hyperblock execu-
tions to avoid the need to introduce a fixed-point combinator into the language
definition. The use of a fixed point-operator would complicate the language
definition, because the semantics are defined in a logic of total functions, and
it is unclear that it would serve any useful purpose here. In this respect, the
step function can be considered as an example of an iterated map [Fox01b].

82 Intermediate Representation

Hyperblock Execution

Hyperblocks are evaluated by determining the active eta group, and then eval-
uating the SSA tree for each eta node in that group. However, in order to
determine the active eta group, it is necessary to evaluate sufficient SSA trees
to find the value of the predicates that determine which eta group is active.
The SSA trees that need to be evaluated are those specified in the cond field of
the η-group type.

In order to determine the active eta group of a hyperblock, it is sufficient
to evaluate the cond SSA tree within each eta group until an eta group is
found where cond evaluates to True. This is sufficient because there must be
a unique active eta group for any given hyperblock evaluation, and thus it
can be assumed that cond will evaluate to True for exactly one eta group.
The evaluation strategy represented by the semantic functions here uses this
approach for finding the active eta group.

In order to evaluate a cond SSA tree, a function mBoolTree is assumed, which
evaluates a Boolean SSA tree under a given hyperblock state (of type Σb). Using
this, a function to determine the active eta group, mHblock-next, is defined in
terms of the hyperblock and its state:

mHblock-next [] σb = arbitrary
mHblock-next (e·es) σb =
(if mBoolTree (cond e) σb then e else mHblock-next es σb)

Once the active eta group has been determined, the next-block field identifies
which hyperblock should be evaluated after the current hyperblock. Recall
that the identity of a hyperblock is the corresponding index into a list of type
prog. Using this, the semantic function for a hyperblock, mHblock, returns a pair
which consists of the identity of the successor hyperblock, and a new program
state. It is defined as follows:

mHblock hb curr σp ≡
let active = mHblock-next hb σp[curr]; next = next-block active
in (next , mη-group active curr next σp)

The function mη-group that determines the new program state that results from
the evaluation of a hyperblock. It is a function of the current eta-group, the
identity of the current hyperblock, the identify of the successor hyperblock,
and the current program state.

Note that once the active eta group has been determined, only that eta group
needs to be evaluated in the evaluation of the hyperblock. As a result, once the
active eta group has been determined, evaluation of the hyperblock becomes
synonymous with evaluation of the active eta group.

It should be clear that mη-group must be a function of, among other things, the
current eta group — the behaviour of a hyperblock must clearly be determined
(in part, at least) by the operations within the hyperblock. The reason why
mη-group must also be a function of the identity of the current and successor
hyperblocks is perhaps less obvious.

The identity of the current hyperblock is required for the evaluation of the
current hyperblock because the evaluation function is a function on the entire

4.3. Formal Definition of a Hardware/Software IR 83

program state. Thus, in order to use the state of the current hyperblock during
evaluation, its index within the global program state must be known.

The identity of the successor hyperblock is also required for the evaluation of a
hyperblock. This is because the state of the subsequent hyperblock is updated
as a side-effect of evaluating each eta node in the current hyperblock. The state
of the subsequent hyperblock is updated such that, when that hyperblock is
evaluated, its merge nodes will evaluate to the value of the corresponding eta
node in the current hyperblock.

The semantic functions that model the evaluation of a hyperblock can therefore
be considered to ‘read-only’ with respect to the state current hyperblock, using
it only for evaluation of the merge nodes. It is not necessary to reflect the value
evaluated for each node in the SSA trees in a hyperblock because of the use of
denotational semantics3. Only the state of the successor hyperblock is modified.

Eta Group Evaluation

An eta group is evaluated by evaluating its constituent SSA trees, by recursively
evaluating each node in the tree until the merge nodes at the tree leaves are
reached. Once each eta node at the top of each tree has been evaluated, the
state of the successor hyperblock is updated, such that the corresponding merge
node will take the value of the evaluated eta node.

SSA trees may be evaluated in any order. This is because of the use of the
functional store approach; and the assumption that all the eta nodes in a group
are assumed to have a unique label, and hence correspond to only one merge
node in the relevant successor hyperblock.

When at eta group is evaluated, all the SSA trees in that eta group, regardless
of whether they evaluate Boolean values, machine words or memory regions.
The evaluation of all trees of a given type is modelled by recursion on the η-bool,
η-word and η-mem lists for the given eta group.

To avoid specifying this recursion for each type of tree, a higher order func-
tion, mη-group-t is defined. This function has a polymorphic definition, and
it represents a generic strategy for evaluating lists of SSA trees with eta node
roots. Its parameters include: a list of SSA trees, which may be any of the
three types of trees; a semantic function for trees of the same type as those in
the first argument; the identity of the current and successor hyperblock; and
the program state. It returns the state resulting from the evaluation of the
given SSA trees, including updates to the state of the subsequent hyperblock.

Using such a recursive function, and assuming further semantic functions for
the three different types of SSA trees with eta node roots — namely mη-boolTree,
mη-wordTree and mη-memTree — the evaluation of an eta group is defined as
follows:

3Using an (small-step) operational approach would allow a more natural representation
of parallelism within the hyperblock, but it would be necessary to update the state of the
current hyperblock after each node evaluation.

84 Intermediate Representation

mη-group g curr next σp ≡
mη-group-t (η-bool g) mη-boolTree curr next
(mη-group-t (η-word g) mη-wordTree curr next

(mη-group-t (η-mem g) mη-memTree curr next σp))

The semantic function for each type of SSA tree rooted at an eta node is a
function of the following: the identity of the current hyperblock; that of the
successor hyperblock; the name of the merge node in the successor hyperblock
associated with the eta node root; the tree itself; and the program state in
which it is to be evaluated. The definition of mη-group-t is then a straight
forward recursion on the list of SSA trees with eta node roots:

mη-group-t [] m curr next σp = σp

mη-group-t (t ·ts) m curr next σp =
m curr next (get-γ-name t) (get-tree t) (mη-group-t ts m curr next σp)

In the above definition, m is the polymorphic semantic function for SSA trees
with eta node roots of a given type. The three such semantic functions that
mη-group uses to instantiate m all have similar definitions.

One of those is the semantic function for SSA trees rooted with a Boolean
valued eta node assumes a semantic function, mBoolTree, for Boolean valued
SSA trees without an eta node root. This is used to evaluate the SSA tree
associated with the eta node. The behaviour of the eta node itself is modelled
by storing the resulting value in the σ-bool field in the state associated with
the successor hyperblock, specifically at the location identified by the γ-name
of the eta node.

mη-boolTree curr next γ-name bTree σp ≡
let σb = σp[next]

in σp[next := µ(σb, σ-bool 7→(σ-bool σb)(γ-name := mBoolTree bTree σp[curr]))]

The semantic functions for machine words and memory regions have respective
definitions:

mη-wordTree curr next γ-name wTree σp ≡
let σb = σp[next]

in σp[next := µ(σb, σ-word 7→(σ-word σb)(γ-name := mWordTree wTree σp[curr]))]

mη-memTree curr next γ-name mTree σp ≡
let σb = σp[next]

in σp[next := µ(σb, σ-mem 7→(σ-mem σb)(γ-name := mMemTree mTree σp[curr]))]

SSA Tree Evaluation Without Eta Nodes

The strategy for evaluating each SSA tree without an eta node root is simply
to recursively evaluate trees by a post-order evaluation of the tree, and then
to update the state associated with the corresponding merge node in the sub-
sequent hyperblock. The only distinction between the different types of trees
is the types of values that they evaluate.

Semantic functions are assumed to exist for the primitive operators listed on
page 78. The first argument to all such semantic functions is a datatype con-
structor that represents an operator. The semantic functions that produce

4.3. Formal Definition of a Hardware/Software IR 85

Boolean values are: mBoolMonBoolOp, for the monadic operator on Booleans
(BNot); mBoolMonNatOp for the monadic operators on word values (BNot), and
mBoolDyNatOp for dyadic operators respectively. For machine words, there are
only dyadic operators, and a single function, mWordOp, suffices.

mBoolTree (BoolMonBoolOp bOp tree bId) σ =
mBoolMonBoolOp bOp (mBoolTree tree σ)

mBoolTree (BoolMonNatOp bOp tree bId) σ =
mBoolMonNatOp bOp (mWordTree tree σ)

mBoolTree (BoolDyNatOp bOp tree1 tree2 bId) σ =
mBoolDyNatOp bOp (mWordTree tree1 σ) (mWordTree tree2 σ)

mBoolTree (BoolMerge n bId) σ = σ-bool σ n

mWordTree (Const wVal wId) σ = wVal
mWordTree (WordOp wOp tree1 tree2 wId) σ =

mWordOp wOp (mWordTree tree1 σ) (mWordTree tree2 σ)
mWordTree (BoolToWord bTree wId) σ =

(if (mBoolTree bTree σ) then 0 else 1)
mWordTree (Load wTree mTree wId) σ =

(mMemTree mTree σ) (mWordTree wTree σ)
mWordTree (WordMerge n wId) σ = σ-word σ n

mMemTree (Store vTree lTree mTree mId) σ =
(mMemTree mTree σ)((mWordTree lTree σ):=(mWordTree vTree σ))

mMemTree (MemMerge n mId) σ = σ-mem σ n

Chapter 5

A Netlist-Level HDL

Contents
5.1 Need for a Netlist Language 88

5.2 Requirements from a Netlist language 89

5.3 Abstract Syntax . 89

5.3.1 An abstract syntax for hardware 89

5.3.2 An example design of a Full Adder 91

5.4 Netlist Semantics . 92

5.4.1 Primitives . 92

5.4.2 Abstraction and Instantiation Semantics 92

5.4.3 Composition Semantics 93

5.4.4 Component Semantics 94

5.5 Semantics of a Full Adder design 95

5.5.1 Half Adder Semantics 96

5.5.2 Full Adder Semantics 97

5.6 Correctness of a Full Adder design 99

5.6.1 Half Adder correctness 99

5.6.2 Full Adder correctness 100

This chapter motivates and describes the development of a simple low-level
hardware description language, which forms the basis of the hardware IR de-
veloped in the Chapter 6. It is based on an unpublished technical note by
Richard Boulton - “A Semantics for a Simple Netlist Language” [Bou98]. Both
the language presented here, and Boulton’s original language, model hardware
based upon a description of the structure of the circuit: the components and
the connections between them. Components may be gates that implement logic
functions. Additionally, in the language presented here, once a circuit has been
defined, it may be reused as if it were a primitive component in subsequent
component definitions.

The chapter begins by presenting the motivation for a netlist language, and
identifies the features the language must provide in order to make as simple
as possible the translation of a fragment of code in the software IR to an
equivalent fragment of hardware IR. The abstract syntax of the language is
developed in Section 5.3. Subsequent sections present a semantics given in

87

88 A Netlist-Level HDL

higher-order logic for circuits consisting only of combinational logic, which are
illustrated by examples. The chapter concludes by showing an example of a
correctness proof for a full adder. The treatment of bit vectors and sequential
logic is deferred to the next chapter.

5.1 Need for a Netlist Language

Section 3.3 describes the use of higher-order logic for hardware verification. In
that methodology, components and specifications are defined as constants in
the logic. At some point, however, it is necessary to have a model that can be
synthesised into a real hardware design. Current synthesis tools (for example,
those provided by FPGA and ASIC manufacturers) typically synthesise VHDL
or Verilog models, but not models written in HOL.

One approach to this problem is to have two versions of a design: a verifiable
(or preferably verified!) model in HOL, and a similar model in a language
supported by the relevant synthesis tool. Using this approach, correctness of
the synthesised circuit is dependent upon the latter model being a faithful
representation of the former. Even if an obvious relationship exists between
the two models, maintaining the two versions is vulnerable to human error.

An alternative is to produce the input to the synthesis tool directly from the
verified hardware model, expressed in a synthesisable subset of HOL [GIOS05].
This methodology seems ideal: specifications are refined into implementations,
and the verified designs can then be compiled into synthesisable designs auto-
matically. It should be noted that the designs are specific to the formulation of
higher-order logic used by the compiler. The development of such a compiler
proceeds by identifying a subset of HOL that can be synthesised. Pretty-
printing functions for terms in that subset are then defined to yield constructs
in the synthesisable HDL that are conjectured to have similar behaviour to the
original HOL term.

The approach taken here is to define a simple netlist-style HDL with semantics
expressed in HOL. The semantic function for circuits yields a HOL expression
that characterises the behaviour of that circuit from its structural description,
given in an abstract syntax. These expressions can then be used in a cor-
rectness proof of the circuit. Furthermore, a function can be defined between
the (abstract) syntax of the netlist language and the (concrete) syntax of a
synthesisable HDL.

The rationale for this approach is twofold. Firstly, since the abstract syntax is
a structural description of the circuit, the translation to a synthesisable HDL
design is conceptually simpler than the previous method, which requires trans-
lation from HOL terms to synthesisable HDL. By using a language designed
for describing connections between components, the complexity of determining
synthesisable HOL expressions, and their translation to a synthesisable HDL
from HOL is avoided.

Secondly, the syntax of the language has been separated from the HOL logic.
Thus a different semantics could be given to the language, it is possible to
give a zero-delay and an event-based semantics to the same abstract syntax.
Alternatively, a semantics of the language could be formulated in a different

5.2. Requirements from a Netlist language 89

logic, allowing component definitions (but not their correctness proofs) to be
reused.

The trade-off for these benefits is that semantics functions and proofs are com-
plicated by the fact that designs and their correctness proofs are based on a
language embedded in HOL, rather than HOL itself.

5.2 Requirements from a Netlist language

A verification technique for hardware designs is described in Section 3.3.2.
This technique assumes that a specification for the hardware exists. It also
assumes the existence of a hardware model to be verified, or that there will be
manual input to the process to produce a verified model from the specification.
However, neither of these assumptions are valid in the case where a compiler
is to generate both object code, and a hardware model for a function unit to
support that object code. In the general case — where different parts of an
expression may execute in different function units — if a hardware specification
is to exist, it must be generated from a compiler intermediate representation.
Generation from the IR is also necessary if the code to be compiled is to benefit
from standard compiler optimisations. If the process is to be fully automatic,
the compiler must also generate the synthesisable hardware model.

It is desirable for the netlist language to support most concepts in the software
IR at similar levels of abstraction. This is necessary in order to simplify the
translation of fragments of the software IR into the netlist language. For exam-
ple, if the software IR semantics models a machine word as a list of bits, then
the netlist language should support a similar representation. Furthermore, en-
suring that the semantic objects in the software IR are similar to those in the
netlist language reduces the proof burden when showing that the generated
hardware model is ‘equivalent’ to the software IR fragment from which it was
generated.

One problem that may arise using this approach is that it may be difficult to
develop a hardware language that supports translation from a software IR. For
example, if values are represented by natural numbers in the semantics of the
software IR, rather than machine words, then it will be difficult to relate its
semantics to those of a hardware language that uses bit strings of finite length
to represent values. In this case, it would be easier to relate the semantic
descriptions of the languages if the HDL supported natural numbers. However,
supporting arbitrarily large natural numbers is likely to cause problems with
synthesis. Although they are presented separately, in should be clear that the
software IR in the previous chapter has been developed in parallel with the
hardware representation that follows.

5.3 Abstract Syntax

5.3.1 An abstract syntax for hardware

In order to model elementary (or ‘primitive’) components, it is first necessary
to decide how each component will be identified – each primitive needs a name.

90 A Netlist-Level HDL

It would be possible to identify primitives using a datatype constructor:
datatype comp = And | Xor | . . .

It then might seem reasonable to define a function that, given a comp, would
yield a semantic function describing the behaviour of that component. How-
ever, as primitives can have a varying number of external signals (Not has two,
and And has three, for example), it would not be possible to make that function
well typed. Instead, the signal names can be included as part of the construct:
datatype comp = And a b o | Xor a b o | ...

However, the datatype constructor approach makes it difficult to extend the
set of primitives, and the language needs to support the definition of new com-
ponents, which in turn should be usable as if they were themselves primitives.

Section 3.3.2 described the use of predicates in higher order logic to specify the
behaviour of a component. The free variables in a predicate represent signal
values, and the predicate is true for any context in which the free variables
represent signal values that could be observed simultaneously on the external
pins of a component. Here, a new type is introduced, that of a binding function,
which binds signal names (which can be represented by character strings) to
signal values:
types

binding = sig-name⇒bit

A binding represents the value of signals in a circuit at a particular point in
time, and a predicate on a binding can be used to specify the behaviour of
combinational logic. Unfortunately, this technique introduces an extra level of
indirection when referring to signals, because a function application is necessary
to find the value of each signal. Given a binding cb, the specification of an And
gate given in Equation 3.1 becomes:

(cb A ∧b cb B) = cb O (5.1)

Using strings to represent signal names in the netlist language, it is now possible
to define a way of specifying the connections between the named pins of a
component (which are the same for every instantiation of the same type of
component) and signals that connect instantiations of components. A new
type name is introduced to represent pins, pin-name. It is important to note
that sig-name and pin-name are the same type. This is necessary because when
a new component is defined, its external signals become named pins of that
component. The purpose of distinguishing between them here is to make the
following definitions clearer. A new datatype, conn, is then defined to represent
the connection between a pin and a signal (or wire). The datatype distinguishes
between the pins that serve as inputs to the component, and those that serve
as outputs.

datatype conn =
In pin-name sig-name
| Out pin-name sig-name

(5.2)

For the And gate, A and B are inputs, while O is an output. By specifying
the direction of a pin connection, it becomes possible to formulate propositions

5.3. Abstract Syntax 91

about the number of outputs that are driving a given signal. A well-formedness
condition on the language requires that each signal be driven by only one out-
put, avoiding the need to specify the semantics of signal resolution. Each
instantiation of a component is described by a name that identifies the compo-
nent being instantiated, and a conn list that shows which pins on the component
(for example, A,B and O for the And gate) are connected to which signals.
record inst =

Comp :: prim-name

Conns :: conn list

A component definition is represented by a description of its external signals,
Ext, and a list of instantiations of primitive components, Insts:
record comp =

Ext :: tyenv

Insts :: inst list

The type of Ext is tyenv, defined as a pair of lists of pin names: pin-name list×
pin-name list. The first list represents the inputs of the design, and the second
represents its outputs. Once a component has been defined, it is available as
a primitive in subsequent designs, and the external signals represent the pins
that will be available on the newly defined primitive. The standard functions
fst and snd are used to access each item in the pair: a design d has inputs fst

(Ext d), and outputs snd (Ext d). Signal names that appear in the design, but
not listed as external signals are considered to be internal signals. Different
instantiations of a primitive component are distinguished by their position in
the Insts list.
types

design = (prim-name × comp) list

5.3.2 An example design of a Full Adder

Half adder

The half adder, illustrated in Figure 3.2 is described by the following component
description in the netlist language:

halfAddCmp ≡ (|
Ext= ([A,B],[C ,S]),
Insts = [

(|Comp = And , Conns = [In A A, In B B, Out O C] |),
(|Comp = Xor , Conns = [In A A, In B B, Out O S] |)

]
|)

(5.3)

The And and Xor gate are assumed to be defined primitives with the obvious
behaviour.

Full adder

The full adder, illustrated in Figure 5.1 is described by the following component
description:
fullAddCmp ≡ (|

92 A Netlist-Level HDL

Ext= ([A,B,Cin],[Cout,S]),
Insts= [

(|Comp = halfAdd , Conns = [In A A, In B B, Out C C1, Out S S1] |),
(|Comp = halfAdd , Conns = [In A S1, In B Cin, Out C C2, Out S S] |),
(|Comp = Xor , Conns = [In A C1 , In B C2, Out O Cout] |)

]
|)

halfAdd

halfAdd

1s

c1

2c

A

B

Cin S

Cout

Figure 5.1: Full adder component

5.4 Netlist Semantics

Section 3.3.2 shows how circuits, represented by HOL terms of type bool, can
be constructed by composition and abstraction. In the netlist language, com-
ponents are represented by functions of type binding⇒bool where the term is
true if it is applied to a binding that represents a set of signals that could be
observed simulataneously on the external pins of the component. A new type
is introduced to represent component behaviour:
types

behav = binding⇒bool

5.4.1 Primitives

The netlist language has an initial set of primitive components from which
circuits can be composed. The initial primitives do not have a defined internal
structure, but their behaviour is defined. For example, the And gate (as given
in Equation 5.1) and the Xor gate are defined with the following behaviours:

MAnd ≡ (λcb. (cb A ∧b cb B) = cb O) (5.4)
MXor ≡ (λcb. (cb A ⊕b cb B) = cb O) (5.5)

The constant is prefixed with the letter M to indicate that it is a semantic
function: it represents the meaning of an And gate. The definition imposes a
constraint on the values of the binding at A, B, and O.

5.4.2 Abstraction and Instantiation Semantics

Two methods of abstraction are introduced in Section 3.3.2, both of which need
to be reformulated slightly for the deeper embedding of the netlist language.
The first is the use of existential quantification to hide signals that are internal
to a component. Recall that the binding type is a function from signal names
to values, and that behaviour is represented by the type behav: a function

5.4. Netlist Semantics 93

from binding to bool. In order to hide a value, it is necessary to define a
new behaviour, introducing an existential quantifier for the hidden variable.
The internalise function is defined as a recursive function that takes a list of
internal signals and a component’s behaviour.

internalise [] be = be
internalise (s·ss) be = internalise ss (λcb. ∃new-sig . be (cb(s := new-sig)))

If there are no internal signals, the resulting behaviour is identical to the be-
haviour supplied, that is, the bindings that satisfy the supplied behavioural
model are those that satisfy the result. If there are internal signals, the new
behaviour binds the name of the hidden signal to the existentially quantified
variable. The resulting behavioural model is unaffected by the named signal
and is satisfied by any binding that satisfies the model provided. Additionally,
the resulting model is also satisfied by any binding that differs only in the
values of the named internal signals.

The second method of abstraction introduced in Section 3.3.2 is behavioural
abstraction where a component is referred to by name, rather than simply
duplicating the internal structure of that component in each design in which
it is used. By associating the names of previously defined components with
their external behaviour, it is possible to define and reason about a complex
component without reference to the internal structure of the components from
which it is defined. A new type is introduced to associate the names of defined
components with their external behaviour.
types dynenv = prim-name⇒behav

Note that it is called dynenv, short for dynamic environment, because it mod-
els the dynamic behaviour of components (as opposed to simply maintaining
their static properties, such as connections) — the fact that it changes during
the elaboration of a design is coincidental. Using a behavioural model of a
component, without reference to its internal structure has already been seen in
the treatment of primitive components. To find the semantics of a design, an
initial dynenv is constructed that associates the name of each primitive with
its behaviour. As new components are defined, their behaviour is added to the
dynamic environment. Instantiations of previously defined components can
therefore be treated similarly to instantiations of primitives, and in the sequel,
the term primitive is used to refer to both (reserving the term ‘initial set of
primitives’ to refer to components for which no internal structure is defined).

5.4.3 Composition Semantics

As in Section 3.3.2, composition of components is modelled by conjunction.
The constraint imposed on signal values by two components is that the same
signal values must simultaneously satisfy the constraints imposed by both com-
ponents. A function called combine is defined to represent the composition of
two circuits, c1 and c2. Its result is the behaviour of the two circuits composed
together.
combine c1 c2 ≡ λbind . c1 bind ∧ c2 bind

94 A Netlist-Level HDL

In a shallow embedding in HOL, different values could be constrained by simply
using different free variables. However, in the definition of MAnd, A, B and O
are not free — they are the names of pins on the And gate and are fixed. A
gate that can only be connected to signals with a fixed name clearly isn’t very
useful! A function, bindPins, is used to provide signal renaming : to rename
signals to the pins to which they are connected.

bindPins::(sig-name×sig-name) list⇒binding⇒binding
bindPins cs cb ≡ foldl (λcb ′ (pn, sn). cb ′(pn := cb sn)) cb cs

(5.6)

The first argument of bindPins is a list of pairs of signal names. The first name
in each pair is a pin name, while the second is the name of a signal. The second
argument, a binding, represents the values of the signals within a component.
The result is a binding where the signal value for each pin has been replaced by
the corresponding value for the signal to which it is connected. This binding
can be applied to a primitive component.

Two auxiliary functions are defined to support the use of bindP ins. The first,
Mconn, returns a pair where the first element is a pin name and the second
is the signal name to which that pin is connected. The definition is simple,
because discarding the datatype constructor of the connection that indicates
the pin’s direction, and constructing a pair, is all that is required.

Mconn::conn⇒(pin-name×sig-name)
Mconn (In pn sn) = (pn, sn)

Mconn (Out pn sn) = (pn, sn)

The result of Mconn is ready to be used as an element of a list that is used as
the first argument to bindP ins. The full list is found by applying Mconn to
every connection on a component being instantiated. Thus the first argument
to bindP ins can be found by applying a second auxiliary function, Mconns,
to the component’s instantiation:

Mconns ≡ map Mconn ◦ Conns

The behaviour of a given instantiation of a primitive (or previously defined
component) can now be found by using a dynamic environment to find the
behaviour of the primitive. The bindP ins function described previously can
then be used to find the primitives behaviour in the context of the component
being defined. This means finding the constraint on signal values that the
primitives instantiation imposes, by mapping signal names in the component to
pin names of the primitive. Thus the behaviour of a components instantiation
can be found by the following function:
Minst ::dynenv⇒inst⇒behav
Minst denv cmp ≡
λbind . (denv (Comp cmp)) (bindPins (Mconns cmp) bind)

5.4.4 Component Semantics

Thus far, an initial set of primitives has been given. The semantics of compo-
nent instantiation has been shown and seen to be similar for both primitives
and defined components. It is now possible to show how a new component can
be defined in order that it may later be used as a primitive in subsequent com-
ponent definitions or as a top level design entity. A function Minsts is defined

5.5. Semantics of a Full Adder design 95

to find the behaviour of a list of component instantiations. It can be applied
to the Insts field of a component record.
Minsts is ≡ (foldl combine (λb. True)) o (map (Minst is))

The expression map (Minst is) yields a list of behaviours, one for each com-
ponent instantiation. By combining these behaviours, the signal constraints
imposed by the new component can be found. Suppose is is an empty list, a
degenerate component definition that does not instantiate any primitives or
connect any signals. The map expression in Minsts is clearly an empty list,
then Minsts[] = foldl combine (λb.True)) [] = (λb.True). An empty list of
component instantiations imposes no constraints on signals. If is is non-empty,
then the constraint will be the (distributed) conjunction of constraints imposed
by each component instantiation. Although Minsts represents the behaviour
of a list of component instantiations, its result is not the behaviour that should
be added to the dynamic environment. Recall that the dynamic environment
associates primitives and components with their external behaviour, and that
internal signals between component instantiations in a new component defi-
nition should not be visible from another component. Assuming a function
pinsComp that returns a list of signals that are internal to a component, the
behaviour of a new component cmp, that uses other components and primi-
tives from a given dynamic environment denv, is given by the semantic function
Mcomp:

Mcomp cmp denv ≡ internalise (pinsComp cmp) (Minsts denv (Insts cmp)) (5.7)

The signals that are internal to a component can be found from the list of
external signatures (given in the abstract syntax for a component) and the
signals named in the connections of each component instantiation. The signals
used by a given component instantiation are given by the pinsInst function,
which uses an auxiliary pinExpr function to get the signal name from each pin
connection:

sigExpr (In pn sn) = sn

sigExpr (Out pn sn) = sn

pinsInst ≡ map sigExpr ◦ Conns

The external signals of a component are given by fst (Ext d) ∪l snd (Ext d),
where ∪l is a set-theoretic union operation on lists that removes duplicates.
pinInsts, defined below gives a (duplicate free) list of all the signals named by a
given list of component instantiations. Finally, assuming a similar set-theoretic
minus operation on lists, −l, the internal signals are given by pinsComp, the set
of all signals minus the set of external signals in a component definition.

pinsInsts cs ≡ foldl op ∪l [] (map pinsInst cs)

pinsComp d ≡ pinsInsts (Insts d) −l (fst (Ext d) ∪l snd (Ext d))

5.5 Semantics of a Full Adder design

To illustrate the semantics of the netlist language, this section shows the re-
sult of applying the semantic functions to two sample component definitions,
namely the half adder and the full adder definitions given previously.

96 A Netlist-Level HDL

5.5.1 Half Adder Semantics

The component definitions assume that And and Xor gates have been defined
as primitives. Using the behavioural definitions of these gates given in Equa-
tion 5.4 and Equation 5.5 respectively, an initial environment (of type dynenv)
is constructed as follows:

Mprim p ≡ ((λprim bind . False)(And := MAnd , Xor := MXor)) p

The behaviour of the half adder component, whose definition is given in Equation 5.3,
is found by applying the semantic function for a component to that definition and the
environment of primitives.

MhalfAdd = Mcomp halfAddCmp Mprim

Unfolding the definition of Mcomp yields:

. . . = internalise (pinsComp halfAddCmp) (Minsts Mprim (Insts halfAddCmp))

Recall that pinsComp yields a list of signals that are internal to a component. It does
this by finding which signals a component uses, but does not declare as an external
signal. By examining the diagram of the half adder Figure 3.2 it can be seen that
it has no internal signals, and expanding the definition of pinsComp shows that it
yields the empty list, because all the signals named in the component definition, given
by pinsInsts (Insts halfAddCmp), are listed as external signals. Thus the following
yields the empty list:

pinsInsts (Insts halfAddCmp) −l (fst (Ext halfAddCmp) ∪l snd (Ext halfAddCmp))

Since there are no internal signals, and internalise [] b = b, the MhalfAdd
expression can now be reduced to:

MhalfAdd = (Minsts Mprim (Insts halfAddCmp))
. . . = (foldl combine (λb. True) ◦ map (Minst Mprim)) (Insts halfAddCmp)

(5.8)
Unfolding Minsts shows that the next step must be to apply Minst to find the

behaviour of each (primitive) component instantiation. The behaviour of each
instantiable component is given in the dynamic environment Mprim, which
forms the first argument to Minst. The first primitive instantiation in the half
adder is that of the And gate. The function Minst is applied, and the name of
the component to be instantiated (And) is replaced by its behaviour given by
the dynamic enviroment, Mprim:

Minst Mprim (|Comp = And , Conns = [In A A, In B B, Out O C], . . . = ()|) (5.9)

. . . = (λcb. MAnd (bindPins (Mconns

(|Comp = And , Conns = [In A A, In B B, Out O C]|)) cb))

The Mconns function then pairs the pin names of the And gate (A, B and
O) with the signals names to which it is connected (A, B and C). Note that a
signal sharing the same name as a pin is no more problematic than an argument
sharing the same name as a formal parameter in a high-level programming
language — the two names are separate in the semantics. 1

1This is not to say that there are no issues with sharing names. In a language with call-
by-value-return semantics, such as Ada, what should the value of a variable passed as output
parameters in two different argument positions be after executing the function? Likewise,
connecting the same signal to different pins may result in an inconsistent model — what
happens if the same signal is connected to both the input and output of an inverter?

5.5. Semantics of a Full Adder design 97

. . . = (λcb. MAnd (bindPins [(A,A), (B,B), (O,C)] cb))

The bindPins function updates the binding that is passed to MAnd. It sets the
value of the binding at O, used by the definition of MAnd, to be the value of
the binding at C. Note that where a pin has the same name as the signal to
which it is connected, we have cb = cb(A := cb A), and cb = cb(B := cb B),
and consequently the signal renaming can be expressed as follows:

. . . = (λcb. MAnd (cb(O := cb C)))

The definition of MAnd can then be unfolded, and the resulting expression
simplified:

. . . = (λcb. (cb A ∧b cb B) = cb C)

(5.10)
The method for finding the semantics of the Xor instantiation is similar to that
of the And gate, and the details are omitted here.

Minst Mprim (|Comp = Xor , Conns = [In A A, In B B, Out O S]|) =
(λcb. (cb A ⊕b cb B) = cb S)

(5.11)
Now the behaviour of the two instantiated primitives has been found, it is
possible to return to Equation 5.8 and subsitute in a list of the behaviours of
the two primitives that are instantiated half adder, as shown in Equation 5.12.

(foldl combine (λb. True) ◦ map (Minst Mprim)) (Insts halfAddCmp) =
foldl combine (λb. True) [

(λcb. (cb A ∧b cb B) = cb C),
(λcb. (cb A ⊕b cb B) = cb S)]

(5.12)
The combine function is then applied iteratively to (λb. True) and the be-

haviours in the list. Combining (λb. True) with the And gate behaviour (Equa-
tion 5.10), simplifies to just the behaviour of the And gate, because (λb. True) ∧
(λb. P b) = (λb. P b). Applying combine again to this term, and the behaviour
of the Xor gate gives the conjunction of the two behaviours (Equation 5.13).

MhalfAdd = (λcb. (cb A ∧b cb B) = cb C ∧ (cb A ⊕b cb B) = cb S)

(5.13)

5.5.2 Full Adder Semantics

This section shows how the semantics of the full adder can be derived from it’s
structural definition. The focus is on the features of the language that were
not illustrated in the half adder example in the previous section, notably: the
treatment of internal signals; and the use of a previously defined component in
a new component.

The full adder is composed of two half adders and an Xor gate. The half adders
are instantiated by treating the half adder design as a primitive, rather than by
simply duplicating the design twice, as part of the full adder design. This allows
the semantics of the half adder, MhalfAdd — as found in the previous section
— to be reused here. In order to use it as a primitive, it is first necessary to
define a new dynamic environment including the semantics of both the existing

98 A Netlist-Level HDL

primitives, and the semantics of the half adder. This is done by using a function
update to the existing primitive environment:

env2 ≡ Mprim(halfAdd := MhalfAdd)

(5.14)
The semantics of the full adder can then be found by applying Mcomp to the

definition of the full adder, and the new environment. Note that the environ-
ment should define a semantics for each type of primitive listed in the Insts
field in the component’s definition.

MfullAdd = Mcomp fullAddCmp env2
. . . = internalise (pinsComp fullAddCmp) (Minsts env2 (Insts fullAddCmp))

(5.15)
As in the previous section, the signals that are internal to the component def-

inition, denoted by pinsComp fullAddCmp are found first. Although pinsComp

provides a list of signals — more specifically, (pinsComp fullAddCmp) = [S1, C1, C2]

— their order is unimportant here, and noting that set (pinsComp fullAddCmp)

= {S1, C1, C2} is sufficient.

The evaluation of the second argument is to internalise follows. Unfolding
Minsts (as in Equation 5.8) and applying Insts to the full adder component
definition:
Minsts env2 (Insts fullAddCmp) =

foldl combine (λb. True) (map (Minst env2) (Insts fullAddCmp))
. . . = foldl combine (λb. True)

(map (Minst env2)
[(|Comp = halfAdd , Conns = [In A A, In B B, Out C C1, Out S S1]|),
(|Comp = halfAdd , Conns = [In A S1, In B Cin, Out C C2, Out S S]|),
(|Comp = Xor , Conns = [In A C1, In B C2, Out O Cout]|)])

It can be seen that a previously defined component, the half adder, can be used as if
it were just another primitive by simply referring to it by name. The next step is to
apply Minst to each ‘primitive’, instantiated in a full adder. The difference between
this step, and the steps presented in Equation 5.9 to Equation 5.12 is that here the
env2 environment is used, in order to make use of the environment containing the half
adder and the initial primitives, introduced in Equation 5.14. Again, Minst is used to
find the semantics of each component, and foldl and combine are used to collect the
resulting terms into conjuncts:

. . .= (λbind .
MhalfAdd (bind(A := bind A, B := bind B, C := bind C1, S := bind S1)) ∧
MhalfAdd (bind(A := bind S1 , B := bind Cin, C := bind C2, S := bind S)) ∧
MXor (bind(A := bind C1, B := bind C2, O := bind Cout)))

Unlike the presentation of the half adder semantics, the MXor expression has not been
unfolded here to ease comparison with the component definition. The arguments to
internalise can now be substituted into Equation 5.15:

MfullAdd = internalise [S1, C1, C2] (λbind .
MhalfAdd (bind(A := bind A, B := bind B, C := bind C1, S := bind S1)) ∧
MhalfAdd (bind(A := bind S1 , B := bind Cin, C := bind C2, S := bind S)) ∧
MXor (bind(A := bind C1, B := bind C2, O := bind Cout)))

The aim is introduce an existentially quantified variable for each internal signal, and
ensure that all references to the value of that signal ‘within’ the component refer to the
quantified variable, irrespective of the value of a signal with the same name ‘outside’
the component.

5.6. Correctness of a Full Adder design 99

Application of internalise introduces the existentially quantified variable by recur-
sion on the list of internal signals. The following expression shows the result of one
unfolding of internalise, in which only one signal has been ‘internalised’. Note that
the binding of signal values used in the inner lambda expression has been updated,
such that references to those internal signals will refer to the existentially quantified
variables instead.

. . . = internalise [C1, C2] (λbind . ∃ s1 .
(λbind .

MhalfAdd (bind(A := bind A, B := bind B, C := bind C1, S := bind S1)) ∧
MhalfAdd (bind(A := bind S1 , B := bind Cin, C := bind C2, S := bind S)) ∧
MXor (bind(A := bind C1, B := bind C2, O := bind Cout)))

(bind(S1 := s1)))

Using the rule (λbind . (bind(x := a)) x) = (λbind . a), the above expression can be
simplified:

. . . = internalise [C1, C2] (λbind . ∃ s1 .
MhalfAdd (bind(A := bind A, B := bind B, C := bind C1, S := s1)) ∧
MhalfAdd (bind(A := s1 , B := bind Cin, C := bind C2, S := bind S)) ∧
MXor (bind(A := bind C1, B := bind C2, O := bind Cout)))

Further unfolding of internalise quantifies the remaining internal signals, and the
term reduces to the following expression, completing the evaluation of the component’s
semantics.

. . . =
(λbind . ∃ c1 c2 s1 .

MhalfAdd (bind(A := bind A, B := bind B, C := c1 , S := s1)) ∧
MhalfAdd (bind(A := s1 , B := bind Cin, C := c2 , S := bind S)) ∧
MXor (bind(A := c1 , B := c2 , O := bind Cout)))

5.6 Correctness of a Full Adder design

An important requirement of the netlist language is that it should be possible
to reason about the correctness of components described in the language, with
respect to a specification. This is also essential for showing the correctness of a
compiler that targets the netlist language. It is necessary for the specification
of a component to be given in the meta-language used to describe the semantics
of the netlist language: in this case, HOL. This is because the netlist language
does not provide the features of a specification language.

The next sections describe how the full adder design example used throughout
this chapter was mechanically verified using a theorem prover. For all the
main features of the netlist language – component instantiation; composition;
signal hiding and renaming; and abstraction of primitives – they show how a
component design using those features can be verified.

5.6.1 Half Adder correctness

In order to show the correctness of the half adder, it is necessary to show
that its semantics, given in Equation 5.13, satisfies its specification. The
verification condition to be proven is as follows (its explanation is below),

100 A Netlist-Level HDL

where the premise (above the line) represents the semantics of the half adder
model, and the conclusion (below the line) represents its specification:

halfAddCorrect
MhalfAdd (cb(A := a, B := b, C := c, S := s))
�[a]� + �[b]� = �[c, s]�

The term cb(A := a, B := b, . . .) is used to refer to a binding in which the
value of signal A is a, the value of signal B is b, and so on. The statements about
the value of the binding at given signals could be written more conventionally
using separate premises as follows:

MhalfAdd cb
cb A = a
cb B = b
cb C = c
cb S = s
�[a]� + �[b]� = �[c, s]�

However, the former notation is used here as it is more concise. Furthermore, it
is clear than the signal terms can be permuted if they refer to different signals,
for example: cb(. . . , A := a, B := b) = cb(. . . , B := b, A := a). An alternative
way of viewing the verification condition is by unfolding the semantics of the
half adder (using Equation 5.13):

(a ∧b b) = c ∧ (a ⊕b b) = s
�[a]� + �[b]� = �[c, s]�

The task is to prove the judgement above. With only four bit variables, it is
clear that the circuit is trivial, and examining each combination of values is
certainly the simplest, if not the only, way to complete the proof.

Recall from Section 3.1.2 that the bits are not represented by Boolean values in
this work, but as a type bit with two datatype constructors 0 and 1. Thus the
verification condition cannot be discharged using Boolean simplification alone.
Instead, case distinction must be performed on each bit variable.

5.6.2 Full Adder correctness

Verification of the full adder requires proving the following statement of cor-
rectness:

fullAddCorrect

(λcb. (∃ c1 c2 s1 .
MhalfAdd (cb(A := cb A, B := cb B, C := c1 , S := s1)) ∧
MhalfAdd (cb(A := s1 , B := cb Cin, C := c2 , S := cb S)) ∧
MXor (cb(A := c1 , B := c2 , O := cb Cout)))) cb
�[cb A]� + �[cb B]� + �[cb Cin]� = �[cb Cout, cb S]�

The correctness proof is more complex than that of the half adder because
of the existential quantifier; the use of a previously defined component rather
than merely initial primitives; and the extra signals. Although its clear that
the full adder is simple enough to apply the (somewhat brute force) technique
of building a truth table as in the previous section, this section provides a more
interesting proof.

Firstly, the proof shows how the correctness proof of a larger component may
use as a lemma the correctness statement of a smaller component that it instan-

5.6. Correctness of a Full Adder design 101

tiates. This allows the instantiated component to be replaced by a different
component satisfying the same specification, and — so long as the replace-
ment has been verified — the correctness proof of the larger (instantiating)
component need not be modified. Secondly, the proof allows the enjoyment of
one of the most compelling benefits of using theorem proving instead of model
checking: the process of proving its correctness provides extra insight into the
design, suggesting an alternative implementation.

Rather than proving statement of correctness above directly, the proof pro-
ceeds by proving the following, slightly simpler, lemma where the existential
quantifier has been removed:
MhalfAdd (cb(A := cb A, B := cb B, C := c1 , S := s1)) ∧
MhalfAdd (cb(A := s1 , B := cb Cin, C := c2 , S := cb S)) ∧
MXor (cb(A := c1 , B := c2 , O := cb Cout))
�[cb A]� + �[cb B]� + �[cb Cin]� = �[cb Cout, cb S]�

It is helpful to ‘label’ terms representing the constraint on signal values imposed
by each component that is instantiated. These labels can be used throughout
the proof to distinguish between the two half adders, and to clarify what proof
steps are being taken. The terms are simply the conjuncts of the lemma’s
premise:

halfAdd1 : MhalfAdd (cb(A:=cb A, B:=cb B, C :=c1 , S :=s1))
halfAdd2 : MhalfAdd (cb(A:=s1 , B:= cb Cin, C :=c2 , S :=cb S))
xor : MXor (cb(A:=c1 , B:=c2 , O:=cb Cout))

Using the specification of the half adder, a mathematical relationship between
signal values can be stated. From the halfAdd1 instantiation and its specifi-
cation, the sum of externals signals A and B, when each is interpreted as the
natural number 0 or 1, is the value of the bit vector [c1 , s1] when interpreted
as a natural number in the range 0–3 (most significant bit first).

�[cb A]� + �[cb B]� = �[c1 , s1]� using halfAdd1
�[s1]� + �[cb Cin]� = �[c2 , cb S]� using halfAdd2

Adding the respective sides of the above equations together gives:

�[cb A]� + �[cb B]� + �[s1]� + �[cb Cin]� = �[c1 , s1]� + �[c2 , cb S]�

Subtracting �[s1]� from each side makes the left hand side equal to that in
the consequent of the required lemma:

�[cb A]� + �[cb B]� + �[cb Cin]� = �[c1 , 0]� + �[c2 , cb S]� (5.16)

It remains to be shown that �[c1 , 0]� + �[c2 , cb S]� = �[cb Cout, cb S]�.
Given xor, which can be expanded to show that cb Cout = c1 ⊕ c2, this is
very nearly the required result. However, if c1 and c2 both have the value 1,
then the sum of the terms on the left hand side cannot be expressed in the
two bit output of the full adder, [cb Cout, cb S]. Fortunately, this situation can
never occur, i.e. we always have: c1 = 0 ∨ c2 = 0. This result can be seen
by inspection of the schematic in Figure 5.1 and case analysis on the inputs of
the halfAdd1. If both inputs are 1, then s1 = 0 (using halfAdd1), and therefore
c2 = 0 (using halfAdd2). On the other hand, if one of the inputs A or B is 0,
then the carry output of the first adder, halfAdd1 will be 0, i.e. c1 = 0.

102 A Netlist-Level HDL

The observation that c1 = 0 ∨ c2 = 0 provides some insight into the design
of the full adder. It shows that the Xor gate may be replaced by an Or gate,
because these two components share the same truth table under the condition
that at least one of the inputs is 0. While the observation is not particularly
relevant for the case that the design will be implemented by look-up tables in
an FPGA, it is encouraging to note that improved insight into the design of a
component gained by theorem proving is possible, even for simple designs.
The proof is concluded by considering the cases c1 = 0 and c2 = 0. If c1 = 0

then c2 = cb Cout, and substituting these values into Equation 5.16 gives the
consequent of the lemma because the term with c1 evaluates to �[0, 0]�, and
hence zero, and can be eliminated from the equation. In the case where c2 = 0,
c1 = cb Cout, and again the required result can be seen though simple reasoning
over arithmetic of binary numbers.

This concludes the proof of the lemma, and the required correctness theorem,
fullAddCorrect, can now be proven. Informally, we reason that a given set of
values for s1, c1 and c2 either satisfies the premise in the lemma or it does not.
If there exists a set of values that satisfy the premise, then these values can be
used as witness values in the main theorem, since the theorem uses the same
model and specification. If there does not, then the lemma is trivially true,
because the antecedent is always false. Likewise, if no set of values satisfying
the model exists, the premise of the main theorem is false, and it too is trivially
true. Thus this proof step is justified regardless of whether or not the model
is satisfiable (satisfiability is proved separately).

Chapter 6

Sequential and Iterated Logic

Contents
6.1 Approaches to Modelling Sequential Logic 104

6.1.1 Summary of Approaches to Modelling Time 104

6.1.2 Constructive Approaches 105

6.1.3 Declarative Approaches 108

6.1.4 Selection of an Approach to Modelling Time 111

6.2 Temporal Modelling of Sequential Logic 112

6.2.1 Adding Synchronous Logic to the Netlist Language 113

6.2.2 An Abstract Register 116

6.3 Iterated Logic . 120

6.3.1 Adding Bit Vectors to the Netlist Language 121

6.3.2 Bit Vector Semantics 124

6.3.3 Adding a Row Construct to the Netlist Language . 126

6.3.4 Semantics of the Row Construct 129

The netlist language introduced in the previous chapter provides a means to
reason about the behaviour of combinational logic. It provides a collection of
named primitive components, and supports the definition of circuits by allow-
ing components to be instantiated in a design, and the connections between
those instantiations defined. It also has the capability to model abstraction:
new components may be defined by associating a circuit definition with a name,
which may then be used as if it were another primitive component. Further-
more, abstraction is also achieved by hiding internal signals within a compo-
nent, such that they are not visible as external signals of a component.

Unfortunately, the language is rather too simple for the purpose of reasoning
about hardware/software compilation. It does not model sequential logic, and
therefore provides no support for reasoning about computations that occur
in stages, requiring memory to store intermediate results. In the context of
reconfigurable hardware, such computations are typically implemented using
synchronous logic, although asynchronous techniques have also been used.

Another limitation of the netlist language as presented in Chapter 5 is that
it is difficult to work with values that are represented by more than one bit.

103

104 Sequential and Iterated Logic

The design and verification of a full adder component with two input values
and a carry input was presented: each input represented by one bit. Typically,
arithmetic computations involve operations on larger values, represented by
bit vectors. These are ordered lists of bit values, that may be interpreted as
a numeric value. It would be cumbersome to design and verify circuits that
operate on bit vectors using the netlist language as described. Such circuits are
often composed of repeating structures. For example, the ripple-carry adder
— as used in many FPGA designs due to FPGAs providing dedicated carry
logic — is composed of several full adders connected together in a row. This
concept is referred to as iterated logic here.

This chapter addresses these limitations by extending the netlist language.
As is conventional for reconfigurable hardware — and for current computer
architectures in general — the extension is based on synchronous logic. It is
expected, however, that an alternative extension based on asynchronous logic
could be formulated, because the semantics are still given in higher order logic.
Higher order logic has been used to verify the implementation of a D-type flip-
flop expressed at the CMOS gate level [Gor86]. At this level of abstraction, the
flip-flop implementation is essentially a delay-sensitive asynchronous circuit.

Synthesisable HDLs such as VHDL and Verilog provide support for representing
both sequential logic and iterated logic. The extensions to the netlist language
introduced in this chapter may be mapped into one of these higher level HDLs
relatively straight-forwardly, because the extensions continue to represent a
subset of the features available in higher level HDLs.

6.1 Approaches to Modelling Sequential Logic

This section surveys existing approaches to modelling sequential logic in the
formal semantics of hardware description languages. Each approach involves
introducing a notion of time in the formal semantics. Section 6.1.1, Summary
of Approaches to Modelling Time discusses factors that were considered when
selecting an approach to extending the netlist language, as presented in Chap-
ter 5, to support sequential logic. It also classifies existing approaches into
two categories which are described in Section 6.1.2, Constructive Approaches
and Section 6.1.3, Declarative Approaches. The section concludes by describ-
ing the selected approach and why it is appropriate for the netlist language in
Section 6.1.4, Selection of an Approach to Modelling Time.

6.1.1 Summary of Approaches to Modelling Time

While there are many different ways in which the netlist language could be ex-
tended to support sequential logic, and hence the notion of time, it is necessary
to select one approach in order that the semantics be well-defined. An attempt
to use more than one technique could lead to inconsistencies. It is necessary,
then, to consider which approach to use for the netlist language. The different
approaches considered here fall into two categories, which are referred to here
as constructive approaches and declarative approaches 1.

1This choice of terminology borrowed from [Fox01b]

6.1. Approaches to Modelling Sequential Logic 105

The constructive approaches share one aspect in common: in these approaches,
the semantics have a well-defined mechanical approach to determining the val-
ues of semantic domains for a given point in time, based on the values of those
domains for previous points in time.

In contrast, declarative methods define a predicate that characterises the be-
haviour of a circuit over time. While constructive approaches must define the
state at each point in time based solely on the history of state values, declara-
tive approaches may use expressions about signal values at arbitrary points in
time, including those that occur in the future.

Declarative approaches tend to support greater non-determinism, because most
of the constructive approaches define states as a function on previous states.
Although this statement holds for many examples of formalisations of time, a
stronger statement than this would be an over-generalisation. An operational
semantics that determines a set of possible next states could provide a mechan-
ical means of deriving all possible subsequent states, in such a way that the
actual next state is non-deterministic.

The decision as to whether a constructive or a declarative approach would
be more appropriate for the netlist language is based on several factors. The
netlist language as it stands represents a commitment to various aspects of a
logical framework. Its semantics are expressed as semantic functions from the
abstract syntax of the netlist language into predicates in the meta language,
Isabelle/HOL, allowing reasoning about the behaviour of hardware in higher
order logic. In selecting an approach, it is necessary to consider this existing
commitment to an approach within the logical framework, and the extension
must be ‘compatible’ with the existing model.

As an example of how appropriate modifications to the language can be identi-
fied, one can consider whether the benefits of the current netlist representation
are preserved when it is modified to model time. The relational model pro-
vided zero-delay semantics, allowing tableau-based reasoning for combinational
logic. This approach was used to verify the design of a half-adder in the previ-
ous chapter. The ability to verify logic in this way is convenient, and ideally,
the extension to the representation should preserve the benefits of a simple way
to reason about combinational logic.

Thus one criterion for selecting an approach to extending the semantics to
allow the modelling of sequential logic is that it should not entail losing the
ability to reason simply about combinational logic.

6.1.2 Constructive Approaches

Constructive approaches to modelling hardware behaviour allow the behaviour
of a circuit, as modelled by the semantics of a hardware language, to be com-
puted from prior states of the circuit and a description of any stimuli that are
applied to the external signals of the circuit. Hence, for hardware languages
defined using a constructive approach, it is possible to develop a simulator to
predict the behaviour of a given circuit.

106 Sequential and Iterated Logic

IEEE Standardised HDLs

The IEEE standards that define VHDL and Verilog describe a constructive
method for simulating their respective HDLs. The semantics of these languages
are complex, and written in English: the standards do not provide formal
semantics for the languages. Verification of designs is usually performed by
using a test-bench, also written in an HDL.

Hardware designers typically consult the manuals for their synthesis tool to
determine which HDL constructs may be used to denote a particular hardware
construct. Hardware not designed in this manner may not be synthesisable,
and even if it is, it may not behave as intended.

The semantics described in the Language Reference Manuals [IEE02, IEE01]
for these languages model the simulation semantics of the language, without
reference to hardware. Although separate manuals describe the hardware in-
tended to be synthesised from certain language constructs [IEE04b, IEE04a],
it is not clear how accurately hardware synthesised according to the latter
manuals behaves as per the simulation semantics of the former.

Thus, it is not clear that a hardware design expressed in one of the above
HDLs will behave as per their deterministic simulation semantics, which are
an approximation to the behaviour of the actual hardware. In contrast to the
semantics of these HDLs, the temporal behaviour of the actual hardware may
be non-deterministic. The behaviour of hardware varies according to the details
of the hardware implementation of the design, the target technology and the
operating environment, which may not be known precisely at design time.

Formal verification of designs using the Language Reference Manuals is not
possible because they do not provide formal semantics for the languages. This
makes the standard semantics of these languages inappropriate for the purposes
here.

Formal semantics for these languages (or subsets thereof) have been con-
structed retrospectively and attempt to formalise the simulation semantics of
the language [KB95a, SX98, Gor95, BM95, Rus94].

The semantics describe an iterated simulation cycle. The simulation cycle
considers a number of ‘hardware threads’ which are executed until they reach
a ‘wait’ statement. As they execute, they may schedule signal transactions,
allowing the value of a signal to be updated after an optional delay which can
be used to model the delay of physical circuits [KB95b]. The signal updates
are stored in a (chronological) delta-queue, and if a simulation cycle schedules
new transactions, they are merged with existing future transactions.

One formulation of the operational semantics of VHDL defines the following
semantics domains [vT95]:

γ = (name)-set σ = (name× value)-set
τ = time→ σ θ = time→ (γ × σ)

Time is modelled using the natural numbers. Signal names and signal values are
of type name and value, and are represented by strings and Boolean values
respectively. Whenever an event occurs on a signal, such as a signal rise or

6.1. Approaches to Modelling Sequential Logic 107

fall, the value is included in the set of events, γ. The state of the circuit, σ,
is represented by a finite set of name-value pairs, and associates signal names
with their current value. Transactions that have been scheduled to occur in the
future (to model delay) are represented as name-value pairs denoting the new
value the signal should take after the transition. More than one transaction
may be scheduled for a given point in time, and the future of (scheduled)
transactions, τ , is modelled as a function from time to a set of transactions.
The history of the behaviour of a circuit is a function of time that yields the
state of the circuit, and the set of signals for which an event took place at that
time.

While some formalisations appear to model a large subset of the relevant HDL,
hardware verification using such semantics is difficult, and requires a large
amount of effort from the user [vT95].

Other HDLs

Constructive formal semantics exist for HDLs other than those standardised
by the IEEE. Many of these have the advantage that formal semantics were
considered during language design, rather than being developed retrospectively
as in the case of VHDL and Verilog.

The formal semantics of Core ELLA adopts a process algebraic approach, and
has a simple timing model that can be used to describe synchronous hard-
ware [BGMW94]. A shallow embedding [BGHT90] of these semantics were
expressed in the HOL system [Gor85, Gor88], with the intention of being used
primarily for ‘program’ verification [BGG+92].

In contrast to ELLA, the Balsa HDL is used for describing asynchronous hard-
ware [EB02]. Given its lack of formal semantics, and the difficulties in synthe-
sising asynchronous logic to current reconfigurable hardware, it is inappropriate
for the purposes here.

Iterated Maps

Anthony Fox describes an algebraic technique for specification and verification
of microprocessors [Fox01b]. The methodology involves defining two functions,
namely an initialisation function and a next state function:

init : Σ→ Σ
next : Σ→ Σ

The initialisation function, init, maps arbitrary states onto valid initial states
for the circuit. This may be used to specify the reset circuitry that ensures a
hardware design initialises to an appropriate state, or, in the context of micro-
processors, to specify a possible flush of the instruction pipeline, if necessary.
In the context of reconfigurable hardware that allows an initial state to be
programmed, the initialisation function could simply represent an abstraction
of this feature of the hardware.

108 Sequential and Iterated Logic

The next state function, next, maps the state of a circuit at one point in
discrete time to the next, and thus models how the state of a circuit varies over
time.

A state function, G : N→ Σ→ Σ, can be used to model the state of a circuit
given a point in discrete time (indexed by natural numbers) and an initial
state. Where such a function is defined in terms of an initialisation function
and a next state function, it is known as an iterated map. An iterated map is
therefore be defined as:

G 0 σ = init σ

G (t+ 1) σ = next (G t σ)

Since next is a function of a previous state, an iterated map represents a deter-
ministic model of the hardware, and is appropriate for modelling synchronous
logic. Fox states that the model is not intended to model the behaviour of a
physical circuit accurately, but rather to provide a useful abstraction of the
hardware, and notes that the approach could be used to model asynchronous
hardware, although at a level of temporal abstraction at which components
behave synchronously [Fox01b].

The iterated map approach to modelling has been used to specify and verify
the ARM instruction set and ‘micro-architecture’ [Fox01a, Fox02].

6.1.3 Declarative Approaches

Unlike the constructive approaches to modelling hardware behaviour, declar-
ative approaches do not specify explicitly how the behaviour of a circuit will
vary over time. Rather, they specify predicates that characterise the relation
between the states at different times. However, this does not preclude the
possibility of determining a class of circuits for which that relation is a func-
tion, and a level of temporal abstraction such that the behaviour of the circuit
can be simulated using constructive techniques. This property appears to be
easier to detect from a static description of a circuit if the circuit is described
structurally (as in [Hut93]), rather than as an arbitrary relation.

Structural HDLs

The Ruby hardware description language provides a declarative approach to
describing the structure of combinational and synchronous, logic [JS90a]. It
uses a relational approach to modelling circuit behaviour. For combinational
logic, circuit behaviour is modelled as a relation between signal values. Where
the relation holds for given signal values, the model admits those values as
signals that may be simultaneously observed in that circuit. This is similar to
the approach described in Section 3.3.2.

For sequential logic, a circuit is modelled as a relation on sequences of signal
values. This is in contrast to methods based on higher order logic, which typi-
cally use functions rather than sequences to model behaviour over time [HD86].

In Ruby, circuits are described by an expression that corresponds to a structural
representation of the circuit. The expression denotes a relation that charac-

6.1. Approaches to Modelling Sequential Logic 109

terises sets of signal values, or sequences of signal values, that are consistent
with that structure. Therefore, as with the technique for modelling hardware
described in Section 3.3.2, the representation describes both the structure and
the behaviour of the hardware.

Higher order functions are used to compose circuits from their constituent
components. These include composition operator (written ‘;’) that provides
relational composition, used to represent connecting the output of one compo-
nent to the input of another. Other functions include row and col, which are
used to describe rows and columns of similar components.

Reasoning about Ruby ‘programs’ is possible through the use of a relational
calculus [Jon90c, JS90b]. Relations are also typed, meaning that only signals
with similar structure may be connected. This avoids problems that would
arise in attempting to give a semantics for the composition of components with
incompatible interfaces.

A Ruby interpreter exists allowing the simulation of hardware described by a
Ruby program [Hut93]. The interpreter is limited to a subset of Ruby designs.
The interpreter cannot, for example, simulate designs where more than one
output is used to drive the same signal. Likewise, it cannot be used to simu-
late circuits with combinational loops. However, this does not present many
problems when working with synchronous logic because latches are provided as
primitives in Ruby, and do not need to be described using combinational logic.

Pebble is a hardware description language that has been developed more re-
cently than Ruby. It was developed to be a simple HDL that supports run-time
reconfigurable systems [LM98]. A formal semantics for Pebble has been devel-
oped as a shallow embedding in Synchronous Receptive Process Theory (SRPT)
[Bar93], and is based on a deterministic constructive approach [HH05]. As such,
a description of them would have been more appropriate in the previous sec-
tion. However, Pebble itself is essentially a structural language like Ruby, and
a declarative semantics could also be given. One of the limitations of Pebble
is that it only supports the development of systems with a single clock.

Ruby and Pebble influenced the development of Quartz [PL05]. Quartz com-
bines higher order combinators for structural descriptions, but provides more
sophisticated type system. It is strongly typed and supports block composition,
type inference, polymorphism and overloading. Like Pebble, it also supports
run-time reconfiguration.

Reasoning in Quartz is similar to that used for Ruby circuits, and correctness
preserving transformations may be applied to a design as part of the refinement
process. A shallow embedding of the Quartz semantics has been modelled in
the Isabelle theorem prover, although not using the Isabelle/HOL logic as used
for this thesis.

‘Lifting’ Signal Values in Higher Order Logic

Where a semantics of a hardware description language is represented in higher
order logic, it is possible to model the behaviour of the circuit using a function
from time to signal value for each signal. A function of this type is referred
to here as a signal behaviour. To clarify, a signal value represents the signal

110 Sequential and Iterated Logic

level at a single point in time, whereas a signal behaviour represents all values
that a signal takes during the operation of a circuit. Thus, where the natural
numbers are used to represent time, and Boolean values are used to represent
signal values, a signal behaviour is of the type N→ B.

Modelling the behaviour of a single signal has little merit, of course. Modelling
the behaviour of a number of signals in a circuit can be achieved by using a free
variable for each signal behaviour as described in Section 3.3.2. However, the
semantics of the netlist language used here does not use free variables to model
signals. While this avoids the need to refer to terms in the meta-language when
considering circuit structure, it means a level of indirection is required, called
a binding, that maps signal names to their values.

When extending the netlist language to support temporal modelling, there
are different ways to modify the language semantics to support time. Two
approaches to modelling temporal bindings are considered here.

The first approach is to use a function, θ : time→ (name→ value), that maps
from a given point in time to the binding for all signals at that point in time.
Applying such a function to a time yields a binding that represents a snapshot
of the state of each signal at a given point in time. This approach is similar
to the history, θ, in van Tassel’s operational semantics for VHDL described on
page 106.

The second approach is to add indirection to the signal value, using a func-
tion, σ : name → (time → value), that associates each signal name with its
behaviour during the operation of the circuit. Applying such a function to a
name yields a signal behaviour, as defined above.

Most approaches that use higher order logic to model circuit behaviour use
free variables in an expression to represent signals, thereby requiring only one
level of indirection, rather than two. As a consequence, there seems to be little
precedent to indicate which approach would be more appropriate for the netlist
language here.

Levels of Temporal Abstraction

When using higher-order values to represent signal behaviour over time, it
is necessary to decide what each unit of time should represent. A common
approach is that each unit represents a very short period of time, less than a
gate delay for example. This way, the behaviour of a gate, which implements
a function f , with inputs i1, . . . , im, output o and delay δ, may be represented
as ∀t. f i1(t) . . . im(t) = o(t+ δ).

An alternative approach is to assume that time represents the number of clock
cycles since the start of the circuit’s operation. In this case, it makes little
sense to refer to the value of the clock signal, as its value varies throughout
the cycle. Such an approach is limited to simple synchronous logic, however.
Here, ‘simple’ refers to the fact that it could not be used to model the be-
haviour of, say, synchronous systems in which the clock cycle is divided into
separate phases, in a way that captures every signal transition. Systems that
divide the clock cycle into phases include, for example, most ARM micropro-
cessors [Fur00]. However, abstractions can be developed at the cost of using

6.1. Approaches to Modelling Sequential Logic 111

models that are less faithful to the behaviour of the actual device compared to
the previous approach.

For reconfigurable computing platforms, simple synchronous logic may be suf-
ficient, and the latter approach may be adequate. Assuming that a compilation
algorithm targets this class of synchronous logic, the use of a simpler temporal
model should allow simpler reasoning about compilation of a logic design.

One of the advantages of using higher order logic is that it can be used to
model temporal abstraction. Just as a retrieve function (as introduced in Sec-
tion 1.2.2) may be used to relate machine states with abstractions of those
states, a time mapping [Mel93] or retiming function [HT90] may be used to
correlate time in an abstract model with that in a more faithful ‘concrete’
model.

6.1.4 Selection of an Approach to Modelling Time

Ideally, a compiler intermediate representation should be independent of source
and target languages. A compiler IR intended to represent hardware should
ideally be able to target any hardware description language. In order to reason
about the correctness of compilation from a software-based IR into a hardware
representations, the formal framework used should support reasoning over the
semantics of both the source and target representations. This means that it
must be possible to describe the formal semantics of each language within the
same formal system.

The formal system used in this thesis is higher order logic, specifically the for-
mulation provided by the Isabelle/HOL system. Higher order logic may be
used to model the semantics of both constructive and declarative hardware de-
scription languages. More precisely, it may be used to model both constructive
and declarative semantics of hardware representations, since a representation
may be given more than one semantics.

The constructive and declarative approaches to modelling the temporal be-
haviour of hardware using higher order logic can be summarised as follows.
The constructive approaches use higher order logic for denoting and reasoning
about the semantics of hardware description languages. The VHDL semantics
by van Tassel described on on page 106 fall into this category. The declarative
approaches typically use higher order values to represent the values of signals,
and how they may behave over time, directly within the logic. This approach
was described in ‘Lifting’ Signal Values in Higher Order Logic beginning on
page 109.

The approach adopted here is to support temporal modelling of circuit be-
haviour by defining a semantics for the netlist language using the declarative
style, using higher order values to represent the behaviour of signals over time.
In contrast to more traditional approaches, signals are not modelled as free
variables within logical expressions. This is consistent with the semantics de-
veloped in the previous chapter, which use a ‘binding’ function to associate
signal names with the value of that signal.

Higher order logic is naturally suited to representing the concepts required for
reasoning about hardware compilation. In the logic, signal values represent first

112 Sequential and Iterated Logic

order terms. A signal behaviour is a function from time to signal value, and
therefore is a second order entity. A temporal binding that maps signal names
to signal behaviours, of the same type as θ or σ as defined on page 110, is either
a curried function on time yielding a signal binding, or a curried function on
signal names yielding the behaviour of a given signal. Thus, a circuit behaviour
is a third order entity.

In Section 5.4, the notion of a circuit behaviour was introduced. In that context,
a circuit behaviour is a predicate that characterises which signal bindings are
valid in a given combinational circuit; that is, which sets of signal values may be
simultaneously observed on a given set of signals. Using temporal bindings, a
circuit behaviour is Boolean function on temporal bindings that characterises
which temporal bindings are valid for a given circuit. This means a circuit
behaviour is a fourth order entity.

To provide an example of a circuit behaviour, consider a delay component, with
input A and output B, where the output signal is equal to the input signal with
a delay of one unit of time introduced. The circuit behaviour for this device
can be written λ σ. (∀ t. σ A t = σ B (t+ 1)).

In order to verify the output of a hardware compiler, it is necessary to show that
the generated hardware design will behave in the same way as the hardware
design represented by the intermediate hardware representation from which it
was generated. The property that two circuits admit the same circuit behaviour
is a Boolean function on pairs of circuit behaviours — this property is a fifth
order entity.

Higher order logic has been used to represent the semantics of hardware de-
scription languages with even the most complex timing models, such as those
defined by the IEEE standards. However, those models can be more appro-
priate for reasoning about the language itself rather than the correctness of a
specific hardware design [KB95b].

In work that focuses on the development of verified hardware, rather than
verified compilers, descriptions of modelling hardware using higher order logic
refer to different entities at each order [HD86]. Thus higher order logic provides
a flexible formal system within which hardware components corresponding to
operations in a software IR could be developed and verified within the same
framework, and it becomes possible to reason about a compilation algorithm
that targeted those verified components.

6.2 Temporal Modelling of Sequential Logic

This section presents an extension to the netlist language introduced in Chap-
ter 5 in order to model sequential logic. The extension requires changes to the
language definition as presented: the semantic domains and semantic functions
must be modified to model the behaviour of signals whose values vary over time.
It also requires the introduction of new circuit primitives. The abstract syntax
remains unchanged.

This section is structured as follows: Section 6.2.1, Adding Synchronous Logic
to the Netlist Language describes the extension to the netlist language to sup-

6.2. Temporal Modelling of Sequential Logic 113

port sequential logic by introducing synchronous primitives into the netlist
language, based on the assumption that a hardware/software compiler will
target only synchronous logic designs. The semantics are modified to include
the notion of (abstract) time, where one ‘unit’ of time represents one clock
cycle.

6.2.1 Adding Synchronous Logic to the Netlist Language

Modifying existing definitions to model time

The language extension described here uses the name⇒time⇒bit currying to
represent temporal signal bindings, as described in ‘Lifting’ Signal Values in
Higher Order Logic of Section 6.1.3. A new type must be introduced to rep-
resent time, and the type of a signal binding must be modified to represent a
temporal binding, rather than a combinational signal binding:
types

time = nat

binding = sig-name⇒time⇒bit

Circuit behaviour is still represented by the type binding⇒bool. A ‘lift’ function
is defined in order to be able to reuse combinational circuit behaviours already
defined using the combinational (in other words, non-temporal) signal bindings
(of the type name⇒bit) of the original netlist language.

lift ≡ λcb tb. ∀ t . cb (λn. tb n t) (6.1)

The function takes a combinational behaviour (of type (name⇒bit)⇒bool) and
a temporal binding (of type name⇒time⇒bit) and is true or false according
to whether the temporal binding satisfies the non-temporal behaviour at every
point in time. By applying lift to a combinational behaviour, and hence making
a partial function application, the function can be used to convert a combina-
tional behaviour into a temporal behaviour of type(name⇒time⇒bit)⇒bool. To
demonstrate the effect of the lift function, it is applied to the behaviour of an
And gate, as defined in the previous chapter:

TAnd = lift MAnd
. . . = lift (λbind . (bind A ∧b bind B) = bind O)
. . . = (λtb. ∀ t . (tb A t ∧b tb B t) = tb O t)

Thus, tb A t represents the bit value of signal A at time t in the temporal binding
tb. It should be noted that a temporal behaviour found via the lift function
represents a zero-delay version of the combinational behaviour to which it is
applied.

In order to model a combinational delay, an alternative function could be de-
fined. Such a function would require an another argument to identify which
pins of the component represent inputs and which pins represent outputs. This
could be achieved using a static environment, that associates primitive names
with the interface (that is, the pin out) of the corresponding primitives.

114 Sequential and Iterated Logic

QD

TDel

(a) Synchronous delay
primitive.

QD

TDelT

(b) Synchronous delay
primitive (with initial-
isation).

Figure 6.1: Synchronous unit-delay primitives

An initial set of synchronous delay primitives

In contrast to combinational logic, which may be defined using relations be-
tween signals values, sequential logic may be defined as a relation on signal
behaviours, or alternatively, signal values at a particular times. An initial set
of sequential primitives appropriate for hardware/software compilation may be
defined by adopting those used by existing techniques for compiling functions
into synchronous logic [GIOS05]. This requires translating free variables in
each definition in the cited work into a signal look-up in a temporal binding.
For example, the following components specify two delay primitives. The input
of each component, D, is reflected in its output, Q, with a one unit time delay.

TDel ≡ λtb. ∀ t . tb D t = tb Q (t + 1)

TDelT ≡ λtb. tb Q 0 = 1 ∧ TDel tb

The first component, TDel, represents a simple unit delay device. The output
of the component at time zero is unspecified. The second component, TDelT,
represents a similar component but for the fact that its output is specified to
be initialised to particular value (in this case, 1) at time zero. The TDel and
TDelT primitives are illustrated in Figure 6.1a and Figure 6.1b respectively.
These devices can be implemented using a D-type flip-flop (ibid).

A typical D-type flip-flop device has four pins: two inputs, namely D and
a clock signal, and two outputs, Q and Q̄. Such a device is illustrated in
Figure 6.2a. For a rising-edge triggered D-type device, the output Q takes
the value of D at each rising clock edge. The complement of that value is
always output on Q̄. This output is maintained until the next rising clock
edge. In contrast, a falling-edge triggered device maintains the value between
consecutive downward transitions on the clock signal. Thus, D-type devices
may be used to implement a single-bit memory device.

At the level of temporal abstraction used here, each time unit represents one
clock signal. As noted in Levels of Temporal Abstraction on page 110, it is not
possible to model the clock signal directly at this level of abstraction. In other
words, the granularity of time in the model is too coarse to model the rise
and fall of the clock signal. As a consequence, it is not possible to model the
distinction between the behaviour of a component that has specific behaviour
at a rising clock edge, and a similar component that has similar behaviour at
a falling clock edge.

It can be seen then, that the distinction between a rising-edge triggered D-

6.2. Temporal Modelling of Sequential Logic 115

D−type

QD

clk Q

(a) Traditional D-type
flip-flop.

D−type

QD

En

(b) Netlist language D-
type flip-flop with en-
able.

Figure 6.2: D-type flip flops

type flip-flop and a falling-edge triggered D-type flip-flop cannot be modelled
at the level of temporal abstraction used here. Furthermore, the model of either
such a device cannot include a clock pin, because the behaviour of the clock
signal cannot be modelled. Therefore, in order to add either type of flip-flop
to the netlist language, it is necessary to form an alternative, more abstract,
description of the behaviour of these devices that does not refer to the clock
signal.

One approach to removing the reference to the clock signal is to assume that
the clock pin is connected to a live clock with a period of one unit of time.
In the case, the clock pin is no longer required in the model and it becomes
implicit. For the netlist language, the Q̄ pin is also removed in order to simplify
the model of these components.

After making these amendments to the descriptions of the D-type devices, the
behaviour of each device may be modelled at the required level of abstraction.
The new devices both satisfy the specification TDel given above. The proof
that the behaviour of a D-type device defined using a more fine-grained model
of time satisfies the TDel specification was mechanised in the HOL system in
the 1980s by Tom Melham [Mel93].

Register primitives

The addition of TDel to the netlist language as a primitive component is jus-
tified by the fact that both types of D-type flip-flop appear as ‘primitives’ in
typical FPGAs and other reconfigurable hardware devices targeted by recon-
figurable compilers (in fact, only one type is required to implement a design in
this netlist language). Such devices, such as the Spartan-3E FPGA discussed
in Section 2.1.1 allow initialisation values for (distributed) RAM to be stored
in the device configuration, and provide reset circuitry to perform device ini-
tialisation based on that configuration. This feature justifies the inclusion of
the TDelT component as defined above.

While using components provided by existing reconfigurable hardware as justi-
fication for their inclusion as primitives in the netlist language, it is appropriate
to introduce a primitive that is more sophisticated than the single unit delay
primitives, and that models the storage components typically found in recon-
figurable hardware more accurately. This allows simpler compilation of algo-
rithms for which such a device may be useful in the implementation. However,

116 Sequential and Iterated Logic

it does increase the complexity of the netlist language and the assumptions it
makes about the capabilities of the targeted reconfigurable logic.

To this end, the TDel device can be extended to include a clock enable signal.
In contrast to the clock signal, which had to be removed from the abstraction,
the enable signal is expected to transition, at most, once per clock cycle. An
abstraction of the D-type flip-flop with clock enable is shown in Figure 6.2b.

The TDel abstraction is based on a model in which a D-type flip-flop is clocked
on every clock cycle. This specialisation was necessary in order that the clock
signal could be omitted from the abstraction, but limited the device to provide
a delay of exactly one clock cycle. Adding a clock enable signal allows the
D-type flip-flop to store a bit value indefinitely: from each clock cycle in which
the enable signal is high, to the next cycle in which it is high. Hence, if the
clock enable is kept high, the device behaves as per the TDel specification.

A (rising edge) D-type flip-flop latches its input value on the rising edge of the
clock signal. The ‘rising edge’ property of the clock signal cannot be expressed
in the abstract model of time used in the semantics of the netlist language. It
can, however, be expressed in a model that uses concrete time, where time is
represented at a finer level of granularity that the clock period. Using a model
of concrete time, the rising edge of the clock signal, ck, at time t+1 may be
represented by the predicate: ¬ ck t ∧ ck (t+1).

6.2.2 An Abstract Register

Gordon et al. define an ‘abstract register’ which latches its input value on
the rising edge of a non-clock signal, S, and maintains that value on its output
until the next clock cycle that S makes a rising transition [GIOS05]. This rising
edge property is represented by the same predicate as that of a rising edge in
concrete time given above, although its meaning is different when used to refer
to abstract time. In the netlist language semantics, ¬ s t ∧ s (t+1) refers to a
signal that is low at clock cycle t, but makes an upwards transition to high at
clock cycle t+1.

A design that implements an abstract register is presented in this section. One
of the components used to implement the abstract register is a device that
detects a rising edge on a non-clock signal. This section describes a component
from the cited work that accomplishes this called ‘Posedge’, and describes its
correctness proof. The design for an abstract register is then developed, based
on the specification provided in the same work.

Posedge - a device to detect rising edges

A component, referred to as Posedge, is specified which detects a rising edge
in a non-clock signal. It has a single bit input, A, which is the signal being
monitored for a rising edge. It also has a single bit output, B, which is high
when A has made a rising transition in that clock cycle. That is, B is high at
time t+1 if and only if A is low at time t and high at time t+1.

The specification of Posedge, posedgeSpec, is defined in terms of an auxiliary
function posedge:

6.2. Temporal Modelling of Sequential Logic 117

DelT

c
0

c
1

A

B

Figure 6.3: Posedge: a component for detecting rising edges on signal values.

posedge s t ≡ s t = 0 ∧ s (t + 1) = 1

posedgeSpec a b ≡ ∀ t . if posedge a t then b (t + 1) = 1 else b (t + 1) = 0

The device that Gordon et al. define to satisfy this specification is illustrated
in Figure 6.2.2. Its definition in the netlist language is as follows:

posedgeCmp ≡
(|Ext = ([A], [B]),

Insts =
[(|Comp = DelT , Conns = [In D A, Out Q C0], . . . = ()|),
(|Comp = Not, Conns = [In A C0, Out B C1], . . . = ()|),
(|Comp = And , Conns = [In A A, In B C1, Out O B],
. . . = ()|)],

. . . = ()|)

Applying the semantic functions that have been modified to include the notion
of time to this design gives the following behaviour:

MPosedge =
(λbi . ∃ c1 c0 .

c0 0 = 1 ∧
(∀ t . bi A t = c0 (t + 1) ∧

(¬b c0 t) = c1 t ∧ (bi A t ∧b c1 t) = bi B t))

The correctness condition of the model is that this behavioural model satisfies
the specification, posedgeSpec. The required verification condition is:

MPosedge bi −→ posedgeSpec (bi A) (bi B)

The correctness proof proceeds by unfolding both the specification and its
auxilliary function, using the identity:

posedgeSpec (bi A) (bi B) =
(∀ t .

if bi A t = 0 ∧ bi A (t + 1) = 1
then bi B (t + 1) = 1

else bi B (t + 1) = 0)

The proof that the model satisfies the specification can be decomposed, and
proven using three auxiliary lemmas. In order to demonstrate how the required
lemmas are identified, the following, more general form of the universally quan-
tified part of the above expression can be considered: if a ∧ b then c else d.

118 Sequential and Iterated Logic

This more general form can be rewritten as (a ∧ b −→ c) ∧ (¬ (a ∧ b) −→
d), and hence, as (a ∧ b −→ c) ∧ (¬ a ∨ ¬ b −→ d) using De Morgan’s laws
in the second conjunct. A further rewrite, this time using the properties of
disjunction and implication, gives (a ∧ b −→ c) ∧ (¬ a −→ d) ∧ (¬ b −→ d),
and shows the three conjucts, each of which can be proven as a separate lemma.

The lemmas used for proving the correctness of Posedge can be found by instan-
tiating the rewritten version of the general form to match posspecSpec. Thus,
the following lemmas are used in the correctness proof (each lemma is proven
under the assumption that MPosedge holds of each binding bi):

∀ t . bi A t = 0 ∧ bi A (t + 1) = 1 −→ bi B (t + 1) = 1
∀ t . bi A t = 1 −→ bi B (t + 1) = 0

∀ t . bi A (t + 1) = 0 −→ bi B (t + 1) = 0

The proof of all three lemmas follow the same format. Similar to the proof of
correctness of the full adder, the behavioural expression in the antecedent of the
verification condition can be rewritten in a simpler form without existentially
quantified signals. The only difference in proof technique between that used
for the full adder and that used for Posedge is that the following rule is also
applied to the behavioural model:

(∀ x . P x ∧ Q x) = ((∀ x . P x) ∧ (∀ x . Q x))

For example, the third lemma requires deriving the following proof rule, which
shows the assumptions of the lemma explicitly.

c0 0 = 1 ∧
∀ t . bi A t = c0 (t + 1) ∧
∀ t . (¬b c0 t) = c1 t ∧
∀ t . (bi A t ∧b c1 t) = bi B t
∀ t . bi A (t + 1) = 0 −→ bi B (t + 1) = 0

In all three lemmas, for a given value t in the consequent, the universally
quantified variables in the premise need to be specialised to t, t+1 and t+1

respectively.

DFF - an abstract register

An abstract register is a storage component that allows a value to be stored
for an arbitrary number of clock cycles. The model used here has two inputs F

and S, and an output G. The register latches its input value on the rising edge
of S. That is, it latches F when S was low on the previous clock cycle and high
on the current cycle. The latched value is propagated to the output, where it
is maintained until the next clock cycle for which there is a rising edge on S.
The device and its pins are illustrated in Figure 6.4a.

The specification of an abstract register for the netlist language is adapted
from that specified by Gordon et al. [GIOS05]. The component is named DFF,
as per the cited work. However the specification here differs. It is specified as:

dffSpec f g s ≡ ∀ t . g (t + 1) = (if posedge s t then f (t + 1) else g t)

The difference between this definition and the original are as follows. In the
original definition posedge s t characterises the times t at which signal s is high,

6.2. Temporal Modelling of Sequential Logic 119

DFF

S

F G

(a) DFF: a component for de-
tecting rising edges on sig-
nal values.

0 1

Del

S

Posedge

F

G

i j

(b) DFF: A design implementing the
specification.

Figure 6.4: Design of an abstract register

but low at time t-1. It appears that each use of this predicate is in the form
posedge s (t+1). In this work, posedge s t characterises the times t at which
signal s is low, but high at time t+1. The specification has been modified
according, which simplifies some of the formulae. Aside from this difference,
this specification may be alpha-reduced to the original, where the external
signals F, G and S correspond to the original ‘d’, ‘f’ and ‘sel’ respectively.

A design that satisfies this specification is illustrated in Figure 6.4b. Its repre-
sentation in the netlist language is:

dffCmp ≡
(|Ext = ([F , S], [G]),

Insts =
[(|Comp = Posedge, Conns = [In A S , Out B J], . . . = ()|),
(|Comp = Mux ,

Conns = [In A I , In B F , In S J, Out O G],
. . . = ()|),

(|Comp = Del , Conns = [In D G , Out Q I], . . . = ()|)],
. . . = ()|)

The following behavioural description results from applying the semantic func-
tions to this definition.

Mdff =
(λbi . ∃ j i . MPosedge (bi(A := bi S , B := j)) ∧

(∀ t . if j t = 0 then bi G t = i t else bi G t = bi F t) ∧
(∀ t . bi G t = i (t + 1)))

Here only the semantics of the primitive components in the netlist language,
including the delay component, have been expanded. The semantics of the
Posedge component have not been ‘unfolded’. This allows properties of the
Posedge component to be used in the verification of the DFF design. This is
consistent with the approach taken in the previous chapter, where the verifica-

120 Sequential and Iterated Logic

tion of a full adder design involved the use of properties of the half adder. The
required verification condition for the DFF is:

Mdff bi −→ dffSpec (bi F) (bi G) (bi S)

As with the correctness proof for the Posedge device, the proof of this device
can be decomposed, and simplified by the use of three auxiliary lemmas. The
three cases to consider are:

1. where j is high, due to a rising edge on S, in which case it is necessary to
show that F is propagated directly to G;

2. where the previous value of S was high, and hence that j is low and i has
the same value as the previous cycle; and

3. where the current value of S is low, and hence that j is low and i has the
same value as the previous cycle.

In the second and third cases, i is selected for the output because j is low. If
j is low, it can be seen that i has the same value as the output G due to the
behaviour of the multiplexer. It can also be seen that i has the same value
that G took in the previous cycle. Ensuring that i maintains its value from the
previous cycle ensures that the output is latched between rising edges.

6.3 Iterated Logic

The purpose of the netlist language is that it be able to represent hardware
designs that implement operations in the software IR, such that part of a pro-
gram’s representation in the IR may be translated into the netlist language. In
turn, the netlist language forms an intermediate representation for the hard-
ware design before it is translated into synthesisable HDL, or a device specific
netlist language. By defining a formal semantics for both the software IR and
the netlist language, it becomes possible to specify a translation algorithm from
the former to the latter.

Thus far, the designs in the netlist language all represent small components
with only a few external signals, each of which represents one bit. However,
many of the operations in the software IR, such as addition and subtraction,
are defined as operations on machine words. In order to relate the semantics
of the two languages, as is necessary when specifying a compilation algorithm,
it is useful to raise the level of abstraction of the netlist language such that a
value in the software IR semantics may be represented by a single value in the
netlist language semantics. This requires that values in the netlist language
can represent bit vectors.

It is also useful to introduce a mechanism in the netlist language that allows
components to be defined in terms of repeating structures, because many word
level operations are most conveniently described in this way. For example,
a ripple carry adder — a common design in FPGAs due to many FPGAs
providing dedicated carry logic for this purpose — may be implemented by
‘chaining’ a number of full adder components together in a row. A ripple carry
adder that adds two four-bit bit vectors is illustrated in Figure 6.5.

The term used here to refer to logic designs composed of repeating structures is
‘iterated logic’. Adding support to the netlist language for specifying, describ-
ing and reasoning about iterated logic requires changes to both its abstract

6.3. Iterated Logic 121

A
1 1
B

fullAdd fullAdd fullAdd

B
0

A
0

BA
2 2

BA
3 3

0
S S

1
S
2

S
3

c
0 1

c c
2

C
in

fullAdd C
out

Figure 6.5: A four-bit ripple adder design, based on the existing full adder
component.

syntax and its semantics. It also requires further consideration of which cir-
cuits should be considered well-formed, and hence, which circuits should have
a defined semantics in the language.

This section describes how the language can be extended to support bit vectors
and iterated logic. Specifically, the extension allows new components to be
defined by composing existing components together in a row.

Section 6.3.1, Adding Bit Vectors to the Netlist Language describes the aims of
the extension introduced here, and introduces the concepts of the row abstrac-
tion used here by means of examples. Section 6.3.1, Abstract Syntax for Bit
Vectors presents a set of changes to the abstract syntax to allow components
to be defined in terms of a row of existing components by introducing a new
construct to define rows, called row. Section 6.3.2, Bit Vector Semantics gives a
semantics to the row construct, providing an explanation of how the semantics
can be modified to model iterated logic.

6.3.1 Adding Bit Vectors to the Netlist Language

Specifying and Modelling Operations on Bit Vectors

One of the problems involved in describing hardware that operates on machine
words is developing an abstraction that can represent a (data) bus on which
machine words can be represented and propagated. Such a bus may involve a
large number of signals. In order to address the extension of operations on bit
values to operations on bit vectors, the following specification of the full adder
component, as given in Section 5.6.2, may be considered:
�[cb A]� + �[cb B]� + �[cb Cin]� = �[cb Cout, cb S]�

Without the ability to refer to the value of a bit vector using a single identifier,
the following specification would be required to describe the behaviour of the
the ripple carry adder illustrated in Figure 6.5:
�[cb A3, cb A2, cb A1, cb A0]� + �[cb B3, cb B2, cb B1, cb B0]� + �[cb Cin]�

= �[cb Cout, cb S3, cb S2, cb S1, cb S0]�

Ideally, it should be possible to use a single identifier to denote either a single
bit, as before, or a whole bit vector. Thus, it should be possible to specify the
component as follows:
�cb A� + �cb B� + �[cb Cin]� = �[cb Cout] · cb S�

This requires some context to denote that A, B and S are each bit vectors of
the required length.

122 Sequential and Iterated Logic

It can be seen, therefore, that the use of a single identifier to refer to a bit
vector (or machine word) can make specifications easier to read. It also makes
it possible to directly relate a value in the netlist language semantics with
a value in the software IR, which also allows a single identifier to denote a
machine word.

Unlike the specification, the implementation of the ripple carry adder cannot
be described in this way however. In order to describe the design in terms
of its constituent full adder components, it is necessary to be able to refer to
individual bits within the input and output bit vectors.

This highlights two further requirements for the netlist language. Firstly, that
it be possible to refer to individual signals within a bit vector in the description
of a component that operates on bit vectors. Secondly, that given a signal
whose value is represented by a single bit (a ‘bit signal’) and a signal whose
value is represented by a bit vector (a ‘bit vector signal’), it is required that it
be possible to connect the bit signal to any individual bit within the bit vector
signal.

The required types of connections between signals are those that connect:

1. a bit signal with any other bit signal;
2. a bit signal with an individual bit within a bit vector signal; and
3. an individual bit within a bit vector signal with any other individual bit

within a bit vector signal; and
4. a bit vector signal with any other bit vector signal of equal length.

Individual bits within bit vectors are identified by a zero-based index into the
bit vector. In the abstract syntax, the n-th bit of a bit vector signal A is
denoted by An. In the semantics, bit vectors are represented by lists, and the
n-th element of a list v is denoted by v[n].

In order to ensure that bit signals cannot be connected to bit vector signals,
each signal is typed. The type of bit vectors is indexed by a natural number
according to the length of the bit vector. The types of connection listed above
are considered well typed. Connections between a bit signal and an entire
bit vector, or between two bit vectors with different sizes are considered poorly
typed. No attempt is made here to provide a semantics for circuits that include
poorly typed connections.

Pins on components are also typed, according to the types of signals to which
they may be connected. Every pin in all the component definitions presented
thus far have been of the bit type. In a (further) abuse of terminology, pins may
also have a bit vector type. In the ripple carry adder specification, the terms
A, B, and S represent pins of bit vector type. The same rules for connecting
signals to other signals apply to connecting pins to signals. As before, pins are
never connected directly to other pins, and may only be connected by a named
signal.

Abstract Syntax for Bit Vectors

The abstract syntax of the netlist language must be modified in order that a
design be able to refer to bit vectors, bit signals and to indexed signals within
a bit vector. Instead of referring to pins and signals by name, they may be

6.3. Iterated Logic 123

referred to using ‘pin expressions’ or ‘signal expressions’. Both are defined by
the type
datatype expr =

Var pin-name

| Idx pin-name nat

An expression is either a simple reference to a bit signal or bit vector, such as
Var A, or it is a reference to an indexed bit within a bit vector, such as Idx A 0.
As expressions occur frequently in component designs, a more compact notation
is adopted, using ‘A’ for the former expression and the subscript notation for
the latter: ‘A0’. Note that the surrounding single quotation marks here are
part of the notation. They are used to distinguish names from expressions.
Thus, the terms A and ‘A’ are of different types.

To satisfy the requirement of the language having the four connection types
listed on the facing page, connections are modelled as a connection between a
pin expression and a signal expression. The pin expression refers the named
pins on the component being instantiated, and the signal expression refers to
the named signals that connect the different component instantiations within
the design.
datatype conn =

In expr expr

| Out expr expr

As with the original conn type defined in Equation 5.2, the first term for each
datatype constructor is associated with the pin, and the second is associated
with the signal to which it is connected.

Adding a Type System

In the netlist language definition presented in Chapter 5, the list of internal
signals in a design was derived from signals named within a design but not
declared to be external signals in that design. The introduction of bit vectors
into the language introduces some complications here.

An occurrence of a signal name within a design may refer to either a bit signal
or a bit vector signal. However, in order to define well-formedness conditions
for designs, the type of each signal referred to must be known statically.

Furthermore, when deriving the semantics of a given design, it appears to be
useful for the resulting semantics to define a length of the existentially quan-
tified internal bit vectors. This allows proofs about the components behaviour
to use case distinction on the finite set of values that a fixed size bit vector
may take.

Using the technique of comparing the signal references within a design to the
list of named external signals is also inconvenient for designs that refer to
individual bits within bit vectors. In general, it is not clear what the size of a
bit vector should be, based only on the subscripts used.

It may possible to develop a semantics where the width of a bit vector is not
known at design time, by effectively making bit vectors dynamically typed. To
ensure that the netlist language may be used to target statically typed HDLs,
this approach is rejected in favour of requiring that each the length of each bit

124 Sequential and Iterated Logic

vector signal be declared in the design. Thus, types are introduced into the
abstract syntax as follows:
datatype ty =

BitT

| VecT nat

Bit signals have type BitT in the netlist language, abbreviated here to IB. Bit
vector signals have type VecT n, abbreviated to IBn, where n is the length of
the bit vector.

The (meta-level) type tyenv, which represents the abstract syntax used to de-
note the external signals of a design is modified to include the type of each
signal:
types

tyenv = (pin-name×ty) list × (pin-name×ty) list

Finally, component definitions are modified to include the types of internal
signals:
record comp =

Ext :: tyenv
Internals :: (pin-name×ty) list

Insts :: inst list

6.3.2 Bit Vector Semantics

One of the requirements of the iterated logic extension to the netlist language
identified earlier is that is must be possible for a signal name to refer to either
a bit signal or a bit vector signal. This means that there must be two kinds of
signal value. One kind of signal value is a temporal binding for a bit signal, as
in the formulation of the netlist language described in Section 6.2. The other
kind of signal value is a temporal binding for a bit vector. To support the two
kinds of signal value, a new type called val is introduced to represent the value
of a signal, to support this.
datatype val =

Ind nat⇒bit

| Vec (nat⇒bit) list

The Ind datatype constructor denotes a value that represents the temporal
behaviour of a bit signal. The Vec datatype constructor denotes a value that
represents the temporal behaviour of a bit vector signal. The temporal binding
for a bit vector is modelled as (nat⇒bit) list rather than nat⇒(bit list) because
the length of the bit vector should not vary with time.

Signal names must now be associated with values. The binding type is modified
become a value binding that associate signal names with the different kinds of
values:
types

binding = sig-name⇒val

Interpreting Signal Values and Behaviours

Two interpretation functions are defined on values. The function v�val�b in-
terprets the value val as a bit signal behaviour. The function simply returns

6.3. Iterated Logic 125

the value, with the Ind constructor removed. The result is of the type nat⇒bit.
The function is under-specified: applying it to a Vec value gives an arbitrary
signal behaviour about which no useful properties can be proven.

The function v�val�l interprets val as a bit vector signal. The function simply
returns the value, with the Vec constructor removed. The result is of the type
(nat⇒bit) list. The function is under-specified: applying it to a Bit value gives
an arbitrary bit vector signal behaviour.

Formally, these functions are defined as follows. The functions are left under-
specified by omitting the cases that give arbitrary results.
v�Ind tb�b = tb
v�Vec tbs�l = tbs

As with the original combinational netlist language semantics and the temporal
logic extension, a circuit behaviour is represented by the type binding⇒bool. A
temporal behaviour, of type sig-name⇒nat⇒bit may be lifted into a behaviour
based on a value binding using the liftValT function:

liftValT tbehav ≡ λvb. tbehav (λs. v�vb s�b)

This function may be composed with the lift function defined in Equation 6.1.
The composition of these functions allows a behaviour in the original combi-
national netlist language semantics to be lifted directly into a behaviour in the
iterated logic extension. This obviates the need to redefine the behaviour of
simple combinational primitives such as logic gates.

A further function is defined that evaluates pin expressions within a given
value binding. It occurs frequently in the netlist language semantics, and in
the expressions that denote the behaviours derived from the definitions of com-
ponents using those semantics. Therefore, like the interpretation functions de-
fined above, it is given a similarly terse notation. The value of a pin expression
e under value binding vb is denoted by vb ‘e’?, where the query function (?) is
defined by:

vb ‘s’? = vb s
vb ‘si’? = (case vb s of Ind tb ⇒ arbitrary | Vec tbs ⇒ Ind tbs[i])

Connections

Two auxiliary functions are defined on the conn datatype to retrieve the expres-
sions that define a connection. The pinExpr function returns the pin expression
associated with a connection. The name of the resulting expression is expected
to be the name of one of the external signals of the device being instantiated.
The sigExpr function returns the signal expression associated with a connection.
pinExpr (In pe se) = pe

pinExpr (Out pe se) = pe

sigExpr (In pe se) = se

sigExpr (Out pe se) = se

In the combinational netlist language of Chapter 5, the bindPins function (de-
fined in Equation 5.6) is used to map a binding in which names refer to the
pins on the device being instantiated into a binding in which names refer to
signals that connect the various devices instantiated within a design.

In order to support the four connection types required, this function needs to
be modified. An auxiliary function, bindPin, is also introduced to support the
new definition:

126 Sequential and Iterated Logic

bindPin conn vb ≡
case pinExpr conn of

‘pn’ ⇒
case sigExpr conn of

‘sn’ ⇒ vb(pn := vb sn)
| ‘sni’ ⇒ vb(pn := vb ‘sni’?)

| ‘pni’ ⇒
case sigExpr conn of

‘sn’ ⇒ vb(pn := Vec (v�vb pn�l[i := v�vb sn�b]))
| ‘snj’ ⇒ vb(pn := Vec (v�vb pn�l[i := v�vb sn�l[j]]))

bindPins cs b ≡ foldl (λb cs. bindPin cs b) b cs

The semantic function for components, Mcomp (originally defined in Equa-
tion 5.7), is also modified, to reflect the inclusion of the list of internal signals
explicitly in the comp record.
Mcomp des denv ≡ internalise (Internals des) (Minsts denv (Insts des))

6.3.3 Adding a Row Construct to the Netlist Language

In the definition of the netlist language given in Chapter 5, a design that
includes many instantiations of an existing component must list each instanti-
ation separately. For example, a definition of the ripple carry adder illustrated
in Figure 6.5 would need to include four instantiations of the full adder. The
design also needs three named internal signals to form the carry chain.

For a design with only four component instantiations, defining each instan-
tiation by hand is not a particularly arduous task, particularly if the design
need only be defined once. However, verifying the device would be somewhat
tedious. This problem becomes more apparent for typical machine word sizes.

Some hardware/software compilers perform bit-width analyses to reduce the
word size required to implement a given operation in the program [BSWG01].
In turn, this can lead to a reduction in the amount of reconfigurable logic
required to implement a particular operation. This is achieved in two ways.
The first is to find bits that are constant at a given part of the computation,
and hence do not need to be computed. The second is to find bit values in
the computation that cannot affect the result of the computation. In both
cases, the logic that computes the constant, or unused, bits may be removed
from the hardware design. A hardware/software compiler that implements such
optimisations may generate one design for each software IR operation, for all
possible operand bit widths, up to that of the GPP machine word size. In order
to verify compilation of a compiler that generates a component that operates
on operands of varying bit widths, it is necessary to verify the component for
each such bit width.

In the case of typical operand bit widths, and varying operand bit widths,
it is clearly infeasible to verify components for all software IR operations for
all possible bit widths individually. It may be appropriate to define a function
that generates netlist language designs that operate on operands of arbitrary bit
width. The arguments of the function would include the name of a component
to be instantiated, and the number of instantiations of that component that
should be made. The semantic functions of the language may then be applied

6.3. Iterated Logic 127

Figure 6.6: Generic model of a row of components

to the resulting designs. Using this approach, it would then be necessary to
verify that the resulting designs were correct, for all such bit widths. This
requires that the specification of the component be parametrised on the width
of its operands.

An alternative approach is to introduce a semantic function that simply gen-
erates the semantics (or behaviour, in netlist language terms) of the resulting
component. Unlike the first approach — in which a netlist language design is
generated, to which the semantic functions must then be applied — the result-
ing behaviour of a function defined using this approach may be used directly,
without further application of the semantic functions.

The second approach is taken here. Although in both cases, it is reasonable to
expect that the verification of the function producing the required designs or
behaviours would involve induction on the bit width of the operation’s argu-
ments.

Generic Row Abstraction

A class of iterated logic circuits is considered here in which the composition
of identical components into rows is the only repeating structure used. Rows
of components are considered to be of the generalised form illustrated in Fig-
ure 6.6. The pins on the repeated component are grouped into those that
appear ‘on the left’; those that appear ‘on the right’; and those that appear
neither on the left nor the right. In order to form a chain of components, there
must be an equal number of pins on both the left and right of the repeated
component, because each pin on the right of a component is connected to the
corresponding pin on the left of the next component. The types of the cor-
responding pins must also match. Pins that do not appear on the left or the
right do not form part of the internal chain, and become external signals in the
resulting design.

Applying this to the ripple carry adder example, the Cin pin is considered to be
on the left of the repeated component — in this case, the full adder — and the
Cout pin is considered to be on the right. In the resulting ripple carry adder,
the types of these pins are the same as that of the full adder. This means they
can only be connected to bit signals. The A, B and S correspond to external
signals and refer to bit vectors, which can be connected to bit vector signals.

Rows of identical components are sufficient to describe addition and subtrac-
tion, including the ripple carry example from earlier in this section; logical
operations such as ‘logical And’ and ‘logical Or’; and also components that
test for zero, equality and four inequality operators, <, ≤, > and ≥.

The test for zero operation, for example, can be implemented using a row of
Or gates, as shown in Figure 6.7. In this design, the signal F is intended to be

128 Sequential and Iterated Logic

1
c c

2

A
1

c
0

A
0

A
2

A
3

F Z

Figure 6.7: An inefficient ‘test-for-zero’ component, defined as a row of Or
gates.

connected to a constant 0 input. In this environment, the output Z is 0 when
the value on the input A represents the value zero, and 1 otherwise. In this
design, the Or gate is the repeated component and the left, right and external
signals are B, O and A respectively.

This implementation is somewhat inefficient, requiring time proportional to the
word size before its output is guaranteed to become stable, and its inclusion
here is merely intended to provide a further example of a component defined
in terms of a row of repeated components.

A more efficient implementation can be implemented using a ‘tree’ of Or gates,
requiring a delay proportional to log2n, where n is the word size. Although
such an Or tree could be defined by instantiating each component individually,
a better approach would be to further extend the netlist language to support
the definition of trees, in a similar manner to that used here to define rows.

From the examples above, it can be seen that each pin on a component that
is neither categorised as a ‘left pin’ or a ‘right pin’ has a corresponding bit
vector type pin in the design resulting from composing many instantiations
of that component in a row. Returning to the Or row example: the A pin
in the specification of the Or gate corresponds to A0, . . . , An in the resulting
row, where n is the number of instantiations of the Or gate in the design.
This approach makes it possible to refer to the individual bit signals, using the
subscript notation, or to refer to the entire bit vector signal by omitting the
subscript.

By limiting the pins that are not connected to the internal chain to the bit type,
a bit vector may be used to represent those signals in the resulting design. This
provides the desired property of being able to relate a single value in the netlist
language with a single value in the software IR.

In contrast, the pins that do appear in the internal chain do not need to be
externally visible. These should be existentially quantified in the behaviour of
the device, such that their values cannot be observed externally. The pins on
the left of the leftmost component instantiation, and the pins on the right of
the rightmost instantiation, are exceptions to this. These should be visible in
the interface of the component. However, unlike the other external pins, these
should be of the same type as that in the original component.

Adding a Language Construct for Defining Rows

The only way to define new components in the netlist language as presented in
Chapter 5 is via the comp construct, used to instantiate existing components in
a new design individually, and define connections between those instantiations.

6.3. Iterated Logic 129

The iterated logic extension to the netlist language provides two different ways
to define new components. One way is to use the comp construct as before. The
other is to define a ‘row schema’ that describes how a many instantiations of a
component may be connected together in a row. A row schema is defined by a
new language construct in the abstract syntax, called row. A new component,
based on that row schema, can then be instantiating for a given row length,
using another language construct: RowOf.

The row construct allows row schemas to be defined as a row of instantiations
of an existing component according to the conditions described above. The
abstract syntax of the row construct is defined as:
record row =

RowExt :: tyenv
RowLeft :: tyenv
RowRight :: tyenv

RowComp :: prim-name

The value of the RowComp field names an existing component to be repeated
to construct a row. The RowLeft and RowRight fields represent the type of the
signals that form the internal chain in the row, and the external signals at
each side of the chain. Note that if a signal is listed as an input in RowLeft,
that is, if the signal is named in fst RowLeft, then the corresponding signal
listed in RowRight should be an output, that is, named in snd RowRight. The
RowExt field gives the name and type of each input and output bit signal of the
component that will become a bit vector in the resulting design. Each signal
listed in RowExt must be of the bit type.

As an example, the row schema that describes the way that the Or gates
illustrated in Figure 6.7 are connected may defined as follows:
orRow ≡ (|

RowExt = ([(A,IB)], []),
RowLeft = ([(B,IB)], []),
RowRight = ([], [(O,IB)]),

RowComp =Or |)

A new abstract syntax construct is also required to allow new components to
be defined either by using the comp construct or by instantiating a row schema
for a given length using RowOf. A new construct is defined that forms the
top-level of the abstract syntax tree for component definitions:
datatype defn =

OneOf comp

| RowOf row nat

Note that the values associated with the RowOf constructor are a row schema,
and a natural number indicating the required length of the row.

6.3.4 Semantics of the Row Construct

Semantics of a Row Item

The row abstract syntax construct includes information about the signal direc-
tion and type of each pin. Recall that the signals listed in the first element of
the pairs that constitute the RowExt, RowLeft and RowRight fields are inputs,

130 Sequential and Iterated Logic

and those listed in the second element of each pair is an output. This informa-
tion is necessary to ensure that a circuit definition is well-typed, and does not
describe a circuit in which two output pins drive a single signal. However, once
a circuit has been checked for well-formedness, the information is no longer
required: it has no effect on the semantics derived for a component.

The separation of inputs and outputs, and inclusion of type information in
the abstract syntax complicates the semantics, due to the need to ‘ignore’ the
typing information, and collect input and output signals into a single list. An
auxiliary function is defined to concatenate a list of inputs and a list of outputs,
and remove the signal types from the resulting list:

remTypes te ≡
foldl (λss pair . fst pair ·ss) [] (fst te) @ foldl (λss pair . fst pair ·ss) [] (snd te)

As in Chapter 5, a semantic object is derived for each abstract syntax construct.
The semantic object associated with a row definition is partially determined
by the behaviour of the component being instantiated, named in the RowComp

field. The named component must have been defined previously, such that there
is a dynamic environment de that associates the name with its behaviour. The
semantic object associated with a row definition ri is the three-tuple defined by
the following function:

MrowItem ri de ≡
(de (RowComp ri), remTypes (RowExt ri),
zip (remTypes (RowLeft ri)) (remTypes (RowRight ri)))

(6.2)

The first element in the tuple is the behaviour of the component to be repeated.
The second element is a list of pin names that should be externally visible as
bit vectors in the resulting row semantics. The third element in the tuple is
a list of pairs, in which each pair associates a pin on the left of the repeated
component with the name of the corresponding pin on the right of a similar
component to which it may be connected.

Generating Signal Names for Internal Signals

The internalise function introduces an existential quantifier for a named signal
in the semantics of a component. Thus far, the signals to be internalised are
those named within a design. The signal names to be internalised must be
distinct from signals that are declared to be externally visible, which become
pins.

In order to existentially quantify internal signals when composing a row of
components, it is necessary to have a signal name to refer to each internal signal,
in order to use this technique. Consideration of the row of two components
illustrated in Figure 6.8 reveals why this is non-trivial. None of the signal names
used in the design may be used as a name for the internal signals, because they
are already being used to refer to the externally visible signals.

The netlist language requires a means to generate new signal names that may
be used to name the internal signals. One way to solve this problem would be
to define a function that, given a list of signal names already used in a design,
generates a new unused name. However, using the functional approach used
here, it would be inconvenient to have to define such a function.

6.3. Iterated Logic 131

C

DB

A

D

C

B

A
?

?

Figure 6.8: The problem of generating names for internal signals.

Instead, a technique from compiler design is adapted whereby a value in an in-
termediate representation may refer to either a named identifier in the source
program, or to a temporary location generated by the compiler. In the source
language, only the identifiers named in the source program may be referenced
explicitly. The temporary identifiers used are not available in the source pro-
gram, and are distinct from identifiers in the source language.

The netlist language analogue of this concept requires the introduction of a
new type of signal expression, sigTemp. Expressions of this type may either
be a signal expression that appears in a component definition, or it may be a
temporary signal expression:
datatype sigTemp =

Sig expr

| Temp expr

A new type of signal binding, stBind, is defined to represent signal bindings
that include both signals which have been explicitly named in the design, and
signals with automatically generated temporary names. The values of tempo-
rary signals are kept independent of the values of named signals by using a
datatype constructor, sigTempT, in the domain of the new signal binding. The
domain of the new type of signal binding is effectively the disjoint sum of signal
names and temporary names. The behaviours admitted by a component are,
as usual, a predicate on the relevant binding:
datatype sigTempT = SigT | TempT
types

stBind = (sig-name×sigTempT)⇒val

stBehav = stBind⇒bool

Signal bindings may be converted into an stBind binding using the function
biToSTbi. An stBind may also be converted to the usual signal binding using
the function stBiToBi, although this conversion loses the values of temporary
signals, the names of which are not available in a binding, which does not include
temporary signals.
biToSTBi bi ≡ λ(s, t). if t = SigT then bi s else arbitrary

stBiToBi bi ≡ λs. bi (s, SigT)

Two further functions convert between behaviours defined in terms of binding

and behaviours defined in terms of stBind:
beToSTBe be ≡ λbi . be (stBiToBi bi)

stBeToBe be ≡ λbi . be (biToSTBi bi)

A temporary name can now be generated for each of the internal signals shown
in Figure 6.8. The generated temporary name may reuse the signal names
listed in the design, because the values of temporary signals are disjoint from
those of signals named in the design.

132 Sequential and Iterated Logic

Sig B

Sig A Sig C

Sig D

(a) Initial component.

Sig B

Sig A Tmp C

Tmp D

(b) Preparing an row for composition.

Sig B

Sig A Tmp C

Tmp D Tmp B Sig D

Tmp A Sig C

(c) A row and a new component ready for com-
position.

Sig D

Sig C

Sig B

Sig A

(d) Row resulting from composition.

Figure 6.9: Row composition in stages

The pins that will be connected to internal signals when the two components
are composed must be bound to the temporary signal names, before the com-
ponents can be composed. The tempSig function is used to bind a pin name to
a temporary signal name, where the pin name is used for the temporary value.
The tempSigs function is the extension of tempSigs to lists of signal names:
tempSig be sn ≡ λbi . be (bi((sn, SigT) := bi (sn, TempT)))

tempSigs ss be ≡ foldl tempSig be ss

Constructing Rows in the Semantics

The semantics of a row of a component are derived by a series of functions that
are recursive on the n, the number of components in a row. The base case for
these functions, where n=0, denotes a row with one component instantiation.

The intuition behind the process is as follows. An initial component is ‘laid
down’, where the pins on its left represent signals that will be externally vis-
ible in the resulting design (Figure 6.9a). The pins on the right will only be
externally visible in the resulting design if the row only has one component.
Otherwise, they form the start of the internal chain.

As discussed on page 128, the pins that are not on the left or right of the
component will be externally visible as part of a bit vector, and each such pin
on the initial component is bound to the lowest index of a corresponding bit
vector.

The row is built up incrementally, by successively adding new row elements. A
new element is composed with the existing row as follows: firstly, each pin on
the right of the existing row is bound to a temporary value with the same signal
name (Figure 6.9b). This is necessary to avoid the those pin names conflicting

6.3. Iterated Logic 133

with the pin names on the new component. Secondly, each pin on the left of
the new component is bound to a temporary value with the same signal name
(Figure 6.9c). This is necessary to avoid the pin names on the left of the new
component conflicting with the pins on the left of the existing row. Finally, an
existentially quantified signal behaviour is introduced for each corresponding
pair of pins, and the two pin names denoted by each pair of temporary signal
names is bound to that behaviour (Figure 6.9d). Pins that to not form part of
the internal chain are bound to an index within the corresponding externally
visible bit vector.

After composing as many row elements as is required, the resulting stBehav

behaviour may be converted into a behav behaviour, which does not have tem-
porary signals, using the stBeToBe function.

Starting a Row

The first element in a row is created by binding each repeating external pin to
the lowest index in a bit vector corresponding to that pin.

For this purpose, a function tSigToVec is defined that binds a given pin, s, to a
given index in a bit vector of the same name as the pin for a given behaviour.

The behaviour is of the stBehav type that can include temporary signal names
in addition to conventional signal names, and the index n is an argument, in
order that the function be reusable for adding later row elements.
tSigToVec n s be ≡ λbi . be (bi((s, SigT) := stBiToBi bi ‘sn’?))

In general, a component may have many external pins. A further function is
defined to bind lists of pins, ss, to corresponding bit vectors:
tNamesToIdx ss n be ≡ foldl (λbe s. tSigToVec n s be) be ss

A function is then defined that returns the (stBehav) behaviour of the initial
row using a semantic object derived from the application of MrowItem to a row

definition:

rowBase mir ≡ let (be, ts, ss) = mir in tNamesToIdx ts 0 (beToSTBe be)

Extending a Row

In order to build up the row, the left-hand pins on a new row element must be
bound to the temporary signals to which the pins on the right of the existing
row are bound.

The third element in a tuple returned by MrowItem is a list of pairs, where each
pair associates a pin on the left of the component with the corresponding pin
on the right. Where this list is denoted by some value ss, the term map fst ss

denotes the pins on the left of the component. Thus, in order to add a new
component to the row, these signals are bound to temporary signals:
rowElemN be ts ss n ≡ tNamesToIdx ts n (tempSigs (map fst ss) be)

Note that is necessary to bind each external signal that is part of a bit vec-
tor to the corresponding bit in that bit vector for every row element using
tNamesToIdx.

134 Sequential and Iterated Logic

As the row elements are composed, the pins on the right of the previous row
must be connected to the pins on the left of the new row element, and an
existential quantifier introduced to hide these signals, which now form part
of the internal chain. The internaliseTemps function takes the list of pairs that
associate corresponding pins from the left and right, introduces an existentially
quantified signal for each pair, and binds the pins to the quantified signal:

internaliseTemps [] be = be
internaliseTemps (lr ·ss) be =
(let (l , r) = lr
in internaliseTemps ss (λbi . ∃n. be (bi((l , TempT) := n, (r , TempT) := n))))

Again, a further function is defined to apply these functions to the semantic
object derived from MrowItem. This function performs the actual composition
of the new element using conjunction. The behaviour of the resulting row
admits signal behaviours only if they are admitted by both the existing row
and the new component.

rowRec beh n mir ≡
let (be, ts, ss) = mir
in internaliseTemps ss

(λbi . rowElemN (beToSTBe be) ts ss n bi ∧ tempSigs (map snd ss) beh bi)

Deriving the Semantics of a Row

The rowBase and rowRec functions may be used to recursively define the seman-
tics of a row of length n, with the caveat that the result is of the type stBehav
rather than behav. The recursion is defined by:

rowOfInt 0 mir = rowBase mir
rowOfInt (Suc n) mir = rowRec (rowOfInt n mir) (Suc n) mir

However, after composing a row, no temporary signal values are referred to in
the resulting behaviour, and it the behaviour can be converted to a behav type
behaviour without loss as follows:

rowOf n ri de ≡
let (be, ts, ss) = MrowItem ri de in stBeToBe (rowOfInt n (be, ts, ss))

Finally, it is also appropriate to define a semantic function that derives the
behaviour of a row of components directly from the defn abstract syntax object:
Mdefn (OneOf c) de = Mcomp c de

Mdefn (RowOf ri n) de = rowOf n ri de

Chapter 7

Compilation Correctness

Contents
7.1 Data Flow Between Hyperblocks 135

7.1.1 Assumptions . 136

7.1.2 Two Phase Bundled Data Convention 137

7.1.3 Hyperblock Synchronisation 138

7.2 Example Hyperblock . 139

7.2.1 Overview . 139

7.2.2 Intermediate Representation of the Hyperblock . . . 139

7.2.3 Netlist Implementation 141

7.3 Correctness Criteria . 144

7.3.1 Auxiliary Functions 145

7.3.2 Correctness Conditions 147

An intermediate representation typical of those found in contemporary optimis-
ing compilers was presented in Chapter 4, together with a formal definition of
its semantics. It was designed to support hardware/software compilation, and
hence designed such that it be possible to compile a program fragment in that
representation into either assembly language, via a code generation backend,
or converted into a design for a function unit.

Chapter 5 and Chapter 6 describe the development of a hardware represen-
tation with a formal semantics. This chapter discusses what it means for a
function unit design expressed in the hardware representation to provide hard-
ware acceleration for a hyperblock in the intermediate representation, and the
correctness conditions that the design must satisfy.

7.1 Data Flow Between Hyperblocks

In order to state the correctness criteria for the compilation of a hyperblock
in the intermediate representation into a design in the netlist language, it is
useful to select a convention for propagating data values between circuits that
implement hyperblocks. One reason why it is useful to select a convention is
that it allows one to construct a generalised formal statement of the compilation

135

136 Compilation Correctness

correctness criteria for an arbitrary hyperblock. This means that, by assuming
a particular convention for data flow between hyperblocks, it is possible to state
what it means for a circuit to correctly implement a hyperblock in general, and
without reference to a specific hyperblock.

Another reason to select a convention for propagating data flow between cir-
cuits that implement hyperblocks is that it supports a compositional approach
to reasoning about translation correctness. Two circuits can be composed to-
gether more simply if they both share a convention for synchronisation and
data flow.

The convention used here for propagating values between circuits that imple-
ment hyperblocks is based on a synchronous version of the Two Phase Bun-
dled Data Convention [Sut89]. The convention used here differs slightly from
other descriptions of synchronous versions of this protocol [FDG+93, BG02a,
GIOS05].

The use of this protocol is based on some assumptions about the compilation
strategy in use, which are described in Section 7.1.1. A brief overview of the
Two Phase Bundled Data Convention is given in 7.1.2. A description of the
variant of this protocol used here, and an explanation of why it differs from
the cited synchronous versions of this protocol follows in Section 7.1.3.

For brevity, this chapter henceforth uses the term ‘hyperblock’ to refer to a
conceptual hyperblock in the intermediate representation; to a netlist imple-
mentation of that conceptual hyperblock; and to its hardware reification: a
circuit implementation of that hyperblock. It is intended that context be suffi-
cient to avoid any ambiguities. Furthermore, although the hardware semantics
describes signal values in terms of the binary values 0 and 1, the logical equiv-
alent of those constants may be used to refer to signal values.

7.1.1 Assumptions

The compilation from the IR into the hardware representation could be ap-
proached in a variety of different ways. One approach might be to allow values
to propagate between hyperblocks asynchronously, in the sense that values ar-
rive at the merge nodes of a given hyperblock at different times. The evaluation
of a hyperblock may be able to proceed before all values have propagated from
a preceding hyperblock. This can occur when the results of those expressions
are not required by the later hyperblock execution, or are not required im-
mediately. The approach would support lenient evaluation: if a value is not
required for a particular evaluation of the hyperblock, then there is no need to
wait for it to propagate from a predecessor hyperblock.

In a description of CASH [BG02a] — a compiler framework that uses Pegasus
as the basis of its intermediate representation — it is stated that only one
hyperblock is actively switching at any one time. This suggests that values
are propagated between hyperblocks simultaneously. However, the examples
in the cited paper, and that used in the description of the semantics of Pe-
gasus [BG02b], do not appear to illustrate how this is invariant is maintained
when more than one value is propagated between consecutive hyperblocks.

In order to consider the correctness criteria for a hardware/software compiler

7.1. Data Flow Between Hyperblocks 137

that uses the intermediate representation presented in this thesis, it is assumed
that there is only one active hyperblock at a time. A single evaluation function
for a hyperblock mHblock is defined on page 82 which gives a denotational
semantics for the hyperblock construct. The evaluation strategy defined by
the semantics involves evaluating each hyperblock sequentially: there is no
consideration of two hyperblocks being evaluated concurrently, as would be
appropriate for modelling the evaluation of a hyperblock before all the values
from a preceding hyperblock were available.

Without the assumption of a single active hyperblock, it would be necessary to
consider the parallel evaluation of two hyperblocks, and the implications of how
the state transitions in one hyperblock affecting the state of the other. Hence,
this assumption greatly simplifies the statement of the correctness criteria given
in this chapter.

Specifying a convention for propagating data values between hyperblocks and
limiting the implementation to having only one active hyperblock at a time
has some disadvantages. The resulting circuits could be less efficient because
of the requirement that only one hyperblock be active at a time, and also
because this requirement reduces the opportunities for lenient evaluation across
hyperblocks, as described above.

This approach could also limit the types of optimisations that can be performed
on the resulting design, because there could be more efficient implementations
based on different data flow conventions. Furthermore, the use of a single data
flow convention between hyperblocks limits opportunities for inter-hyperblock
optimisations.

Even if optimisations were applied after compilation — translating the design
to a form that does not use the Two Phase Bundled Data Convention — it is
likely to be difficult to significantly optimise the interfaces between circuits that
implement hyperblocks in those optimisations. The complexity would arise as
a result of modifying the hardware interface provided by a hyperblock, and yet
trying to ensure that a number of related hyperblocks still exhibit the same
behaviour after the optimisations have been applied. Thus, there appears to be
a trade-off between the benefits of compositional reasoning about the behaviour
of hyperblocks and the benefits of aggressive optimisations at the netlist level.

No convention for data flow within a hyperblock implementation is assumed
here. By not mandating the use of any particular convention within a hyper-
block, a greater variety of optimisations can be applied to a hardware imple-
mentation of a hyperblock. However, this work only considers the correctness
criteria for compilation of a complete hyperblock. There may be some bene-
fit in assuming some convention for intra-hyperblock data flow if compilation
correctness is to be considered at a lower level of abstraction, such as at the
expression level.

7.1.2 Two Phase Bundled Data Convention

The mechanism used to propagate values between circuits considered here is
based upon a synchronous version of the Two Phase Bundled Data convention.
This is consistent with the approach used in related literature: including CASH,

138 Compilation Correctness

and more recently, work by Gordon et. al on compiling HOL expressions into
hardware [GIOS05].

The Two Phase Bundled Data Convention involves the use of two handshaking
signals used to control data flow between two circuits (or two communicating
parts of a single circuit): a load input to signal that the input values to a circuit
have been set up and are valid, and a done output which the circuit uses to
indicate that it has completed the evaluation of its inputs, and that the results
of the evaluation can be read from the outputs of the circuit. In this context,
a hyperblock is implemented by a circuit.

The protocol works as follows: a positive transition is provided by the environ-
ment on the load signal. In the synchronous implementations described by the
cited texts, this means the environment asserts a low (False) signal on load for
at least one clock cycle, and then asserts a high (True) signal. The environment
must wait until the hyperblock is asserting True on its done output to ensure
that the hyperblock is ready, before it asserts the rising edge on load. When
the hyperblock detects this transition, it asserts False on done, indicating that
it is busy. When this happens, the environment may assert False on load again.
When the hyperblock evaluation has completed — meaning that all of its out-
puts are valid and can be read — then the hyperblock should assert True on
done to indicate that the environment can read those values.

7.1.3 Hyperblock Synchronisation

The Two Phase Bundled Data convention requires that each circuit using that
convention have a pair of signals used for synchronisation: the load and done

signals. The done signal of one circuit is connected to the load signal of the next
circuit in a computation pipeline. If circuits do not form a simple pipeline, and
there is more than one possible circuit that should activate when another circuit
completes its computation, then some control flow logic is required to ensure
the correct load signal is asserted for the next step in the computation.

In the intermediate representation used here, a hyperblock can have more than
one predecessor, and more than one successor hyperblock. Hence, the hyper-
blocks in the intermediate representation do not in general map into a simple
computation pipeline. This means that extra control flow logic is required, in
order to ‘trigger’ the correct hyperblock. The correct hyperblock is determined
by the semantics of the intermediate representation, and in particular the value
of mHblock-next as defined on page 82.

The control logic could be implemented either as a centralised control unit
that reifies a finite state machine, providing control logic based either on a
micro-instruction set, or in logic that implements a similar finite automata.
Alternatively, the control flow logic can be implemented in a distributed fash-
ion, where each hyperblock is responsible for triggering the correct hyperblock
once it has completed its evaluation.

A distributed control strategy is considered here, in which each hyperblock has
one load signal for each predecessor hyperblock, and one done signal for each
successor hyperblock. It is a requirement that a hyperblock never has more
than one load signal asserted during any evaluation of that hyperblock. This

7.2. Example Hyperblock 139

is satisfied by two restrictions: firstly, that there is only ever a single active
hyperblock, and secondly, that within each block there is only a single active
eta group at any time.

Conceptually, this approach seems fitting with the use of the Two Phase Bun-
dled Data Convention because it avoids the use of a centralised control unit. It
ensures that all reasoning about the behaviour of the hyperblock is determined
by the hardware implementation of the hyperblock itself. This avoids the need
to consider the specification of a centralised control unit, which would reduce
the compositionality of compilation correctness proofs.

7.2 Example Hyperblock

An example of a hyperblock in the intermediate representation is presented
in this section. The example hyperblock is used to illustrate the synchroni-
sation mechanism described in the previous section, and in the discussion of
the correctness criteria for hyperblock compilation which are discussed in the
following section, Section 7.3, Correctness Criteria.

7.2.1 Overview

The hyperblock described here is based on the multiplication example used to
describe various representations in Chapter 4. The example involves a näıve
implementation of multiplication based on repeated addition: an integer num-
ber, X, is added repeatedly to an accumulator, P. The number of times that X

is added to P is determined by a non-negative integer, Y, which is decremented
on each loop iteration. The calculation is complete when Y reaches zero.

Figure 7.1 illustrates a hyperblock implementation of the loop body of this
algorithm. It is similar to Figure 4.4 on page 68, but differs in two ways.
Firstly, the loop header is not illustrated here. The loop header is a separate
hyperblock, and for the purposes of this example, consideration of only a single
hyperblock is sufficient. This is due to the assumption of a convention for data-
flow between hyperblocks and the associated synchronisation.

Secondly, each node in the hyperblock has been annotated with a natural num-
ber. This is the id used in the term-graph representation, in order that where
the same node appears in more than one tree in the abstract syntax, it can
be identified as such by its unique identifier. The use of unique identifiers to
identify nodes using a term-graph representation was discussed in Section 4.2.2,
SSA in Isabelle/HOL.

7.2.2 Intermediate Representation of the Hyperblock

In order to simplify the presentation of the example hyperblock, a few con-
stants are declared before providing a definition of the hyperblock in the ab-
stract syntax of the intermediate representation. In addition to simplifying the
expressions that define the hyperblock, they allow each part of the definition
to be described separately.

140 Compilation Correctness

0 1

_

P

X

X

+ =

Y

YP

!

P

10 2

5 6 7

8

9 10 11 12

43

Figure 7.1: Hyperblock from the Figure 4.4 with node identifiers used in the
term-graph representation.

First, a number of constants are used to identify variables which, together,
form the inputs and outputs of the hyperblock:

loop-x ≡ 0

loop-y ≡ 1

loop-p ≡ 2

cont-p ≡ 0

The constants loop-x, loop-y and loop-p identify the hyperblock inputs, X, Y and
P respectively. The constant cont-p identifies the hyperblock output, P. More
accurately, it identifies the value that forms the input to the merge node for
P in the successor hyperblock, which is not shown. Note that these values are
identifiers for variables, and are used as values in domains of the hyperblock
state fields, Σb (defined on page 79). These values need not correspond with
the identifiers required for the term-graph representation: they need only be
unique with respect to the other variable names used in the same hyperblock
which are of the same type (where ‘type’ is a word value, Boolean or functional
memory store).

The variable identifiers are values of the type name, as described in the section
SSA Tree Representation on page 77. They can be used in the abstract syntax
representation of the merge nodes of the hyperblock:

loop-x-m ≡ WordMerge loop-x 0

loop-y-m ≡ WordMerge loop-y 3

loop-p-m ≡ WordMerge loop-p 1

These definitions represent the merge nodes at the top of the illustration of
the hyperblock. They include the term-graph identifiers for each node, as illus-
trated on the diagram. The term-graph identifiers can be assigned arbitrarily,
with the restriction that they are unique within a given hyperblock.

Nodes with the term-graph identifiers 6 and 7 operate on the value of the Y

input. These nodes — and the nodes below them in the abstract syntax tree (or

7.2. Example Hyperblock 141

the nodes above them in the figure) — can be defined in the abstract syntax:

activeGrp ≡ BoolDyNatOp Eq (Const 0 2) loop-y-m 6

eg1Y ≡ WordOp Sub loop-y-m (Const 1 4) 7

The activeGrp tree is used to determine the active eta group for a given hyper-
block evaluation. It compares the value of Y with the constant zero. The result
forms a predicate to one of the eta groups, which determines whether that eta
group is the active one. The negation of the result forms an equivalent predi-
cate for the other eta group. The use of one value and its negation ensures the
‘one-hot’ property of these values.

The eg1Y tree is used to determine the next value of Y in the computation. It
is evaluated speculatively, regardless of whether the decremented value of Y is
required for another iteration.

The accumulation is implemented by the node with term-graph identifier 5. It
can be defined similarly:

eg1P ≡ WordOp Add loop-x-m loop-p-m 5

Using these definitions, the two eta groups for the hyperblock can be defined.
The eta group that is active while there are still iterations to be performed is
defined as follows.

loop1 ≡ (|
next-block = 1 ,
cond = BoolMonBoolOp BNot activeGrp 8 ,
η-bool = [],
η-word = [(loop-x-m, loop-x), (eg1Y , loop-y), (eg1P , loop-p)],

η-mem = [] |)

Note that the cond field is negated with respect to the other eta group, loop2,
which is defined below. The cond field in loop2 is active when there are fur-
ther iterations to perform. Hence, it is active when no further iterations are
required, and serves only to forward the value of P to the next hyperblock.

loop2 ≡ (|
next-block = 2 ,
cond = activeGrp,
η-bool = [],
η-word = [(loop-p-m, cont-p)],

η-mem = [] |)

Finally, the hyperblock is defined simply as a list of the eta groups that it
contains (page 73):

example-hb ≡ [loop1, loop2]

7.2.3 Netlist Implementation

Figure 7.2 illustrates a netlist design which is conjectured to form a netlist
reification of the example hyperblock. This netlist design is discussed in con-
junction with the intermediate representation form of the hyperblock in the
next section which describes what it means for a netlist design to correctly

142 Compilation Correctness

X1 1P

+

X

0 1

X X0 1 0 1P P

0 1Posedge Posedge

done 2 1YP2

Y

+

−1

T F Z

done1

0 1

0 1Y Y

P

done done0 1

Figure 7.2: Netlist implementation of the example hyperblock in Figure 7.1.

implement a hyperblock in the intermediate representation. The netlist imple-
mentation is intended for explanatory purposes only, and has been constructed
such that it can be explained in terms of the netlist language constructs pre-
sented earlier in this thesis.

No formal reasoning about the correctness, or otherwise, of the netlist im-
plementation is attempted here: the focus is on constructing a generalised
relationship between the behaviour of a hyperblock in the intermediate rep-
resentation, and that of a netlist language implementation of that hyperblock
with respect to the semantics associated with those representations. For simi-
lar reasons, the efficiency of the illustrated design is of no concern here. This
should come as no surprise, given the choice of multiplication algorithm used
in the example.

While much of the notation in Figure 7.2 should be familiar from previous
chapters, some aspects of the notation used here require a little explanation.
The explanation here first addresses the notation itself, before proceeding to
describe the design and its relationship to the example hyperblock.

Notation

Lines between components that have a short, slanted line crossing them each
represent a bus with the width of one machine word. All other connecting
lines represent bit signals. Where a signal name at the bottom of the diagram
matches one of those at the top of the diagram, this indicates that those two
lines denote the same signal. This means, for example, that the output of
the register holding the value for X is directly connected to the input to the
multiplexer which selects between X 0 and X 1.

The three multiplexers at the top are an extension of the multiplexer — as
used in the netlist definition of the DFF component (page 119) — to bit vectors
or more specifically, to machine words. These can be constructed in the netlist
language using the row construct (page 129), in conjunction with the multi-

7.2. Example Hyperblock 143

plexer. The multiplexers are used to select input values for the hyperblock
from the output values of the hyperblocks that immediately precede it in the
program control flow.

The three rectangular boxes immediately below these multiplexers are abstract
registers (page 118), which are an extension of the DFF construct to machine
words.

The TFZ construct implements a Test For Zero, which could be implemented,
albeit rather inefficiently, using the row type as shown in Figure 6.7 (page 128).
The ‘-1’ construct simply indicates that each bit signal within the bus is con-
nected to a source that outputs a constant 1 value, and hence the value of
signals across the bus represent the value -1 in twos complement form.

At this point, the significance of selecting an appropriate representation for
binary numbers (Section 3.2.2, Number representation) becomes apparent. The
�v� notation that has been used thus far to indicate the value of a bit vector
is an interpretation of a bit vector as a natural number representation, rather
than as a twos complement representation. The choice of the simplest definition
of bit vector value has simply deferred the need to resolve the discrepancies
between number representation in the intermediate representation and that in
the netlist language until such time that the semantics of these representations
needs to be related.

Design

The netlist implementation of the hyperblock illustrated in Figure 7.2 demon-
strates the distributed control flow scheme described in Section 7.1.3, Hyper-
block Synchronisation. In this scheme, a hyperblock may be activated by a
rising transition on the done signal of one of a number predecessor hyperblocks.

The done0 and done1 signals in the top left corner respectively represent the
done signals from the loop header hyperblock, and from the example ‘loop body’
hyperblock itself. Each done signal is connected directly to a load signal of a suc-
cessor hyperblock, and hence there are no signals labelled as a load signal: the
load signals are simply the done signals from different predecessor hyperblocks.

The done1 signal near the bottom right of the diagram is connected directly to
that with a similar label in the top right of the diagram. This is used by the
hyperblock implementation to trigger the next loop iteration when a further
loop iteration is required. The done2 signal adjacent to it is raised when no
further loop iterations are required, and hence when control flow should proceed
to the successor of the loop body hyperblock.

The hyperblock is triggered when there is a rising transition on either the done0

or the done1 signal. The Or gate below the Posedge components provides this
behaviour. A rising transition on either signal causes a rising transition on the
clock enable signal of the DFF-based registers. These registers then latch the
inputs of the hyperblock, either from the loop header hyperblock, or from the
previous iteration of the loop body hyperblock.

One of the two done signals is connected to the select input of each of the
multiplexers controlling the inputs to the hyperblock. When done0 has a rising
transition (and done1 is low), the multiplexers select X 0, Y 0 and P0 from the

144 Compilation Correctness

loop header hyperblock. When done1 has a rising transition, the multiplexers
select X 1, Y 1 and P1 from the previous iteration of the hyperblock. The latter
set of signals are driven by the signals with the same name that are shown at
the bottom of the diagram.

The inverter shown below the Or gate is used to prevent either of the done

signals becoming high during a clock cycle with a rising transition on done0 or
done1. This allows the input values to be latched, and the output values to be
computed. This design assumes that the accumulator, P, can be incremented,
and the counter, Y, decremented and (simultaneously) tested for zero within a
single cycle. If it were not possible to perform all of the necessary computations
within the hyperblock in a single cycle, a delay could be inserted on the output
of the inverter.

Only one done signal can be active at any point, because the And gates that
drive these signals share a common input which is inverted for only one of those
gates.

7.3 Correctness Criteria

This section considers the correctness criteria for the translation of a hyper-
block into a netlist design. It describes the properties that a netlist design
must satisfy in order that it can be considered a correct implementation of a
hyperblock. These properties are specific to the control strategy outlined in
Section 7.1 for communication between circuits implementing hyperblocks.

It would be possible to define a different control strategy based on the same in-
termediate representation and netlist language. However, the use of a different
control strategy would require a different set of properties for reasoning about
translation correctness to those described here.

The aim is to show how the semantic functions and semantic domains of the
intermediate language and of the netlist language are related. The concept is
similar to that illustrated in the commutativity diagram of Figure 1.1, where
the exec function represents the evaluation function of a hyperblock in the
intermediate representation and σ represents the state of a program in the
netlist language. However, the concept differs from that illustrated in that
the figure, which suggests that the semantics of the lower level language has a
denotational semantics. Here, the netlist language is the lower level language,
and its semantics are defined as relations on signal values.

Compilation correctness is considered at the level of individual hyperblocks:
the values of variables in the intermediate representation must be related to
the signal values in the netlist representation only at the start and end of
a hyperblock evaluation. No constraints are defined on intermediate values
which are calculated during the evaluation of a given hyperblock but are not
an output of that hyperblock. In the text that follows, a program variable is
considered to be any value that is propagated between hyperblocks.

7.3. Correctness Criteria 145

7.3.1 Auxiliary Functions

The correctness conditions consider the relationship between signal values in
the netlist language and the values of program variables in the intermediate
representation. A number of auxiliary definitions are defined here which sup-
port the correctness conditions that follow in Section 7.3.2.

A number of functions are defined on the abstract syntax of the intermediate
representation. These fall into two categories: those that derive information
about the control flow of the program, and those that determine what program
variables are used in a given program.

Three functions relating to the control flow of a program are defined. The pre-

cedes function determines whether a hyperblock hb is an immediate predecessor
of the hyperblock with index hbi.

precedes hb hbi ≡ hbi mem map next-block hb

The functions preds and succs are defined as follows:

preds p hbi ≡ [i←[0 ..<|p|] . precedes p[i] hbi]

succs p hbi ≡ map next-block p[hbi]

The first argument to each function is a program, of type prog, as defined as
a list of hyperblocks (see page 73). The second argument is an index of one
of the hyperblocks in that list. The function preds returns a list in which each
element is the index of a hyperblock that immediately precedes the hyperblock
identified by the arguments. The function succs returns a list in which each
element is the index of a hyperblock which is a successor to that identified by
the arguments.

The other auxiliary functions defined on the abstract syntax are related to
determining the variable identifiers used by a program. A program variable is
identified by a pair of values. The first value is the number of the hyperblock
in which that variable is used, that is, the index of the hyperblock within the
program which includes the merge node for that variable. The second value is
the name associated with that merge node. Recall from page 75 that the name
associated with an eta node in the abstract syntax is that of the merge node
to which it forwards a value.

The first such auxiliary function is egVars, which returns the variables assigned
by a given eta group. The first argument to the function is one of the field
selectors for η-group type (defined on 74), namely η-bool, η-word or η-mem. These
return a list of pairs: the second element of each is the name of a variable
assigned by that eta group, and that of a merge node in a successor hyperblock.
The second argument is an eta group, of the record type η-group .

egVars fld g ≡ map (λn. (next-block g , n)) (map snd (fld g))

The function returns a list of pairs identifying program variables, one for each
eta node in the field identified by the given selector. The first element of each
pair is the value of the next-block field for the given η-group, and the second is
one of the name values from the selected field. Hence, egVars η-bool g denotes a
list of all Boolean program variables assigned by the eta group g.

Recall that each eta group corresponds to a single successor hyperblock, and
the successor hyperblock to which each eta group corresponds is unique within

146 Compilation Correctness

a hyperblock. Hence, the value of the next-block field is unique between each
eta group within a hyperblock. Appending the program variables assigned by
each eta group within a hyperblock gives a ‘disjoint union’ of program variables
assigned by that hyperblock:

hbVars fld [] = []

hbVars fld (g ·gs) = egVars fld g @ hbVars fld gs

Determining the program variables used in a whole program is a little more
complicated than determining the program variables assigned by a single hyper-
block. In general, a program variable may be assigned by any number of pre-
ceding hyperblocks. That is, in general, a merge node may select a value from
a number of eta-nodes in preceding hyperblocks. The list union operator, ∪l,
is used to eliminate duplicates arising from combining the results of hbVars for
all hyperblocks in a program.

progVars [] f = []

progVars (b·bs) f = hbVars f b ∪l progVars bs f

Two further functions are defined to facilitate determining the variables used
within a given program: prgWords returns a list of all variables that are repre-
sented by a machine word, and prgBools returns a list of all variables that are
represented by a single bit.

prgWords p ≡ progVars p η-word

prgBools p ≡ progVars p η-bool

Programs with functional memory store values are not considered here. The
set of components defined for the netlist language as presented is not suffi-
ciently rich to support these values, and their use is dependent on analyses
that determine potential overlaps between memory regions.

The auxiliary functions defined above are functions on the abstract syntax of
the netlist language. The remaining auxiliary functions are defined on values
in the semantic domains of the intermediate representation and the netlist
language.

The functions irw and irb return natural numbers and a Boolean values respec-
tively. The first argument for both functions is a program variable represented
as a pair, as described above. The second argument represents the program
state. They are defined as follows:

irw var σp ≡ σ-word σp[fst var] (snd var)

irb var σp ≡ σ-bool σp[fst var] (snd var)

A similar pair of functions is defined for the semantic domains of the netlist
language, namely nlw and nlb. These return the types bit list and bit respectively.
The first argument is a signal name; the second is a signal value binding, of
the binding type defined on page 124, and the third parameter is the time at
which the value of the signal is of interest.

nlw sn vb t ≡ map (λw . w t) v�vb sn�l

nlb sn vb t ≡ v�vb sn�b t

7.3. Correctness Criteria 147

Finally, a function hasPosedge is defined, which determines whether a given bit
value has a rising transition between two points in time, t1 and t2.

hasPosedge s t1 t2 ≡ ∃ t≥t1. t < t2 ∧ posedge s t

7.3.2 Correctness Conditions

In the context of this thesis, the output of a hardware/software compiler can be
considered in two parts. One part is an executable program or a representation
of a program that can be further translated into an executable format. The
other part is a hardware design for a function unit that provides hardware
acceleration for that program.

In order to allow for translation verification, it is assumed here that the compiler
provides further output which includes a limited amount of information about
how the hardware design relates to the executable program. Specifically, it is
assumed that the compiler outputs information that maps variable identifiers
in the intermediate representation to the signal identifiers in the hardware
representation. This means that if the generated function unit uses a given
program variable, then that mapping should define the name of the hardware
signal which propagates the value of that variable.

In addition to this, it is also assumed that the compiler outputs information
about which signals in the function unit design are ‘load’ or ‘done’ signals, and
which hyperblocks those signals are used to synchronise.

The compiler output is modelled as follows:

record cc-out =
rfu :: design
prg :: prog
load :: (nat×nat)⇀sig-name
vm-bool :: (nat×name)⇒sig-name

vm-word :: (nat×name)⇒sig-name

The value of the rfu field is the hardware design for the function unit. The prg

field represents the whole program, including those parts which are intended
to be implemented as a hardware design in the function unit. The reason
for including the whole program here is that the correctness conditions use
information about the control flow and program variables derived from this
program.

The load field is a map that identifies load/done signals between hyperblocks.
It is defined on pairs of hyperblock indices. The first hyperblock index in
the pair is the index of a hyperblock that is an immediate predecessor of the
hyperblock identified by the second index in the pair. This means that the
‘done’ signal from the first hyperblock is connected to the ‘load’ signal of the
second hyperblock. The value of the map at a given pair of hyperblocks is the
name of the signal that connects the done output with the load input.

The vm-bool and vm-word fields are functions that map variable identifiers in
the program to signals in the hardware design. The domain of each function
is a program variable identifier (as defined in Section 7.3.1), and the range of
the functions are the signal names that propagate the values of those variables.
More specifically, in terms of Figure 7.2 they are the signal names that form

148 Compilation Correctness

the input to the DFF components that are labelled with variable names and
the output of the multiplexers at the top of the diagram.

The functions can be used to define what it means for the program variables
in the intermediate representation to correspond with signal values at a given
point in time. A predicate varsCond is defined to characterise this property,
again with the caveat that functional store variables are not considered here.
It is defined on the compiler output co; the signal value binding vb; a point in
time t, and the state of program with respect to the semantic domains in the
intermediate representation σp:

varsCond co vb t σp ≡
(∀w . w mem prgWords (prg co) −→ �nlw (vm-word co w) vb t� = irw w σp) ∧
(∀ b. b mem prgBools (prg co) −→ (nlb (vm-bool co b) vb t = 1) = irb b σp)

Intuitively, the correctness condition can be described as follows: if an abstract
interpreter for the intermediate representation is evaluating a program in steps
of a single hyperblock evaluation, then the varsCond property should hold at
the end of each such step. A more precise statement of this property requires
stating precisely the arguments for which the property should hold, and also
the conditions under which it is required to hold.

The correctness of a hardware implementation of a hyperblock is based on
certain assumptions about the environment of the hyperblock implementation.
For example, a hyperblock is not expected to produce meaningful results if a
rising transition occurs on a ‘load’ signal unless the hyperblock is asserting True

on all ‘done’ signals. These assumptions related to load/done signal values are
characterised by a predicate hbAssm, which is defined on the compiler output
co; a signal value binding vb; the time t at which the hyperblock evaluation
starts, and the time t’ at which the hyperblock evaluation is complete.

hbAssm co vb t t ′ i ≡
(∀ s. s mem succs (prg co) i −→

(∃ d . load co (i , s) = Some d −→ v�vb d�b t = 1)) ∧
(∃ ! p. p mem preds (prg co) i −→
(∃ l . load co (p, i) = Some l −→
posedge v�vb l�b t ∧ ¬ hasPosedge v�vb l�b (t+1) t ′ ∧
(∀ d . d ∈ ran (load co) ∧ d 6= l −→ ¬ hasPosedge v�vb d�b t t ′)))

The time t refers to the start of a rising transition on one of the load signals:
that is, a load signal that has value 0 at time t and value 1 at time t+1. The
time t’ refers to the time at which the hyperblock raises a ‘done’ signal to
indicate completion of the hyperblock evaluation.

The first conjunct (defined in the first two lines of the hbAssm definition) rep-
resents the assumption that the hyperblock is asserting 1 on all done signals
at time t. The third line introduces a bound variable p which is the hyperblock
index of a unique hyperblock that has asserted 1 on one of the load signals
of the current hyperblock. The fourth and fifth lines define the assumption
that the corresponding load signal l has a rising transition starting at time t

and does not have a subsequent rising transition during the evaluation of the
hyperblock. The last line states that there are no rising edges on any other
load signals in the entire design during the hyperblock evaluation.

7.3. Correctness Criteria 149

The last line is based on the requirement that only a single hyperblock be active
at any time. Hyperblocks are required to be quiescent when they are not active:
they must not create a rising transition on a done signal that is not due to the
completion of a hyperblock evaluation triggered by a done signal. Were this
not a requirement, a spurious rising transition on a done signal would result
in more than one active hyperblock. This could trigger a series of hyperblock
evaluations which could result in more rising load transition on a hyperblock.
This property is not formalised here.

The predicate hbAssm defines assumptions on signal values of signals used for
control flow. A predicate hbCorr is defined which characterises the correct
behaviour of control flow signals assuming that the hbAssm holds.

hbCorr co vb t t ′ hbi next ≡
(∀ d ∈ ran (load co). ¬ hasPosedge v�vb d�b t t ′ ∧

posedge v�vb d�b t ′ = (load co (hbi , next) = Some d))

The property is defined as a function of the compiler output co; the signal
value binding vb; the start time of the rising transition on a load signal t for
the current hyperblock evaluation; the start of the rising transition on the done
signal t’; the index of the current hyperblock within the program hbi, and the
index of the next hyperblock to be evaluated next.

The first conjunct represents the requirement that the hyperblock should not
effect a rising transition on any done signal for the duration of the hyperblock
evaluation. This applies to all done signals in the design. The second conjunct
states that time t’ should be the start of a rising transition on the correct done
signal. More verbosely, it states that at time t’ the property posedge holds of a
given load/done signal if and only if that signal connects a done output of the
current hyperblock with the correct load input on the next hyperblock to be
evaluated.

A state transition effected by a hyperblock in the intermediate representation
must commute with the state transitions that occur on its hardware implemen-
tation. Using the above definitions, a statement about the behaviour that the
function unit is required to exhibit, in order for the state transitions effected
by a single hyperblock to commute can be formulated:

commute-at co σp σp
′ hbi next vb t t ′ ≡

hbAssm co vb t t ′ hbi ∧ varsCond co vb (t+1) σp −→
hbCorr co vb t t ′ hbi next ∧ varsCond co vb t ′ σp

′

In the above definition, co is the compiler output, of type cc-out. The inter-
mediate representation states σp and σp′ are program states before and after
the evaluation of a hyperblock respectively. The terms hbi and next refer to
the index of the hyperblock being evaluated, and the index of the hyperblock
which should be evaluated immediately after the current evaluation. The sig-
nal value binding is denoted by the term vb, and t and t’ represent the times
(in the netlist language semantics) at which the hyperblock evaluation starts
and finish respectively.

The correctness statement above is formulated using implication. If the envi-
ronment of the hyperblock does not maintain the invariant denoted by hbAssm,
then arbitrary behaviour is admissible. However, if the assumptions about the
behaviour of the environment hold, then an implementation must implement

150 Compilation Correctness

the correct synchronisation behaviour, as denoted by hbCorr, and effect a state
transition ensures signal values representing program variables correspond with
the variables in the intermediate representation state.

It remains to formulate the property that characterises whether the evaluation
of an arbitrary hyperblock in the netlist language to commute with an imple-
mentation of that hyperblock in the netlist language. This can be expressed as
follows:

commute co hbi σp vb t ≡
(let (next , σp

′) = mHblock (prg co!hbi) hbi σp in

∃ t ′. commute-at co σp σp
′ hbi next vb t t ′)

The above condition forms part of the correctness criteria for a hyperblock
implementation. The aforementioned condition on quiescent behaviour is also
required for correctness. These conditions specify what it means for a hardware
implementation of a hyperblock to correctly implement a hyperblock in the
intermediate representation.

Chapter 8

Discussion and Conclusions

Contents
8.1 Formulation of the IR . 151

8.1.1 Comparison of SSA Representations 152

8.2 Co-design of an IR and Netlist Language 153

8.2.1 Developing a Netlist Language 153

8.3 Formulation of the Netlist Language 155

8.3.1 Representation of Signal Bindings 155

8.3.2 Theorem Proving Techniques 156

8.3.3 Temporal Abstraction in Higher Order Logic 156

8.3.4 Well-Formed Circuits 157

Compiler correctness is one of the requirements for producing robust programs
in high level languages. Compilers that target a reconfigurable function unit
— or other, less volatile, technology — are no exception to this. However,
existing techniques that support rigorous compiler development cannot be ap-
plied to hardware/software compilers directly. This is unsurprising: many of
the theoretical foundations pertaining to compiler development that underlie
the approach adopted in this thesis were developed in the late 1970s, approx-
imately ten years before FPGAs began to be used for the implementation of
custom function units. Even then, initial efforts were undertaken without the
support of a hardware/software compiler.

8.1 Formulation of the IR

An intermediate representation based on the Static Single Assignment form has
been presented in Chapter 4. It is based on similar representations: namely a
formulation of SSA by Jan Olaf Blech [Ble04], and Pegasus, a representation
based on hyperblocks [BG02b]. Each of these involves representing the data-
flow within a basic block as a graph in which nodes denote computations, and
edges denote data dependencies.

All three definitions use a different approach to representing the data-flow
graph. Blech uses a term-graph representation. The term graph representation

151

152 Discussion and Conclusions

is convenient for expressing semantics as recursive functions over an abstract
syntax tree. Blech’s term-graph approach for representing SSA form has been
adapted for the definition presented here.

This section provides a comparison of the features of each representation, and
summarises contributions made in adapting the existing representations in or-
der to make them more amenable to verifiable hardware/software compilation.

8.1.1 Comparison of SSA Representations

Abstract Syntax of the SSA Representation

Each node in Blech’s term graph has the type SSA tree, regardless of whether
the node represents a value or a memory store. A single primitive recursive
semantic function, eval tree, is used to recursively evaluate trees.

In contrast, in the definition given here, there are three different types of node
in a tree: those that evaluate Boolean values, (scalar) machine word values,
and those represent a memory region. Three mutually recursive functions are
used to evaluate term-graphs: mη-boolTree mη-wordTree and mη-memTree (page
84). Each function evaluates a tree of a given type.

The distinction between these two approaches is that the definition here uses
abstract syntax to enforce certain type safety properties: it is not possible
to represent a tree in which a memory store is used where a scalar value is
expected. In Blech’s formulation, the abstract syntax admits SSA trees that
are not type safe in this respect, and their behaviour is left underspecified.

The record type in Isabelle/HOL is used to represent blocks in the abstract
syntax of the representation developed in this thesis (page 74). This appears
to provide an improvement over the use of a single datatype constructor with
a number of anonymous fields (page 65), because the field names of the record
type provide a mnemonic indicative of their purpose.

Semantic Domains

Another distinction between the two representations is that Blech’s formulation
stores intermediate values in the abstract syntax object representing the node.
The definition given in Chapter 4 uses a separate semantic domain object, Σb

(page 79), to represent the state for the evaluation of a tree.

An advantage of this approach is that it is clear from the signatures of the se-
mantic functions that they preserve the structure of the SSA trees, and hence
that the part of the program represented by that SSA tree is invariant dur-
ing program evaluation. This is an important property for hardware/software
compilation, because program modification would require re-synthesis of the
function unit logic.

Another benefit of the use of a separate semantic object to represent the eval-
uation state is that it is straight-forward to retrieve the values of nodes rep-
resenting live variables after a block has been evaluated (by a simple function
application). In contrast, where values are associated with the SSA node that

8.2. Co-design of an IR and Netlist Language 153

evaluated them, these values must be retrieved by a recursive function after a
block has been evaluated.

Flow Control

The IR developed in Chapter 4 provides improved support for modelling flow
control in comparison to Blech’s representation. Blocks may have an arbitrary
number of successor blocks, and are selected by one of a number of Boolean
predicates. Only one Boolean predicate is expected to evaluate to true, and
this is used to determine the successor block.

This provides for a simpler representation of constructs such as switch state-
ments, where there are more than two possible successor blocks. Additionally,
where a block has only a single successor, it avoids redundancy in the represen-
tation: whereas a block must have exactly two successors in Blech’s represen-
tation, in the formulation given here, a successor need be specified only once if
it is the only successor.

8.2 Co-design of an IR and Netlist Language

This thesis identifies the need for formal reasoning to improve the level of
rigour in the development of hardware/software compilers. To support formal
reasoning, an approach is advocated that involves extending existing techniques
to suit the requirements of hardware/software compiler verification.

The verification of a compilation algorithm requires a formal definition of source
and target languages (§1.1.2). When considering targeting a hardware descrip-
tion language, it may be more appropriate to target a low level language in
preference to a high level HDL with no tractable formal semantics and a more
complex mapping to the targeted technology. Otherwise, the task of veri-
fied compilation is not likely to be solved, but merely deferred until a later
stage (§ 3.3.1, § 5.1).

With this strategy in mind, the formal semantics of an intermediate representa-
tion and a target HDL were developed and presented in this thesis. The target
HDL is relatively low level, and intended to admit a straight-forward transla-
tion into a target-independent netlist language supported by a toolchains for
reconfigurable hardware.

8.2.1 Developing a Netlist Language

The development of a new hardware representation for this thesis raises the
question of whether it would be wiser to re-use an existing hardware repre-
sentation, and attempt to derive a relationship between the existing hardware
representation and an intermediate representation. A number of factors, which
are described here, affected the decision to opt for the development of a new
representation.

One of the most significant attributes of the IR and netlist languages is that
they have been developed together with the intention that it be simple to

154 Discussion and Conclusions

relate one to the other. The languages are designed to provide a similar set
of abstractions: Section 3.2 described how these abstractions can be selected
in order to admit direct comparison of constructs in the IR and hardware
representation, specifically those that represent machine words and memory
regions.

Although the netlist language presented in this thesis has not been developed
sufficiently to represent memory regions, it is anticipated that an extension to
support this feature would benefit from the analysis presented in Section 3.2
of the desired properties of those abstractions. However, sufficient theoretical
support has been developed in order that the value of machine words can be
represented as natural numbers in the IR, and the compared with their cor-
responding bit vector representation in the netlist language (§6.3). Hence, by
developing a new representation, it has been possible to construct a hardware
representation that offers abstractions that can be related directly to those the
IR.

Another significant factor in the decision to design a new language was that
of tool support. It is desirable to be able to use an automated theorem prover
to improve confidence in theoretical results, to help finding errors in a proof,
and to assist with proof exploration. A prerequisite for relating the semantics
of the IR and netlist language using a theorem prover is that the semantics of
each be formulated in the same theorem proving environment — in this case,
Isabelle/HOL.

Mechanised reasoning about the relationship between the IR and an existing
hardware description language with formal semantics [EB02, Mil85] could be
achieved by one of two methods. One method would be to reformulate the
semantics of a hardware description language in the logical framework used to
define the semantics of the IR. The other method would be to formulate the
semantics of the IR in a logical framework used to describe an existing HDL.

Both of these methods have disadvantages: in particular, they lack the ben-
efits of having an IR and netlist explicitly designed for the purpose of hard-
ware/software co-design. By reformulating the semantics of an existing HDL
within Isabelle/HOL, it would be difficult to ascertain whether a faithful repre-
sentation of the original semantics had been constructed. Furthermore, the use
of an approach which is based on the VERITAS technique (§ 3.3.2) of modelling
hardware in higher order logic has resulted in a semantic definition that fits
relatively naturally in the Isabelle/HOL framework. That is, while it would be
possible to formulate the semantics of an HDL with an operational semantics
in the Isabelle/HOL framework, the benefits of the VERITAS approach would
be lost.

The other method — that of formulating the IR in the logical framework used
to describe the semantics of an existing HDL — also had certain disadvantages,
at least at the time the decision was made to construct a new representation.
At that time, there did not appear to be a readily available formal semantics of
a hardware representation constructed in a theorem proving environment that
would have been appropriate for direct comparison with the desired formulation
of the IR used here.

The Quartz language [PL05] was being developed at Imperial College concur-

8.3. Formulation of the Netlist Language 155

rently with the development of the netlist language for this thesis. Quartz has
many of the features that were desired for the target hardware language con-
sidered here, for example, unlike the Ruby HDL [Hut93] ports on a component
are typed to indicate the direction of their associated signals. However, it was
not clear the extent to which the abstract objects used in the Quartz system
correspond with primitives provided by targeted hardware device.

Quartz also appears to have been developed as a new object logic in Isabelle,
rather than as a theory within the Isabelle/HOL. Another problem that would
have likely arisen in an attempt to re-use it for the purposes here is that the
IR presented here relies on many of the constructs and results provided by the
Isabelle/HOL framework, such as mutual recursive function definitions.

8.3 Formulation of the Netlist Language

The netlist language presented in this thesis is based on a technical note by
Richard Boulton [Bou98], but bears a number of differences to the original.

Boulton’s work was based on the HOL system [Gor85], rather than Isabelle/HOL.
This distinction seemed to have little impact on the actual formulation. Al-
though some differences have been introduced here, the decisions to make these
changes have largely been either based on arbitrary choice, or in order to adapt
to the different proof libraries provided by Isabelle/HOL. An example of the
latter was the use of the Isabelle/HOL bit type instead of the bool type for signal
values. However, with some extra work, it is anticipated that a formulation
using the bool type could have been produced, if greater similarity with the
original semantics were desired.

8.3.1 Representation of Signal Bindings

Boulton showed the results of his HOL proof procedures to apply and ‘unfold’
his semantics to a design in the netlist language. This process has been repeated
here, although the actual unfoldings used differ to the original. For example,
Boulton defines a get function to retrieve the value of a named signal from a
signal binding. The function does not appear in the semantics here: instead
the signal binding is a function that can be applied directly to signal names.

The get function allows abstraction from the actual representation of the signal
binding. It appears possible to represent the binding as a function in HOL,
or as a list of pairs that associate signal names with their values, with few
changes to the semantics. However, this property appeared unnecessary for the
formulation here and hence, in the simple formulation presented in Chapter 5,
the function was removed by using signal bindings in expressions directly where
signal values are used.

In retrospect, the decision to remove the get function may have been unwise.
The proof procedures used to apply and unfold the semantic definitions are
complicated by the difficultly in preventing unwanted beta reduction in Is-
abelle/HOL when performing simplification of other parts of an expression.
For this purpose, it may have been simpler to define a similar get function in
Isabelle/HOL, and remove its definition from the simplification set used during

156 Discussion and Conclusions

some of the simplifications. This problem occurred mostly when using function
updates on signal bindings as described in Section 5.6.1.

The missing get function was reintroduced in Chapter 6 (§6.3.2) as the query
function (?). Its purpose is to provide support for different signal types within
the same binding, in order to avoid having one signal binding for each type
of signal. This benefit of applying a function to a signal binding was not
apparent from Boulton’s original work, which describes netlists in which each
signal represents only a single bit of data.

8.3.2 Theorem Proving Techniques

In addition to the proof tactics that were developed to apply and unfold the
semantics, a proof tactic was developed to simplify the process of reasoning
about combinational logic. The tactic is given list of signal names, and applies
case distinction on the bit values corresponding to those signal names. For n
signals, this results in 2n subgoals, representing each combination of values
that the names signals could take (irrespective of the constraints imposed by
the circuit design). Simplification can usually be used to prove these subgoals
automatically. This technique is simple, if rather näıve, but effective for small
circuits. However, the approach becomes slow on larger circuits due to the
number of unnecessary splits.

One of the difficulties that arises when using a signal binding to represent the
value of all signals, rather than a variable for each signal, is that Isabelle/HOL
has better support for case distinction on a single variable. A workaround
for this problem is to assert that a new variable is equal to the value of a
signal binding for some signal, then substitute this variable into the expression
that requires case distinction, and finally perform case distinction on that new
variable.

The netlist language was introduced in stages: starting with combinational
logic, then extended to support temporal logic, and finally support for iter-
ated logic. The ‘lift’ functions, lift (§6.2.1) and liftValT (§6.3.2), proved useful
when experimenting with these different language definitions, because semantic
objects developed in the simpler formulations could be re-used in the more com-
plex definitions, without having to reformulate all primitives and components
by hand each time.

Another difficulty that may arise when using signal bindings is that it is not
clear if it would be possible to use the polymorphism in the Isabelle/HOL
type system to support polymorphism in the netlist language. However, while
polymorphism is desirable in an HDL designed for human use (such as that
provided by Quartz), its advantages are less clear in a low level representation
such as the netlist language, which is intended to represent an intermediate
state of hardware/software compilation.

8.3.3 Temporal Abstraction in Higher Order Logic

Tom Melham has described a set of proofs related to temporal abstraction in
higher order logic [Mel93]. The proofs were used to prove that a model of a

8.3. Formulation of the Netlist Language 157

D-type flip-flip satisfies the specification of a device similar to the TDel unit
delay device described in Section 6.2.1 (see page 115). The theorems in the
original set of proof scripts have been proved in Isabelle/HOL as part of the
research for this thesis, although the new proofs have not been presented here.

The original proofs were constructed in the mid-1980s using the HOL system.
These have been re-written as tactic-based proof scripts for Isabelle/HOL. The
theorems proved in Isabelle/HOL have the same form as those of the original
proofs. For example, where the original proofs used universal quantification,
object level quantification was used in the Isabelle/HOL proofs. This ensured
term-for-term correspondence in the theorems proved.

There were several complications involved in ‘porting’ them to Isabelle/HOL.
Firstly, object-level universal quantification made the theorem proving more
complex. In order to use the automatic unification in Isabelle, it is necessary
to use terms with meta-level quantification. Thus, although it was desirable to
prove the theorems in Melham’s theory exactly as they appeared, the form of
those theorems was perhaps not the most appropriate form for proving in the
Isabelle system. However, all of the required theorems were proved exactly as
they appeared in the original, albeit that some of the Isabelle proof text was
more cumbersome that it could have been otherwise.

Other problems encountered while porting the proofs were due to the intuition
behind the proofs not always being clear. In part this was because the tactics
used were unfamiliar from the perspective of a HOL novice. The description
of at least one tactic used in the HOL version could not be found in the HOL
manual. This may have been because it was undocumented, had been removed
from the HOL system, or had been renamed.

The HOL proofs used a larger number of tactics than were required for the
Isabelle proofs. In general, the tactics used appeared to have a very specific use.
Fewer tactics were used to construct my Isabelle proofs. In part this was due to
a lack of familiarity with the system and the available tactics. Interestingly, the
proof scripts for each version are of similar length. This seemed to be because
the use of more powerful proof tactics compensated for the rather unnatural
expression of theorems in the Isabelle system. It is difficult to make an exact
comparison of the actual number of tactic applications made, although the
HOL proofs tend to contain more commands on each line.

Isabelle is intended to allow ‘literate proofs’ to be developed, that is, proofs
that convey the intuition of a proof in the way that a pencil-and-paper proof
might. However, for non-trivial proofs, producing a literate proof can be diffi-
cult without a significant amount of experience with Isabelle, even with a tactic
based script or accurate pencil-and-paper proof available. It was encouraging
to note that it was possible to present the full adder correctness proof presented
in Chapter 5 in a form that was very similar to a proof written by hand.

8.3.4 Well-Formed Circuits

The netlist language definition does not include a formal definition of the con-
text conditions (§1.2.2) that characterise the set of netlists for which the seman-
tics is intended to define behaviour. Hence, there are netlist descriptions that

158 Discussion and Conclusions

conform to the abstract syntax of the language for which the semantics should
not be applied, because they will not give define a meaningful behaviour. It
would be useful to define context conditions for the netlist language to define
the set of circuits considered well-formed.

Hoare observed that the VERITAS approach to modelling hardware in higher
order logic can lead to misunderstandings of the behaviour of a device being
modelled, because the inputs and outputs of a component cannot be determined
from the terms representing a circuit [HG88]. The netlist language defined in
this thesis uses the In and Out annotations on the external pins of a device to
indicate this, and can be used to define context conditions.

Stylistically, it may have been more appropriate to erase the In/Out typing an-
notations prior to applying the semantic functions in the netlist language. In
the final version of the netlist language presented in the latter half of Chapter 6,
writing semantic functions on abstract objects that included typing informa-
tion became more cumbersome. The remTypes function (§6.3.4, page 130) was
introduced to simplify the semantic functions by erasing the type annotations.

An example of a class of circuits that should be excluded by the context con-
ditions includes circuits were a signal is driven by more than one output pin
of a component (§5.3.1, page 90). This is a property of circuits that include
tri-state buffers. VHDL allows the definition of signal resolution functions to
provide a meaningful semantics to this type of circuit. However, it would be
simpler to exclude them from consideration. This is reasonable, because syn-
thesis tools for many FPGAs convert tri-state logic into an equivalent design
based on multiplexers.

The original inspiration to annotate signals in the netlist language with a di-
rection came from Boulton’s formulation of a netlist language, although even
there, the idea was not novel. Alternatives to such annotations were consid-
ered. One such alternative was to model combinational logic as a function, and
iterate the application of this function for each clock cycle. This is essentially
the iterated map approach (see Top-level Semantic Functions, page 81).

An advantage of this approach is that it provides a deterministic and executable
model that is simple to test using validation conjectures. In contrast to the
relational approach to modelling circuits, it is clear that there can only be one
successor state.

During correspondence with Oliver Pell — who was working on Quartz — Pell
explained that the Quartz compiler converted relational descriptions into func-
tional circuit descriptions. While it was not clear (to either of us) whether this
approach was useful in improving the executability of circuit model, he noted
that the conversion “destroy[ed] a lot of the useful simplicity of the original
relational description”. Development of Quartz required similar issues to those
encountered in the development of the netlist language to be be addressed. This
included modelling the signal direction, and ensuring well-formedness in that
respect. Quartz also appears to have avoided the issue of modelling multiple
signal drivers, presumably because it was also intended for targeting FPGAs.

It is important to distinguish between using functions to specify combinational
behaviour, as described above, with using functions to specify sequential be-
haviour, as used in the work of Gordon et al. on hardware compilation from

8.3. Formulation of the Netlist Language 159

HOL [GIOS05]. In their hardware compilation technique, there is no represen-
tation of the generated circuit that has signal directions annotations.

The HOL compilation work has an advantage over the approach used in this
thesis, in that no new proof tactics need to be developed in order to obtain
a representation of a circuit as a higher order logic term that can be used for
verification. However, their compiler is specific to the HOL system and its
particular formulation of higher order logic. In contrast, the formulation of
the netlist language separates the abstract syntax from the semantics, and an
alternative semantics for the abstract semantics could be defined in a different
formal system. However, it is unclear whether there would be any advantage
of doing so.

Bibliography

[Alt05] Altera Corporation, 101 Innovation Drive, San Jose, CA 95134.
Cyclone II Device Handbook, Volume 1, Jul. 2005.

[AMD00a] Advanced Micro Devices, Inc. 3DNow! Technology Manual, 2000.

[AMD00b] Advanced Micro Devices, Inc. AMD Extensions to the 3DNow!
R© and MMX R© Instruction Sets, 2000.

[AMD02] Advanced Micro Devices, Inc. AMD Athlon R© Processor x86 Code
Optimization Guide, 2002.

[App97] Andrew W. Appel. Modern Compiler Implementation in ML: Ba-
sic Techniques. Cambridge University Press, 1997.

[App01] Andrew W. Appel. Foundational Proof-Carrying Code. In LICS
2001: Proceedings of the 16th Annual Symposium on Logic in
Computer Science, pages 247�256, Boston, MA, Jun 2001. IEEE
Computer Society Press.

[ARM04] ARM Limited. SafeNet EIP-25 Datasheet, 2004. Last modi�ed
date: 25 February 2004.
http://www.arm.com/miscPDFs/1753.pdf.

[AS93] Peter M. Athanas and Harvey F. Silverman. Processor Recon�gu-
ration Through Instruction-Set Metamorphosis. IEEE Computer,
26(3):11�18, 1993.

[ASU86] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers:
Principles, Techniques and Tools. Addison-Wesley, Reading, Mas-
sachusetts, 1986.

[ATB05] Georg Acher, Carsten Trinitis, and Rainer Buchty. CPU-
independent Assembler in an FPGA. In FPL'05: Proceedings of
the 15th International Conference on Field Programmable Logic
and Applications, pages 519�522, 2005.

[Bar93] Janet E. Barnes. A mathematical theory of synchronous commu-
nication. Dphil thesis, Oxford University Computing Laboratory,
1993.

[BD02] Francisco Barat and Rudy Lauwereins Geert Deconinck. Recon�g-
urable Instruction Set Processors from a Hardware/Software Per-
spective. IEEE Transactions on Software Engineering, 28(9):847�
862, 2002.

161

http://www.arm.com/miscPDFs/1753.pdf

162 Bibliography

[BFL+93] Juan C. Bicarregui, John S. Fitzgerald, Peter A. Lindsay, Richard
Moore, and Brian Ritchie. Proof in VDM: A Practitioner's Guide.
Formal Approaches to Computing and Information Technology
(FACIT). Springer-Verlag, Dec 1993.

[BG02a] Mihai Budiu and Seth Copen Goldstein. Compiling Application-
Speci�c Hardware. In Proceedings of the 12th International Con-
ference on Field Programmable Logic and Applications, Montpel-
lier (La Grande-Motte), France, September 2002.

[BG02b] Mihai Budiu and Seth Copen Goldstein. Pegasus: An E�cient
Intermediate Representation. Technical Report CMU-CS-02-107,
Carnegie Mellon University, May 2002.

[BG04] Jan Olaf Blech and Sabine Glesner. A Formal Correctness Proof
for Code Generation from SSA Form in Isabelle/HOL. In Proceed-
ings der 3. Arbeitstagung Programmiersprachen (ATPS) auf der
34. Jahrestagung der Gesellschaft für Informatik. Lecture Notes in
Informatics, September 2004.

[BGG+92] R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and
J. Van Tassel. Experience with Embedding Hardware Description
Languages in HOL. In V. Stavridou, T. F. Melham, and R. T.
Boute, editors, Proceedings of the IFIP TC10/WG 10.2 Interna-
tional Conference on Theorem Provers in Circuit Design: The-
ory, Practice and Experience, volume A-10 of IFIP Transactions,
pages 129�156, Nijmegen, The Netherlands, June 1992. North-
Holland/Elsevier.

[BGHT90] R. Boulton, M. Gordon, J. Herbert, and J. Van Tassel. The HOL
Veri�cation of ELLA Designs. Technical Report 199, University of
Cambridge Computer Laboratory, August 1990. Revised version
in Proceedings of the International Workshop on Formal Methods
in VLSI Design, Miami, Florida, January 1991.

[BGMW94] Howard Barringer, Graham Gough, Brian Monahan, and Alan
Williams. A Process Algebraic Semantics for Core ELLA. Tech-
nical Report UMCS-93-2-1, Manchester University, Nov 1994.

[BHX00] Jonathan P. Bowen, He Jifeng, and Xu Qiwen. An Animat-
able Operational Semantics of the Verilog Hardware Description
Language. In John A. McDermid Shaoying Liu and Michael G.
Hinchey, editors, ICFEM'00: Proceedings of the 3rd IEEE Interna-
tional Conference on Formal Engineering Methods, pages 199�207.
IEEE Computer Society Press, 2000.

[BJ78] Dines Bjørner and Cli� B. Jones, editors. The Vienna Develop-
ment Method: The Meta-Language, volume 61 of Lecture Notes
in Computer Science. Springer-Verlag, 1978.

[BJ82] Dines Bjørner and Cli� Jones. Formal Speci�cation and Software
Development. Prentice-Hall, 1982.

[BJC+03] Francisco Barat, Murali Jayapala, Tom Vander Aa Henk Corpo-
raal, Geert Deconinck, and Rudy Lauwereins. Low Power Coarse-
Grained Recon�gurable Instruction Set Processor. In Peter Y. K.

Bibliography 163

Cheung, George A. Constantinides, and José T. de Sousa, edi-
tors, FPL'03: Proceedings of the 13th International Conference
on Field Programmable Logic and Applications, volume 2778 of
Lecture Notes in Computer Science. Springer, Sept. 2003.

[Bjø82] Dines Bjørner. Rigorous Development of Interpreters and Com-
pilers, chapter 9, pages 271�320. In [BJ82], 1982.

[BL00] Francisco Barat and Rudy Lauwereins. Recon�gurable Instruction
Set Processors: A Survey. In 11th IEEE International Workshop
on Rapid System Prototyping (RSP 2000), page 168, June 2000.

[Ble04] Jan Olaf Blech. Eine formale Semantik für SSA Zwischensprachen
in Isabelle/HOL. Diplomarbeit. Universität Karlruhe (TH), Insti-
tut für Programmstrukturen und Datenorganisation, Mar 2004.

[BM95] Peter T. Breuer and Natividad Martínez Madrid. A Native Process
Algebra for VHDL. In Proceedings of European Design Automa-
tion Conference with EURO-VHDL '95 on EURO-DAC '95 with
EURO-VHDL '95, pages 420�426. IEEE Computer Society Press,
1995.

[BN99] Franz Baader and Tobias Nipkow. Term Rewriting and All That.
Cambridge University Press, Aug 1999.

[Bou98] Richard Boulton. A Semantics for a Simple Netlist Language.
Technical report, February 1998.

[Bow99] Jonathan P. Bowen. Animating the Semantics of VERILOG us-
ing Prolog. Technical Report 176, United Nations University,
UNU/IIST, P.O.Box 3058, Macau, China, 1999.

[BR96] Stephen Brown and Jonathan Rose. Architecture of FPGAs
and CPLDs: A Tutorial. IEEE Design and Test of Computers,
13(2):42�57, 1996.

[BSWG01] Mihai Budiu, Majd Sakr, Kip Walker, and Seth C. Goldstein.
BitValue Inference: Detecting and Exploiting Narrow Bitwidth
Computations. Lecture Notes in Computer Science, 1900:969�??,
2001.

[BTV96] Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region
inference to von Neumann machines via region representation in-
ference. In POPL '96: Proceedings of the 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
pages 171�183, New York, NY, USA, 1996. ACM Press.

[CCG+02] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani,
and Armando Tacchella. NuSMV 2: An Open-Source Tool for
Symbolic Model Checking. In CAV'02: Proceeding of the 14th
International Conference on Computer-Aided Veri�cation, 2002.

[CH00] K. Compton and S. Hauck. Recon�gurable Computing: A Survey
of Systems and Software, 2000.

[Chu40] Alonzo Church. A Formulation of the Simple Theory of Types.
Journal of Symbolic Logic, 5:56�68, 1940.

164 Bibliography

[CK94] Bob Cmelik and David Keppel. Shade: A Fast Instruction-Set
Simulator for Execution Pro�ling. SIGMETRICS Perform. Eval.
Rev., 22(1):128�137, May 1994.

[Con58] Melvin E. Conway. Proposal for an UNCOL. Communications of
the ACM, 1(10):5�8, 1958.

[Cop94] Max Copperman. Debugging Optimized Code Without Being
Misled. ACM Transactions on Programming Language Systems,
16(3):387�427, 1994.

[Cra03] Karl Crary. Toward a foundational typed assembly language. In
Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 198�212. ACM Press,
2003.

[CSC+99] Lori Carter, Beth Simon, Brad Calder, Larry Carter, and Jeanne
Ferrante. Predicated Static Single Assignment. In IEEE PACT,
pages 245�255, 1999.

[DeH94] André DeHon. DPGA-coupled microprocessors: Commodity ICs
for the early 21st century. In Duncan A. Buell and Kenneth L.
Pocek, editors, FCCM'94: Proceedings of the 2nd IEEEWorkshop
on FPGAs for Custom Computing Machines, pages 31�39, Apr.
1994.

[DFH+91] G. Dowek, A. Felty, H. Herbelin, G.P. Huet, C. Murthy, C. Par-
ent, C. Paulin-Mohring, and B. Werner. The Coq Proof Assistant
User's Guide Version 5.6. Rapport Technique 134. Technical re-
port, INRIA, Dec 1991.

[DN97] Al Davis and Steven M. Nowick. An Introduction to Asynchronous
Circuit Design. Technical Report UUCS-97-013, University of
Utah, Sept 1997.

[EB02] Doug Edwards and Andrew Bardsley. Balsa: An Asynchronous
Hardware Synthesis Language. The Computer Journal, 45(1):12�
18, 2002.

[ECF+97] Carl Ebeling, Darren C. Cronquist, Paul Franklin, Jason Secosky,
and Stefan G. Berg. Mapping Applications to the RaPiD Con-
�gurable Architecture. In Kenneth L. Pocek and Je�rey Arnold,
editors, IEEE Symposium on FPGAs for Custom Computing Ma-
chines, pages 106�115, Los Alamitos, CA, 1997. IEEE Computer
Society Press.

[Eis97] Marc Eisenstadt. My Hairiest Bug War Stories. Commun. ACM,
40(4):30�37, 1997.

[Eng96] Dawson R. Engler. VCODE: a retargetable, extensible, very fast
dynamic code generation system. In PLDI '96: Proceedings of
the ACM SIGPLAN 1996 conference on Programming language
design and implementation, pages 160�170. ACM Press, 1996.

[FDG+93] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V. Woods.
A Micropipelined ARM. In T. Yanagawa and P. A. Ivey, editors,
Proceedings of VLSI 93, pages 5.4.1�5.4.10, 1993.

Bibliography 165

[FGL01] Jan Frigo, Maya Gokhale, and Dominique Lavenier. Evaluation
of the Streams-C C-to-FPGA Compiler: An Applications Perspec-
tive. In FPGA '01: Proceedings of the 2001 ACM/SIGDA ninth in-
ternational symposium on Field programmable gate arrays, pages
134�140, New York, NY, USA, 2001. ACM Press.

[Fox01a] Anthony C.J. Fox. A HOL speci�cation of the ARM instruction
set architecture. Technical Report 545, University of Cambridge
Computer Laboratory, June 2001.

[Fox01b] Anthony C.J. Fox. An algebraic framework for modelling and
verifying microprocessors using HOL. Technical Report 512, Uni-
versity of Cambridge Computer Laboratory, April 2001.

[Fox02] Anthony C.J. Fox. Formal veri�cation of the ARM6 micro-
architecture. Technical Report 548, University of Cambridge Com-
puter Laboratory, November 2002.

[Fur00] Steve Furber. ARM System on Chip Architecture. Addison-
Wesley, second edition, 2000.

[GIOS05] Mike Gordon, Juliano Iyonda, Scott Owens, and Konrad Slind. A
Proof-Producing Hardware Compiler for a Subset of Higher Order
Logic. May 2005.

[Gle04] Sabine Glesner. An ASM Semantics for SSA Intermediate Repre-
sentation. In Proceedings of the 11th International Workshop on
Abstract State Machines, volume 3052 of Lecture Notes in Com-
puter Science. Springer, 2004.

[GNH01] Paul Graham, Brent Nelson, and Brad Hutchings. Instrumenting
Bitstreams for Debugging FPGA Circuits. In FCCM'01: The 9th
Annual IEEE Symposium on Field-Programmable Custom Com-
puting Machines, pages 41�50, 2001.

[Gor85] Michael J.C. Gordon. HOL: A Machine Oriented Formulation of
Higher Order Logic. Technical Report UCAM-CL-TR-68, Cam-
bridge University, Jul 1985. Revised version (Jan 2001).

[Gor86] Mike Gordon. Why Higher-Order Logic is a Good Formalism for
Specifying and Verifying Hardware. In George Milne and P. A.
Subrahmanyam, editors, Formal Aspects of VLSI Design, pages
153�178. Elsevier Science, 1986.

[Gor88] Michael J. C. Gordon. HOL: A Proof Generating System for
Higher-Order Logic, pages 73�128. Kluwer Academic Publishers,
1988.

[Gor95] Mike Gordon. The Semantic Challenge of Verilog HDL. In
LICS'95: Proceedings of the 10th Annual IEEE Symposium on
Logics in Computer Science, pages 136�145, Jun 1995.

[Gor00] Michael J.C. Gordon. From LCF to HOL: A Short History. In
Gordon Plotkin, Colin P. Stirling, and Mads Tofte, editors, Proof,
Language, and Interaction. MIT Press, 2000.

[Grä01] Erich Grädel. Why are modal logics so robustly decidable?, pages
393�408. World Scienti�c, 2001.

166 Bibliography

[GS98] Maya B. Gokhale and Janice M. Stone. NAPA C: compiling for
a hybrid RISC/FPGA architecture. In FCCM'98: Proceedings
of the 6th IEEE Symposium on FPGAs for Custom Computing
Machines, pages 126�135, Apr. 1998.

[GSAK00] Maya B. Gokhale, Janice M. Stone, Je� Arnold, and Mirek Kali-
nowski. Stream-Oriented FPGA Computing in the Streams-C
High Level Language. In FCCM '00: Proceedings of the 2000
IEEE Symposium on Field-Programmable Custom Computing
Machines, page 49, Washington, DC, USA, 2000. IEEE Computer
Society.

[GT96] Winfried K. Grassman and Jean-Paul Tremblay. Logic and Dis-
crete Mathematics: A Computer Science Perspective. Prentice
Hall, 1996.

[Har01] Reiner Hartenstein. Coarse Grain Recon�gurable Architectures.
In ASP-DAC'01: Proceedings of the 6th Asia and South Paci�c
Design Automation Conference, pages 564�570, 2001.

[Hau98] Scott Hauck. The Roles of FPGAs in Reprogrammable Systems.
Proceedings of the IEEE, 86(4):615�638, Apr 1998.

[Hav93] Paul Havlak. Construction of Thinned Gated Single-Assignment
Form. In 1993 Workshop on Languages and Compilers for Parallel
Computing, pages 477�499, Portland, Ore., 1993. Springer Verlag.

[HD86] F. K. Hanna and N. Daeche. Speci�cation and Veri�cation using
Higher-Order Logic: A Case Study. In George Milne and P. A.
Subrahmanyam, editors, Formal Aspects of VLSI Design, pages
153�178. Elsevier Science, 1986.

[Hen01] Greg Henry. Flexible High-Performance Matrix Multiply via a
Self-Modifying Runtime Code. Technical Report CS-TR-01-46,
The University of Texas at Austin, Department of Computer Sci-
ences, Dec 2001.

[HF95] David R. Hanson and Christopher W. Fraser. A Retargetable C
Compiler: Design and Implementation. Addison-Wesley, 1 edition,
1995.

[HG88] C. A. R. Hoare and M. J. C. Gordon. Partial Correctness of C-
MOS Switching Circuits: An Exercise in Applied Logic. In Yuri
Gurevich, editor, LICS'98: Proceedings of the Third Annual IEEE
Symposium on Logic in Computer Science, pages 28�36. IEEE
Computer Society Press, July 1988.

[HH05] Adrian Hilton and Jon G. Hall. Developing critical systems with
PLD components. In FMICS '05: Proceedings of the 10th in-
ternational workshop on Formal Methods for Industrial Critical
Systems, pages 72�79. ACM Press, 2005.

[Hor75] James J. Horning. Yes! high level languages should be used to
write systems software. In ACM 75: Proceedings of the 1975
annual conference, pages 206�208, New York, NY, USA, 1975.
ACM Press.

Bibliography 167

[How06] Denis Howe. Free Online Dictionary of Computing.
http://foldoc.doc.ic.ac.uk/, 2006. De�nition of accelerator.

[HP02] John L. Hennessy and David A. Patterson. Computer Architec-
ture: A Quantitative Approach. Computer Architecture and De-
sign. Morgan Kaufmann, 3 edition, 2002.

[HT90] N. A. Harman and J. V. Tucker. The Formal Speci�cation of a
Digital Correlator. In K. McEvoy and J. V. Tucker, editors, The-
oretical Foudnations of VLSI Design, Cambridge Tracts in Theo-
retical Computing Science, pages 161�262. Cambridge University
Press, 1990.

[Hut93] Graham Hutton. The Ruby Interpreter. Research Report 72,
Chalmers University of Technology, May 1993.

[HW97] John R. Hauser and John Wawrzynek. Garp: A MIPS Processor
with a Recon�gurable Coprocessor. In Kenneth L. Pocek and
Je�rey Arnold, editors, IEEE Symposium on FPGAs for Custom
Computing Machines, pages 12�21, Los Alamitos, CA, 1997. IEEE
Computer Society Press.

[IEE01] Institute of Electrical and Electronic Engineers, IEEE Press. IEEE
Standard Verilog Hardware Description Language (1364-2001),
2001.

[IEE02] Institute of Electrical and Electronic Engineers, IEEE Press. IEEE
Standard VHDL Language Reference Manual (1076-2002), 2002.

[IEE04a] Institute of Electrical and Electronic Engineers, IEEE Press. IEEE
Standard for Verilog Register Transfer Level (RTL) Synthesis:
(1364.1-2002), 2004.

[IEE04b] Institute of Electrical and Electronic Engineers, IEEE Press. IEEE
Standard for VHDL Register Transfer Level (RTL) Synthesis:
(1076.6-2004), 2004. Revision of IEEE Std 1076.6-1999.

[Int05] Intel Corporation. IA-32 Intel R©Architecture Software Developer's
Manual. Volume 1: Basic Architecture. P.O. Box 5937, Denver,
CO 80217-9808, September 2005.
ftp://download.intel.com/design/Pentium4/manuals/25366517.pdf.

[Jon69] C.B. Jones. A Proof of the Correctness of Some Optimizing Tech-
niques. Technical report, 1969.

[Jon76] C.B. Jones. Formal De�nition in Compiler Development. Technical
Report 25.145, IBM Laboratory, Vienna, February 1976.

[Jon90a] C.B. Jones. A Small Language De�nition, chapter 9, pages 235�
256. Prentice Hall International, 1990.

[Jon90b] C.B. Jones. Systematic Software Development in VDM. Prentice
Hall, 1990.

[Jon90c] Geraint Jones. Designing Circuits by Calculation. Technical Re-
port TR-10-90, Oxford University, Apr 1990.

[Jon03] C.B. Jones. Operational Semantics: Concepts and their Expres-
sion. Information Processing Letters, 88:27�32, 2003.

http://foldoc.doc.ic.ac.uk/
ftp://download.intel.com/design/Pentium4/manuals/25366517.pdf

168 Bibliography

[JS90a] Geraint Jones and Mary Sheeran. Circuit design in Ruby. In
J. Staunstrup, editor, Formal methods for VLSI design, chapter 1.
Elsevier, 1990.

[JS90b] Geraint Jones and Mary Sheeran. Relations and Re�nement in
Circuit Design. Technical Report PRG-TR-13-90, Oxford Univer-
sity, 1990.

[JSW99] Adrian Johnstone, Elizabeth Scott, and Tim Womack. Reverse
Compilation of Digital Signal Processor Assembler Sources to
ANSI-C. In ICSM'99: Proceedings of the 15th IEEE International
Conference on Software Maintenance, page 316, 1999.

[KB95a] Carlos Delgado Kloos and Peter T. Breuer, editors. Formal Seman-
tics for VHDL. VLSI, Computer Architecture and Digital Signal
Processing. Kluwer Academic Publishers, 1995.

[KB95b] Carlos Delgado Kloos and Peter T. Breuer. Introduction, chap-
ter 0, pages 1�8. In VLSI, Computer Architecture and Digital
Signal Processing [KB95a], 1995.

[KN04] Gerwin Klein and Tobias Nipkow. A Machine-Checked Model for
a Java-Like Language, Virtual Machine and Compiler. Technical
report, National ICT Australia, Sydney, Mar 2004.

[Lat05] Lattice Semiconductor Corporation, 5555 N.E. Moore Court,
Hillsboro, Oregon 97124-6421. LatticeXP Family Handbook, Sept.
2005.

[LEM04] Kelvin T. Leung, Milos Ercegovac, and Richard R. Muntz. Ex-
ploiting Recon�gurable FPGA for Parallel Query Processing in
Computation Intensive Data Mining Applications. In ICDE'04:
20th International Conference on Data Engineering, Mar. 2004.

[LM98] Wayne Luk and Steve McKeever. Pebble: A language for parame-
terized and recon�gurable hardware design. In Reiner W. Harten-
stein and Andres Keevallik, editors, Lecture Notes in Computer
Science 1482. Field-Programmable Logic: From FPGAs to Com-
puting Paradigm. FPL'98: Proceedings of the 8th International
Workshop on Field-Programmable Logic and Applications, pages
9�18. Springer-Verlag, 1998.

[LP92] Zhaohui Luo and Robert Pollack. LEGO Proof Development Sys-
tem: User's Manual. Technical Report ECS-LFCS-92-211, Edin-
burgh University, 1992.

[LTS99] Ronald Laufer, R. Reed Taylor, and Herman Schmit. PCI-
PipeRench and the SwordAPI: A System for Stream-based Re-
con�gurable Computing. In FCCM'99: Proceedings of the 7th
Annual IEEE Symposium on Field-Programmable Custom Com-
puting Machines, pages 200�208, 1999.

[MB03] Jonas Maebe and Koen De Bosschere. Instrumenting Self-
modifying Code. In AADEBUG'03: Proceedings of the Fifth In-
ternational Workshop on Automated Debugging, Sep 2003.

[McC63a] John McCarthy. A Basis for a Mathematical Theory of Com-
putation. In P. Bra�ort and D. Hirschberg, editors, Computer

Bibliography 169

Programming and Formal Systems, pages 33�70. North-Holland,
Amsterdam, 1963.

[McC63b] John McCarthy. Towards a Mathematical Science of Computa-
tion. In Proceedings of IFIP Congress 1962: Munich, Germany,
pages 21�28. North-Holland, 1963.

[McC66] J. McCarthy. A formal description of a subset of ALGOL. In
T.B. Steel, editor, Formal Language Description Languages for
Computer Programming, pages 1�12, Amsterdam, 1966. North-
Holland. Proceedings of the IFIP Working Conference, 1964.

[Mel93] Tom F. Melham. Higher Order Logic and Hardware Veri�cation.
Cambridge Tracts in Theoretical Computing Science. Cambridge
University Press, 1993.

[Mil78] Robin Milner. A Theory of Type Polymorphism in Programming.
Journal of Computer and System Sciences, 17:348�375, 1978.

[Mil85] George J. Milne. CIRCAL and the Representation of Communica-
tion, Concurrency, and Time. ACM Transactions on Programming
Language Systems, 7(2):270�298, 1985.

[Mor05] Kevin Morris. SRC Code. FPGA and Structured ASIC Journal,
2005. http://www.fpgajournal.com/.

[Muc97] Steven S. Muchnick. Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann, 1997.

[Nec97] George C. Necula. Proof-Carrying Code. In POPL 1997: Proceed-
ings of the 24th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 106�119, Paris, France,
jan 1997.

[Nip98] Tobias Nipkow. Winskel is (almost) Right: Towards a Mechanized
Semantics Textbook. Formal Aspects of Computing, 10:171�186,
1998.

[Nip03] Tobias Nipkow. Jinja: Towards a Comprehensive Formal Seman-
tics for a Java-like Language. In Proceedings of the Marktobder-
dorf Summer School 2003. IOS Press, 2003. To appear.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL � A Proof Assistant for Higher-Order Logic, volume
2283 of LNCS. Springer, 2002.

[NPW05] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle's Logics: HOL, 2005.

[OBM90] Karl J. Ottenstein, Robert A. Ballance, and Arthur B. Mac-
Cabe. The program dependence web: a representation supporting
control-, data-, and demand-driven interpretation of imperative
languages. In Proceedings of the ACM SIGPLAN 1990 confer-
ence on Programming language design and implementation, pages
257�271. ACM Press, 1990.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Veri-
�cation System. In Deepak Kapur, editor, CADE'92: Proceedings
of the 11th International Conference on Automated Deduction,
volume 607 of Lecture Notes in Arti�cial Intelligence, pages 748�
752, Saratoga, NY, June 1992. Springer-Verlag.

http://www.fpgajournal.com/

170 Bibliography

[Pau87] Lawrence C. Paulson. Logic and Computation: Interactive proof
with Cambridge LCF. Cambridge University Press, 1987.

[Pau90] Lawrence C. Paulson. A Formulation of the Simple Theory of
Types (for Isabelle). In P. Martin-Löf and G. Mints, editors,
COLOG'88: International Conference on Computer Logic, LNCS
417, pages 246�274. Springer, 1990.

[Pau04] Lawrence C. Paulson. Introduction to Isabelle, Mar 2004. With
Contributions by Tobias Nipkow and Markus Wenzel.

[Pau05] Lawrence C. Paulson. The Isabelle Reference Manual, 2005. With
Contributions by Tobias Nipkow and Markus Wenzel.

[PBJ+91] K. Pingali, M. Beck, R. Johnson, M. Moudgill, and P. Stodghill.
Dependence Flow Graphs: an Algebraic Approach to Program De-
pendencies. In A. Nicolau, D. Gelernter, T. Gross, and D. Padua,
editors, Advances in Languages and Compilers for Parallel Pro-
cessing, pages 445�467. MIT Press, Cambridge, MA, 1991.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT
Press, 2002.

[PL05] Oliver Pell and Wayne Luk. Quartz: A Framework for Correct and
E�cient Recon�gurable Design. In RECONFIG'05: Proceedings
of the 2005 International Conference on Recon�gurable Comput-
ing and FPGAs, 2005.

[Plo81] Gordon D. Plotkin. A Structural Approach to Operational Seman-
tics. Technical Report DAIMI FN-19, Aarhus University, 1981.

[RC03] Andrew Royal and Peter Y. K. Cheung. Globally Asynchronous
Locally Synchronous FPGA Architectures. In Peter Y. K. Cheung,
George A. Constantinides, and José T. de Sousa, editors, FPL'03:
Field Programmable Logic and Application, volume 2778 of Lec-
ture Notes in Computer Science, pages 355�364. Springer, 2003.

[RS94] R. Razdan and M. D. Smith. A High-Performance Microarchitec-
ture with Hardware-Programmable Functional Units. In Proceed-
ings of the 27th Annual International Symposium on Microarchi-
tecture, pages 172�180, November 1994.

[Rus94] David M. Russino�. Speci�cation and veri�cation of gate�level
VHDL models of synchronous and asynchronous circuits. In E.
Börger, editor, Speici�cation and Validation Methods. Oxford Uni-
versity Press, Oxford, 1994.

[RW03] Nicole Rauch and Burkhart Wol�. Formalizing Java's Two's-
Complement Integral Type in Isabelle/HOL. In Thomas Arts
and Wan Fokkink, editors, FMICS'03: Proceedings of the 8th In-
ternational Workshop on Formal Methods for Industrial Critical
Systems, volume 80 of Electronic Notes in Theoretical Computer
Science (ENTCS), pages 40�56, Røros, Norway, June 2003. Else-
vier.

[RWZ88] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value
numbers and redundant computations. In POPL'88: Proceedings
of the 15th ACM SIGPLAN-SIGACT Symposium on Principles

Bibliography 171

of Programming Languages, pages 12�27, New York, NY, USA,
1988. ACM Press.

[SA01] Kedar N. Swadi and Andrew W. Appel. Typed Machine Language
and its Semantics, 2001.

[Sch03] Robert Schiele. Building and Using a Cross Development Tool
Chain. In Proceedings of the GCC Developers Summit, pages
213�222, May 2003.

[Sco70] Dana S. Scott. Outline of a Mathematical Theory of Computation.
Technical Report PRG-2, Oxford University, Nov 1970.

[Ska05] Supplemental Isabelle/HOL Library, Oct 2005. Word Theory by
Sebastian Skalberg. See http://isabelle.in.tum.de/library/

HOL/Library/document.pdf.

[Smu61] Raymond M. Smullyan. Theory of Formal Systems. Princeton
University Press, 1961.

[SS71] Dana S. Scott and Christopher Strachey. Toward a Mathematical
Semantics for Computer Languages. Technical Report PRG-6,
Oxford University, Aug 1971.

[ST99] Donald Sannella and Andrzei Tarlecki. Algebraic Methods for
Speci�cation and Formal Development of Programs. ACM Com-
puting Surveys (CSUR), 31(3es):10, 1999.

[Sta02] Richard M. Stallman. GNU Compiler Collection Internals. Free
Software Foundation, Inc., 2002. For GCC 3.2. First released in
1988.

[Ste95] Bjarne Steensgaard. Sparse functional stores for imperative pro-
grams. In IR'95: ACM SIGPLANWorkshop on Intermediate Rep-
resentations, pages 62�70, 1995.

[Sto77] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Ap-
proach to Programming Languages. MIT Press, 1977.

[Str66] Christopher Strachey. Towards a Formal Semantics. In T.B. Steel,
editor, Formal Language Description Languages For Computer
Programming, pages 197�220. North-Holland, Amsterdam, 1966.

[Sut89] Ivan E. Sutherland. Micropipelines. Communications of the ACM,
32(6):720�738, 1989.

[SX98] Gerardo Schneider and Qiwen Xu. Towards a Formal Semantics
of Verilog Using Duration Calculus. Lecture Notes in Computer
Science, 1486:282�??, 1998.

[Var97] Moshe Y. Vardi. Why is modal logic so robustly decidable? In
Descriptive Complexity and Finite Models: Proceedings of a DI-
MACS Workshop, number 31 in DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, pages 149�184. Amer-
ican Mathematical Society, Jan 1997.

[Vee86] Arthur H. Veen. Data�ow machine architecture. ACM Computing
Surveys (CSUR), 18(4):365�396, 1986.

[vT95] John P. van Tassel. An Operational Semantics for a Subset of
VHDL, chapter 3, pages 71�106. In Kloos and Breuer [KB95a],
1995.

http://isabelle.in.tum.de/library/HOL/Library/document.pdf
http://isabelle.in.tum.de/library/HOL/Library/document.pdf

172 Bibliography

[WAL+93] M. Wazlowski, L. Agarwal, T. Lee, A. Smith, E. Lam, P. Athanas,
H. Silverman, and S. Ghosh. PRISM-II Compiler and Architec-
ture. In Duncan A. Buell and Kenneth L. Pocek, editors, IEEE
Workshop on FPGAs for Custom Computing Machines, pages 9�
16, Los Alamitos, CA, 1993. IEEE Computer Society Press.

[WC96] R. Wittig and P. Chow. OneChip: An FPGA Processor with
Recon�gurable Logic. In Kenneth L. Pocek and Je�rey Arnold,
editors, IEEE Symposium on FPGAs for Custom Computing Ma-
chines, pages 126�135, Los Alamitos, CA, 1996. IEEE Computer
Society Press.

[WCES94] Daniel Weise, Roger F. Crew, Michael Ernst, and Bjarne Steens-
gaard. Value Dependence Graphs: Representation Without Tax-
ation. In Proceedings of the 21st ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 297�310.
ACM Press, 1994.

[WH95] M. J. Wirthlin and B. L. Hutchings. DISC: the Dynamic Instruc-
tion Set Computer. In John Schewel, editor, Field Programmable
Gate Arrays (FPGAs) for Fast Board Development and Recon�g-
urable Computing, Proc. SPIE 2607, pages 92�103, Bellingham,
WA, 1995. SPIE � The International Society for Optical Engineer-
ing.

[WHG94] Michael J. Wirthlin, Brad L. Hutchings, and Kent L. Gilson. The
nano processor: A low resource recon�gurable processor. In Dun-
can A. Buell and Kenneth L. Pocek, editors, FCCM'94: Proceed-
ings of the 2nd IEEEWorkshop on FPGAs for Custom Computing
Machines, pages 23�30, 1994.

[Win93] Glynn Winskel. The Formal Semantics of Programming Lan-
guages. MIT Press, 1993.

[WN04] Martin Wildmoser and Tobias Nipkow. Certifying Machine Code
Safety: Shallow versus Deep Embedding. In Proc. 17th Int. Conf.
on Theorem Proving in Higher Order Logics (TPHOLs 2004).
Springer Verlag, 2004. 16 pages.

[WNKN04] Martin Wildmoser, Tobias Nipkow, Gerwin Klein, and Sebastian
Nanz. Prototyping Proof Carrying Code. In Proc. 3rd IFIP Int.
Conf. Theoretical Computer Science (TCS 2004), 2004.

[XH01] Hongwei Xi and Robert Harper. A Dependently Typed Assem-
bly Language. In Proceedings of the sixth ACM SIGPLAN inter-
national conference on Functional programming, pages 169�180.
ACM Press, 2001.

[Xil03] Xilinx, Inc. Using Embedded Multipliers in Spartan-3 FPGAs,
May 2003. Xilinx Data-sheet 467 (v1.1).

[Xil05a] Xilinx, Inc. Spartan-3 FPGA Family: Functional Description,
Aug. 2005. Xilinx Data-sheet 099-2.

[Xil05b] Xilinx, Inc. Spartan-3E FPGA Family: Functional Description,
Nov. 2005. Xilinx Data-sheet 312.

[Xil05c] Xilinx, Inc. Using the ISE Design Tools for Spartan-3 Generation
FPGAs, May 2005. Xilinx Application Note 473.

	Introduction
	Hardware Acceleration for High-Level Languages
	Function Units
	Reconfigurable Function Units
	Hardware/Software compilers for Function Units

	Correctness of Hardware/Software Compilers
	Correctness for Hardware Acceleration
	Correctness for Conventional Compilers
	Inadequacy of Current Techniques
	Specific Problems in Hardware/Software Compilation

	Thesis Outline
	Scope
	Hardware/Software Interface
	Methodology and Thesis Structure

	Background
	FPGA Structure and Design Flow
	FPGA structure
	FPGA Design Flow

	Compiler Intermediate Representations
	Hardware Acceleration using FPGAs
	Types of RFU

	Logics, Meta-logics, and Logical Frameworks
	Formal Systems
	Formal Semantics

	Machine Support for Reasoning
	The Isabelle System
	Isabelle/Pure
	Isabelle/HOL

	Representation of key concepts
	Memory representation
	Number representation

	Representation and Reasoning about Hardware
	Hardware Representations
	Modelling Hardware in HOL

	Intermediate Representation
	Requirements for a Hardware/Software IR
	Representation of Fine-Grained Parallelism
	Flexibility for Hardware/Software Compilation

	Analysis of Existing Representations
	Static Single Assignment Form
	SSA in Isabelle/HOL
	Pegasus

	Formal Definition of a Hardware/Software IR
	Abstract Syntax
	Semantics

	A Netlist-Level HDL
	Need for a Netlist Language
	Requirements from a Netlist language
	Abstract Syntax
	An abstract syntax for hardware
	An example design of a Full Adder

	Netlist Semantics
	Primitives
	Abstraction and Instantiation Semantics
	Composition Semantics
	Component Semantics

	Semantics of a Full Adder design
	Half Adder Semantics
	Full Adder Semantics

	Correctness of a Full Adder design
	Half Adder correctness
	Full Adder correctness

	Sequential and Iterated Logic
	Approaches to Modelling Sequential Logic
	Summary of Approaches to Modelling Time
	Constructive Approaches
	Declarative Approaches
	Selection of an Approach to Modelling Time

	Temporal Modelling of Sequential Logic
	Adding Synchronous Logic to the Netlist Language
	An Abstract Register

	Iterated Logic
	Adding Bit Vectors to the Netlist Language
	Bit Vector Semantics
	Adding a Row Construct to the Netlist Language
	Semantics of the Row Construct

	Compilation Correctness
	Data Flow Between Hyperblocks
	Assumptions
	Two Phase Bundled Data Convention
	Hyperblock Synchronisation

	Example Hyperblock
	Overview
	Intermediate Representation of the Hyperblock
	Netlist Implementation

	Correctness Criteria
	Auxiliary Functions
	Correctness Conditions

	Discussion and Conclusions
	Formulation of the IR
	Comparison of SSA Representations

	Co-design of an IR and Netlist Language
	Developing a Netlist Language

	Formulation of the Netlist Language
	Representation of Signal Bindings
	Theorem Proving Techniques
	Temporal Abstraction in Higher Order Logic
	Well-Formed Circuits

	Bibliography

