
Open Research Online
The Open University’s repository of research publications
and other research outputs

High integrity hardware-software codesign
Thesis
How to cite:

Hilton, Adrian J. (2004). High integrity hardware-software codesign. PhD thesis. The Open University.

For guidance on citations see FAQs.

c© 2004 Adrian J. Hilton

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

o M s t£ -v o " tQ >

High Integrity Hardware-Software Codesign

Adrian J. Hilton, M.A., C.Eng.

Thesis for the degree of Doctor of Philosophy

submitted to the Department of Computing

April 15, 2004

L) 2 o o 3

"bfrniE - A -u J /W 2 < b 1 3 r~)A > /

ProQuest Number: 27532742

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 27532742

Published by ProQuest LLO (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106- 1346

(oOSIT- f t /u 'iociS vvi M -2

7i f '-

A bstract

Programmable logic devices (PLDs) are increasing in complexity and speed, and

are being used as important components in safety-critical systems. Methods for devel

oping high-integrity software for these systems are well-known, but this is not true for

programmable logic.

We propose a process for developing a system incorporating software and PLDs,

suitable for safety critical systems of the highest levels of integrity. This process in

corporates the use of Synchronous Receptive Process Theory as a semantic basis for

specifying and proving properties of programs executing on PLDs, and extends the use

of SPARK Ada from a programming language for safety-critical systems software to

cover the interface between software and programmable logic.

We have validated this approach through the specification and development of a

substantial safety-critical system incorporating both software and programmable logic

components, and the development of tools to support this work.

This enables us to claim that the methods demonstrated are not only feasible but

also scale up to realistic system sizes, allowing development of such safety-critical

software-hardware systems to the levels required by current system safety standards.

0 0 <

D eclaration of originality

I declare that no part of this work has previously been submitted to a university or

other educational institution for a degree or other qualification.

I further declare that this thesis is my original work, except for clearly indicated sections

where the appropriate attributions and acknowledgements are given to work by other

authors.

Adrian Hilton

R elationship to published work

The following parts of this thesis have been published in refereed publications:

• Chapter 2, in particular Section 2.1 and Section 2.2, contains material that was

published in “White Box Software Development” [DMH03] and “Engineering Soft

ware Systems for Customer Acceptance” [HilOSb].

• Chapter 4 contains material originally published as the paper “On Applying Soft

ware Development Best Practice to FPGAs in Safety-Critical Systems” [HHOO]

and later extended and developed to the paper “Mandated Requirements for

Hardware/ Software combination in Safety-Critical Systems” [HH02a]. The latter

paper was also made generally available as an Open University research report

[HH03].

• Chapter 5 was published in condensed form as “Refining Specifications to Pro

grammable Logic” [HH02b].

In addition. Chapter 2 contains material published in the Open University research

report “FPGAs in Critical Hardware/Software Systems” [HTH03].

Posters based on the material presented in Chapter 2 have been exhibited at

the 2001 and 2003 ACM symposia on Field-Programmable Logic and Applications

[ACMOl, ACM03).

Acknowledgem ents

Thanks are due to the following individuals, companies and organisations without

whose assistance this thesis would not have been possible.

Financial support was provided by Praxis Critical Systems Ltd. and Teleca Ltd.

Dave Allen and John Cooper were primarily responsible for arranging this support.

Jon Hall, my primary supervisor at the Open University, provided endless encour

agement and helpful input. Darrel Ince used his considerable experience to provide a

useful second perspective on this work. Andy Vickers, my external supervisor, ensured

that I kept on track and pointed me to the questions which I should have been asking.

Peter Amey, Rod Chapman and Ian O’Neill from Praxis provided expertise on

SPARK Ada and the SPADE toolset. Janet Barnes, author of SRPT, gave good

advice on its use. David Jackson gave useful information on CSP and ELLA.

Donald Knuth, author of T ĵK, and Leslie Lamport, author of the macros,

ensured that typesetting this thesis was as painless as possible. Linus Torvalds and

Richard Stallman provided an operating system and supporting tools which made

writing a thesis a pleasurable experience. The GNAT project of Ada Core Technologies

made available a high-quality free Ada compiler.

The organising committees and reviewers of the FPL 2000, FPGA 2001, REFINE

2002, RHAS 2002, FPGA 2003 and SEHAS 2003 conferences and workshops provided

great forums for trying out my ideas and for finding out more about what was hap

pening in the worlds of programmable logic, refinement and high-assurance systems.

My family and friends have been incredibly patient and encouraging while I spent

endless nights holed up writing bits of thesis. Thank you. I promise not to write

another one any time soon.

Derek Goldrei got me thinking about the Open University to start with, was in

credibly helpful in guiding me through the application process, and was encouraging

as the PhD work developed. Without him, I wouldn’t have even got started on this.

Final, and most heart-felt, thanks and love to my wife Jie who by turns encouraged

and bullied me into getting this thesis written.

Contents

1 Introduction 19

1.1 The History of Highly Reliable S o ftw a re 19

1.1.1 Programming vs. software engineering 19

1.1.2 Historical fa ilu res.. 20

1.1.3 Where things go w rong... 21

1.2 Modern Software Development.. 22

1.3 Hardware / Software Codesign.. 23

1.3.1 The I/O p ro b lem ... 23

1.3.2 Why the interfacing is h a r d .. 24

1.4 Programmable Logic Devices... 24

1.5 Thesis Aim .. 25

1.6 Thesis Structure... . 26

2 Current R esearch 27

2.1 Safety-Critical System s.. 29

2.1.1 Examples of safety-critical s y s te m s .. 30

2.1.2 Assessing criticality.. 30

2.1.3 S tan d ard s ... 32

2.1.4 Safety-critical market sectors.. 32

2.1.5 Commentary ... 37

2.1.6 Standards summary.. 38

2.2 Application of Formal M e th o d s ... 40

2.2.1 The benefits of formal m e th o d s ... 40

2.2.2 Formal methods in u s e .. 41

2.2.3 Direction of formal methods u s e .. 45

5

2.2.4 Value of formal m e th o d s .. 45

2.2.5 The limitations of testing ... 47

2.2.6 Summary of formal m ethods.. 49

2.3 PLD s... 50

2.3.1 Introduction to FPG A s.. 51

2.3.2 D escrip tion .. 52

2.3.3 Variants of P L D s ... 53

2.3.4 Specification.. 56

2.3.5 Device fe a tu re s .. 56

2.3.6 Current dev ices.. 58

2.3.7 Performance.. 59

2.3.8 Other architectures.. 61

2.3.9 Development environm ent... 64

2.3.10 FPGA usage in s y s te m s .. 66

2.3.11 Semantics of PLDs ... 70

2.3.12 Issues of co-design .. 72

2.3.13 Summary of PLD technology .. 73

2.4 Programming PLDs ... 74

2.4.1 Netlist specifics.. 74

2.4.2 Process flow .. 74

2.4.3 High-level hardware design... 75

2.4.4 High-level language implementation.. 76

2.4.5 Low-level language im plem entation... 82

2.4.6 P eb b le .. 82

2.4.7 Testing PLD program s.. 84

2.4.8 Summary of programming PLDs ... 86

2.5 Safety-Critical P L D s .. 88

2.5.1 Research directions.. 88

2.5.2 Safety of P L D s .. 88

2.5.3 Safety standard: Defence Standard 00-54 90

2.5.4 Safety standard: RTCA DO-254 .. 91

2.5.5 PLD correctness... 92

6

2.5.6 V erification.. 94

2.5.7 Self-testing ... 95

2.5.8 Emulation of P L D s .. 95

2.5.9 Implementation to o ls ... 96

2.5.10 Key directions.. 97

2.6 Conclusions... . 99

2.6.1 Weaknesses of current research ... 99

2.6.2 Research n e e d s 100

3 Statem ent o f Problem 101

3.1 Current State of The A r t 101

3.2 Scope of A nalysis... . 102

3.3 Target Level of C ritic a lity .. . 103

3.4 Levels of R igour............................ 103

3.5 S ta tem en t.. 104

3.6 Target Aims105

3.7 Research Program m e..105

3.7.1 Identified deficiencies... 105

3.7.2 Maintaining existing benefits........................... 108

3.8 Components........................ 109

3.9 Process...109

3.10 Existing S tan d a rd s ...110

3.11 General Questions..114

3.11.1 Reliability..114

3.11.2 P rac tica lity ...114

3.12 Overall P ro c e ss ..115

3.13 Future Chapters..115

4 D evelopm ent technologies 119

4.1 Synchronous Receptive Process T h eo ry .. 120

4.1.1 Introduction...120

4.1.2 Deterministic S R P T ... 121

7

4.1.3 Example - AND Gate ...123

4.1.4 Composition................... 124

4.1.5 Denotational semantics... 124

4.1.6 Specification and proof ..127

4.1.7 Safety monitor example .. 130

4.1.8 Non-rigorous components ...138

4.1.9 Commentary 139

4.1.10 Alternatives to SRPT ... 140

4.1.11 Conclusions.. 141

4.2 P e b b le ... 143

4.2.1 Introduction..143

4.2.2 Target device issues..143

4.2.3 Language e lem en ts ..143

4.2.4 Exam ple................... 144

4.2.5 Formal descrip tion ... 146

4.2.6 Completeness of defin ition 148

4.2.7 SRPT representation.. 149

4.2.8 SRPT to Pebble............................... 152

4.2.9 Example: SRPT to P ebb le ... 155

4.2.10 S u m m a ry ..160

4.3 SPARK A d a ..162

4.3.1 Introduction to SPARK A d a ..162

4.3.2 Safety-critical system development p ro cess....................................... 163

4.3.3 General language p ro p erties .. 164

4.3.4 Static analysis and provability...170

4.3.5 Summary of S P A R K ...171

4.3.6 SPARK interfaces...172

4.3.7 Partial com pilation..173

4.3.8 P artitioning .. 175

4.3.9 Compilation - a first c u t .. 176

4.3.10 Compilation of SPARK co d e .. 177

4.3.11 R efinem ent.. 183

4.3.12 SPARK in te rp re te r...184

4.3.13 S u m m ary .. 185

5 Refining To SR P T 187

5.1 The Refinement Model ... 187

5.1.1 Overview of a refinement p ro c e s s .. 188

5.1.2 Suitability of m odel...191

5.2 Refinement for S R P T .. 192

5.2.1 Aims for refinement.................................. 192

5.2.2 Refinement f r a m e s ...192

5.2.3 Refinement re lation ... 196

5.2.4 R efinem ent............................... 197

5.2.5 Additional refinement rules ... 199

5.2.6 Feasibility.................................. 203

5.3 Case Study: Carry Look-ahead Adder 203

5.3.1 Specification... 204

5.3.2 Basic gates ... 204

5.3.3 Refinement ..205

5.3.4 Space and t i m e ... 210

5.3.5 Scalability...210

5.3.6 Proof means no te s t in g ? ..211

5.4 S u m m a ry ... 212

5.4.1 Alternative approaches...212

5.4.2 Targets ..213

6 A PLD Interpreter o f SPA RK 215

6.1 Interpreter O verview ...217

6.1.1 Architecture..217

6.1.2 Partitioning issues ... 218

6.2 CPU-PLD I/O .. 219

6.2.1 Software-bus M M IO .. 219

6.2.2 PLD buffering...221

9

6.2.3 PLD readout ..226

6.2.4 Writeback to b u s 227

6.3 Package I / O ...231

6.3.1 A rb itra tio n ...231

6.3.2 Inter-package ro u tin g ... 232

6.3.3 Package o u tp u t ...233

6.3.4 Package in p u t ..235

6.4 Package Structure... 235

6.4.1 Storage ... 235

6.4.2 Storage o p e ra tio n s .. 236

6.4.3 Program storage ... 238

6.4.4 Expression evaluation... 239

6.4.5 CPU instructions... 240

6.4.6 Instruction decoder : 244

6.4.7 CPU implementation . *..........................248

6.4.8 Opcode sum m ary... 249

6.5 The Program Model ... 250

6.5.1 T y p e s ... 250

6.5.2 S ta te .. 252

6.5.3 Expressions.. 252

6.5.4 Alternation ... 254

6.5.5 Ite ra tion ...254

6.5.6 Subprogram c a l l s .. 255

6.5.7 Order of ex ecu tio n ... 255

6.6 System Interface ... 256

6.7 Optim isations..257

6.8 Conclusions.. 257

6.8.1 Achievements...,.................258

6.8.2 Evaluation of SPARK ..258

6.8.3 Evaluation of S R P T 258

6.8.4 Satisfaction of target a im s .. 259

6.8.5 Follow-on ...260

10

7 Case Study 261

7.1 Target A im s...261

7.2 Carry Look-Ahead Adder ...262

7.2.1 Simulation environment ...262

7.2.2 Building b lo c k s .. 264

7.2.3 Adder b lo ck ...264

7.2.4 Testing..264

7.2.5 Simulation environment reliability... 266

7.2.6 Conclusion.. 267

7.3 Missile Guidance System - O verview ..268

7.3.1 Related w o r k ..268

7.3.2 System requirem ents... 268

7.3.3 S a fe ty .. 269

7.3.4 Implementation limits ..269

7.3.5 Implementation technologies........................ 270

7.4 System Components ... 271

7.4.1 System clock ... 271

7.4.2 1553 b u s ...271

7.4.3 Watchdog tim e r .. 272

7.4.4 Barometric sensor... 273

7.4.5 Airspeed indicator ... 273

7.4.6 Inertial navigation s y s te m ..274

7.4.7 Solid state compass 274

7.4.8 Fuel tank sensor.. 275

7.4.9 Proximity fuse... 275

7.4.10 Millimetre radar sensor..275

7.4.11 Staring infra-red sensor..276

7.4.12 F i n s ...276

7.4.13 M o to r ..277

7.4.14 Self-destruct...278

7.4.15 W arhead...279

7.5 D esign .. 279

11

7.5.1 Design decisions..280

7.5.2 Package structure .. 280

7.5.3 Code s t r u c tu r e 280

7.5.4 Design limitations...280

7.6 Im plem entation..282

7.6.1 Development ...282

7.6.2 Testing... 283

7.6.3 Conclusions.. 284

7.7 Introduction of A P L D ..285

7.7.1 Subsection identification.. 285

7.7.2 PLD interfacing.. 285

7.7.3 Transform ation..286

7.7.4 Results..287

7.8 Conclusion..288

7.8.1 Refined program s im u la tio n .. 288

7.8.2 SPARK program development.. 288

7.8.3 Targets ...289

7.8.4 Further research.. 291

8 Conclusions 293

8.1 Solving the Original Problem ... 293

8.1.1 PLDs in safety-critical systems ... 294

8.1.2 Rigorous PLD programming.. 294

8.1.3 Mapping SPARK to hardw are ... 295

8.1.4 The system development process ... 297

8.1.5 Reliability and practicability...298

8.2 Advancement of K now ledge...301

8.2.1 Current weaknesses.. 301

8.2.2 Originality..301

8.2.3 Advances m a d e .. 302

8.3 Self-Critique...303

8.3.1 O m issions..303

12

8.3.2 W eaknesses..304

8.3.3 How the state of the art would evolve without this research . . . 304

8.4 Future W ork.. . 306

8.4.1 Safety engineering with P L D s ...306

8.4.2 R efinem ent.. 306

8.4.3 SPARK to P L D s ... 307

8.4.4 Security applications...308

8.5 Concluding T h o u g h t........................ . 308

A C ollated R efinem ent R ules 333

B 1553 Bus Sim ulator 337

C Exam ple Test Scripts 349

D SPA RK R eport File for N av 357

E Original N av B ody 367

F F P G A N av B ody 373

13

14

List of Figures

2.1 Architecture of a generic F P G A 51

2.2 PLD development process flow.. . 75

3.1 Development p ro cess .. . 116

4.1 Combinational incrementer... 146

4.2 Pebble blocks tracking s t a t e .. 154

4.3 A simple stack.. . 157

4.4 Handshaking across b locks... . 180

5.1 SRPT frame structure 193

5.2 Carry look-ahead adder s tru c tu re 204

6.1 Interpreter architecture... 218

6.2 PLD input b u ffe r ...224

6.3 TAP process... . 230

6.4 MMIO writeback d e s ig n .. 230

6.5 Inter-package ro u tin g ...232

6.6 Package o u tp u t 234

6.7 Package RAM la y o u t...236

6.8 ROM and PC s to re ..239

6.9 Expression b locks.. . 240

6.10 First stage of CPU pipeline ...248

6.11 CPU core com ponent.. . 249

7.1 Missile system design ...281

15

16

List o f Tables

2.1 Table of SIL probabilities from lEC 61508 .. 31

2.2 Trade-offs for software and hardware im plem entation........................... 55

4.1 Example run for A N D .. 124

4.2 Example of a trace of the w atchdog.. 135

4.3 State changing p ro cess .. 154

5.1 Contrast of Morgan and SRPT refinement processes.................................. 191

6.1 Packet meaning encoding........................ 222

6.2 Memory-mapped variable representations...222

6.3 PC action en cod ings..................... 238

6.4 Word type encodings...241

6.5 CPU O pcodes.. 242

7.1 Adder size and delay p ro p erties .. 265

17

18

Chapter 1

Introduction

This chapter sets the scene for the topics discussed in the thesis. It outlines the recent

history of highly reliable software development, looks at the successes, failures and

needs of software engineers, and describes how this thesis tackles one particular section

of those needs.

1.1 The H istory of H ighly Reliable Software

Programming as we know it today was effectively invented in the early 1950s, when the

first generation of post-war computers was frustrating the first generation of experts

responsible for making the machines complete their assigned tasks. The discovery by

Grace Hopper of a moth embedded in the circuits of one malfunctioning behemoth

heralded future programmers’ frustration in trying to find errors in their programs

which had no less obscure causes.

1.1.1 Program m ing vs. software engineering

Programming is simply the act of producing data (a program) designed to be executed

by a computer. Software engineering is a wider ranging term. When considering the

incorporation of software engineers as members, the IEEE defined the term to mean:

. . . the application of a systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software; that is, the applica

tion of engineering to software. [Com90]

19

The systematic study of software engineering is believed to have started at the

NATO-funded conferences on the subject in 1968 and 1969 [Nor68, Nor69]. The pro

ceedings of these conferences show researchers and practitioners identifying many of

the problems which we still see today.

In the past three decades, Herculean efforts made by both academe and indus

try have led to techniques, tools and languages which permit development of complex

safety-critical software projects. The systems resulting from these projects are gen

erally as reliable as required by the user; while not perfect, they provide reasonable

functionality and reliability. There is a substantial monetary price to pay for this

reliability, but the reliability is generally delivered.

1.1.2 H istorical failures

There have, of course, been numerous failures of software engineering. Some of them

have been spectacular, such as the Ariane 5 flight control software numeric overflow

which resulted in a hundred-million-pound firework display over French Guyana[Lio96].

Others have been hardly noticed by the public, but nevertheless expensive. Repeated

efforts to develop a next-generation air traffic control system for the United States

have met with failure after expensive failure, and the current Standard Terminal Au

tomation Replacement System (STARS) has slipped by four years and incurred a 60%

cost over-run so far. In the meantime, old software is operating far past its intended

lifetime [Ins02].

The more serious failures involve human loss rather than financial loss. Remarkably,

there are relatively few fatalities directly attributable to software failure. One of the

earliest, and worst, of such accidents was the Therac 25 incident described in [Lev95].

A number of radiotherapy patients received massive radiation overexposure as a result

of a race condition within the Therac-25 radiotherapy machine software. Notably, the

fault was also present within an earlier model of machine, but a hardware interlock

there prevented its manifestation.

20

1.1.3 W here th ings go wrong

The most common point of project failure is, surprisingly, in the earliest phase: re

quirements gathering. The Standish CHAOS report of 1995 [Sta95] and the later

study by Taylor [TayOl] estimate that between 30% and 48% of IT projects fail due

to requirements-related problems, even though the stage at which the projects fail is

usually late in the development cycle.

A significant fraction of safety-critical software projects start to go adrift less for

technical reasons than for failures of process. The Ariane 5 explosion was traced back

to a numeric overflow in the flight-control software, written in Ada. This was the cue

for advocates of other languages and tools to leap in and say “if only you had been

using X you would have detected this possible overflow.” However, this misses the

point. The relevant section of the software was taken from the Ariane 4 programme.

It was not checked as it had been tested for Ariane 4, all known errors fixed, and had

established a reliable track record. Ariane 5 flew a faster and tighter flight profile than

Ariane 4, and so the numeric exception occurred where before the range of values was

within the defined type range.

Using the best techniques, tools and language in the world is worth very little if

your development process permits them to be circumvented, even if unintentionally. All

the assertions about reliability contained in this thesis (and, indeed, elsewhere) should

have a lengthy disclaimer attached, noting the need for a well-defined and reputable

development process to be used, and to be enforced rigorously.

Leveson has analysed a series of aerospace accidents using an event chains model[LevOl].

Her analysis showed that accidents involving large-scale engineered systems usually

have a complex series of causes, and blaming the accident on a perceived “proximal”

cause is often an over-simplification:

The causes of accidents are frequently, if not almost always, rooted in orga

nizational culture, management and structure. These factors are all critical

to the eventual safety of the engineered system. Oversimplifying the factors

involved in accidents limits our ability to prevent them.[WLL'^01]

It is important to remember this when we make claims about reducing accident

rates with purely technical fixes.

21

1.2 M odem Software D evelopm ent

Brooks [Bro95] wrote of the state of the software engineering art in 1975, and updated

the 20th anniversary edition of his book with a review of the progress that the software

engineering profession had made. Brooks’s original conjectures included:

1. that system development time does not scale in an inverse-linear relation to team

size, and indeed that adding more manpower to a late project makes it later (the

“mythical man-month”);

2. that there is no single development, in either technology or management tech

nique, which promises an order of magnitude improvement within a decade in

productivity, reliability or simplicity (“no silver bullet”);

3. that after building one system successfully, the design and development of a

follow-on system is prone to balloon out with pointless features and an elephantine

design (the “second system effect”); and

4. a small number of documents, in a sea of project documentation, become the crit

ical pivots around which every project’s management revolves (“the documentary

hypothesis”).

History appears to have borne out these conjectures, which have passed into every

day software engineering practice. Brooks’s forecast of “no silver bullet” in particular

has proven accurate; no single technique has produced a tenfold increase in produc

tivity or reliability. Instead, good practice and good tools have slowly increased our

confidence in building software that does increasingly complex tasks.

We assume that the system development process described in this thesis is planned

and carried out with an eye to these laws, and we focus on the task of producing

the system that the customer needs. We do not aim to reduce the time taken to

develop a safety-critical system. Instead, we aim to avoid all the extra development

time resulting from having to rework the finished system after the customer or safety

auditor has rejected it.

22

1.3 Hardware / Software Codesign

The bane of a software engineer’s life is when his code is required to interact with

actual physical hardware, that is, hardware external to the computer itself; “stepping

outside the sandbox”, as it is sometimes called. It is not for nothing that the writing

of device drivers for an operating system is regarded as something of a black art. Why

is this?

1.3.1 T he I /O problem

Taking the Universal Register Machine as the canonical computer, and ignoring for the

moment the unlimited memory space that it provides, we might well believe on first

inspection that the machine is useless. It has a list of memory “slots” , each of which

can hold an arbitrary natural number. It has an instruction counter, initially set to 1.

It operates on a numbered list of instructions, each of which is one of the following:

Z(M) Zero the value in memory slot M

S(M) Increment the value in memory slot M by 1

T (M ,N) Copy the value in slot M into slot N

J(M ,I ,J) If the value in slot M is zero, set the instruction counter to I; otherwise, set

it to J

For any of the first three instructions, once it is executed the machine will increment

the instruction counter by 1. In any case, the next step of the machine will be to read

and execute the instruction pointed to by the instruction counter. If this counter points

beyond the end of the instruction list given, the machine stops.

From a black box point of view, the machine does nothing - we have no inputs or

outputs defined. To give its actions meaning we must be able to inspect the memory

locations, control the starting of the machine and possibly also feed in new programs.

This must be accomplished outside the machine’s normal operations.

It is a similar situation with embedded systems. A well-established processor -

typically one of the ARM or PowerPC families - may be coupled via a bus and memory

23

controller to a bank of RAM, and a program executed in the normal way. However,

something must start program execution in some way after power-on, and the rest of

the system under control (e.g. a water heating system) must be able to feed data to

the processor and read control signals out of it.

Without heavy customisation of the processor, the simplest way is often memory-

mapped I/O. This technique uses the memory management unit of the system to

flag certain locations in the processor’s memory map as “special” ; the values in those

locations may either represent data read from external sensors, or be control values

read by and used to control external actuators.

1.3.2 W hy th e interfacing is hard

The problems posed by such an apparently simple arrangement are many and subtle.

The most obvious is a change in the way that we reason about program correctness. In

our normal programming model any control path which may write two values to a given

variable in succession, without reading the first value back, is immediately suspected

of being in error.

The second problem, more insiduous, is the lack of synchronisation between the

software and hardware worlds. Events external to the processor may occur at any

point, in any order. Inside the processor we can place bounds on the number of

computational steps between two events, but introducing dependencies on external

events complicates the problem of producing highly reliable software which is correct

with respect to a speciflcation.

These problems also occur in systems where there are multiple threads of control

with a shared address space. Programming languages have had to develop features

such as semaphores, monitors, protected objects and associated protocols to solve these

problems.

1.4 Program m able Logic D evices

Programmable logic devices (PLDs), as a compromise between a general-purpose CPU

and a single-function Application-Speciflc Integrated Circuit (ASIC), lie on the border

24

between software and hardware. To make a PLD program highly reliable, it must be

simple; however, PLDs (such as field-programmable gate arrays) are steadily growing

in size and complexity and so are being used for increasingly complicated tasks.

To date, programming PLDs has been done at a relatively low level with little

concern for verifiability or correctness. However, emerging standards for safety-critical

systems development such as UK Defence Standard 00-54[MoD99] and RTCA DO-

254[RTC00] have started to mandate formal analysis of PLD programs that are key to

system safety. Existing technologies do not support PLD programming at the higher

levels of integrity.

Many of the concepts in this thesis can apply equally well to ASICs since their

circuits are designed in much the same way as many PLD circuits. ASICs are also used

in safety-critical systems, and many safety problems are common to PLDs and ASICs.

However, the scope of this thesis is restricted to PLDs.

1.5 Thesis Aim

This thesis aims to describe a method for developing a set of functional and safety

requirements into a system incorporating PLDs and conventional software. At each

stage of development we aim to maintain correctness according to the requirements,

and facilitate verification of the final code. The development process must be able to

produce evidence that the system is fit for use at a higher level of safety integrity than

is currently possible.

In this work we incorporate existing technologies for development of software for

conventional safety-critical systems. We also use an existing synchronous process alge

bra as the basis for a formal description and refinement of a PLD program. We show

how part of a conventional software program in the SPARK Ada high-level language

can be efficiently compiled into programmable logic. The techniques are demonstrated

in a substantial case study development of a safety-critical system.

25

1.6 Thesis Structure

Chapter 2 is a survey of the current research in the area of programmable hardware,

and of relevant research in the areas of software and safety engineering. It looks both

at the development of formal techniques for reasoning about and producing programs

for programmable hardware, and at the state of the art in industrial safety-critical

software development.

Chapter 3 provides a statement of the problem which this thesis aims to address,

and gives criteria by which the reader may judge whether the problem has been solved.

Chapter 4 introduces the technologies used in the rest of the thesis to address the

problem. It describes Synchronous Receptive Process Theory (SRPT), the Pebble PLD

programming language, a generic PLD model, and the SPARK subset of Ada.

Chapter 5 builds on the existing algebra of SRPT to construct a rigorous specifi

cation and refinement system. This system allows refinement from an abstract timed

specification to provably correct implementation in Pebble. The chapter provides a

worked example of a carry look-ahead adder refinement.

Chapter 6 develops an SRPT description of an interpreter for SPARK Ada byte

code, showing how SRPT can be used to design a substantial PLD program and how

the known properties of a SPARK Ada program assist in its compilation into a PLD

program.

Chapter 7 describes a practical gate-level simulation of the adder in Chapter 5.

The chapter then draws together the techniques developed in the preceding chapters

to develop a substantial high-integrity guidance system for a missile using a design

which runs partly on a standard processor and partly in programmable hardware.

Chapter 8 summarises the topics discussed in the thesis, considers whether the

problem statements in Chapter 3 have been addressed, and points towards further

avenues of research which may follow from this work.

26

Chapter 2

Current Research

This chapter considers the use of programmable hardware in safety-critical systems.

We will:

• analyse current and emerging safety standards directly applicable to this field;

• describe the constraints placed on the design, production and testing of safety-

critical system software, and how these may apply to PLDs;

• look at current tools and techniques used in the production of such systems,

especially those related to formal methods and proof; and

• assess the effectiveness of these tools and techniques.

Since we want to use programmable logic devices (PLDs) in safety-critical systems,

we will:

• describe the state-of-the-art in PLD design and production;

• examine the systems which represent the range of use of programmable hardware

in industry;

• examine how PLDs are programmed in theory and practise; and

• critique the techniques and tools which claim to formalise the use of program

mable logic in systems.

27

Finally we bring together the areas of safety-critical systems and PLDs by examining

the challenges posed by the use of programmable hardware in a safety-critical system.

Our guiding aim is to identify the gaps in the current industrial practice and academic

theory, and to identify an approach that is able to cover these gaps.

Section 2.1 describes the practice in safety-critical systems development. Section 2.2

investigates current research in formal methods. Section 2.3 describes the range of

PLD architectures. Section 2.4 investigates how PLDs are programmed. Section 2.5

looks at how PLDs could be incorporated into safety-critical systems, and Section 2.6

summarises the key points of the research survey.

28

2.1 Safety-Critical System s

In [Lev95] pp 136-137, Leveson defines the term system to mean “a set of components

that act together as a whole to achieve some common goal, objective or end” and safety

as “freedom from accidents or losses”. The criticality of a system is defined by the

consequences of its failure (“inability of the system to perform its intended function”,

[Lev95] pp 172), a definition which may extend down to individual components of the

system. Combining these, we may draw the following working definition:

a safety-critical system is a collection of components acting together where

interruption of the normal function of one or more components may cause

injury or loss of life.

Such systems may be designed to fail safely in certain circumstances. A safe failure

mode is a component or system failure which does not compromise system safety. One

example might be a nuclear reactor control system where any interruption of power

or control to the subsystem holding the control rods will cause the rods to drop into

the core, effectively stopping the nuclear reaction. So the system is not keeping the

reactor running (its intended function) but it is keeping the reactor free from accidents

or losses (safety) .

An unsafe failure mode, by contrast, is one which increases the likelihood of accident

or loss. A fiy-by-wire system may not be able to fail safety, since any interruption of

its normal function will cause the pilot to lose control of the aircraft.

There are other terms associated with causes of failure. A defect is taken to be an

aspect of the design of a system which turns out to have undesired consequences; for

instance, a defect of the language syntax of C is that association of single statements

with conditions in a nested i f - e l s e block is counterintuitive.

An error is an aspect of the implementation of a system which is incorrect; for

instance, a subprogram implementation which may use one of its variables before that

variable has been initialised.

A fault is the result of an error or defect, manifesting in undesired system behaviour;

for instance, if an aircraft engine shut down (because of an error in the software) then

the unexpected shutdown would be a fault. Faults may be caused by multiple errors;

29

conversely, not all errors may cause faults.

2.1.1 Exam ples o f safety-critical system s

An example of a safety-critical system is an air traffic control system such as GDIS

[Hal96a]. There are many components in the system including operator displays, radar

and transponder devices, and communications links. It is safety-critical because if

the communications links fail wholly or partially then the operators may be unable

to communicate with aircraft and command course changes to avoid a collision; such

a collision would be an accident and may involve loss of life or property. Hence, the

system is safety-critical when used in an operational environment. If it were linked in

to a simulator then it would not be safety-critical because there would be no severe

consequences of its failure.

Other safety-critical systems may not be assessed as such, yet still cause substantial

destruction or death on failure due to a denial-of-service effect. An example of this

was the failure of the London Ambulance Service dispatching system which failed in

November 1992; the resulting events are described in [Tea93]. Although in this case

there was no link established by a coroner between the system failure and resulting

deaths due to delay in dispatching ambulances, there is a demonstrable mechanism

for deaths to result from a failure in normal operation (successful revival from cardiac

arrest is critically affected by the arrival of a defibrillator-equipped ambulance within

10 minutes) and so the system was safety-critical even if it was not so specified.

2.1.2 A ssessing criticality

Such systems may be graded according to their potential to cause death, serious injury

or large financial loss. The SIL convention used in the European functional safety

standard lEC 61508 [lECOO] specifies four Safety Integrity Levels (SILs), with SIL-4

systems having the greatest criticality and SIL-1 systems the least.

The SIL has two forms. For a low-demand mode of operation the SIL is calculated

based on the required probability of failure for the system or component to perform

its design function on demand. For high-demand or continuous operation, the SIL is

calculated by the required probability of a dangerous failure per hour. The probability

30

SIL Pfail (on-demand) ^fail(PGr-hour)

4 > 10-^ to < 10-^ > 10"® to < 10"®

3 > 10“ ̂ to < 10"^ > 10-^ to < 10-'^

2 > 10“ ̂ to < 10"^ > lO-"̂ to < 10-®

1 > 10“ ̂ to < 10“^ > 10-® to < 10-®

Table 2.1: Table of SIL probabilities from lEC 61508

ranges used are shown in Table 2.1.

Example: a nuclear power station’s reactor control rod system is expected to operate

for 30 years (263000 hours) with a probability of dangerous control rod failure during

the station’s lifetime of < 10“ .̂ The required maximum probability of failure per hour

is therefore p such that

(1 - p)263000 > (1 _ 1 0 “ ^)- 2 \ (2.1)

giving p = 3.8 X 10 a SIL-3 system. The calculated SIL may then be used to guide

the amount and form of analysis and testing required for the system.

Other standards use similar principles of measurement, though with different nota

tions. RTCA/EUROCAE DO-178B[RTC92], for instance, specifies levels of criticality

from E (not critical) through to A (high criticality). The different treatments of risk

in these and other standards were analysed by Pygott in [Pyg99].

An example of a UK commercial SIL-4 system is the Royal Navy’s Ship Helicopter

Operating Limits Information System [KHCP99] designed to assist landing of heli

copters on Royal Navy Type 23 frigates. Failure of this system could result in the

death of helicopter pilots and passengers, loss of a helicopter and damage to the ship.

This is unacceptable for normal operation, hence SIL-4 reliability is required to give

sufficient confidence that such an accident will not happen during the in-service life

time of the system. Since SHOLIS is a relatively low-demand system, this indicates

a required probability of failure to perform its function on demand between 10” ̂ and

i o - \

31

2.1.3 Standards

Makers and users of safety-critical systems in the UK have a legal mandate to ensure

that the risk of serious failure is as low as reasonably practicable (ALARP.) McGee-

Osborne and Hall considered this as far as it relates to the rail transport sector in

[MOH97]. The Health and Safety at Work Act 1974 (known as “HSWA” or “HA-

SAWA”) imposes general duties on employers to protect the health and safety of em

ployees and non-employees, using the key phrase “to the extent reasonably practicable”.

Thus any employer operating a safety-critical system owes a “duty of care” to those

who may reasonably be affected by the system. Failure in this respect may result in

any of the following:

• litigation by affected parties for damages caused;

• an enforcing order from the Health and Safety Executive requiring the removal

of the system from operation or immediate modifications to the system; or

• criminal prosecution of individuals for negligence leading to harm of others.

It is notable that successful prosecution for such negligence is rare.

Since many safety-critical systems may affect public safety, governmental and asso

ciated oversight agencies have drawn up standards documents for the development of

safety-critical systems. Some of the best-known standards documents are UK Defence

Standards 00-55 and 00-56 [MoD97, MoD96], RTCA/EUROCAE DO-178B [RTC92],

the CENELEC EN 50126, 50128, 50129 European rail standards [CEN99, CEN02b,

CEN02a] and the aforementioned European lEC Standard 61508 [lECOO].

2.1.4 Safety-critical m arket sectors

We split the safety-critical systems market into five sectors. For each sector we describe

one or more mainstream standards or guidance documents used in the United Kingdom

or internationally, then summarise the main principles that have been established.

Each of these sectors has a regulatory regime which has driven the development

and adoption of standards. Other market sectors such as the automotive and medical

32

equipment industries have regulatory regimes but do not have specific standards for

assessing software and programmable hardware.

In the UK medical equipment industry, for instance, the Medicines and Healthcase

products Regulatory Agency (MHRA) applies UK and European law, principally the

EC Medical Devices directives. These directives will require manufacturers to demon

strate that critical medical devices are appropriately safe, but does not specify a process

or any specific criteria against which the equipment’s software or electronic hardware

must be assessed.

Within the automotive industry, the increasing problem with faulty software has

driven the development of the MISRA-C subset for critical automotive software spec

ified in [MIR98]. However adoption of this subset is not mandatory, and indeed some

of the MISRA-C rules are difficult to enforce.

Rail

The Railtrack “Yellow Book” [RaiOO] provides guidance on the safety management of

changes to the UK rail network. It is detailed but not prescriptive; it allows projects to

tailor its recommended approach, although the Railtrack Safety Approval Body must

approve the approach taken.

The CENELEC standards are derived from lEC 61508. Standard EN 50128[CEN02b]

relates to the safety-related software in railway systems, and EN 50129[CEN02a] to

safety-related electronic control and protection equipment. Since they are based on

lEC 61508, the comments below on this encompassing standard apply.

N uclear power generation

“Software for Computers in the Safety of Nuclear Power Stations” , lEC Standard 880

[IEC86] is intended for safety-related software in computers forming part of nuclear

reactor safety systems. It lays down in detail a recommended development process,

guidance on choice of language and tools, and a suggested maintenance process. The

report was written in 1986, and the language and concepts used display this, but it is

not yet regarded as obsolete. The very prescriptive nature of this old standard should

be contrasted with the more modern standards described in this section.

33

The Four Party Regulatory Consensus Report on the Safety Case for Computer-

Based Systems in Nuclear Power Plants [Hea97] is a set of agreed principles for building

a safety case from the nuclear regulatory authorities of the UK, USA, France and

Canada. It is not a standard as such, but presents the elements of a safety case

perceived as helpful in gaining regulatory approval.

A erospace (m ilitary)

UK Defence Standard 00-54[MoD99] (hereafter abbreviated Def Stan 00-54) is a new in

terim standard for the use of safety-related electronic hardware (SREH) in UK defence

equipment. It relates to systems developed under the Def Stan 00-56 safety systems

document or an equivalent international standard, and is appropriate if an electronic

element in the system is identified to have a safety integrity level of between SIL-1 and

SIL-4. This standard is covered in more detail later.

Def Stan 00-55 (software) [MoD97] specifies the requirements and guidance for the

development of safety-related software by or for the UK Ministry of Defence. There

is very heavy emphasis on the development process and suitable documentation, but

the actual requirements about the implementation method and language are few and

general. There is emphasis on using formal methods wherever possible. The key

message appears to be “do what is reasonable and safe, but show how your decisions

were made and justify them.” This goal-based approach foreshadows the rewriting of

CAP 670 SW01[Civ02], described below.

Def Stan 00-56 (system safety) [MoD96] is 00-55’s counterpart relating to system

safety. It lays down how the safety management activities of a development program

should work. A “risk class” is calculated according to how probable and severe are the

system hazards, and governs how the safety activities are carried out on the program.

It requires the production of a “safety case” , a well-organised and reasoned justification

that the system is acceptably safe.

Def Stan 00-56 is undergoing a rewrite for Issue 3. The first public draft for com

ments [MoD03] was released on 18th July 2003. It shows that the new format will be

for Part 2 (the Code of Practice) to contain volumes addressing specific issues: vol

ume 1 describes how to interpret Part 1 (the guidance), volume 2 describes the risk

34

management process, and the revised forms of Defence Standards 00-55 and 00-54 will

form volumes 3 and 4 respectively. The standard itself is due for publication at the

end of March 2004 after public comment on parts 1 and 2.

A erospace (civil)

Penny et al.[PEBB01] describe practical experience with a “goal-based” form of safety

standard in the development of CAP 670 SW01[Civ02], part of the regulations for

ground-based air traffic services in the UK. They split evidence into two forms: direct,

which directly relates to the safety of the system (such as evidence that static analysis

has been carried out and no dangerous faults found), and backing which shows that

the direct evidence is credible and sound (such as test reports and error history of the

static analysis tool used).

RTCA/EUROCAE DO-178B [RTC92] is intended to provide guidance on how to

satisfy airworthiness requirements for software use on aircraft. It relies heavily on

software testing to demonstrate reliability. However at the highest level of software

integrity the amount of testing required is very expensive.

RTCA/EUROCAE DO-254[RTCOO] is the analogue of DO-178B for electronic hard

ware. It is a more recent document, released in reaction to the increasing complexity of

electronic safety-critical hardware performing avionics functions. The Federal Aviation

Authority is currently considering how DO-254 should be applied to the development

of ASICs and PLD programs.

In a comparison of avionics standards, Pygott and Newton [Pyg99] compared the

requirements of RTCA DO-178B with the requirements of Def Stan 00-55 and Def Stan

00-56. They concluded that the main difference was that civil aviation standards pro

vided mostly recommendations, whereas the Defence Standard clauses were mandatory.

The Defence Standard placed much more emphasis on the use of static analysis and

formal methods, though both were mentioned in DO-178B. In addition there were

mismatches between Development Assurance Levels (DALs) and SILs which made

comparing standards difficult.

Pygott and Newton also noted that all of the standards reviewed did not say much

about the use of commercial off-the-shelf software (COTS), which they regard as being

35

a significant feature of new development programs.

Finance

Finance systems are rarely safety-critical, but are often business critical. There are

some financial systems which have the potential to “create” money; these have sufficient

potential impact on a country’s economy that their correctness is a matter of concern to

the country’s government. In this situation the pressures are similar to those around

safety-critical systems, and so it is worth examining how these critical systems are

regulated and developed to compare and contrast the approach with those used by

safety-critical systems.

In the UK, the government Communications Electronics Security Group defines six

levels of IT security: levels ITSEC 1 through 6 where 6 denotes the most secure systems.

The ITSEC criteria are described in [Com91]. These fed into the international Common

Criteria[Com99]. Like safety-critical systems, security-critical systems are classed as

high-assurance.

Hall, in [Hal02], describes the specification and development of a Certification Au

thority (CA) for the MULTOS smart cards. This development was notable for the

application of safety-critical software development tools (static analysis and proof with

the SPARK and SPADE toolsets) in the security domain. It turned out that these

techniques translated well across the domains.

The specification and security proof of the associated smartcard operating system is

described by Stepney and Cooper in [SCOO]. This demonstrated that formal proof tech

niques were mature enough to be applied to a real industrial application of substantial

size, and well enough supported to be off the critical path of system development.

Cross-sector

lEC Standard 61508 [lECOO] is intended to apply across multiple industry sectors, set

ting out a generic safety management approach for systems with electrical, electronic

or programmable electronic components. Part 2 in particular is the requirements for

the electrical, electronic and programmable devices; part 3 deals with software require

ments.

36

Part 2 ranges over a wide range of aspects of hardware, giving guidance on errors

to check. A number of specified hardware faults may need to be detected (e.g. stuck-at

failures for registers, bus faults and welded-together contacts) as well as properties of

the software (e.g. correct “watch-dog” operation, information redundancy) with the

analysis list determined by the required diagnostic coverage, related in turn to the SIL

and resulting safety calculations. Interestingly, the programmable part of the systems is

not addressed in detail; there are requirements for aspects of the design to be analysed,

but no real requirements for implementation language or related aspects. It may be

that the authors assume implicitly that Part 3 of the standard (software requirements)

is to be applied where appropriate.

lEC 61131-3 [IEC03] applies to programmable logic controllers. These are not

true PLDs, but the document provides information on controller design that may be

applicable to some classes of PLD program.

A relevant comment in the HSE report [Hea97] is no. 70: “The programmable

logic controller (PLC) is one typical example of an off-the-shelf system, albeit that the

applications program must be provided by the purchaser. It is not sufficient simply to

show that the production of the applications program has met the full safety system or

safety-related system requirements. Such equipment typically embodies a complex op

erating system with which the applications software is associated. The demonstration

must relate to the full system^ (my italics.) This clearly indicates that PLC (and, by

extension, PLD) programs must be validated both stand-alone and as a component of

a whole system.

2.1.5 C om m entary

Standards are normally divided into a number of different types of information; le

gal requirements, approved code of practice (ACOP) and guidance. It is rare that a

developer will follow every single recommendation; in practice they will justify their

omission of one or more recommended practices on grounds of practicality and cost. It

is worth noting that the second issue of Def Stan 00-55 was noticeably less prescriptive

than the first issue in the sense that many recommended procedures were changed to

guidances; this gave each system developer more freedom to choose the development

37

practices which were most appropriate to their particular system. There has been in

conclusive debate in the safety-critical systems community about whether the reduced

level of prescription compromised safety. This has been echoed in the different lev

els of prescription between the UK Defence Standards and the RTCA / EURO CAE

documents discussed earlier.

If a procedure in the ACOP was not followed and an accident resulted then (under

British law) the onus would be on the developer to prove that their differing approach

was acceptably safe. Cuidances may be taken merely as potentially useful suggestions

for development practice.

2.1.6 Standards sum m ary

The approach of the above standards is very general, with the exception of the 14-

year old lEC 880. They tend to outline approaches rather than prescribe detailed

procedures.

It is usual for safety-critical systems developers to be required to show to the sys

tem’s customer or to a regulatory agency (such as the UK Health and Safety Ex

ecutive) that their development process has followed one or more specified standards

documents. These documents typically address the development process, configuration

management, implementation language, production of safety cases, testing and main

tenance issues. The system may require formal certification from a regulatory agency

before it may be brought into service.

Standards evolution

UK Defence Standards undergo periodic rewriting: 00-55 and 00-56 are at issue 2

already, and issue 3 is due to appear in 2004. The rewritings refiect both feedback from

practical application of the previous standards and advances in the state-of-the-practice

of system development. The changes from issue 1 to issue 2 of 00-55 refiect industrial

comments that the approach prescribed in issue 1 was too hard to apply in general,

although at least one project was successfully developed under issue 1[KHCP99].

If experts dispute such issues, and standards documents show that conflict, how

do we find a generic development process applicable to all standards? How can we

38

anticipate the requirements of future versions of existing standards? We cannot, but

we can focus on the areas of agreement noted above: the standards aim to support the

process of producing a system which is demonstrably safe at a quantifiable level.

C orrectness vs. safety

Demonstrable correctness is often important in a safety-critical system. Note that

correctness is not the same thing as safety; a military aircraft stores management

system which could never arm a bomb would clearly be acceptably safe, but not correct!

Leveson’s experience with an aerospace firm’s torpedo was salutary:

And later, when they tested this torpedo, they told me, they called me up

and said “Well you know, we took her out into this testing ground and we

tested this torpedo and every time we tried to fire it, it came out of the

torpedo tube and turned itself off and went down to the bottom and it just

sort of lay there.” And I said, “Well, it’s safe.” And they said, “Well the

Navy didn’t want to pay for this safe torpedo.” [LC96]

However correctness and safety are often linked in that correct operation of a system

may be key to its safety; if a release sequence for the aforementioned stores management

system is faulty then armed stores may be released at too small an interval and make

aircraft-proximate detonation likely.

Correctness is only meaningful in the context of a specification; if we take System 1

consisting of a single AND gate, and System 2 consisting of a single OR gate then both

gates may operate perfectly and so both systems may naively be regarded as “correct”.

However the environment of the system may be such that the system is required to

signal on its output wire only when both input wires are high; in this case, only System

1 would be correct.

For the above reasons we now look at how formal methods may be applied to assist

us in the task of producing an acceptably safe system which is correct with respect to

its specification.

39

2.2 Application of Formal M ethods

“Formal methods” is a catch-all term for a collection of mathematical techniques used

to reason formally about the behaviour of a system or component thereof. Most of

these techniques are covered under two main system development activities:

verification which we define as providing evidence that a set of system requirements

have been satisfied; and

validation which we define as checking that the supplied evidence is satisfactory in

respect of the requirements.

Verification is therefore commonly associated with activities involving formal nota

tions and analysis, such as those presented later in this thesis. Validation is commonly

associated with unit, functional, system and integration testing, although it may also

cover manual or automatic inspection of proofs produced during verification.

The number of formal methods techniques in existence appears to increase at every

Formal Methods conference; for instance, FM’99 published a paper introducing the

VSPEC behavioural interface specification language for VHDL [ARB99] which may be

used to check VHDL designs against requirements. This method, like many others,

is well-defined and addresses a specific problem. However, proportionally very few

methods have gained widespread acceptance in industrial software development. Why

is this?

2.2.1 T he benefits o f formal m ethods

Rushby [Rus93] wrote a seminal report on the application of formal methods to safety-

critical systems. He summarises the main benefits as

• formal specification reduces or highlights design ambiguities;

• formal verification makes explicit assumptions, axioms and deductions used to

conclude that a function is performed correctly, in addition to providing a sub

stantial confidence increase in its actual correctness;

40

• formal verification also has the effect of closely analysing the design and high

lighting implications of supposedly simple changes; and

• formal methods add an analytical component to manual reviews that may in

crease the effectiveness of such scrutiny.

However the report also indicates that formal methods have their fiaws. Key among

these include the possible disparity between the programmer’s mental model of the

design and that which he or she specifies formally, especially because many formal

specifications (e.g. Z [Spi92]) are hard to write or read correctly. Formal verification

may also fall down in that real world properties are often hard to characterise formally.

Moreover if the verification process is partly automated then a great deal of faith is

required in the software tools involved. Developing high-integrity tools is not easy, but

has been demonstrated to be feasible. The development of a high-integrity compiler

for the UK Atomic Weapons Establishment [Ste98] was done using a Z specification,

recast into Prolog (the implementation language). The compiler was put through a

validation test by experienced compiler-breakers, and only one error was discovered;

this error was in an area of the compiler which had not yet been proven correct.

Rushby concludes that formal methods should at least be in the mind of software

engineers, if only to increase the rigour with which they reason about their software.

Industry should be encouraged to develop further and apply formal methods, but to

know when they are appropriate and when not. The report also remarks that large-

scale application of formal methods in airborne software (the author’s speciality) is

impractical. It is instructive to note that this report appeared in 1993; the ten years

following have brought significant new formal methods and techniques, notably the rise

of the SPARK Ada language and broader use of static analysis tools in UK and USA

aerospace software.

2.2 .2 Form al m ethods in use

Common formal notations used in industrial projects include Z [Spi92], VDM-SL

[Jon86] and B[Abr96] for set- or model-oriented specification. Variants of CCS[Mil90]

or CSP [Hoa85] are used to specify and prove properties of interacting processes. Static

41

analysis tools such as the SPARK Examiner[GC90] permit verification that programs

satisfy a set of desired properties before they are run. In addition there are general-

purpose proof tools such as PVS[ORS92], used for interactive semi-automated proof.

Z is a formal specification language based on sets. Z usage is supported by tools such as

fu zz [SpiOO] and Cadiz [Yor97] for type checking, typesetting and proving properties

of Z specifications. Z has been applied successfully in a number of industrial projects,

and extensions such as Object-Z have been applied to problem domains where basic Z

is difficult to apply.

Z is a specification language, and was not designed with a particular method of

implementation in mind. It permits proof of certain properties of and relations between

specifications, but by itself does not admit a method of developing a specification to

executable code; this must be done on a case-by-case basis. For example, Sennett has

shown [Sen92] how Z can be used to specify a program and how then to demonstrate

that an Ada program meets or does not meet that specification.

A common problem with Z is that its schemas are often written with a wide range of

non-ASCII symbols which many people find intimidating and hard to read “naturally” .

An ISO standard for Z was released in 2002 [iec02], but until then the Z Notation

Reference Manual by Mike Spivey [Spi92] was used as a de facto standard and indeed

not all Z practitioners have read the ISO standard in detail.

B and V D M

B, as a method for specifying, designing and coding software systems, is supported

mainly by the B Toolkit [Ltd98]. This is an integrated set of tools to assist the developer

using the B method to develop high-integrity systems. It is based on the concept

of an abstract machine, which is an object that may have internal variables (giving

state), invariants (making statements about the variables which must always hold) and

operations (enabling other machines to operate on its state.) The B method permits

refinement of machines from very abstract forms to a form suitable for implementation

in a high-level language such as C, Ada or Modula. This refinement allows us to

42

prove that the final implementation satisfies the initial specifications of the machine.

The difficulty is that it implicitly assumes an equivalence between the implementation

language and the language of the B method, Dijkstra’s language of guarded commands

[Dij76]. Languages such as C and Ada do not have a well-defined semantics, and so

certain assumptions must be made by the developer.

VDM-SL[Int96] is the specification language of the Vienna Development Method.

It is model-oriented, unlike Z. It is not as widely used in general as Z, but does have a

history of practical use in projects such as CDIS[Hal96a].

CSP and CCS

CSP [Hoa85, Hen88] is an algebra for describing communicating processes. Each pro

cess is given an alphabet of events, and a description of the sequences of these events

in which it participates. Parallel processes must be able to agree at least one sequence

of events in the intersection of their alphabets, or the processes fail (deadlock). In

addition, if a process is free to engage in an unbounded number of events not in any

other process’s alphabet, then that process is said to diverge. CSP is a useful way of

describing interactions between separate systems and detecting common errors such

as deadlock and diverge. Commercially its use is supported by the FDR tool [For97]

which is a model-checking tool based on the theory of CSP. The developer determines

whether a particular property holds for a system by writing a description of a transition

system capturing this property; the tool then attempts to refine this transition system

to the candidate machine and reports success (in which case the property holds) or

failure (in which case the property may not hold). It can also check that a state ma

chine is deterministic; this is an important property in safety-critical systems. Finally,

it can detect potential deadlock in a system. FDR was used by Inmos to develop and

verify communications hardware in the T9000 transputer and C104 routing chip.

CCS, the Calculus of Communicating Systems, is similar in concept to CSP but is

more abstract and algebraic in nature. It was devised by Robin Milner and has been

used in designing industrial systems including the aforementioned CDIS[Hal96a].

43

LOTOS

LOTOS [Int93] is the Language Of Temporal Ordering Specification. It is a formal

description technique, with roots from CCS and CSP, used as an unambiguous language

in standards for expressing parallel activities. It has been used to describe systems such

as bus architectures and embedded systems programs. As an lEC Standard (ISO/IEC

8809) it has the strength of a well-formed public definition. Its syntax is reminiscent of

CSP with alternation, input and output and parallel operators used to express parallel

interacting processes. As such it shows no clear advantage for our purposes over CSP,

with CSP at least backed by analysis tools.

Static analysis

Static analysis is the process of deducing properties of programs via inspection, au

tomated or otherwise, of the program code before compilation. By contrast, dynamic

analysis analyses program behaviour by actual or symbolic execution of the code. Tech

nically, manual review of program code against a predefined standard counts as static

analysis, although in practice the term is usually used to refer to a process which is

automated or semi-automated. The “lint” checking tool for C programs[Joh78] is a

widely-used static analysis tool.

Programs such as the SPARK Examiner[CC90] take advantage of a rigorous defi

nition of their program verification criteria to perform deep static analysis checks such

as well-formed program control fiow, the absence of any reads of uninitialised mem

ory and conformance to a language subset; in this case, the SPARK subset of Ada

95[FW99, Int95].

P roof tools

PVS, a product of the SRI Computer Science Laboratory, is a verification system com

posed of a specification language, support tools and an automated theorem prover. It

has been in existence since 1992 and so can be considered reasonably mature as a tool.

Rusu and Singerman, in [RS99], use PVS as a key tool to prove safety properties of

reactive systems. This system uses PVS’s considerable automatic proving abilities to

good effect; the user chooses the direction of his proof process, guided by the results

44

of previous proofs, and lets the PVS theorem prover attempt to prove properties au

tonomously. Like any theorem prover, the key to successful PVS proofs is a supply of

well-formed, relevant and precise rulesets; these are usually accumulated over time on

a project, though of course they must be carefully reviewed to ensure their correctness

otherwise whole proofs can be invalid.

Recently one of the designers of PVS, Natarajan Shankar, reviewed the FM in

dustry’s progress in producing big proving engines and their success across a range of

domains[Sha02]. He argues that problem-driven techniques are likely to be more effec

tive than the uniform proof search procedures used at present. Since PVS is a classic

example of the latter approach, Shankar’s arguments should be carefully considered

since they appear to be based on substantial experience and evidence.

2.2.3 D irection o f form al m ethods use

In [CW96], Clarke et al lay out a strategic direction for the advance of formal methods.

They point out that the past view of formal methods as obscure, badly scaling and

without adequate tools has now been changed and that successful industrial case studies

have proven the essential practicality of formal methods. This view appears to be

supported by the use of the aforementioned tools in substantial industrial applications.

Key elements of their suggested direction include reusable models and theories,

combinations of mathematical theories to tackle hybrid safety-critical systems, and

integration with the system development process. It will be instructive to assess existing

techniques by these criteria, to bear in mind Rushby’s comments on the limitations of

formal methods as well as their benefits, and to consider Shankar’s recommendations

on proof strategies.

2.2 .4 Value o f form al m ethods

The issue of why formal methods are not currently in widespread use is tackled by

Heitmeyer [Hei98]. She makes a number of interesting propositions, including the divi

sion of formal methods into “soft” , primarily passive techniques such as static analysis,

and the “hard”, primarily active techniques such as interactive proof editors. This is

useful because it is usually easier to persuade developers to take up a passive “soft”

45

method requiring little training than it is to convince them to invest substantially in

training and time to adopt an active “hard” method. If the formal methods community

is to encourage wider adoption of the “hard” methods then they need to be able to

demonstrate real and substantial benefits from them.

Example: GDIS

In [PH97] Pfieeger and Hatton discuss the issue of whether formal methods affect

code quality, and if so then how. The project evaluated by the authors is the GDIS

air traffic control information system [Hal96a] developed by Praxis pic. The formal

methods used during development included VDM for formal specification of critical

system elements, CCS to specify concurrency and finite state machines for specification

of individual processes. The evaluation of Pfieeger and Hatton is that the project

statistics on faults reported over time did not show qualitative evidence that code

produced using formal design techniques was of higher quality than informally-designed

code. However the formal specification process led to components that were relatively

simple and independent, and the delivered system was measurably better than most

other measured systems. The authors conclude that formal specification can be part

of the solution to improving code quality but it is not the whole answer.

It is notable that the 10-year warranty period on GDIS recently expired. There was

one warranty fix made during system testing at the start of the project; since then,

none were required. Note also that this was achieved with the technology available in

1990.

Example: SHOLIS

SHOLIS, described in Section 2.1.2, is a commercial safety-critical system where formal

methods were used. It is described by King et al in [KHCP99]. The development effort

built upon the experience from implementing the GDIS air traffic control system, as

described above and in [Hal96a]. The system was partly developed to SIL 4 standards

with the rest of the system roughly at SIL 3, and around 27,000 lines of Ada code. The

techniques used were Z for system specification, the SPARK Examiner static analysis

tool [Bar97], and proof of system properties using Z and the semi-automatic code proof

46

system of the SPADE Simplifier and Proof Checker [Pra98].

The technological advances over the earlier GDIS work were mainly at the imple

mentation stage. The SPARK Ada 83 subset [Ame99] enforced by the SPARK Exam

iner is a significant advance on the GDIS implementation language (G); the well-defined

semantics of the language permit formal proof of code properties, and the SPADE

toolset partially automates such proof work to permit a higher proof productivity. In

deed, the combination of the Examiner and proof tools enabled the development team

to prove (to the standard required for system certification) the complete absence of

any run-time exceptions in all of the SPARK Ada code.

The conclusions of King et al provide sharp contrast to the opinions expressed

by Pfieeger and (to some extent) Rushby[PH97, Rus93]. Z proof was found to be

significantly the most efficient phase at finding faults, and the ability to prove the

absence of run-time errors adds extra confidence in the system. Whereas the GDIS

effort was apparently unable to gain much from formal methods once the code was being

written, such methods contributed to the SHOLIS effort throughout the development

cycle.

Still, it is true that techniques such as proof in Z are nontrivial to use well and

effectively, and require the development team to make a positive effort to undertake

training and to use them properly. However they are easier to use than is commonly

perceived, and the GDIS and SHOLIS projects have shown that they confer significant

benefits in system reliability.

2.2.5 T he lim itations o f testin g

Testing is a vital part of system development. The main kinds of testing are:

• informal testing by developers that the feature they are developing works at least

approximately as designed;

• unit testing to exercise each component of a program (typically by subprogram

or module, depending on the implementation language);

• functional testing to check that all known requirements are covered; and

47

• system testing to verify that the entire system operates as designed without any

errors.

However, we should not lose sight of what testing cannot achieve. Modern testing

techniques are efficient and successful within a limited framework, but (as noted above)

even the most stringent testing can miss an error that other techniques such as static

analysis can detect.

A im s and achievem ents o f testing

Dijkstra said “Program testing can be used to show the presence of bugs, but never

to show their absence!” [DijTO]. Functional testing aims to show that functional

requirements are met, but at best can show that no errors occur while the function is

being exercised in a range of common ways.

Unit testing aims to exercise each individual component (unit) in a program. There

are formal notions of how thoroughly a unit has been tested - statement coverage,

branch coverage, MC/DC etc. - but the limiting factor in unit testing is often the

person writing the test. They should know the required result of each test before

writing it. The temptation to derive the test result from the code is substantial, so

unit test results should ideally be written before the unit is written. But then, the

tests are unlikely to cover all of the unit.

System testing can only realistically exercise a small section of the system’s state

space. Detecting and counting errors during continuous system test can give an indi

cation of the number of detectable errors remaining in the system, but can never assure

the developer, certification authority or customer that all the errors are gone.

U ntest able conditions

SIL-4, the highest level of safety integrity, requires no more than 1 failure per 10®

hours. Since this is just over 114,150 years we can immediately see that system testing

to demonstrate this level of reliability with any confidence will likely be impractical.

These limitations have been discussed in more detail by Littlewood [LS93] who applied

Bayesian statistical analysis to the problem of demonstrating reliability rates through

testing.

48

There are also more specific aspects of program correctness which are difficult to

achieve by testing. Absence of run-time errors can only be shown by testing if the test

exercises every path in the entire program for all values of input data. This is normally

computationally infeasible.

W hen to test

If testing finds faults, as good testing should, those faults will normally need to be

corrected and the system re-tested. The later in development that a fault is found, the

more rework is likely to be required. As an example, if testing locates a fault with a

system requirement then the system may need fixes to the requirements, design, im

plementation, and potentially many tests. This will be very expensive in development

time.

Croxford and Sutton[SC95] described the economic benefits of using static analysis

early in the development of the C-130 J aircraft engine control software, allowing many

errors to be found before testing took place and reducing the associated rework. Given

this data point, it is clearly sensible to test system components as early as possible in

the development process.

2.2.6 Sum m ary o f form al m ethods

Formal methods have been successfully used in the development of safety-critical sys

tems such as GDIS and SHOLIS to improve the reliability of the software in the system.

They can provide assurance of reliability that conventional testing alone cannot. How

ever, the behaviour of the system hardware in conjunction with the software is harder

to capture and reason about.

We will now look at one particular common component of a safety-critical system,

programmable logic devices, to see how they are currently used and how we can increase

confidence in their correct operation to specification at an acceptable level of safety.

49

2.3 PLD s

PLDs were a development of the simple Programmable Logic Array (PLA) which has

been available in electronics design since the early 1980s. The early history of field-

programmable logic is reviewed by Moore in [ML91]. The most common (and interest

ing) form of PLD in use is a Field Programmable Gate Array (FPGA).

The key characteristics of an FPGA are as follows:

• “Field-Programmable” denotes their ability to have their program contents changed

upon power-up, i.e. in the field;

• “Gate Array” indicates their structure of a regular array of logic gates;

• they provide a logic device of relatively low complexity;

• they compute some function of a set of digital inputs to produce a set of digital

outputs;
'

• they have semi-permanent state in terms of programmed lookup tables, typically

implemented as static random access memory (SRAM);

• they operate mainly in a highly-parallel manner;

• they are programmed by the download of lookup table data from an external

source;

• they differ from other programmable logic devices (PLAs, PROMs, CPLDs) by

allowing a more complex flow of data through themselves; and

• they also differ from Application Specific Integrated Circuits (ASICs) by trading

speciality of design for speed of development and economy of small-scale produc

tion.

In this section we will look at the concept of FPGAs and typical modern imple

mentations. We will examine how they are used in real systems, and critique different

approaches for producing an FPGA implementation from a subsystem design. We will

also look at how an FPGA can be given a semantics, and how the integration of FPGAs

with other systems presents more problems for a system designer.

50

1 RAM ROM

I
;

LUT LUT LUT

LUT LUT
; LUT

LUT LUT LUT

>(5>-

Figure 2.1: Architecture of a generic FPGA

2.3.1 Introduction to F P G A s

FPGAs made their first appearance in 1984, manufactured by the company Xilinx

[SWCL99]. They are a compromise between a software implementation of their function

(easier to program but somewhat slower) and a custom-made chip (faster and more

reliable, but expensive and requiring more time to design and fabricate). A diagram

of a “generic” FPGA is shown in Figure 2.1. The key components are the input and

output pins, the array of look-up tables (LUTs), the routing logic, the external control

and configuration loading, and the interfaces to external RAM and ROM blocks.

As a result of this compromise, FPGAs are typically used in building a prototype

system in place of a custom ASIC. It is significantly cheaper and quicker to use such

devices when the alternative is a minimum production run of 5000 ASICs in a different

company’s fabrication plant (“fab”). A small-scale single run of ASIC production can

easily cost $750,000 and take months from submission of VHDL design information to

the fab to the arrival of the silicon.

There can be significant commercial gain in using FPGAs rather than ASICs. Time-

to-market is reduced, since there is not the delay in setting up and making the ASIC

production run, and there is little overhead if an error is subsequently found in the

device. There is also the potential for increased time-in-market, providing mid-life

upgrades to the FPGA code without having to replace the hardware.

51

FPGAs are also found in end-user products. Their ability to take processing load

off the main system processor (e.g. as a bus interface) means that they provide a cheap

way of increasing a system’s speed without the complexity and expense added by an

ASIC or second processor. Most PC sound, graphics and network cards will feature

one or more FPGAs.

For very simple combinatorial logic functions, FPGAs can be too complex a solu

tion: devices such as Complex Programmable Logic Devices (CPLDs), or even PLAs

may be appropriate.

The majority of PLDs are usually programmed in VHDL [IEE91] or Verilog[IEE95].

These Hardware Description Languages (HDLs) have substantial standard libraries,

allowing a certain amount of code reuse. They model the PLD as interconnected

blocks rather than providing higher-level functions such as one to operate on a data

stream. Even if a higher-level language or design tool is used, it will normally compile

its input into VHDL or Verilog.

FPGAs can play a useful role in system development and be an effective component

in end-user systems.

2.3.2 D escription

An FPGA is characterised by a collection of cells, each of which has a number of single

bit inputs and outputs. It typically uses a single clock for the whole device; multiple

clocks are usually possible but seriously complicate programming. At each clock tick,

the cell uses an internal lookup table to compute a function of its inputs, and possibly

some internal state value, resulting in a defined output and possibly a change of state.

The output is routed to other cells in a predefined manner, and new inputs are read in

preparation for the next cycle.

The FPGA’s interface to the outside world occurs at a set of pins, each of which

is a single-bit input or output. Since the pins are normally electrically identical, each

pin’s function will depend on the user-programmed routing inside the FPGA. These

pins are linked to cell inputs or outputs respectively; the precise linkages will again

depend on the user’s routing scheme.

The way that a user programs the FPGA will depend on the FPGA type. Some have

52

SRAM cells which need to be reprogrammed whenever the device is powered up; others

use Flash memory which retains data even when power to the device is removed. Both

of these technologies may allow the user to reprogram the device mid-computation, with

varying effects on the device’s state. Some may use once-only programming (such as

antifuse technology) which again retains data across power cycling but which requires

a new device if the programming is to be changed.

The reprogrammable aspect of an FPGA concerns the cell lookup tables, and also

the routing tables in many FPGAs. Data for these tables are loaded using special

control pins to supply a stream of bits to the FPGA. The FPGA will typically be

configured in a period of tens of milliseconds.

More advanced FPGAs may include small banks of random access memory (RAM)

or other specialised devices such as DSP units which interface to cells. We will ignore

such complications in the rest of this survey since they do not affect the fundamental

functionality of FPGAs, and could be viewed as devices separate from the main FPGA

circuitry; they just happen to be on the same piece of silicon.

2.3.3 Variants o f PL D s

Moore, in [ML91], classifies programmable logic devices into the following categories.

PLA s

The original PLD was the Programmable Logic Array (PLA), a device whose outputs

compute logical “sums of products” of their inputs. The internal structure of this

device holds an array of AND gates, each of which takes a subset of the device inputs.

The outputs of these AND gates are in turn fed into a number of OR gates, the outputs

of which form the outputs of the device. The user programs the device by feeding a

high current through certain interconnections to break them, thus selecting precisely

the required inputs to each AND and OR gate.

The PLA is good for relatively simple, quick logic calculations but lacks flexibility

or internal state. Some devices have additions such as registered outputs or feedback

of outputs to inputs, but the basic design is simple and hence very easy to program

correctly.

53

C PLDs

The CPLD was the logical next step from the PLA, retaining the same basic structure

but with modifications to improve performance and flexibility. Larger arrays draw

more power and are harder to design for a given clock speed, so the CPLD introduced

an internal logic array which is structured hierarchically (blocks within blocks within

blocks) and has more complex input/output logic, allowing buffering of inputs for

example. The key difference from the PLA is that these devices each contain several

PLAs whose outputs go into flip-flops, then are routed elsewhere in the device. These

devices can support more complex calculations than PLAs, but it is still relatively easy

to map designs into them; the internal data flow is not normally a design bottleneck,

unlike in FPGAs.

Typical CPLDs such as the Altera MAX series [KF91] are configured using Flash

memory or antifuse technology.

Systolic arrays

Systolic arrays are informally defined in [Meg94] as “an array of synchronised proces

sors (or cells) which process data in parallel by passing it from cell to cell in a regular

rhythmic patterri^ (my italics). From this definition, an FPGA could certainly imple

ment a small systolic array; however in practice the systolic array is often operating on

data in 16-bit or larger chunks, unlike the 2 or 4 bits common at the cell level inside an

FPGA. Systolic chips may contain one or more processing elements (PEs), may have a

limited amount of flexibility in the precise calculations performed, and are often used

in sizeable numbers in a regular array.

An example of a commercial systolic array is the SAND neural processor [Ins97],

used for pattern recognition and image processing, which contains four parallel proces

sor elements and runs at 50 MHz. It reads in data in 16-bit “weights” and “activities”

streams, performs internal processing according to a 34 bit control word supplied by

its sequencing chip (an FPGA in some configurations), and outputs streams of 16-bit

data and addresses.

Compared to systolic arrays, FPGAs provide greater flexibility in the function of

each cell and the wide range of routing possible, but their generality makes them less

54

Microprocessor PLA FPGA Systolic ASIC

Speed Slow Medium Medium Fast Fast

Unit cost Cheap Cheap Medium Medium Expensive

Batch cost Cheap Cheap Medium Medium Moderate

Flexibility High Low Medium Low None

Power draw Low Medium High Medium Medium

Program C, Ada Ladder logic VHDL Custom VHDL

Table 2.2: Trade-offs for software and hardware implementation

suitable for certain high-performance tasks such as those doing numerical calculations

involving 16 or 32 bit data.

ASICs

The most complex programmable logic device is the ASIC, an integrated circuit de

signed for a specific task and mass-produced. While an ASIC will nearly always out

perform an FPGA, FPGAs are much cheaper than ASICs in small volumes. They are

also easy to reconfigure on a minute-by-minute basis, allowing one chip to perform

many different functions rather than requiring one chip for each. Therefore if there is

any significant chance that the function of a chip may change during the development

and testing process then it is normally worth accepting the lowered system speed to

replace an ASIC with an FPGA.

A FPGA draws significantly more power than the equivalent ASIC, and hence gen

erates more heat. In compact electronic devices this can be a significant complication

since the heat must be radiated away before other components are damaged; in battery-

powered devices the extra power drain may have a significant effect on battery life. For

these reason CPLDs or ASICs can sometimes be preferable.

Table 2.2 contrasts the effects of implementing a given algorithm in a range of device

types. CPLDs are grouped with FPGAs since their differences for these purposes are

not significant.

55

2.3.4 Specification

A FPGA’s topology can be represented as a directed graph where each node corre

sponds to a cell or pin, and the arcs represent the routing. Any node without outgoing

arcs is an output pin, and any node without incoming arcs is an input pin. We ig

nore power and configuration pins of the device in this representation. Note that the

graph need not be connected. Acyclic graphs are possible; they are easier to reason

about since they compute a finite-step known-duration computation of the input data.

Cyclic graphs, representing loop constructs, are common in the more complex FPGA

routings.

An example may be an iterative square-root real number function which takes a

16-bit positive integer representation as input X and produces the integer part of this

number’s positive square root as an 8-bit output F; the loop construct in this case

may be a successive approximation calculation, ending in a unit which computes

and (F + 1) ̂ and sets a “valid result” bit if < X < (F-f-1) .̂ If this calculation was

non-iterative then its FPGA representation would require many more cells and each

calculation of a root would take the same (i.e. worst-case) time; however, it may then

be possible to pipeline calculations.

Each cell represents a function fc : S x I ^ S x P where S is the set of possible

cell states, I is the set of input values and P the set of output values. The latter are

normally represented by natural numbers between 0 and 2 ̂— 1 where k is the number

of wires forming the input or output. This is because the relatively small calculations

performed by FPGAs are normally numeric or logical in nature rather than string- or

symbol-based.

The user programming defines each function /c, and if the particular FPGA permits

user-defined routing then it selects a particular graph structure from a set defined by

the FPGA’s design.

2.3.5 D evice features

A key factor in evaluating an FPGA device’s performance and usability is its “logic

gate equivalence” , which is taken to be the total number of logic gates which it is

possible to emulate at once. As an example, an FPGA with a 16 x 16 block structure,

56

each block having four cells, and each cell having two inputs and four outputs, able

to compute any function of the two inputs for each output, would have a logic gate

equivalence of 256 x 4 x 4 = 4096.

Xilinx define one gate-counting method in their on-line Virtex FAQ list [Xil99c].

They state that each logic cell used as logic provides the equivalent of 12 system

gates, or 64 system gates if used as distributed memory (4 gates per bit with a 16

bit capacity.) They therefore will make an assessment of what fraction F of cells

in a device will typically be used as memory and state that the C cells will provide

64FC 4- 12(1 — F)C system gates equivalent. Of course, there may not actually be

that number of recognisable gates in the hardware; the above works on the principle of

functional equivalence to a standard gate structure. Other devices such as digital delay

locked loops (DLLs) contribute an arbitrary number of system gates to the count; each

DLL counts as 7000 gates, for instance.

The above calculations also assume that data can be routed correctly between each

cell to make each cell useful; in practice many cells will not be usable in a computation

because the scarce routing resources around them have already been used. A circuit

which is regular in design may not suffer from this problem, but less regular layouts will

do; this is an inevitable result of the restricted size of an FPGA and the compromise

between number of cells and routing resources. Therefore we should only regard “gate

equivalence” as an indication of a device’s size and complexity, not its usability, and

in any case treat it with a degree of caution when using it to compare capacities of

competing FPGAs.

The difficulty of place-and-route is shown by Inuani and Saul in [IS97]. They

describe a algorithm for place-and-route for heterogeneous FPGAs based on look-up

tables, in particular the Xilinx 4000 series [Xil96]. For a range of benchmark programs

their algorithm improves by 10-24% the logic block usage compared to two other sets

of published results, while being significantly quicker in computation time. This shows

that good packing algorithms are far from obvious, even for a relatively simple ar

rangement such as the Xilinx 4000 series under consideration. Placing and routing for

modern, more complex devices, such as Virtex, will be harder to optimise.

Most FPGAs support read-back of the programming data. This is a simple but

effective way of detecting corruption in the programming bitstream. There is also

57

the JTAG standard (IEEE 1149.1[IEE01]) for test access and boundary-scan of such

devices.

2.3.6 Current devices

The main manufacturers of programmable logic devices at the time of writing are

Xilinx, Actel, Altera and Cypress Semiconductor. Their mainstream devices included

the Virtex and XC6200 series (Xilinx), the ProASIC 500K and Stratix families (Actel),

the FLEXlOK series (Altera) and the Delta39K (Cypress). We now look at 1999 and

2003 snapshots of devices from some of these manufacturers.

1999

The Virtex-E family have a gate equivalence of between fifty thousand and four million

system gates by the above reckoning, corresponding to 1,728 and 73,008 logic cells

respectively. The family is described in [Xil99b] and is intended principally for next-

generation telecommunications systems. They are manufactured using a 0.18 micron

process, and can run at internal clock speeds of up to 311 MHz. They have between

30 and 344 differential pairs of user input and output pins running at interface speeds

of up to 311 MHz and so could execute a theoretical 3 x 10 ̂ operations per second on

32-bit data words. A military version of the family, the QPRO Virtex series [Xil99a],

is produced using a 0.22 micron process and runs at speeds of up to 200 MHz with a

third of the number of logic gates in Virtex-E. Note the lowering of peak performance

and resources required to comply with military specification reliability under wide

temperature ranges and high EM noise environments.

By comparison the Actel ProASIC family, described in [Cor99], can have between

98000 and 1.1 million system gates depending on system configuration, manufactured

at 0.25 microns. Unlike the SRAM-based Virtex devices ProASICs use Flash memory,

so can be programmed once and retain that data through multiple power cycles. They

also feature a “security bit” which prevents read-back of the programmed data; this

can be commercially useful because manufacturers can distribute pre-programmed de

vices containing proprietary algorithms without having to worry about the algorithms

becoming known (directly, at least). The ProASIC internal structure is a “sea of tiles”

58

with each tile (up to 51,200 in the larger devices) forming a 3-input logic function or

flip-flop. The tiles are interconnected by four levels of routing, an indicator of the

perceived difficulty of place-and-route in modern FPGAs.

The Altera FLEXlOK series are SRAM-based CPLDs. An example of the series

is the 1 OK 130V part which has 6656 cells, each holding a 4-input lookup table plus

flip-flop, and routing logic. These are grouped in blocks of 8 cells. Additionally there

is 32Kb of memory on the device and there are 464 user I/O cells.

2003

In 2003 the Xilinx Virtex family is still going, although the lead device is now the

Virtex-II Pro (XC 2VP125) at 125,000 logic cells, with 42Mbits of config data and up

to 1200 user I/O pins. It incorporates up to 4 PowerPC processor cores and 556 18x18

multipliers.

Altera have launched their Stratix architecture, described in [LB"'"03]. The archi

tecture itself was evolved through a repeated posit-and-evaluate process where Altera

engineers proposed designs; these were modelled and benchmark circuits compiled onto

them. The aim was to produce a device that enabled circuits to be routed even when

most of the logic cells were used up - a notorious problem in the FPGA world. The

lead Stratix devices have 114,000 logic cells, lOMbits of memory. The devices and

associated tools support many high-speed I/O standards since FPGAs are commonly

used to pull data straight off a high-speed bus.

There has been no recent significant change in the forms of the designs of FPGAs

marketed by the major FPGA manufacturers, though the Altera approach to producing

a new architecture is interesting; they seem to be aiming to solve old problems better

rather than looking for new problems.

2.3 .7 Perform ance

The maximum attainable clock speed of FPGAs has been increasing roughly in line

with the decreasing process size. Note that the quoted speed of an FPGA is often an

order of magnitude more than that actually achieved. This is because normal compiled

system implementations require substantial cross-chip communication and so several

59

iterations are required for the data to make its way across the chip. The Virtex series

for instance has a general routing matrix (GRM) associated with each logic block,

each of which routes to adjacent and 6-distant GRMs in north, south, west and east

directions. There are 12 “Longlines” running the full length and width of the device

for fast long-distance communication. In addition, the “VersaRing” routes between

the I/O pins and the logic blocks. These four different interconnection schemes make

routing very flexible, but at the same time very hard to reason about compared to a

homogeneous grid with only nearest-neighbour connections.

This communication feature is a major weakness of FPGAs. They require major

effort to be put into placement and routing of designs in order to come close to their

maximum efficiency. For this reason good comprehension of the information flow in

a program is vital in producing an efficient FPGA implementation, hence allowing a

smaller and cheaper device to be used. This is similar in some respects to the prob

lems involved in deriving an efficient data flow through a systolic array, in that the

arrangement revolves around dependency information. The difference is that the sys

tolic array pipeline is normally replicated many times in order to increase performance

across many devices, whereas in each piece of mass-produced equipment using FPGAs

the number of FPGA devices is normally few in number.

The difference which an FPGA architecture makes to design algorithms and soft

ware is illustrated by Hartenstein et aim [HHG98]. The authors explore the difficulties

posed by the architecture of the Xilinx XC6200. The main difference between this de

vice and other FPGAs is that the device has a 32-bit data bus which allows a coupled

processor to read or write directly registers in the FPGA; in addition, routing resources

of the device are limited. The authors conclude that the restrictions of the vendor tools

for the device and its structure indicate that designs should be partitioned into a control

part and a datapath. The key fact to emerge, however, is that the FPGA architecture

affects the development process right from the point of synthesising the behavioural

VHDL into the target’s primitive gates.

60

2.3.8 O ther architectures

M ultiple-C ontexts

An additional feature for FPGAs was explored by MIT with the design and construction

of their “Delta” Multi-context Programmable Gate Array (MPGA) [TEC"'"95]. This

has an additional pair of control pins which distribute a “context” value across the

chip. Cells and routers may use this value to select one of a set of lookup tables.

In practice this permits an MPGA to switch between several different functions in a

couple of clock cycles, rather than requiring the tens of milliseconds normally required

to reload lookup tables. Since the area of an FPGA chip increases much more quickly

with number of cells and routing complexity than with cell size, this appears to be

generally advantageous for FPGA design. For a given chip area, an MPGA design

should be able to implement a more complex set of programs than an FPGA design.

In [FMA'^97], Faura et al present a RAM-based FPGA with two configuration

contexts. It has the important property of allowing reconfiguration of one context while

the other is active; this allows a switch between dynamically-loaded configurations

within a couple of clock cycles. This system, termed FIPSOC (Field Programmable

System On-Chip) couples the FPGA cells with a microprocessor core. Tellingly, the

main digital I/O of the chip is routed through the FPGA cells first rather than through

the microprocessor, and the FPGA cell outputs are mapped onto the microprocessor

memory space. The system has clearly been designed with fast throughput in mind,

so the (negligible) cost of a context change will be important.

The other important fact to arise from [FMA"^97] is that the extra chip area taken

up by an additional context is not prohibitive; the implementation of the Digital Macro

Cells (DMC) uses around 56% of its space for context-related storage and processing,

with a roughly 50-50 split between contexts, so the cost of the extra context can be

estimated as a 30% increase in DMC area.

Tight B inding to Processor

An alternative to a separate FPGA device is to bind it more tightly to the main

system processor. This was the approach described by Hauser et al in [HW97] with

their work on the Garp processor. Garp is a standard MIPS processor with a slave

61

reconfigurable array incorporated on the same piece of silicon as the processor. The

suggested method of use is for the main processor to handle normal execution itself,

with programs handing off certain computationally-intensive tasks to the reconfigurable

array. The reconfigurable array is programmed by feeding an array configuration into

a “configurator” program which outputs a set of configuration bits; these are used

to generate C code which is compiled into a standard program and executes at the

appropriate point to write the bits into the reconfigurable array.

Garp was faster than an UltraSPARC 1/170 by factors of 24, 9 and 2 for their

benchmark computations of DES, image dithering and array sorting respectively. These

were reasonable, but this was a simulated run of a Garp, and the programs were no

different from standard FPGA benchmarks. There was no clear indication given in

[HW97] that a Garp chip was better than a standard processor interfacing to an FPGA

over a PCI bus. The authors suggest that Garp would be more easily adopted than

FPGA-only machines, but offer no evidence to support this claim, and do not address

the FPGA-PCI configuration which seems to be in common use.

Donlin describes in [Don98] an architecture called “Flexible URISC” which breaks

down a CPU into a bus on which sit arbitrary logic units; the controller of the archi

tecture has only one instruction, MOVE x y, which moves the contents of location x to

location y. All more complicated processing is done by the logic units whose input and

output registers are mapped into the processor memory space. Such an interface sits

well with FPGA devices like the previously discussed Xilinx XC6200 series. In fact, a

prototype core has been implemented using XC6200 devices. However, the performance

gain of such an architecture is still not clear, and programming of the prototype must

currently be done at the instruction level. It appears to be an interesting development,

but lacks an obvious application, and none is suggested in [Don98].

Graham and Nelson, in [GN99], describe the simulated coupling of an Analog De

vices SHARC DSP with a Xilinx 4000-series FPGA architecture. Their reasoning for

this coupling is that DSPs have a memory architecture permitting many independent

memory ports to the programmable logic - a key to increased performance. The pro

grammable logic is seen as a way of performing the tasks to which DSPs are ill-suited

such as bit-level data manipulation. While the performance increase vs. area increase

figures are estimated rather than taken from actual trials, they estimate that increases

62

in chip area by between 0 and 60% can typically speed up DSP benchmarks by factors

of between 4 and 6. Of course, actually programming such a system is far from trivial.

System -on-C hip

The trend towards widespread use of small hand-held devices such as the PalmOS and

PocketPC Personal Digital Assistants (PDAs) and the late-second generation cellular

phones has driven a requirement for compact low-power microcircuitry with substantial

computing power.

A typical cellular phone has five major components; the aerial, the screen, the key

pad, the battery and the circuitboard. The screen and keyboard sizes are determined

by user interface issues such as eyesight and fingertip size, and the aerial by the need

to be able to receive and transmit a signal to a network cell at a typical distance.

Battery technology is improving, but innovations such as colour screens will continue

to increase power requirements. Hence the obvious place to look for space and power

saving is the circuit board.

One solution is to incorporate the maximum amount of logic on a single custom

integrated circuit rather than placing a number of generic ICs on a circuit board. This

is practicable in a cellular phone because of the large number of phones produced. This

approach is called “System-on-Chip”, abbreviated ‘SoC’.

An example of SoC is the DReAM architecture, described by Becker et al in

[BPGOO]. DReAM couples a number of reconfigurable processing units (RPUs), con

nected together directly and then interfacing to other components on the chip (DSP,

memory, microcontroller) via dedicated I/O units and a bridge. The authors have

mapped a CDMA “rake” finger onto four RPUs, in a DReAM architecture running at

lOOMHz. This is a classic off-loading of a computationally intensive operation from

the DSP or CPU, and indeed the rake is an important part of the operation of third

generation WCDMA mobile phones.

SoC can deliver increased performance in a system and reduce the component count,

at the cost of increased silicon area and hence losing several of the financial benefits of

using mass-market PLDs.

63

N on-silicon A rchitectures

The use of reconfigurability is not restricted to silicon. McCaskill and Wagler, in

[MWOO], describe the design of a reconfigurable microfiuidic network where routing is

controlled by magnetic or photonic activation. The actual processing elements can mix,

separate, react, detect or simply transport different fluids. These designs are not pro

duced on silicon, but rather in materials such as polymer. The actual reconfiguration

would be handled by a digital mirror which reflected ultraviolet light onto appropriate

parts of the network.

Such devices would be expensive to fabricate, at least at first, and the obvious ques

tion is whether there is a need for them. McCaskill and Wagler suggest programmable

biochemistry as one field which might find such devices useful. The programmable

logic research community should track the future progress of this class of device to see

whether it solves any technical problems of silicon-based PLDs.

2.3.9 D evelopm ent environm ent

An old but widely-used Xilinx device family is the XC6200 series [Xil97]. Xilinx pro

duced the XC6200DS Development System based around a device from this family,

the XC6216. [NG97] describes this development system. It is aimed at developers who

want to produce applications based around the XC6216 device (64 x 64 logic cells, 1

register per cell). The key components of this system are:

• XC6216 device on a standard PCI board, coupled with up to 2 Mb of SRAM;

• extra PCI mezzanine slots on the board for custom hardware;

• XACTstep Series 6000 graphical design tool, reading EDIF format design input;

• Java and C /C ++ run-time support software which interfaces to the board; and

• WebScope graphical debug interface to the XC6200 device.

The development process involves the user deciding what task the device is to

perform, designing the XC6216 configuration using XACTstep, saving the resulting

configuration data on the PC, then writing his or her control program which is linked

64

with the supplied run-time support software. When run, the program will read the

stored configuration data and upload it to the XC6216 device, then start the user’s

task. At any point the user will be able to use WebScope to check the configuration

and register state of the XC6216.

Analogue design

This process is adequate for systems which are experimental, but the hardware and

software design processes are very different. The software design and development

(in Java or C /C ++) expresses the programmer’s intent at a relatively abstract level

where the details of the target machine do not greatly affect the programmer. The

hardware design is done at a much lower level, analogous to programming software at

the machine code level; the machine is being told precisely how to do a task rather

than what task needs to be done. Here the programmer is having to be his or her own

compiler; since modern compilers such as gcc [FouOO] are regarded as reliable and very

efficient in terms of size and speed of code produced, the programmer is likely to be

poor in comparison.

We expect that many of the errors in a programmed system’s execution will arise

at the hardware / software interface; incorrect handshaking and erroneous mapping of

FPGA outputs to software variables are the two most obvious classes of error. This is

because we will generally express the requirements for a system at a high level, then

decompose them as the system itself decomposes into hardware and software parts; the

interface between hardware and software does not have any requirements to start with,

but rather such requirements emerge as the system is implemented. This means that

the requirements have to be applied retroactively to the parts of the system that were

implemented before the requirement emerged, leading to parts of the system that are

overlooked or are incorrectly changed.

For a safety-critical system, such a development process is clearly inadequate. The

emphasis (as shown by the inclusion of WebScope) is on getting a program which com

piles and runs, then debugging the hardware and software components until sufficiently

few errors are apparent for the program to be regarded as effective.

65

T he contrasting processes

The requirements - design - implementation - unit test - integration test cycle typical

of safety-critical projects conforming to DefStan 00-55 and RTCA DO-178B[MoD97,

RTC92] implies that we need to understand completely how the hardware and software

parts interact before we start to implement them. While a certain amount of iteration

through the cycle may be necessary due to changing requirements or unforeseen system

limitations, the emphasis is on getting the system’s behaviour correct by design.

Sutton and Croxford [SC95] describe how this “correctness by construction” ap

proach was been shown to save time (and therefore money) in development of a new

avionics system for the C130J Hercules II aircraft, while achieving a specified level of

system reliability. We have previously discussed the limits of confidence that can be at

tained by testing. An analytical rather than empirical approach is to be recommended.

2.3.10 F P G A usage in system s

FPGAs are used in many common electronics systems. They are used to implement

“glue logic” and bus interface protocols such as PCI [AASR98]. In these systems

their relatively small size and well-defined specifications enable testing to demonstrate

quickly that they are adequately correct for the level of integrity required. However

FPGAs have also been adopted for use in certain specialised computing machines, as

described below.

Custom M achines

SPLASH and SPLASH 2 represent a previous generation of FPGA technology (the

Xilinx XC4000 series in the case of SPLASH 2, developed between 1991 and 1994).

They were large architectures consisting of 16 or more FPGAs coupled with each other

and with banks of RAM. We focus on SPLASH 2, detailed in [BAK96].

The design of SPLASH 2 had FPGAs as atomic processing elements, each coupled

with 512 Kb of fast static memory. The FPGAs were connected by crossbar switches

in groups of 16, each group forming one element of a linear array.

SPLASH 2 was used for several distinct tasks: a major one was searching genetic

databases at a rate of 5-12 million characters per second, obtaining several orders

66

of magnitude performance increase compared to its contemporary workstations, while

priced in the $40,000-860,000 range. It was also trialled for fingerprint matching, which

was previously done by very expensive custom computing machines. This task involved

image processing to extract the skeleton features of a fingerprint, a very different task

to the text matching that the database search required. Again, the performance in

crease over a contemporary workstation (SPARCStation 10) was a factor of 1500. This

increase would have scaled well if more processing boards had been added, speed being

approximately proportional to the number of boards.

SPLASH 1 had been programmed at the logic gate level, but the difficulties that this

posed to the programmers meant that the developers designed a higher-level software

environment for SPLASH 2. The main development language was VHDL, coupled with

automatic synthesis and simulation tools. The designers chose not to use a C subset, on

the grounds that writing a C-to-hardware compiler would have taken effort away from

the mainstream of SPLASH development. Arnold [Arn96] writing in [BAK96] notes

that the developers believed that “the best model for custom computing machines is to

develop higher-level programming languages that can be compiled into a form suitable

for input to commercial CAD tools.” We examine this later in Section 4.3.10.

SPLASH 2 showed that a custom FPGA-based computing machine could signif

icantly outperform a workstation for certain tasks, and yet be flexible enough to do

very different tasks equally well.

Specialised Processing Elem ents

A practical use of the characteristics of FPGAs is described by Robinson et al [RCD98].

Their RCA-2 board, incorporating three Altera 10K130V CPLDs, is designed to process

blocks of signal data at rates of 100 Mbytes per second or greater. The CPLDs are

given local and shared SRAM, and programmed with signal processing algorithms.

This is a near-ideal application of programmable logic; the CPLDs give a flexibility

unattainable by ASICs or systolic arrays, are sufficiently fast to process the data at

the given speeds, and the circuit board is less complex than would be required to

implement the processing with a dedicated microprocessor. The resulting data can be

passed down low-bandwidth lines for more leisurely and detailed processing.

67

A different application obtaining similar benefits is cryptography. Charlwood and

James-Roxby [CJR98], implement encipherings such as Blowfish-16 [Sch94] in an XC6216

device. A 20 MHz non-pipelined implementation attained 119 Kb/s throughput, which

translated to an 8 Mb/s pipelined implementation. For comparison, a contemporary

300 MHz Pentium II processor attained less than 25% of this performance. One ob

stacle was the number of cells required by a pipelined implementation: over 4000,

as opposed to 603 for the non-pip elined version. We see from this that FPGAs can

give significant performance gains over conventional microprocessors, at much lower

clock rates. This gives us a motivation for incorporating FPGAs in high-performance

systems.

The contenders in the recent Advanced Encryption Standard (AES) contest were

specifically evaluated for their suitability for implementation in hardware. Chodowiec

et al [CKGOl], described pipelined implementations of four of the contenders. The use

of mixed inner- and outer-round pipelining enabled implementation of the contenders in

a Virtex XCV3006 device, at throughputs of 7.5 to 16.8 Gbit/sec. Mixed architecture

sharply increased CLB slice usage, by around an order of magnitude over inner-round

pipelining. More recent work by Jarvinen et al [JTS03] has improved this to a prac

tical implementation at 17.8 Gbit/sec on an existing device using a fully pipelined

memoryless design.

In contrast to the above performance gains, Shand [Sha97] examined the task of

finding approximate solutions of over-constrained systems of equations over the Galois

field GF(2). He compared the DECPeRLe-1 FPGA co-processor [VBR"'"96] with a 150

MHz Alpha 21064, which was the approximate contemporary of the DECPeRLe-1 in

terms of technology. While the FPGA machine (16 Xilinx 3000-series devices) was

faster by a factor of 60 in the search for a particular data set, the Alpha software can

be optimised for a particular data set and recompiled in seconds to close the gap to a

factor of 2 or 3. Recompiling the FPGA program data to be data-specific would take

tens of minutes, losing any advantage. So for these kind of isolated problem solutions

the FPGA is superior by far; for repeated solutions for different data sets, the FPGA

recompilation overhead becomes significant.

These studies have shown that FPGAs can confer a significant speed advantage over

conventional microprocessors; however, the performance gain appears to be sensitive

68

to the specific problem.

P lug-In Boards

Boards designed to be plugged into standard PCs are commonly used to research the

programming and use of FPGAs. A typical research FPGA board is Riley-2, described

in [MCLS97].

Riley-2 is a PCI board with four Xilinx XC6216 FPGAs, each coupled with 512

Kb of fast memory. There is also a RISC core (Intel 1960JF) on board, and 16 Mb of

shared memory. The XC6216s can be controlled directly by the i960 chip because their

configuration bits are directly accessible in the i960’s address space. There is also a

44-pin external I/O connector for external hardware such as video.

The FPGAs on Riley-2 are programmed in Cedar, an extension of C for parallel

hardware similar in many ways to the Handel-C language described in Section 2.4.4; the

i960 and the PC host software are normally written in C or C++. It allows the use of

multiple dynamically reconfigurable FPGAs rather than a single FPGA, experimenting

with shared vs. private memory, and partitioning tasks over multiple FPGAs.

Em ulation

FPGAs are often designed into systems which also contain high-performance logic chips.

These may be microprocessors, but may also be ASICs. In the design of these logic

chips, emulation is an important step in validating the design before it is sent to be

etched into silicon. Krupnova and Saucier, in [KSOO], survey the commercial emulation

systems in existence which are based on FPGAs. Compared to custom chip emulators,

these give the key characteristic of high performance, although require CPU-intensive

compilation of the simulation programs. Krupnova and Saucier regard the FPGA pin

count as the limiting factor in their use, although pin multiplexing can overcome this

to some extent.

A modern FPGA-based machine for emulation is BEE[CKRB03]. BEE is a custom

machine built with 20 large Virtex-E FPGAs and copious I/O, connected to a network

by a commodity controller card. It makes practical the emulation of a 10-million-

gate ASIC at 60MHz in real time, using up to 90Gbit/sec of data, running at over

69

200Gops/sec.

2.3.11 Sem antics o f PL D s

The incorporation of programmable logic devices into safety critical systems brings

with it a need to be able to reason formally about safety and partial correctness in the

context of programs executing on the device. Here we have three distinct needs for a

semantics of FPGA operation. It will enable us to:

• demonstrate that “programs” (data programmed into FPGA cell and routing

look-up tables) satisfy their specifications;

• refine high-level designs into code while demonstrating semantic equivalence; and

• reason about behaviour at the interface between software and programmable

logic.

The cell-and-router structure of an FPGA device leads us to consider a collection of

small individual processes reacting to input signals to produce output signals, since this

is essentially what is happening when cells are viewed as processes and their routing

is viewed as describing which signals pass to which process. Since such FPGAs may

normally be clocked by a single chip-wide low-skew clock signal to all logic blocks we

can add the additional constraint that the system be synchronous, at least from the

point of view of the cells; in reality, the interface between the FPGA and an IC such

as SRAM may not run at the same clock rate.

A model which is simple but sufficient to describe synchronous FPGA programs,

and which has a rigorous semantics, is Synchronous Receptive Process Theory. This

is described in [Bar93] and was developed from Josephs’ Receptive Process Theory

[Jos92]. It is similar in some ways to CSP, but better expresses the synchronous and

fundamentally receptive nature of logic gates: CSP allows processes to refuse events

(inputs) whereas actual gates cannot normally exercise any direct choice over the inputs

that they receive from cycle to cycle. We explore this in much more detail in Chapter 5.

Another formal representations which could be used is Timed CSP [SD95]. Timed

CSP is an improvement on standard CSP since it can express the concept of an event

70

occurring within a specific time (e.g. a clock cycle) whereas CSP can only have a known

event happening or not. Timed CSP uses the “maximal progress” mechanism where

an event happens whenever all participants are ready to engage in them. Representing

an FPGA program in Timed CSP would certainly be possible. However Timed CSP

is more complex than SRPT, allowing as it does asynchronous events. We are looking

for the simplest possible model which is sufficiently descriptive for our purposes.

Z has been mentioned before as useful in the specification of complex systems. We

could attempt to use it to describe an FPGA program. It is certainly worth considering

in terms of specifying the whole program, and perhaps even parts of the program, but

we would like our specification to be easy to refine into an implementation in something

like Pebble or VHDL. As previously noted, Z does not in itself provide mechanisms for

refinement, and the task of developing such a rigorous refinement mechanism would be

considerable.

A similar refinement-based objection can be raised for the B-Tool; it provides its

own target language, but this language is imperative and provides no native support

for parallelism.

One promising unified theory is Circus [CSW02], an integration of the CSP process

algebra and the Z specification language. This uses a Z schema to describe the state

of each process and CSP-like action to describe the control behaviour of each process.

Circus has well-defined refinement rules for transforming specifications from abstract

to concrete form.

Circus is appropriate to a development process at a higher level than SRPT. It

provides a way to refine down from an initial abstract specification to a collection of

relatively independent processes, omitting specific timing descriptions as long as they

are irrelevant.

Circus is as yet untested in an industrial-scale development; nevertheless, its frame

work and the rigour of its specification and refinement laws show promise for practical

system specification.

71

2.3.12 Issues o f co-design

An FPGA is almost always only a computational component of a system. Other

components may include one or more microprocessors executing software, a bus (such

as PCI or the military-standard 1553) and other specialised devices on the bus. When

designing the system architecture, an important question to resolve is “how shall we

divide the work among the components?” This decision will affect the critical system

properties of speed and reliability. The trade-offs to consider include timing constraints,

cost, complexity, redundancy, component functionality and required reliability.

At the moment the decision on what work to allocate to FPGAs is relatively simple

to make. Their small size means that very specialised tasks such as bus interface logic

are ideal, and most other tasks do not suit their capabilities. FPGAs work best on

processing large amounts of data in a simple way, which is not a common task in most

safety-critical systems; where it is required, such devices as DSPs are currently used.

However the increasing capacity of commercial FPGAs will enable them to undertake

increasingly complex tasks, taking load off the main processors of the system.

Partitioning Software

The decision on how to split software between a conventional microprocessor and pro

grammable logic relates closely to the field of hardware-software codesign. There are

three basic choices about when and how to partition the software:

• at design time, manually;

• at compilation time, semi-automatically; or

• dynamically during execution.

The first option is self explanatory. When the system is designed, the design team

decides which functionality should be in programmable logic and codes it explicitly.

As noted earlier, common implementation languages are VHDL and Verilog.

The second option has the software implemented in some high-level language. Dur

ing compilation sections of the software are selected for programmable logic according

to some defined criteria, and extra “glue” logic is added to allow these sections to

72

communicate with the other software sections. The manual effort in this selection and

mapping can vary from none to total.

The final option has a set of software sections implemented in netlist format. There

will be a system controller which dynamically loads the netlist data into reprogram

mable logic as required. This normally requires an FPGA capable of on-the-fly re

configuration, since otherwise the device will have to be power-cycled and interrupt

system execution. With current technology we must have constructed our library of

programmable logic routines beforehand; the place-and-route overhead is usually too

high to make any other approach practicable.

Note that the decision on when to partition is coupled with the choice of imple

mentation language. If we are to decide partition details at compile time or later then

we need a language amenable to translation into a HDL or netlist (normally EDIF)

format. The choice of language will depend on the compilation tools supplied by our

device vendor.

2.3.13 Sum m ary o f PLD technology

PLDs exist in a wide variety of designs and sizes. Their most common form for use is the

FPGA. They are widely used as glue logic, and have been used for specialised processing

tasks where an ASIC would be too expensive and a conventional microprocessor too

slow or too complicated.

We will now look at how PLD programs may be designed.

73

2.4 Program m ing PLDs

The implementation of a PLD-based system can be done in many ways. The target

“object code” will be a vendor-specific “netlist” which specifies the data to be loaded

into each cell and router of the device. To reach netlist form, several intermediate

compilation steps are normally required.

2.4.1 N etlist specifics

EDIF (“Electronic Design Interchange Format”) [IntOOa, IntOOb] is a textual language

designed to allow electronic design information transfer between different CAD systems.

It is currently implemented for netlist and schematic circuit descriptions, although

different tool vendors have significant differences in their implementations so it is not

as portable as it could be. Netlists are often stored in EDIF.

A common step in most PLD programming methods is compilation from a HDL

to the netlist; device vendors normally supply software to do this as part of the device

toolkit. This compilation has the advantage that the source program structure is

similar to the target structure since HDL designs are normally expressed in terms of

procedural logic functions. These functions map naturally onto the FPGA cells-and-

routers model. However for larger systems it is hard to ensure that a large and complex

low-level design satisfies the system specification. Note, too, that HDL and the netlist

have to deal with issues of clock signal distribution and skew across the chip, driving

of inputs and outputs, and other VLSI-related issues; such complexities should ideally

not appear in higher-level descriptions.

2.4.2 P rocess flow

A typical PLD development process fiow is shown in Figure 2.2. It illustrates the key

steps and decisions that need to be made. Note that the fiow may be changed because

of different project needs. In a safety-critical system development there would be safety

case work going on in parallel which would exert a substantial influence over design

and implementation decisions.

Where the PLD is expected to interact with system software there would be inte-

74

Functional Requirements

^ Design, partitioning j

^ Target device selection

Ç VHDL coding

Compiling:
Netlist

P lace-and-route
Optimisation

Simulation ^

[Testing]

Figure 2.2: PLD development process flow

gration work to ensure that the two components worked correctly together.

2.4.3 H igh-level hardware design

Substantial effort was made in the 1980s and 1990s to develop a hardware design lan

guage that supported formal reasoning and abstraction, two features absent from HDLs

such as VHDL and Verilog. The main exponent of this approach was ELLA[MC93], a

non-proprietary language with a formal basis.

ELLA was not a strict competitor to VHDL and Verilog, but in practice it was

treated as such. The relatively small size of hardware designs made design in existing

HDLs feasible, if not optimal. It may be that, as hardware designs and PLD dies

continue to grow in size, high-integrity requirements will make ELLA or similar design

languages more necessary. This change was seen in software with the emergence of

structured design methods as program sizes grew beyond what one developer could

manage; it is reasonable that a similar effect will eventually be seen in programmable

logic program design.

75

2.4.4 H igh-level language im plem entation

The use of a more abstract implementation language for PLD designs has received

considerable attention and is emerging as practical for some industrial applications.

The two-step compile (i.e. initially compiling to an intermediate language) is relatively

easily achieved since a number of languages have been compiled into VHDL; of note

are Ada (in [She96, WA02a]), Java (in [MK98]) and C (in [Swe98, She96]). Below we

analyse the results of this work.

Fine-grain vs. coarse-grain parallelism

A key property of programmable logic systems (each system incorporating both the

hardware and programming interface) is the granularity of the possible parallelism.

Coarse-grain parallelism is represented by programs which have individual data spaces

and communicate via specialised protocols. Fine-grain parallelism is represented by

subprograms which share a single data space and rely on careful programming by the

user to avoid race conditions.

The fine-grain model is a better representation of a typical PLD program, where the

limited space on the device may be used most effectively by a large number of simple

parallel computations which share data wherever possible; duplication of data storage

(the way of coarse-grain parallelism) wastes device space. We believe that aiming for

fine-grain parallelism from the outset holds the key for a significant general increase in

the use and speed of PLDs.

Java

The JVX Java prototyping system [MK98], for instance, compiles a single method in

isolation to VHDL and uses a modified JVM interpreter to interface with any methods

in reprogrammable logic. However, it appears that it is not currently possible to com

pile into hardware any method which calls another method. The automatic interfacing

between the JVM and the FPGA is an interesting step from the point of view of par

titioning; the user need make no special changes to a method for it to become VHDL.

However it is not clear that the Java language itself gives any significant benefit to the

effort.

76

Snider et a l , in [SSCOl], map a generic object-oriented language (subsets of C++

and Java are given as examples) directly into device configuration data for Virtex

devices. The general approach is to write classes that extend a Machine base class,

taken to be the smallest unit of execution. Functions s tep O , input () and output ()

define the machine’s actions. The compilation relies on heavy optimisation in order

to extract fine-grained parallelism from the user’s medium-grain specified parallelism.

Low-level optimisation specific to the target is then performed; this section of the

compiler would therefore have to be rewritten for each target device.

The interesting points about this approach are that the source language is essentially

unmodified, and that the compilation does not go through VHDL or Verilog. However,

the full range of the source language is not used.

Xilinx have recently released their FORGE design language which is Java-based, but

it is immature and there is little public information about its structure and reliability.

Com posing hardware

An early compositional hardware language was Ruby [JS90]. Ruby was based on

the idea that circuits are built from parts by a process of composition, which has

mathematical properties similar to the composition of functions and relations. It was

studied in the early years of FPGA use but fell out of use and study. However, its key

ideas have been evident in more modern work.

A modern development of Ruby is the Lava project being undertaken by Xilinx.

The project involves Mary Sheeran, one of Ruby’s original researchers. Lava[CSOO] is

a prototype HDL, not supported by official Xilinx toolsets, but has been developed

and is in use at Chalmers University in Sweden. It trades off the expressiveness of

full VHDL or Verilog for compactness and simplicity of descriptions of common circuit

layouts. Currently it is implemented by being embedded in the widely-used Haskell

functional programming language. One proposed commercial use of Lava, cryptogra

phy, is described below.

77

Occam

Mpeller-Nielsen and Caprini proposed “occam on a chip” in [MNC95]; the universal

system programming language was occam [Ltd84], some section of the software was se

lected to be implemented in hardware, and two communication channels were added to

control handshaking between software and hardware. In this particular case the target

hardware was a transputer-like chip, reducing the required amount of compilation of

the occam program, but occam is a good starting language if the hardware is PLD-like

too. Occam’s bit-level variables, ease of expression of parallel computations and simple

inter-process communication channels map well onto the architecture of PLDs.

The main problem with this approach is the opposite of that with a high-level lan

guage such as Java; programming the parallel hardware part is relatively easy, but the

Occam language has not proven suitable as a general-purpose programming language.

The demise of the transputer after Inmos were absorbed by SGS Thomson meant that

occam was no longer a practicable implementation language for the mainstream x86,

ARM and PowerPC-based systems.

Oxford University’s Hardware Compilation Group have taken a number of ap

proaches to this problem. Their earlier approaches included Ruby (described above)

and Handel [PS93], which was an occam-like innately parallel synchronous language.

Handel was much more of a programming language than Ruby, allowing an elegant

expression of the parallelism of a program, but required much more effort on place-

and-route than Ruby’s compositional model.

H andel-C

The company Celoxica (formerly Embedded Solutions Ltd.), spun off from the Hard

ware Compilation group, is focused around use of the Handel-C language and the as

sociated DK Design Suite. The Handel-C language is described in [Cel02j. It extends

ISO-C syntax in the following ways:

• variables specified in bit-width;

• macros for bit-manipulation; and

• explicit RAM/ROM hardware elements.

78

Its semantics, however, are closely related to those of occam (and hence, CSP). The

language model includes:

• a timing model, where each assignment or delay statement takes exactly one time

step to complete;

• signals and channels for inter-thread communication; and

• a deterministic parallelism model.

An example of the use of Handel-C for a real application appears in [Swe97]. Handel-

C is interesting both as a syntactic extension of a widely-used medium-level language

and as a rewriting of the (implicit) sequential semantics of one language into explicit

a timed parallel semantics. Nevertheless it falls short of the ideal language for our

safety-critical systems, principally because C is an inherently unsuitable language for

the implementation of highly reliable systems and because Handel-C borrows so much

from C that it includes many of C’s defects.

C’s failings are described by Romanski in [Rom96]. The author is a recognised

expert at making systems conform to the RTCA/EUROCAE DO-178B civil aviation

safety standard. He makes the key comment “The [C] language attempts to hide

the underlying machine so that programs become portable between different machines.

Unfortunately, the target characteristics show through.” The lack of strong typing, sub

stantial unspecified or implementation-dependent behaviour, and language constructs

such as unbracketed single clauses and admissibility of assignment into conditions in

C are viewed by Romanski as some of the chief deficiencies that make it unsuitable for

inclusion in safety-critical systems, even if a “safe” subset is used. Additionally, if we

wish to abstract away as much as possible of the details of the target hardware then

the use of a low-level language such as C appears to be going in the wrong direction.

An example of the problems Handel-C faces is the par construct, allowing parallel

execution of multiple statements. Strictly speaking, race conditions cannot arise be

tween threads because of the deterministic timing model. If thread 1 writes to variable

A and thread 2 reads from variable A, whenever the program is run thread 2 will al

ways get the same value of A. However, changing the order of statements in thread 1

may change the value of A read by thread 2. This instance of “law of the unintended

79

consequence” would be a significant worry in building a safety-critical sub-system in

Handel-C. The language also allows the use of types without explicit bit width, per

mitting their actual width to be inferred at compile time. This can only lower the

predictability of such programs.

Handel-C may well prove useful in lower-integrity system development, and its use

of fine-grain parallelism is intelligent, but it cannot seriously be considered for critical

systems.

A da

The syntax of Ada is very similar to the syntax of VHDL, which leads to the natural

question of whether it is feasible to map between the two underlying languages. This

was initially addressed by Sheraga[She96], with more recent work by Ward and Audsley

[WAOl, WA02b, WA02a] making progress towards a viable compiler.

Ada was designed as a language suitable for programming safety-critical systems,

and includes facilities for precise definition of type ranges and parallel programming

(“tasking”) which are required for many embedded systems programs. Ward and Auds

ley describe the construction of the York Hardware Compiler for sequential Ada [WAOl]

and its extension to the Ravenscar subset of Ada’s tasking facilities [WA02b]. It should

be noted that they choose to use the SPARK Ada subset due to the structural re

strictions which it imposes on Ada, which improves analysability. The compilation

produces a netlist implementation of the program which can be compiled directly to a

target device.

The motivation for this compilation has been to improve worst-case execution time

analysis; bounding execution time on a program executing on a real-time operating

system is more difficult than for the same program executing alone on a PLD. However,

no mention is made of bounding loop execution counts, which is fundamental to such

calculation. Since SPARK Ada admits proof of selected program properties such as

maintenance of loop invariants and strict monotonie decline of variants, this should

have been exploited. Worst-case timing analysis of SPARK has been analysed in detail

by Chapman[Cha94] but this work has not been referenced by Ward and Audsley.

There is little discussion of interfacing a PLD-compiled program to another program

80

running in software, which is fundamental to making PLD programming effective for

large systems. In [WA02c] the authors discuss practical improvements to the Ada

language to make it easier to interface to PLDs and improve fine-grain parallelism of

Ada programs, but fail to exploit the known data-fiow in SPARK programs for this

purpose. The evidence of scalability in program size is very limited. Compilation

of some small programs is demonstrated, but none incorporating subprogram calls or

tasking constructs are shown. There is no discussion of optimising the compiler for

time or space.

This approach is interesting, in that it shows that Ada compilation can be done

in practice and that SPARK Ada and Ravenscar are useful subsets to adopt, but the

approach not been shown to be effective and practical for programs similar to those

used in actual development and has not exploited SPARK Ada’s features to the full.

Esterel

The synchronous programming language Esterel [BerOO] was used by Hammarberg et al

[HNT03] to implement a demonstration hydraulic fiuid detection system on an FPGA.

Esterel is a language for programming reactive systems; we contrast it with the SRPT

process algebra in Section 4.1.10. It can be compiled to VHDL or Verilog, which is

how the fiuid detection system was produced. It is certainly suitable for programming

reactive systems on PLDs, and has a formal (synchronous) semantics, but there is

as yet no public information about its use programming PLDs for real safety-critical

reactive systems.

D om ain-specific languages

One high-level alternative to conventional programming languages is CoreFire, de

scribed in [McH02]. This is used to produce high performance applications to run on

the Annapolis Wild FPGA boards. It uses a “sticks and bubbles” graphical interface

to draw program data flow. The main drawback with this system is the tie to the Wild

board, whereas anything that compiles to VHDL will normally target a much wider

range of commodity hardware. However, this has not deterred engineers at the Naval

Research Laboratory (NRL) in Washington D.C., who are developing FPGA solutions

81

for electronic warfare using CoreFire. It demonstrates that in restricted application

domains there is a role for high-level design methods.

A more recent proposal has been made in the domain of cryptography. Launch-

bury and Singh [LS03] propose the use of the declarative functional language Cryptol.

This allows compact expression of common cryptographic transforms in a functional

language syntax. It is currently supported by compilers targeting the C (imperative)

and Haskell (declarative functional) languages. The authors propose a PLD-targeted

tool chain, using the Lava language embedded within Haskell. This work is at proposal

stage, and depends on immature tools, but its concepts appear to be sensible.

2.4.5 Low-level language im plem entation

Describing a PLD program in a high-level language may be inappropriate; indeed, for

early PLDs it was not practicable because of the small size of the devices. Even with

large modern FPGAs, certain programs may be better designed at the logic component

level.

In [ABOO] Abke and Barke describe CoMGen, a tool to render low-level component

descriptions into look-up tables. The input descriptions are in Verilog macro and gate-

level netlists. The generator is not tied to one FPGA; it has an interface to an external

floorplanner for sizing components appropriately for the target device, and does its own

place-and-route. Mapping the finished netlists to a form suitable for programming the

target device is done externally.

This approach is of interest because it classifies the low-level compilation steps into

general and target-specific classes. How low-level programming for a given application

is actually done will depend on several factors. If multiple devices are to be used,

reducing the device dependence by using a tool like CoMGen makes sense. If a single

device is to be used, the decision will depend on the perceived quality and useability

of the vendor’s tools.

2.4.6 P ebble

The “Pebble” language described in [LM98] is a more abstract representation of VHDL.

The language is based upon the definition, instantiation and coupling of logical “blocks”

82

which perform simple tasks synchronously. A Pebble representation of a half adder,

for instance, is:

BLOCK halfadder [si,s2:Wire] [cout,sum:Wire]
BEGIN

xor2 [sl,s2] [sum];
and2 [sl,s2] [cout]

END;

This expresses the half-adder as a coupling of XOR and AND gates. The naming

of the wires within the block relate input and output wires of blocks. Other Pebble

constructs allow parametrisation of blocks by size, placement constraints and condi

tional compilation. The “primitive” blocks in Pebble are expressed as blocks with an

empty body; these will be constructs which the target device can implement with a

single cell.

Pebble appears to hold considerable promise as a target for higher-level languages.

A compiler for Pebble into structural VHDL or a netlist for the “Rebecca” simulator

has already been demonstrated and is also described in [LM98]. The structural VHDL

produced can then be compiled into a specific device by the appropriate vendor tools.

Pebble is especially interesting in this context because it may be viewed as an

abstract representation of a PLD program which may be directly reduced to a cell-

level implementation. As an example take a carry-look ahead iV-bit adder which can

be composed recursively by half-sized CL A adders until the single-bit level is reached;

at this point full adder blocks can be used to form the building blocks of the system.

We express this in more detail in Section 5.3.

Once the PLD program has been reduced to wire-connected computational blocks,

the unavoidable device-specific mapping occurs. In a Xilinx 6200-series device, for

instance, a half adder can be built on one cell, but simpler devices with only one

output per cell would require two or more of their cells to be configured and linked to

produce the full adder functionality. Therefore Pebble is in some respects the lowest

level device-independent step in a compilation. This is a strong indication that Pebble

should be considered as a target for high-level compilers. We develop this approach in

Section 4.2 and apply it in Section 7.2.

83

2.4.7 T esting PLD program s

Testing is a vital part of the development cycle of any significant system. It has three

main aims:

1. to verify that the program loaded was the program intended;

2. to locate errors in the system software during development; and

3. to provides a level of assurance that the completed product fulfils its requirements.

Aim 1 is normally achieved by readback, as described in Section 2.3.5.

Aim 2 is normally achieved by what is commonly called unit testing; assuming that

the software is divided into modules, the elements of each module are tested according

to their design. Problems may arise here when the software design is very detailed;

there is a temptation to derive tests from the code, which nullifies many of the benefits

of testing. Ideally, the author of the tests would be independent of the author of the

software, and would not have access to the implementation details of the source code

for which he or she was writing the tests.

Aim 3 is achieved by running on the completed product a series of tests derived from

the requirements (often called functional testing or integration testing^ run in sections

during development to check that modules work together properly), and showing that

each test result is correct. The level of assurance provided will depend on a number of

factors:

• the number and range of tests provided;

• the rigour with which the tests are derived from the requirements; and

• the proof that the system components tested are those in the final product.

The latter point is not trivial. Without good configuration management in the

project, it is difllcult to prove the required proof.

How should we test PLDs? Since they are a mixture of software and hardware

engineering, we should examine testing techniques from both fields. We must also

consider testing methods particular to the peculiar design of PLDs.

84

R equirem ents testing

The first set of tests will be requirements-based, checking that a given set of inputs

produce the desired set of outputs within a specified time. Generating test cases from

requirements is a well-understood problem, and there is little more to say here. The

key is to make requirements independent of implementation techniques where possible,

to avoid unnecessary restriction of the solution space to software or programmable

hardware.

If a high-level language has been used to specify the PLD program then it may be

useful to write unit tests for the PLD based on that high-level representation; this acts

as a check that the potentially complex compilation and optimisation of the FPGA

netlist has worked correctly.

Hardware fault detection

The hardware aspects of the PLD require more thought. Renovell, in [RenOO], de

scribes a scheme for testing the interconnect, logic cells and RAM cells in a symmetric

SRAM-based FPGA. These tests consider cases such as open and short between inter

connections, stuck-at cases for logic and RAM cells, transition faults, coupling faults

and address decoder faults in RAM cells.

This testing is done by feeding in explicit test configurations into the FPGA before

loading the actual system configuration. Hence, we have a reasonable likelihood of de

tecting faults inherent in the FPGA, but must also consider the possibility of spasmodic

errors in the configuration data. Our testing here will be affected by the permanence

of the FPGA configuration. An SRAM-based FPGA will have its configuration loaded

at each power-on, and so will have a greater likelihood of configuration error than a

Flash-based FPGA which may only be reprogrammed three or four times in its life

time. When drawing up a test plan for a system incorporating FPGAs, these factors

must be considered. The developers will have to choose whether to ignore configuration

errors, detect and report them (possibly shutting down the system subsequently), or

taking measures to mitigate their risk such as using redundant hardware, exploiting

PLD program readback or using a voting scheme.

An example of a triple-redundant PLD program design scheme including error de

85

tection and periodic program re-loading is described by Lima et al [LCR03].

T im ing errors

Timing issues are a significant consideration in designing ASICs, and serious computa

tional effort is devoted towards simulating ASIC designs in order to catch timing issues.

This simulation is not generally available for normal FPGA designs, but the problem

of timing issues is still present. Krasniewski, in [KraOO], shows how delay faults can be

detected in an FPGA. His approach is to modify the contents of look-up tables in such

a way that the LUTs become much more vulnerable to path delay; random testing of

the modified program is then carried out to attempt to detect such faults.

Crosstalk

“Crosstalk” is the phenomenon due to inter-wire capacitance whereby switching in one

trace of the FPGA may change the voltage in another trace. The shrinking feature

size of integrated circuits has made crosstalk an increasingly important consideration

in place-and-route. Wilton, in [WilOl], describes a routing scheme which optimizes

for delay in the presence of crosstalk, and which demonstrated a 7.1% improvement

in routing delay over its parent routing scheme. This indicates how important the

consideration of crosstalk can be for system performance. It is also another complexity

in the design of routers, especially in safety-critical systems when all potential crosstalk

effects must be eliminated.

2.4.8 Sum m ary o f program m ing PL D s

PLDs are generally programmed at the HDL level, in Verilog or VHDL. There is a

move towards programming in subsets of C and Java, adapted to take advantage of the

PLD’s parallelism. However, these programming languages appear to be inadequate for

programming components of high-integrity systems. The occam fine-grained parallel

model appears to be a useful base for language design. The use of Ada is promising

but remains to be shown to be practical.

There are mechanisms for testing PLDs, but their reconfigurability means that a

class of reconfiguration errors must be explicitly tested for, over and above the normal

86

software and hardware tests.

The hardware nature of PLDs introduces extra potential faults, such as crosstalk

and timing issues, which require trapping and testing over and above that used for

conventional software.

Given these issues, we will now look at the suitability of PLDs for use in safety-

critical systems. We will also examine the state of the practice for such use.

87

2.5 Safety-Critical PLDs

2.5.1 R esearch directions

Any new work on incorporating PLDs into safety-critical systems should represent

an advance in concurrency research. Before we investigate this problem, we should

bear in mind the conclusions of Cleaveland et al [CS"^96] in their recommendations on

concurrency research. They isolate the following relevant topics for which challenges

exist:

A lgorithm ic su p p o rt to develop methods which can cope with the state-space ex

plosion problem inherent in concurrent system design and verification, perhaps

by a decomposition and refinement process;

Tool su p p o rt to make tools portable and scalable, and better integrated into the

software engineering lifecycle;

Technology tran sfe r to expose existing design and verification technology to real life

industrial and defence applications, to improve the technologies and to encourage

their uptake by example; and

Program m ing languages to design usable, safe and secure languages incorporating

a well-understood concurrency model.

We will incorporate these aspects in our problem statement in Section 3.5.

In this section we look at the emerging UK Defence Standard 00-54 and the RTCA

standard DO-254, relevant to PLDs in safety critical systems. We see how a system

safety analysis should incorporate any programmable logic in the system, and discuss

how we might improve a PLD program to increase safety and reliability. Finally we

summarise the key needs for the system developers who build programmable logic into

their systems.

2.5.2 Safety o f PL D s

Placing a programmable logic device into a safety critical system should result in an

immediate assessment of the impact of the device’s behaviour on the rest of the system.

This enables the system designers to establish whether the addition of the device has

made the system less safe. A “white box” safety analysis procedure, such as described

by Simpson and Ainsworth in [SA99], will trace the output data of the device through

the system and determine whether it can contribute to any predetermined system

hazard.

An example might be an FPGA built to compute a customised Fast Fourier Trans

form of some data. If this data is determined to be safety-critical, for example as an

input to an aircraft’s fly-by-wire control system, then the safety analysis must show

that the data produced has an adequate probability of being correct. Suppose that a

10~® chance of an aircraft being lost on a typical mission due to system failure was

deemed acceptable. The onus would then be on the safety team to prove that the prob

ability of dangerous data being generated by the FPGA on such a mission, multiplied

by the probability of such data causing aircraft loss, was less than 10“®.

The system designers typically face a dilemma; should they ensure that the device’s

functionality is limited to prevent it contributing to a hazard, or should they attempt

to demonstrate its correctness? The former may require a major system redesign; the

latter requires a solid formal basis from which to argue.

White box safety allows us to analyse the errors that might occur in the FFT

computation. If we can show, for instance, that the expected results of an erroneous

calculation are distributed evenly across the result space, and that a simple sanity-check

can detect 90% of such errors, then we could perhaps formulate an argument that only a

10“® probability of calculation error is required. However, things are seldom so simple!

Gibbons and Ames, in [GA99], describe the experience of using an FPGA as a key

element in the circuitry of a pyrotechnic release for the NASA Wide Field Infrared

Explorer (WIRE) satellite experiment. The telescope cover was prematurely opened,

causing hydrogen venting from the spacecraft and consequent high torque rates, venting

all the solid-hydrogen cryogen within hours and rendering the instrument unusable for

its intended mission. The premature opening was due to undefined behaviour of the

FPGA (an Actel 1020) during power-up that permitted a 14 millisecond power spike

on the outputs. Spacecraft hardware testing did not detect this problem.

A PLD program could be proven to be completely correct against its specification.

However, correctness cannot avoid failures triggered by phenomena which can occur

89

even before the program starts its execution, such as in the case of the WIRE satellite.

In general, proof of correctness only guarantees that the program will be able to address

conditions explicitly considered in the formal specification; nothing else is guaranteed.

2.5.3 Safety standard: D efence Standard 00-54

The UK Defence Standard 00-54 [MoD99] specifies requirements for electronic hardware

in military systems. It is considered to be appropriate if an electronic element of the sys

tem affects the system’s safety. As with other UK Defence Standards [MoD97, MoD96]

it is split into two parts; Requirements and Guidance. The techniques described in the

document are to be used to analyse complex electronic designs for systematic failures;

dealing with random failures is discussed in Defence Standard 00-42 [MoD94]. All of

00-54’s recommended procedures are to take place under the umbrella of the safety

management standard Def Stan 00-56 [MoD96].

Relevant quotations

The standard’s recommendations which are of particular interest to us are in sections

12.2.1, 13.4.1 and 13.4.4. To quote:

§12.2.1: A formally defined language which supports mathematically based reasoning

and the proof of safety properties shall be used to specify a custom design.

§13.4.1: Safety requirements shall be incorporated explicitly into the Hardware Spec

ification using a formal representation.

§13.4.4: Correspondence between the Hardware Specification and the design imple

mentation shall be demonstrated by analytical means, subject to assumptions

about physical properties of the implementation.

where “custom design” refers to the particular electronic component in question and

in particular to a PLD’s program data.

M otivation

The standard’s guidances provide more information about the motivation behind the

standard. To quote: “The principal concern which has caused this Interim Standard to

90

be produced is that electronic hardware designs used in critical applications have been

getting steadily more complicated [...] Therefore the focus of this Interim Standard

is on analysis and proof to supplement test.” It also notes that widely used standard

HDLs without formal semantics, such as VHDL and Verilog, present compliance prob

lems if used as a design capture language. Examples given of suitable languages are Z

and VDM.

Standards evolution

The standard is only interim, and its contents will almost certainly change when it is

incorporated into Issue 3 of Def Stan 00-56 in early 2004. Nevertheless, the concerns

which it expresses about existing practices and its suggestions for process improvements

are worth careful scrutiny. A language which supports formal reasoning about PLD

behaviour is what is required for compliance with this standard.

There is an on-going program in the UK Ministry of Defence relating to the de

velopment of guidance for the design and procurement of systems conforming to the

Advanced Avionics Architecture (AAvA) for military aircraft systems. There is a spe

cific guide about the use of PLDs in such systems which has been released in preliminary

form as [Hil03a]. This in turn is expected to inform the re-write of 00-54. This guide

encourages the goal-oriented approach to generating safety evidence demonstrated in

the rewrite of the SWOl regulatory impact assessment for the CAP 670 Air Traffic

Safety requirements [Civ02]. It seems reasonable that most parts of Issue 3 of 00-56

will adopt this form.

The previously noted increase in PLD capacity and speed, enabling them to perform

more complex and time-critical tasks, in turn increases the likelihood that they will be

a critical component in a safety-critical system. Without a generally applicable method

of reasoning about their correctness to the standard that SIL-4 requires, such a system

is unlikely to gain regulatory approval.

2.5 .4 Safety standard: R TC A D O -254

RTCA DO-254[RTCOO] is the programmable hardware counterpart of RTCA DO-

178B[RTC92]. It was approved by the FAA in 2003 for use in aviation systems de

91

velopment. The author of this thesis has had experience in applying it in practice to a

hardware development, and therefore has a well-founded perspective on its practicality.

Like its software counterpart DO-178B, DO-254 defines a set of required integrity

levels A to D, with Level A being the highest integrity. The emphasis in DO-254 is

on providing a practical guide to the development process for the PLD program and

associated documentation. The advice is normally generic for the integrity level, with

Appendix B describing particular techniques that may be appropriate for high integrity

systems which DO-254 defines as Levels A and B. It is not normally prescriptive, leaving

it to the developers to choose (and justify) the advanced analysis methods to use in

high-integrity systems.

The key to producing high-integrity systems conforming to DO-254 is to do func

tional failure path analysis (FFPA) as described in Appendix B section 2.0 of DO-254

to identify system hazards, deduce where the system may cause them, and justify how

in each case the hazard is mitigated. Arguments may include manual analysis of the

HDL or netlist, formal analysis techniques, mitigation through features of the system

architecture, and in-service experience. Interestingly, it makes practical recommenda

tions on qualifying hardware compilers for high-integrity work.

Where Defence Standard 00-55 and RTCA DO-178B are distinctly different in con

tent, with 00-55 emphasising rigour over DO-178B’s extensive testing. Defence Stan

dard 00-54 and DO-254 are more complementary. DO-254 provides practical advice

without forfeiting the requirement of a rigorous approach where appropriate; 00-54

provides the detail of appropriate rigorous approaches.

2.5.5 PLD correctness

We have already noted the difference between safety and correctness. How should we

go about demonstrating that a PLD’s behaviour is correct?

There are two choices for a strategy here. The more common is “show that the

implementation does what the requirements say.” This tends to rely on model-checking

with a theorem-proving tool. The second strategy is often initially harder: “develop

the requirements into an implementation” which is known as refinement.

92

M o del-checking

The essentially synchronous property of a PLD’s circuits may help the model-checking

problem. Pierre, in [Pie95] describes the use of the Boyer-Moore Theorem Prover

to verify synchronous circuits. He uses a 4-bit binary-coded decimal (BCD) checker

and an iterative integer factorial generator as examples. The verification process was

automatic for the first example, but required several man hours for the second, more

abstract example.

Here we see the key weakness of such an approach: model checking is hard, interac

tive, and usually will only be able to tell you whether your system is correct, not what

is required to fix it. Tracing the cause of and correcting a failure is a separate process.

In addition, if care is not taken then the size of the model can easily grow to the point

where it is computationally infeasible to model-check it completely. Often it will be

better to prove correct the critical subset of the PLD logic.

Model-checking has been used successfully in verification of specialised processors.

Srivas and Miller describe in [SM95] the verification of the Rockwell AAMP5 micropro

cessor. The verification was carried out at instruction-set and register-transfer levels.

This was possible even though the AAMP5 microprocessor was not designed for formal

verification, illustrating the strength of model-checking as a retrospective technique.

However, AAMP5 was not a general-purpose microprocessor and was not available

directly for public use.

The use of model-checking to identify undesirable properties in complex commercial

hardware has recently been demonstrated by Intel[SchOS] in their verification of the

Pentium 4 processor. Following a 3-4 fold increase of pre-silicon logic errors in each

generation of the IA-32 architecture, Intel applied model checkers to verify the critical

properties of non-fioating point arithmetic of the Pentium 4 at the netlist RTL level.

The fioating-point arithmetic required the addition of a theorem prover to formally

verify correctness, model-checking alone being impractical.

For a very small or very structured PLD program, manual inspection of the netlist

may suffice. This must be judged on a case-by-case basis, and it may be necessary to

use techniques such as fault injection to estimate the reliability of the inspection.

93

Refinem ent

As with the first strategy, rigidly defined requirements and an implementation language

with properly defined semantics are necessary for the approach to be meaningful. Re

finement of requirements to a PLD implementation is usually done in a series of small

steps. Each step’s induction from the previous one relies on the correct use of a set

of predefined refinement rules. There is a gradual progression from the high level lan

guage of the requirements to a low-level language which may be implemented on the

target device.

This second approach requires more “up-front” investment of time and effort. A

working implementation may not appear until late in the development process as it

is produced by the very last step of refinement. However, the correctness of the im

plementation is guaranteed, excepting the possibility of human error in the refinement

steps. These refinement steps are normally amenable to individual verification by man

ual inspection. The main disadvantage of refinement compared to the model-checking

is that a late change in requirements may require much of the refinement process to be

repeated.

For a high-integrity or safety-critical system of substantial size, the above consid

erations suggest that the second strategy be the approach of preference. The main

difficulties in using it will be in the choice of a suitable low-level language with well-

defined semantics, and in the early and correct elicitation of requirements. For the

latter task, there are well-established requirements engineering tools such as Cradle

[Str98] and methods such as REVEAL [Vic98].

2.5.6 Verification

We have already covered the issue of how PLD programs are tested in Section 2.4.7.

For high-integrity systems we must also consider verification of PLD programs.

Robinson and Lysaght [RLOO] examined the problem peculiar to FPGAs of verify

ing dynamically reconfigurable logic. They extended the Dynamic Circuit Switching

framework to track the status of dynamic tasks, and monitor these statuses to detect

certain classes of error. However, this testing is dynamic and so acts more as a run-time

self-test than as a method to exclude the possibility of error in the first place.

94

Bartzick et al [BHKWOO] presented a design of FPGA which is intended to detect

simple faults within itself and hence be fault-tolerant. The test of the FPGA is executed

after programming, and occurs in 32 clock cycles so is not significant in terms of total

program execution time. Each block has three normal cells plus a fourth “X” cell which

takes over if any one of the cells is determined to be faulty. This approach is worth

considering in designing an FPGA for use in high-integrity systems.

Sawitzki et al [SSSSOO] described how they verified the data path of a microprocessor

including a reconfigurable processing unit. This was done according to a specification

in hardware description notation, describing the change in state of the processor for

each instruction. They used the Stanford Validity Checker [BDL96] proof tool. The 16

hardwired instructions took an average of 80 minutes each to verify; the 9 reconfigurable

instructions took over ten times that time each. However, they did not describe in detail

why the reconfigurable instructions took so much longer to verify.

2.5 .7 Self-testing

A technique in current use for PLDs is the use of self-testing and fault detection. Lima

et al [LCR03] described a modification to the existing practice of triple-redundant

circuits on FPGAs prone to disruption from charged particles. The use of delay in

circuits, voting on outputs and regular re-programming of the FPGA (“scrubbing”).

This allows 100% detection of single-event upsets in the FPGA, and approximately

90% elimination of the errors.

This is not a replacement for more formal techniques, but provides a useful brute-

force method of reducing the impact of common problems.

2.5.8 Em ulation o f PL D s

During development of a system, it may be that the developers need to integrate

their software modules with the programmable logic. Here we run up against the

practicalities of system manufacture. It is unlikely that the system hardware will be

built until relatively late in the development process. How then should developers do

this integration?

One option is for developers to fit their PCs with a standard PLD development card

95

which are available from the device manufacturers. These boards, such as the XS40

[XES99] from XESS Corporation, can fit in a standard PCI slot or parallel port on the

PC, and provide an FPGA which can be accessed by software on the PC. This is an

extra expense, but is unlikely to be significant in a large project. The difficulty is that

the program for the PLD may not yet be written, or at least still be in a state of flux.

If a high-level language is being used to program the PLD with a program D, and

can be compiled into the main software program P, this makes life easier. The initial

integration testing can take place using D, then the program can be changed to access

the PLD proper as it becomes available. This also has the advantage that, if a module

functions properly with D but fails systematically when the actual device is used, this

may indicate a failure in the hardware compilation process; the implementation (PLD)

does not do what the specification (D) does.

For purposes of realism, there will need to be some form of wrapper W () around D

when it is compiled into P since interfacing with a PLD adds complexities which the

wrapper must emulate, notably;

• the PLD runs in parallel with P, with no natural synchronisation;

• communication with the PLD must be done in a hardware-specific manner, pos

sibly also in a compiler-specific manner; and

• communication must normally be assumed to be asynchronous.

The way that such a wrapper will be implemented will vary significantly according

to the high-level language and PLD chosen. Ideally W{F) will encapsulate the details

and present an interface which is very similar to that for interfacing with the real PLD.

2.5.9 Im plem entation too ls

The state of the art in languages and tools used in safety-critical systems tends to lag

behind the leading edge of industry by several years. It is instructive to examine why,

as the reasons have significant implications for the choice of techniques to program

systems involving PLDs.

The foremost reason is reliability. A compiler, microprocessor or design tool is

typically shipped with a number of errors, some known at shipping time or shortly

96

thereafter (e.g. the infamous Pentium FDIV bug), but other more subtle problems

may take months or even years to become evident. For this reason, implementors of

safety-critical software tend to choose a compiler that has been stable for at least a

year and then work around the known errors. Newer versions of the compiler may have

these known errors fixed but there is no guarantee that new unknown errors have not

been introduced.

This was particularly evident when the Ada 95 compilers started to be released;

for a while safety-critical systems customers were still choosing the Ada 83 compiler

because it was a known quantity, even though the Ada 95 language was far better

in general functionality and had fixed long-standing problems of Ada 83 such as the

inability to read output-only parameters in subprograms. The author is personally

aware that Ada 83 compiler licenses were still being sold by vendors such as Rational,

and Ada 83 programs being written from scratch, in early 2003.

As far as hardware is concerned, the usual choice for a complex IC in a safety critical

system is a chip which is one or more years behind the state-of-the-art at the time of

system design. This is because any design defects in the IC should have become evident

by then, and related software tools (such as netlist compilers in the case of FPGAs)

will have had a similar period of use to uncover errors. Also, since many safety-critical

systems have a long development and production cycle, by the time of release the

system’s hardware may be several years behind the leading edge.

For these reasons, if we are looking to incorporate PLDs running a compiled lan

guage into a safety-critical system then we ought to choose a well-established compiler

and a device which is not leading-edge in technology. As a consequence, devising an

all-new language for programming our safety-critical PLD runs the risk that no devel

oper will use it until someone else has tried to do so and has discovered most of the

compiler and language errors; by this logic, no safety-critical developer would take the

risk of being the first to use the technique in a real system.

2.5.10 K ey directions

Taking the preceding data into consideration, we can summarise the following require

ments for PLDs to be incorporated into a safety-critical system:

97

• a specification or design language to codify formally the system requirements;

• inclusion of the PLD program within the safety analysis of the system;

• a well-defined semantics of the target device to permit full or partial proof of

correctness of the system;

• a formally defined refinement process for developing specifications to PLD imple

mentations;

• a suitable high-integrity high-level language for implementation of the software

component of the system;

• an appropriate generalised and adaptable testing process to test PLD programs

in isolation and within the system; and

• a method for interfacing system software with either the PLD or a software

emulation of it, as transparently as possible.

98

2.6 Conclusions

PLDs in their current state provide sufficient performance and size to perform substan

tive (if relatively simple) tasks. With their increasing complexity comes the likelihood

that they will be incorporated into more and more safety-critical systems as critical

components, yet to date there is no satisfactory or widely-used method of reasoning

about their functional correctness at either the component or system level. Without

this they are a point of failure waiting to fail, with potentially catastrophic conse

quences, and new safety-critical electronics standards such as Def Stan 00-54 or RTCA

DO-254 may prevent their incorporation as critical system components.

2.6.1 W eaknesses o f current research

The main weaknesses of the existing research are:

• high-level PLD programming languages are not related to the requirements of

DefStan 00-54[MoD99] and RTCA DO-254 [RTCOO];

• the formal specification and analysis techniques used for synchronous parallel

systems are not related to the development of practical and useful hardware-

software systems under DefStan 00-54 and RTCA DO-254;

• the existing high-level programming languages which can be compiled into PLDs,

with the exception of Ada, are not suitable for programming critical systems;

• the existing compilation techniques for Ada do not take full advantage of the

SPARK Ada subset and have not demonstrated scalability to practical program

sizes and designs;

• the existing compilation techniques for Ada do not address the development of

an Ada program partly in software and partly in hardware; and

• there is a general deficiency in demonstrating techniques to be practical at the

scale of a typical modern embedded control system.

This thesis must address as many of these needs as possible. In Section 8.2 we will

re-visit these weaknesses to see which of them we have covered and to what degree.

99

2.6.2 R esearch needs

The greatest need in this field is for a generalised model of a PLD with a well-defined

semantics, and a low-level device-independent language (with similarly rigid semantics)

such as Pebble to act as a target for high-level languages. Without it, any attempt

to reason formally about PLD correctness will depend too much upon the particular

properties of the device under examination.

Such a model would permit research into high-level languages and techniques for

safety-critical system implementation without the concern that the results of such

research would be tied to a particular implementation, and provide a sound formal

basis for proving safety properties of the PLD and the system in general.

In the next chapter we provide a detailed statement of the problem arising from

the above information, and set out criteria for judging whether it has been solved.

100

Chapter 3

Statem ent o f Problem

This chapter identifies the problem which this thesis aims to address and sets out

criteria for deciding whether and how the problem has been solved.

The purpose of this chapter is to provide a direction for the rest of the thesis. We

summarise the current state of research in the fields of programmable logic and safety

critical systems, as detailed in the previous chapter, state the problem we intend to

solve, and identify the areas in which this research will make advances. We then specify

the advances we intend to make.

At the end of this thesis we will need to determine whether its contents have pro

vided a substantial addition to knowledge in the use of programmable logic devices in

safety-critical systems. To this end we lay down a series of targets for our research,

and for each of them list criteria for deciding whether that target has been met.

Finally we list the targets addressed by each of the future thesis chapters.

3.1 Current State of The Art

The literature survey has established the following facts relevant to this thesis. The

list below includes appropriate references in Chapter 2.

1. current commercial PLDs are of sufficient size and complexity to perform sig

nificant computational tasks useful to modern software-hardware systems (Sec

tion 2.3.10);

2. programmable logic has a place in the development of systems where software

101

alone does not provide adequate computational power (Section 2.3.1);

3. programmable logic allows much faster development turn-around than use of

ASICs which must be fabricated (Section 2.3.1);

4. programming PLDs with a high-level language is feasible, and a number of lan

guages and tools for this purpose exist (Section 2.4);

5. PLDs are currently used in safety-critical systems (Section 2.5);

6. several national and international safety standards bodies have made specific

recommendations about the development of safety-critical systems incorporating

safety-related electronic hardware (Section 2.5.3);

7. when seeking to advance the field of formal methods, we should aim for reusable

models and theories, combinations of mathematical theories to tackle hybrid

safety-critical systems, and integration with the system development process (Sec

tion 2.2.3);

8. when seeking to advance the field of concurrent programming we should aim to

provide algorithmic support, tool support, suitable programming languages and

appropriate technology transfer (Section 2.5.1);

9. no existing development techniques for programmable logic software appear to

satisfy these recommendations (Section 2.4, Section 2.5.9);

10. developing software for safety-critical systems is a problem which is well under

stood and supported by a range of tools and techniques (Section 2.1); and hence

11. the use of PLDs in safety-critical systems is an emerging problem in need of a

solution.

3.2 Scope o f Analysis

In the research work described previously we have taken an international view. For the

remainder of this thesis we will focus on the standards applicable for defense-related

102

equipment in the United Kingdom, as a domain with which the author is familiar and

for which a well-defined set of standards exist.

Within this domain, we will in practice concentrate on avionics systems although

the techniques will generally be applicable across the whole domain of defence sys

tems; such systems tend to be embedded, real-time, safety-related and developed to

similar (prescriptive) standards. Additionally they are procured by a single organisa

tion, the Defence Procurement Agency (DPA), so will undergo a standardised process

of acquisition and certification.

When we come across problems with existing PLD development practice, we shall

first look (when sensible) for solutions from the field of software engineering.

3.3 Target Level of Criticality

Private discussion [PriOS] with one of the authors of Interim Defence Standard 00-54

and domain experts responsible for certification of systems to Defence Standards 00-54,

00-55 and 00-56 confirmed our conjecture (Section 2.5.9) that current technology and

tools do not support the development of systems incorporating PLDs with SIL-3 or

SIL-4 functionality. Indeed, there is debate about whether even SIL-2 functionality is

feasible.

As a result, the development of tools and techniques to support development of

PLDs with SIL-3 functionality matching the requirements of 00-54 will represent a

clear advance in the current state of industrial practice.

3.4 Levels of Rigour

Before discussing the issues of rigorous development and proof, it will be useful to

codify a common understanding of the levels of rigour we will use in this thesis.

ad-hoc a handwaving argument which may appeal to previous experience or statistics.

system atic use of analysis tools and/or a thorough testing strategy.

rigorous providing a specification in an unambiguous notation along with a sketch

proof of satisfaction.

103

form al providing a specification in an unambiguous notation and a proof in a system

with axioms and deduction rules.

These definitions are somewhat arbitrary but do admit some degree of classification

and comparison between levels of rigour.

3.5 Statem ent

The problem we intend to solve is:

What methodology is suitable for developing a set of safety-critical system

requirements into an implementation which executes partially in a conven

tional microprocessor and partly on a programmable logic device?

Such a methodology should be rigorous and formal enough to admit veri

fication and validation to the standards demanded by DefStan 00-54 and

RTCA DO-254 (electronic hardware), DefStan 00-55 (software) and DefStan

00-56 (system safety) for SIL-3 and SIL-4 systems (RTCA DO-254 Level A

and B).

The problem has the following characteristics:

• use of existing proven methods for producing a system design;

• partitioning of the design into hardware and software components;

• development of the software component using existing proven methods suitable

for the integrity demanded;

• provision of a formal model to describe the semantics of a program executing on

a PLD;

• provision of a process and tools to develop part of a system design into a program

for a generic PLD;

• provision of a process and tools to develop a program for a generic PLD into a

netlist or HDL suitable for execution on a specific device;

104

• identification of criteria for making general design or implementation decisions

during development; and

• provision of suitable evidence of acceptable safety and correctness with respect

to a specification for construction of a safety case for the system.

As noted above, we shall aim to use best practice from software engineering to solve

these problems, where possible.

3.6 Target Aim s

In the remainder of this chapter we list a number of target aims. Each target has a

unique identifier, used in later chapters to cross-reference back to the target. In this

way the reader can track whether the chapter is covering the issues that it is intended

to cover.

These aims set out our vision for a safety-critical PLD development process; we

will not necessarily meet all of them completely, but will strive to achieve this. Failing

to meet some of the aims may reduce the level of integrity which we can claim for our

process.

Following each target aim is a list of criteria which will be used in the covering

chapter to judge whether the target has been met.

Each target aim will be augmented by definitions of terms to clarify its meaning,

as necessary.

3.7 Research Programm e

In the remainder of this thesis we aim to develop a process to produce a hardware /

software safety-critical system incorporating a SIL-3 programmable logic component,

satisfying the current UK Defence standards.

3.7.1 Identified deficiencies

As discussed in Section 2.5, the existing tools and techniques for PLD program devel

opment appear deficient in the following areas:

105

Rigor - there is no way of showing that a given program satisfies a given specification

without exhaustive testing.

A m biguity - the higher-level programming languages used, such as Handel-C, do not

have a well-defined semantics; the developer depends on the compiler writer’s

interpretation of the language specification. The requirements and guidance in

Defence Standards 00-54 and 00-55 [MoD97, MoD99] repeatedly aim to remove

ambiguity in requirements, design and implementation.

H igh level design - the benefits of programming in HDLs such as VHDL or Verilog

are analogous to the benefits of writing software in assembly language. Compared

to high-level languages, these languages remove ambiguity and allow much greater

programmer control at the cost of increased development and maintenance time.

Writing a program in EDIF is analogous to writing software in machine code.

V ulnerability - the later an error shows up in a development process, the more ex

pensive it is in time and resources to fix, as discussed in Section 2.2.5 where

we contrasted late system testing with the correctness-by-construction approach.

Static analysis of a program aims to detect semantic errors missed by the syn

tactic checks of a compiler. No static analysis tools for programmable hardware

languages are known, and in any case they require a rigorous language definition

to be effective.

We aim to show an advance in all these areas. To ensure that this is the case, we

introduce the following target areas for subsequent validation.

Target 1 The process we define must be rigorous.

C riterion 1.1 there must he checkpoints where the system in development must he

evaluated manually or hy automatic tools, so that inadequate systems can he rejected.

C riterion 1.2 all transformation steps in the process must, in theory, he able to he

shown to he mathematically sound.

Definition: a transformation step is where a specification or program is wholly or

partially changed to he less abstract than before.

106

Target 2 The process must help the developer to write unambiguous programs.

Definition: an ambiguous program is one where different compilers, both conforming

to the language specification, may produce object code programs that have observably

different behaviour.

Criterion 2.1 ambiguous programs must be rejected by the compiler or rendered im

possible by constriction of the language definition.

Target 3 The process must allow the programs to have sections written in a low-level

language for speed and flexibility, but not allow these sections to compromise overall

program reliability.

C riterion 3.1 the developer must be able to mark out a section of the high-level lan

guage program and transform it to a low-level implementation.

Criterion 3.2 such an implementation must allow the developer to take advantage of

aspects of programmable logic architecture abstracted away by the high-level language.

C riterion 3.3 it must be feasible to show that the compiled version of the original

section is equivalent to the low-level implementation, using appropriate behavioural

models for the two machines that execute the programs.

Target 4 The process must admit substantial static analysis to discover semantic pro

gram errors at or before compile time.

Criterion 4.1 each implementation language used should have a strict syntactic defi

nition which is easily enforceable.

Criterion 4.2 each implementation language used should have a semantic definition

to supplement the syntactic definition.

C riterion 4.3 each semantic definition should define an set of rules which can be

machine-checked in polynomial time, to determine whether a given source program is

semantically well-formed.

107

3.7.2 M aintain ing ex isting benefits

We must not throw away the existing benefits of incorporating programs into program

mable logic

Target 5 The program produced must be easy to test.

Criterion 5.1 the specifications for the program must be of a form suitable for pro

ducing a test plan.

Criterion 5.2 it should be feasible to instrument the compiled version of the original

program so that the developer can observe relevant data flow within the program.

Criterion 5.3 there must be a working and verified software simulator for the compiled

program.

Criterion 5.4 the test plan produced from the specification should be suitable for the

production of test vectors for the simulator.

Target 6 The program must be able to be compiled onto a range of existing and an

ticipated PLDs.

Criterion 6.1 given a program which performs a non-trivial computation, it must be

developed using the specified process into a form where it may be compiled and run

using some existing programmable logic device and toolset.

Criterion 6.2 the compilation chain must target one of the VHDL[IEE91], Verilog[IEE95]

or EDIFpntOOb] languages at some point.

Target 7 The process must reuse existing proven tools where feasible.

Criterion 7.1 at every point where the process requires a new tool, the process must

justify why existing tools are inadequate and how the new tool overcomes those inade

quacies.

Criterion 7.2 at each point where an existing tool is used, the process must show how

the tool supports the programmable logic environment and the required system integrity

level.

108

3.8 Com ponents

Given these target aims, we can already deduce much about the form of the process.

For instance, we can begin to look inside at the components that will make up the

process. These will include:

• a specification and proof system suitable for the programmable logic architecture;

• a set of refinement rules suitable and adequate for refining a specification to an

entity in the proof system;

a mapping process from a subset of entities in the proof system to a form accept

able as input to a compiler with an HDL program as target output;

a high-level language suitable for writing relevant realistic programs as parts of

a safety-critical system;

• an mapping process for subsections of these programs to equivalent programs in

a chosen HDL; and

• a compiler for mapping programs from the HDL to actual PLDs.

Note that the last item is provided for each specific PLD by their manufacturer, so

we can assume that this exists if the HDL is Verilog, VHDL, EDIF or a subset of these

languages.

3.9 Process

Moreover, the following target aims determine the relationship between the above com

ponents, and the necessary characteristics that the process must have to make it suit

able for safety-critical system development:

T arget 8 The process must guide the developer in the appropriate use of each compo

nent.

C rite rio n 8.1 for each component there should be clear guidelines about what forms

of input are suitable and what form of output is required.

109

Target 9 The process should indicate what kinds of error may arise at each stage.

C riterion 9.1 for each process stage there should be guidance on the likely sources of

error, their consequences, and an estimation of the probability that they will occur.

Target 10 The process should provide flexibility so that it may be used in situations

not anticipated in its original design.

C riterion 10.1 it should indicate which steps in the process may be adapted to differ

ent needs.

Target 11 The process must admit justification to the project safety authority that the

programs output by the process are of an adequate integrity level.

C riterion 11.1 it should cross-reference apposite sections of relevant safety standards.

C riterion 11.2 it must specify the maximum safety integrity level of software produced

by the process.

C riterion 11.3 it should justify each process step against the relevant safety standard

requirements.

C riterion 11.4 it should support suitable unit, functional and system testing at each

development stage.

3.10 Existing Standards

To be able to produce a system which can be certified as acceptably safe, we must also

conform to current safety standards. The following criteria, specifically appropriate to

our phases of the development process, are taken from DefStan 00-54. They must be

satisfied for the process to be suitable from the safety point of view.

A requirement is “relevant” if it pertains to the development of software for safety-

related electronic hardware (SREH) at SILs 3 and 4, since this indicates that it relates

to best practice in producing high-integrity systems. From DefStan 00-54 (Require

ments) we extract the following relevant requirements.

110

Choosing and testing the characteristics of the physical device and its vendor-

supplied compiler is outside the scope of the process. So is external validation of

the development process, except in so far as our process must provide evidence to

support this validation.

For each requirement we indicate (in square brackets) where it is covered in the

above targets and criteria. Note that some of them are covered by the work in this

chapter. Where necessary we introduce new targets and criteria.

7.3.1 (d) The development of SREH shall include ...safety analysis of the SREH

development process . . . ; [Target 9, Target 11]

8.2.2 The safety case shall justify the claimed safety integrity level of the SREH by

means of:

(b) evidence that the methods and processes used in hardware development are

appropriate; [summarised in Section 3.1]

(c) safety arguments justifying the safety integrity of the design of any custom

items. [Target 11]

8.4.1 A safety analysis of the SREH development process shall be carried out to

demonstrate how the development process will deliver SREH which meets the

safety requirements. [Target 11, C riterion 11.3]

8.5.1 The safety arguments for the integrity of the design of a hardware item shall

include both analytical arguments and arguments from test. [Criterion 1.2,

C riterion 3.3, C riterion 11.4, Target 5]

Definition: an analytical argument is an argument which is presented as a set of

statements written in one or more formal notations. These statements are then related

and justified by the application of deduction rules from a logic system defined over the

formal notations.

T arget 12 [00-54 0.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification

complies with the safety requirements;

111

(a) any formal arguments that the functional design satisfies the formal specification;

(in) for non-functional properties with specified safety requirements, analysis of the

achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques

as diverse implementations.

C riterion 12.1 The process shall use a formal specification language which is amenable

to analysis to specify its input [parts (i),(ii)[.

C riterion 12.2 At each stage of the process, there shall be a formal argument that the

output of the stage refines the input of the stage [part (ii)[.

C riterion 12.3 The specification language used shall be able to capture some non

functional system properties such as performance and timing [part (iii)[.

C riterion 12.4 Each stage of process development shall indicate the forms of errors

which it can mitigate [part (iv)[.

Target 13 [00-54 12.1.2] The Design Plan shall define the life cycle that is to be

followed in the development of the custom circuit, including a specification process, a

development process and a verification process.

C riterion 13.1 there shall be an unambiguous and clear description of the system

program development process;

C riterion 13.2 the description shall show clearly the relations between the process

stages;

C riterion 13.3 the tools and techniques used at each stage shall be clearly described.

12.2.1 A formally defined language which supports mathematically based reasoning

and the proof of safety properties shall be used to specify a custom design, unless

it is agreed with the MOD PM (Ministry of Defence project manager) that this

is inappropriate. [Criterion 12.1]

112

12.2.2 The choice of specification language shall be justified in the safety programme

plan. [Criterion 12.1]

12.2.3 Tools used to compile, analyse, animate and transform formal language shall

b e . . . justified in the safety programme plan. [Target 7]

12.4.3 A simulation plan, with input vectors and expected output vectors shall be

defined as part of the Design Plan. [Target 5]

12.7.2 Appropriate safeguards shall be put into place as a defence against identified

hazards in the development process in such a way that the complete SREH de

velopment process achieves the required safety assurance. [Target 9]

13.1 The activities performed in custom circuit development shall include all of the

following:

(c) formal analysis of the design; [Target 4]

(d) simulation and physical test. [Target 5]

T arget 14 [00-54 13.3.1] A Hardware Specification shall be produced which defines the

SREH in terms of its behaviour and properties.

C riterio n 14.1 there shall be a formal model of a generic programmable logic device

which may be directly mapped onto a range of actual programmable logic devices;

C rite rion 14.2 the formal model must incorporate a useful (though not necessarily

complete) range of common components of a programmable logic device.

C rite rio n 14.3 [00-54 13.4-1]: Safety requirements [that have expression in function

ality] shall be incorporated explicitly into the Hardware Specification using a formal

representation.

Note: there may be non-functional safety requirements, such as liveness, that cannot

easily be incorporated into the Hardware Specification. These will have to be addressed

at a higher level of design or assurance in the system.

13.4.2 The consistency and unambiguity of the Hardware Specification shall be veri

fied using analytic methods. [C riterion 14.1, C riterion 2.1, C riterion 1.2]

113

13.4.3 The safety functions and safety properties of the Hardware Specification shall

be shown to fulfil the safety requirements. [C riterion 14.3, C rite rion 1.2]

13.4.4 Correspondence between the Hardware Specification and the design implemen

tation shall be demonstrated by analytical means, subject to assumptions about

physical properties of the implementation.

[Criterion 1.2]

13.4.5 Static analysis shall be used to demonstrate freedom from classes of error de

fined in the safety programme plan. [Target 4]

13.5.1 A representative set of simulation results shall be obtained at all levels of the

design, illustrating that the SREH operates as expected, based on a white box

understanding of the internal construction of the custom circuit. [C riterion 5.3,

C riterion 5.4]

3.11 General Questions

As well as these targets and satisfaction criteria, there are more general questions which

should be asked to help gauge whether the process is sufficiently reliable and practical.

These questions have arisen from practical experience in software engineering for real

safety-critical systems. The questions will be answered, where possible, in Chapter 8.

3.11.1 R eliability

1. How many distinct stages are there in the methodology?

2. What is the probability and effect of introducing an error at each stage?

3. What do 1 and 2 imply for the reliability of the system as a whole?

4. What classes of error are specifically checked for in the development process?

3.11.2 P racticality

1. Is there adequate tool support for the developers of the target systems?

114

2. What level of technical expertise, and how much time, is required for each devel

opment stage?

3. Given appropriate same-generation hardware, does the generic PLD implemen

tation produced have significant performance advantages over an all-software

implementation?

4. How well does the process allow late changes in requirements to be incorporated

into the system?

3.12 Overall Process

In the following chapters we shall describe the components of the development process

shown in Figure 3.1. This process is taken to start when safety engineering activities

have identified the system hazards, accidents and resulting safety requirements. The

process end is when the high-level specifications have been developed into a mix of

SPARK Ada and Pebble code that together implement the system and demonstrably

satisfy the safety requirements.

3.13 Future Chapters

Chapter 4 aims to adapt existing technologies to match our requirements. We will

demonstrate a proof system based on Synchronous Receptive Process Theory, show

that processes from this system may be transformed into implementations in the Peb

ble language, and demonstrate that SPARK Ada has suitable features for SPARK

programs to be compilable into programmable logic devices. We will describe the de

velopment process as a whole. The targets addressed in Chapter 4 are 1, 2, 3, 4, 6, 7,

10, 11, 12, 14.

Chapter 5 provides a rigorous proof system for refining specifications into equivalent

SRPT processes. Taking the Chapter 4 work mapping between SRPT and Pebble, this

allows us to refine a specification into a full implementation on a commercial PLD. The

targets addressed in Chapter 5 are 1, 2, 5, 6, 9, 10, 12.

115

Safety engineering

I
Safety requirements

Software Hardware

Development

I
SPARK (s4.3)

Main Aux

Refinement (ch5)

SRPT (s4.1)

Compile (s7.7)

Interpreter (ch6)

Compile

Object code

Transform (s4.2)

I
Pebble (s4.2)

~ ~ r ~
Simulate (s7.2)

Compile

I
VHDL

Figure 3.1; Development process

116

Chapter 6 builds on the Chapter 4 SPARK Ada work to show how SPARK programs

can be run on an interpreter running on a PLD. The targets addressed in Chapter 6

are 1, 2, 3, 4, 10.

Chapter 7 is a practical validation of the process, building a safety-critical system

by following the process. The targets addressed in Chapter 7 are 1, 2, 3, 4, 5, 6, 7, 9,

11, 12, 13.

Finally, Chapter 8 evaluates the material in Chapters 4 to 7 against the aims given

in this chapter. Chapter 8 addresses Target 8 and also addresses the more general

questions in Section 3.11 above.

117

: î : / i) A . / - %

1* :

118

Chapter 4

D evelopm ent technologies

This chapter describes the technologies used in the development process which we detail

later in this thesis.

Section 4.1 introduces Synchronous Receptive Process Theory (SRPT), a process

algebra which we will use to model the execution of a program within a PLD. We

demonstrate how to specify requirements about SRPT processes and how to prove

that an SRPT process satisfies a requirement.

Section 4.2 introduces Pebble, a simple programming language for synchronous

PLDs which can be compiled into VHDL or directly into netlists for particular PLDs.

We establish a formal connection between Pebble and SRPT, and provide a formal

definition of how we expect Pebble programs to execute. Pebble abstracts away target

device details so we will imagine Pebble as executing on a “generic” PLD.

Finally, Section 4.3 examines SPARK Ada, an imperative programming language

intended for programming safety-critical systems. We describe those characteristics

relevant to our work and lay the groundwork for compiling a subset of a SPARK

programs into an SRPT system description executing on our generic PLD model.

119

4.1 Synchronous R eceptive Process Theory

Synchronous Receptive Process Theory (SRPT) is a process algebra described by

Barnes in [Bar93].

4.1.1 Introduction

The process algebra CSP [Hoa85] has been used successfully to demonstrate partial

correctness of protocols and industrial parallel systems. Supporting tools such as FDR

[For97] allow semi-automatic analysis of relatively large and complex parallel systems,

proving them free from deadlock and livelock. However, CSP is not suitable for de

scribing all aspects of PLDs. In particular its asynchronous nature requires that traces

consist of a sequence of single event names (“interleaving concurrency”) meaning that

distinct events cannot happen at the same time, and it is not receptive since CSP pro

cesses can refuse events, which complicates the modelling of digital logic. As noted in

Section 2.3.11, Timed CSP is a development of CSP which is adequate for digital logic

modelling but is a more complex system than we need for a single clock system.

SR P T in a nutshell

Synchronous Receptive Process Theory (SRPT) was developed by Barnes by combining

Receptive Process Theory [Jos92] and CSP [Hoa85]. It is a process algebra i.e., an

algebraic theory to formalize the notion of concurrent computation. As a process

algebra it consists of a syntax for describing process terms and their composition,

and a notion of behaviour. In contrast to CSP it is synchronous: like SCCS [Mil83],

events happen only at integer time intervals, and it is receptive: SRPT processes may

not refuse events if their environment offers them. Barnes[Bar93] provides a rigorous

definition of SRPT, and demonstrates its applicability to clocked digital circuits.

The use of algebra to specify digital logic circuits is not new. Such specification has

been done using a wide range of formalisms, for instance CSP [Hoa85] and its timed

and synchronous variants. We discuss alternatives to SRPT in Section 4.1.10.

120

A im s and objectives

In this section we describe a deterministic subset of SRPT, show how it may be used to

describe digital circuits, and demonstrate specification and partial proof of determin

istic SRPT processes. We also lay the foundations for the SRPT refinement system in

Chapter 5.

The definition work which follows aims to establish that deterministic SRPT is a

valid closed subset of SRPT. We require a solid formal basis from which to construct

our proof and refinement systems. We build on the work done by Barnes[Bar93] in

defining and exploring SRPT, rather than re-creating it.

4.1.2 D eterm in istic SR P T

An SRPT system description has an alphabet E of events. There are a countable (if

not necessarily finite) number of processes V = {P/t}, for which each process P e V

has an input alphabet lP C.Y> and output alphabet oP Ç E. For each P, uP and oP

must be disjoint, finite, and their union must be non-empty. uP consists of the events

to which process P may react, and oP the events which the process controls. There is

a set Var of process variables, each of which will range over V.

Processes in our deterministic subset are defined using the following grammar:

P X process variable

I [!0 ?A —> Px] output prefix

I P I I P parallel composition

I P \ 0 hiding

I P[S] renaming

The grammar we use differs from that of Barnes in the following ways:

• it omits the non-deterministic constructs because our interest is solely in deter

ministic circuits for the purposes of this study; and

• we incorporate the recursion operator defined for full SRPT into the output prefix

model, hence restricting recursion in our SRPT subset to guarded recursion. This

121

means that the recursive definition always leads to a single process. The details

of recursion in full SRPT are in Barnes [Bar93] §5.1.2.

In the above definition, 0 denotes a subset of the output alphabet oP, X denotes a

subset of the input alphabet lP and S is an automorphism over E (a bijection E ^ E).

Each P g V is then a function

P : F{lP) X F{oP) - > V

where each function Q G ra n P is such that lQ = lP, oQ C oP.

Px : oP ^ V represents a curried process such that P%(y) = P{X, Y).

The operators of SRPT are defined in [Bar93] pp. 76-80; intuitively, in comparison

with CSP for instance, only the output prefix will appear unfamiliar. Since we will use

the output prefix form extensively, it is worth providing an informal definition here.

[! 0 I X Px] specifies a process that will immediately output all events in 0 and

receive from the environment some set of events X Ç. iP in its input alphabet. From

the next timestep onwards it behaves as process Px, i.e. P parametrised by A as

explained above.

The definition of a process P is in terms of a reaction to input events (a subset of

iP). Unlike in CSP, an SRPT process cannot refuse an event which is in lP\ it simply

observes such events happening. What it can do is react to those events by signalling

events in its output alphabet. The nature of SRPT means that processes may receive

and output any number of events at once.

Barnes [Bar93] defines a set of axioms and derives laws for algebraic combination

of terms from this grammar. For example:

a -1 0 : [!R ?A -> P x] II [! C ? F - > g r] =

C) 1 Z P{z\jc)niP I I Q{zuB)r\LQ]

This states that when combining two output-prefixed processes, we initially see the

combined output of both processes, which we would naturally expect. From then on

P ’s behaviour may additionally be affected if its input alphabet includes one or more

events from the output alphabet of Q, and vice versa.

As an example of an SRPT system definition, in the following subsection we will

describe a 1-cycle 2-input AND gate with the SRPT algebra.

122

4.1 .3 E xam ple — A N D G ate

An AND gate has no control over its two inputs; it exerts control over its output

according to the values of the inputs in the previous timestep. It cannot provide an

output at time t which relates to inputs received at time t, there is always a delay

before the reaction is visible.

We define the main process in the SRPT system as

lAND = {a, 6}

oAND = {c}

AND{R) = [!P ?A -^ if {a, 6} Ç A th en AND({c}) else AND(0)]

AND = AND(0)

Two points on notation are worth making. We may use functional application

instead of subscripting for processes, which has advantages of clarity when the subscript

text is complex. The if . . . th en . . . else construct is valid because it defines a process

map parameterised by events in the input alphabet, and each process in the range of

that map has identical input and output alphabets to AND{R).

In the above definition of AND, the occurrence of an event at one tick of the clock

corresponds to the presence of a high value on the wire named by that event at that

time. So if a is present in one element of a trace of AND then this means that the

gate has received a high voltage on the a input wire at that point. If a is absent, this

is interpreted as a low voltage on a. a and b are taken to be the two input wires, and

c the single output wire. This will be the convention used throughout this thesis.

The process definition states that AND initially makes no output, then subsequently

it will raise the c event at time t + 1 if and only if both a and b were present at time

t. The \R I X part of the process description means “output all events in R and let X

be the set of inputs which we have received in this timestep.”

Note that our process definition parametrises process AND to tell it what to output.

This effectively encodes state within the process, though in this example state at time

t never affects the process after time t + 1.

An example “run” for AND(0) could be as shown in Table 4.1. Note that the

environment controls when a and b appear; only the c event is controlled by the

123

Time 0 1 2 3 4 5 6 • • •

Input a, b a, — 3 a, b a, b a, b

Result — c — — c c — C • • •

Table 4.1: Example run for AND

process.

4.1 .4 C om position

Composition is a key tool to allow us to build complex systems out of more simple

processes. SRPT allows us to compose processes to form larger ones, in serial (for

sequential composition) or in parallel.

Parallel composition is done with the || operator, but the most useful composition

is normally serial since this allows us to break down a calculation into multiple stages.

Serial composition is effected by renaming process alphabets so that output events in

one process are input events in another process.

The different forms of composition are analysed by Hall[Hal96b] where the struc

tures imposed by CCS and CSP on a parallel system (synchronisation trees and traces,

respectively) are compared against an algebra for high-level Petri Nets.

4.1.5 D enotational sem antics

To be able to make rigorous analytical arguments about what does or does not happen

in an SRPT system, to the level required by standards such as Defence Standard 00-54

[MoD99] for the most safety-critical of systems we must consider SRPT’s meaning for

the behaviour of a system. Barnes defines the meaning of a system in SRPT in terms

of process traces.

In a given system, each process P with input alphabet I and output alphabet 0

has a semantics defined in terms of its set of traces RTj^o’-

RTi,o = { n i U O) Y

Unlike CSP, but similar to Discrete Time CSP[Jef91], SRPT defines a trace t G

RTj^o as a sequence of sets of events; t : seq P (/ U 0). Each element of the sequence

124

corresponds to a (non-negative integer) time value of the global clock, and gives the

events in I and 0 for that process which happen at that time. Discrete Time CSP

uses bags rather than sets.

Trace axiom s

As is usual in process algebras with traces, traces are prefix-closed and the empty zero-

length trace () is valid. There is an additional constraint that the environment can

offer any subset of input events at a given step, and the output at that step must be

independent of the input of that step; this means that processes cannot react instantly

to an input, corresponding to the delay in a logic gate output reacting to its inputs,

and must be able to “handle” any combination of possible inputs. Formally, for a set

of traces T:

i.e., suppose T Ç RTj^o, then T represents the trace set of a process with input I and

output 0. Here s and r are traces, (and) delimit a trace element and ^ is the trace

concatenator.

Sem antic function

The full derivation of semantic functions is given in Barnes[Bar93] §5.4; again, we

summarise.

RM is the set of all triples {I, 0 ,T) , where T is a trace set satisfying the conditions

above and I and 0 are input and output alphabets satisfying the restrictions given in

Section 4.1.2. The binding function BINDr maps from a set Var of process variables

to RM. This is what the user is effectively defining when he or she writes the process

definitions and decides on the names of the process variables.

The semantic function M tz maps each process term to an element of RM. The

associated function Tr maps process terms to RMt (the set of all sets of traces for

processes), and t ,o map process terms to their input and output alphabets Ç PS.

Hence where cr represents an element of BINDr we have:

MnlP^io- = {4 P h : olPjor, TnlPla)

125

This can be read as “Given the user definition cr of P and associated SRPT pro

cesses, A in maps P onto its input alphabet, output alphabet, and the set of all traces

valid for it.”

All that then remains is to define t, o and Tn for each of the process terms. The

interested reader is referred to Barnes[Bar93] §5.4 (Definitions 5.3 and 5.4) for details

of these definitions; here we present the definitions for the output prefix construct as

an example.

If P Ç o[[P{}]]cr and

V C Ç 4P{}1(t • ilPc'icr = 4P{}'icr A ogPcIo" = o[[P{}]]cr

then

o[[[!p ? x

and in all cases the traces are defined:

T n m I X Px\i(T = {()} U {{B U Y) - s \ Y C l A s e TnlPylcr}

where I = il[\B I X —> P%]]]cr.

Equivalence and congruence

P and Q are observationally congruent^ according to Milner[Mil89], if F{P) is obser-

vationally equivalent to F{Q) for any environment F. In SRPT, this environment

corresponds to a sequence of sets of process input events.

It will not be unexpected to the reader familiar with process algebraic theory that,

because of the removal of non-deterministic process constructs, process equivalence

(defined as the processes possessing identical trace sets) and process congruence (as

defined above) are coincident. In particular, suppose P and Q are equivalent. It is easy

to see that they must have the same input alphabets, since by the trace well-formedness

rules any event in the input alphabet may be offered at any step. By assumption, they

have the same traces.

To show that congruence is implied by trace equivalence we must show that F{P)

and F{Q) are observationally equivalent. To see this we appeal to the absence of

126

non-determinism; an environment offering F = {Fi,F2 , ...) to P will, because of de

terminism, elicit a single behaviour Sp = (si, S2, ...) say, where Si f) lP = Fi. As P

and Q share traces, Q must also have this behaviour, and since Q is deterministic Sp

must also be Q’s response to this environmental offering. Hence F{P) and F{Q) are

the same for each environmental offering F . The argument is symmetric in P and Q.

□
Note that because P and Q can differ on their output alphabets (therefore being

different processes according to the SRPT definition of equality) process equality im

plies trace equivalence but is not implied by it. P and Q may be equivalent, and hence

observationally congruent, but not equal.

Establishing this relationship between congruence and equality demonstrates the

amenability of deterministic SRPT to algebraic proofs about its properties, and marks

a clear algebraic difference between deterministic and non-deterministic SRPT.

4.1 .6 Specification and proof

Barnes’s rigorous definition of SRPT, and our definition of the deterministic subset of

SRPT, will allow us to reason formally about SRPT processes. In designing a system

in which we wish to prove partial correctness (i.e., may not terminate, but correct if

it does terminate) we need to be able to make concise and precise specifications of the

legal and illegal actions of the system, and prove their presence or absence formally

without too much effort.

In this subsection we will prove a useful property of a class of SRPT processes

relevant to modelling an FPGA. To provide specifications for the actions of a process,

we make statements about its traces. Given A, B and Z pairwise disjoint subsets of

E where A and B are of size n and Z has an arbitrary finite size, we will define a

system of SRPT processes to model an FPGA cell with 2n inputs CELLnj pointwise

computing a logic function / : PA x FB — ̂FZ. We define this system as follows:

iCELLnj = A U B = I

0 CELLnj — Z

CELLnj(R) = \ } . R ? X ^ C E L L n j { f { X n A , X n B))]

127

CELLnj = CELLnjiH)}

We form the specification for CELLnj by constructing a set comprehension with a

boolean satisfaction expression quantified over all elements of each valid trace. This is

an approach demonstrated in Hoare[Hoa85], sections 1.8 and 1.9. We use t[i] to refer

to the ith element of the trace t, indexing starting at 0. The specification must be true

for any trace of the process CELLnj, and is as follows:

7n^CELLnj^(7 = {t | >O =>^[O]nZ = 0) A V l < 2 < •

t[i] n z = f{t[i - 1] n A, t[i - 1] n B)} (4.1)

This can be read as “if the trace at step i — 1 has input events C from set A and

D from set B then the output events in the trace at step i must represent the result of

f { C , D y \ We constrain the initial output set to make the satisfying process unique.

The cr in the specification represents the translation of the abstract event sets A ,B ,Z

in the process definition of CELLnj into real events from the system event set S.

We abbreviate this specification on a trace t to aS'(̂). To show that V t G Tn^CELLnj^ic-

S{t), we first show that the process is deterministic in its initial value:

Lem m a 1

M E C Z - TnlCELLnj{E)la = {t \ > 0 => [̂0] 0 Z = E}

[i.e., the output set E passed as a parameter to CELLnj will always appear as the first

output.]

For a process [!E I X —> Px] with input alphabet I, Barnes’s definition for output

prefix is:

r n m i X ^ P x \ i c T =

{(>} u { < s u x > - s | X c / A s e r K | [P x M

To prove Lemma 1:

%ilCELL„j{E)la = ^ CELL„j]P =

{(>} U { < £ U X > — s | X C / A

s € T n lC E L L „ j{ f { X n A ,X n B m < 7 } (4.2)

128

by definition. As X Ç I, X and Z are disjoint. Therefore the output events in the

first element of any non-null trace must be exactly E. □

We now show that the correct values continue to be output by the process as the

trace grows:

Lem m a 2

y E C Z -

teTn][CELLn,fiP)h =>

t = { (X C I) u E } ^ r ^ r e r n lC E L L n j{ f { X n A ,X n B)) lc T

[i.e., after the first step of CELLnj (E), the subsequent trace r is the trace of CELLnj (Y)

for some Y as a function of the environment’s input.]

This follows directly from Equation 4.2 and the definition of CELLnj.

Combining Lemmas 1 and 2 gives us the proof that all the traces of CELLnj satisfy

the two parts of the specification «S' in Equation 4.1:

t[o] n z = H)

This comes from Lemma 1: CELLnj is defined to be CELLnj(0) so E = 0.

VI < i < i[t ■ t[i]r\ Z = f{t[i — l]n A, t[i — 1]C\B)

This comes from Lemmas 1 and 2: let X Ç (A U R) be the set of input events at

time t — 1, let E = f { X n A,X fl B), then Lemma 2 says that the trace of t from

time i onwards is r = 7nlCELLnj{E)la. Lemma 1 says that r[0] n Z = E. Since

r[j] = t[i + j], the result is proven. □

This result is applicable to all stateless one-cycle cells (i.e. those cells where output

at time ^-fl is solely dependent on input at time t), and is a useful foundation for proof

at a higher level of abstraction. We give an example of this in the following section.

The exact method of proof is not particularly important; what it does show is that

such proof is feasible and details one way that it can be done.

129

4.1 .7 Safety m onitor exam ple

System definition

For an example, we take a military aircraft stores management system (SMS) which is

designed to control the arming and release of ordnance from designated “hardpoints”

(pylons containing hydraulic and electrical release equipment) on the aircraft. This kind

of system is clearly safety-critical because malfunction could easily lead to premature

release or detonation of ordnance; see below for an expansion of this argument.

An SMS will often contain several PLDs implementing simple (though perhaps

critical) functionality. As noted in Section 2.3.1, such a low-volume production benefits

from the low fabrication cost and quick turnaround of a PLD as opposed to an ASIC.

System hazards

The hazards of an aircraft stores management system include:

1. release and subsequent detonation of a store while the aircraft is on the ground;

2. release of a store while the aircraft is in an inappropriate attitude (e.g. toirn-

ing and descending in such a direction that the released store may impact the

aircraft); and

3. arming and release of a store over “friendly” territory such as a town near the

aircraft’s home airfield.

Other hazards (such as arming and fusing a store which may detonate on the wing)

are normally mitigated by the store rather than the SMS. An air-launched torpedo, for

instance, might only arm itself on contact with salt water.

System safety

The safety features of this system will include:

• a hardware watchdog timer which must be reset every 25ms or the watchdog will

shut down the system (to stop or restart a hung system); and

• the use of keywords to command dangerous actions.

130

A keyword is a unique data value which enables a dangerous action. The use of

a keyword is an application of probability theory; a keyword is usually 4-16 bytes

long and chosen such that no value matching the keyword is normally present in the

processor’s address space. The chance of the keyword arising accidentally is unlikely;

the chance of a single bit in a control word being set erroneously is orders of magnitude

more likely.

The functionality required to implement these operations is well within the ability

of a PLD (if we ignore the aforementioned concerns about PLD safety) since they

are simple in design, and benefit from being outside the direct address space of the

microprocessor once they are implemented in the PLD.

To implement these operations within a safety-critical system we must specify them

and show that the specifications are satisfied, and it is this that we illustrate with an

example here.

W atchdog tim er specification

The Watchdog Timer has a single input, which is toggled to reset the timer, and a single

output which is typically used to raise a high-priority interrupt and trigger a system

shutdown. We will define an SRPT process WATCHk with the following behaviour.

We assume that there is a single input w to the watchdog timer and a single output

d. We will produce a timer specification with parametrised delay since the PLD timer

delay will be expressed in PLD clock ticks, and we may not know the actual PLD clock

frequency until later in the development cycle.

The specification of the watchdog WATCHk which shuts down after & + 1 steps

without an input toggle, for each trace i, is as follows. First, we define the events we

are reasoning about:

iWATCHk = {w}

oWATCHk = {d}

where w and d represent high voltages on the corresponding input and output wires,

following the convention described in Section 4.1.3.

For convenience, we define a function to pick up points at which an event’s status

131

changes within a trace. For a trace t and event x, let breaks {t,x) G seqTV be such

that:

Ml < i < j ' breaks (t,rc)[î] < breaks (i, a;)[7]

ran (breaks {t, x)) = {i | {i = 0) V ({a:} n t[i] ^ {a;} fl t[i + 1])}

This is an example of a syntactic abbreviation that is applicable to (although not

necessarily useful in) all SRPT processes. Here, 7n and E refer to all possible SRPT

trace and event sets.

The specification S{k){t) for t G 7^[[WATCHfc|cr is then:

S{k){t) =

{Vi < j : d ^ t[i]) A {Vi > j : d € ([«])

where: B = breaks (t, w)

a = m in m : R[m + 1] — R[m] > (/: + 1)

j = B[a] 4- k

Here a is the number of the earliest break point after which the same value is

received along the input wire too many times in succession, j is the trace index

following this break point where the failure signal d starts to appear.

W atchdog process derivation

We now define specifications for processes WOk{x) and Wlk{x). The WOk{x) process

describes a watchdog where the last input toggle was to 0 (low voltage) and there are x

steps left until shutdown trigger. Wlk{x) is the same except that the last input toggle

was to 1 (high voltage).

Specification So^k{x){t) is true iff t G TnlWOk{x)la:

So,k{x){t) =

{ \ / 0 < i < x - d ^ i[z]) A

{ M O < i < x - w ^ t[i] => M j > X ■ d G t\j]) A

(a; > 1 A ly G i[0] Sî k{k){t[l...])) A
{ x > l A w ^ t [Q] => «Sb,fc(a: - 1)(^[1 ...]))

132

Si,k{x){t) is defined similarly, reversing membership tests of w and swapping in

stances of «̂ i and 6b.

For a; = 0 the processes satisfying these specifications are trivial:

W0&(0) = [\{d}?X -^WOkiO)]

W h{0) = [\{d}?X ^ W h { 0)]

For all a; > 1 we use a recursive definition of the required processes. Assuming that

WOk{x — 1) and Wlk{x — 1) have been defined and satisfy So,k{x — 1)(), Si^k(x — 1)(),

we can define processes for value x as:

WOk{x) = [!0 ?X i f (w G X) th en W h (k) else WOk{x - 1)]

Wlk{x) = [!0 ?X if (w G X) then Wlk{x — 1) else WOk{k)]

The structure of these processes is sufficiently similar to the structure of the speci

fications for specification satisfaction to be clear.

W atchdog specification satisfaction

It remains only to show that So,k{k){t) corresponds to our original specification S{k)

for WOk{k). We can then state that the SRPT description of WATCHk is WOk{k),

and we will have satisfaction of the specification. We will not aim for a full formal

proof, but instead show the main derivation steps required.

Our proof is two-stage. First we show that the specifications agree that d either

never appears, or that there is some index j where d starts to appear in the trace and

will always appear from then on.

For S{k){t), this is clear from the specification:

{M i < j : d ^ t[i]) A { M i > j : d G ([%])

For So^k{k)ii) this follows since the following is part of all 6b and 6'i specifications,

with the w membership test inverted for Sy.

{ M O < i < x - d ^ [̂«]) A

{MO < i < X ■ w ^ t[i] => Mj > X ■ d G t\j])

133

We now show that the value of that index j is the same in the two specifications.

For S{k){t), j is defined by:

B = breaks {t, w)

a = m in m : B[m + I] — B[m] > {k + 1)

j = B[a] + k

For So^k{k){t), we make an inductive argument on the “crucial” break number a.

li a = 1, j = k since B[l] = 0 by definition of b reak s . This corresponds to the

case where the event w does not appear for k successive points in the trace. The 6b

specification part

{ M O < i < k - d ^ t[i]) A

{ M O < i < k ' W ^ t[i] \f j > k ■ d G t\j])

corresponds to this case.

If a > 1, we need to show that all preceding breaks with index below a do not trigger

a d sequence. It is clear from the preceding part of the proof that a d sequence, if it

starts at all, must start at index k from the start of a process specified by SNj{k){t).

We need only show that the breaks correspond to the start of Sx^k{k){t) specifications.

This comes from the second part of the specification for Soj{k){t):

{ k > l A w G t [0] => 6i,ifc(A;)(^[l...])) A

{ k > l A w ^ t[0] So^k{x - l) { t[l ...]))

Since 6b only applies to traces where w is currently absent, the appearance of w

indicates a break point and hence a switch to Si^k{k){s) for the remainder of the trace

s. A mirror argument holds for S\. This gives us that S{k){t) = So^k{k){t). □

W atchdog trace exam ple

An example of w being “stuck-on” for = 3 is shown in Table 4.2.

134

Time 1 2 3 4 5 6

Process W0 , (2) Wlk(3) Wl&(2) W lk(l) W1&(0)

Input - w w w w -

Output - - - - - d

Table 4.2: Example of a trace of the watchdog

Keyword checker specification

A keyword checker is a process which takes as input a w-bit keyword along with a lines

which denote the actuator to activate. No more than one of the actuator lines may be

raised at any one time.

We will define an SRPT process KEYWw,a with the following behaviour. When

an actuator line is raised, the keyword checker validates the given keyword against the

actuator line selected: the result is one of on, off or bad. If on then the checker raises

the appropriate actuator output line. If off or bad then it lowers the line, and if bad

or more than one input actuator line is raised then it sets a “failure” output for one

timestep.

We assume that on ^ off ^ bad.

This is a more complex example of the specification and SRPT description of a

process. Again, we define the events of the system KEYWw^a first:

P = . . . Pa}: Q — Qw}, P — { 1̂ • • • ^a}

I = iKEYWw^a = P C Q

0 = oKEYWw^a = R U {/}

P events are actuator selection, Q events form keywords, and R events are actuator

controls. {/} is the failure signal.

We define the internal event set K to represent keyword evaluation:

K = {on, off, bad}

The keyword evaluation is given by function w e v , mapping a set of keyword events

and actuator number to an action word:

135

w ev : FQ x N —> AT

The specification S{t) of each trace t G 7^|[KEYW^,alcr is as follows:

S{t) = V i G N - V j G l . . . a -

f[{P D t[i]) = 0 =4> t[i+ 2]n 0 = {t[i-h i] n 0) \ { f }

{P O [̂*]) — {Pj} ^ ~ ^ iPj ^ 2])

A {z = bad) <=> {f G t[i + 2])

A {z = off) <=> (r jJ ^ t[i + 2])

(P n ^ [z]) > 2 =4> t[i + 2] n O = {f }

where z = w ev (Q D t[i],j).

This requires that:

• zero commands will maintain the status quo except that a failure will cease to

be flagged;

• exactly one actuator command will cause the actuator to turn on (if on), off (if

off) or flag an error (if bad); and

• more than one actuator command at once will cause a failure and turn all output

controls off.

Note that this system has a 2-cycle delay rather than the 1-cycle delay of the previ

ous example. This is because the eventual implementation is in terms of two processes

processing in sequence, hence at least two cycles are required for this implementation

to be feasible.

We define internal event set M to represent the actuator chosen to be activated:

M = {mo .. .rria},

The process description is a parallel composition with hidden events, as follows:

KEYW^,a = (KW^,.(0) II F IL T E R a m \{M U K)

where K W evaluates the keywords and FILTER acts on the output of K W to select

the outputs. Note that the hiding operation applies to K W and FILTER rather than

136

KEYW; this distinction is important as hiding is defined in terms of a subset of a

process’s output alphabet, and K E Y W does not contain K ox M.

We will specify KWw,a first. Given alphabets

lK W w,a = P C Q, oKWw^a = M \J K

the specification X (i) of each trace ̂ G 7^[[KWt„,a]]cr is:

K{t) = VO < i •

A {t[i] n P) = 0 {t[i + 1] n oKW) = 0

A (t[i] n P) = { p j } => {t[i + 1] n oKW) = {k, rrij}

where k = wev (i[z] C\ Q, j)

#(([%] n P) > 2 {t[i + l] n o K W) = {bad}

A suitable process satisfying this specification follows:

K W ^,.(P) = [!P ?X if # (X n P) > 2 KW ^,.({bad})

elsif 3 j : (X n P) = {pj} KWy,^a{{k, mj})

else KWy,^a{0)]

where k = w ev (X D Q, j)

As an implementation detail, note that the case where exactly one element of P is

present in the input need not search all the elements of P in sequence; instead, the pj

inputs would be linked to the nij outputs with an intervening AND gate to check that

all other elements of P are low. As the size of P grows, this becomes less likely to be

feasible within the single clock cycle specified unless the target device provides AND

gates with many inputs.

We now specify process FILTERa. Given alphabets:

ùFILTERa = I = M C K, oFILTERa = 0 = RU { f }

the specification F{t) of each trace t G Tn^FILTERaicr is:

F{t) = MO < i •

137

bad e t[i] {t[i + 1] n 0) = {/}

A (t[î] n M) = 0 {t[i -f 1] n 0) = [t[i] f] 0) \ { / }

A 3 j : [t[i] n /) = {on, mj} {t[i + 1] D 0) = {r,}

A otherwise => (t[z + 1] fl 0) = 0

A suitable process satisfying this specification is:

FILTERa(S) = [!6 ? y -> if bad e Y FILTERa{{f})

elsif y n M = 0 FILTERa{S\{f })

elsif 3 j : Y = {on, m^} FILTERa{{rj})

else FILTERa{0)]

A proof of correctness here would be repetitive given the earlier satisfaction ar

gument for Watchdog, but the principle strategy is to observe that K W outputs

events that control the output of FILTER, but not vice versa. Therefore we define

R = (KW^,a(0) II FILTERa{0)) and since

M u e TnlR^cr • {F{u) A K{u))

by definition, we expand the definition of K by evaluating how the RHS of the clauses

of K maps onto the LHS of the clauses of F , hence rewriting the RHS of K in terms

of the output alphabet of FILTER. This is then compared with the definition of S to

show that Mu e R - F{u) A K{u) => S{u).

This example has shown how parallel composition can be used to form processes

with internal events providing communication between them.

4.1.8 N on-rigorous com ponents

The refinement model also allows us to incorporate “black box” processes into our

overall design. As long as we can specify the inputs and outputs of a black-box process

B in terms of events in E, we can reason about its interaction with the other processes

for which we have more rigorous specifications.

For instance, edge areas of an FPGA may be given over to an I/O pad implementing

an interface protocol such as the PC peripheral connector standard PCI. Mak[Mak03]

138

discusses the thorny problems involved in placing these I/O pads when multiple I/O

standards (and hence varying voltages) are present in the device. We need not be con

cerned about the specific implementation details of the I/O pad, and it need not even

run at the same clock as the rest of our FPGA model as long as there are intervening

gates outside our model but with the same clock, buffering the I/O voltages. As long

as we can make some statements about the transitions of the outputs from the I/O

pad, and establish minimum-switch times for the inputs, it need not affect our ability

to reason about the behaviour of the rest of the device.

4.1 .9 C om m entary

We have taken two typical components of a safety-critical system which have the po

tential to be implemented using PLDs, have provided SRPT-based specifications and

implementations for them and proven that the behaviour of the implementations sat

isfies the specifications.

We have seen that carefully-chosen syntactic abbreviations can express the SRPT

trace-based specifications in a few lines and yet make rigorous and useful statements

about the required properties of a process. The previous section has shown how it is

possible to prove rigorously that a SRPT process description satisfies a specification,

though clearly there is some way to go until this proof mechanism is easy enough to

use effectively in a commercial project.

Note that there is a clear gap between the SRPT description of a process and its

final implementation as a set of programmed cells in a LUT-based FPGA. It is however

relatively simple to map such SRPT descriptions as given here into equivalent VHDL,

Pebble or netlist formats. We expand on this in Section 4.2.7.

We have used SRPT as a compromise between the high-level specification languages,

such as Z, and the low-level implementation languages such as EDIF and VHDL. The

tradeoff we make is in ease of specification against simplicity of compiling to our target

format.

According to the definitions in Section 3.4 we can classify this work as rigorous

since formal specifications and sketch proofs were provided.

139

4.1.10 A lternatives to SR P T

SRPT is far from the only method of describing reactive systems. In this subsection

we present some established alternative methods.

Language details

In [BerOO], Berry presents the basics of the Esterel language, and reviews a number of

other synchronous languages. He distinguishes between “reactive” systems, where the

computer reacts to external events, and “interactive” systems where the computer’s

clients request services from the computer. The latter requires attention to avoid dead

lock and unfairness, and the former requires correct and timely operation. According

to these definitions, SRPT describes reactive systems.

Languages such as Signal and Lustre use a data-flow programming style, routing

data through “fixed” operation nodes. In hardware terms this is similar to program

ming a DSP chip or FPGA rather than a conventional microprocessor. Variables in

the language consist of a sequence of values at a set of times, e.g. X = {Xi, X2, ...} .

Nodes combine values of different variables. The flow of data in the system occurs

at each (integer) time steps. Some variables may be over-sampled or under-sampled,

flowing at whole time multiples faster or slower than the “master” flow.

The data-flow model corresponds well with our intuitive understanding of how data

flows through an FPGA. The problems with this model would come with a variable

depending on more than one time index of another variable, e.g. X^+i = Yf -f 2 * Yt-i.

This would complicate the placement and routing of such programs within a PLD.

Berry terms the programming model of Esterel “imperative” , which is an extension

of one common definition of imperative languages as sequential modifications to a

state but does capture the intent of defining how the result is to be produced instead

of what properties the result exhibits[IP96]. In this model the basic structure is a

module. A module has a defined set of input and output events, and a “body” in

which a conventional imperative program executes. The imperative program is able

to do blocking waits (“await”) on input events and cause (“emit”) output events.

Statements can be combined in parallel, so that a module can wait for a disjunction

or conjunction of events, and there are language operators to support pre-emption

140

and exception raising. Body statements execute instantaneous except where delay is

required by the purpose of the statement, e.g. the “await” operator.

Esterel provides more powerful abstract operators than SRPT, but at the price of

a semantic gap between the Esterel program and the corresponding FPGA netlist.

Language evaluation

These approaches to programming languages could conceivably be used to program

PLDs. Indeed, there are commercial tools such as “Esterel Studio” (from Virtual

Prototypes Inc.) which allow such programming. The reason why we have chosen

SRPT as our representative language is that the process-event structure of an SRPT

system maps naturally onto the block-wire combinatorial logic and routing model of

most PLDs.

Esterel’s semantic gap with respect to FPGAs is its key weakness. Signal and

Lustre’s data-flow model is an interesting expression of a class of programs, and closer

to the FPGA model, but has the placement problems noted above.

Our choice

These languages are possible alternatives to SRPT, but they do not have an obvious

advantage to SRPT for our purposes. Indeed, we have identified deficiencies in their

support for targeting FPGAs.

Preliminary work by the author in establishing the suitability of SRPT for compi

lation to PLDs showed that SRPT’s semantics was suitably rich to support rigorous

definition of programs and mapped well onto the PLD program model. In our work

to date there have been no serious shortcomings of SRPT that have indicated that

CCS-based or other algebras are superior for synchronous PLD programming.

4.1.11 C onclusions

In this section we have shown how SRPT can be used to model non-trivial FPGA

programs and prove certain safety properties in a rigorous way. We have also seen that

it provides a precise way of specifying the requirements for an FPGA program, which

makes it easier to define correctness tests.

141

Of the targets in Chapter 3 we have addressed or partially addressed:

Target 1: The process we define must be rigorous.

We have established a formal specification system for SRPT processes and demon

strated rigorous justification that processes match their specifications.

Target 2: The process must help the developer to write unambiguous programs.

The trace-based specification of SRPT processes is an unambiguous notation, and

our deterministic subset of SRPT described in Section 4.1.2 makes SRPT programs

unambiguous.

Target 3: The process must allow the programs to have sections written in a

low-level language for speed and fiexibility, but not allow these sections to compromise

overall program reliability.

We have explicitly considered non-rigorous components in Section 4.1.8.

Target 12: [00-54 8.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification

complies with the safety requirements;

(ii) any formal arguments that the functional design satisfies the formal specification;

(Hi) for non-functional properties with specified safety requirements, analysis of the

achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques

as diverse implementations.

(i) is achieved by use of an unambiguous notation for specification. We demon

strated the proof system required by (ii) in the watchdog timer example. Timing

requirements can be addressed by specifications about relative positions of events in

traces, addressing (iii). We have not addressed (iv).

In the next section we will explore the relationship between SRPT and the Pebble

synchronous programmable logic programming language.

142

4.2 Pebble

4.2.1 Introduction

In Section 2.4.6, we described the Pebble language for low-level programming of syn

chronous FPGAs. In this section we expand on this to give a more complete definition

of Pebble, and show how SRPT processes can be mapped onto Pebble programs.

The version of Pebble described here is Pebble 3.0, as described in Appendix A of

[Luk99]. Our comments on Pebble in this section are likely, but not certain, to apply

to future versions of the Pebble language.

4.2.2 Target device issues

Pebble may be compiled onto a number of different PLDs. These devices may differ

substantially in which “primitive” cells they support. For instance, one device’s cell

may support any logic function of 3 inputs; another device’s cell may provide any

function of 2 inputs on one output wire, and the inverted result of that function on

the output wire. The primitives for a given device are typically stored in a prelude file

that is supplied to the compiler.

A complete Pebble program will consist of a number of these primitive cells with a

certain interlinking. Each cell will be one of a (likely small) set of types, e.g. 3-input

AND, half-adder, single-input NOT. Normally these primitives will be chosen so that

each of them can complete in one clock tick on the target device. However, it may

be that some of the primitives require two or more ticks to complete whereas others

only require one tick. In this case a naive compilation to the target device will have

to add delays to each type of cell so that they all take the same time to complete

calculation. In practice, it is likely that the circuit can be partitioned and optimised

so that relatively few of the partitions need to operate at the maximum delay.

4 .2 .3 Language elem ents

A Pebble program consists of a set B of block instantiations, with links between blocks

provided by a set W of wires. There is a set D of block declarations which can be

considered as function signatures with named formal parameters from a set P. A

143

block {d G D, f j , f o) € B represents an agglomeration of logic function computational

cells on the target device. The formal parameters of d are renamed to elements of W by

the functions f i , fo : P ^ IT for input and output wires respectively. In conventional

imperative language terms, the block declarations are subprogram declaration and the

wires are global program variables. The blocks correspond to actual subprogram calls.

Each block declaration d C D contains named formal parameter lists Fj and Fq

which are sequences of input and output wire names respectively. The block declara

tion includes a (potentially null) list of width parameters G to allow instantiation of

the block in a range of bit-widths. These parameters may be specified in the block

declaration, or left open for when the block is later instantiated. The block declaration

also includes a (potentially null) list of internal wires L.

A block declaration’s internal structure consists of a series (which may be null) of

block instantiations. Note that these instantiations are not necessarily elements of B,

since they may have wires from the block declaration’s parameters. In addition there

is a series of direct connections between wires.

Block instantiations consist of block declaration names with the formal parameters

renamed to the names of wires in scope, i.e. chosen from the union of Fj, Fq and L.

If the block instantiated has any unspecified width parameters (in G) then these must

be set at the instantiation.

Block instantiation can also be done in groups using the GENERATE FOR mechanism,

specifying an “instantiation loop” where the characteristics of each block instantiated

inside the loop may depend on the loop variable.

4.2.4 E xam ple

Taking the example of a combinational incrementer implemented from half adders, as

described in the Pebble 3.0 manual [Luk99], Appendix A, section 8:

BLOCK main [c : WIRE; e : VECTOR (n -1 ..0) OF WIRE]

[d : WIRE; f : VECTOR (n -1 ..0) OF WIRE];

BLOCK main [fc in : WIRE; fd in : VECTOR (n -1 ..0) OF WIRE]

[fcou t : WIRE; fdou t : VECTOR (n -1 ..0) OF WIRE]

144

VAR i ;

CONST n : GENERIC := 3;

VAR Ic : VECTOR(n..0) OF WIRE

BEGIN

l c (0) <- fc in ;

GENERATE FOR i = 0 . . (n-1)

BEGIN

h a d d [lc (i) , f d in (i)] [I c (i+ 1) ,fd o u t(i)]

END;

fcout <- lc (n)

END;

The first BLOCK statement is an instantiation of block main, and the binding of

actual parameters to its formal parameter list given in the following BLOCK declaration.

The wires c, d, e (0 . . .n -1) and f (0 . . .n -1) are actual wires in the system, and the

Pebble simulator would be able to control the values of the input wires and measure

the values of the output wires.

The declaration of main comes next. After listing the formal parameters, the next

set of declarations are variables and wires whose scope is local to the BLOCK declaration,

i is simply a loop variable, n is a generic width parameter; the declaration fixes it at

3, but it could as easily have been left unassigned and instead set at instantiation.

l c (0 . . .n) are internal wires, used to propagate the carry values along the chain of

half-adders (hadd).

The body of the declaration first connects internal wire l c (0) to formal parameter

fc in . The next statement is a multiple instantiation, the number of instantiations

governed by the generic width parameter n. Each instantiation is of the half adder

hadd, with connections governed by the instantiation number. The final statement

connects formal parameter fcout to internal wire lc (n).

Figure 4.1 shows a pictorial illustration of the declaration of main. The parameter

n has been left unspecified. If n were 3, as specified in the block, there would be

three HADD blocks in the diagram. The figure illustrates clearly that Pebble is mainly

about defining relationships between predefined blocks by using shared wires. This

145

fdout[0] fdout[1] fdout[n-1]

fcin
lc[0]

-o- HADD
lc[1]

H A D D J

n-1]

H A D E -
lc[n]

fcout

fdinfOI fdinMl fdin[n-1]

Figure 4.1: Combinational incrementer

is analogous to the way that SRPT defines relationships between processes by using

shared events. In the next section we will explore this analogy in more detail.

4.2.5 Formal description

Following the earlier notation:

D = {main, hadd}

B = {(main,//,/o)}

W = {c,d, e (0 . . (0 . . .n -1)}

where

fi = (c ,e (0 . . .n -D)

fo = (d ,f (0 . . .n -1))

For block hadd we define the formal parameters, internal wires and generic parameters

as:

Fi =

Fo =

L =

G =

(f i l , f l 2)

(fs,fc)

0
0

and for block main:

146

Fi = (fcin, fdin(0 . .. n-1))

Fo = (fcout, fdout(0. .. n-1))

L = {lc(0... n)}

G = {n = 3}

Note that the hadd block, since it has no internal wires, is assumed to be a primitive

of whatever target device it is instantiated on. It cannot be constructed out of other

primitives in series since this would require internal wires to connect the primitives. It

could be constructed out of primitives in parallel.

The instantiations of hadd in the declaration of main are as follows:

(hadd , (fil = l c (0),fi2 = fd in (0),fs = fd o u t(0),fc = lc (l)))

(hadd , (fil = lc (l) , f i2 = fd in (l) ,f s = fd o u t(l) ,fc = l c (2)))

(hadd , (fil = lc(2),fl2 = fd in (2),fs = fdout(2),fc = lc (3)))

with the direct connections lc (0) <- fc in and fcout <- lc (3).

Applying the renaming functions f i , fo of the main instantiation then produces

the following fundamental instantiations where every block instantiated is a primitive

component for the target device:

(hadd , (fil = l c (0),fi2 = e (0),fs = f (0),fc = l c (D)

(hadd , (fil = l c (l) , f i2 = e (l) , f s = f (l) , f c = l c (2))

(hadd , (fil = lc(2),fi2 = e(2),fs = f(2) ,fc = lc(3))

with direct connections lc(0) <- c and d <- lc(3) .

Note that although no formal parameters are left as wires there are local wires in

these declarations such as l c (0).

Having established this model, how does it react to data? Partly this will depend

on the implementation of hadd in the target device; we assume that it is a conventional

half-adder that outputs the carry on the first output and the sum on the second output.

To have any meaningful basis for arguing about program correctness we must have

verifiable functional and timing information about target device primitives.

147

The data flow through the model is modelled by a function wire : IT x N —> B

which is true for {w, t) iff wire w has a high voltage at time step t. Wires are considered

bi-state (high or low voltage). We may ignore the possibilities of transients since the

Pebble compiler manages these details; a “wire” in Pebble has delay and switching

properties unlike a physical wire in electronic devices. The rule is that if wire W i is

connected directly to wire wj then:

Vn ^ 0 : wire{wi, t) = wire{wj,

With wires connected directly in this fashion we describe wire W i as the source of

W j , and similarly wire W j as a destination of Wj.

Primitive gates such as the half-adder are defined by a function mapping sequences

of input parameter values to sequences of output parameters. Sequences are represented

in the expressions below by strings of binary digits, highest bit first. For hadd:

hadd : seqB —> seqB

hadd = {00 ^ 00, 0 1 - ^ 01, 1 0 - > 01,11 ^ 10}

The rule for values flowing through an instantiation (hadd,//,/o) is:

f l — { " ^ 1 , • • •) W f i } A f o — { " y i j , V m }

> 0 :

{wire{vi, i + 1) , . . . , wire{vm, ̂+ 1)) =

hadd(wzre(wi, t) , . . . , wire{wn, t))

Note that this assumes that the instantiation of a device primitive computes all its

outputs in one cycle and is stateless. The target may have other components such as

RAM stores, which have state, or ROM stores which may take several time cycles to

produce output. The target data supplied to the Pebble simulator will have to provide

this information to allow accurate simulation.

4.2.6 C om pleteness of definition

Given the above description, it is useful to know whether the system is completely

defined. It may be, for instance, that an instantiated gate has one input wire which is

148

not a destination wire of any other gate, nor the destination of any other wire. Such a

gate can be regarded as floating with no defined values at any time step.

Similarly, if a wire is the destination of more than one gate or wire, it is regarded

as shorting these sources, and again has no defined value at any time step.

Floating wires are useful because they provide the ability to input data to the

system. In the above instantiation in Equation 4.3, we see that wires c, eo, ei, 62 fioat.

No wires are shorted, which should be normal policy.

We now take the formalism developed so far and translate it into SRPT terms.

4.2 .7 S R P T representation

Using the notation given above, we map each of the wires in W onto a unique event

in E. A block declaration d e D corresponds to a process description Pd.

A block instantiation { d j i j o) G B corresponds to the equivalent process Pd being

renamed with events in S. // and fo produce the input and output alphabets of the

process.

The SRPT process CT[x, y \s , d] connects wire s to wire d, equivalent to having

the input of source s appear one cycle later on in destination d:

i CT = {x}

oCT = {y}

C Tx = [! A ? y ^ if a: G X th en C Ty else CTq]

If a system Z consists of the instantiated processes ?% ,..., then the fioating

wires are those in

FLOATz = (U ti i-Pi) \ (U‘=i oPj)

and the shorted wires are those s 6 SHORTz such that

3 i j : {i f j) A (s G oPi) A { s G oPj)

We have already provided the SRPT definitions for a gate computing an arbitrary

72-bit function / in Section 4.1.6 as CELLnj- Here we provide SRPT definitions for

some other useful logic constructs, ROM and RAM. Within a typical safety-critical

149

system, ROM is used to store constant look-up tables (e.g. for bomb aiming data with

varying wind speed and direction), and RAM for holding PLD program state that is

too large to store in the available collections of registers.

These definitions must capture the behaviour of typical real implementations of

these constructs, so will be more complex than the gate-based examples from earlier.

If high-SIL subsystems are based on these definitions then we must rigorously test

the real implementations with test data based on the behaviour of these definitions,

and demonstrate that the real behaviour refines the definitions’ behaviour. These

definitions illustrate that real-world components can be modelled in SRPT, and provide

a measure of their complexity in SRPT terms.

ROM

ROM provides a read-only store of data grouped in words, using an input address to

index a given individual word and then putting the word data onto its output.

A ROM table has 2”̂ entries of n bits. We assume that lookup is done in t steps

and that the lookup is not pipelined (so that the inputs must remain stable for t steps

for the output to be valid). A 1-step ROM table (the lowest feasible value of t), if

given address input data at time index i, will output word data at time index i + 1.

If the (distinct) address bits are represented by set A = {o i,. . . , am}-, the data bits by

D = {d i,. . . , dn} and the internal data is modelled by the function d : PA —> ¥D then

the SRPT definition of ROM for fixed d is:

lROM = a

oROM = D

ROM =

ROMx,i,z = [!A ?y ->

i î i = t A Z = Y then ROM d(z),t,z

elsif Z = Y then ROMx,i+i,z

else ROMx,i,y]

This implementation provides deterministic behaviour in the case where the specifi

cation does not define it, i.e. the case of a read address being changed before the output

150

has been sent. It will start off a new read in this case, dropping the previous request.

In all cases, the output will stay the same from cycle to cycle until a read-output cycle

has been computed.

Because this process carries significant internal state it is not equivalent to a simple

combination of CELLnj functions. To incorporate it in a safety-critical system we

would have to make formal specifications of its behaviour and show that they are met.

R A M

A RAM table is more complex. It has two modes: read and write. In real RAM blocks

reading is often quicker than writing. We assume that the inputs must remain stable for

u steps for the write to be effective, whereas reading occurs in t steps as in the ROM

block. There is no explicit indication of when the outputs are valid; users of RAM

blocks must know the timing properties of their blocks and design the surrounding

circuits accordingly.

We take the m-element address and n-element data sets A and D from the ROM

definition above. The RAM block internal function d : PA —» FD will, unlike the

ROM block, change during operation as writes are made. The extra input w controls

whether a write is being commanded, and the n extra inputs E supply data for input.

For fixed m, n, t, u:

E = { e i , . . . , e „ }

iRAM = {w} U A U E

oRAM = D

RAM = RAMR{y^t,{},{FA^{}}

We define a pair of process sets, one for reading operations and one for writing

operations. The reading operation is RAMR:

RAMRx.w = [!A?y-^
if z = 1 A (y \ £■) = ZthenRAMRd(xnA),i,z,d

elsif i > l A { Y \ E) = Z then RAMRx,i~i,z,d

elsiî w e Y th en RAMWx,u,Y,d

151

else RAMRx,t,YnA,d]

and the writing operation is RA M W :

if z = 1 A y = A thenHAMWg(^n£?),i,z,d'

elsif z > 1 A y = Z th en RAMWX,i-i,z,d

elsif w ^ Y th e n RAMRx,t,Y(iA,d

else RAMWx,u,Y,d]

where di e X ei G q{X)

and d = d 0 (A n A i—> n E))

Section 6.4.3 and Section 6.2.3 in a later chapter will demonstrate the use of ROM

and RAM blocks in a complex PLD program.

4.2.8 S R P T to P ebble

Having shown how Pebble constructs can be mapped into SRPT, we now examine how

SRPT processes can be refined into Pebble.

C onstructors

The correspondence between Pebble wires and SRPT events has already been noted.

For an SRPT process P with alphabets lP and oP, we declare a Pebble block Pb_P

with formal parameters matching the union of the alphabets of P.

As previously noted, SRPT has a set of basic constructors. We deal with each of

them in turn.

• Process variable x corresponds to an instantiation of a declared block Pb_x.

• P II Q is a Pebble block which contains the instantiations of Pb_P and Pb_Q.

• P \ 0 is a Pebble block where the wires in O are removed from the formal

parameters list and instead made internal wires by adding them to the Pebble

block’s internal wires list L.

152

• P[S] is an instantiation of a declared block Pb_P with formal parameters replaced

by actual wires as defined by the renaming function S : P W.

More complex is P = [!0 ?A —> P%]. The way that we define P in Pebble will

depend on P.

Stateless processes

We assume first of all that we can define a Pebble block equivalent to any “stateless”

SRPT process, i.e. if we define the group of Pebble processes

where / : PzP/ —> PoP/, then there is an equivalent Pebble block Pb_Pf. This should

be feasible as long as the primitive gates provided in the Pebble library include NAND

since any logic function can be constructed from these gates. As noted in Section 4.1.3,

the if-then-else construction represents a straight map from input events to output

events.

A significant problem is that there is no external control over the output of any

Pebble block on the first tick of the clock, whereas we can specify this output in

SRPT. In practice it is conventional for blocks to assume the output corresponding to

low voltages on all inputs; an OR gate would then output a low voltage on the first

clock tick, whereas a NAND gate would output a high voltage.

Therefore we allow the SRPT processes {Pf { Y) | Y Ç oP/} as above, but make

the restriction that when any such process is instantiated, the first output events must

be /({})• This must be manually checked for each SRPT process definition in our

system.

Processes w ith state

If the process has state, we write the process description as

Pf , , {Y) = [! K ?X ^ P /.s(x ,,)(/(X , q))]

where q g N and g : P tP x N —> N. This is harder to represent. We need a way for the

Pebble blocks to track the current state. In this case we would have to define a Pebble

153

P a s s (2)

e P g

Figure 4.2: Pebble blocks tracking state

Time X e s s' Y

0 Xo 0 So So f{xo, So)

1 Xi 1 So So /(% ,%)
2 Xi 0 So g{xi,so) f{xi,So)

3 Xi 0 g{xi,so) g{xi,so) f{xi,So)

Table 4.3: State changing process

block Pb_Pg which computed the state transform function g, as well as a block Pb_Pf

which computed / , and connect them so Pb_Pg fed into the state inputs of Pb_Pf as

well as to its own inputs. Figure 4.2 shows such a layout.

Note that Pb_Pf and Pb_Pg have enabling inputs e/, Cg which must be high for their

output to change; this prevents incorrect outputs occurring during the computation

The progress of state throughout these blocks is illustrated in Table 4.3. Starting

in a stable state, a change of input from % to % propagates through to a state change

and output in two ticks. Note that the new state propagates through to Pb_Pf the

clock tick after Pb_Pf is giving the correct output; it is only then that another change

of X will pass through the state block correctly.

SRPT processes with more than one numerical state index can be transformed

into single-number index forms by an appropriate diagonalisation function. Note that

we may not make the right hand function depend on Y explicitly, according to this

classification.

We now give an example of translating SRPT to Pebble.

154

4.2.9 Exam ple: SR P T to P ebble

A common data structure is a stack, modelling the First-In, First-Out (FIFO) data

flow. The basic operations on a stack are Push (insert a datum onto the top of the

stack) and Pop (remove the datum on top of the stack). This example is a stack

modelled in Pebble.

We define a stack as follows. We assume that it has a capacity of 2^ entries, each

of n bits. We note that the behaviour of a fixed-depth stack is that of a RAM block;

we assume (for simplicity) that this RAM block is single-tick read/write. Our stack’s

behaviour is to output continuously the number last input.

We take our previous RAM block definition and simplify it accordingly to give an

SRPT description of the RAM block component of our stack.

lSRAM = {w} U AU E

oSRAM = D

SRAM = SRAM q q̂

SRAM x,d = [\ X 1 Y ^

if (w ̂ Y) then SRAMd{YnA),d

else SRAM g(YnE) ,d ']

where d' = d ® {Y D A q{Y D E)).

The stack has an input data stream, and a pair of controls which specify whether

the input data is to be pushed (push) or popped (pop). When a pop signal is received,

the data next output will be the input data last-pushed-but-one.

Another part of the stack process will control the interface to the RAM block. The

RAM block will output the value of the top element on the stack, so a push will have

to increment the address value and a pop will have to decrement the address value. In

addition, it controls the write bit of the RAM block so that a pushed value is written

in.

lSCTRL = {push, pop}

oSCTRL = { w } u A

155

SCTRL = SCTRLQfi

SCTRLx,k = [\ X 7 Y - ^

if {push 6 y A & < 2"" - 1) th en SCTRLa{k+i)u{w},k+i

elsif {pop e Y A k > 0) th en SCTRLa(k-i),k-i

else SCTRLxnAjk]

where a : N —> PA encodes a numerical address into the appropriate bits. We have

refined our informal description of the stack to define unspecified behaviour, specifi

cally the actions for full and empty stacks and for both commands occurring at once

{push has priority). This corresponds to the implementation decisions made during

conventional coding.

Another process we will need is PASSn which is an n-bit wide single-delay pass

gate.

The definition of STACK is now a direct composition of processes with appropriate

event renaming:

F =

iSTACK = F U {push, pop}

oSTACK = D

STACK = {SRAM || PASS„[F][E] || SCTRL)

\ { E U { w } U A)

Note that the process has a two-cycle delay. At the end of the first cycle SCTRL

has set the correct bits for entering the address, and the new data has gone through

the pass block. At the end of the second cycle, SRAM has updated itself accordingly

and has output the new top stack data.

With regard to the SRPT, readers should note that the || operator is associative

according to Law 2 in Barnes[Bar93] §5.1.1. Explicit bracketing is therefore not re

quired.

A diagram of this circuit is shown in Figure 4.3.

Translating STACK to Pebble, we see that there are several process instantiations

combined with a hiding operator; we must therefore define {/i, . . . , /„ , o i,. . . , w}

156

push
pop

PASS

SCTRL

SRAM

i i i n i i i i i i i i i n t i i i i i i i i i i iM i i i i i i i i i i i i i i

Figure 4.3: A simple stack

as internal wires. The parameters of Pb_STACK are taken straight from the process

alphabet. The translations of processes SCTRL, PASSn and SRAM blocks to Pebble

are straightforward block instantiations as described below.

If Pb_PASSn does not already exist then it is simple to define, as it merely connects

each input to a corresponding output with a one cycle delay. Pb_SRAM is a RAM block,

which we assume to be primitive to our chosen target. If it is not a primitive then we

will have to compose other primitives to build it, increasing its delay (and hence the

delay of the stack block) by many cycles.

Pb_SCTRL is an output prefix process with state parameter k. We therefore use

the previously-described design of an internal state generator block, instantiated along

with the normal decision block. The state generator consists of one path generating

the successor state, a second path generating the predecessor state, and a multiplexer

to choose between them.

All this yields the following Pebble declaration:

/* Declarations for our target.
* Assume that all these blocks are single-cycle.
* /

BLOCK ram(kl,k2 : GENERIC) [w : wire;
a
e
[d

VECTOR (kl..1) OF WIRE;
VECT0R(k2..1) OF WIRE]
VECTOR (k2..1) OF WIRE];

157

/* Incrementor; increments a by 1,
unless a is all Is already */

BLOCK inc(k : GENERIC)[a : VECTOR (k..l) OF WIRE]
[b : VECTOR (k..1) OF WIRE]

BLOCK passCk : GENERIC)[a : VECTOR (k..l) OF WIRE]
[b : VECTOR (k..1) OF WIRE]

/* Décrémenter; decrements a by 1, unless a is 0 already */
BLOCK dec(k : GENERIC)[a : VECTOR (k..l) OF WIRE]

[b : VECTOR (k..1) OF WIRE]
/* 3-way multiplexer; select one of a, b or c as output d */
BLOCK mux3(k : GENERIC)[cl : WIRE; c2 : WIRE;

a : VECTOR (k..1) OF WIRE;
b : VECTOR (k..1) OF WIRE;
c : VECTOR (k..1) OF WIRE]
[d : VECTOR (k..1) OF WIRE]

/* Output if X and not y */
BLOCK xandnoty[x : WIRE; y : WIRE][z : WIRE]

/* Our own declarations */

/* SCTRL state generator; 2-cycle duration */

BLOCK sgen_sctrl (m : GENERIC)
[push : WIRE; pop : WIRE;
k : VECTORCm..1) OF WIRE]
[n : VECTORCm..1) OF WIRE]

VAR i : VECTORCm..1) OF WIRE;
VAR u : VECTORCm..1) OF WIRE;
VAR d : VECTORCm..1) OF WIRE;
VAR iw : WIRE;
VAR dw : WIRE;

BEGIN

158

/* k can either increment, decrement or stay
the same */

inc (m) [k] [i] ;
pass(m)[k][u];
dec(m) [k] [d] ;
/* A multiplexer decides */
mux3(m) [iw,dw,u,i,d][n];
/* And the multiplex choice is determined by: */
xandnoty[push,pop][iw];
xandnoty[pop,push][dw];

END;

/* SCTRL itself */

BLOCK sctrl (m : GENERIC)
[push : WIRE; pop : WIRE]
[w : WIRE; a : VECTOR(m..l) OF WIRE]

VAR n : VECTORCm..1)
VAR p : WIRE;

BEGIN
/* Note the output-input loopback connection 'a' */
sgen_sctrlCm)[push,pop,a][a] ;
/* sg en _ sc trl is 2-cycle so need a delay here */

xandnoty[push,[pop][p];

pass CD [p] [w] ;

END;

/* And now STACK. Note that we've had to add an extra
* PASS block because sctrl is 2-cycle.
* This means that STACK is now 3-cycle Cassuming
* ram blocks are 1-cycle).
* /

159

BLOCK stack (m,n : GENERIC)
[push : WIRE; pop : WIRE;
f : VECTORCn..1) OF WIRE]
[d : VECTORCn..1) OF WIRE]

el : VECTORCn..1) OF WIRE;
e2 : VECTORCn..1) OF WIRE;
a : VECTORCm..1) OF WIRE;
w : WIRE;

BEGIN
ram Cm,n) [w,a,e2] [d] ;
sctrlCm)[push,pop][w,a];
passCn)[f][el] ;
passCn)[el][e2];

END;

It is important to note that mapping into Pebble has not been straightforward. We

should have written the SCTRL description using a formal generator function from

the outset. In addition, target device restrictions (needing two cycles to calculate the

generator function) have meant the insertion of extra delays in order for all the data to

match up. In later work in Chapter 5, when we look at refining SRPT processes and

implementing them in Pebble, we will have to remember that timing issues are likely

to appear in the Pebble mapping.

However, the above Pebble file appears to be an accurate description of a stack and

is parametrised by data width (n) and logarithmic stack size (m). Its reliability will

still have to be established by testing appropriate to its required reliability in systems.

4.2.10 Sum m ary

In this section we have examined the Pebble language, summarising its main constructs

and showing how these can be translated to and from similar SRPT constructs. This

has established SRPT as a practical synchronous calculus in which to work, and has

highlighted those SRPT constructs which should not be used in our future work.

160

Of the targets in Chapter 3 we have addressed or partially addressed:

Target 1: The process we define must be rigorous.

We have provided a systematic method for translating SRPT constructs into Peb

ble, although we have not produced rigorous demonstration that the semantics of the

constructs are equivalent or refined.

Target 3: The process must allow the programs to have sections written in a

low-level language for speed and flexibility, but not allow these sections to compromise

overall program reliability.

We have allowed SRPT process declarations but not definitions, and shown how

Pebble itself permits the description and incorporation of primitive blocks whose op

eration is undefined.

Target 6: The program must be able to be compiled onto a range of existing and

anticipated PLDs.

Pebble can be translated into VHDL, and hence onto most PLDs (with the usual

requirements for space).

Target 7; The process must reuse existing proven tools where feasible.

The Pebble-to-VHDL compiler already exists. An SRPT-to-Pebble compiler which

needs to be created does not yet exist; it is necessary to bridge the gap between the

abstract state of SRPT processes and the restricted state handling in Pebble.

Target 10: The process should provide flexibility so that it may be used in situa

tions not anticipated in its original design.

This is addressed by the previously described facility to incorporate non-Pebble

blocks into a Pebble program.

Target l^.: [00-54 IS.3.1] A Hardware Specification shall be produced which de

fines the SREH in terms of its behaviour and properties.

Pebble works by assuming uniform device-independent behaviour of the VHDL

into which it is compiled. A step towards compilation of the Hardware Specification is

verification of the behaviour of this VHDL subset.

In the next section we examine the SPARK Ada safety-critical systems development

language. Our eventual aim will be to transform a SPARK Ada program fragment into

an SRPT system, and from that form into an equivalent Pebble program. The following

chapter with therefore evaluate SPARK Ada with that goal in mind.

161

4.3 SPARK Ada

4.3.1 In troduction to SPA R K A da

SPARK Ada is an annotated subset of the Ada language, as defined in the Ada 83

and 95 Language Reference Manuals[U.S83, Int95]. Its target market is safety-critical

subsystems, which are often embedded. It supports substantial static analysis of pro

grams including proof of absence of run-time exceptions, data and information flow

analysis, and proof of correctness in the form of pre- and post-conditions on subpro

grams. Enforcement of the SPARK Ada subset and static analysis is done by the

SPARK Examiner, a tool produced by Praxis Critical Systems Ltd. Proof of correct

ness and of absence of exceptions is aided by the SPADE Simplifier and Proof Checker,

also Praxis tools.

For the purposes of this report we shall concentrate on the Ada 95 version of SPARK

Ada, henceforth referred to as SPARK^ for brevity. The syntax of the SPARK language

is defined in the SPARK Report [FW99]. A more detailed description of and tutorial

in SPARK Ada is given in the book “High Integrity Software - The SPARK Approach

to Safety and Security” [Bar03] to which the reader is referred for more detail.

As an Ada subset, SPARK code can be compiled with existing industrial compilers

and tools. For this reason it has been more successful than languages designed to

bring more rigour into the software engineering development process, such as RSRE’s

NewSpeak[CurS4]. Annex H of the Ada 95 Language Reference Manual[Int95] makes

recommendations for restricting use of the full Ada language in Safety and Security

applications, and SPARK’s language restrictions support these recommendations.

This section aims to demonstrate the suitability of SPARK Ada as a high-level lan

guage for implementing a design in a software / programmable hardware combination.

We examine the features of the SPARK Ada language, and of its supporting tools to

see how they support reliability and verifiability. We also see how they could be used

to provide supplemental information to a compiler.

We then look at how SPARK Ada programs might be transformed into equiva-

^Note: The SPARK programming language is not sponsored by or affiliated with SPARC Interna

tional Inc. and is not based on the SPARC architecture.

162

lent HDL or SRPT processes. This lays the foundations for the refinement work in

Chapter 5 where we will aim to prove formally this equivalence, and the case study

in Chapter 7 where we do a case study on extracting a fragment from a SPARK Ada

program into an HDL form.

4.3.2 Safety-critical system developm ent process

Our goal in producing a safety-critical system is to start with a well-defined set of

requirements, produce a high-level design for the system, refine this into a program

in a suitable high-level language, compile this into machine code and use the code to

program a suitable processor-memory combination in the hardware of the system being

produced. Section 2.1 examined current practice in this area.

Coupled with a rigorous development process, a design methodology well-matched

to the language chosen and to the system being developed should be chosen. Al

though the choice of such a process will be dictated by the agency in charge of de

velopment, and may use a diverse range of design tools (e.g. Rational Rose[EK99] or

other tools based on UML) one methodology particularly well-suited to SPARK Ada

is “INFORMED” [AmeOO] which produces a top-down design that can be translated

into efficient SPARK. The examples developed in this thesis will use the INFORMED

approach.

The tools for SPARK Ada development are the SPARK Examiner[ChaOl] and

the SPADE Simplifier and Proof Checker[Pra95, Pra98]. The Examiner enforces the

SPARK language restrictions, and produces proof conditions on program properties

which may be proven (or disproven) via the other two tools. More detail on these tools

is given in Section 4.3.4.

The top-down development of INFORMED relies on early and frequent use of the

SPARK Examiner to ensure that the program maintains a consistent structure. This

contrasts with the traditional bottom-up development in C or Ada where the compiler

validates the code, hence the code analysed must form a compilation closure. IN

FORMED design can proceed from the top downwards, when much of the lower-level

code is incomplete, because the SPARK language allows the developer to express their

intentions for unwritten code with annotations. In Section 4.3.3 we describe what

163

annotations are, and how they are used.

4.3 .3 G eneral language properties

As a general programming language, SPARK’s level of abstraction is approximately

that of Ada, more abstract than standard C. Its type system is more detailed than the

C type system and more strongly enforced than either the Ada or C type systems, at

the cost of such operations as string checking or alteration requiring numerous type

declarations and careful type conversions.

Com pilation

SPARK, being a subset of Ada, will be compiled by any standard Ada 95 compiler,

including the validated compilers being used in the industry such as GNAT Pro (Ada

Core Technologies), Object Ada (Aonix) and GMART (Green Hills). Indeed, the intent

of the language restrictions is that SPARK programs cannot be “erroneous” in the Ada

sense of producing different results with different compilers; for instance, the aliasing

rules make the semantics of pass-by-reference and copy-in-out compilers equivalent

for all SPARK programs. An added benefit is that since the SPARK subset throws

out many of the more complex Ada constructs such as generics, it tends to tread the

well-trodden (and hence well-tested) paths in the compiler.

Ada 83 and 95 have fairly good syntactic and semantic definitions in their respec

tive Language Reference Manuals[U.S83, Int95], and SPARK builds on that with the

SPARK Report [FW99], stating how the Ada 83 and 95 LRMs map on to SPARK

Ada. As regards a formal definition, one has been written[Ltd94a, Ltd94b] by Pro

gram Validation Limited with support from the UK Defence Research Agency. This

consists of the static and dynamic semantics of a subset of SPARK Ada, given in the

Z language[Spi92]. The defined semantics has been used within Praxis but is insuffi

cient to specify the current language subset because of two points: the language has

since moved on (e.g. embracing Ada 95, allowing individual record fields as procedure

parameters, allowing read-only and write-only variables) and the subset fully defined

omits some aspects of the language such as type ranges and named aggregates which

are now common in SPARK programs.

164

R un-tim e

After compilation Ada programs are normally linked in with a compiler-specific run

time which provides the services associated with the more complex language properties

such as tasking. Certain Ada language profiles such as GNORT (Ada Core Technolo

gies) , GMART (Green Hills) and Raven (Aonix) are designed to eliminate or minimise

the size of this run-time for reliability and space reasons. The SPARK subset requires

minimal run-time support and works with these profiles.

Typing

Ada’s strong type system provides better visibility and enforcement of the numeric

range of a variable than languages such as C afford. Ada’s run-time C onstraint_E rror

exception indicates that a variable’s value has gone outside its defined type. Taking this

idea further, the SPARK Examiner run-time checker generates verification conditions

that aim to show that the code is free from run-time exceptions e.g., due to arithmetic

overflow or to a variable’s value falling out of type.

SPARK includes a subset of Ada 95 modular types, which is useful for arithmetic

using arbitrary bit widths. It also includes the ability to declare types of arbitrary

numerical range. This will enable us to perform calculations confident that a variable is

within a restricted range of values, and the run-time checks generated would determine

whether the result of the calculation will also fit in a restricted range.

Control flow

SPARK includes most of Ada’s control flow constructs, except the goto statement.

The restrictions it places on control flow relate to control flow graphs being well-

formed according to the Semi-Structured Flow Graph grammar [FKZ75]. For instance,

the exit points of a loop must always be at the “edge” of the loop, not inside compound

statements within the loop. This ensures that each exit check is traversed once during

a full loop.

The control flow restrictions allow information flow analysis as described by Carré

and Bergeretti [CB85]. This is key to SPARK’s ability to detect ineffective statements

and use of potentially uninitialised variables.

165

Program structure

As a subset of Ada, SPARK has many features typical of high-level imperative lan

guages, including a module hierarchy. The Ada language, and SPARK, provide two

structural components for programs: packages and subprograms. A package comes in

two parts: a specification which declares the types, variables and subprograms which it

exports, and a body which contains the private data of the package as well as the imple

mentations of all declared subprograms. Packages may contain state variables whose

values persist while the packages are in scope; for packages that are not embedded

within a procedure, this state persists for the duration of the program.

The top level of an Ada program consists of a single main_program subprogram,

commonly called Main, with any number of separate packages. Execution works

through Main until the end of that subprogram. In practice, many embedded sys

tems (irrespective of programming language) tend to run in an infinite loop after some

initialisation calculations.

Packages and subprograms may be embedded in package bodies and in the local

variable declaration area of subprograms. So, for instance, in the body of package Q

might be a subprogram Parse, which relies on operations provided by a package Stack
within it. Stack itself may have an internal subprogram Pop. Using the Ada dotted

notation of nesting, a subprogram within Parse would refer to the Pop subprogram as

Stack.Pop and the main subprogram would refer to Pop as Q.Parse .Stack.Pop. In

practice, Ada visibility rules make this second reference illegal.

Ada 95 introduced child packages which, among other features, enable developers

to split a single package specification into subunits, each of which has direct visibility

of the basic types and subprograms declared by the parent package. SPARK supports

these with additional restrictions on visibility.

A nnotations

SPARK adds annotations to the subset of Ada that it uses. These are Ada comments

(denoted by two dashes in sequence) followed by a third character, typically a hash.

As a comment, an annotation has no effect on compiled code but is visible to the

Examiner.

166

Annotations are used primarily to declare information that the Examiner must

check on first inspection, then later may use to check items further up the package and

subprogram hierarchy. They allow checks such as “no mutual recursion” to be made

in linear time since SPARK visibility and declaration rules mean that a procedure P
cannot call procedure Q if P comes before Q. Examples of these annotations are —#

own X (declare package state X) and —# derives X from Y (expresses information

flow of a subprogram operating on variables X and Y).

V isib ility

Ada requires that packages explicitly list any other packages whose types, subprograms

or variables they reference directly. This listing is done using the Ada with context

clause. SPARK additionally requires that indirectly referenced packages are also listed,

using the —# in h e r it annotation.

For instance, if package P contains state variable V which is changed by subprogram

P.X, and procedure Q.Y in package Q calls subprogram P.X, then Ada would require

that package Q list P as a referent. If subprogram R.Z in package R calls Q.Y then Ada

would only require that R list Q as a referent in its —# in h e r it annotation; SPARK

would however require that P also be listed.

These visibility rules allow the SPARK Examiner to prevent any circular references,

which includes banning simple and mutual recursion in subprograms. The subprogram

dependency directed acyclic graph allows the Examiner to define an examination order

which has the following properties:

• each package specification is examined before its body; and

• each subprogram declaration is examined before any subprogram body containing

a call to that subprogram is examined.

Banning recursion enables static calculation of the maximum depth of the stack

during program execution, allowing the programmer to demonstrate that the stack will

never overflow. This is of particular importance in embedded systems where programs

are required to have a high mean time between resets.

167

State

A package may have any number of state variables. These come into scope and are

given initial values (if specified) when the package is elaborated', for a top-level package

this occurs at the start of the program execution. Package elaboration order is a

significant issue in Ada, but the visibility rules in SPARK allow developers to ignore

it.

A subprogram may declare any number of local variables. These, in addition to

the subprogram parameters, are only in scope and retain data for the duration of

the subprogram. This is also true for the state variables of any packages or other

subprograms embedded in the subprogram.

Ada subprogram parameters are given modes which describe whether the parameter

is an input (in), output (out) or both (in out). It is illegal to write to a mode in

parameter, though it is legal to read an out parameter.

SPARK additionally requires that subprograms list in a —# global annotation all

the state variables which they use, along with their modes. In the earlier example,

subprogram R.Z would have to list variable P.V - even though P.V may well not be

visible to it under Ada rules! Through the SPARK annotation, all the side effects of a

subprogram can be known at analysis time, allowing precise flow analysis.

SPARK requires that the state variables in a package be declared in an —# own

variable annotation in the package specification. Any variables declared in the body

may be aggregated into a single abstract state variable. This enables encapsulation of

the package state inter-dependencies in the body, reducing the complexity of annota

tions for any subprograms calling subprograms in the package specification.

Flow analysis

Data flow analysis[CB8b] of a subprogram S validates that the variables imported and

exported by the subprogram correspond to those specified by the user in the declaration

and in the declarations of all subprograms called by S.

SPARK has the option of allowing information flow analysis as well. This goes

further, allowing the developer to specify how the exported variables depend on the

imported variables and checking that the program information flow matches the devel

168

oper’s design intent. This is done by computing the products and transitive closures

of Boolean matrices representing the variable dependency information of individual

subprogram statements.

Tasking

A significant omission in current SPARK, as compared to Ada, is Ada’s notion of

tasking. Tasking was omitted from the SPARK subset because it can be extremely

complex and difficult to reason about.

Because the Ada 95 tasking model has improved on the Ada 83 tasking model,

it has become possible to define subsets of the tasking constructs with desirable de-

terminacy and performance properties. The Ravenscar tasking profile[BDR98] is the

a deterministic scheduling subset of Ada 95 which will be adopted formally in the

Ada OY language; in the meantime, it has been incorporated into release 7 of SPARK

Ada[Cha03].

M em ory-m apped I /O

Previous use of SPARK in embedded systems such as SHOLIS[KHCP99] using memory-

mapped 10 pointed to a problem in the way it treats variable initialisation. Suppose

that we have a design that uses page zero of memory to communicate with a PLD or

other piece of hardware across a bus. Ada (and, indeed, SPARK) allows us to define

a variable supplemented with a “use clause” that specifies the exact memory location

and / or data format to be used. We might define two 8-bit registers X and Y for input

and output respectively thus:

BASE_ADDR : constant := 0;
type Byte is mod 256;
for Byte'Size use 8;
X : Byte;
for X'Address use (BASE_ADDR + 16#010#);
Y : Byte;
for Y 'Address use (BASE_ADDR + 16#014#);

169

This maps X to location hex 010 and Y to location hex 014. Typical use would be

to write a value to Y to transfer the data to a PLD, and to read from X to read data

from the same PLD.

We might produce some control code which looks like:

Y := START.PRGCESSING;

while (X /= ENDED.PRGCESSING) loop

U t i l i t i e s . S leep(5);

end loop;

Y := RESET.REGISTERS;

The intention of this is to start some processing in the PLD, then every 5 millisec

onds poll the PLD for a “completed” flag. Once this is done we reset the PLD registers

in preparation for a new calculation.

Naively, the SPARK Examiner would not accept this code. From its point of view,

Y is being written to twice without being read, hence the first assignment is ineffective.

And in the loop, X is not an export of procedure U ti l i t ie s .S le e p so the loop will

either not happen at all, or will be infinite.

However, the SPARK language now permits specification of variables as read-only

or write-only, and the Examiner can correctly fiow-analyse code which uses them. X

and Y would be declared as package own variables where they would be given modes in

and out respectively. The release note for the SPARK Examiner 6.0 [ChaOl] describes

this concept in detail in Appendix A; there are some complexities involving mixed

mode state in package refinements that can trip up the unwary developer.

Since Ada programs are likely to use memory-mapped I/O to communicate with

external devices such as PLDs it is important that we have a model in SPARK for how

this communication occurs.

4.3 .4 S tatic analysis and provability

SPARK is designed to perform static analysis as defined in Section 2.2.2. Using the

Examiner for information flow analysis picks up not only common errors such as use

of uninitialised variables, infinite loops and potential aliasing, but also reveals quite

170

detailed information about the structure of the program in terms of data coupling

between packages.

The user can also choose to employ more detailed methods for selected procedures.

The Examiner contains a Verification Condition (VC) Generator that can be used to

attempt to prove correct a subprogram in terms of the pre- and post-condition model

on which Z is based, and which we will use in Chapter 5. Using the run-time exception

and overflow checks option, discussed above, also enables the user to show absence of

run-time exceptions.

From a given subprogram, a set of Verification Conditions (VCs) is generated for

each path through the subprogram. The VC set for a given path consists of a list of

hypotheses which are true for that path, and one or more conclusions which need to

be deduced from the hypotheses for the path to be well-formed.

The extra complexity of these options arises because the Examiner itself simply

generates files describing the sematics of the subprograms concerned, along with the

user’s requests (e.g. that no variable goes outside its type range.) Use of two other

tools is then required. The SPADE Simplifier[Pra95] processes these files to eliminate

irrelevant and redundant information, and performs some automatic simplification of

hypotheses and conclusions. It is possible that these simplifications will be sufficient

to discharge the VCs. If not, the user may either to prove the remaining assertions by

hand or use the SPADE Proof Checker[Pra98].

In Chapter 7 we generate run-time exception checks with overflow for a substantial

SPARK program to demonstrate that it is a practical technique for software develop

ment.

4.3 .5 Sum m ary o f SPA R K

For the purpose of this work, SPARK Ada’s strengths as a language for hardware /

software co-design of safety-critical systems are in its formal definition, the information

it provides about variable data types and flow, compatibility with industry-strength

validated compilers and the existence of tools to support detailed analysis and proof

of programs written in SPARK Ada.

Its main weaknesses are the gaps in its formal semantics and omission of some use-

171

fui Ada constructs which would be amenable to analysis e.g. simple generic package

declaration and instantiation. However, despite these weaknesses the language is fun

damentally strong enough and well-defined enough for us to use and reason about its

behaviour.

4.3.6 SPA R K interfaces

Now that we understand the main properties of SPARK, we examine how to interface

SPARK to programmable logic. The architecture that we are assuming for the system

discussed in the remainder of this section is a conventional microprocessor and memory

on a bus, executing a compiled SPARK program, with a PLD also interfaced to the

bus.

Suppose that we have a set of operations, and maybe some state, that are held

within a PLD, to be controlled by a SPARK Ada program. The rest of the system

is intended to run in software on the microprocessor. We will now consider how to

interface beween the PLD and the Ada software. This section aims to establish that

Ada programs can communicate with PLDs and be annotated in such a way that the

SPARK Examiner accepts the Ada code and correctly models the actual information

flow in this interface.

M em ory-m apped I /O

We will need to be able to access the input and output pins of a PLD from Ada. As

explained in Section 4.3.3, memory-mapped I/O can be set up so that, for instance,

one page of addressable memory is mapped to the PLD input and output pins, via

the memory management hardware of the system, and variable X (respectively Y) is

mapped to the input (respectively output) pin area of the page. Assigning a value to

X will effectively input to the PLD pins; reading from Y will effectively read from the

output pins.

The variables X and Y will be state variables of some package P, so according to

SPARK rules X and Y must be declared as —# own variables of P. However, since X

and Y are memory-mapped then the developer must specify whether they are mapped

as an input (mode in) or output (mode out) in order that the Examiner not complain

172

that the variable is never assigned to (for mode in) or never read (for mode out).

L ibrary interfaces

An alternative is to control writing to and reading from the PLD with a software

library which is not written in Ada; C is a common choice by device or COTS operating

system vendors. However, there needs to be some interface at the Ada level. To do

this, the Ada language requires the developer to provide a package body incorporating

subprogram declarations marked by a pragma In te rface statement, denoting a library

interface call. Ada calls to these subprograms are translated by the compiler to calls

to the library subroutines.

The package specification will declare SPARK-compliant subprograms that wrap

each interfaced routine. SPARK requires this package specification so that it can

perform an analysis of the program where calls to this package are made; the developer

is therefore required to add SPARK annotations that represent the actions of the

library for each call. It is usual to give the package specification a single —# own

(state) variable representing the state of the logic device, and have the state change

at each operation. The package body is typically excluded from SPARK analysis since

local types may need to be declared that are not SPARK-compliant.

It is important for the correct information fiow analysis of the rest of the program

that the developer’s annotations be a faithful representation of the PLD’s operations.

For example, if the PLD’s state changes as the result of an operation K, but the anno

tation for K does not reveal this state change, then any safety or security arguments

which rely on the PLD not changing state between two points cannot usefully appeal

to the information fiow analysis done by the Examiner; all the possible paths between

the points would have to be checked for calls to K.

4 .3 .7 P artial com pilation

It is conceivable that a developer would have an existing SPARK program which runs

entirely in software, and wish to compile some of it into programmable logic. This

could occur if:

1. the software as it stands cannot meet performance requirements;

173

2. the PLD hardware is planned to arrive late in the project schedule and the

program must be unit- and system-tested before it arrives; or

3. an emerging system hazard has indicated the need to move some functionality

out of the program’s direct address space (e.g. a safety monitor).

Assume that the software to be compiled is some package P of the program. How

should we go about this?

First, we should establish that the software to compile is true SPARK; this is easily

done by running the Examiner on P’s specification, body and subprograms. Second,

we should show that the software is free from run-time exceptions, by generating VCs

with the Examiner and proving them via the Simplifier and Proof Checker or manual

proof review. At this point we should consider whether adding proof statements to

some of P’s subprograms would be helpful to the compiler; if so, these will need to be

proven as well.

Next, we need to consider whether we wish to make the use of a PLD explicit in the

program. If we do, we can use either the library interface package scheme to make PLD

library calls, or write directly to registers with an MMIO scheme, replacing existing

code in subprograms. We must then change our annotations to refiect the new state

variables and rerun the Examiner on the subprograms.

The disadvantage of these approaches is that any new state or subprogram in

formation fiow changes will “bubble up” through the program, causing any package

depending on our compiled package to change its annotations. This is tedious, espe

cially since operations pushed out to programmable logic tend to be at the leaves of

the program calling tree, and so much of the program may be affected.

Better would be to leave the original package annotations intact. But how can

we be sure that they are accurate? This will depend on the reliability of the compile

transformation.

If we can ensure that the compiled PLD code and the original SPARK are refine

ments of the same original specification, this gives us the advantage of being able to

develop and test the software independent of the hardware, removing a dependency

tie from the system development plan. Certainly there will eventually have to be tests

to check that the PLD program integrates properly with the software with particular

174

attention paid to timing issues, but these can be run quite late in the development pro

cess since timing-related changes should be localised in the program and not change

the results of much of the unit, system and functional coverage tests.

With this in mind, we now look at how to partition a SPARK program into hardware

and software components.

4.3 .8 P artition ing

A SPARK program provides significantly more information relevant to partitioning

than an Ada program. For each subprogram we know exactly the variables which it

requires as imports and exports, the numeric ranges of these variables, and we can even

add extra constraints on imported variable values and show whether they are satisfied

at every point in the program where the subroutine is called.

Information flow annotations additionally describe how the subprogram imports

depend on the exports, which may give us a starting point for a decomposition of the

subprogram.

If increasing (or, indeed, maintaining) overall program execution speed is important,

we must establish that the increased calculation speed provided by the PLD offsets

the cost of I/O between software and PLD; the imported variables are copied to the

memory-map inputs, then the program waits for the output values to be ffagged as

ready and copies them back to the exported variables. Therefore a selected subprogram

should have a software execution time significantly greater than this two-way copy and

transmit operation.

The bit width of imports and exports should be calculated, and “narrow” subpro

grams be favoured over “wide” ones. The developer should bear in mind the bandwidth

and routing problems that affect most PLDs.

Finally, we should aim to encapsulate changes. Therefore, if the PLD-migrated

subprogram S calls subprogram T, then both S and T need to go into hardware; if T is

not called from any other part of the software then all the better, since it will effectively

become an embedded subprogram of S. Essentially, we are aiming to create a package

with the minimum of public subprograms where a compilation closure of a subset of

the package body is in hardware.

175

4.3 .9 C om pilation - a first cut

Suppose we have selected subprogram S to be compiled into hardware, with imports

i i , . . . , V and exports j i , . .. Jn- We shall ignore the case where a variable is both

imported and exported since the input and output pins are physically separate on the

PLD and so there is no issue with the newly calculated PLD outputs interfering with

the original PLD inputs. For each variable we have a known data range, which we will

translate into a bit width. At the moment we will assume that all these widths are

small as this allows us to assume simple bit-parallel communication of variable data

which completes in one clock tick.

The information flow annotations of S describe variable dependency. For each

export we know exactly which imports it depends on. We can therefore produce a

design where each export is the single output of a block, whose inputs are the imports

that the export depends on.

The subprogram that computes each export can be derived from the original sub

program as follows:

1. delete all imports that do not affect our selected export, and all exports apart

from the selected one;

2. delete every statement in the subprogram that uses any deleted import, or assigns

to any export other than the one we want;

3. rerun the SPARK Examiner, and delete all the assignments which it reports as

ineffective;

4. if any ineffective assignments were reported, go back to step 1.

This can be shown to be semantically equivalent to the original by arguing that:

1. the Examiner correctly identifies the information fiow in any subprogram;

2. we create a subprogram for every export, and therefore our argument reduces to

showing that the algorithm works for any given export;

3. there is a finite number of assignments in the subprogram and therefore our

algorithm terminates;

176

4. in any statement except a procedure call with more than one export, all imports

of that statement affect the statement export;

5. we have already recursively applied this algorithm down the subprogram tree to

such change procedure calls to sequential calls to reduced procedures computing

single exports; and

6. if there were a statement which affected our export and which we had deleted,

it must have either used a deleted import (in which case the import must have

affected our export and hence could not have been deleted) or been reported as

ineffective (in which case it could not have affected our export at all).

Now we are left with a subprogram that computes one export. How do we compile

it to a form suitable for execution in a PLD?

4.3 .10 C om pilation o f SPA R K code

We examine the general problem of mapping SPARK code from inside a subprogram

directly onto a typical PLD. We do not consider the specific (and substantial) prob

lems involved in producing a safety-critical PLD implementation, e.g. making the

transformation suitable for arguments about preservation of program semantics.

We examine three possible paths from SPARK to PLD:

1. to develop, for each SPARK construct, a bespoke PLD “interpretation” which

can be composed together;

2. to formally transform source code to PLD through formal refinement, based on

the previously-provided semantics; or

3. the development of a SPARK “interpreter” on a PLD.

The first is the hardest to implement, it being difficult to show that the transfor

mations induced are sound with respect to our semantics. For illustration of these

difficulties, we describe the transformations envisaged as necessary, isolating the parts

that would introduce real difficulties.

177

The second leaves the developer with work to do every time that the refinement is

needed. The benefits are that the semantics that justifies the transformation already

exists, and it can work at various levels of criticality - from a hand waving justification

that a predicate is true through to a 10-page proof that a given refinement step is valid.

The third has the benefit that, once the transformation is proven correct, its subse

quent use produces valid hardware that is suitable for safety-critical use whenever the

original SPARK code was suitable. Of course, as Stepney has shown[Ste98] the steps

involved in high-integrity transformation are difficult to get right. It is unlikely that

such a PLD-based interpreter could be certified as appropriate for the higher levels of

integrity. We do not attempt to produce these transformations in this work.

We begin with the first option, the development of PLD representations of each

SPARK language construct.

Syntax

Sequential SPARK subprogram body code consists of a sequence of the following classes

of code:

• assignment of an expression

• fo r loop

• i f - e l s i f - e lse - end i f block

• while loop

• simple loop

• procedure call

• case block

There are two forms of in-statement evaluation: an expression (as found on the

RHS of an assignment) and a condition (as found following i f or e ls i f) . Note that,

unlike C or full Ada, conditions and expressions may not have side effects; they change

no variables themselves. Expressions and conditions may involve calls to functions but

these functions do not have side effects.

178

Sequential composition

For each item in the sequence, the SPARK flow analyser will tell us its imports and ex

ports. Any subprogram local variables are included in the flow analysis, and eventually

removed for the purpose of calculating the whole subprogram flow analysis. Iterative

constructs such as while loops have their information flow calculated using the algo

rithm described by Barnes[Bar03] §10.8. If we can produce a block for each sequence

item, we can connect inputs and outputs in the appropriate sequence to produce a full

computation.

Note that some items in the sequence may produce an output that is not needed by

their successor. In that case the output can be connected directly to the first successor

that needs it. If consecutive items P,Q are such that no export of P is an import of

Q then P and Q can be placed in parallel. They must, however, be synchronised in

some way so that the computations that follow will process P and Q only when both

are ready.

To manage this, and the more general issue of “computation complete” for the

subprogram we implement a simple protocol with input and output control bits. Each

hierarchical block B in the program has one input and one output bit, with each output

bit connected to the inputs of one or more other blocks that use the data from B. At

program start each input bit is low and each output bit is low.

When the PLD receives data from the SPARK program, the input bit for the entire

subprogram block will be set high to signal valid input data. The PLD computation

then starts, with the high input bit travelling across the PLD to track the computation

progress. When each block’s computation is complete the output bit is set high and the

block waits for the input bit to go low. The blocks to which the output bit is routed will

then copy over the block’s output data and signal back that this has happened; once

all child blocks have signalled back, the block pulls its output bit back to low and is

left waiting for its input to go high again. The entire subprogram block will eventually

have its output bit go high, at which point it writes data back to the SPARK program.

Figure 4.4 shows an example of data being passed from block A to block B to block

C, with the computation complete signal travelling the same path later on.

179

Calculation

A ou t / B i n

B ou t / 0 in

0 ou t

Time

Figure 4.4: Handshaking across blocks

Code constructs

SPARK assignment will be represented in the PLD by a set of lookup tables which

compute the RHS expression in stages. This is not hard unless a function forms part

of the expression; in this case we will have to produce a block for that function and

wire it into the computation.

A fo r loop provides a loop variable which its enclosed block takes as an additional

input. Short loops with static iteration ranges could be unrolled altogether; however, in

the general case it would be necessary for the loop’s block to route its outputs back to

its inputs, and to have control logic that raises a flag once the computation is complete.

Conditionals such as i f and case blocks have code blocks which are placed in par

allel, and a multiplexer which selects inputs depending on the conditional statements.

Note that each block in these statements must have the same exports, so must import

any exports which they don’t change.

while loops and simple loops work like fo r loops but without the loop variable.

Any use of the e x it statement will set the “output valid” control, as will the main

loop test for the while condition. The SPARK restrictions on control flow (following

a semi-structured flow graph) help in this respect as the exit points are always on the

outermost part of the calculation.

Subprogram (procedure) calls are inlined by inserting the block representing that

180

subprogram. The enforced ban on circular or recursive subprogram calls ensures that

the inlining will eventually terminate at a set of “leaf” subprograms that do not contain

any further subprogram calls. Note that this method would be inefficient in space usage

if a particular subprogram was called at several points within the compiled program.

Packages w ith state

Suppose a package has internal state, invisible to other packages by Ada rules. This

state will be stored in the PLD, so will change the aforementioned layout by adding a

RAM block to store the state, routing the RAM output into the sequence items like

a normal import, and, in the case of a write, routing the exported data back to the

RAM store with a write bit set.

B it serial versus bit parallel

All the above has assumed that we are working in bit parallel form. However, there

are many cases where input data may be very wide, for instance in the case of an

array with a wide range or a record with many fields. Passing this into the PLD in bit

parallel form would quickly use up routing resource, especially if the entire variable is

routed between several statement items. Is there an alternative?

For records, it is not hard to slim down the data. The Examiner does flow analysis of

subprograms at the record component level, so although the entire variable is imported

the Examiner knows which fields will be imported and exported at each stage. It is a

relatively simple matter to treat the record as a list of distinct variables.

Arrays are more difficult. Array indexing is, in general, dynamic and hence not

susceptible to static analysis. In the worst case it is computationally infeasible to

determine which array elements may be used at a given stage of computation. However,

there are optimisations which may be used in some cases at the possible expense of the

clarity of correspondence between the PLD and SPARK representations.

Often, entire arrays (or subranges of them) are changed with a for loop. If a rela

tively small subrange is used, the Examiner would be able to check that any reference

to an array element is made with an index with a given subrange, reducing the amount

of array data that needs to be exported or imported. This would require a modification

181

to the Examiner to maintain a “defined” flag bit for each element of any non-imported

array with a range below a set limit.

Alternatively, we could find that the only references to an array are within a fo r

loop, with array indices corresponding to a 1-1 function of the loop variable (and of no

other variables). As long as the RHS of any assignment to the array is not dependent

directly or indirectly on the loop variable, the entire function can be replicated any

number of times to calculate the array value over arbitrary subranges. In addition, the

SPARK code could supply the subrange parameters and so use a number of calls to

the hardware to compute the entire array change in sections. This gives the developer

an ideal opportunity to trade execution speed against PLD area.

These techniques are intended as an example of the trade-offs that can be made in

compilation. They show how the extra information obtained by the SPARK Examiner

can be used to have confidence that such optimisations preserve the correctness of the

code.

Justification o f equivalence

The dynamic semantics of SPARK Ada[Ltd94b] are defined for each construct in terms

of modifications to a collection of variable state information. In order to reason about

the correctness of transformations into PLD form we need to be able to relate the

semantics of a SPARK statement P to the semantics of a PLD block Q which is intended

to represent P.

We must define the semantics of the PLD block Q in terms of its transformations of

data between its input control bit being set high and the block setting its output control

bit high. Our SPARK-to-PLD transformation has defined some functions QI,QO ;

V X N —̂ P W from the legal values of each imported (respectively, exported) SPARK

variable from the variable set V = VjU Vo to appropriate representations of the data

by high voltages on a combination of wires Ç W going in to (respectively, coming

out of) the block. We represent the distinct values of a variable by natural numbers;

that this is adequate follows from an argument appealing to the behaviour of a correct

compiler which must represent each value of any variable by a bit pattern within a

fixed-length field in memory. The inverse functions QI~^, Q0~^ describe the variable

182

values represented by a given combination of wire high-voltage states.

Any given statement in the SPARK program P updates the variable store a to

represent its action on variable values. The simple assignment of an expression ev to

a local variable fullname, for instance, is expressed by a deduction rule AsgnDl (on

page 109 of [Ltd94b]) which updates cr by;

<7 0 {fullname ev}

The corresponding definition on Q will be in terms of the traces of the SRPT process

representing Q. If ci is the input control bit and co is the output control bit then an

equivalent statement for the assignment block A in Q would be:

V /e 7 ^ p]] (T .V i> 0 -

{ci ^ t[i] A ci e t[i + 1]) => {3k > 0 : co E t[i + 1 + k])

A Q0~^{fullname^ t[i + 1 + A;]) =

ev{QI~^{t[i -f 1]))

Clearly, the semantic mapping outlined above would have to be expanded and

formalised if this hierarchical translation method was to be developed formally. The

weakest precondition semantics of each SPARK construct would have to be refined by

the PLD implementation.

4.3.11 R efinem ent

A second approach is to produce a formal specification of the function performed by

a SPARK subprogram, and refine this to a custom implementation in hardware. This

throws away the SPARK implementation, taking advantage of the parallel computa

tional model presented by the PLD. How do we ensure that the SPARK implementation

is therefore equivalent?

SPARK enables the developer to specify pre- and post- conditions for subprograms,

and prove the correctness of postconditions given preconditions by generating and

proving verification conditions. Therefore we can have confidence that our SPARK

implementation does what is specified. Alternative approaches are model-checking and

183

animation, both of which are used by the P r o B tool which supports programs written

in the B language [Abr96].

The implementation difficulty is going to be showing that our custom implementa

tion satisfies the VCs as well. This is something we address in Chapter 5. The separate

difficulty of providing an accurate specification is a well-known software engineering

problem[DvLF93, Vic98, HRHOl] which lies outside the scope of this thesis.

4.3.12 SPA R K interpreter

The third alternative to the approach of transforming an isolated package into PLD

form is to produce a SPARK “interpreter” that runs on an PLD. Such an interpreter

would be able to operate on any number of SPARK packages, running a computa

tionally intensive program without any need to synchronise control with conventional

SPARK code. It would also have the advantage that its operation need only be proven

correct once; any SPARK program would be represented as data within it.

In Chapter 6 we describe one possible interpreter, with a number of customisable

parameters. Different designs are certainly possible; this is only one example.

We do not attempt to reason in any way about the correctness of this particular

design. An analytic proof (such as would be required by standards such as Defence

Standard 00-54[MoD99] for system functions at SIL 3 or SIL 4) would be much more dif

ficult than that for the refinement or hierarchical implementation approaches described

above, since the ability to map between relatively small SPARK and PLD constructs

would be lost; the proof would not be that a particular program was executed correctly,

but rather than any valid SPARK program was executed correctly.

Conventional Ada 95 compilers are validated against the ISO standard ISO/IEC-

18009:1999[cJ99] using the publicly-available test suite “ACATS” which contains over

3600 programs. At the minimum, validation of a SPARK interpreter would have to

include running each SPARK-compliant ACATS program and verification of the results.

This may be adequate to qualify the use of the interpreter for system functions of

limited criticality, although each project using the interpreter would have to justify its

use in the project safety case.

High integrity Ada compilers such as GNAT Pro High-Integrity (Ada Core Tech

184

nologies) and Object Ada (Aonix) go through additional verification activities and

provide documentation of these activities to end-users; for safety-critical implementa

tions they use restricted subsets of Ada 95, such as GNAT NO RunTime (GNORT),

C-SMART and RAVEN. The verification for a SPARK interpreter at high levels of

integrity would include at minimum the proof of key interpreter properties (liveness,

preservation of data ordering, freedom from race conditions), but the list of verification

activities required for a particular safety integrity level and application domain would

emerge from a detailed safety assessment.

4.3.13 Sum m ary

In this section we have described the SPARK Ada 95 subset, shown how its properties

are helpful in the task of compiling it into a form suitable for execution on a PLD, and

described two possible compilation forms as well as more general considerations for the

SPARK-PLD interface.

Of the targets in Chapter 3 we have addressed or partially addressed:

Target 2 : The process must help the developer to write unambiguous programs.

We are programming in SPARK Ada 95, an annotated Ada subset with compiler-

independent semantics.

Target 3: The process must allow the programs to have sections written in a

low-level language for speed and flexibility, but not allow these sections to compromise

overall program reliability.

SPARK shadows and hide annotations allow the insertion of arbitrary Ada code,

which may include assembly language.

Target 4- The process must admit substantial static analysis to discover semantic

program errors at or before compile time.

The SPARK subset is enforced by the SPARK Examiner, which also performs

information- and data- fiow analysis to verify the program against design information.

Target 6: The program must be able to be compiled onto a range of existing and

anticipated PLDs.

We have made no assumptions about the target PLD other than that it is large

enough to contain the SPARK program (or interpreter) being transformed.

185

Target 7; The process must reuse existing proven tools where feasible.

The SPARK Examiner tool already exists, and we have noted where it may be

extended in small ways to support transformation activities. The information held

by the tool after the analysis phase strongly supports PLD-targeted transformation

activities.

Target 10: The process should provide flexibility so that it may be used in situa

tions not anticipated in its original design.

We have presented three approaches to transforming SPARK programs, aimed at

code of differing integrity levels.

Target 11: The process must admit justification to the project safety authority

that the programs output by the process are of an adequate integrity level.

We have shown in Section 4.3.10 how the hierarchical transformation process might

be validated against the existing semantics for SPARK, and how the refinement ap

proach changes the validation required to the proof that an SRPT process refines a

specification.

Chapter 5 will demonstrate how to produce a custom PLD implementation from a

formal subprogram specification, allowing us to produce SPARK and PLD implemen

tations which are formally equivalent but markedly different in form. This supports

the second approach discussed in SectidiT4.3.11, of transformation-by-rehnement.

Chapter 6 will break down this section’s overview of a SPARK interpreter into

a detailed implementation, showing how the conflicts discussed in Section 4.3.12 are

resolved and aiming for demonstrable reliability.

The case study in Chapter 7 will demonstrate construction of an example safety-

critical system in SPARK Ada and mapping part of it into a PLD while preserving its

functionality.

186

Chapter 5

Refining To SR PT

Refinement is one of the building blocks of formal methods. It is a way of going

from a relatively abstract statement of a problem to a system which can be built with

no further intelligent, human involvement, and which can be shown mathematically

to solve the problem stated. Much research has established formal refinement as of

appropriate rigour for safety critical systems development ([ORS96] is a pre-eminent

example, distinguished by its completeness).

In this chapter we describe a formal refinement calculus for high-integrity software

running on a PLD. Through the refinement calculus, we will be able to address the

concerns of rigour.

5.1 The Refinem ent M odel

There are many approaches to refinement; for instance, see Back [BvW94] and Morgan

[Mor94]. Of particular relevance to our approach in being based on reactive action

systems is the refinement of Back. There, refinement is defined in terms of traces. We

follow a broadly similar form in our semantics, although the deterministic nature of

our SRPT subset means that we avoid some of the complications encountered by Back.

Action systems describe the behaviour of a parallel system in terms of the atomic

actions that can take place during the execution of the system. Back’s approach to trace

refinement uses simulations between action systems to construct an abstract behaviour

that approximates a given concrete behaviour. By contrast, the deterministic SRPT

subset that we use allows us to refine traces directly.

187

The syntax of our abstract specification is similar to that used by Morgan. This

describes a system:

w : [p re , post]

where w is a set of free (changeable) variables in the system, p re is a predicate speci

fying the precondition on states that can be assumed for the system, and post is the

predicate on w which the program produced by the system must satisfy.

This model is based on the predicate calculus. The pre-conditions and post

conditions are predicate calculus formulae. The conditions define a contract for a

program to fulfil, as described by Morgan. We now give an overview of the refinement

process in Morgan’s model as an example of what we are aiming to achieve.

5.1.1 O verview o f a refinem ent process

Within Morgan’s model, each system being developed is refined through a series of

well-defined transformations based on proven sound refinement laws to a program ex

pressed in a simple machine-independent language. The language used by Morgan as

“code” (the executable form of a program) is a language of guarded commands, which

has alternation, iteration and subprogram call control structures similar to those found

in most modern imperative programming languages. Commands are composed sequen

tially within subprograms. This language is augmented with Morgan’s program speci

fication syntax to express parts of the program which have not yet been developed to

code. The semantic basis of the refinement is Dijkstra’s weakest precondition calculus

[Dij75].

T he theoretica l basis of refinem ent

Refinement itself occurs in a system defined by pointwise extension of a partially ordered

set (“poset”) which itself is equivalent to a lattice. The poset comprises a set L of

elements (predicates) and a binary ordering operator (the partial order) for elements

of L denoted < Partially ordered sets are described in more detail by Miller and

Dushnik[DM41j.

The programs in Morgan’s model are predicate transformers, transforming predi

cates according to weakest precondition semantics. Given a program P = w : [p r e , p o st]

188

and a predicate g, if g p re then P{q) = q' where g' is g transformed by post

according to weakest precondition semantics. The refinement relation Ç between pro

grams corresponds to the ordering of the predicates on which they are based. More

detail is given by Back[BvW94].

The symbol = in the context of refinement means “refines in both directions”. If

X = Y then X □ 7 and T □ X.

Exam ple of refinem ent

In Morgan’s system, X[w\E] denotes the simultaneous substitution of E for each

instance of w in expression X. Law 1.3 (p.9) states that if

p re post [w\E]

then

w,x : [p re , post] C .w := E

where Ç is read “refines to” and : = denotes the assignment operation in the language

of guarded commands. The variable x is unaffected by the simultaneous substitution of

E and in fact vanishes after the refinement; since w and x are independent, an intuitive

interpretation of this is that the true or false value of post was unaffected by x.

According to this law, the program statement w : = 5 is a refinement of the speci

fication

w : [tru e ,w = SV w = 6]

since tru e (5 = 5) V (5 = 6).

Other code constructors include alternation, sequential composition iteration and

procedures, and there exist laws for introducing these from certain specifications.

Pathological specifications

Some specifications cannot be refined to code, and are termed “infeasible” . Other

specifications can be satisfied by almost any code. Pathological examples of these

forms of specification include:

189

w : [fa lse , tru e] “abort”

w : [t r u e , tru e] “choose w”

w : [tru e , false] “magic”

a b o rt is never guaranteed to terminate and may do anything to its variables, choose

w terminates and changes w to an arbitrary value. The program statement skip is a

special case of choose where no variable w is supplied, m agic always terminates and

establishes the impossible condition false ; no program can satisfy this specification.

R etrenchm ent

There also is an issue of feasibility regarding the types of variables permitted. For

instance, assignments involving set operations are permitted, though conventional im

perative languages do not implement such operations natively. Exact arithmetic with

irrational numbers is also allowed, in contrast to the imprecise fioating point arithmetic

model used in common imperative languages such as C, Perl and Ada.

This problem is a known issue in the development of software for high-integrity

systems. A common solution is to specify real-number calculations using error bounds

(often denoted e) so that a specification of an implementation F of a real-number

calculation might be:

\ F (x,y) - \< e

This may be an acceptable approach for individual equations, but for a system

which depends on sequential real-number calculations this approach can quickly make

specifications hard to read accurately.

Large-scale formal reasoning about moving from exact to imprecise calculations may

require the use of retrenchment [BP98]. This is in many ways the opposite approach

to refinement, allowing strengthening of the specification precondition and weakening

of the precondition to reason about the program correctness in the context of loss

of accuracy in the data type transformation. Since PLDs are often used for numeric

calculations, retrenchment or related techniques may prove useful when specifying and

refining programs to run on them.

190

Characteristic Morgan SRPT

Specification domain

Language

Data fiow forms

Calculations at:

State model

Implementation

Predicates

Guarded imperative

Serial, subprogram

Assignment : =

Variable-value function

Ada, C, Pascal

Timed predicates

Processes

Serial, parallel

Primitive blocks

Events in traces

Pebble

Table 5.1: Contrast of Morgan and SRPT refinement processes

5.1.2 Suitab ility o f m odel

Morgan’s refinement model starts with a specification at an arbitrary level of abstrac

tion, and allows step-by-step refinement of that specification to a program form which

is executable. The developer needs to define the program statements which he regards

as directly executable. Each refinement step is done according to a law in the refine

ment calculus, and may be independently verified by presentation of the specification

before and after refinement and a statement of the refinement law that was applied.

We noted in Section 4.3 that a similar pre-post specification notation is used in the

SPARK Ada language proof tools. We presented three main options for developing

a SPARK Ada subprogram into a PLD implementation, and one of them was to rely

solely on the subprogram specification. Since Morgan’s refinement model (and hence

the SRPT model that we will develop later in this chapter) only requires a specifi

cation in [p r e , post] form, we have sufficient information to start refinement of the

subprogram.

The refinement process we wish to use will start with a specification at the level

of process events (corresponding to voltage highs on the input wires to a PLD) and

be refined to a set of SRPT processes. Section 4.2 has described a systematic, if

not yet rigorous, method to translate SRPT into an equivalent Pebble program and

hence compile it into a PLD. Table 5.1 contrasts Morgan’s refinement process with the

refinement process we desire.

The approach that refinement provides is therefore appropriate to our needs. Mor

gan’s specification notation matches with the specification notation that SPARK sub

191

programs use. However, because of the differences between the semantic bases of

Morgan and our trace-based approach we will consider a modified version of Back’s

refinement process.

5.2 Refinem ent for SR PT

5.2.1 A im s for refinem ent

With our system derived from the above models we aim to replace the notion of an

imperative program as a final result to a process expressed in Barnes’ Synchronous

Receptive Process Theory. Specifications may also be expressed in conjunction with a

non-negative integer time at which they are true.

The building blocks of our new system, i.e. the components corresponding to as

signment statements in Table 5.1, will be processes describing logic constructs similar

to FPGA cells. For the moment these cells shall be stateless, and their outputs at time

i -t- 1 shall be purely functions of their inputs at time t.

5.2.2 R efinem ent frames

A refinement frame is a new construct which we will incorporate into the SRPT nota

tion, allowing us to express parts of an SRPT system in specification form. A refinement

frame (shortly, “frame”) P in a program takes the form:

P = V t ■ lX : oY : [[pre]*, [post]*+&] (5.1)

representing the specification “for the process P with input alphabet containing X and

output alphabet containing Y , at all times t, if p re is true at time t then at time

t + k post is true.” A: is a constant which will be determined by the timing needs of

the program at specification time.

Figure 5.1 illustrates frame P as an SRPT process.

Back[BvW94] does not use these refinement frames; instead, the start and points

for refinement are action systems operating on state spaces; refinement moves from ab

stract state spaces to concrete ones with the individual actions of the systems changing

192

post(Y)

Figure 5.1: SRPT frame structure

as required to handle the decreasing abstraction of the state. An action system refine

ment can be regarded as complete when its state space is sufficiently concrete to be

implemented on whatever computing system is available.

Process sem antics

If a frame is to represent an SRPT process, as do the other components in the SRPT

algebra, it must have a set of traces obeying the SRPT trace axioms discussed in

Section 4.1.5. Concerning the underlying SRPT process P, the frame in Equation 5.1

specifies that:

y s e T^KPjcr V t e N • p re {s[t..]) post {s[t..])

i.e. that in every trace of P the frame’s postcondition holds at all points where the

precondition holds.

p re (s) is a shorthand for a substitution; the timed event predicate p re can be

seen as a Boolean function of subsets of timed event occurrences p re : P(E x N) —> B.

Since the trace s is a sequence of time steps at which each event in the alphabets of P

either occurs or does not occur, it defines a similar function s r : {lP H oP) x N —> B.

Therefore p re (s) is equivalent to:

y Z C P(E X N) • p re (Z) => ((z, t) e Z s r {z , t))
The SRPT trace axioms require that for the refinement frame in Equation 5.1:

1. the empty (zero-length) trace is in T^JPjcr;

193

2. T^jPjcr is prefix-closed; and

3 . any input events may be offered at any step, and the output events at that step

must be independent of those input events.

Axiom 1 follows since the quantification of t is over a null set. Axiom 2 follows

because the quantification of t is unbounded, so if s\ is a prefix of % G 7^|[P]]cr then

the specification must hold for all of si. The justification of Axiom 3 is more lengthy,

and is given in Section 5.2.3 below.

N otation

In the frame P, the presence of an event x at time t is depicted by [x]t. This value

corresponds to the presence or absence of x at time index t in a trace of P. We also

introduce the shorthand \f{x,y) = c]* for f{[x]t,[y]t) = [c]t where / is a constant

function within a predicate.

t and k are necessary because an SRPT process computes in a “pipelined” (systolic

or overlapping) manner; t marks a point where a computation starts and k expresses

the length of the pipeline which produces the result. The VA G N is usually omitted

for brevity.

Where variables are involved in arithmetic expressions the values tru e and false

are taken to correspond to the integers 1 and 0 respectively.

P u rpose of a specification

As described above, the specification described by a frame defines a set of traces and

so can be considered an SRPT process (if an abstract one!).

The aim of the refinement is to synthesise a concrete SRPT process that has traces

that are “the same or better” than the specification. As we will see below, this trans

lates to a subset ordering on the set of traces.

Rules of a specification

We define the following rules for the frame contents in order to exclude some infeasible

specifications. The phrase “X related to T ” in a predicate refers to the situation where

194

the truth of the predicate depends on a logical relation between variables X and Y .

In all of the following, x is taken to be a single event in the input event set 6% and y

is a single event in the output event set oY.

1. Predicate pre may only refer to variables in the input event set X.

2. the postcondition post may only refer to variables in the input event set X and

output event set F.

3 . the highest time index t of any variable in pre must be less than the lowest time

index of any output variable (from F) in p o s t .

4. where variables [x]t+i and [y]t+j are related in p o s t , i < j.

Rules 3 and 4 are “anti-oracle” rules, excluding specifications that cannot be imple

mented by an SRPT process since they would have traces that violated the “delayed

reaction to input” SRPT trace axiom.

The purpose of Rule 3 is to restrict the production of preconditions requiring knowl

edge of the future, e.g.

V A G N • t X : o T : [[a ;] * + i , [î /] i]

where the program clearly has no way of knowing what [a:]*+i will be, so the obvious

action for the developer in this case is to weaken the precondition to true (a valid

refinement as we will see in Section 5.2.5).

The purpose of Rule 4 is to restrict the production of infeasible postconditions, e.g.

y t e N ' i X i o Y : [p re , [x]t = [y]t]

where the program clearly cannot know [x]t in time to output [y]t.

Exam ple specification

A 1-cycle AND gate with input events X = {xi^x^} and output events Y = {y} would

have refinement frame

lX : o Y : [tr u e , [% A %]* = [y]t+i]

195

The possible traces (each of which will be a trace prefix) of this process include:

({a;i}, {xi,X2 }, {%, y}), ({%, %}, {%,%, y}, {?/}) and ()

An example of an incorrect trace prefix is {{x\},{xQ,,yY).

5.2.3 R efinem ent relation

Definition: For S R P T processes P and Q we say that P is refined by Q whenever

T n m c j Ç TnlPia.

Informally, P is refined by Q if any trace of Q is a valid trace of P. Our notion of

refinement is a specialisation of that of Back[BvW94] to the case when P and Q are

deterministic processes. As noted above. Back uses simulation between action systems

whereas SRPT provides a denotational semantics for the traces model.

It may at first appear that a process R with a minimal trace set, consisting (say)

of the empty trace 7 [̂[]]cr will refine any other process. However, this is not the case.

Because of SRPT trace axiom 3, which requires that any input events may be offered

at any step, process R must define output events in response to each possible input

event set combination at each time. The only time when a strict subsetting is possible

would be when P offers two or more possible responses to a given set of inputs (non-

deterministic behaviour).

Whenever P is a valid deterministic SRPT process, P will only ever offer one

response to a given set of inputs, so the refinement relation is direct equivalence of

trace sets.

Given a specification S = i X : o Y : [[pre]*, [post]*+^], we define its traces 7%[[P]]<7

as:

/ € < t < (i f f - k) - [pre(/)]* [post(/)]*+fc (5.2)

If we are to refine S into processes then we need to show that satisfies the

SRPT trace axioms. In Section 5.2.2 we demonstrated that Axioms 1 and 2 were met.

It remains to show Axiom 3, that at any step the process represented by can

accept any input, and the input cannot affect the output at that step.

To demonstrate that the process represented by 7^[[5]|a- can accept any input at any

step without affecting that step, let / = s (Z) G T^jPjcr. Then, from Equation 5.2:

196

/ G TniS'^o- VO < A < (# / - A:) • [pre (/)]* [post {f)]t+k

Now we must show that

y U C X - r = s ^ { V U U) r e T n i S l a

where V = {Z 0 Y)

because this shows that every process r identical to / except for input events is in

TnlSla.

Since s prefixes / , we know that s G from SRPT Axiom 2. We need then

only show that:

[pre(r)]#^_(fc+i) => [post (r)]#^_i

i.e., the pre-post relationship holds for the last element of trace r.

The rules on pre- and post-condition time indices restrict post from specifying

outputs at A, or from t-\-k onwards, and similarly restrict p re from specifying inputs

from A +A; — 1 onwards. Hence any events in U (at time index — cannot affect the

precondition. By construction, the output events V do not change from / to r, hence

the postcondition is similarly unaffected, and therefore the third closure condition is

met.

This allows us to treat process refinement frames as SRPT processes in the following

refinement rules.

5.2 .4 R efinem ent

A half-adder could be specified as follows:

V A G N • i{a, b} : o{c, s} : [t r u e , [2c -|- s]t+i = [a + 6]*] (5.3)

We have already seen in Section 4.1.6 the definition of the SRPT process CELLf

which computes the function / in one step. We make our first refinement law:

Refinem ent 1 Stateless 1 -bit function

197

y t e N - i X : o{y} : [true , [y]t+i =f{[X]t)]

□ CELLf[I\X][0\{y}]

This is justified by inspection of traces: the definition of the [p re , post] form of

refinement frame in Section 5.2.2 defines the traces of this frame S to be:

s € Tn lS la V A G N • (true => [y]t+i = /([X]*))

which corresponds to the traces of CELLf with the appropriate event renaming. Vari

ants of CELL are the basic constructors of combinatorial logic as they are a represen

tation of primitive blocks in Pebble.

We could use this to define cells that calculated either c or s in our half-adder, but

not both. We need a way of expressing parallelism. This is our second refinement law:

Refinem ent 2 Parallelism

VAGN- i X : o{Y U Z) : [p r e , post i A post 2]

□ lX : oY : [p re , post 1] || iX : oZ : [pre, p o s t 2]
whenever:

Y , Z are non-empty and non-intersecting

V V G • post 1 [Z\ V] = post 1

V W G B^^ " p o s t2[y \W] = post 2

where B^ is the set of n-ary boolean strings

Informally, this says that if there are two parts of the output of a process, post 1

and post 2 , which have a null intersection of output events then the process can be

split into two, each computing one of the parts. Note that it is trivial to extend this

refinement to any finite number of parallel components since || is associative according

to Law 2 in Barnes[Bar93] §5.1.1.

The justification of this refinement law is again by traces; we show that the trace

set of the original frame is equal to the parallel combination of the traces of the two

new frames, using the semantics of the || operator from Barnes[Bar93] §5.1.

Returning to our original specification Equation 5.3, we can apply refinement law 2

and the logic arithmetic definition:

a b = 2(fl A 6) (fl 02 b)

198

where 02 denotes addition modulo 2 , to produce:
V t e N ■ ù{a, b} : o{c, s} : [t r u e , [2c + s]t+i = [a + b]t]

Ç i{a, 6} : o{c} : [t r u e , [c]f+i = [a A &]*] (5.2.4.1)

II i{a, b} : o{s} : [t r u e , [s]t+i = [a ©2 b]t] (5.2.4.2)
We apply refinement law 1 to (5.2.4.1), with function a n d , noting that A is equiv

alent to a n d , to produce:

(5.2.4.1) E CELLa„d[A{«,6}][0\{c}]

and similarly to (5.2.4.2), with function x o r , noting that ©2 is equivalent to x o r , to

produce:

{5.2A.2)nCELL^oT[I\{a,b}][0\{s}]

and we have refined our original specification into two parallel 2-input 1-output cells:

CELL^^^[I\{a,b}][0\{c}] || CELL^or[I\{a,b}][0\{s}]

5.2.5 A dditional refinem ent rules

We now introduce supplementary refinement rules. We start with counterparts of laws

given by Morgan [Mor94], whose justifications come from predicate calculus and are

not given here because our refinement of frames is also expressed in terms of predicate

calculus.

R efinem ent 3 Weaken precondition

If p re p re ’ then:

y t G'M ■ iX : oY : [p re , post] □ Vt G N • tX : oY : [p re’ , post]

R efinem ent 4 Strengthen postcondition

If p o s t’ post then:

y t e N ' i X : oY : [p re , post] n.\f t e N • lX : oY : [p re , p o s t’]

R efinem ent 5 Expand frame

199

y t e N - i X ’. o Y : [p re , post] Ç

Vt G N • l(X U A) : o{ Y U B) : [p re , post]

where A C \Y = ^ and 5 f lX = 0.

R efinem ent 6 Contract frame

Let P = iX : oY : [p re , post]. If:

3 A Ç X - V s e T n l P p ^ B C A Vt GN-

3 r G • (r[t] = (s[t] \ v4) U B) A (V t ^ t - r[i] = s[«])

i.e., we can change the occurrence of A input events at any timestep to some arbitrary

subset B without changing any of the subsequent output events (input variables A are

irrelevant to the outputs), then:

i{X U A) : oY : [p re , post] Ç l{X \ v4) : oY : [pre \ A, p ost \ A]

i.e., we can remove the A events. This refinement can be justified by observing that

removing the A input events from the precondition will weaken it, and the condition

for this refinement means that the output events are unaltered.

Now we introduce rules peculiar to our timed parallel model, along with justifica

tions.

R efinem ent 7 Introduce intermediate

If j , A;, m id are timed predicates over subsets of events such that:

V disjoint %, Y, Z Ç E-

S([K],+2, [%];) 4» k{[Y]t+2 , [Z]t+l) A j{ [Z U u M »)

and j{[Z]t+u [X]t mid

then:

iX : oY : [p r e ,p ([Y] t + 2 , [^]<)] =

{lX : o Z : [p r e J{[Z]t+i, [%]()] I I

i Z : o Y : [r a i d , k { [y] t + 2 A Z] t + i)]) \ Z

200

i.e., we may split into two parts a process for which an “intermediate calculation”

exists.

The natural interpretation of this law is an intermediate calculation on the inputs

X, using the spare time slot between each input and corresponding output to produce

intermediate results Z, and the final results Y .

As an example, let the predicates be:

^({a, 6, c, d}, {e}) = e = a A b A c A d

j { { a , b , c , d } , { f , h }) = f = (aAb) A h = { c Ad)

= e = f Ah

m id = tru e

which allows refinement of a two-delay four-input AND gate into two parallel 2-1

AND gates feeding into a third 2-1 AND gate.

We justify this law in terms of the SRPT processes G, K and J represented by the

three frames. The refinement rule requires that:

G[X, Y] = {J[X ,Z] \ \K [Z ,Y]) \Z

and so we must show that the traces of the left and right hand side are equivalent. We

specify the most general traces possible for each side, and aim to show their equivalence.

A new notation we introduce is the use of a horizonal bar % to represent groups of

events from a set A.

We first construct the traces of the right-hand side. Given s E Tn^J^cr:

s = (%, u(%) U U %,.. .)

where p re (a) {j{b, a) ^ b = a{a))

The process J can then be specified in SRPT notation as:

d y l = [! A ? M — > J a (M)]

Similarly, for u G 7^[[A]]cr:

u = (%, zi,/3(zi) U %,/)(%) U %,.. .)

where m id (a) {k{b, a) <=> b = (3{a)

201

The process K can then be specified in SRPT notation as:

K b = [!B W

We apply law a-10 from Barnes[Bar93] pp. 78 to get:

A I I K b = [!(.4 U B) ^ •^(0uB)n.J() II ^(QuA)n,K„]

We know from the disjoint process input and output alphabets that this simplifies

to:

[\{A U B)7Q JQnx || Kgnz]

This establishes that, at any point in any of its traces, the tail of process J || K" is

always equivalent to J^i || for some A and B.

Given this parallel construct, process J guarantees that Zt+i = a{xt). Process

K guarantees that ÿt+ 2 = From the earlier definitions then,

k{ÿt+2 , 0L{ t̂))-

Similarly, p re {xt) => %) = zt+\ = a{xt). We can join these two to get:

p re (xt) k{ÿt+2 , Zt+i) A j(^+ i, Xt)

which, from the precondition in this refinement law, is equivalent to:

p r e { x t) ^ g{ÿt+2 , ^)

This matches the original frame specification in the refinement law definition, show

ing that the left and right hand sides are indeed equivalent, and we have proven the

refinement law. □

R efinem ent 8 Introduce delayed intermediate

If j , A;, m id are timed predicates over subsets of events, and di, da > 1, such that:

V disjoint X , Y , Z Ç S-

9{[^]t+di+d2, |]̂f) ^ k{[Y]t+di+d2 7 l^]t+di) I^j{[Z]t+dij []̂i)
and j{[Z]t+di, [X]t => m id

then:

202

iX : o Y : [p re , ^ ^ ([[A] t)] =

{iX : oZ : [preJ{[Z]t+d,A^]t)] I I

iZ : oY : [m i d ,k{[Y]t+di+d2 A^]t+di)]) \ Z

i.e., we may split into two parts a process for which an “intermediate calculation” exists

at some time point between start and end of calculation.

This law is justified by repeated application of refinement law 7.

5.2.6 Feasibility

We construct the maximal trace set m ax of two event sets A, Y by:

0 G m ax (A, Y)

 ̂ G m ax (A, Y) => VA Ç A, R Ç Y -

{ t ^ { A u B)) G m ax (A, Y)

i.e., the well-formed trace set with all combinations of input and events possible at

each time step.

The specification P = Mt E N - lX : oY : [[p r e]̂ , [p o s t i s feasible if it is

well-formed according to the refinement frame rules listed in Section 5.2.2, and:

3 s G m ax (A, Y) : V t G N • p re [s[t]) post {s[t -f k])

i.e. there is some well-formed trace which, at every time point, satisfies the postcondi

tion as long as the precondition is true.

5.3 Case Study: Carry Look-ahead Adder

A carry look-ahead adder is an adder whose design is optimised towards minimal exe

cution time rather than towards minimal area. It works by splitting an addition into

two halves (high and low bits), and carrying out two parallel calculations for the high

half sum - one for if a carry is received, one for if it isn’t. A multiplexer then selects the

203

A2 B2

PASSMUX

Figure 5.2: Carry look-ahead adder structure

correct high bits calculation based on the carry-out bit of the lower half calculation.

Figure 5.2 shows the structure of one of these devices.

We will now specify this adder and refine it.

5.3.1 Specification

For an 71 = 2 ̂ bit adder, CLAAk".

l{A U B) : oC: [t r u e , [N(C)]*+i+, = [N(^) + N{B)]t]

where N(X) maps the subsets of X onto the natural number given by the binary

representation of the events. A and B must contain n events, C must contain n -f 1.

We will in fact find it useful to specify and refine the processes CLAAk{x) for all

X e N < k , where [N(C)]f+i+jfc = [N(^) -f N{B) + x]t.

Note that the specification requires that the computation complete in 1 -f A; time

steps. A simple ripple-carry adder could not in general satisfy this specification since

it takes time linear in 2 ̂ to complete; each bit of the sum is computed sequentially

with the lowest bit first.

5.3.2 B asic gates

If we set A: to 0, and hence ti to 1, we get a half adder:

HADD = i{a, b} : o{c, s} : [t r u e , [2c + s]t+i = [a + b]t]

204

which we already know how to construct, from Section 5.2.4. We note that this takes

two of our 2-input, 1-output cells. We assume that the only cells available for construc

tion are 2-input, 1-output and 3-input, 1-output. This will restrict what we regard as

“final code” in our refinement.

We will also want a pass gate (for delays) and a 1-bit choice gate. These have the

following specifications:

PASS = : o{y} : [t r u e , [?/]f+i = [a;]*]

MUX = i{a, b, c} : o{y} : [t r u e , [y]t+i = [{b A c) V (a A - ’c)]f]

We can have the 1-input, 1-output PASS gate because it can be embedded into a

2-input, 1-output cell where the second input is taken from ground (i.e. a permanent

low value).

5.3.3 R efinem ent

We proceed by induction on k. The base case for A; = 0 requires an implementation of

the specification of the half adder above. It is possible that the half-adder is a primitive

gate on the target device. If not, we apply refinement law 2 to refine the HADD process

into:

HADD = LO II HI where

LO = t{a, 6} : 0(5} : [tru e , [5]f+i = [axor 6]t]

HI = i{a, b} : o{c} : [tru e , [c]f+i = [aand b]t]

and we will take LO, HI to be primitive gates since they are equivalent to XOR and

AND gates respectively.

We therefore assume as the induction hypothesis that we have complete implemen

tations for all processes CLAAk{y) for all y < k. We aim to prove the hypothesis for

A: 1.

Let n = 2^. Then 2n is the number of bits for each of the two input numbers to

CLAAk+i{y). Let A = A iU A2 where Ai = {%, . . . , a„} and A2 = {«n+i, , oan}-

Define Ri, B2, Oi similarly and Q = {cn+i,. • •, C2n+i}- From now on, for convenience

we will omit the N in the arithmetic by referring to direct addition of event sets.

205

We start with the process specification of CLAAk+i{x):

i{A U B) : oC :

[t r u e ,

[C]t+2+k = [A-\- B + x]t]

then expand the input and output set definitions:

i{^A\ U A2 U B\ U B2) : o(Ci U C2) :

[t r u e ,

[Ci]t+2+k = (Ml + Li + x]t) m od 2 A

[C2]t+2+k = (Ml + Bi + x]t) div 2 + M2 + B2]t]

Applying refinement law 8 {Introduce delayed intermediate) we introduce the inter

mediate event set {Ri U i 2̂ U U {c}), the components of which have respective sizes

71, 77 + 1, 77 + 1 and 1. We also introduce the set union abbreviation notation Xâ b for

XaU Xb. We may rewrite this as:

(^(Ai,2 U ^ 1,2) : o(i?i,2,3 U {c}) :

[tru e ,

Mijf+i+fc = (Ml + -̂ 1 + x]t) m od 2 A

[R2]t+i+k = M2 + B2]t A

[Bslt+i+k = 1 + M2 + -̂ 2] 7 A

[c]t+i+fc = (Ml + Li + o:]f) div 2] (1)

II ^(-^1,2,3 U {c}) : oCi 2̂ :

[t r u e ,

[Cl] 7+1 = Ml] 7 A

[C2]7+l = [(^3 A c) V {R2 A ->c)]t] (2)

) \ {Ri,2,3 U {c})

To show that this refinement law has been applied correctly, we need to define the

predicate functions g j j k , p r e , m id and the delays di, as specified in the refinement

law precondition. These are as follows:

9 — [Ci]f+2+jfc = (Ml + Ri + a;]f) m od2 A

[C2]7+2+A: = (Ml + Ri + x]t) div 2 + M2 + B2]t

206

j = Mi]i+i+A: = (Ml + Li + x]t) m od 2 A

M2]7+l+fc = M2 + -̂ 2] 7 A

M s] 7 + l + f c = 1 + M 2 + ^ 2] 7 A

[c]7+i+jfc = (Ml + -̂ 1 + x]t) div 2

k = [Ci]f+2+fc = Mi]7+1+Ai A

{C2]t+2+k = K-Rs A c) V {R2 A ^c)]t+i+k

di = 1 + A;

7̂2 = 1

pre = true

m id = true

To show that j , k combined are equivalent to 5̂ , we must show that the values for

Cl and C2 in the composition of j and k are equivalent to their values in g:

l C i] t + i = Ml] 7

Mi]<+i+* ~ (Ml + -Ri + 2:]f) mod 2

[Ci]f+2+A; = (Ml + -Ri + x]t) mod 2

[G]7+i = [(-R3 A c) V {R2 A ->c)]f

M 2]7+l+fc = M 2 + -R2]7

[Rslt+l+k = 1 + M 2 + -R2]7

[c]7+i+fc = (Ml + -Ri + x]t) div 2

=+ [C2]7+2+fc = M2 + -R2]7 + (Ml + -Rl + x]t) div 2

which is as required.

We take each of the refined processes in turn for further refinement.

207

(1) Ç via refinement law 2 {Parallelism) :

l{Ai 2̂ U L i ,2) : o{Ri U {c}) :

[tr u e ,

[Ri]t+i+k = (M l + L i + x]t) mod 2 A

[c]t+i+k = (Ml + L i + a:]f) div 2] (3)

I I 7 ' (- ^ i , 2 U L i , 2) : 0 R 2 :

I tr u e , [R 2] t + i + k = M2 + L2]i] (4)

I I f ' { A \^2 U L i , 2) : 0 R 3 :
[tr u e , Msjf+i+fc = 1 + M2 + L2](] (5)

We apply refinement law 6 {Contract frame) to remove A i,B i from (4), (5) and

^ 2 , ^ 2 from (3), giving:

i{A\ U Li) : o{Ri U {c}) :

[tr u e ,

[Rijf+i+fc = (Ml + Li + a:]t) mod2 A

[c]t+i+k = (Ml + Li + a;]f) div 2] (3a)

II i{A2 U B2) : 0 R2 :

[tr u e , [R 2] t + i + k = M2 + ^ 2)7] (4a)

II i{A2 U B2) : 0R3 :

[tr u e , Msjf+i+fc = 1 + M2 + ^ 2]̂] (5a)

Here, (3a), (4a) and (5a) are equivalent to the specifications of processes CLAAk{x),

CLAAk{0) and CLAAk{l) respectively, with input and output wires renamed appro

priately. Since each specification has a well-defined trace set, and equality of trace sets

means equivalence of processes, we can substitute in the renamed CLAAk processes.

The second part of the refinement proceeds as follows.

(2) = i'{Ri,2,3 U {c}) • oC\^2 '

[tr u e ,

[C\]t+i = [Ri]t A

[Q 17+1 = [{R3 A c) V {R2 A -ic)]*]

208

Ç via refinement law 2 {Parallelism) :

t(Li,2,3 u {c}) : oCi :

[trueJCilt+i = Mi]t] (6)

I I ^ { R i , 2 , 3 U { c }) : 0 C 2 :

[t r u e , [Cjf+i = [{R3 A c) V {R2 A -^c)]t] (7)

We apply refinement law 6 (Contract frame) to remove i?2,3 from (6) and Ri from

(7):

l{Ri U { c }) : oCi :

[tru e , [Cl](+1 = Mi]f] (6a)

I I 4 ^ 2 , 3 U { c }) : 0 C 2 :
[t r u e , [C2]t+i = [(L3 A c) V {R2 A ~^c)]t] (7a)

(6a) is equivalent to n parallel PASS processes between R\ and Q ; we apply

refinement law 2 {Parallelism) and substitute the renamed PASS processes as noted

above.

(7a) is equivalent to n + 1 parallel MUX cells, choosing from R2 and R3 using

c, sending to Q . Again, we apply refinement law 2 and substitute renamed MUX

processes.

We can now collate the refinement to produce:

i{A U B) : oC : [t r u e , [C]t+2+k = [A + L + x]t]

□

(CLAAt(T)M i,Li]M i,c] (3)

II CLAAfc(0)M2,L2]M2] (4)

I I CLAA,(1)[A2,L2]M3] (5)
PASS[n][ci] (6)

MUX\rji-\-ij 72n+i) c][Cn+i] (7)

) \ (Li,2,3 U {c})

li=l
in+1
li=l

With a relatively short formal derivation we have produced a full implementation

for a family of arithmetic functions, parametrised by size, and demonstrated that the

calculations complete in the specified time. This has been done using a predefined set

of simple gates HADD, PASS and MUX.

209

5.3.4 Space and tim e

The specification tells us that the computation completes in 1 + A; time steps, and since

it is true for all values of ̂ € N it tells us that a new calculation result is delivered at

every timestep from t = 1 + k onwards, i.e. the calculation is pipelined.

As far as space is concerned, we define a function C{k) which gives the number

of cells used by CLAAk and which comes from the final (recursive) definition of the

process:

C{k) = 3 C { k - l) + P(2^-i) + M (l, 2^-1)

where P{b) is the number of cells for an n-bit PASS block and M{a, b) is the number

of cells for an a-bit choice, 6-bit output multiplexer. P{b) = b and M (l, 6) = 6 in this

case, so:

C{k) = S C { k - l) - \-2 ^

for A: > 0, and (7(0) = 2. This gives (7(1) = 8, (7(2) = 28 and so on. This indicates

that cell usage varies as 0(3^) where n is the size in bits of each argument. A 32-bit

adder, producing a 33-bit answer, would require (7(5) = 908 cells.

Note that a simple ripple-carry adder would not satisfy the specification in general

because its computation time is linear in its argument length. If the timing require

ments were relaxed, ripple-carry adders could be inserted instead of carry-lookahead

adders in some layers. This would not, however, save cells; the requirement to have the

entire result come out at one time point means that the adder needs a large number of

PASS cells.

5.3.5 Sccdability

The above approach has illustrated a number of key concepts. An important one is the

use of previously defined processes in development. We saw this where smaller CL A A

blocks were used in the construct of a larger one.

If this refinement method were used in the creation of a substantial PLD program

then it would be useful to build up a library of specifications and the processes that

satisfy them. Note that several processes may meet one specification, and the developer

may choose one based on available cell configurations, computation time and cell usage.

210

The Introduce intermediate refinement law is a powerful one because it encapsulates

an activity, hiding the internal events which are needed to make the calculation. This

enables the effective top-down design and implementation of a complex programmable

logic program. The design will refine the initial specification into a number of parallel

sub-specifications, which will either match existing library components or which can

be handed to individual developers to implement. The specification carries inside it

the interface and timing information needed by the developer.

Blocks on the PLD which perform a fixed function can have a specification written

for them retroactively. This enables them to be part of a refined system and interface

to other refined components. The difficulty is in writing their specifications correctly.

5.3.6 P ro o f m eans no testing?

Bearing in mind Knuth’s famous quote “Beware of bugs in the above code; I have only

proved it correct, not tried it” [Knu77] we implemented the above structure in a simple

Pebble simulator written in Perl and tested it with random input data.

Knuth was proven prudent. In the original refinement, (3) had mistakenly been

asserted equivalent to CLAAk{0) rather than CLAAkix). The tests detected this, it

was corrected, and the tests rerun. No errors were found in the corrected version for

values of k from 0 to 5. The simulator was later expanded and rewritten, with the

results given in Section 7.2.

This is more a comment on the methodology that we used to arrive at our start

ing point rather than the subsequent refinement. In essence, no matter how good

a refinement, it can only be as good as the starting specification from which it was

derived. To validate that a system fits its purpose requires testing of the system in

conditions as close as possible to the intended operational environment, as no single

formal verification procedure can be sufficient.

There is clearly value in independent inspection of refinement to pick up problems

such as these. In order to measure the reliability of the inspection, it may be useful to

inject a number of faults into the proof before inspection.

211

5.4 Summary

In this chapter we have presented a refinement calculus with a specification notation

based on Morgan’s notation for refinement, using SRPT as the implementation lan

guage and adding an integer time aspect to the variables. We have shown how existing

refinement laws can be adapted to suit the new calculus, introduced a new law specific

to the parallel process model and shown how it can be proven.

We have demonstrated the specification and complete refinement of a carry look

ahead adder. The refinement was not lengthy or particularly complex, and few im

plementation decisions were required. One mistake occurred during refinement, which

was detected and corrected during testing. This indicates that the refinement model

is practical, at least for one class of specifications, but is not a panacea.

This refinement calculus is open for further development by adding new refinement

laws, for instance concerning iteration or alternation.

The refinement rules and notation described in this chapter are summarised in

Appendix A.

5.4.1 A lternative approaches

A complementary approach to parallel refinement was presented by Sanders and Lai in

[LS97]. The approach is also based on Morgan’s stepwise refinement model, extending

it to refine into a parallel communicating programming language with a syntax similar

to Occam[Ltd84] rather than Dijkstra’s language of guarded commands.

This approach diverges from our approach principally in that the system modelled

does not operate on a synchronous discrete clock but rather in the asynchronous model

familiar from CSP. It is useful however to observe that the refinement laws established

by Sanders and Lai (e.g. strengthen postcondition, weaken precondition, sequential

composition, parallel composition) are similar in intent to those we defined in Sec

tion 5.2. The authors identify the same weaknesses in their system with respect to

scalability that we have found. It represents a comrade rather than competitor system

for our SRPT refinement process.

212

5.4.2 Targets

Of the targets in Chapter 3 we have addressed or partially addressed:

Target 1: The process we define must be rigorous.

We have extended a subset of the rigorous process algebra SRPT, described in Sec

tion 4.1, to include a “refinement frame” syntactic construct. We have also developed

a refinement calculus to support refinement between constructs in this notation, and

hence between trace sets in SRPT. This work has been supported with formal proof of

relevant assertions and refinement laws.

Target 2: The process must help the developer to write unambiguous programs.

The use of the refinement calculus produces programs that demonstrably meet their

specification.

Target 5: The program produced must be easy to test.

Test cases may be generated from the program specification.

Target 6: The program must be able to be compiled onto a range of existing and

anticipated PLDs.

The mapping between SRPT and Pebble, as described in Section 4.2, is PLD-

independent.

Target 9: The process should indicate what kinds of error may arise at each stage.

We have seen how the manual refinement process may introduce errors, and indi

cated how manual review may address this.

Target 10: The process should provide flexibility so that it may be used in situa

tions not anticipated in its original design.

SRPT allows incorporation of processes that may act in an arbitrary way; our proof

system allows us to incorporate them in a system and reason formally about the effect

they may have on the rest of the system.

Target 12: [00-54 S. 5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification

complies with the safety requirements;

(ii) any formal arguments that the functional design satisfies the formal specification;

213

(ni) for non-functional properties with specified safety requirements, analysis of the

achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques

as diverse implementations.

(i) is addressed because the safety requirements may be expressed as post-conditions

in a process specification, (ii) is addressed because the refinement process produces

an evidence trail, amenable to manual review, that the SRPT process satisfies its

specification, (iii) is addressed because the timed specification process allows timing

requirements to be stated explicitly and shown to be met. (iv) is not addressed.

214

Chapter 6

A PLD Interpreter of SPARK

In Chapter 5 we specified a process for refining high-level specifications into SRPT

processes, and hence transforming them into implementations in Pebble. This is an

effective method for relatively simple specifications, but a, lX : oY : [p re , post]

refinement frame which described a substantial program would normally be unwieldy

and difficult to manage.

Section 4.3.12 outlined a possible design for an interpreter for SPARK Ada, running

on one or more PLDs. This interpreter would be difficult to verify to the degree

required for high-integrity PLD programs, but may be appropriate for running PLD

programs at lower levels of required integrity. In this chapter we expand this outline

to build a SPARK interpreter out of SRPT processes, using refinement to build small

computational units in the interpreter and defining a higher-level protocol to manage

execution of the SPARK “bytecode”.

We will describe the interpreter architecture, then break down its structure to

examine how individual units of SPARK code are executed within it. We will also

see how our techniques of refining specifications from Chapter 5 are useful in making

custom combinational logic sequences.

T arget aims

This chapter chiefly addresses Target 2 (the process must force the developer to write

unambiguous programs) and Target 4 (it must enable as much static analysis as

possible). We aim to achieve this by allowing developers to write programs in the

SPARK language which already satisfies these requirements.

215

Our aim is to produce a design for a SPARK interpreter which runs on a generic

PLD. The interpreter should:

1. be amenable to arguments that it correctly executes SPARK;

2. interpret as large a subset of SPARK Ada 95 as possible;

3. not depend on any feature of a specific PLD;

4. make relatively efficient use of available PLD resources; and

5. scale in performance with increased resources.

The design must be practical, since in Chapter 7 we will have to produce a working

implementation of the interpreter as part of the case study.

There is a secondary aim, related to the SRPT specification and refinement work

in Chapter 5. We will specify a number of SRPT processes in our description of the

interpreter, which will be a test of the usability of the specification form. We aim

to use these tests to measure whether our SRPT specification scheme is suitable for

specifying significant complex systems with a range of functions.

Scope

The SPARK constructs recognised by the interpreter are restricted in that no constructs

particular to the Ravenscar tasking profile are permitted. This is to simplify the

interpreter’s architecture.

The interpreter is intended to be a proof-of-concept, not an optimised design.

No particular assumptions are made about limiting features of PLD design e.g.

available cells or routing resources. For this reason we refer to the target PLD as the

“virtual” PLD.

Structure

Section 6.1 presents an overview of the interpreter design. Section 6.2 describes the

mechanism for communicating between the CPU and the PLD. Section 6.3 describes

the mechanism for communicating between package units upon the PLD. Section 6.4

details the structure of the package units. Section 6.5 describes how SPARK programs

216

are transformed into a form suitable for execution on the interpreter. Section 6.6

discusses how SPARK software interacts with the PLD program.

Finally, Section 6.7 discusses optimisations to the interpreter and Section 6.8 draws

conclusions from the chapter.

6.1 Interpreter Overview

We now describe the design of the interpreter to give the reader a context for the rest

of the chapter.

6.1.1 A rchitecture

The interpreter is designed to contain a SPARK package P and any other packages

on which P depends, directly or indirectly. It will be controlled at the top level from

software; in the SPARK program compiled for the normal CPU there will be a shadow

package for P which will manage sending data to and from the interpreter. P is hence

forth referred to as the root package.

Each package is implemented as one contiguous unit on the virtual PLD, with data

connections between packages corresponding to subprogram calls. There is a connection

from package P to package Q if and only if there is a call from a subprogram of P to a

subprogram of Q. The SPARK rules on inheritance order guarantee that there cannot

then be a call from Q to P.

The top-level architecture is shown in Figure 6.1. This example shows root package

P with direct dependencies on A and B, and indirect dependencies on C and D.

There are then three major components to the interpreter; the I/O between CPU

and PLD, the I/O between packages and the internal workings of the package itself.

This is the taxonomy we will use in the rest of this chapter.

Note that place-and-route issues may break a contiguous design unit over several

parts of an actual PLD.

217

CPU

RAM

ROM
PLD

BUS

Figure 6.1: Interpreter architecture

6.1.2 P artition ing issues

The performance of the interpreter, in terms of execution speed and PLD cell usage,

will depend on the packages selected for compilation. There are rules and guidance on

package selection as follows.

A note on terminology: a package with state is one that contains at least one state

variable, either directly in its spec or body, or in an embedded or child package. This

correspond to the package having at least one own variable in SPARK terms.

Rules

1. No package with state may be present in both the software and programmable

logic programs. This is to prevent multiple copies of a global package variable.

2. The packages compiled into programmable logic must form a valid SPARK pro

gram and a complete Ada program closure. This is essential for the integrity of

the compilation process.

3. This program must have run-time checks performed on it by a tool such as the

SPARK Examiner (using the -exp switch), which must show that it is free from

any potential run-time overflows.

4. Packages may not be embedded in subprograms. This is to reduce the complexity

of the compiler’s task.

218

G uidance

1. Packages should contain as few variables and as little code as possible.

2. The user should aim to minimise data transfer between packages.

3. Variables should be typed with as small a range as possible in order to reduce

storage space and transmission time.

6.2 C PU -PLD I /o

The key point in CPU-PLD I/O is that, in general, there is no clock synchronisation

between the two components. The I/O must take account of this, and hence be more

complex than the inter-package I/O discussed below.

We assume that the access to the PLD from the software is via memory-mapped

I/O, and that within the SPARK program the interface is accessed via a copy of the

specification of the root package. Given this, there are four stages of the data’s journey

to the PLD and back again:

1. between the software and the bus, via MMIO (both ways);

2. from the bus to the PLD’s bus interface;

3. from inside the PLD to the PLD’s bus interface; and

4. from the PLD’s bus interface to the bus.

The apparent asymmetry in stages 2 and 3 is due to the way that the PLD buffers its

input information from the bus, turning it into discrete packets, then after computation

aggregates packets until a complete frame of data may be transmitted back to the bus.

6.2.1 Softw are-bus M M IO

The PLD access process starts when a subprogram in the software component makes

a call to a subprogram in the root package. As well as the original package specifica

tion, there will be a package body where each subprogram from the specification has

219

an implementation. These implementations will be responsible for the data transfer

process.

There will also be set of variables, declared using Ada’s fo r X’Address use A

mechanism to map a variable to a specific location in memory. In this case they will

be mapped to the input and output pins of the PLD. There will be four canonical

variables:

TX Transmit byte. Initially zero, increases as the data is copied across.

TD Transmit data, of type Word.

RX Receive byte. Set by the PLD to indicate the progress of copy-back of data.

RD Receive data, of type Word. Set by the PLD.

Transm it

The transmit algorithm is as follows. We assume that the input data is held in an

array A : a rray (1..M) of Word.

TX := 0;
— Wait for the RX byte to clear, showing a ready PLD
while (RX /= 0) loop

delay(1.0);
end loop;
for idx in range 1..M loop

TD := A(idx); TX := idx;
— Wait for PLD to increment its counter, showing ready
while (RX < idx) loop

delay(1.0);
end loop;
— # assert (RX = Idx) and (TX = Idx);

end loop;
TX := 0;

220

Conventionally the receive code would follow directly. However, the processing of

the data might well take a while. For a program which has a main loop running every

20ms or so the implementer may choose to implement a polling structure and associated

state machine. Note that the use of tasking constructs would simplify this significantly.

R eceive

The receive algorithm is as follows. We assume that the output data is held in B :

a rray (1..N) of Word.

— Wait for the PLD to signal ready
while (RX = 0) loop

delay(1.0);
end loop;
for idx in range 1..N loop

B(idx) := RD; TX := idx;
— Wait for PLD to increment its counter, showing ready
while (RX = idx) loop

delay(1.0);
end loop;
— # assert (RX > Idx);

end loop;
TX := 0;

This has implemented an asynchronous copy to and from the PLD’s pins. We now

look at how the PLD buflfers the data.

6.2 .2 PL D buffering

The above transmit algorithm maps a chunk of data to the input pins of an PLD and

waits for acknowledgement before writing the next chunk. We now need to turn this

data stream into the form used to communicate between packages. This means that we

can compile the root package in the same form as other packages, with a standardised

way of receiving data.

221

Bits

00

01

10

11

Meaning

No message / end of message

Ignore this packet, message continues

Message body

Message start

Table 6.1: Packet meaning encoding

Variable Bits

TX U = {wi,. • , %}
TD R = {ri, .. • J ^m}
RX V = {î;i, .

RD S = {si,.. • 5 ^n}

Table 6.2: Memory-mapped variable representations

Packages receive data as a stream of packets. Each packet has two marker bits to

describe the data coming in, as shown in Table 6.1.

The packet width must then be at least 3 bits. The 01 packets are intended to deal

with delays in the message chunks arriving at the input pins.

Event representations

We represent the memory-mapped variables with the event sets shown in Table 6.2 and

the input bits of the packet pipeline with P = {p i,. . . ,Pk} and Q = {qi, Ç2} where

m = X X k. This enables us to guarantee that each set of input data from TD can be

transmitted in exactly x packets. We define functions u , r , v , s to map the event sets

onto representations in N.

Specification for B U F F E R

The BUFFER process must satisfy the specification given in Equation 6.1. The speci

fication captures the key correctness criteria:

1. RX is reset to 0 when TX is reset to 0;

222

2. RX increments by exactly 1 each time;

3. RX is only ever 0 or 1 lower than TX;

4. the message header bits coming out of Q form a legal message; and

5. the message data bits coming out of P exactly represent the data arriving through

TD with each change of TX.

We define the function : N seqB to translate a natural number into

its A;—digit binary representation, least significant bit first. We define the function

concat {S) to translate a sequence of sequences S into a single joined sequence:

concat (S) = | 0 < j < #5[i] | 0 < i < # 5)

We additionally define the following abbreviations for predicates and operations on

a trace t:

breaks { t ,f

resets {t, u

p a r titio n (A, S

stepp ing (t, u

follows { t,v ,u

validhdr {t, q, k

validftr {t,q ,k

validm sg {t, q

b itseq(A ,/,p

m sgseq(i,p , g

= («■ + 1 I \f]i ^ \f]i+l)

= (% + 1 I M i ^ 0 A [w]i+i = 0)

= { t [s [k] . . . s [k + i] - i] \ o < k < n ^ s)

= VO < « < • [w]i = [u]i+i V [u]i + 1 = [u]i+i

= VO < % < - [u]i = Mi V Mi = Mi + 1

= (VO < i < k - [q]i = 0) A [q]k = 3

= 3 m - (V A ; < « < m - l < [g']i < 2) A (Vj > m • = 0)

= 3 k • validhdr { t , g, k) A validftr {t, q, k)

= concat {{Bm{[f]i) | i G breaks (t, g)))

= concat {(Bk{[p]i) | {[q]i = 3 V [q]i = 2) A i G 0. . . # ())

The specification is then:

V t G InlBUFFEB^a VI G p a rtitio n {t, resets {t, u))

s te p p in g (l,u) 3 k - r e s e ts (/, v) = (k)

A stepping (Z[A;...], ?;)

223

PIPELINE

TD RD RXTX

SPOT ACK

SIGNAL

Figure 6.2: PLD input buffer

A follows (/ [Â : w)

A validm sg (;, g)

A b itseq {l[k...], r, w) = m sgseq (/, p, q) (6.1)

Design for B U F F E R

We define a set of SRPT processes to handle the input. SPOT checks the TX value for

changes and signals event n to SIGNAL; event z is signalled instead if TX has changed

back to zero, indicating end of data. SIGNAL breaks the TD value into packets and

sends them off, sending 01 packets and signalling d to ACK if it runs out of data. ACK

sends the correct RX back to the software client once it gets the signal from SIGNAL,

and listens for the z event from SPOT. RD is unused for this part of the communication.

Figure 6.2 shows the processes and connections.

The SRPT specifications of the buffering processes are then as follows. They are

parametrised by possible delays in calculations. Some delays (e.g. e = 0) may be

infeasible for certain PLD architectures.

SPOTe = iU : o{n ,z] :

[t r u e ,

([w]f 9̂ [^]f+l A [w]f+i 7 ̂ 0) <=> [n]t+2+e

A {[u]t^ [w]i+l A [u]t+i = 0) [z]t+2+e

224

A C K f = i{d ,z} : oV :

[t r u e ,

(([z]f A 3 z : hd]f..j+i) 4=> {[v]t+i+f,,,t+i+f+i = 0))

A {{[d]t A 3 i : [-^d]t+i...t+i) <=>

([%]f + 1 = [v]t+f+l A [v]t+f+2...t+f+i+l = Hf+/+l))

] (&2)

The SIGNAL process can be split further into HDR and DATA which send out

the header bits and data bits for each packet simultaneously. Note the precondition,

which states that new data signals must not arrive until there has been time to send

out packets for all the current data.

SIGNAL = HDR \\ DATA (6.3)

HDR = i{n ,z} : o{Q U {d}) :

[Wt ^ h (^ V z)]t+i...t+x,

{[n]t A 3 y > x : [--(n V z)]t+i...t+y) ^

([gi A g2]t+l A [g2 A ~'gi]i+2...i+a: A

[gi A ~ig2]f+x+i...i+y} A

A [d]i+x+l A [~id]f+x+2...Z+j/)

A {[z]t A 3 y : [-^n]t+i...t+y) <=>

[-i(gi V g2 V d)]t+i,..t+y+i

]

DATA = i{RU {n}) : oP :

[Wi hn]t+i...t+x,

y 1 < i < k ■

y i < j < X '

[n]t <=> {[Pi]t+j = [r(j_i)fc+i]f+j-i)

]

The set of traces of these processes in parallel, with all events other than P and Q

hidden, define a sequence of messages:

225

BUFFER = l{U U R) : o { P U Q U V) :

{SPOTe I I ACKf I I HDR || DATA) \ {n, z, d}

In Section 6.3 we examine the format of these messages in more detail.

6.2.3 PL D readout

We assume that the root package has made the appropriate computations and updated

its internal state as required, and is now ready to send back the data to its caller. We

further assume that the data is at a fixed location in the package’s local RAM store

and is of a known length w words. The RAM store must be capable of a multi-word

serial read, started with signal s and outputting the word data D = {d \,. . . , dk} for

the subsequent w cycles.

We name the bus interface signals P and Q for data and header bits respectively,

as above. Since there are two header bits, Q = {qi, Q2}- If the “start output” signal is

g then the two processes IHDR^ and IDATA will manage between them:

IHDRyj = i{g} : o{s, gi, gg} :

[\.9\t ̂ ['5̂]i+l...i+îü+3j

[9]t ^

[s A -i(gi,2)]t+l A [-'5]f+2...t+u,+3 A

h ^ l,2]i+ 2 A [gi,2]z+3 A [g2 A -^qi]t+4...t+w+2 A

[’Çl,2]f+îu+3

] (6.4)

IDATA = l D : o P :

[tru e , VI < i < k - {[di]t [pi]f+i)l

Note that IDATA is a simple PASSk process.

This will send the root package return data along the standard bus to the MMIO

writeback processes.

226

6.2 .4 W riteback to bus

The final task is to map the return data onto RD in chunks, signalling with RX to the

software routine that the new data is available and checking TX for acknowledgements

that each data chunk has been received.

The key difficulty here is that the output data has to be buffered in a local RAM

store since the software can wait an arbitrarily long time to acknowledge each data

chunk. The write-back buffer has to incorporate a store large enough to hold the entire

return message.

D esign

The strategy is to set up one group of processes to parse the incoming packets and

write them serially into RAM, a second group to count when sufficient data has been

written into RAM for the next data chunk to be written out, and a third group to

handle the protocol of communicating with the software.

Note that the RAM has varying bit widths on its ports, k data bits will come off

the input bus each cycle, so the input write port will be k bits wide. If the maximum

length of a return message is 2 ̂ words of k bits then the input write address port will

be y bits wide. The output MMIO register RD is an arbitrary n bits wide, so the input

read address port will be I = |’log2(2^fc/n)] bits wide.

Parsing

The first group of processes contains PASS which relays the P = {p i,. ..,p&} packet

data bits to the RAM data input pins D = {d i,. . . , dk}, PASS to pass event q2 through

to the serial write start pin w of RAM, and CTRL which increments the RAM write

address register bits A = {%, . . . , by one each time, starting from zero when a

message start packet comes in.

Let a map the events of A onto N, then the CTRL process can be specified:

CTRL = lQ : oA :

[[91,2](=> 3 z • [Ç2 A ~^q\]t+\. . . t+i A [--gi,2]f+i+i,

[?i,2]z ^ ([®]z+i = 0) A (Vj < z : [a]t+2+j = 1 + [o] t+ i+ j)

227

C ounting

The second group assesses when the next write is ready according to two criteria.

Sufficient data must have been written to RAM, and the previously sent TD data must

have been acknowledged.

We can re-use process SPOT to observe changes on TX, signalling event n. We can

use an AND gate on the Q events so that the output signal z signals the start of a new

message sending. In addition we introduce a new process RADDR which outputs the

RAM read address with event set B — {b i,. . . ,bi}. RADDR need not know whether

the correct data has yet been written into the RAM slots being read as long as the

third group ensures that RX is not incremented until sufficient data is in.

If b maps the events of B onto N then RADDR can be specified as follows. Note

that ®i denotes addition modulo I.

RADDR = l{ z, n} : oB :

[tr u e ,

{[At ^ Wt+i = 0) A
([n A -iz]f A [->(71 V z)]t+i...t+i)

[&]f+i...<+i+i = 1 ©/ [At

Com m unicating

The third group must count the incoming packets to determine when sufficient data

has been input for the RAM output to be valid. It must also check that the software

has acknowledged the last send.

TAP will take events Q (the packet header bits) and event n out of SPOT as

input. It will output the maximum value of RX permissible given this range of valid

RAM contents.

First we need a process EVERYk which outputs signal b once for every k times

that the input a is high. We also need a “semaphore” process SEM which maintains

2%8

an internal counter of b events and checks for n events. SEM will send out a d signal

to allow transmission once a n event has been received and the b counter is non-zero.

When the d signal is sent it will clear its n signal receipt and decrement its b counter by

one. This has the effect of signalling d only when a transmission has been acknowledged

and sufficient data has been read.

Note that an initial n event must be supplied when the message sending starts,

since the PLD must take the initiative in the return data protocol. For this reason the

n input into SEM should be O R ed with the message start event z = qi AND % to

produce event m.

Finally, we reuse process ACK from Equation 6.2 to write incrementing values onto

RX. It takes events z and d as input.

TAP is then EVERYi[a\q2] || SEM || ACK || OR[a, b, c\n , z,m].

To specify EVERYk we need to define a counter state function c() where ran c =

0 . . . A; — 1, and similarly for SEM we need a counter s() where ran s = — 1. . . 2 ̂where

2 ̂ is the maximum number of data packets in a return message. There will be a multi

cycle delay for most values of k in most architectures so we need to specify this with

parameters v, w > 0 for EVERY and SEM respectively:

EVERYk,v = &{&} : o{b} :

I [c]o = 0,

[â] f <4. ([c] f + u = ®k 1)

A {[a]t A [c]t = { k - 1)) <=> [b]t+v

]

SEMy, = i{m, b} : o{d} :

[[s]o = 0 A VA : {[s]t < 0) => [~̂ b]t,

[m A = 1 + [5]f+u,-i A

A [m A b]t<^ (Wi+«, = A [d]t+yj)

A [& A ->m]t ([s]f+«, = [s]t+^_i — 1 A

A [->(6 V m)]t <=> ([s]t+w = [s]f+^_i A [~̂ d]t+w)

229

ORSEMACK

EVERY

Figure 6.3: TAP process

w

SPOT

AND

PASS

RADDR

RX

TX

PASS

CTRL

TAP

r w
RAM
ar

aw

dout

din

TD

Figure 6.4: MMIO writeback design

EVERY 2 can be constructed using a toggle switch TOG where holding the input

high over a clock cycle toggles its internal state bit and holding the input low maintains

the state:

EVERY 2 = AND[a, c][b] II TOG[a][c]

EVERY 2k can then be constructed by serial composition of EVERY 2 and EV ER Y 2k-i.

For values of I which are not exact powers of 2 more complicated arrangements are

required, such as ring counters.

The MMIO writeback processes are shown in Figure 6.4, with TAP blown up into

its components in Figure 6.3.

230

6.3 Package I /O

Data is passed between packages in the form of packets as described above. There is

one significant simplification possible compared to the input buffering; the data to be

sent will be immediately available for writing and immediately able to be received, so

there is no general need for the 01 padding packets. The complication is that several

packages A, B, C may be sending data to package D simultaneously, requiring arbitration.

When package A needs to send a message to package D we assume that the main

package process in A has formatted the message correctly as a sequence of words in the

package internal RAM. The main package process A-M AIN will signal to the “talk

to D” process A-COM M -D that it may start communicating. It will then expect an

acknowledgement signal from A-COM M -D which may either indicate “data sent” or

“data sent and answer received”.

The scope of this section is the communication between A-COM M -D and package

D.

6.3.1 A rbitration

For each destination package D there is an arbitration process A R B d which controls

access to D from all packages that may communicate with it. Each of the n client

packages has an access-request signal in R = {r i , . . . , r„} and an access-granted signal

in C = {^1, . . . , ^n}- There is also a set of junction routing signals S = {si , . . . , s„_i}.

The function s : (1. . . n) —» PS then describes the set of junction control signals that

correctly route each client’s data.

The key criteria are that no more than one client may be granted access at once,

and that access, once granted, continues until the client stops requesting it.

A R B d — lR o{G \J S) \

[tr u e ,

> 1 •

{[~'9i\ t+l . . . t+k—l A [p A

A [di A Çj]t (î = j)

231

ARB =1

Figure 6.5: Inter-package routing

]

6.3.2 Inter-package routing

The routing of data between packages is managed as shown in Figure 6.5. This has

packages A, B, C and D routing data to descendant package E. Each junction routing

signal goes to a junction package Ji which multiplexes data from the client packages

onwards to the destination package, and demuxes the return data to the client package.

For the client-destination data flow we name the input data sets Wi, W2 and the

output data set X . For the destination-to-client data flow we name the input data set

Y and the output data sets Zi,Z 2 . Event s is the routing switch: when off it routes

Wi, Zi through and when on it routes W2 , Z2 through.

The process, for A;-bit wide data sets, is then specified by:

J i = Wi,2 U y U {5}) : o{X U %i,2) :

[tr u e ,

([(WH a - .5) V {U)2i A 5)]f [X i] t+ i)

A (W f <4̂ [(zif A -.g) V (%(A g)](+i)

232

6.3.3 Package ou tput

The process A-COM M -D will read in data from RAM, packetise it and send it out

onto the bus in a similar manner to process SIGNAL described in Equation 6.3. The

difference is that the data will be read by requesting a serial copy from RAM, with the

port data width set at design time to match the bus data width, hence no buffering or

change signalling is needed.

A-COM M -D is split into the following processes:

WAIT Waits for the start signal from the package, requests the granted signal from

ARB, then keeps the request active until the result has been received from the

package.

IHDRyj Waits for the granted signal from ARB, then kicks off the serial read from

RAM and writes out the correct header bits to the bus. Parameter w is the

number of packets of output data.

IDATA Continually copies data across from the RAM port to the data bits of the bus.

OHDR Keeps a watch on the header bits coming back from the destination package,

starts a serial write to RAM, and once concluded signals the finish pack to the

package.

ODATA Continually copies data across from the data bits of the bus to the RAM

port.

Let the RAM read interface be input event si to start a read, output set Di =

{d ll,. . . , dik} of data. We ignore any signal that the read is complete since we already

know the message size at compile time.

The RAM write interface similarly is input event % to start a write, input set

D2 = {dai, • • ■, d^k} of data and input event / to signal that the write is complete.

For the outside arbitration, let r be the arbitration request (which needs to be

held high during the request, writing and returning read) and g be the access granting

event.

233

P a c k a g e

Q2

D2

W AIT

O D A T A

ID A T A

O H D R

IHDR

A R B

RAM

RAM

DATA

HOR

DATA

HDR

Figure 6.6: Package output

For the bus output, let Qi = {çn, Ç12} be the packet marker bits and Pi =

{Pii: • ■ ■ iPik} be the packet data bits. Similarly the bus input is % = {^215 2̂2}

for the packet marker bits and P2 = {p2i, • • •, P2k} for the packet data bits.

The interface to the rest of the package is input signal s for the “start a broadcast”

request and an output signal / for the “communication finished” acknowledgement.

These processes are illustrated in Figure 6.6. IDATA and ODATA are simply PASSk

processes. IHDR^ has already been defined in Equation 6.4. The other two processes

are specified as follows:

WAIT = i{ s , f} : o{r} :

[tr u e ,

{[s]t A 3 2 : [- .(s V f)] t+i . . . t+i A [/] t+ i+ i)

(H i+ 1...2+ i+ l A [-ir]f+i+2)

OHDR = i{qi, :

[[? i , 2] i : V I < j < 2 •

([^2 A ->qi]t+ i. . . t+ i A [->qi^2] t+ i+ i) ,

{[qi,2]t A 32 : [q2]t+ i. . . t+ i A h %]2+^+1) <=>

234

[S2 A A [~ (̂S2 V f)] t + i . . . t+ i+ i A

[/ A ->S2]t+i+2

6.3 .4 Package input

The input in destination package D uses a mirror of the above structure to receive the

packeted data and write it into RAM.

In addition, it will need a START process to set the initial PC value according

to the start ID that heads the data stream, and then monitor the PC store for when

the last PC value is popped off the stack indicating subprogram termination. It must

then kick off the return transmission of the data from the area of RAM storing the

subprogram mode out parameters.

6.4 Package Structure

We have described in detail the mechanism for sending data between packages. We

now look at the details of the implementation of the package units.

6.4.1 Storage

Key to the operation of each package P are the internal ROM and RAM stores. The

ROM contains the compiled SPARK from the original package subprograms. The RAM

contains all the constant data used in the package (initialised when the PLD program

is loaded), areas for data to send to and receive from inherited packages, areas for data

to receive from and send to packages that inherit P, all the package global variables,

and all variables declared in all subprograms of the package. The last group includes

the subprogram parameters and function return values.

Figure 6.7 is an example of RAM layout for a package P that inherits A and B and

is inherited by Q and R.

RAM has two main parameters: the bit width of each word in it, and the number of

words held in RAM. These can be determined at the interpreter’s compile time and will

depend on the variables in the SPARK package. Wide words will speed up transfer of

2 3 5

CPU

READ
ONLY

WRITE
ONLY

READ/
WRITE

CONSTANTS

A OUTPUT
B OUTPUT
Q RECEIVE
R RECEIVE

A INPUT
B INPUT
QSEND
RSEND

PACKAGE
GLOBALS
SUBPROG
LOCALS

I/O

o -

— o

o
o

CHILDREN

PARENTS

Figure 6.7: Package RAM layout

large amounts of data at the cost of wasted RAM space when many sub-word variables

(e.g. booleans) are stored.

6.4.2 Storage operations

The RAM blocks must be able to implement serial reads and writes of data as well as

individual reads and writes. For the package I/O work we have already seen the serial

interfaces required for effective communication.

CPU access to RAM will be managed by a RAM controller RCTRL. This must be

able to implement the following operations:

1. serial read of N words starting to read from address A;

2. serial write of N words starting to write at address P; and

3. internal copy of N words, starting to read at address A and starting to write at

address B.

The reason for the final operation is that both subprogram calls and plain assign

ments (i.e. with a variable or constant as the rvalue rather than an expression) are

effectively copy requests. In our I/O model, subprogram calls require mode in vari

ables to be copied into the RAM slot representing the subprogram parameter, whether

236

in this package or in an inherited package, and mode out variables to be copied back

out. Doing this copying as a basic RAM operation is an efficiency measure.

With the following event namings, RAM width /, RAM word count 2 ̂ and RAM

state functions ŝ . : N —» PR, : N —» PW we can specify RCTRLk,i. We use the

abbreviation that [A]t means “the subset of A events present at time f \

A = Gjk}, Q : PA —> N

B = {&i,. . . , &fc}, 6 : P P —̂ N

N = {ni , . . . , nfc}, n : P A —> N

P = { n , " , n }

W =

C = {ci, C2}

RCTRLk,i = L { A U B U N U W U C) : o { R U { d }) :

[([ci V C2]t A 3 2 : [-^d]t+i...t+i) => hci,2]i+i...2+i,

< j < [n \ f

{ [B] t+ j+ 2 = [^rO + [-^]t)]i+j) A ([s]f+j+ 2 = [s]t)

A [c2 A -̂ C\]t V0 < j < [n]t •

Wi+i+i = [s]t+ j ® { { j + [B] t) ^ [^] t + j))

A [ci,2]t ^ VO < j < [n]i •

[s]t+i+ 2 = Wf+j+l © (0 + [P]i) [5 O +

A [ci V C2]t ^ Mf+wJ

C are the control bits selecting the operation. c\ represents a serial read, C2 rep

resents a serial write and the two C events together represent a copy. The above

specification, by delaying read output by one cycle, allows for an extra step whereby

the implementation may treat a copy like a read and a write in parallel, but internally

route the read output into the RAM write data port instead of routing the W events.

d is the “operation complete” bit. The precondition states that, once a command

is given, no further commands are given until the “operation complete” is signalled.

237

Bits

00

01

10

11

Meaning

Do nothing

Push the PC value on N onto the top of the PC stack

Pop the top item off the PC stack

Change the top item on the PC stack to the value of N

Table 6.3: PC action encodings

6.4.3 Program storage

There are three components to manage program storage. The ROM itself stores the

compiled SPARK code in fixed-width words. Data is read out by the program counter

process PCk- This maintains a current PC value, but can also store up to k other PC

values in a stack for use when there are internal subroutine calls. The stack size can be

bounded at compile time because SPARK’s ban on recursion means that the longest

subprogram chain can be statically determined and in any case is no longer than the

total number of subprograms.

PCk outputs the PC to ROM with events P = {pi , . . . , pa:}- It has input events for

a new PC value N = {ni , . . . , n^}, PC increment request 2, and control input events

C = {ci, C2} with the encodings shown in Table 6.3.

SNIP waits for event r to command a read. It then checks the instructions coming

out of the ROM, signalling 2 each time to get the next piece of data, and when the

end of an instruction arrives stops signalling 2 . The data is output using the event set

Q = {qii - - • i^y] where y is the standard instruction set data item width. Since event

d is the negation of 2 , d will then be signalled back to the CPU.

We specify PCk as follows. We will hold over the definition of SNIP until Sec

tion 6.4.5 when we specify the instruction set. We define functions n{) and p() to

translate the input and output counters into N. We also define state functions c : N

and function pc : N N so that pc{j) gives the program counter at location j in the

stack, with the top of the stack at location c.

PCk = ^({2} U N U C) : o P :

[[ci V C2]t

2 3 8

INV

PC

SNIP

a d d r

d a t a

ROM

A

A

A

A

Figure 6.8: ROM and PC store

’(ci V C2)]t ^

[c]t+l =

Cl A - 1C2]

[c]t+l =

C2 A -I Cl]

[c]f+l =

Cl,2]t

[cjm =

i] t <=>

c] t+i =

c]f) A {[pc]t+i = [pc]t)

c]t + 1) A {[pc]t+i = [pc]t © ([c]f+i [n]t))

cjf - 1) A (H f + i = [pcjf)

c]i) A ([pc]t+i = [pc]t © ([cji Wf))

c]f) A {[pc]t+i = [pc]t © i[c]t 1 + bc(c)jt))

Figure 6.8 shows the relations between the program storage components.

6.4 .4 Expression evaluation

Expression evaluation is managed by custom expression blocks. These take a stream

of data bits as input and produce a stream of data bits as output. There may be any

number of expression blocks in a package.

Control of the process is managed by the write-data signal w and the process-data

signal g. w sets the data in RAM to the input D. This data is output in the next step

239

EXP2EXP1

MUX

DMUX

CPU

Figure 6.9: Expression blocks

to the event set vl. A multiplexer MUX routes the w and A events to the expression

block selected by the events E from the CPU.

The expression blocks themselves take a “start” signal gi and input data set Ai as

inputs, and give out a “finished” signal hi and output data set Bi. Their implementation

will depend on the particular expression. The developer may choose to design them by

hand in order to take advantage of PLD features.

Once the expression block has finished, it signals hi and outputs its data on Bi.

This is routed to the output RAM via DMUX, again controlled by E.

Note that the other components are constructs which we have come across be

fore and do not require specification. Figure 6.9 shows how the expression evaluation

components fit together.

6.4.5 C P U instructions

The instructions from the ROM, previously referred to, are fed by the program store

to the CPU. They are key to the control path of the package.

An instruction consists of a sequence of y-bit words, fed to the CPU from the

240

Bits

00

01

10

11

Meaning

End of instruction (no-op)

Continuation of instruction sub-component

Start of instruction sub-component

Opcode

Table 6.4: Word type encodings

program store with event set Q. The sequence will always start with an opcode, which

may then be followed by any number of sub-components such as addresses and data.

This section breaks down the decoding and execution process of the instructions.

Encoding schem e

Each word in ROM uses its top two bits to indicate the type of the data in it, according

to Table 6.4.

The end of each complete instruction is signalled by a word with zero headers bits.

We can now specify the SNIP process from Section 6.4.3. It need only check the

top two bits of the data coming through. As long as they are not both 0 it will continue

to raise event i, incrementing the PC to get the next part of the instruction. As soon

as they are both 0 it will cease to signal i.

SNIP = i{Q U {r}) : o{i} :

[t r u e , ([r]i V [qo V qi]t) ^ [i]t+i

Instruction O pcodes

Table 6.5 lists the possible opcodes for the ROM instructions. The ROM output must

be wide enough for each instruction to be identified uniquely in one word, including

the aforementioned two header bits.

In the table, A denotes an address in RAM, P a program counter value, E an

enumeration and D a data chunk. { X } denotes one or more instances of X .

241

Opcode Arguments Meaning

NOP - Do nothing

DEPON id : E Instruction depends on id

COPY I : D, s ,d : A Copy I words from s to d

LOGIC op: E, { tti} Evaluate logic operator

CMP op : E, a, b : A,
1

Compare a and b of length I

SUBEXT id : E Subprogram id call

LOOP - New loop marker

LPEXIT a : P Exit current loop, skip PC to o

LPRET - Return to loop start

IFELSE { Oi : A,pi : P } if-then-elsif

EXEVAL id : E Evaluate expression id

EXWRT I : D ,s : A Copy I words from s in RAM to expres

sion input block

EXREAD I : D ,d : A Copy I words from the expression out

put block to d in RAM

SUBJMP a : P Jump to local subroutine at a in ROM

SUBRET - Return from subroutine, restoring PC

IDXRD s : A, i : A, t, I : Indexed read from s to d

D ,d : A

IDXWRT s : A, i : A, t , l : Indexed write from s to d

D ,d : A

Table 6.5: CPU Opcodes

242

Each opcode has a condition flag bit C. If set, the opcode is only executed if the

current CPU condition flag is set.

Not all these opcodes need be implemented. At compile time, if an opcode is not

present in the compiled program then it and its associated components need not be

put into the package.

Dependencies

The first opcode of a message may be DEPON. The following word gives the ID of an

instruction which must complete before the current instruction can start. This is useful

for starting a long operation (e.g. external subprogram call), processing data in the

meantime, but having the facility to block when the long operation’s data is required

but unavailable. Any number of instances of this opcode and its data may be present

at the head of a instruction.

The set of dependency IDs are mapped to the different operation blocks in the CPU

core, therefore correspond to an instruction’s opcode.

If the main opcode has its conditional bit set then the conditional bit in DEPON

must be set too. This will have the effect of throwing away the entire instruction before

any dependencies are checked.

The DEPON opcodes and their data are followed immediately by a normal instruc

tion and its data.

O pcode D escriptions

COPY is a direct command to the RAM to copy I words from address s to address d.

We have already seen that our RAM components implement this directly.

LOGIC takes an operand identifier op, which selects an n-ary logic operator, and

applies it in sequence to the data at the specified RAM addresses. The result (tru e

or false) is assigned to the CPU conditional flag.

CMP takes an operand identifier op which selects one of the six numeric comparators

= » /=, <> <=, >, >=, two addresses a,b identifying variables and a word count I.

The variables are evaluated against each other as if they were unsigned integers of the

appropriate length. The result is assigned to the CPU conditional flag.

243

SUBEXT calls a subprogram external to the package, id identifies the destination

package and the necessary message header data

LOOP identifies the start of a new loop. It pushes the current program counter

onto the PC stack, leaving the stack topped with duplicate values v. v will then be

the PC address of the first instruction in the loop.

LPEXIT jumps out of the loop by popping the top value off the PC stack and then

setting the current PC value to a.

LPRET returns to the top of the loop by popping the top value off the PC stack,

reading the next PC value, and pushing it back onto the PC stack to have duplicate

values as in LOOP.

IFELSE takes a string of RAM and PC addresses. If the value at Oi is non-zero then

the PC jumps to pi. Otherwise the value at oa is examined, and so on. A catch-all else

can be implemented by specifying the last as the address of a non-zero constant.

EXEVAL uses id to select routing to the expression blocks as described in Sec

tion 6.4.4, then signals the expression block to evaluate the current set data.

EXWRT reads I words from address s in RAM and writes them into the expression

input RAM block.

EXREAD reads the expression output RAM block and writes the I words into address

d in RAM.

SUBJMP is an internal subroutine jump. It pushes the specified PC value a onto

the PC stack, making the CPU execute instructions from a onwards.

SUBRTN returns from the internal subroutine by popping the top value off the PC

stack.

IDXRD reads the number from address i, multiplies by t words and adds to s before

reading I words from the resulting address and copying them to d.

IDXRD reads I words from s then reads the number from address i, multiplies by t

words and adds to d before copying the read words to the resulting address.

6.4.6 Instruction decoder

The first stage of the pipeline coming out of the ROM store carrying the instruc

tions handles dependency stalls and opcode selection. At the end of this stage of the

244

pipeline the instruction’s dependencies have been met, conditional instructions have

been checked and dropped if the condition is not met, and the instruction’s data (if

any) multiplexed to the correct control unit with an activation signal.

For clarity we define a “valid instruction form” function This is read

as “the message formed by the events in A from time t through time t i is a valid

instruction according to the restrictions in this section”. There are corresponding func

tions m'O and m"{) which respectively describe messages without leading dependency

lists and with a dependency ID moved to the back.

The conditionals are checked first. COND takes lines Z out of the ROM store and

CPU conditional status line v out of the CPU core as inputs. If v is clear (meaning

“last CPU condition evaluated to fa lse”) and an opcode pattern in Z is conditional

then the rest of the instruction is thrown away, up to the first word with header bits

00. Additionally signal u is sent to the CPU core, meaning “conditional instruction

not executed” so that the core can request the next instruction from ROM.

The specification of COND assumes that the conditional bit of an opcode is bit c.

COND = l{Z U {v}) : o{A U {u}) :

[[m {Z)] t . . . t + i ,

([/%,!,c]f A [-u;]^) <=> ([w]t+i A hao,i]t+i...i+i+i)

A (H t V-.[2b,i,c]i) ^

[m { A)] t+ i . . . t + i+ i A V 1 < j < (z 4-1) •

• • • 3 ® n — l }] t + i ~ [" [% 3 3

]

The decoder takes the lines A out of COND, where oo,i are the header bits, and

processes the dependency stalls in DEPCODE. This outputs unstalled data to DECID

along lines B. Any required dependency is queried along lines P, and signal p is received

once the dependency is satisfied.

The new decoding processes are specified as follows. We define the function opcodeA,p{X)

to map the subset A of A to the equivalent opcode encoding in P, ignoring the condi

tional fiag.

D E P C O D E is parametrised by the length of an internal buffer which it uses to

245

store a blocked message. The precondition of DEPCODE/^ states that there is some

number A; > 0 of dependencies in front of each message, and the message less its

dependencies is still a valid message.

The postcondition states that if there are no dependencies then it is passed straight

through in N+1 steps; if there are dependencies then it must signal the first dependency

ID, then a p event must occur before any message can be passed through.

DEPCODEn = i[A U {p }) : o{B U P) :

[[m{A)]t,..t+i A 3 k \ \ f b < j < k : [m{A)]t+2j...t+u

([oo,i]f A opcodeA,p{[AI\t) = DEPON) =>

[opcodeA,p{\A]t+\)]t+N+i A

(h p]f+ ^ ...W + d A [p] t + N + d + i)

[“ ’^o,i]t+v+i...i+iV+d A

V s : ([77i^(B)]s A s > (^ + A)) (s > i + A + d + l)

A -"([Go,i](A opcodeA,p{[A]t) = DEPON) =4>

[m'{B)] t+N+i . . . t+N+i+i A

[{ bo , . . . , —

[{ûQj • • . , t t n —

]

DECID registers the dependency id, then passes the instruction along C to the

opcode decode OP.

DECID = lB \ o{ C C D) :

[bo,i]t [opcodes,D{[B]t)]t+i

A {-^[bo,i]t) ^ [opcodes,DW]t+i

A ["f • J n̂—l}]t+l [{̂ Oj • • • 3 n̂—l}]i

A [m" {C)]t+i...t+i+i

246

OP produces the control lines P and data lines PU {s} routed into the multiplexer.

The s event is the “operation start” signal. The multiplexer then routes the data along

the correct route Q to the operation’s particular processing block.

The OP process has a relatively simple specification. The condition on [co,i]t is not

strictly needed as it is implied by the precondition of a well-formed message, but it

aids clarity. Here we specify OPfc with a delay k >1.

OPk = iC : o{E U P U {s}) :

[co,l]t <=> [s]t+k

A 3 ^ n —s l j f + f e . - . f + i + A : “ ['{^ 2 3 • • • : ^ n —l }] f

A [{ / o , . . . , / l }] t + A : = {0,0}

A V1 < j < z :

[{ . ^ 3 • • • 3 / n — l }] i + i + f c — [{ 0) 3 3 ^ n — l }] f + j

]

Process REG acts as a dependency register. Input lines D are used to note that an

instruction with ID di has gone through. Input lines H are used to note that CPU block

hi has completed. REG has the internal state function 6 : N —> B identifying whether

each instruction ID has gone through and not been acknowledged. State variable I : N

stores the last dependency ID query received through P.

REGk is parameterised by its delay k >1.

REGk = i{P U P U D) : o{p} :

[t r u e ,

Vz: [h i] t^

[s]f+fc = [g 8 (z false)]* A

{ [i \ t = i) [p]*+A:

A [di]t =>

[s]*+fc = [s © (z true)]* A

[l]t+k = i

247

H

ROM

"71
C O N D
W U

— ► REG

DECODE
- -

DECID

s
1 ^ MUX OP1 CORE 1-^ -------

F
L_____ J Gi À

Figure 6.10: First stage of CPU pipeline

Figure 6.10 shows the decoder pipeline flow.

6.4 .7 C P U im plem entation

Specifying each component of the CPU core here would be a laborious process. . We

have already made formal speciflcations for the key components with which they com

municate. In this section we outline the generic method of operation.

A core component receives data from the decoder multiplexer. Start of data is sig

nalled by a high on start wire d. The data itself comes in standard packets (with header

bits 10 for start of item and 01 for item continuation) on wires G = {qq̂ . . . , Qn-i}-

The input data will typically be stored in one or more small blocks of RAM or in

flip-flops, as required. As each part of the instruction is received the component will

change state to route the next instruction part appropriately. The actual computation

may involve communication with RAM, the ROM store, the PC store or external

package interfaces.

The dependency analysis in the compiler and decoder guarantees that the compo

nent will not be in the middle of computation when the new data arrives. It does

require that the component signal on output h once the computation is complete and

all output data has been sent to the appropriate destination. This signal h will end up

at the REG process.

2 4 8

MUX

REG AND

. ST

7
MUX

A1

Y
1

1
4 —

F1

1 1
T
X

1
-1—► 1 1 F2

no

Figure 6.11: CPU core component

Figure 6.11 illustrates a generic CPU core component. State machine ST receives

the start signal and controls the routing of MUX to direct the instruction packets to

the appropriate destinations. Block A1 builds up an address and does a read request

of external block F I, which might for instance be RAM or the PC store. Data is

eventually returned into Y, which processes it and passes to X, where it is used as

the address for a write to external block F2 of the data built up in D2. Completion is

signalled once ST has seen the end of the message and block F2 has signalled success.

6.4 .8 O pcode sum m ary

With the preceding work we have produced a substantial and detailed design for a inter

preter of the instructions defined in Section 6.4.5. The interpreter contains mechanisms

for asynchronous communication with client software and for synchronous communi

cation between component packages. The design has a range of parameters relating

to processing delay and bit width of communication channels, and allows removal of

components which are not needed for a particular program.

We assert that this interpreter is suitable for running a compiled version of a se

quential SPARK 95 program. To demonstrate this, in Section 6.5 we detail how the

SPARK Ada constructs are mapped to sequences of interpreter instruction codes. We

also show how the control- and data-flow properties of a SPARK program validate a

range of assumptions made in the interpreter design.

249

6.5 The Program M odel

In Section 4.3 we described the SPARK Ada language and the SPARK Examiner

enforcing tool. We now describe how to map valid SPARK programs into the interpreter

that we have defined.

For the rest of this chapter, “a SPARK program” should be taken to mean “a

sequential Ada 95 program which conforms to the SPARK language definition and

which is free of exceptions.” In practice this normally means a program which passes

the SPARK 95 Examiner checks, and for which the run-time checks generated by the

Examiner (using the -exp switch) are all proven free of exceptions.

There are legal SPARK programs not allowed by the Examiner, and also illegal

SPARK programs allowed by the Examiner. Clearly, the latter are potentially serious

if part of a safety-critical system, since the Examiner’s acceptance may lead to undue

trust of the program. However, the known cases of this problem over the years of

commercial Examiner use have been relatively small in number. Each project’s safety

authority will have to make their own judgement on the reliability of the Examiner.

6.5.1 T ypes

Basic SPARK types are subsets of integers, fixed-point or floating point numbers,

and characters. Enumerated types can be viewed as integers where no arithmetic is

normally performed.

Compound SPARK types use the array constructor, with integers or enumerated

types as indices and any other types as the element type, or the record constructor,

with field names as indices.

The interpreter has one form of type: a sequence of a fixed number of words. Word

size is fixed within a package. The sequence length depends on the original SPARK

type, and in the case of compound types will normally be the sum of the lengths of

the components of the component types. Basic types will be stored in a non-negative

integer number of words within a package.

As an example, the SPARK basic types:

type N is range 1..300;

250

type E is (Red, Amber, Green);

are represented in a package with word length of four bits by sequences of three and

one words respectively.

The SPARK compound types:

type R is record

A : N;

B : E;

end record;

type A i s array(N,E) of R;

have sequences of 4 and (300 x 3) x 4 = 3600 words respectively. A “slice” of the array

A, selected by the first index only, would be 3 x 4 = 12 words.

The remaining difficulty is in indexing into a compound type. Indexing into a record

is easy since all record fields and sizes are known at compile time, so the offset and

length of the component are known. Indexing into an array is more difficult since the

index is not generally determined at compile time.

The interpreter IDXRD and IDXWRT instructions are designed to allow this. Mul

tiple indices require multiple uses of the instructions.

As an example, if the variables X : A ; Y : N ; Z : E were stored at locations oo, %, Ug

in RAM, then the assignment W := X(Y,Z) ; would be accomplished by the following

sequence:

IDXRD aO a l 12 4 a4 # s to re X(Y) in T

IDXRD a4 a2 3 4 aS # s to re T(Z) in W

where W was stored at location og and 04 held a temporary variable of size array (E)

of R.

Given this, we see that we have the mechanism for determining type size in package

words at compile time. Differing word sizes between packages are irrelevant since

the inter-package pipeline transports data at a packet size independent of source and

destination word sizes.

251

6.5.2 S tate

SPARK program variables are made visible either when a package is elaborated, or

when a subprogram is called. Each variable is associated with a named type (see

above) and may have an initialised value. Each variable has a unique fully-qualified

name.

Variables in the interpreter have a fixed location in the RAM of their containing

package. All of their locations and word sequence lengths are determined at compile

time. The safest strategy makes all variables disjoint. SPARK’s ban on recursion

removes the need for a dynamic variable stack.

However, it is possible to optimise RAM usage by allowing certain subprogram

variables to overlap. Variables from subprograms P and Q can overlap if there is no

subprogram calling sequence which allows Q to be called directly or indirectly from P

or vice versa.

All package variables are initialised at interpreter programming time, to 0 unless

an explicit initialisation is given in the SPARK. The SPARK Ada rules remove the

elaboration order problems with Ada and allow package variable initial values to be

determined during static analysis.

Subprogram variables which are initialised at declaration must be explicitly ini

tialised at the start of the compiled version of the subprogram. Space must also be

allocated for subprogram parameters, both in and out.

Constants are treated as variables but placed in the section of RAM which is read

only to the package core.

6.5.3 Expressions

A SPARK expression combines variables, function calls and literals to produce an

output of a type that is known at static analysis time. Expressions are either static

(can be determined at compile time) or non-static. We shall ignore static expressions

since they will be reduced to literals at compile time.

Expressions may occur in the following places:

1. on the right hand side of an assignment or declaration;

252

2. as an input parameter in a subprogram call;

3. as an index in a component reference (e.g. an array);

4. as the selector in a case statement;

5. after the re tu rn at the end of a function;

6 . within a type conversion; or

7. after an i f or e l s i f , as a boolean condition.

The simplest expression is a numeric literal. This will be stored in RAM in the same

way as a declared constant. Note that the type of the literal is known at compile time,

so 5 : range 0 .. 7 and 5 : range 0 ., 9999 will be stored in different locations

since they are “different 5s”.

Another simple expression is a single variable or constant name, possibly with record

selectors following. This can be handled entirely within RAM by the COPY instruction

since the variables’ addresses and length are known immediately.

A more complicated expression is a variable or constant with one or more array

selectors. In Section 6.5.2 we saw that the IDXRD could be used to emulate this.

Similarly IDXWRT can be used to emulate assigning to an array-selected component

of a variable.

Boolean expressions (such as those after i f statements) consist of one or more

boolean sub-expressions separated by logic operators. The LOGIC instruction provides

a shortcut to evaluating n-ary boolean logic, and additionally sets or clears the CPU

conditional flag which we will later find useful.

Numeric comparisons are done with CMP which works in a similar way to LOGIC.

It can also meaningfully compare two variables (of the same type) for equality or non

equality.

Type conversions are not trivial, since they may move data between word sizes.

s p a r k ’s run-time exception checks ensure that the conversion is always valid (5 can

never be converted to a variable of range 0 . . . 4, for example), but the conversion itself

is an arithmetic problem.

253

Expressions may incorporate function calls, but the SPARK rules mean that there

are no side effects (the functions do not change the values of any variables) and all

variables used by the function, directly or indirectly, are known. These expressions

will be rearranged by the compiler so that the function call occurs first, saving data to

a temporary variable, then that variable replaces the function in the expression.

Expressions within subprogram calls will need to be saved to the variable corre

sponding to the appropriate subprogram parameter.

Arithmetic expressions are difficult. The general solution is the use of expression

evaluation blocks within the CPU; each arithmetic expression in a package subprogram

will normally need its own block. The EXxxxx instructions allow writing to, execution

of and reading from these blocks.

The logic for an expression block may be produced automatically by the compiler;

the normal Ada arithmetic and logical operations will have a library of blocks pre

defined, parametrised by argument type size. We have already seen an adder; other

arithmetic blocks can be produced using well-understood programmable logic designs.

Alternatively the developer may choose to produce a manual design, refining the

required specification in the process described in Chapter 5. This may confer perfor

mance and space benefits, at the cost of increased development time and chance of

error in the refinement.

6.5 .4 A lternation

There are two SPARK forms of iteration: i f - th e n - e ls i f - e l s e and case. The latter

can be treated as a special case of the former.

The I PELSE instruction is the key to emulating alternation. It contains a list of

boolean variable addresses paired with PC values to jump to. A terminating “else”

can be emulated with the address of a constant Boolean tru e . The set-up to IFELSE

will normally be a series of expression and boolean evaluations matching the various

conditions.

6.5.5 Iteration

The interpreter supports loops with the LOOP, LPEXIT and LPRTN instructions.

254

SPARK loops come three main forms;

1. fo r loops iterate an index variable through a sequence of values; these are equiv

alent to a conditional loop preceded by an initialisation of the index variable with

the first statement of each loop being an index variable.

2. while loops have a boolean condition which is checked at the start of each loop

iteration, and which if met will cause immediate loop termination.

3. plain loops have no condition and nominally loop forever.

Loops may also have e x it statements within them, which may or may not be

conditional. These exit out of the immediately-enclosing loop.

LOOP sets up a loop in the program counter by marking a PC value as the start of

the loop. LPRTN returns control to the start of the loop, and will therefore be the last

statement in the compiled loop block. LPEXIT will break out of the loop. Together

then these allow emulation of the SPARK looping constructs.

6.5.6 Subprogram calls

Internal subprogram calls are made by writing the parameter data to the mode in sub

program parameter addresses in RAM, then calling SUBJMP to push the subprogram’s

start address on the PC stack. At the end of the subprogram SUBRTN will restore

the PC, and the new mode out parameter values will be read from the subprogram

parameter addresses.

External subprogram calls are made by writing parameter values into the appropri

ate area of (write-only) RAM and then using SUB EXT to identify the external package

and subprogram to call. The details of I/O to other packages were given in Section 6.3.

6.5 .7 Order o f execution

A sequence of statements in a SPARK program are executed strictly in order by a con

ventional Ada compiler. In fact, this need not be the case. The data flow information

gathered by the SPARK Examiner allows the compiler to determine that one or more

statements may be executed simultaneously.

255

The instruction dependency features of the interpreter can be used conservatively

to make each instruction dependent on its predecessor, and this is the recommended

process when testing the newly-compiled software. Out-of-order computations must

be carefully calculated.

Two sequential instructions I\ , I2 cannot be executed in parallel if:

1. Il affects the conditional flag and I2 is conditional;

2. Il and I2 both write to the same package resource;

3. h reads from a resource that I2 writes to, or vice versa; or

4. 7i and I2 are handled by the same core component.

All these conditions can be checked by the compiler, but add complexity and hence

increase the chance of a compiler error. The interpreter is deterministic, so at least

errors should be repeatable and hence not so hard to track down. Still, it is better to

avoid errors in the first place.

6.6 System Interface

As noted in Section 6.2, Ada provides methods for communicating with entities out

side the conventional CPU and memory model. It would be reasonable to allow the

interpreter to communicate directly with these entities rather than having to let the

CPU do the direct communication and pass data between them.

One solution is to use the package input mechanism given in Section 6.3.4, but

couple it to custom logic that controls the device’s input and output pins directly. This

has the benefit of being encapsulated by the normal interpreter package mechanism,

but does mean that it cannot interrupt the normal program control flow. Instead there

has to be an explicit call to the package for the main program to have access to any

data that is gathered. However, the data gathering can run in parallel with the rest of

the program.

Another solution could involve an extra expression block in a conventional package,

hiding the external interface. This removes the inter-package connection overhead at

the cost of potential unconventional CPU core component behaviour.

256

The exact solution for a particular project is a project design decision.

6.7 O ptim isations

The above model is relatively slow and unoptimised. Compared with a conventional

compiler/CPU combination its potential advantages are the out-of-order execution and

parallel computations. It will suffer from the overhead of being in programmable

logic rather than an ASIC, and likely to run at perhaps one twentieth the speed of a

conventional CPU for a relatively narrow bus width.

The key to performance gain is to use what the model is good at. Writing data to

the PLD, and reading data back from it, can be done at a relatively high burst speed

(depending on the system bus). The PLD can process this data while the main CPU

executes the rest of its program, polling the PLD to see when the processed data is

ready. This takes load off the main CPU, increasing system performance.

Section 6.6 showed how part of an PLD program could be customised to monitor

off-PLD signals. This too can reduce CPU load.

Designing the system architecture is necessary early in the system development

process. The designer needs to decide what tasks PLD programs should take from

the CPU. Once this is done, the PLD implementation can vary without the main

program design needing to change. This is important since it is not yet apparent how

one can predict overall system performance with confidence without a mostly-working

implementation.

Optimisations of a particular implementation will normally include removal of re

dundant components and adjusting word and bus widths. The latter appears to be

more of an empirical process than an analytic one. At the moment we have no heuristics

for identifying implementation bottlenecks. This area is open for further research.

6.8 Conclusions

This chapter has seen a design and outline implementation of a sequential SPARK

95 interpreter running on a generic PLD, intended for running PLD programs of low

criticality.

257

6.8.1 A chievem ents

We placed no artificial limits on the set of SPARK 95 programs that the interpreter

could execute. The limitation of no nested packages was for clarity of exposition,

and could be removed by careful management of the name spaces while compiling the

top-level package.

We showed that the control and data flow within SPARK could be emulated by a

relatively small set of primitive instructions. We produced a detailed mechanism for

asynchronous transfer of data between a software SPARK program and the SPARK

interpreter. We also produced a mechanism for synchronous transfer of data between

package blocks on the PLD.

We made no detailed estimates of the practicality of implementing the design, or

of the compilation errors that could plausibly occur.

6.8.2 E valuation o f SPA R K

We found the following SPARK features, enforced by the Examiner, key to our design:

1. recursion banned;

2. package ordering in a directed acyclic graph;

3. known data flow of subroutines;

4. exits from loops only possible in immediately-enclosing loop;

5. compile-time knowledge of type sizes; and

6. ability to show freedom of programs from run time exceptions.

6.8.3 E valuation o f SR P T

The SRPT notation proved useful in specifying the input and output events of pro

cesses and their relationships. The pre- and post-condition specifications varied in their

clarity. There is scope for improved notation and conventions to reduce the size and

complexity of the specifications without reducing their precision.

258

The key test of the notation will be when processes are implemented from their

specification. In Section 7.2 we translate the relatively simple stateless processes of

the Carry Look-Ahead Adder into gates, but the more complex state-holding processes

of the SPARK interpreter are an entirely different problem. This is an area open for

further research.

6.8 .4 Satisfaction o f target aim s

Of the targets in Chapter 3 we have addressed or partially addressed:

Target 1: The process we define must be rigorous.

This is partly addressed; SPARK programming is a rigorous process, and the in

terpreter design has been given in an unambiguous notation (SRPT). However, we

have not produced any rigorous demonstration that the interpreter correctly executes

SPARK, and indeed have stated that the attainable integrity of the interpreter is not

sufficient for critical applications.

Target 2: The process must help the developer to write unambiguous programs.

This approach allows PLD programming in SPARK, and SPARK programs are

unambiguous. The SRPT specification of the interpreter is unambiguous, and so an

interpreter implementation which satisfies the specification will likewise run programs

deterministically.

Target 3: The process must allow the programs to have sections written in a

low-level language for speed and flexibility, but not allow these sections to compromise

overall program reliability.

The interpreter design allows arbitrary connection to other PLD components as

long as they implement the same I/O interface as the interpreter modules.

Target 4 ' The process must admit substantial static analysis to discover semantic

program errors at or before compile time.

SPARK programs may be subjected to static analysis via the use of the SPARK

Examiner.

Target 10: The process should provide flexibility so that it may be used in situa

tions not anticipated in its original design.

The interpreter design provided is parameterised and modular, allowing individual

259

modular designs to be modified as and when necessary and desirable (within limits

imposed by communication protocols and PLD architecture.)

6.8.5 Follow-on

This chapter has not gone into great depth for each of the interpreter components for

reason of space and chapter focus. The key measure of feasibility is whether such an

interpreter can actually be implemented, and whether its performance is comparable

to a conventional CPU. This requires further work, and hence this study is listed as a

possible future item of research in Section 8.4.3.

260

Chapter 7

Case Study

This chapter brings together the work of the preceding chapters and shows how it can

be used to solve a simple yet realistic problem.

There are two phases to the study. The first phase is a validation of the SRPT

specification work. Based on the high-level SRPT specification in Chapter 5 we develop

and validate “building-block” processes, then implement the Carry Look-Ahead Adder

design. We implement this design in Perl, measure its size and assess its performance.

The task of the second phase is to produce an embedded system to control a ballistic

missile interceptor. As far as possible, we use development and analysis techniques

described as suitable for SIL-3 systems by MoD Defence Standards 00-55 and 00-54

[MoD97, MoD99].

7.1 Target Aim s

We address the following targets from Chapter 3:

T arget 5 The program produced must be easy to test.

T arget 6 It must be able to be compiled onto a range of existing and anticipated logic

devices.

T arget 7 It must reuse existing proven tools where feasible.

In addition we consider the question of the practicality of development of significantly-

sized systems.

261

7.2 Carry Look-Ahead Adder

In this section we present the construction of a general-purpose simulator for a generic

single-clock synchronous PLD. We then show how it was used to implement the design

of a carry look-ahead adder (CL A A) from Section 5.3.

We do not aim to make the simulator implementation conform to SIL-3 or SIL-4

software standards. Instead, we treat it as a testing tool; we require confidence that

it fulfils its requirements accurately, and that it has been constructed in such a way

as to highlight errors in its design and implementation. It should provide an overall

increase in confidence in the circuits it simulates, but will not provide the sole evidence

of correctness of the circuit.

7.2.1 Sim ulation environm ent

The environment used was the Perl programming language. This was chosen for its

ease of use, cross-platform compatibility and support of 0 0 inheritance. Java was an

alternative choice but the author had more experience of Perl.

Structure

The base Perl modules used by the simulator were:

Blocks.pm Generic blocks

Gates.pm Logic gates (single-cycle, stateless)

Utils.pm General utilities for conversion between data types

Functions.pm Logical functions for logic gates

The first two modules in the list implement object instantiation in the standard

Perl way. The other two export functions for use by other modules, and are stateless.

All of them raise no errors under the Perl -w and use strict syntax checks.

Program m ing interface

The Blocks module implements the following methods:

262

new(specs) Initialise a new block with the given specs

gate_count() Count the number of gates in the block

copy (old) Copy an existing block old

set_in_map(map) Set the mapping of input pins to inputs inside the block

set_out__map (map) Set the mapping of outputs inside the block to output pins

se t_ rou te (route) Set the routing between internal blocks

map_in() Map input pin values onto the relevant inputs

map_out() Map output values onto the relevant output pins

set_ in p u t(id X jb it) Set input pin idx to b it

get_outpu t(idx) Cet the value of output pin idx

get_delay() Cet a block’s computational delay

evalO Evaluate internal blocks and gates

route 0 Route data between internal blocks and gates

add_object(obj) Add a block or gate obj to the block contents

cycleO Cycle a block (map_in() ;ev a l() ;inap_out() ;ro u te ())

Testing

The modules’ code has been tested by comparing the results of computations with

results worked out by hand in a range of blocks. This would clearly be inadequate for

a tool intended to support SIL-3 software development, where such techniques such

as white-box testing, regression testing and independent code review might be used.

General testing and validation strategy is discussed further in Section 7.2.5.

263

7.2.2 B uild ing blocks

The first step towards allowing module building was to define a range of logic gates in

the Gates and Functions modules. Each of these was taken to complete its calculations

in 1 cycle. Most gates had 1, 2 or 3 inputs. The exceptions were n-ary a n d , o r , pass

and xor gates in the Functions module.

The Gates module allows the user to define the maximum number of inputs permis

sible on these gates, causing a runtime error at the instantiation of any gate with more

than the permissible number of inputs. This corresponds to specifying the maximum

inputs and outputs on each cell in a particular PLD.

The user can now build their modules out of these gates. These modules subclass

module FPGA::Blocks. A module’s block is formed by Perl functions which instantiate

a container block and then instantiate and connect a series of other blocks and gates in

the container. All such modules are placed in the Useful include directory as standard.

7.2.3 A dder block

The CLAA was implemented in the module FPGA::Useful::Adder in the manner de

scribed above.

This class’s new() method requires parameters NAME for the name of the adder,

WIDTH for the bit-width of each adder input and ADDON for the number to add on to

the basic sum; this would typically be 0 or 1.

The main task of the module was to declare a block containing the three sub-adders

and other gates according to the design developed in Section 5.3. These were given

widths according to the user-input width for the containing adder.

If the WIDTH parameter was 1, the module built a simple half-adder block from an

X O R and AND gate.

7.2.4 Testing

A c la s s_ te s t Perl script and Makefile system provided a generic facility to test a

given FPGA::Blocks subclass. The script was a wrapper around use of the subclass

s e lf_ te s t() method. Typically, this method iterated through a range of block size

264

Bit width w Cates g Delay d [log2(^ - 1)J

1 2 1

2 9 2 0

3 25 3 1

4 31 3 1

5 64 4 2

6 80 4 2

7 93 4 2

8 100 4 2

9 171 5 3

Table 7.1: Adder size and delay properties

parameters (WIDTH in the case of the CLAA). In each case it created a suitable instance

of the block, extracted test data from the te s t_ c a se s () method and tested the block

against the expected output.

The te s t_ c a se s () method implemented random checking of a CLAA, generat

ing random input data and checking that the sum of the random data emerged in a

pipelined fashion after the block’s declared output delay.

Testing revealed no functional errors, and produced concrete statistics about the

implementation. Table 7.1 shows the properties of the Adder for a range of bit widths.

The delay is measured in PLD clock cycles.

The delay was indeed logarithmic in bit width, matching our performance specifi

cation. For width w > 1, delay d = 2 -f- [log2(w — 1)J as the table shows. Cate size

leapt, and delay increased by one, at each 14-2^ for integer k as we would expect.

The testing of larger devices revealed an omission in the simulation environment.

Since basic gates were limited to 3 inputs, when a 4-gate PASS gate was requested

the Gates module raised an error. This was overcome by extending the module’s newO

method to instantiate a block with as many smaller pass gates as needed. Re-running

the fixed simulation produced the correct results.

265

7.2.5 S im ulation environm ent reliability

The simulation environment is a key component in the argument for correctness of

our programmable logic system, since inadequate or incorrect simulation may lead to

construction of a system which simulates correctly but behaves incorrectly in real life.

This creates a debate about the required level integrity of simulation and analysis tools

in a safety-critical system.

Perl is clearly an unsuitable language in which to implement a safety-critical system.

The key reasons are:

1. it is an interpreted language, causing a significant performance penalty compared

to compiled languages;

2. the Perl interpreter is large and thus difficult to verify in any meaningful way;

3. the interpreter does periodic garbage collection, making program execution effec

tively non-deterministic ;

4. the language is purposefully very weakly typed;

5. Perl is not a “static” language; rather, it develops steadily over time and language

constructs may change their meaning; and

6. Perl itself has a number of language concepts (such as default variables) which

obscure the meaning of program statements and are prone to cause error.

Comparing these properties with the requirements for selection of programming

language in Section 28 of Def Stan 00-55 [MoD97], we see that the weak typing, lack of

formal syntax and lack of predictable program execution clearly make it an unsuitable

programming language.

However, the Praxis Critical Systems Perl Coding Standard [LeeOO] provides guid

ance on developing Perl programs designed for reliability. Using this, with indepen

dent verification of programs against this standard. Praxis have justified the use of

Perl tools in support of a safety-critical system development. Performance issues are

negated since programs are not required to run in real-time, the standard requires the

use of a “well-trodden” subset of the main language, and coding rules combined with

manual inspection of the code reduce the risks posed by weak typing.

266

7.2.6 C onclusion

Although not conclusive proof that the CLAA refined design was perfect, or indeed that

the simulation was error-free, this simulation and testing leads to increased confidence

in the design. This fulfils the main requirement for the simulator which we expressed

at the start of this section. The simulation also demonstrates that development of the

CLAA is easy to test (target 5) according to its criteria from Section 3.7.2:

5.1 amenable to production of a test plan from the specification;

5.2 amenable to instrumentation of the compiled program so that relevant data flow

can be observed;

5.3 with a working, verified simulator; and

5.4 test vectors for the simulator can easily be produced from the test plan.

Target 6 is met according to its criteria from Section 3.7.2:

6.1 a non-trivial program being developed into a form for compilation and running

using an existing PLD and toolset

since a simple gate-level description is trivially mapped into VHDL, Verilog or netlist

format.

In the next section we will construct a program and test harness for a real-time

safety-critical system, using the techniques described in the preceding chapters.

267

7.3 M issile Guidance System — Overview

This case study addresses the problem of incorporating a programmable logic compo

nent into an existing safety-critical system which was not originally designed for it.

This is not the ideal way to construct a safety-critical system, but it is a reflection of

current practice and has the bonus of providing a stringent test of our techniques.

We first implement the system in conventional software, written in the high-integrity

SPARK subset of Ada 95, using state-of-the art analysis tools to prove safety-related

properties of our software. We then select a subsection of the code to be implemented in

programmable hardware, and transform the code to a form suitable for communicating

with a PLD.

We aim to identify the main difficulties in this re-engineering process, and (where

possible) propose and demonstrate solutions. A secondary aim is to identify which

features of the SPARK Ada subset are less amenable to transformation into PLD form

and propose transformation strategies for them.

7.3.1 R elated work

Demonstration software systems have been used for studies before. Napier et al

[NMH99] described the implementation of on-line diagnostics for safety-critical sys

tems, using a boiler water control system implemented in Ada as part of an earlier

study by the UK Health and Safety Executive. This system had 70 Ada packages, and

communicated with a GUI over a serial link.

The advantage of a publicly-available software system (and associated test harness)

is that it provides common ground for future studies. It also permits some degree of

direct comparison between studies. For this reason, the software and test harness for

this system will be made publicly available.

7.3.2 S ystem requirem ents

The system is the main control unit (MCU) for an endo-atmospheric interceptor mis

sile, armed with a low-yield fission warhead. This system is clearly safety-critical; a

detonation of the warhead at the launch site is a definite hazard to life. Of course,

268

there are mission-critical requirements as well; if the warhead were never to go off, the

missile targeted for interception would probably get through to its destination and be

likewise a hazard.

We assume that the live warhead is only connected on a production missile in the

operational environment, and hence there are no special safety considerations during

development and testing of the system.

7.3.3 Safety

The main hazard of the system will be detonation of the on-board warhead at an unsafe

location (i.e., close to the launch point, or below a certain altitude). This dictates safety

considerations such as having confidence in the estimated distance from launch point.

We assume that the overall system has been assessed as SIL-4, but the program

mable part has been assessed as SIL-3. In a real project this reduction would be

justified by non-programmable measures taken to mitigate the main system hazard,

e.g. an analogue timer and accelerometer in series with the software warhead deto

nator wire, designed to only enable transmission on the wire after a certain time and

after the missile has maintained a certain acceleration for a certain amount of time.

According to Defence Standards 00-54 and 00-55, SIL-3 indicates the use of some

formal notations (e.g. for specification) and semi-formal analysis techniques. It does

not require proof of object code.

7.3.4 Im plem entation lim its

Since we lack appropriate hardware, we can only implement this system in pure soft

ware. We must therefore produce appropriate simulation and test software in order to

have any justifiable confidence that the system does what is required. We have already

discussed (in Section 7.2) the reliability requirements for such software.

In this particular system simulator we will apply some SIL-3 development techniques

to the test harness software, implementing it in SPARK Ada where possible and plain

Ada where required. We will not measure the system’s real-time performance.

The time taken to implement and test the full system will likely be in the order of

the square of the number of interacting components. For this reason, we will test only

269

a subset of the total system’s functionality, ensuring only that the existing components

work well enough to support the functioning of the missile’s safety-critical functionality.

7.3.5 Im plem entation technologies

The system (and most of the accompanying simulation and test code) was written

in the SPARK subset of Ada 95. The standard switches used for analysis are shown

below:

-i= m iss ile -exp -lis tin g _ ex ten sio n = ls_ -config=gnat - s t

They indicate, respectively:

• use of the SPARK index file m is s i le . idx;

• generation of full exception checks including arithmetic overflow;

• listing output to .I s s and .Isb for Ada specifications and bodies respectively;

• use of file g n a t. of g to specify the target-specific ranges of the base Ada types;

and

• generation of statistics on Examiner table usage.

The compiler used was GNAT 3.2 on 1686 Linux, although the system was also

compiled and checked on GNAT for Windows 2000 and Solaris. Note that if a differ

ent compiler was used e.g. to cross-compile to a PowerPC target, then the compiler

configuration file given to SPARK must represent the target compiler.

The overflow checks generate verification condition (VC) files for each package body

analysed. These conditions must be shown to be true in order for the developer to be

confident that the system is free of all run-time exceptions. The strategy used was

to use the Simplifier tool to discharge the maximum number of VCs automatically,

and then justify key remaining VCs using manual inspection, recording results in proof

review (.prv) files. This strategy avoids the extra effort needed for semi-automatic

proof of the VCs with the Proof Checker tool, at the risk of manual justification of

VCs being incorrect.

2 7 0

7.4 System Com ponents

The system has the following components. For each requirement we list the operational

(functional) and safety (non-functional) requirements. The safety requirements are

those that would be produced as a result of the system hazard analysis.

7.4.1 S ystem clock

1. Measures time since system power-on.

2. Time measured in milliseconds with an accuracy of 0.002% (under 2 seconds in

24 hours).

The clock was constructed with package clock. The simulation body was imple

mented with a clock that incremented by 1 millisecond after every read, and had an

external interface to allow simulator adjustment of the clock value.

Additional functions to operate on clock times were supplied in package c lo ck _ u tils .

7.4.2 1553 bus

1. Allows communication between the MCU and the other LRUs.

2. The MCU is the bus controller.

3. The “bus catalogue” is a list of pages; each page relates to the interaction between

the MCU and an LRU.

4. A bus catalogue page has a list of Rx (MCU to LRU) and Tx (LRU to MCU)

16-bit words used to communicate, assigning meaning to the bits in each word.

5. Each word is marked with a “fresh” bit by the sender when it is to be sent. The

receiver can inspect any of the sent words at any time, and can see the “fresh”

bit along with a “valid” bit controlled by the bus.

6. Maximum time lag between the sender marking a word as fresh and the receiver

seeing the fresh data is 15ms 4- 1 system cycle.

Safety requirements:

271

1. A bus failure indication (no-data condition) for any Tx word for more than 2

seconds is taken to indicate total failure of the sending LRU.

2. The bus must report a valid self-test on start-up.

The bus was constructed with packages bus, bcl553 and rtl553 . These provide

a simulation of a standard 1553 bus, and interfaces to the simulation for a Bus Con

troller and Remote Terminal. The bus simulator was tested with program test_ b u s

to demonstrate basic functionality.

Copies of the test program and interface package specifications are given in Ap

pendix B. The test program in particular shows how the Test package is used during

testing.

7.4.3 W atchdog tim er

This is a standard component for safety-critical systems, used to detect system failures

such as program run-away. When such failures occur it will either reset the system (if

it can be safely reset), or take more drastic action such as self-destruction.

Properties:

1. Provides a reset interface to the MCU.

2. After a reset, the timer will count out 750ms. If not reset within this time, the

timer will go off.

3. If the timer goes off, the watchdog will immediately command a missile self-

destruct.

Operational requirements:

1. The timer must be reset within 600ms of a previous reset during normal system

operation.

Safety requirements:

1. The watchdog timer may only be reset at one point within the program.

272

2. The watchdog timer reset command must be so placed in the program as to

detect as many kinds of system failure as possible.

3. The program must not send a timer reset if any system failure is detected.

The watchdog timer was constructed with package watchdog. The simulation body

interfaced to the clock to check for timeout when commanded.

7.4 .4 Barom etric sensor

This sensor detects altitude above mean sea level using barometric pressure.

Properties;

1. Measures current altitude above sea level.

2. Accuracy is ±5% at sea level, up to ±10% at 20 000m.

3. Above 20 000m barometric readings will read as if at 20 000m.

4. Must be calibrated with current altitude at system start.

5. Polling frequency is 200ms.

The barometer emulator was constructed with package barometer. The MCU

interface to the barometer bus messages was constructed with package i f _barometer.

These packages were tested using the main test harness with test script barom eter. in

which is listed in Appendix C along with its output.

7.4.5 A irspeed indicator

This sensor measures the speed of the missile relative to the air it passes through. As

the altitude increases, the sensor’s accuracy will decrease.

Properties:

1. Measures current speed relative to still air, in meters per second.

2. Accuracy is ±1% at sea level, up to ±10% at 20 000m.

3. Above 20 000m, airspeed readings should be regarded as random.

273

4. Maximum airspeed measured is 2550 m/sec

The airspeed emulator was constructed with package airspeed. The MCU interface

to the airspeed bus messages was constructed with package if-a irsp e e d .

7.4.6 Inertial navigation system

This sensor measures the missile’s displacement from its starting point using a ring

laser gyro set to measure relative movement.

Properties:

1. Accuracy is ±0.3% at speeds above lOOm/s, ±1% below that.

2. The co-ordinate system places the origin at the initial centre-of-gravity of the

missile.

3. A left-handed axis set is used.

4. The Y axis runs along the long axis of the missile’s initial attitude.

5. The X axis runs in the direction of the number 0 steering fin.

6. The Z axis runs in the direction of the number 1 steering fin.

7. Polling rate is 50ms

The INS emulator was constructed with package ins. The MCU interface to the

INS bus messages was constructed with package if_ in s .

7.4 .7 Solid sta te com pass

This sensor is a solid-state compass which detects missile attitude relative to the Earth’s

magnetic field.

Properties:

1. Must be initialised at start-up with the local normal vector to Earth’s surface.

2. Accuracy is within a 0.04 radian cone at sea level, decreasing linearly to a 0.2

radian cone at 40,000m.

274

The compass emulator was constructed with package compass. The MCU interface

to the compass bus messages was constructed with package i f _compass.

7.4.8 Fuel tank sensor

This sensor reads the amount of fuel in the missile motor’s tank.

Properties:

1. Measures fuel remaining in kilos, from a maximum 100kg fuel load.

2. Accuracy is ± lkg down to the measurement of a 5kg fuel load, below which the

reading must be assumed to be a random value between 0 and 6kg.

The fuel tank emulator was constructed with package fuel. The MCU interface to

the fuel tank bus messages was constructed with package i f _fuel.

7.4.9 P roxim ity fuse

This sensor is a rapidly nutating (rotating) UV laser proximity fuse.

Properties:

1. Will only detect a reflection off a valid target within 1000m of the target.

2. Reflection is not guaranteed as the detection area is limited by an angle of ±1

radian from the normal to the sensor window.

The fuse emulator was constructed with package fuze. The MCU interface to the

fuse bus messages was constructed with package if_fuze.

7.4.10 M illim etre radar sensor

This sensor is a phased-array millimetre-wave radar in the nose of the missile.

Properties:

1. Will detect a valid target within a cone of 0.8 radian width off the missile’s long

axis towards the nose.

2. Maximum guaranteed detection distance of a valid target is 10 000m.

275

3. Accuracy of location is ±0.02 radians and ±10m range.

4. Doppler processing will read the speed of the target relative to the missile in the

direction of detection with accuracy of ±3%.

The radar emulator was constructed with package radar. The MCU interface to

the radar bus messages was constructed with package if_ rad a r.

7.4.11 Staring infra-red sensor

This sensor is an array of infra-red sensing cells in the nose of the missile.

Properties:

1. Will detect a valid target within a cone of 1.2 radian width off the missile’s long

axis towards the nose.

2. Maximum guaranteed detection distance of a valid target is 30 000m.

3. Accuracy of location is ±0.1 radians.

4. Approximate range information is given by expected target temperature, and will

be accurate to ±30% for a valid target. -•

The IR sensor emulator was constructed with package i r . The MCU interface to

the IR sensor bus messages was constructed with package i f _ ir .

7.4.12 Fins

The missile has four independent steering fins, spaced equally around the missile body.

Properties:

1. Each fin has a possible deflection (position) of between -1 and ±1 radians from

neutral.

2. Extreme rotation of a fin in a high atmospheric drag environment (high speed /

low altitude) can lead to fin mechanical failure.

3. Maximum response time from position command to position achieved is 800ms.

276

Operational requirements:

1. Avoid “chatter” (a rapid sequence of positive and negative values) in fin steering

commands in order to reduce the probability of fin mechanical failure.

2. Lock the fins in neutral position at system start.

Safety requirements:

1. Fins must report valid self-test at startup.

The fins emulator was constructed with package s tee r. The MCU interface to the

fins bus messages was constructed with package i f _ stee r.

7.4.13 M otor

The missile has a liquid-fuel rocket motor to provide thrust along its long axis.

Properties:

1. Variable thrust between 5 and 35 kN.

2. Optimal fuel consumption is at 21.5 kN thrust.

3. Thrust efficiency decreases by a small amount with increased altitude due to

reduced atmospheric oxygen partial pressure and hence a leaner fuel mix.

4. Maximum thrust at zero atmospheric oxygen is 29kN.

Operational requirements:

1. Avoid chatter in thrust level commands in order to reduce the probability of

thrust chamber mechanical failure.

2. Avoid repeated thrust ramp-up and ramp-down in order to conserve fuel and

reduce the probability of thermal cracking in the thrust chamber.

3. Ramp-up to 30% of maximum thrust at system ignition.

4. Do not change this thrust level until missile has travelled over 100m vertically.

277

Safety requirements:

1. Motor must report valid self-test at system start-up.

The motor emulator was constructed with package motor. The MCU interface to

the motor bus messages was constructed with package if_motor.

7.4.14 Self-destruct

For safety, the missile must be able to destroy itself safely. There are four separate

charges placed throughout the missile body.

Properties:

1. Detonation will fragment the missile body and destroy the warhead without caus

ing warhead detonation.

2. Self-destruct with a full fuel load at low altitude will cause an explosion with

blast effects approximately equivalent to a conventional blast-effect 250kg bomb.

3. Self-destruct requires a timed sequence of keywords to be sent to the self-destruct

bus unit. There is no acknowledgement back from the unit.

Operational requirements:

1. Self-destruct must not be initiated if the missile is still capable of flying its des

ignated mission safely.

Safety requirements:

1. Self-destruct must be initiated before the missile impacts the ground.

2. Self-destruct must be initiated whenever any sensor or actuator failure occurs that

significantly increases the probability of warhead detonation outside detonation

parameters.

3. Self-destruct must not be initiated within 1000m of the launch point.

4. Self-destruct must report valid self-test at system start-up.

The self-destruct emulator was constructed with package de s tru c t. The MCU

interface to the self-destruct bus messages was constructed with package i f _ d estru c t.

278

7.4.15 W arhead

The missile has a 12kT fission warhead as payload.

Properties:

1. Detonation requires a timed sequence of keywords and a challenge-response au

thentication between the command unit and the warhead unit.

Operational requirements:

1. A valid target for the warhead is an object travelling at over 400m/s whose 10-

second historic track places or will place it within a 10 000m sphere with origin

equal to the launch point.

2. Optimal detonation distance is 800m from a valid target.

Safety requirements:

1. The warhead must not be detonated within 10 000m of the ground.

2. The warhead must not be detonated within 20 000m of the launch point.

3. The warhead may only be detonated within 2 000m of a valid target.

4. The warhead must report valid self-test at system start-up.

The warhead emulator was constructed with package warhead. The MCU interface

to the warhead bus messages was constructed with package i f _warhead.

7.5 Design

The software system was designed using the INFORMED [AmeOO] design method. The

package hierarchy was extracted from the above system components, augmented with

basic types packages and interface packages.

279

7.5.1 D esign decisions

Significant design decisions included:

© two SPARK boundaries, one for the main missile controller and one for the

emulator code, overlapping lower in the inheritance hierarchy;

• top-down design as per INFORMED, ensuring each specification was written and

valid SPARK before implementing the corresponding body;

• supplementing each state package with a non-SPARK test procedure;

• implementing as much of the simulator as possible in valid SPARK; and

• using a script-based test harness above the main program.

7.5.2 Package structure

Figure 7.1 shows the design of the system with the SPARK and simulation boundaries.

Each significant package is shown; a red circle indicates the presence of state within a

package. The arrows show the direct w ith (package hierarchy) relations. A represen

tative subset of the component packages are shown, for reasons of diagram space and

clarity.

7.5.3 C ode structure

The top-level system program in design unit Main is a simple polling loop, calling a

sequence of embedded subprograms to deal with each system component.

7.5.4 D esign lim itations

The current lack of tasking (coarse-grain parallel processing) in SPARK Ada was keenly

felt. The main program broke down naturally into a small set of loosely-coupled tasks

managing functions such as location tracking, target tracking and self-test. In se

quential Ada these had to happen in an artificial order in a polling loop, introducing

artificial dependency relations between their states.

280

#
W atch d og

C o c k

»_ # IL @ If # If F ins
B arom eter A irsp eed W arhead

System

Simulation

BC1553

Inputs, Outputs

RT1553

B arom eter A irsp eed W arhead

T e st
H a rn ess

Figure 7.1: Missile system design

281

The addition of the Ravenscar tasking profile[BDR98] to SPARK 95 should make

such programs easier to express.

7.6 Im plem entation

The implementation was done in the following main phases:

1. construction of basic types packages;

2. design, build and test of the bus interfaces and emulator;

3. construction of the simulator and interface for the Barometer package;

4. construction of the basic test harness;

5. testing of the Barometer code and subsequent fixes to the code and test harness;

6. addition of one sensor at a time, extending harness code and adding types pack

ages where required;

7. construction of the Nav package for position estimation; and then

8. construction of the main M issile package.

7.6.1 D evelopm ent

The development methodology for each package was:

1. writing of the specification;

2. SPARK of the specification, fixing identified errors;

3. writing of the body;

4. SPARK of the body, fixing identified errors and updating the specification anno

tations where needed;

5. Simplifying of VCs for the package and fixing code flagged by any obviously false

VCs;

2 8 2

6. writing of the Command testing subprogram for the package;

7. compilation of the package;

8. creation of the test script for the package; and then

9. testing of the package, fixing code and amending the test script where required.

This late use of the compiler was effective in that very few compilation errors

were reported on the first compile; those that occurred were normally in the Command

non-SPARK routine. The VC inspection was a relatively effective method of locating

potential program errors for a small investment of manual inspection, especially for

numeric overflow errors for the results of calculations.

The SPARK report for the analysis of the Nav package body is given in Appendix D.

It shows the SPARK Examiner options used, the packages that needed to be analysed

due to dependency by Nav on them, and the fraction of the Examiner tables used.

The final code count was 504K of Ada files, with 16 800 lines. Of these, 2 500 lines

were annotations, 2 900 were comments, 1 300 were blank, and the remaining 10 000

(forming 330K) were Ada code. 20K of this Ada was test-related code. There were 75

packages and public child packages, with 9 of those packages related to testing. This

verifies that the system is not trivial in size.

7.6.2 Testing

The testing was done with a script-driven test harness, written in Ada but not using

the SPARK subset. Each significant module has a Command subroutine which reads

data from standard input and acts upon test script commands relevant to that routine.

The subroutine is made separate from the package body and marked as —# derives

n u ll so that the Examiner will not examine it and will assume that it has no effect on

the “interesting” (annotated) part of the system.

The test routines call package Test whenever they perform a check; successful

checks increment the Pass count, and unsuccessful checks increment the F a il count.

The results of each test are shown on standard output. Test scripts can change aspects

of the simulated packages (e.g. the current time or the current estimated height) and

2 8 3

display comments about what is being tested. At the end of a test run, the harness

shows the total number of pass and fails.

An example test script for testing the basic functionality of package Barometer is

shown in Appendix C.

7.6.3 C onclusions

The development produced the following lessons and statistics related to SPARK and

Ada development:

• A developer will have to do things properly eventually, such as provide I/O and

check functions for all major types, and no time will be gained by trying to short

cut this.

• The -exp switch is effective at locating overflow errors when combined with

Simplifier usage.

• The public child packages provided in Ada 95 and SPARK 95 are a great aid

to testing since they can easily be excluded from a SPARK analysis yet provide

direct visibility to their parent package for I/O and check functions.

• The use of a Makefile makes project management much easier, especially with

regard to keeping testing up to date.

• The Examiner processed a large system in acceptable time (8.163 seconds of

real time to SPARK everything SPARK-able with the standard switches, on a

1.35GHz Athlon XP processor).

• Of the 3085 VCs produced for this project, 32% were discharged by the Examiner

(version 6.2) and 58% by the Simplifier (demonstration version) leaving 8% to

prove manually. Simplification of the entire system took 364 seconds on the

aforementioned PC. Trial use of version 7.0 of the Examiner discharged 35% of

the VCs directly.

2 8 4

7.7 Introduction of A PLD

With the system passing SPARK analysis, compilation and testing, it was then nec

essary to choose some system functionality to incorporate into a PLD. We aimed to

produce a new program, with minimal changes to the original program annotations.

The three phases of this work were:

1. identify a suitable subsection for transformation;

2. replacing the existing code with calls to a PLD interface; and

3. transform the replaced code into a VHDL implementation;

7.7.1 Subsection identification

The code chosen for transformation was the Nav package, which tracks estimated missile

position. It is suitable for transformation because it requires relatively infrequent

updates from the main software (periodic updates on time and estimated missile speed

and attitude) and produces on-demand estimation of the current delta position from

launch. These properties match up well with those we described in Section 4.3.8.

7.7.2 P L D interfacing

The original implementation of Nav is given in Appendix E. It provides public functions

for accessing its internal tracking of recent sensor measurements (abstract variable

Location_State) and sensor states (abstract variable Sensor_State). The Maintain

polling routine calls the Handle_XX routines for Airspeed, Barometer, Compass and

INS sensors; these routines check the named sensor’s current readings, and if the sensor

has failed will attempt to use other sensor readings to estimate appropriate values. The

Estim ate-H eight and Handle_Airspeed subprograms are shown in full form in the

appendix; the others have been made separate for brevity.

The design decision was made to transform the package to have no intrinsic state,

but instead use memory-mapped state variables to communicate with the PLD. The

two existing abstract state variables were retained and their refinement components

mapped onto PLD output pins, and a new abstract state variable FPGA_Inputs was

285

added which was mapped onto PLD input pins. No synchronisation code was necessary

since the PLD implementation is stateless and hence may be pipelined.

The existing public functions were left essentially the same, with only minor changes

to memory-mapped variable accesses made due to SPARK rules. The Handle_XX

subprograms were unnecessary due to being moved onto the PLD and were removed.

The M aintain routine was changed to read each sensor’s state and write them directly

out to the PLD input pins.

The resulting package body Nav_FPGA is listed in Appendix F. The correspondence

with the original is quite clear. The most significant change is the addition of declara

tions for calculating type bit widths and mapping variables into memory. In fact, some

of these bit width calculations will not actually compile under GNAT since they are not

properly static; in practice, they would have to be replaced by actual numbers. They

have been left in the code in order to show the derivation. Again, Estim ate_Height

is given in full form and the other Estim ate routines are made separate.

7.7.3 Transform ation

The high-level structural steps of transformation of the selected Handle_XX subpro

grams of package Nav into VHDL were:

1. replace global variables in the subprogram declaration and body with the appro

priate PLD input and output vector names;

2. identify each subprogram’s in and out argument arid global data and create a

VHDL architecture declaration for it;

3. add appropriate Clock and Reset inputs to the declaration;

4. connect the appropriate PLD input and output pins to the subprogram’s inputs

and outputs;

5. create the VHDL implementation for the subprogram by declaring architectures

for the major Ada control fiow elements;

6. add declarations for appropriate vectors to connect these architectures; and then

286

7. add the required connections between blocks and architecture inputs and outputs.

At the level of translating subprogram body code from SPARK Ada to VHDL, no

initial effort was made to enable fine-grain parallelism. Instead, SPARK Ada program

constructs (principally alternation and assignment) were mapped into the most di

rectly corresponding VHDL representation (respectively, multiplexing from expression

evaluation and data routing).

No compilation or simulation of the VHDL was done since it was a capability

demonstration. A process for producing timing-robust VHDL from a SPARK design

is clearly required for this transformation process to be practically useful.

7.7 .4 R esu lts

The transformation process produced the following discoveries:

Software im plem entation to PLD interface

• Relatively little of the package specification changed. The abstract state variables

gained SPARK modes, and one extra output abstract variable was required, but

the global and derives annotations did not change greatly.

• Most of the work in the package body involved mapping concrete state variables

onto the correct area of memory. External global data (from the sensors) was

passed directly onto the PLD inputs.

• The transformation was not quite automatic, but was effected quickly and was

amenable to manual inspection for correctness.

Software im plem entation to PLD im plem entation

• The SPARK annotations were very helpful in characterising the inputs and out

puts quickly, making VHDL architecture declarations simple to write.

• Bit widths could be easily calculated manually, and minimised by use of pragma

PackO and Ada representation clauses. There seems no reason why these widths

could not be estimated by a relatively simple tool, given a SPARK syntax tree.

2 8 7

• The guarantee of no expression overflow given by the Examiner -exp flag (and

subsequent proof) would greatly simplify the process of writing VHDL to compute

arithmetic expressions.

7.8 Conclusion

In this chapter we demonstrated that our Chapter 5 work on refining a carry look-ahead

adder specification into an SRPT form could be mapped into a gate-level simulation

of a generic PLD. We constructed a suitable simulator and used it to verify that the

implementation met its specification.

We then wrote a controller program for a high-integrity embedded system, us

ing existing state-of-the-art software development tools and techniques, and simulated

mapping a section of the program into a programmable logic device.

The main conclusions of this work are as follows:

7.8.1 R efined program sim ulation

1. The refined program worked as expected in a gate-level simulated implementa

tion.

2. A gate-level simulator with a single clock is not hard to produce, and provides

increased confidence in such programs.

3. The creation of large, parametrised designs by instantiating and composing smaller

blocks can be easily expressed in an imperative language supporting inheritance.

7.8.2 SPA R K program developm ent

1. Writing a SPARK 95 program with information-fiow analysis can be done at a

similar speed to writing conventional full Ada programs.

2. Maintenance of SPARK annotations during development does not take significant

time.

3. Top-down program development with late compilation is quite feasible, with a

properly-formed design.

 288

4. The time taken to run the SPARK Examiner and SPADE Simplifier on a sub

stantial program is not noticeable on a conventional 1.5GHz 1686 PC.

5. The recent addition of tasking to the current SPARK model is likely to be valuable

in designing embedded controllers.

7.8.3 Targets

Of the targets in Chapter 3 we have addressed or partially addressed:

Target 1: The process we define must be rigorous.

We have based PLD program design in the rigorous and formally-specified SPARK

Ada 95 language. We have shown how key program properties such as freedom from

arithmetic overflow can be demonstrated. The transformation process from SPARK

Ada to VHDL is currently manual and not rigorous, but we have demonstrated that

the new interfacing code can be valid and meaningful SPARK.

Target 2: The process must help the developer to write unambiguous programs.

SPARK Ada is unambiguous by definition, removing all Ada language features that

may introduce compiler-dependence.

Target 3: The process must allow the programs to have sections written in a

low-level language for speed and flexibility, but not allow these sections to compromise

overall program reliability.

The use of VHDL enables the VHDL implementation of arbitrary blocks in the

original SPARK program to be replaced with custom VHDL code while leaving their

architecture (interface) unchanged. Verilog could be used similarly.

Target Jf.: The process must admit substantial static analysis to discover semantic

program errors at or before compile time.

SPARK Ada can be analysed by the Examiner for a range of statically-verified

properties, and verification conditions generated to admit proof of run-time properties.

Target 5: The program produced must be easy to test.

We have addressed SPARK program testing, but the testing of the VHDL compo

nent was not addressed.

The Perl PLD simulator has demonstrated that refined PLD programs are amenable

to automatic test.

289

Target 6: The program must he able to be compiled onto a range of existing and

anticipated PLDs.

We have used VHDL as a target language, compilers for which exist for most

substantial PLDs.

Target 7; The process must reuse existing proven tools where feasible.

We have employed existing tools (the Examiner and Simplifier) without modifi

cation, but suggested areas such as bit width calculation where extra tools may be

useful.

Target 9: The process should indicate what kinds of error may arise at each stage.

The static analysis results limited the errors that may be present in the SPARK.

Errors in proven and tested SPARK programs are likely to be requirements-related

rather than “accidental”.

Target 11: The process must admit justification to the project safety authority

that the programs output by the process are of an adequate integrity level.

The use of SPARK as a design tool for and interface to the PLD program provides

traceability for the PLD program design and implementation. The PLD program may

be manually inspected and reviewed against the original SPARK implementation to

demonstrate coverage of requirements. SPARK has been used and accepted at SIL-4,

although if only used as a design tool it is unlikely that a SIL-4 argument can be made

for the resulting PLD program without substantial extra evidence.

Target 12: [00-54 8.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification

complies with the safety requirements;

(a) any formal arguments that the functional design satisfies the formal specification;

(Hi) for non-functional properties with specified safety requirements, analysis of the

achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques

as diverse implementations.

(i) is addressed because the safety requirements may be expressed as post-conditions

in the SPARK program and the code proven against them, (ii) is addressed because

290

the SPARK analysis justifies the information flow annotations in the SPARK program,

showing consistency and the level of coherency of the design; (iii) is not addressed

since SPARK does not yet have any timing-related analysis; (iv) is addressed because

the SPARK implementation could be used in parallel with the VHDL implementation,

with a checking routine flagging deviations in the computed results. Only a limited

amount of diversity is present, however.

Target 13: [00-54 12.1.2] The Design Plan shall define the life cycle that is to be

followed in the development of the custom circuit, including a specification process, a

development process and a verification process.

The SPARK development process is well-established in safety-critical projects. In

dividual projects place different emphasis on its components, but the core of the process

(design - analyse - implement - analyse - test - fix - re-analyse) is common. The PLD

program development is then headed by the SPARK development process, with PLD

transformation and re-test at the end.

7.8 .4 Further research

The following research work would likely produce interesting and useful results:

1. a full description of the map from sequential SPARK 95 to VHDL;

2. production of SPARK and VHDL design patterns for common PLD-based func

tionality, and development of an algorithm or heuristic for selecting the design of

the SPARK-PLD interface; and

3. a study of the information-fiow results of transforming a polling-loop single

process program into appropriate SPARK Ravenscar tasks.

291

292

Chapter 8

Conclusions

In this final chapter we draw up the lessons we have learned in our progress through

this thesis, show how they have clarified the problems of hardware-software co-design,

and look at the avenues for future research which have opened up as a result.

8.1 Solving the Original Problem

Our original research problem statement in Chapter 3 was:

What methodology is suitable for developing a set of safety-critical system

requirements into an implementation which executes partially in a conven

tional microprocessor and partly on a programmable logic device?

Such a methodology should be rigorous and formal enough to admit veri

fication and validation to the standards demanded by Def Stan 00-54 and

RTCA DO-254 (electronic hardware), Def Stan 00-55 (software) and Def Stan

00-56 (system safety) for SIL-3 and SIL-4 systems (RTCA DO-254 Level A

and B).

We break this down into the following components; for each component we measure

what progress we have made against the above goal. We also list the original targets

from Chapter 3 which have been covered.

293

8.1.1 P L D s in safety-critical system s

We have surveyed the existing major safety and software development standards rele

vant to PLDs in safety-critical systems. We have extracted the key points from these

standards and applied them in an example development. Because we based this work

on existing best-practice standards we are on solid ground for justifying the safety and

correctness of this development to a safety authority.

Current expert opinion[Pri03] is that the existing PLD technologies do not permit

SIL-3 or SIL-4 functionality to be incorporated in a PLD. The rigorous formal tech

niques proposed in this thesis appear to provide similar rigour to that required for

SIL-3 software developments, therefore there is a reasonable case that with this work

SIL-3 PLD functionality is now feasible for some systems.

The author’s experience is that PLD programs can be designed to satisfy the re

quirements of DO-254 Level A criticality, as long as formal methods (an optional part

of Level A safety arguments) are not required. This thesis provides suitable rigorous

techniques for specifying and analysing synchronous PLD programs, thus supporting

DO-254 Level A development by making formal methods use practical.

Targets fulfilled:

Target 1: The process we define must be rigorous.

Target 2: The process must help the developer to write unambiguous programs.

Target 10: The process should provide flexibility so that it may be used in situa

tions not anticipated in its original design.

Target 11: The process must admit justification to the project safety authority

that the programs output by the process are of an adequate integrity level.

8.1.2 R igorous PL D program m ing

We have combined the SRPT process algebra and Morgan’s refinement calculus to

provide a synchronous timed refinement calculus for developing SRPT processes into

Pebble programs. The calculus allows for reasoning about the behaviour of arbitrary

SRPT processes incorporated into an otherwise formally developed system. As well as

stepwise refinement of designs, the calculus admits trace-based proof of safety proper

ties of processes.

294

We have demonstrated a practical refinement from a timed specification into a

device-agnostic unambiguous implementation language (Pebble, with a semantics de

fined by SRPT), and demonstrated its accuracy via gate-level simulation. The simu

lation environment is available in an operating-system-neutral format for future use.

Targets fulfilled:

Target 1: The process we define must he rigorous.

Target 2: The process must help the developer to write unambiguous programs.

Target 3: The process must allow the programs to have sections written in a

low-level language for speed and flexibility, but not allow these sections to compromise

overall program reliability.

Target 5: The program produced must be easy to test.

Target 6: The program must be able to be compiled onto a range of existing and

anticipated PLDs.

Target T: The process must reuse existing proven tools where feasible.

Target 10: The process should provide flexibility so that it may be used in situa

tions not anticipated in its original design.

Target 12: [00-54 8.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification

complies with the safety requirements;

(ii) any formal arguments that the functional design satisfies the formal specification;

(iii) for non-functional properties with specified safety requirements, analysis of the

achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques

as diverse implementations.

Target 14 ' [00-54 13.3.1] A Hardware Specification shall be produced which de

fines the SREH in terms of its behaviour and properties.

8.1 .3 M apping SPA R K to hardware

We have shown how the SPARK Ada critical systems programming language is well-

suited to describing PLD programs, due to its formal definition and the analysis tools

295

which support it. We have examined the problem of compiling SPARK program con

structs to hardware in three different ways.

We have shown how SPARK programs can be developed and proven against formal

pre- and post-condition specifications using current tools and techniques. We have

shown how these pre- and post- conditions can be used as the basis for developing an

SRPT program that satisfies the specification, ignoring the actual SPARK code.

We have described how SPARK code can be compiled directly to circuits on PLDs,

taking advantage of Ada’s type system to reduce datapath sizes and taking advantage

of SPARK Ada program structure to simplify the compilation task. We examined the

trade-offs between PLD gate count and program execution speed with particular regard

to the implementation of data paths on the PLD.

We have provided a full SRPT specification for a (reduced) sequential SPARK 95

interpreter which demonstrated that a) SRPT can be used to specify large systems and

b) the information known at compile-time about SPARK programs contributes sub

stantially to effective implementation in hardware. The interpreter was not useful for

high integrity programs, since high integrity programming requires compilation rather

than interpretation of SPARK programs, but would be acceptable for low integrity

programs and demonstrated the use of SRPT for PLD program design.

We have examined the problem of identifying and extracting a fragment from

a SPARK Ada program for PLD execution, maintaining program correctness. We

demonstrated the technique for an industrial-scale embedded program.

Because we used a generic PLD model for this work we avoided restricting this

development to a particular class of PLD.

Targets fulfilled:

Target 1: The process we define must be rigorous.

Target 2: The process must help the developer to write unambiguous programs.

Target 4 ’. The process must admit substantial static analysis to discover semantic

program errors at or before compile time.

Target 6: The program must be able to be compiled onto a range of existing and

anticipated PLDs.

Target 7; The process must reuse existing proven tools where feasible.

Target 8: The process must guide the developer in the appropriate use of each

296

component.

Target 9: The process should indicate what kinds of error may arise at each stage.

Target 12: [00-54 8.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification

complies with the safety requirements;

(ii) any formal arguments that the functional design satisfies the formal specification;

(iii) for non-functional properties with specified safety requirements, analysis of the

achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques

as diverse implementations.

8.1 .4 T he system developm ent process

We have defined a rigorous development process for going from a formal specification

to SPARK and PLD implementation. This development process involves:

• early identification of PLD and software components;

• use of existing software design methods and analysis tools to produce high-

integrity SPARK code for the system;

• use of refinement techniques to produce a provably correct PLD program (such

as the carry look-ahead adder);

• the ability to simulate PLD functionality without significant change to the SPARK

program;

• the option to transform software components to PLD form at a late stage without

compromising system design or safety;

• continuous production of evidence that the system is fit for purpose and fulfils

its required safety properties; and

• the option to move the (formally defined) program components between software

and PLD during future system upgrades.

297

Targets fulfilled:

Target 1 : The process we define must be rigorous.

Target 5: The program produced must be easy to test.

Target 8: The process must guide the developer in the appropriate use of each

component.

Target 9: The process should indicate what kinds of error may arise at each stage.

Target 10: The process should provide fiexibility so that it may be used in situa

tions not anticipated in its original design.

Target 11: The process must admit justification to the project safety authority

that the programs output by the process are of an adequate integrity level.

Target 12: [00-54 8.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification

complies with the safety requirements;

(ii) any formal arguments that the funetional design satisfies the formal specification;

(iii) for non-functional properties with specified safety requirements, analysis of the

achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques

as diverse implementations.

Target 13: [00-54 12.1.2] The Design Plan shall define the life cycle that is to be

followed in the development of the custom circuit, including a specification process, a

development process and a verification process.

8.1.5 R eliability and practicability

In Section 3.11 we listed general questions about the development process which aimed

to measure the process’s reliability and practicability. We now answer them.

How many distinct stages are there in the methodology?

Two extra stages have been introduced into the standard software development pro

cess: identifying parts of the specification to refine directly to hardware, and identifying

parts of the SPARK Ada program to compile into hardware.

298

The refinement process itself has four stages: rewrite the specification, refine it to

SRPT, compile to Pebble/VHDL and test it.

The SPARK Ada program fragment extraction has five stages: rewrite the SPARK

package body, update the package specification annotation, map the original SPARK

body into VHDL, test the VHDL in isolation and then test the SPARK-PLD interac

tion.

What is the probability and effect of introducing an error at each stage?

We have not gathered numeric data on probabilities, but can estimate the effect of

errors from experience in software development.

Incorrectly rewriting the specification for SRPT refinement is likely to make the

entire refinement incorrect and, if detected, will probably require the refinement to be

re-done. Whether it is detected will depend on the depth of system testing against the

original system specification.

Making an error in SRPT refinement is likely, in our experience noted in Sec

tion 5.3.6, to be picked up during PLD program testing.

Making an error in extracting the SPARK Ada program fragment into a PLD is

likely to be picked up in testing, especially if test results for the software implementation

are compared against those for the PLD implementation.

What do the above imply for the reliability of the system as a whole?

The reliability of a system function refined into an SRPT program, where the

refinement has been independently checked, is likely to be high. This does assume that

the original specification was correct.

Extracting a SPARK Ada program fragment into PLD form is likely to make the

program less reliable, but the alternatives (writing the PLD program in VHDL or a

high-level language from scratch) remove the ability to compare diverse implementa

tions of the PLD program and are more error-prone than Ada implementation in the

same way that assembly language or C program development is more error-prone than

Ada program development.

What classes of error are specifically checked for in the development process?

Information-fiow, control-fiow and data-flow errors are checked for by the SPARK

Examiner. Numeric overflow and proof condition violation are checked for by the

SPADE Simplifier and manual inspection of VCs. Errors in the SRPT refinement

299

process are checked for by independent inspection of the refinement steps. Errors in

PLD program extraction are checked for by comparing all-software and software-PLD

implementation results.

Is there adequate tool support for the developers of the target systems?

A qualified yes. The SPARK Examiner and SPADE toolset already exist and are

mature. The York hardware compiler for Ada exists, although has not yet been shown

to be effective at typical industrial system sizes. There is as yet no tool support for

SRPT refinement.

What level of technical expertise, and how much time, is required for each develop

ment stage?

Refinement of a specification into an SRPT process requires a good understanding

of logic in general, and technical expertise in refinement in particular.

SPARK Ada program development requires basic imperative programming skills.

SPARK Ada proof work requires an understanding of first-order logic. Extracting a

SPARK program fragment into a PLD program requires an understanding of VHDL

and the ability to operate PLD compilation and simulation tools.

Given appropriate same-generation hardware, does the generic PLD implementation

produced have significant performance advantages over an all-software implementation?

We have not produced performance figures which answer this question. It was

established in Section 2.3.10 that PLD programs could significantly outperform micro

processor programs for some tasks, and we have shown that SRPT refinement allows

a high-performance PLD program to be developed from a specification, but we have

not shown whether Ada code compiled onto a PLD can run more quickly than on a

contemporary microprocessor.

How well does the process allow late changes in requirements to he incorporated into

the system?

If the requirements can be traced into the design, the data-flow and information

flow annotations of SPARK Ada can bound the program units which must be examined

to see if changes are necessary. The abstraction present throughout the system may

reduce the impact of some requirements changes, but this is not certain. If refinement

is used, requirements change may require some refinements to be redone from scratch

which will be labour-intensive.

300

8.2 Advancem ent of Knowledge

We outline the weaknesses of the current research, in what respects our research is

original and how it improves on the current research.

8.2.1 Current w eaknesses

Section 2.6.1 described the weaknesses of the current research, which can be sum

marised as:

• there is no relation of high-level PLD programming languages to the requirements

of DO-254 and Def Stan 00-54;

• there is no relation of synchronous parallel specification and analysis techniques

to the requirements of DO-254 and Def Stan 00-54;

• Ada is the only high-level language suitable for programming high-integrity sys

tems, and the existing PLD compilers for it are immature and omit rigour; and

• there is a general lack of demonstration that PLD design and programming tech

niques for high-integrity will scale to be practical for typical modern systems.

8.2.2 O riginality

The main direction of research in this thesis is original because the problem of producing

demonstrably correct PLD programs, suitable for use in high-integrity systems, has

been specified (in Defence Standard 00-54[MoD99] and RTCA D0-254[RTCOO]) but

has not been solved. There has been no published work that explicitly addresses the

problems raised by conforming to 00-54 and DO-254 in PLD program development.

The work on specification and refinement of synchronous parallel systems (using

SRPT) is not original in itself, as Barnes[Bar93] specified SRPT and demonstrated

its use in system specification, and Morgan, Back and others[Mor94, BvW94] demon

strated rigorous calculi for refinement in synchronous systems. It is original in that

it provides a full refinement calculus for SRPT, making SRPT practical for specifica

tion and refinement of PLD programs. It is original in relating the work explicitly to

301

the requirements of 00-54 and DO-254 for high-criticality systems. It is also original

in describing the practical translation of the refined program into a PLD-compilable

form.

The work on compilation of SPARK Ada into PLDs is not original in itself, as

Sheraga[She96] and Ward[WA01, WA02c] have investigated Ada and SPARK Ada com

pilation for PLDs. It is original in that it exploits the properties of SPARK Ada to

increase confidence in the correctness of the compilation and optimise the PLD pro

gram for space and execution time. It is also original in relating the work explicitly to

the requirements of 00-54 and DO-254 for high-criticality systems.

The PLD-software development process proposal is original in that it explicitly

addresses the requirements of 00-54 and DO-254. It is also original in identifying the

problems that arise throughout the software-PLD process and providing solutions to

them. It expands the domain of applications for which the SPARK Ada programming

language can be used. It is original in that it details an industrial-scale safety-critical

embedded system and applies appropriate parts of the development process to move

an identified part of the program into programmable hardware.

8.2.3 A dvances m ade

The research from thesis has been fed into the production of a practical guide to

certifying PLD programs for safety-critical avionics[HilOSa]. As such, it has already

made a practical contribution to the production of safety-critical PLD programs.

The advances made by this research are:

• a practical process for high-integrity programming of PLDs (Section 3.12);

• a refinement calculus for SRPT (Chapter 5);

• a mapping which permits SRPT programs to be compiled directly onto PLDs

(Section 4.2.7);

• a publicly-available simulator to support simulation of programs generated by

this mapping (Section 7.2);

• a design for mapping SPARK Ada programs onto PLDs (Section 7.7);

302

• a design for a SPARK Ada interpreter to run on a PLD (Chapter 6); and

• a substantial example of a safety-critical program to be used in future hardware

compilation work (Section 7.3).

Overall, this research has made feasible the production of programs that satisfy the

requirements of Defence Standard 00-54 for SIL-3 and SIL-4 systems, which was not

feasible before.

8.3 Self-Critique

We now consider the omissions and weaknesses of this research. We also consider how

PLD program development would proceed if this research was not around, and how

this research is an improvement.

8.3.1 O m issions

The major omissions from this work are:

1. the demonstration of the PLD programs we produced being compiled into netlists,

simulated with commercial FPGA simulators and run on real PPG As;

2. the demonstration of a SPARK program communicating with a real FPGA;

3. the construction of a formal safety case for the case study including hazard iden

tification and fault tree analysis; and

4. relation of this work to information security standards such as the Common

Criteria[Com99].

The first three omissions mean that the practicality of the techniques described

in this research is not yet demonstrated. They also leave open the integration of the

proposed process into a full safety-critical system development, and its assessment by an

independent safety authority. Until this is done it is not possible to say with confidence

that these techniques and this process are suitable for SIL-3 software development.

303

The final omission is an area that is suitable for future research. SPARK Ada

has already been demonstrated in high-security applications such as the MULTOS

CA[AC02]. We consider this further in Section 8.4.4.

8.3.2 W eaknesses

The major weaknesses of the components of this work are that:

1. we have not considered how to take advantage of design features of existing PLDs

(such as embedded processor cores);

2. our focus on SPARK has excluded the Ravenscar tasking profile, which appears

to be helpful to construction of parallel SPARK programs; and

3. we have not established how the SRPT refinement system scales with increasing

complexity of the specification.

The general issue of how well refinement techniques scale up is an open topic and

is being examined in planned UK refinement research. We anticipate that useful in

formation relevant to SRPT refinement will arise from this research in the next 1-2

years.

The omission of Ravenscar is, to some extent, the result of the timing of this

research. SPARK Ravenscar has only just been officially released, and so it was difficult

to make specific recommendations about using it in the context of PLD programming.

Ravenscar will clearly become important in the construction of safety-critical parallel

Ada systems in future years, particularly when Ada OY (the successor to Ada 95) is

finalised.

8.3.3 H ow th e sta te o f th e art w ould evolve w ithou t th is re

search

We now consider how the state of the art of PLD programming for high-integrity

systems would develop if this research had not been done or had not been published.

304

Safety-critical PLD program developm ent

UK Interim Defence Standard 00-54 and RTCA DO-254 are already published, and

so future safety-critical PLD programs would have to conform to them in any case.

However, the formal methods recommendations in both standards have not been ad

dressed in current PLD program developments. Without a clear demonstration that

formal specification and development of PLD programs is practical, and guidance on

the use of specific methods, the incorporation of formal methods in industrial PLD

developments is likely to be haphazard.

Notably, Def Stan 00-54 is only an interim standard and its contents will be amended

when it becomes part of Issue 3 of Defence Standard 00-56 in 2004. If industrial devel

opers believe that the requirements for SIL-3 and SIL-4 PLD program development are

impractical then they are likely to lobby for the SIL-3 and SIL-4 requirements to be

ameliorated. This would be bad for system safety, and in the end is likely to increase

the cost of systems; experience by major hardware developers such as Intel[Sch03]

shows that formal verification for hardware can make economic sense.

R efinem ent for synchronous parallel system s

There is already a range of refinement calculi for synchronous parallel systems. How

ever, these have not been applied to practical PLD developments and so it is not yet

possible to go from a formally refined system to a compiled PLD implementation and

argue that semantics and correctness have been preserved. Without this assurance,

the motivation for use of formal specification and refinement in PLD program design

is significantly reduced.

PLD high-level program m ing

Languages such as Handel-C are likely to be used increasingly in PLD program de

velopment in the coming years. Without a practical high-integrity competitor such as

Ada, they are likely to start to be used for high-integrity PLD programming despite

the manifest deficiencies of the C language in this respect.

The work by Ward and Audsley[WA01, WA02b] on hardware compilation of SPARK

Ada and Ravenscar is promising but it remains to be seen whether it is practical for

305

real systems and whether the correctness of the compilation process can be justified.

Without better exploitation of the known information flow and semantics of SPARK

Ada programs, this compilation will not be as effective as it could be.

8.4 Future Work

There are several major areas of work opened up by this thesis which remain unex

plored. We now state what they are and outline how one might start to address them.

8.4.1 Safety engineering w ith P L D s

As noted in Section 8.3.2 it is necessary to obtain a safety engineering perspective on

the processes described in this thesis. This requires the input of experienced safety

engineers and safety assessors.

A useful start would be to produce a generic guidance document for incorporating

PLDs into critical systems, along the lines of UK Defence Standard 00-54 but brought

up to date with current PLD technologies.

There is an ongoing project by the UK defence establishment to produce a document

similar to this, restricted to the problem of incorporating PLDs into Advanced Avionics

Architectures (AAvA) compliant systems. The first release of this document [Hil03a]

has been informed by the research in this thesis. Future releases of the document will

incorporate the lessons learned from a suitable case study.

RTCA DO-254 is a useful support to safety-critical PLD programming work, but

its Appendix B on high-integrity PLD programming would similarly benefit from such

a guidance document.

8.4.2 R efinem ent

We have produced a rigorous basis for refinement in SRPT in Chapter 5. The refine

ment rules produced were adequate for our demonstration study but there is a clear

need to extend them if other, more ambitious systems are to be refined.

We suggest the study and extension of the existing refinement rules for SRPT, build

ing up a parametrised library of useful processes. Generic arithmetic routines would be

306

one class of such processes. This work should then be applied to the implementation

of a substantial critical function on a PLD.

We have only considered SRPT refinement in isolation. As noted in Section 2.3.11,

a hybrid formal specification language such as Circus may be appropriate for specifying

a combined hardware-software system.

We suggest using Circus (or a receptive, synchronous variant of it) to specify a

complete software-PLD system, refining it down into appropriate components. This

work should use a combination of full refinement, proof of selected safety properties and

static analysis. The aim should be to identify and address deficiencies in the existing

notations and tool support.

8.4.3 SPA R K to PL D s

Our efforts in translating SPARK Ada subsections to PLDs have been demonstrative

in nature and purely manual in practice. To make SPARK Ada usable as a PLD

programming language, this translation should be mostly automatic and well-supported

by tools.

We suggest producing an automatic or semi-automatic tool to translate SPARK

Ada into a form suitable for compilation into a PLD. It should be tested out on a

range of SPARK 95 code, measuring the size and complexity of the PLD programs

produced. It may also be useful to study ways to optimise the PLD programs with

respect to gate count and execution time.

The York hardware compiler described by Ward[WA02c] may be a suitable basis

for this work but requires critical study in the light of the issues raised by this thesis.

Ravenscar is a good deterministic tasking model, and its use should be integral to

compiler development.

The SPARK interpreter specified in Chapter 6 has not been implemented in any

way. Implementing a restricted version of the interpreter will test the practical usability

of the SRPT specification, and should be used to measure metrics including:

• effort / productivity payoff of interpreting versus compiling SPARK;

• PLD space usage and routability of the interpreter and directly compiled SPARK

code; and

307

• run-time performance of interpreted versus compiled SPARK code.

8.4 .4 Security applications

Our work has been done with reference to the requirements of RTCA DO-254 and

Def Stan 00-54. This covers the domain of safety-critical systems, but many aspects of

safety are mirrored in the requirements for high security applications.

The definitive information security standard is currently the Common Criteria[Com99].

A comparison of the criteria in this document against the Defence Standards and RTCA

documents would be required to identify:

• how current PLD programming practice for security systems is deficient;

• how applicable are the methods illustrated in this thesis; and

• what additional analysis or programming techniques may be mandatory or helpful

for the security domain.

8.5 Concluding Thought

The discipline of software engineering dates from around 1968, when the first NATO

conference on software engineering was held [Nor68] and Dijkstra made his proposal

about reducing the use of COTO [Dij68]. In the thirty five years that have followed,

we have made steady progress to the point today where we have a wealth of languages,

tools and techniques to support the discipline of producing sufficiently reliable, well-

engineered software for execution on microprocessors.

This thesis aimed to translate these techniques into the emerging field of program

ming PLDs. We used unambiguous formal notations to specify PLD programs so

that we knew what they should produce. Developing a refinement system allowed us

to produce PLD programs that were provably correct. The high-integrity program

ming language SPARK Ada allowed us to produce a program design amenable to

hardware-software partitioning. The properties of the language proved useful in map

ping program segments into a PLD-compatible form. We demonstrated that combined

308

hardware-software development at high integrity levels was practical for a substantial

embedded system.

We conclude that existing software engineering practice does translate into PLD

programming, and recommend that it is applied as soon as possible to critical PLD-

based systems. We must not forget the lessons we have learned in the microprocessor

field: thirty five years is too long to wait for highly reliable PLD programs.

309

310

Bibliography

[AASR98] P. Reinhart A. Abo Shosha and F. Rongen. Reconfigurable PGI-bus

interface (RPCI). In Hartenstein and Keevallik [HK98], pages 485-489.

[ABOO] Jorg Abke and Erich Barke. CoMGen: Direct mapping of arbitrary

components into LUT-based FPGAs. In Hartenstein and Griinbacher

[HGOO], pages 191-200.

[Abr96] J-R Abrial. The B Book: Assigning Programs to Meanings. Cambridge

University Press, 1996.

[AC02] Peter Amey and Rod Chapman. Industrial strength exception freedom.

In Proceedings of ACM SIC Ada Annual International Conference. ACM

Press, December 2002.

[ACM96] ACM Computing Surveys, volume 28, December 1996.

[ACMOl] ACM SIGDA. ACM/SICDA Ninth International Symposium on Field

Programmable Cate Arrays (FPCA’Ol). ACM Press, February 2001.

[ACM03] ACM SIGDA. Eleventh ACM International Symposium on Field-

Programmable Cate Arrays. ACM Press, February 2003.

[Ame99] Peter Amey. SPARK - the SPADE Ada Kernel. Technical Report 1.0,

Praxis Critical Systems Ltd., 1999.

[AmeOO] Peter Amey. INFORMED design method for SPARK. Technical report.

Praxis Critical Systems Ltd., October 2000.

[ARB99] Perry Alexander, Murali Rangarajan, and Phillip Baraona. A brief sum

mary of VSPEC. In Wing et al. [WWD99], pages 1068-1088.

311

[Arn96] J. M. Arnold. Software Architecture, chapter 5, pages 46-59. Volume 1

of Buell et al. [BAK96], 1996.

[BAK96] D. A. Buell, J. M. Arnold, and W. J. Kleinfelder, editors. Splash 2:

FPGAs in a Custom Computing Machine. IEEE Computer Society Press,

California, 1996.

[Bar93] Janet E. Barnes. A mathematical theory of synchronous communication.

Technical report, Oxford University Computing Laboratory, 1993.

[Bar97] John Barnes. High Integrity Ada - The SPARK Approach. Addison-

Wesley, 1997.

[Bar03] John Barnes. High Integrity Software: The SPARK Approach to Safety

And Security. Addison Wesley, April 2003.

[BDL96] C. W. Barrett, D. L. Dill, and J. R. Levitt. Validity checking for combi

nations of theories with equality. In M. Srivas and A. Camilleri, editors.

Proceedings of FMCAD’96, volume 1166 of Lecture Notes in Computer

Science. Springer-Verlag, November 1996.

[BDR98] Alan Burns, Brian Dobbing, and George Romanski. The Ravenscar task

ing profile for high integrity real-time programs. In L. Asplund, editor.

Reliable Software Technologies, Proceedings of the Ada Europe Confer

ence, volume 1411 of Lecture Notes In Computer Science, pages 263 -

275. Springer-Verlag, June 1998.

[BerOO] G. Berry. The foundations of Esterel. In G. Plotkin, C. Stirling, and

M. Tofte, editors. Proof, Language and Interaction: Essays in Honour of

Robin Milner, Foundations of Computing. MIT Press, 2000.

[BHKWOO] T. Bartzick, M. Henze, J. Kickler, and K. Woska. Design of a fault-

tolerant FPGA. In Hartenstein and Griinbacher [HGOO], pages 151-156.

[BP98] R. Banach and M. Poppleton. Retrenchment: An engineering variation

on refinement. In D. Bert, editor, B-98: Recent Advances in the De

312

velopment and Use of the B Method, volume 1393 of Lecture Notes in

Computer Science, pages 129-147, April 1998.

[BPGOO] Jürgen Becker, Thilo Pionteck, and Manfred Glesner. DReAM: A dy

namically reconfigurable architecture for future mobile communication

applications. In Hartenstein and Grünbacher [HGOO], pages 312-321.

[Bro95] Frederick P. Brooks, Jr. The mythical man month: essays on software

engineering. Addison Wesley Longman Inc., anniversary edition, 1995.

[BvW94] Ralph-Johan Back and Joakim von Wright. Trace refinement of action

systems. In International Conference on Concurrency Theory, pages

367-384, 1994.

[CB85] Bernard Carré and J.-F. Bergeretti. Information-fiow and data-flow anal

ysis of while-programs. ACM Transactions on Programming Languages

and Systems, 7:37-61, 1985.

[Cel02] Celoxica Ltd. Handel-C Language Reference Manual, 3.1 edition, 2002.

[CEN99] CENELEC. Railway applications - the specification and demonstration

of dependability, reliability, availability, maintainability and safety. Tech

nical Report EN 50126, European Committee for Electrotechnical Stan

dardization, 1999.

[CEN02a] CENELEC. Railway applications - safety-related electronic systems for

signalling. Technical Report EN 50129, European Committee for Elec

trotechnical Standardization, 2002.

[CEN02b] CENELEC. Railway applications - software for railway control and pro

tection systems. Technical Report EN 50128, European Committee for

Electrotechnical Standardization, 2002.

[Cha94] R. Chapman. Worst-case timing analysis via finding longest paths in

SPARK Ada basic-path graphs. Technical report. Department of Com

puter Science, York University, October 1994.

313

[ChaOl] Rod Chapman. SPARK Examiner release note - release 6.0. Technical

report, Praxis Critical Systems Ltd., August 2001.

[Cha03] Rod Chapman. SPARK Examiner release note - release 7.0. Technical

report. Praxis Critical Systems Ltd., August 2003.

[Civ02] Civil Aviation Authority. CAP 670 ATS Safety Requirements, June 2002.

SWOl Regulatory Impact Assessment.

[cJ99] ISO commitee JTC 1/SC 22. Ada: Conformity assessment of a language

processor. ISO/IEC, December 1999.

[CJR98] Stephen Charlwood and Philip James-Roxby. Evaluation of the XC6200-

series architecture for cryptographic applications. In Hartenstein and

Keevallik [HK98], pages 218-227.

[CKGOl] Pawel Chodowiec, Po Khuon, and Kris Gaj. Fast implementations of

secret-key block ciphers using mixed inner- and outer-round pipelining.

In ACM/SICDA Ninth International Symposium on Field Programmable

Cate Arrays (FPCA’Ol) [ACMOl], pages 94-102.

[CKRB03] Chen Chang, Kimmo Kuusilinna, Brian Richards, and Robert W.

Brodersen. Implementation of BEE: a real-time large-scale hardware

emulation engine. In Eleventh ACM International Symposium on Field-

Programmable Cate Arrays (FPCA’OS) [ACM03], pages 91-99.

[Com90] IEEE Committee. Standard glossary of software engineering technology.

Technical Report 610.12, Institute of Electrical and Electronics Engi

neers, inc., 1990.

[Com91] Communications Electronics Security Group. Information Technology

Security Evaluation Criteria (ITSEC), Provisional Harmonised Criteria,

June 1991.

[Com99] Common Criteria. Common Criteria for Information Technology Secu

rity Evaluation, August 1999.

314

[Cor99] Actel Corporation. ProASIC 500K family datasheet. Technical report,

Actel Corporation, 1999.

[CS'*'96] R. Cleaveland, S. Smolka, et al. Strategic directions in concurrency re

search. In ACM96 [ACM96].

[CSOO] Koen Claessen and Mary Sheeran. A Tutorial on Lava: A Hardware

Description and Verification System, August 2000.

[CSW02] Ana Cavalcanti, Augusto Sampaio, and Jim Woodcock. Refinement of

actions in Circus. In Derrick et al. [DBWvW02].

[Cur84] I. F. Currie. Orwellian programming in safety-critical systems. Techni

cal Report Memorandum 3924, Royal Signals and Radar Establishment,

1984.

[CW96] Edmund M. Clarke and Jeannette M. Wing. Formal methods: State of

the art and future directions. In ACM96 [ACM96].

[DBWvW02] John Derrick, Eerke Boiten, Jim Woodcock, and Joakim von Wright,

editors. Proceedings of REFINE 2002, volume 30 of Electronic Notes in

Theoretical Computer Science. Elsevier, November 2002.

[Dij68] Edsger W. Dijkstra. Go To statement considered harmful. Communica

tions of the ACM, 11(3): 147-148, March 1968.

[Dij70] Edsger W. Dijkstra. Notes on structured programming, circulated pri

vately, April 1970.

[Dij75] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal

derivation of programs. Communications of the ACM, 18(8):453-457,

1975.

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[DM41] B. Dushnik and E. W. Miller. Partially ordered sets. American Journal

of Mathematics, 63:600-610, 1941.

315

[DMH03] Dewi Daniels, Richard Myers, and Adrian Hilton. White box software

development. In F. Redmill and T. Anderson, editors. Proceedings of

the Eleventh Safety-Critical Systems Symposium. Praxis Critical Systems

Ltd., Springer-Verlag, February 2003.

[Don98] Adam Donlin. Self-modifying circuitry — a platform for tractable virtual

circuitry. In Hartenstein and Keevallik [HK98], pages 199-208.

[DvLF93] A. Dardenne, A. van Lansweerde, and S. Fickas. Goal-directed require

ments acquisition. Science of Computer Programming, 20, 1993.

[EK99] Alexander Egyed and Philippe B. Kruchten. Rose/architect: a tool to

visualize architecture. In Proceedings of the 32nd Annual Hawaii Con

ference on Systems Sciences, 1999.

[EL02] Lars-Henruk Eriksson and Peter Alexander Lindsay, editors. PME 2002:

Formal Methods - Cetting IT Right, volume 2391 of Lecture Notes in

Computer Science. Springer-Verlag, July 2002.

[FKZ75] R. Farrow, K. Kennedy, and L. Zucconi. Graph grammars and program

flow analysis. In Proceedings of 17th IEEE Symposium on Foundations

of Computer Science, pages 42-56. IEEE, 1975.

[FMA*^97] Julio Faura, Juan Manuel Moreno, Miguel Angel Aguirre, Phuoc van

Duong, and Josep Maria Insenser. Multicontext dynamic reconfiguration

and real-time probing on a novel mixed signal programmable device with

on-chip processor. In Luk et al. [LCG97], pages 1-10.

[For97] Formal Systems (Europe) Ltd. FDR User Manual, May 1997.

[FouOO] The Free Software Foundation. GNU C Compiler home page, January

2000. http://www.gnu.org/software/gcc/gcc.html.

[FW99] Gavin Finnic and Ross Wintle. SPARK 95 - the SPADE Ada 95 Kernel.

Technical Report 1.0, Praxis Critical Systems Ltd., October 1999.

316

http://www.gnu.org/software/gcc/gcc.html

[GA99] Wally Gibbons and Harry Ames. Use of FPGAs in critical space flight

applications - a hard lesson. In 1999 Military and Aerospace Applications

of Programmable Devices and Technologies Conference. Space Dynamics

Laboratory, Utah State University, September 1999.

[GC90] Jonathan Garnsworthy and Bernard Carré. SPARK - an annotated Ada

subset for safety-critical systems. Proceedings of Baltimore Tri-Ada Con

ference, 1990.

[GN99] Paul Graham and Brent Nelson. Reconfigurable processors for high-

performance, embedded digital signal processing. In Patrick Lysaght,

James Irvine, and Reiner Hartenstein, editors. Field-Programmable Logic

and Applications, volume 1673 of Lecture Notes In Computer Science,

pages 1-10, Glasgow, UK, September 1999. Springer-Verlag.

[Hal96a] J. A. Hall. Using formal methods to develop an ATC information system.

IEEE Software, 12(6), March 1996.

[Hal96b] J. G. Hall. An Algebra of High-Level Petri Nets. PhD thesis. University

of Newcastle upon Tyne, 1996.

[Hal02] Anthony Hall. Correctness by construction: integrating formality into a

commercial development process. In Eriksson and Lindsay [EL02].

[Hea97] Health and Safety Executive. Four Party Regulatory Consensus Re

port on the Safety Case for Computer-Based Systems in Nuclear Power

Plants, November 1997.

[Hei98] Constance Heitmeyer. On the need for practical formal methods. In

A. P. Ravn and H. Rischel, editors. Formal Techniques in Real Time and

Fault Tolerant Systems (5th International Symposium), volume 1486 of

Lecture Notes in Computer Science. Springer-Verlag, September 1998.

[Hen88] Michael Hennessey. Algebraic Theory of Processes. MIT Press, 1988.

[HGOO] Reiner W. Hartenstein and Herbert Griinbacher, editors. Proceedings of

the 10th International Conference on Field Programmable Logic and Ap

317

plications (FPL’OO), volume 1896 of Lecture Notes In Computer Science.

Springer-Verlag, August 2000.

[HHOO] Adrian J. Hilton and Jon G. Hall. On applying software development

best practice to FPGAs in safety-critical systems. In Hartenstein and

Griinbacher [HGOO], pages 793-796.

[HH02a] Adrian J. Hilton and Jon G. Hall. Mandated requirements for hard

ware/software combination in safety-critical systems. In Proceedings of

the workshop on Requirements for High-Assurance Systems 2002. Soft

ware Engineering Institute, Carnegie-Mellon University, September 2002.

[HH02b] Adrian J. Hilton and Jon G. Hall. Refining specifications to program

mable logic. In Derrick et al. [DBWvW02].

[HH03] Adrian J. Hilton and Jon G. Hall. Mandated requirements for hard

ware/software combination in safety-critical systems. Technical Report

2003/2, The Open University, 2003.

[HHG98] Reiner W. Hartenstein, Michael Herz, and Frank Gilbert. Designing

for Xilinx XC6200 FPGAs. In Hartenstein and Keevallik [HK98], pages

29-38. -

[Hil03a] Adrian Hilton. Practical guide to certification and re-certification of

AAvA software elements: Software for programmable logic devices. Tech

nical report, QinetiQ, July 2003.

[Hil03b] Adrian J. Hilton. Engineering software systems for customer acceptance.

In Proceedings of SEHAS’03. Praxis Critical Systems Ltd., May 2003.

[HK98] R. W. Hartenstein and A. Keevallik, editors. Field-Programmable Logic

and Applications: From FPCAs to Computing Paradigm, 8th Interna

tional Workshop (FPL’98), Proceedings, volume 1482 of Lecture Notes

In Computer Science. Springer-Verlag, September 1998.

[HNT03] Jerker Hammarberg and Simin Nadjm-Tehrani. Development of safety-

critical reconfigurable hardware with Esterel. In Eighth International

 ______ — — 318 — — — — —

Workshop on Formal Methods for Industrial Critical Systems. Linkoping

University, Elsevier, June 2003.

[Hoa85] C. A. R. Hoare. Communieating Sequential Processes. Prentice-Hall

International, 1985.

[HRHOl] Jonathan Hammond, Rosamund Rawlings, and Anthony Hall. Will it

work? In Proceedings of the 5th International Symposium on Require

ments Engineering, August 2001.

[HTH03] Adrian J. Hilton, Gemma Townson, and Jon G. Hall. Fpgas in critical

hardware/ software systems. Technical Report 2003/1, The Open Uni

versity, 2003.

[HW97] John R. Hauser and John Wawrzynek. Garp: A MIPS processor with a

reconfigurable coprocessor. In FPCAs for Custom Computing Machines

(FCCM’97). University of California at Berkeley, 1997.

[IEC86] International Electrotechnical Commission. Software for Computers in

the Safety of Nuclear Power Stations, lEC Standard 880, first edition,

1986.

[lECOO] International Electrotechnical Commission. lEC Standard 61508, Fune-

tional Safety of Electrical / Electronic / Programmable Electronic Safety-

Related Systems, March 2000.

[iec02] Z formal specification notation - syntax, type system and semantics, July

2002.

[IEC03] International Electrotechnical Commission. lEC Standard 61131, Pro

grammable Controllers, Part 3 (programming languages), 2003.

[IEE91] IEEE. IEEE Std. 1076-1987: IEEE Standard VHDL Language Reference

Manual, 1991.

[IEE95] IEEE. IEEE Std. 1364-1995: IEEE Standard Description Language,

1995. Based on the Verilog(TM) Hardware Description Language.

319

[lEEOl] IEEE. IEEE Standard Test Access Port and Boundary-Scan Architecture,

2001 .

[Ins97] Institut fur Mikroelektronik Stuttgart. SAND/1 Neurochip Infosheet,

February 1997.

[Ins02] The Inspector General. Status on the Federal Aviation Adminstration’s

major acquisitions. Memorandum, U.S. Department of Transportation,

February 2002. http://www.oig.dot.gov/show_txt.php?id=701.

[Int93] International Organisation for Standardisation. ISO/IEC 8809:1989;

LOTOS: A formai description technique based on the temporal ordering

of observational behaviour, 1993.

[Int95] Intermetrics Inc. Ada 95 Reference Manual International Standard

ANSI/ISO/IEC-8652:1995. U.S. Department of Defense, January 1995.

[Int96] International Electrotechnical Commission. Information technology -

Programming languages, their environments and system software inter

faces - Vienna Development Method - Specification Language - Part 1:

Base language, December 1996.

[IntOOa] International Electrotechnical Commission. lEC Standard 61690-1, Elec

tronic Design Interchange Format (EDIF version 3.0.0, 2000.

[IntOOb] International Electrotechnical Commission. IEC Standard 61690-2, Elec

tronic Design Interchange Format (EDIF) version 4-0.0, 2000.

[IP96] Valerie Illingworth and Ian Pyle, editors. Oxford Paperback Reference

Dictionary of Computing. Oxford Paperbacks. Market House Books,

February 1996.

[IS97] Maurice Kilavuka Inuani and Jonathan Saul. Technology mapping of

heterogeneous LUT-based FPGAs. In Luk et al. [LCG97], pages 223-

234.

[Jef91] A. Jeffrey. Discrete timed CSP. PMG Memo 78, Programming Method

ology Group, Chalmers University, Sweden, 1991.

320

http://www.oig.dot.gov/show_txt.php?id=701

[Joh78] S. C. Johnson. Lint, a C Program Checker, Unix Programmer’s Manual.

AT&T Bell Laboratories, 1978.

[Jon86] C. B. Jones. Systematic Software Development Using 17DM Prentice-

Hall International, 1986.

[Jos92] Mark Josephs. Receptive process theory. Acta Informatica, 29:17-31,

1992.

[JS90] Geraint Jones and Mary Sheeran. Circuit design in Ruby. In Jprgen

Staunstrup, editor. Formal Methods for VLSI Design, pages 13-70.

North-Holland, 1990.

[JTS03] Kimmo U. Jarvinen, Matti T. Tommiska, and Jorma O. Skytta. A fully

pipelined memoryless 17.8 Gps AES-128 encryptor. In Eleventh ACM In

ternational Symposium on Field-Programmable Cate Arrays (FPCA’OS)

[ACM03], pages 207-215.

[KF91] S. Kopec and D. Faria. Obtaining 70 MHz performance from the MAX

architecture. Electronic Engineering, pages 69-74, May 1991.

[KHCP99] Steve King, Jonathan Hammond, Rod Chapman, and Andy Pryor. The

value of verification: Positive experience of industrial proof. In Wing

et al. [WWD99].

[Knu77] Donald E. Knuth. Notes on the van Emde Boas construction of priority

deques: An instructive use of recursion. Memo to Peter van Emde Boas,

March 1977.

[KraOO] Andrzej Krasniewski. Exploiting reconfigurability for effective detection

of delay faults in LUT-based FPGAs. In Hartenstein and Griinbacher

[HGOO], pages 675-684.

[KSOO] Helena Krupnova and Gabriele Saucier. FPGA-based emulation: Indus

trial and custom prototyping solutions. In Hartenstein and Griinbacher

[HGOO], pages 68-77.

321

[LB'̂ OS] David Lewis, Vaughn Betz, et al. The Stratix™ routing and logic

architecture. In Eleventh ACM International Symposium on Field-

Programmable Cate Arrays (FPCA’OS) [ACM03], pages 12-20.

[LC96] Nancy Leveson and Stan Correy. Transcript from ‘High Anxiety’. ABC

Radio national broadcast, August 1996.

[LCG97] W. Luk, P. Y.K. Cheung, and M. Glesner, editors. Field Programmable

Logic and Applications: Seventh International Workshop (FPL’97), Pro

ceedings, volume 1304 of Lecture Notes In Computer Science. Springer-

Verlag, September 1997.

[LCR03] Fernanda Lima, Luigi Carro, and Ricardo Reis. Reducing pin and area

overhead in fault-tolerant FPGA-based designs. In Eleventh ACM In

ternational Symposium on Field-Programmable Cate Arrays (FPCA’OS)

[ACM03], pages 108-117.

[LeeOO] Iain Lees. Perl Coding Standard. Praxis Critical Systems Ltd., March

2000.

[Lev95] Nancy Leveson. Safeware: System Safety and Computers. Addison-

Wesley Publishing Company, 1995.

[LevOl] Nancy G. Leveson. Evaluating accident models using recent aerospace

accidents. Technical report. Software Engineering Research Laboratory,

MIT, June 2001.

[Lio96] Jacques-Louis Lions. Ariane 5 Flight 501 failure. Technical report. The

ESA / ONES Inquiry Board, July 1996.

[LM98] Wayne Luk and Steve McKeever. Pebble — a language for parametrised

and reconfigurable hardware. In Hartenstein and Keevallik [HK98], pages

9-18.

[LS93] Bev Littlewood and Lorenzo Strigini. Validation of ultrahigh dependabil

ity for software-based systems. Communications of the ACM, 36(11):69-

80, 1993.

322

[LS97] Luming Lai and J. W. Sanders. A refinement calculus for communicating

processes with state. In Gerard O’Regan and Sharon Flynn, editors, 1st

Irish Workshop on Formal Methods: Proceedings, Electronic Workshops

in Computing. Springer, July 1997.

[LS03] John Launchbury and Satnam Singh. An approach to compiling Cryp-

tol to FPGAs. In 3rd Annual High Confidence Software and Systems

Conference, Proceedings, pages 137-146. Galois Connections and Xilinx,

April 2003.

[Ltd84] INMOS Ltd. occam Programming Manual Prentice-Hall International,

1984.

[Ltd94a] Program Validation Ltd. Formal semantics of SPARK (abstract syntax).

Technical report. Program Validation Ltd., March 1994.

[Ltd94b] Program Validation Ltd. Formal semantics of SPARK (dynamic seman

tics). Technical report. Program Validation Ltd., March 1994.

[Ltd98] B-Core (UK) Ltd. The B-Toolkit, 1998. http://www.b-

core.com/OnLineDoc/BToolkit.html.

[Luk99] Wayne Luk. Introductory Notes for Pebble 3.0. Imperial College, January

1999.

[Mak03] Wai-Kei Mak. I/O placement for FPCAs with multiple I/O standards.

In Eleventh ACM International Symposium on Field-Programmable Cate

Arrays (FPCA’OS) [ACM03], pages 51-57.

[MC93] J. D. Morison and A. S. Clarke. ELLA 2000; a Language for Electronic

System Design. McGraw-Hill Book Company, 1993.

[McH02] John McHale. The new frontier: Reconfigurable computing. Military

and Aerospace Electronics, May 2002.

[MCLS97] P. I. Mackinlay, P. Y. K. Cheung, W. Luk, and R. Sandiford. Riley-2:

A flexible platform for codesign and dynamic reconfigurable computing

research. In Luk et al. [LCG97], pages 91-100.

323

http://www.b-

[Meg94] Graham M. Megson, editor. Transformational Approaches to Systolic

Design. Chapman and Hall, 1994.

[M1183] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer

Science, 25:267-310, 1983.

[MÜ89] Robin Milner. A complete axiomatisation for observational congruence

of finite-state behaviours. Information and Computation, 81(2):227-247,

May 1989.

[Mil90] Robin Milner. Operational and algebraic semantics of concurrent pro

cesses. In Jan van Leeuwen, editor. Handbook of Theoretical Computer

Science, volume B, pages 1201-1242. Elsevier and MIT Press, 1990.

[MIR98] MIRA. Guidelines for the Use of the C Language in Vehicle Based Soft

ware, April 1998.

[MK98] Robert Macketanz and Wolfgang Karl. JVX — a rapid prototyping

system based on Java and FPCAs. In Hartenstein and Keevallik [HK98],

pages 99-108.

[ML91] Will Moore and Wayne Luk, editors. FPCAs: Edited Proceedings of the

International Workshop on Field Programmable Logic and Applications,

1991.

[MNC95] Mpeller-Nielsen and Caprini. Replacing an occam process by a chip.

In Parallel Programming and Applications; Proceedings of Workshop on

Parallel Programming and Computation (ZEUS’96), 1995.

[MoD94] Defence Standard 00-42, 1994. Reliability and Maintainability Assurance

Guidelines.

[MoD96] Defence Standard 00-56 issue 2, December 1996. Safety Management

Requirements for Defence Systems.

[MoD97] Defence Standard 00-55 issue 2, August 1997. Requirements for Safety-

Related Software In Defence Equipment.

324

[MoD99] Interim Defence Standard 00-54 issue 1, March 1999. Requirements for

Safety Related Electronic Hardware in Defence Equipment.

[MoD03] Defence Standard 00-56 issue 3 (public comment draft), July 2003. Safety

Management Requirements for Defence Systems.

[MOH97] Christopher McCee-Osborne and Denton Hall. Management of safety is

sues - a legal perspective, presentation at ‘Safety Investment in Emerging

Urban Transit Systems’: AiC Conferences, March 1997.

[Mor94] Carroll Morgan. Programming From Specifications. Prentice-Hall, second

edition, 1994.

[MWOO] John S. McCaskill and Patrick Wagler. From reconfigurability to evolu

tion in construction systems: Spanning the electronic, microfluidic and

biomolecular domains. In Hartenstein and Criinbacher [HCOO], pages

286-299.

[NC97] Stuart Nisbet and Steven A. Cuccione. The XC6200DS development

system. In Luk et al. [LCC97], pages 61-68.

[NMH99] J. Napier, J. May, and C. Hughes. Implementing software on-line diag

nostics in safety-critical systems. In T. Bradley and N. J. Davies, editors,

15th Annual UK Performance Engineering Workshop, Proceedings. Re

search Press International, July 1999.

[Nor68] North Atlantic Treaty Organisation. NATO Conference on Software En

gineering, 1968.

[Nor69] North Atlantic Treaty Organisation. NATO Conference on Software En

gineering, 1969.

[ORS92] S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification sys

tem. In D. Kapur, editor, 11th International Conference on Automated

Deduction (CADE), volume 607 of Lecture Notes in Artificial Intelli

gence. Springer-Verlag, June 1992.

325

[ORS96] E.-R. Olderog, Anders R Ravn, and Jens Ulrik Skakkebæk. Refining

system requirements to program specifications. In Formal Methods for

Real-Time Computing, pages 107-134. Wiley, 1996.

[PEBBOl] J. Penny, A. Eaton, P. G. Bishop, and R. E. Bloomfield. The practicali

ties of goal-based safety regulation. In Felix Redmill and Tom Anderson,

editors. Proceedings of the 9th Safety-Critical Systems Symposium, pages

35-48. CAA and Adelard, Springer-Verlag, 2001.

[PH97] Shri Lawrence Pfleeger and Les Hatton. Investigating the infiuence of

formal methods. IEEE Computer, 30(2):33-43, February 1997.

[Pie95] Laurence Pierre. Describing and verifying synchronous circuits with the

Boyer-Moore theorem prover. In Paolo Camurati and Hans Eveking,

editors, CHARME, volume 987 of Lecture Notes in Computer Science,

pages 35-55. Springer, October 1995.

[Pra95] Praxis Critical Systems Ltd. The SPADE Simplifier, 1995.

[Pra98] Praxis Critical Systems Ltd. The SPADE Proof Checker — User Manual,

January 1998.

[Pri03] Private conversation with UK expert on PLDs and avionics systems,

February 2003. source omitted for reasons of confidentiality.

[PS93] Ian Page and Mike Spivey. How to program in Handel. Technical report,

Oxford University Computing Laboratory, December 1993.

[Pyg99] C. H. Pygott. A comparison of avionics standards. Technical Report

DERA/CIS/CIS3/TR990319/1.0, UK Defence Evaluation and Research

Agency, August 1999.

[RaiOO] Railtrack. Railtrack Engineering Safety Management, 3.0 edition, Jan

uary 2000.

[RCD98] Scott H. Robinson, Michael P. Caffrey, and Mark E. Dunham. Reconfig

urable computer array: The bridge between high speed sensors and low

speed computing. In Hartenstein and Keevallik [HK98], pages 159-168.

_______________________ 326

[RenOO] M. Renovell. A specific test methodology for symmetric SRAM-based

FPGAs. In Hartenstein and Criinbacher [HCOO], pages 300-311.

[RLOO] David Robinson and Patrick Lysaght. Verification of dynamically recon

figurable logic. In Hartenstein and Criinbacher [HCOO], pages 141-150.

[Rom96] George Romanski. Review of ‘Safer C’ (by Les Hatton). Technical report,

Thomson Software Products, January 1996.

[RS99] Vlad Rusu and Eli Singerman. On proving safety properties by integrat

ing static analysis, theorem proving and abstraction. In 5th International

Conference on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS’99), 1999.

[RTC92] RTCA / EUROCAE. RTCA DO-178B / EUROCAE ED-12: Software

Considerations in Airborne Systems and Equipment Certification, De

cember 1992.

[RTCOO] RTCA / EUROCAE. RTCA DO-254 / EUROCAE ED-80: Design As

surance Guidance for Airborne Electronic Hardware, April 2000.

[Rus93] John Rushby. Formal methods and the certification of critical systems.

Technical Report CSL-93-7, SRI International, December 1993.

[SA99] Alan Simpson and Mike Ainsworth. White box safety. In Proceedings:

Avionics Conference and Exhibition. ERA Technology Ltd., 1999. ERA

Report 99-0815.

[SC95] Jim Sutton and Martin Croxford. Breaking through the V&V bottleneck.

In M. Toussaint, editor, Ada in Europe: Second International Eurospace-

Ada-Europe Symposium, volume 1031 of Lecture Notes In Computer Sci

ence. Springer-Verlag, October 1995.

[SCOO] Susan Stepney and David Cooper. Formal methods for industrial prod

ucts. In J. P. Bowen, S. Dunne, A. Calloway, and S. King, editors. First

International Conference of B and Z Users, Proceedings, volume 1878

327

of Lecture Notes in Computer Science, pages 374-393. Springer-Verlag,

August 2000.

[Sch94] Bruce Schneier. Description of a new variable-length key, 64-bit block

cipher (Blowhsh). In B. Preneel, editor. Fast Software Encryption: Sec

ond International Workshop, volume 1008 of Lecture Notes in Computer

Science. Springer-Verlag, December 1994.

[Sch03] Tom Schubert. High level formal verification of next-generation mi

croprocessors. In Proceedings of the 4 0th Design Automation Post-

Conference. Intel Corporation, ACM Press, June 2003.

[SD95] Steve Schneider and Jim Davies. A brief history of Timed CSP. Theo

retical Computer Science, 138, 1995.

[Sen92] C. T. Sennett. Demonstrating the compliance of Ada programs with Z

specification. In C. B. Jones, R. C. Shaw, and T. Denvir, editors, 5th

Refinement Workshop, eWiC Series, pages 367-378. British Computer

Society, 1992.

[Sha97] Mark Shand. A case study of algorithm implementation in reconfigurable

hardware and software. In Luk et al. [LCC97], pages 333-343.

[Sha02] Natarajan Shankar. Little engines of proof. In Eriksson and Lindsay

[EL02], pages 1-20.

[She96] Robert J. Sheraga. ANSI C to behavioural VHDL translator, Ada to

behavioural VHDL translator. The RASSP Digest, 3, September 1996.

[SM95] Mandayam K. Sri vas and Steven P. Miller. Applying formal verification

to a commercial microprocessor. In Steven D. Johnson, editor, CHDL

’95: 12th Conference on Computer Hardware DescriptionLanguages and

their Applications, pages 493-502, August 1995.

[Spi92] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall In

ternational, second edition, 1992.

-------------------- 328

[SpiOO] J. M. Spivey. The fUZZ Manual The Spivey Partnership, second edition,

2000.

[SSCOl] Greg Snider, Barry Shackleford, and Richard J. Carter. Attacking the

semantic gap between application programming languages and config

urable hardware. In ACM/SIGDA Ninth International Symposium on

Field Programmable Gate Arrays (FPGA’Ol) [ACMOl], pages 115-124.

[SSSSOO] Sergej Sawitzki, Jens Schonherr, Rainer C. Spallek, and Bernd Straube.

Formal verification of a reconfigurable microprocessor. In Hartenstein

and Criinbacher [HCOO], pages 781-784.

[Sta95] The Standish Croup. The CHAOS report, 1995.

[Ste98] Susan Stepney. Incremental development of a high-integrity com

piler: Experience from an industrial development. In Proceedings

of the Third IEEE High-Assurance Systems Engineering Symposium

(HASE’98), Washington D.C., 1998.

[Str98] Structured Software Systems. Cradle White Paper — Overview, Febru

ary 1998. Available from http://www.threesl.com/.

[SWCL99] R. Swan, A. Wyatt, R. Cant, and C. Langensiepen. Re-configurable

computing. Crossroads (ACM), 5(3), 1999.

[Swe97] Charles Sweeney. FPCA graphics generator. Technical Report 001, Em

bedded Solutions Ltd., November 1997.

[Swe98] Charles Sweeney. Optimal features of hardware platforms. Technical

Report 006, Embedded Solutions Ltd., December 1998.

[TayOl] A. Taylor. IT projects sink or swim. BCS Review, pages 61-64, January

2001 .

[Tea93] London Ambulance Service Inquiry Team. Report of the inquiry into

the London Ambulance Service. Technical report, South-West Thames

Regional Health Authority, 1993.

329

http://www.threesl.com/

[TEC'*'95] Edward Tau, Ian Eslick, Derrick Chen, Jeremy Brown, and André De-

Hon. A first generation DPCA implementation. In Third Canadian

Workshop on Field Programmable Devices, pages 138-143. MIT, May

1995.

[U.S83] U.S. Department of Defense. Reference manual for the Ada Programming

Language ANSI/MIL-STD-1815A, January 1983.

[VBR+96] J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, and P. Boucard.

Programmable active memories: Reconfigurable systems come of age.

IEEE Transactions on VLSI Systems, March 1996.

[Vic98] Andy Vickers. On the use of Jackson’s principles to structure the re

quirements engineering activity. In Systems Engineering: A Matter of

Choice, Fourth Annual Symposium, pages 41-46, RAF Hendon, June

1998. International Council on Systems Engineering (UK Chapter).

[WAOl] M. Ward and N.C. Audsley. Hardware compilation of sequential Ada. In

Proceedings of CASES 2001, pages 99-107, 2001.

[WA02a] M. Ward and N. C. Audsley. Hardware implementation of programming

languages for real-time. In Proceedings of the Eighth IEEE Real-Time

Embedded Technology and Applications Symposium (RTAS’02), pages

276-284. IEEE, September 2002.

[WA02b] M. Ward and N. C. Audsley. Hardware implementation of the Raven-

sear Ada tasking profile. In Proceedings of the International Conference

on Compilers, Architectures and Synthesis for Embedded Systems. ACM

Press, 2002.

[WA02c] M. Ward and N. C. Audsley. Language issues of compiling Ada to hard

ware. In 11th International Real Time Ada Workshop, April 2002.

[WilOl] Steven J. E. Wilton. A crosstalk-aware timing-driven router for FPCAs.

In ACM/SIGDA Ninth International Symposium on Field Programmable

Gate Arrays (FPGA’Ol) [ACMOl], pages 21-28.

 330

[WLL+01] Kathryn Weiss, Nancy Leveson, Kristina Lundqvist, Nida Farid, and

Margarent Stringfellow. An analysis of causation in aerospace accidents.

In Proceedings of A I A A Space Conference and Exposition 2001. American

Institute of Aeronautics and Astronautics, August 2001.

[WWD99] J. M. Wing, J. Woodcock, and J. Davies, editors. World Congress on

Formal Methods in the Development of Computing Systems, volume 1709

of Lecture Notes in Computer Science. Springer-Verlag, September 1999.

[XES99] XS40, XSP board vl.4 user manual, September 1999.

http: / / w w w. xess. com / xs40-manual-vl _4 .pdf.

[XÜ96] Xilinx Inc., 2100 Logic Drive, San Jose, CA. The Programmable Logic

Data Book, 1996.

[XÜ97] Xilinx. XC6200 Field Programmable Gate Arrays Advance Product Spec

ification, April 1997.

[Xil99a] Xilinx. QPRO Xilinx 2.5V QML Preliminary Product Specification, Oc

tober 1999.

[Xil99b] Xilinx. Virtex-E 1.8V Field Programmable Gate Arrays Advance Product

Specification, September 1999.

[Xil99c] Xilinx. Virtex-E FA Q, 1999. http://www.xilinx.com/prs_rls/

vtxefaq.htm.

[Yor97] York Software Engineering. CADiZ: Computer Aided Design in Z, 1997.

http: / /www. cse-euro. demon.co.uk / yse / products / cadiz /.

331

http://www.xilinx.com/prs_rls/

332

A ppendix A

Collated Refinem ent Rules

The following definition and rules are collated from Chapter 5.

A refinement frame P in a program takes the form:

P = Vt e N - : oT : [[pre]t,[post]f+J

representing the specification “for the process P with input alphabet containing X and

output alphabet containing Y, at all times t, if pre is true at time t then at time

t k p ost is true.” A; is a constant which will be determined by the timing needs of

the program at specification time.

R efinem ent 1 Stateless 1-bit function

' i t e N - i X : o{ y] : [tr u e , [ÿ]i+i = /([%],)]

Ç CELLf[I\X][0\ {y}]

R efinem ent 2 Parallelism

V A e N • tA : o(y U A) : [p r e , post i A post 2]

Ç iX : oY : [p re , p ost 1] || tX : oZ : [pre, p o s t 2]
whenever:

y , Z are non-empty and non-intersecting

V y 6 • post i[A\ y] = post 1

V ly G • post 2 [y \iy] = p ost 2

where B^ is the set of n-ary boolean strings

3 3 3

R efinem ent 3 Weaken precondition

If pre pre’ then:

y t e N - i X : oY : [p re , post] QV t e N - iX : oY : [pre’ , post]

R efinem ent 4 Strengthen postcondition

If p o st’ => post then:

V t e N - c X : oY : [pre, post] Ç.V t G'N • lX : oY : [pre, p o s t’]

R efinem ent 5 Expand frame

V t G N - i X : o Y : [p re , post] Ç

V t G N • l{X U A) : o(y U P) : [p r e , post]

where A n Y = ^ and P n A = 0.

R efinem ent 6 Contract frame

Let P = lX : oY : [p re , post]. If:

3 A Ç A • V5 G T n lP p VP Ç A VA G N-

3 r G TnlPlo- • (r[A] = {s[t] \ A) U P) A {Vi / t - r[i] = g[%])

i.e., we can change the occurrence of A input events at any timestep to some arbitrary

subset P without changing any of the subsequent output events (input variables A are

irrelevant to the outputs), then:

l{X U A) : o y : [p re , post] Ç i[X \ A) : o y : [pre \ A, post \ A]

i.e., we can remove the A events.

334

R efinem ent 7 Introduce intermediate

If g, j , k , m id are timed predicates over subsets of events such that:

V disjoint A, F, A Ç E-

ff([y],+2, [X]*) 4» fc([y]i+2, [Z]e+i) Aj{[z]t+i, \x]t)

and j([X]t+i, [X]t m id

then:

tX ■. oY : [p r e ,5 ([y],+2,[X]()] =

(tX :o Z ;[p re ,j([Z]i+ i,[X],)l ||

tZ : o y : [m id,fc([y],+2, [^U i)]) \ Z

i.e., we may split into two parts a process for which an “intermediate calculation”

exists.

R efinem ent 8 Introduce delayed intermediate

IÎ g , j , k , m id are timed predicates over subsets of events, and d\, da > 1, such that:

V disjoint X , Y , Z C S-

9{[^]t+di+d2J ^ k{[Y]t+di+d2: i^]t+di) [A]f)
and j ([Z] t+di, [A] f ^ m id

then:

lX : oY : [p r e , p([y]f+di+d2 =

(, A : o A : [p re ,;([%],+d„[A]()] ||

lZ : oY : [m id , k{[Y]t+di+d2 , [Z]t+di)]) \ Z

i.e., we may split into two parts a process for which an “intermediate calculation” exists

at some time point between start and end of calculation.

335

336

A ppendix B

1553 Bus Simulator

B us testing program

— Test harness for 1553 bus simulator
— Not really SPARK, just looks like it.

with Bus;
with Rtl553,Bcl553;
with SystemTypes;
with Test,Test.checking;
use type SystemTypes.UnsignedS2;
— # inherit bus, rtl553, bcl553, test;
— # main_program
procedure Test_Bus

— # global Bus.Inputs, Bus.Outputs, Test.State;
— # derives Bus.Inputs from *, Bus.Outputs &
— # Bus.Outputs from *, Bus.Inputs &
— # Test.State from *, Bus.Inputs, Bus.Outputs
— # ;

is
Msg : Bus.Message;
V,W : Bus.Word;
I : Bus.Word_Index;

337

begin
— Check for data being null
Test.SectionC'BC inputs are initially null");
for Lru in Be1553.Lru_Name loop

Bcl553.Read_Message(Src => Lru,
Subaddress_Idx => 1,
Data => Msg);

Test.Checking.bool(
S => Be1553.Lru_Name'Image(Lru) & " is stale",
Expected => False,
Actual => Msg.Fresh);

end loop;
Test.SectionC'RT inputs are initially null");
for Lru in Rtl553.Lru_Name loop

Rt1553.Read_Message(Src => Lru,
Subaddress_Idx => 1,
Data => Msg);

Test.Checking.bool(
S => rtl553.Lru_Name'Image(Lru) & " is stale",
Expected => False,
Actual => Msg.Fresh);

end loop;
— Get the BC to write out some data to each LRU
Test.SectionC'RT inputs are nul after write, before cycle");
W := 1;
I := 1;
for Lru in Bcl553.Lru_Name loop

Bcl553.Write_Word(Data => W,
Idx => I,
Subaddress_Idx => 1,
Dest => Lru);

Test.Checking.bool(

3 3 8

s => bcl553.Lru_Name^Image(Lru) & " is still stale".
Expected => false.
Actual => Msg.fresh);

W := W + 3;
end loop;
— Get each LRU to write out some data to the BC
Test.SectionC'BC inputs are nul after write, before cycle");
W := 3;
I := 1;
for Lru in Rtl553.Lru_Name loop

Rt1553.Write_Word(Data => W,
Idx => I,
Subaddress_Idx => 1,
Src => Lru);

Test.Checking.bool(
S => rt1553.Lru_Name^Image(Lru) & " is stale".
Expected => False,
Actual => Msg.Fresh);

W := W + 3;
end loop;
— Now cycle and check the RT inputs
Bus.Cycle;
Test.SectionC'RT inputs are valid after cycle");
W := 1;
I := 1;
for Lru in rt1553.Lru_Name loop

Rt1553.Read.Message(Src => Lru,
Subaddress_Idx =>1,
Data => Msg);

Test.Checking.bool(
S => Rt1553.Lru_Name^Image(Lru) & " is fresh".
Expected => True,

339

Actual => Msg.Fresh);
rt1553.read_Word(Src => Lru,

Data => V,
Idx => I,
Subaddress_Idx => 1);

Test.Checking.unsignedl6(
S => rt1553.Lru_Name'Image(Lru) & " is " &
Bus.Word ̂ Image(W),
Expected => W,
Actual => W);

— Acknowledge reading this message
Rtl553.Acknowledge_Message(Src => Lru,

Subaddress_Idx => 1);
Rt1553.Read_Message(Src => Lru,

Subaddress_Idx => 1,
Data => Msg);

Test.Checking.bool(S => Rt1553.Lru_Name'Image(Lru) k

" not fresh after ack",
Expected => False,
Actual => Msg.Fresh);

W := W + 3;
end loop;
— Now check the BC inputs
Test.SectionC'BC inputs are valid after cycle");
W := 3;
I := 1;
for Lru in bcl553.Lru_Name loop

bcl553.Read_Message(Src => Lru,
Subaddress_Idx => 1,
Data => Msg);

Test.Checking.bool(
S => be1553.Lru_Name^Image(Lru) & " is fresh",

340

Expected => True,
Actual => Msg.Fresh);

bcl553.Read_Word(Src => Lru,
Data => V,
Idx => I,
Subaddress_Idx => 1);

Test.Checking.unsignedl6(
S => be1553.Lru_Name'Image(Lru) & " is " &
Bus.Word'Image(W),
Expected => W,
Actual => v) ;

— Acknowledge reading this message
bcl553.Acknowledge_Message(Src => Lru,

Subaddress_Idx => 1);
bcl553.Read_Message(Src => Lru,

Subaddress_Idx => 1,
Data => Msg);

Test.Checking.bool(S => bcl553.Lru_Name'Image(Lru)
" not fresh after ack",
Expected => False,
Actual => Msg.Fresh);

W := W + 3;
end loop;

Test.Done;
end Test.Bus;

Bus Controller interface

— The 1553 bus interface for the Bus Controller (BC)

— All other system components are on the bus as remote

341

— terminals (RTs).
— R messages go BC -> RT
— T messages go RT -> BC

with Bus;
with SystemTypes;
— # inherit SystemTypes,Bus ;
package BC1553
is

— Symbolic names for the Lrus
type Lru_Name is

(Barometer,
Asi,
Ins,
Compass,
Fuel,
Fuze,
Radar,
Infrared,
Fins,
Motor,
Destruct,
Warhead
) ;

— Write out data to the RTs

procedure Set_Message_Valid(
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Dest : in Lru_Name);

— # global in out Bus.Outputs ;
— # derives Bus.Outputs from *, Subaddress_Idx, Dest;

342

procedure Write_Word(
Data : in Bus.Word;
Idx : in Bus.Word_Index;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Dest : in Lru_Name);

— # global in out Bus.Outputs;
— # derives Bus.Outputs from *, Data,
— # Idx, Subaddress_Idx, Dest;

procedure Write_Message(
Data : in Bus.Message;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Dest : in Lru_Name);

— # global in out Bus.Outputs ;
— # derives Bus.Outputs from *, Data, Subaddress_Idx, Dest;

— See if a message is fresh
function Is_Fresh(Src : Lru_Name;

Subaddress_Idx : Bus.Lru_Subaddress_Index)
return Boolean;

— # global in Bus.Inputs;

— See if a message is valid
function Is_Valid(Src : Lru_Name;

Subaddress_Idx : Bus.Lru_Subaddress_Index)
return Boolean;

— # global in Bus.Inputs;

— Read data sent to the BC

procedure Read_Word(

3 4 3

Src : in Lru_Name;
Idx : in Bus.Word_Index;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Data : out Bus.Word);

— # global in Bus.Inputs;
— # derives Data from Src, Idx, Subaddress_Idx, Bus.Inputs;

procedure Read_Message(
Src : in Lru_Name;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Data : out Bus.Message);

— # global in Bus.Inputs;
— # derives Data from Src, Subaddress_Idx, Bus.Inputs;

— Acknowledge a message as fresh
procedure Acknowledge_Message(

Src : in Lru_Name;
Subaddress_Idx : in Bus.Lru_Subaddress_Index);

— # global in out Bus.Inputs;
— # derives Bus.Inputs from *, Src, Subaddress_Idx;

end BC1553;

R em ote Terminal interface

— The 1553 bus interface for Remote Terminals (RT)

with Bus;
with SystemTypes;
— # inherit SystemTypes,Bus ;
package RT1553

344

IS

— Symbolic names for the Lrus
type Lru_Name is

(Barometer,
Asi,
Ins,
Compass,
Fuel,
Fuze,
Radar,
Infrared,
Fins,
Motor,
Destruct,
Warhead
) ;

— Write out data to the BC
procedure Set_Message_Valid(

Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Src : in Lru_Name);

— # global in out Bus.Inputs;
— # derives Bus.Inputs from *, Subaddress_Idx, Src;

procedure Write_Word(
Data : in Bus.Word;
Idx : in Bus.Word_Index;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Src : in Lru_Name);

— # global in out Bus.Inputs;
— # derives Bus.Inputs from *, Data, Idx,
— # Subaddress_Idx, Src;

345

procedure Write_Message(
Data : in Bus.Message;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Src : in Lru_Name);

— # global in out Bus.Inputs;
— # derives Bus.Inputs from *, Data, Subaddress_Idx, Src;

— Read data sent to the RT

procedure Read_Word(
Src : in Lru_Name;
Idx : in Bus.Word_Index;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Data : out Bus.Word);

— # global in Bus.Outputs;
— # derives Data from Src, Idx, Subaddress_Idx, Bus.Outputs;

procedure Read_Message(
Src : in Lru_Name;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Data : out Bus.Message);

— # global in Bus.Outputs ;
— # derives Data from Src, Subaddress_Idx, Bus.Outputs ;

procedure Acknowledge.Message(
Src : in Lru.Name;
Subaddress.Idx : in Bus.Lru_Subaddress_Index);

— # global in out Bus.Outputs;
— # derives Bus.Outputs from *, Src, Subaddress.Idx;

346

end RT1553;

347

3 4 8

A ppendix C

Exam ple Test Scripts

This appendix contains the test script used to test the Barometer code with the main

test harness, and the output that resulted. It is typical of the sensor testing scripts.

Barom eter script input

section Barometer initialisation
clock reset
barometer init
barometer check altitude 0
if_barometer init
if_barometer check altitude false 0

section After first bus cycle
cycle
barometer set altitude 5000 3
barometer check altitude 5000
if_barometer check altitude false 0

section After second bus cycle
cycle
barometer check altitude 5000
comment New altitude has not propagated yet

349

if_barometer check altitude true 0

section After third bus cycle
cycle
barometer check altitude 5000
if.barometer check altitude true 5000

section After a few sections
clock increment 3000
cycle
cycle
barometer check altitude 5009
if.barometer check altitude true 5009

section BIT Test - aborted
if.barometer check ibit.phase off
if.barometer start.ibit
cycle
if.barometer check ibit.phase request.start
cycle
if.barometer check ibit.phase request.start
cycle
if.barometer check ibit.phase in.progress

if.barometer stop.ibit
cycle
cycle
if.barometer check ibit.phase request.stop
cycle
if.barometer check ibit.phase off

section BIT Test - fail (in 10 ticks)

350

if.barometer check ibit.phase off
barometer fail.next.ibit
cycle
if.barometer start.ibit
cycle
if.barometer check ibit.phase request.start
cycle
if.barometer check ibit.phase request.start
cycle
cycle
cycle
cycle
cycle
if.barometer check ibit.phase in.progress
cycle
cycle
if.barometer check ibit.phase fail
cycle
cycle

section BIT Test - pass (in 10 ticks)
if.barometer check ibit.phase fail
cycle
if.barometer start.ibit
if.barometer check ibit.phase request.start
cycle
if.barometer check ibit.phase in.progress
cycle
if.barometer check ibit.phase in.progress
cycle
cycle
cycle

351

cycle
if.barometer check ibit.phase in.progress
cycle
if.barometer check ibit.phase pass
cycle

comment That's all, folks!
done

Barom eter script output

Barometer initialisation
Clock reset
Barometer Init
Barometer Check ALTITUDE
Barometer altitude PASS
If.Barometer Init
If.Barometer Check ALTITUDE
If.Barometer altitude valid PASS

After first bus cycle
Barometer Set ALTITUDE
Barometer Check ALTITUDE
Barometer altitude PASS
If.Barometer Check ALTITUDE
If.Barometer altitude valid PASS

After second bus cycle
Barometer Check ALTITUDE
Barometer altitude PASS
New altitude has not propagated yet

352

If.Barometer Check ALTITUDE
If.Barometer altitude valid PASS
If.Barometer altitude PASS

After third bus cycle
Barometer Check ALTITUDE
Barometer altitude PASS
If.Barometer Check ALTITUDE
If.Barometer altitude valid PASS
If.Barometer altitude PASS

After a few sections
Clock increment 3000ms
Barometer Check ALTITUDE
Barometer altitude PASS
If.Barometer Check ALTITUDE
If.Barometer altitude valid PASS
If.Barometer altitude PASS

BIT Test - aborted
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase ̂ PASS
If.Barometer start IBIT
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
If.Barometer stop IBIT
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS

353

If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS

BIT Test - fail (in 10 ticks)
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
Barometer Fail next Ibit
If.Barometer start IBIT
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS

BIT Test - pass (in 10 ticks)
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
If.Barometer start IBIT
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
That's all, folks!

354

DONE.
Passes: 30
Fails: 0

355

356

A ppendix D

SPARK Report File for Nav

*

Report of SPARK Examination
SPARK95 Examiner with VC and RTC Generator Release 7.0 / 07.03

Praxis Critical Systems, Bath, England
* *

DATE : 08-SEP-2003 10:55:12.60

Options:
default switch file used
index.file=MISSILE.IDX
warning.f ile=MISSILE.WRN
notarget_compiler_data
config_file=GNAT.CFG
source_extension=ADA
1isting_extension=ls_
nodictionary
report.file=SPARK.REP
no.html
exp.checks
rtc
vcs

357

nest
statistics
fdl.identifiers
f1ow.analysis=information
ada95
annot at i on_ charact er=#
profile=sequential

Selected files:
NAV.ADB

Index Filename(s) used were
D:\USER\MISSILE.IDX

No Meta Files used

Summary warning reporting selected for:
Pragmas: pack

Target configuration file:
Line

1 — Auto-generated SPARK target configuration file
2 — Target claims to be 'SYSTEM_NAME_GNAT'

[elided]
18 end Standard;

No summarised warnings

358

Source Filename(s) used were:
D:\USER\NAV.ADB
D:\USER\NAV.ADS
D :\USER\SYSTEMTYPES-MATHS.ADS
D :\USER\SENSOR_HISTORY.ADS
D :\USER\MEASURETYPES-ANGLE_OPS-TRIG.ADS
D :\USER\MEASURETYPES-ANGLE_OPS.ADS
D:\USER\CLOCK.ADS
D :\USER\CARTESIAN.ADS
D :\USER\SYSTEMTYPES.ADS
D :\USER\MEASURETYPES.ADS
D:\USER\IF_AIRSPEED.ADS
D:\USER\IF_INS.ADS
D :\USER\IF_COMPASS.ADS
D :\USER\IF_BAROMETER.ADS
D:\USER\BC1553.ADS
D:\USER\IBIT.ADS
D:\USER\BUS.ADS

Source Filename: D:\USER\NAV.ADS
No Listing File

Unit name : Nav
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings

359

Source Filename : D :\USER\SYSTEMTYPES-MATHS.ADS
No Listing File

Unit name: Systemtypes.Maths
Unit type: package specification
Unit has been analysed, einy errors are listed below.

No errors found

No summarised warnings

Source Filename: D:\USER\SENSOR_HISTORY.ADS
No Listing File

Unit name : Sensor.History
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings

Source Filename : D :\USER\MEASURETYPES-ANGLE_OPS-TRIG.ADS
No Listing File

Unit name: Measuretypes.Angle_Ops.Trig
Unit type: package specification
Unit has been analysed, any errors are listed below.

360

No errors found

No summarised warnings

Source Filename : D :\USER\MEASURETYPES-ANGLE_OPS.ADS
No Listing File

Unit name : Measuretypes.Angle_Ops
Unit type: package specification
Unit has been analysed, any e r ro rs are listed below.

No errors found

No summarised warnings

Source Fileneime : D : \USER\CLOCK. ADS
No Listing File

Unit name : clock
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings

Source Filename: D:\USER\CARTESIAN.ADS
No Listing File

361

Unit name: cartesian
Unit type: package specification
Unit has been analysed, any errors are listed below,

No errors found

No summarised warnings

Source Filename : D :\USER\SYSTEMTYPES.ADS
No Listing File

Unit name : Systemtypes
Unit type: package specification
Unit has been analysed, any errors are listed below,

No errors found

No summarised warnings

Source Filename: D:\USER\MEASURETYPES.ADS
No Listing File

Unit name : Measuretypes
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings

362

Source Filename : D :\USER\IF_AIRSPEED.ADS
No Listing File

Unit name : If.airspeed
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings

Source Filename: D:\USER\IF_INS.ADS
No Listing File

Unit name: If.Ins
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings

Source Filename : D :\USER\IF_COMPASS.ADS
No Listing File

Unit name : if.compass
Unit type: package specification
Unit has been analysed, ciny errors are listed below.

363

No errors found

No summarised warnings

Source Filename : D :\USER\IF.BAROMETER.ADS
No Listing File

Unit name : if.barometer
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings

Source Filename: D:\USER\BC1553.ADS
No Listing File

Unit name : bcl553
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings

Source Filename: D:\USER\IBIT.ADS
No Listing File

364

Unit name : ibit
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings

Source Filename: D:\USER\BUS.ADS
No Listing File

Unit name : bus
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings

Source Filename: D:\USER\NAV.ADB
Listing Filename: D:\USER\NAV.LSB

Unit name : Nav
Unit type: package body
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings

365

Resource statistics

Table Units used Max Size % used
Relation Table 1294 50000 2
String Table 10839 1048576 1
Symbol Table 1976 10240 19
Syntax Tree 8162 262144 3
VCG Heap 4222 120000 3
Record components 7 250 2
Record errors 0 1000 0

— End of file-

366

A ppendix E

Original N av B ody

— Navigation tracking of missile

with
If.Barometer, If.Compass,
If.Ins, If.Airspeed,
Measuretypes.Angle.Ops,
Measuretypes.Angle.Ops.Trig,
Sensor.History, Cartesian,
Systemtypes, Systemtypes.Maths ;

package body Nav
— # own Location.State is
— # head.xy, head.yz, dx, dy, dz, airspeed &
— # Sensor.state is
— # barometer.ss, compass.ss, ins.ss, airspeed.ss;

is
subtype Integer32 is Systemtypes.Integer32;

type Sensor.Status is (Unknown, Valid, Failed, Restarted);

Dx, Dy, Dz, Head.Xy, Head.Yz, Airspeed :
Sensor.History.Measure.History :=

Sensor.History.Blank.History;

367

Barometer.ss : Sensor.Status := unknown;
Compass.SS
Ins.SS
Airspeed.ss

Sensor.Status := Unknown;
Sensor.Status := unknown;
Sensor.Status := unknown;

--------------- Sensor updates -----------------

— Handle an airspeed update
procedure Handle.Airspeed(Restart : in Boolean)

— # global in if.airspeed.state;
— # in out airspeed.ss;
— # in out airspeed, clock.time;
— [derives elided]

is
speed.Now : Meter.Per.sec;
sensor.Valid : Boolean;

begin
if Restart then

If.Airspeed.Get.Speed(Speed => Speed.Now,
Valid => sensor.Valid);

if sensor.Valid then
airspeed.ss := valid;
Sensor.History.Update.Speed.Reading

(Item => airspeed.
Data => speed.Now);

else
— Not a valid sensor yet but restarting
Airspeed.Ss := Restarted;

end if;
elsif Airspeed.Ss = Valid or Airspeed.ss = restarted then

If.airspeed.Get.speed(Speed => Speed.Now,

368

Valid => sensor.Valid);
if sensor.Valid then

Sensor.History.Update.Speed.Reading
(Item => airspeed.

Data => speed.Now);
else

— Whoops, gone invalid
airspeed.ss := Failed;

end if;
else

— Not restarting, sensor not valid so ignore
null;

end if;
end Handle.airspeed;

procedure Handle.Barometer(Restart : in Boolean)
— # global in if.barometer.state;
— # in out barometer.ss;
— # in out dz, clock.time;
is separate;

— Handle an INS update
procedure Handle.Ins(Restart : in Boolean)

— # global
— # in if.ins.state;
— # in out ins.ss;
— # in out dx, dy, dz, clock.time;
is separate;

— Handle a compass update
procedure Handle.compass(Restart : in Boolean)

— # global

369

— # in if.compass.state;
— # in out compass.ss;
— # in out head.xy, head.yz, clock.time;
is separate;

Public subroutines

procedure Estimate.Height(M : out Meter;
C : out confidence)

— # global in dz, barometer.ss, ins.ss;
— # derives m,c from barometer.ss, ins.ss, dz;
is

T : Clock.Millisecond;
begin

case Barometer.ss is
when Unknown I Failed I Restarted =>

— Try a backup
if Ins.Ss = Valid then

— Secondary sensor valid
Sensor.History.Get.Recent.MeterCltem => Dz,

Recent => M,
Timestamp => T);

if (T = 0) then
— Invalid reading
C := None;

else
C := Low;

end if;
else

M := 0;
C := None ;

end if ;

370

when Valid =>
Sensor.History.Get.Recent.Meter(Item => Dz,

Recent => M,
Timestamp => T);

— Primary sensor valid
if T = 0 then

— invalid reading
C := None;

else
C := High;

end if;
end case ;

end Estimate.Height;

procedure Estimate.Origin.Offset(M : out Meter;
C : out confidence)

— # global in dx, dy, ins.ss, compass.ss, airspeed.ss;
— # derives m,c from dx, dy,
— # ins.ss, compass.ss, airspeed.ss;

is separate;

procedure Estimate.Heading(A : out Angle ;
C : out Confidence)

— # global in dx, dy, head.xy, compass.ss, ins.ss;
— # derives a,c from dx, dy, head.xy, compass.ss, ins.ss;
is separate;

procedure Estimate.Speed(S : out Meter.Per.Sec;
C : out Confidence)

— # global in dx, dy, airspeed, airspeed.ss,
— # compass.ss, ins.ss; in out clock.time;
is separate;

371

procedure Maintain(Restart : in Boolean)
— # global
— # in
— # if.barometer.State,
— # if.compass.state,
— # if.airspeed.state,
— # if.ins.state;
— # in out
— # dx, dy, dz, airspeed, head.xy, head.yz,
— # barometer.ss, ins.ss,
— # compass.ss, airspeed.ss,
— # clock.time;

is
begin

Handle.Airspeed(Restart);
Handle.Barometer(Restart);
Handle.Compass(Restart);
Handle.Ins(Restart);

end Maintain;

— Test point
procedure Command is separate;

end Nav;

372

A ppendix F

F P G A N av B ody

— Navigation tracking of missile
— Version using an FPGA

with
Fpga,
if.barometer, if.compass.
If.Ins, If.airspeed,
Measuretypes.Angle.Ops,
Measuretypes.Angle.Ops.Trig,
Sensor.History,
Systemtypes, Systemtypes.Maths,
cartesian;

package body Nav.FPGA
— # own Location.State is
— # in head.xy, in head.yz, in dx,
— # in dy, in dz, in air.speed &
— # fpga.inputs is
— # out time.now, out is.restart,
— # out airspeed.speed, out airspeed.valid,
— # out barometer.height, out barometer.valid,
— # out compass.xy, out compass.yz,
— # out compass.valid,

373

— # out ins_x, out ins_y, out ins_z,
— # out ins_valid ;

— sensor_state has no refinement as it's just an array
is

subtype Integer32 is Systemtypes.Integer32;

type Sensor_Status is (Unknown, Valid, Failed, Restarted);
for Sensor_Status'Size use 2;
for Sensor_Status use

(Unknown => 0, Valid => 1, Failed => 2, Restarted => 3);

— How big are various types?
Dist_Record_Bytes : constant :=

(Sensor_History.Dist_History'Size + 7)/8;
— = 185/8 = 23 bytes
Angle_Record_Bytes : constant :=

(Sensor_History.Angle_History'Size + 7)/8;
— = 141/8 = 17 bytes
Speed_Record_Bytes : constant :=

(Sensor_History.Speed_History'Size + 7)/8;
— = 161/8 = 20 bytes

— The estimates are all output by the FPGA

— LOCATION.STATE
Dx, Dy, Dz : Sensor_History.Dist_History;
for Dx'Address use Fpga.Base_Out.Address;
for Dy'Address use

Fpga.Base.Out.Address + Dist.Record.Bytes*l;
for Dz'Address use

Fpga.Base.Out.Address + Dist.Record.Bytes*2;

374

Head.Xy, Head.Yz : Sensor.History.Angle.History;
for Head.Xy'Address use

Fpga.Base.Out.Address + Dist.Record.Bytes*3;
for Head.Yz’Address use

Fpga.Base.Out.Address +
(Dist.Record.Bytes*3 + Augle.Record.Bytes);

Air.Speed : Sensor.History.Speed.History;
for Air.Speed'Address use

Fpga.Base.Out.Address +
(Dist.Record.Bytes*3 + Augle.Record.Bytes*2);

— As are the sensor statuses

— SENSOR.STATE
Sensor.State.Base : constant :=

(Fpga.Base.Out.Address + 4) +
(Dist.Record.Bytes * 3 +

(Angle.Record.Bytes * 2 + Speed.Record.Bytes));
— about 123 bytes plus 1 word for safety

type Sensors is (Airspeed, Barometer, Compass, Ins);
for Sensors'Size use 2;

— Size is 4 X 2 = 8 bits
type Sensor.State.Array is array(Sensors) of Sensor.Status;
pragma Pack(Sensor.State.Array);
for Sensor.State.Array'Size use 8;

Sensor.State : Sensor.State.Array;
for Sensor.State'Address use Sensor.State.Base;

375

— The sensor values are written to the FPGA

— FPGA.INPUTS
Airspeed.Speed : Meter_Per_Sec;
for Airspeed.Speed'Address use

Base_In_Address;
Airspeed.Valid : Boolean;
for Airspeed.Valid'Address use

Base_In_Address + 4;

Barometer.Height : Meter;
for Barometer.Height'Address use

Base.In.Address + 5;
Barometer.Valid : Boolean;
for Barometer.Valid'Address use

Base.In.Address + 9;

Compass.Xy, Compass.yz : Angle;
for Compass.Xy'Address use

Base.In.Address + 10;
for Compass.Yz'Address use

Base.In.Address + 11;
Compass.Valid : Boolean;
for Compass.Valid'Address use

Base.In.Address + 12;

Ins.X, Ins.Y, Ins.Z : Meter;
for Ins.X'Address use

Base.In.Address + 13;
for Ins.Y'Address use

Base.In.Address + 17;
for Ins.Z'Address use

376

Base.In.Address +21;
Ins.Valid : Boolean;
for Ins.Valid'Address use

Base.In.Address + 25;

Time.Now : Clock.Millisecond;
for Time.Now'Address use Base.In.Address + 26;

Is.Restart : Boolean;
for Is.Restart'Address use Base.In.Address + 30;

Public subroutines

procedure Get.Recent.Meter
(Item : in Sensor.History.Dist.History;
Recent : out Meter;
Timestamp : out Clock.Millisecond)

— # derives recent,timestamp from item;
is

last.Idx : Sensor.History.History.Count;
begin

last.Idx := Sensor.History.Previous.Item(Item.New.Idx);
Recent := Item.Distance(Last.Idx);
Timestamp := Item.Times(Last.Idx);

end Get.Recent.Meter;

procedure Get.Recent.angle
(Item : in Sensor.History.angle.History;
Recent : out angle;
Timestamp : out Clock.Millisecond)

— # derives recent,timestamp from item;
is

377

last.Idx : Sensor.History.History.Count;
begin

last.Idx := Sensor.History.Previous.Item(Item.New.Idx);
Recent := Item.bearingCLast.Idx);
Timestamp := Item.Times(Last.Idx);

end Get.Recent.angle;

procedure Get.Recent.speed
(Item : in Sensor.History.speed.History;
Recent : out Meter.Per.sec;
Timestamp : out Clock.Millisecond)

— # derives recent,timestamp from item;
is

last.Idx : Sensor.History.History.Count;
begin

last.Idx := Sensor.History.Previous.Item(Ttem.New.Idx);
Recent := Item.speed(Last.Idx);
Timestamp := Item.Times(Last.Idx);

end Get.Recent.speed;

procedure Estimate.Height(M : out Meter;
C : out confidence)

— # global in dz, sensor.state;
— # derives m,c from sensor.state, dz;
is

T : Clock.Millisecond;
Baro.State, Ins.state : Sensor.Status;
Tmp.dz : Sensor.History.Dist.History;

begin
Baro.State := Sensor.State(Barometer); — invalid rep OK

Tmp.Dz := Dz; — invalid rep ok
case Baro.state is

3 7 8

when Unknown I Failed I Restarted =>
— Try a backup
Ins.State := Sensor.State(Ins); — invalid rep ok
if Ins.state = Valid then

— Secondary sensor valid
Get.Recent.Meter(Item => Tmp.Dz,

Recent => M,
Timestamp => T);

if (T = 0) then
— Invalid reading
C := None;

else
C := Low;

end if ;
else

M := 0;
C := None;

end if;
when Valid =>

Get.Recent.Meter(Item => Tmp.Dz,
Recent => M,
Timestamp => T);

— Primary sensor valid
if T = 0 then

— invalid reading
C := None ;

else
C := High;

end if;
end case ;

end Estimate.Height;

379

procedure Estimate_Origin_Offset(M : out Meter;
C : out confidence)

— # global in dx, dy, sensor.state;
— # derives m,c from dx, dy, sensor.state;

is separate;

procedure Estimate_Heading(A : out Angle;
C : out Confidence)

— # global in dx, dy, head.xy, sensor.state;
— # derives a,c from dx, dy, head.xy, sensor.state;
is separate;

procedure Estimate_Speed(S : out Meter_Per_Sec;
C : out Confidence)

— # global in dx, dy, air_speed, sensor.state;
— # in out clock.time;
— # derives s,c from dx, dy, air.speed, sensor.state,
— # clock.time &
— # clock.time from *, sensor.state;

is separate;

procedure Maintain(Restart : in Boolean)
— # global
— # in
— # if.barometer.State,
— # if.compass.state,
— # if.airspeed.state,
— # if.ins.state;
— # out
— # time.now, is.restart,
— # airspeed.speed, airspeed.valid,
— # compass.xy, compass.yz, compass.valid,

380

— # ins_x, ins.y, ins.z, ins.valid,
— # barometer.height, barometer.valid;
— # in out
— # clock.time;
— # derives
— # barometer.height, barometer.valid
— # from if.barometer.state &
— # airspeed.speed, airspeed.valid
— # from if.airspeed.state &
— # compass.xy, compass.yz, compass.valid
— # from if.compass.state &
— # ins.x, ins.y, ins.z, ins.valid
— # from if.ins.state &
— # is.restart from restart &
— # time.now from clock.time &
— # clock.time from
— # *;

is
P : Cartesian.Position;
D : Meter;
S : Meter.Per.Sec;
R : Measuretypes.Millirad;
VI,V2 : Boolean;
T : Clock.Millisecond;

begin
— Get airspeed
If.Airspeed.Get.Speed(Speed => S,

Valid => VI);
Airspeed.Speed := S;
Airspeed.Valid := VI;
— Get height
If.Barometer.Get.Height(Height => D,

381

Valid => VI);
Barometer.Height := D;
Barometer.Valid := VI;
— Get headings
If.Compass.Get.Xy(Angle => r.

Valid => VI);
Compass.Xy := Measnretypes.Angle.Ops.Ronnd.Degree(R);
If.Compass.Get.Yz(Angle => r.

Valid => V2);
Compass.Yz := Measnretypes.Angle.Ops.Round.Degree(R);
Compass.Valid := VI and V2;
— INS
If.Ins.Get.Location(Position => P,

Valid => VI);
Ins.x := P.X;
Ins.Y := P.Y;
Ins.z := P.z;
Ins.Valid := VI;
— Get time
Clock.Read(T => T,

Valid => VI);
if VI then

Time.Now := T;
else

Time.Now := 0;
end if;
— Restarting?
Is.Restart := Restart;

end Maintain;

procedure Command is separate;
end Nav.fpga;

382

383

High Integrity Hardware-Software Codesign

Adrian J. Hilton, M.A., C.Eng.
The Open University

Thesis for the degree of Doctor of Philosophy
submitted to the Department of Computing

May 21, 2004

Abstract

Programmable logic devices (PLDs) are increasing in complexity and speed, and
are being used as important components in safety-critical systems. Methods for devel
oping high-integrity software for these systems are well-known, but this is not true for
programmable logic.

We propose a process for developing a system incorporating software and PLDs,
suitable for safety critical systems of the highest levels of integrity. This process in
corporates the use of Synchronous Receptive Process Theory as a semantic basis for
specifying and proving properties of programs executing on PLDs, and extends the use
of SPARK Ada from a programming language for safety-critical systems software to
cover the interface between software and programmable logic.

We have validated this approach through the specification and development of a
substantial safety-critical system incorporating both software and programmable logic
components, and the development of tools to support this work.

This enables us to claim that the methods demonstrated are not only feasible but
also scale up to realistic system sizes, allowing development of such safety-critical
software-hardware systems to the levels required by current system safety standards.

Declaration of originality
I declare that no part of this work has previously been submitted to a university or
other educational institution for a degree or other qualification.

I further declare that this thesis is my original work, except for clearly indicated sections
where the appropriate attributions and acknowledgements are given to work by other
authors.

Adrian Hilton

1 1 J

übr.

P

Relationship to published work
The following parts of this thesis have been published in refereed publications:

• Chapter 2, in particular Section 2.1 and Section 2.2, contains material that was
published in “White Box Software Development” [DMH03] and “Engineering Soft
ware Systems for Customer Acceptance” [Hil03b].

• Chapter 4 contains material originally published as the paper “On Applying Soft
ware Development Best Practice to FPGAs in Safety-Critical Systems” [HHOO]
and later extended and developed to the paper “Mandated Requirements for
Hardware/ Software combination in Safety-Critical Systems” [HH02a]. The latter
paper was also made generally available as an Open University research report
[HH03].

• Chapter 5 was published in condensed form as “Refining Specifications to Pro
grammable Logic” [HH02b].

In addition. Chapter 2 contains material published in the Open University research
report “FPGAs in Critical Hardware/ Software Systems” [HTH03].

Posters based on the material presented in Chapter 2 have been exhibited at
the 2001 and 2003 ACM symposia on Field-Programmable Logic and Applications
[ACMOl, ACM03].

Acknowledgem ents
Thanks are due to the following individuals, companies and organisations without
whose assistance this thesis would not have been possible.

Financial support was provided by Praxis Critical Systems Ltd. and Teleca Ltd.
Dave Allen and John Cooper were primarily responsible for arranging this support.

Jon Hall, my primary supervisor at the Open University, provided endless encour
agement and helpful input. Darrel Ince used his considerable experience to provide a
useful second perspective on this work. Andy Vickers, my external supervisor, ensured
that I kept on track and pointed me to the questions which I should have been asking.

Peter Amey, Rod Chapman and Ian O’Neill from Praxis provided expertise on
SPARK Ada and the SPADE toolset. Janet Barnes, author of SRPT, gave good
advice on its use. David Jackson gave useful information on CSP and ELLA.

Donald Knuth, author of and Leslie Lamport, author of the DTjgX macros,
ensured that typesetting this thesis was as painless as possible. Linus Torvalds and
Richard Stallman provided an operating system and supporting tools which made
writing a thesis a pleasurable experience. The GNAT project of Ada Core Technologies
made available a high-quality free Ada compiler.

The organising committees and reviewers of the FPL 2000, FPGA 2001, REFINE
2002, RHAS 2002, FPGA 2003 and SEHAS 2003 conferences and workshops provided
great forums for trying out my ideas and for finding out more about what was hap
pening in the worlds of programmable logic, refinement and high-assurance systems.

My family and friends have been incredibly patient and encouraging while I spent
endless nights holed up writing bits of thesis. Thank you. I promise not to write
another one any time soon.

Derek Goldrei got me thinking about the Open University to start with, was in
credibly helpful in guiding me through the application process, and was encouraging
as the PhD work developed. Without him, I wouldn’t have even got started on this.

Final, and most heart-felt, thanks and love to my wife Jie who by turns encouraged
and bullied me into getting this thesis written.

Contents

1 Introduction 12
1.1 The History of Highly Reliable Software ... 12

1.1.1 Programming vs. software eng ineering.. 12
1.1.2 Historical fa ilu res... 13
1.1.3 Where things go w rong.. 13

1.2 Modern Software Development... 14
1.3 Hardware / Software Codesign... 14

1.3.1 The I/O p ro b lem ... 15
1.3.2 Why the interfacing is h a r d .. 15

1.4 Programmable Logic Devices... 16
1.5 Thesis Aim ... 16
1.6 Thesis Structure... 16

2 Current Research 18
2.1 Safety-Critical System s.. 19

2.1.1 Examples of safety-critical sy s te m s .. 19
2.1.2 Assessing criticality.. 20
2.1.3 S tan d ard s .. 21
2.1.4 Safety-critical market sectors... 21
2.1.5 Commentary ... 25
2.1.6 Standards summary.. 25

2.2 Application of Formal M e th o d s .. 27
2.2.1 The benefits of formal m e th o d s .. 27
2.2.2 Formal methods in u s e .. 28
2.2.3 Direction of formal methods u s e .. 30
2.2.4 Value of formal m e th o d s... 31
2.2.5 The limitations of testing .. 32
2.2.6 Summary of formal m ethods... 33

2.3 PLD s... 34
2.3.1 Introduction to FPG A s.. 34
2.3.2 D escrip tion .. 36
2.3.3 Variants of P L D s ... 36
2.3.4 Specification.. 38
2.3.5 Device fe a tu re s .. 39
2.3.6 Current devices.. 39
2.3.7 Performance.. 41
2.3.8 Other architectures.. 41
2.3.9 Development environm ent... 44

2.3.10 FPGA usage in s y s te m s ... 45
2.3.11 Semantics of P L D s .. 48
2.3.12 Issues of co-design .. 49
2.3.13 Summary of PLD technology ... 50

2.4 Programming PLD s................. 51
2.4.1 Netlist specifics.. 51
2.4.2 Process flow ... 51
2.4.3 High-level hardware design.. 51
2.4.4 High-level language implementation.. 52
2.4.5 Low-level language im plem entation.. 56
2.4.6 Pebble .. 57
2.4.7 Testing PLD program s.. 58
2.4.8 Summary of programming PLDs ... 59

2.5 Safety-Critical P L D s 61
2.5.1 Research directions.. 61
2.5.2 Safety of P L D s .. 61
2.5.3 Safety standard: Defence Standard 00-54 62
2.5.4 Safety standard: RTCA DO-254 .. 63
2.5.5 PLD correctness.. 64
2.5.6 V erification.. 65
2.5.7 Self-testing ... 66
2.5.8 Emulation of P L D s .. 66
2.5.9 Implementation to o ls ... 67
2.5.10 Key directions.. 67

2.6 Conclusions... 69
2.6.1 Weaknesses of current research .. 69
2.6.2 Research needs .. 69

Statem ent of Problem 70
3.1 Current State of The A r t ... 70
3.2 Scope of A nalysis... 71
3.3 Target Level of C ritica lity .. 71
3.4 Levels of R igour.. . 72
3.5 S ta tem en t.. 72
3.6 Target A im s.. . 73
3.7 Research Program m e... 73

3.7.1 Identified deficiencies... 73
3.7.2 Maintaining existing benefits... 75

3.8 Components... 75
3.9 Process.. 76
3.10 Existing S tan d a rd s .. 77
3.11 General Questions... 79

3.11.1 Reliability... 80
3.11.2 P rac tica lity ... 80

3.12 Overall P ro c e ss 80
3.13 Future Chapters.. 80

D evelopm ent technologies 83
4.1 Synchronous Receptive Process T h e o ry ... 84

4.1.1 Introduction... 84
4.1.2 Deterministic S R P T ... 84
4.1.3 Example - AND G a t e .. 86
4.1.4 Composition... 87
4.1.5 Denotational semantics.. 87
4.1.6 Specification and p ro o f.. 89
4.1.7 Safety monitor example ... 91
4.1.8 Non-rigorous components .. 97
4.1.9 Commentary .. 97
4.1.10 Alternatives to SRPT .. 98
4.1.11 Conclusions... 99

4.2 P e b b le .. 101
4.2.1 Introduction...101
4.2.2 Target device issues.. 101
4.2.3 Language e lem en ts.. 101
4.2.4 Exam ple...102
4.2.5 Formal descrip tion .. 103
4.2.6 Completeness of definition..105
4.2.7 SRPT representation... 105
4.2.8 SRPT to Pebble.................................... 107
4.2.9 Example: SRPT to P ebble..109
4.2.10 S u m m ary ..113

4.3 SPARK A d a ... 115
4.3.1 Introduction to SPARK A d a ... 115
4.3.2 Safety-critical system development p ro cess115
4.3.3 General language p ro p erties ...116
4.3.4 Static analysis and provability..121
4.3.5 Summary of S P A R K ... 121
4.3.6 SPARK interfaces.. 122
4.3.7 Partial com pilation.. 123
4.3.8 P artition ing ... 124
4.3.9 Compilation - a first c u t ... 124
4.3.10 Compilation of SPARK co d e ...126
4.3.11 Refinement ...130
4.3.12 SPARK in terp re ter.. 130
4.3.13 S u m m a ry ..131

Refining To SR P T 133
5.1 The Refinement M o d el...133

5.1.1 Overview of a refinement p ro c e s s ..134
5.1.2 Suitability of m odel.. 135

5.2 Refinement for S R P T ..136
5.2.1 Aims for refinement.. 136
5.2.2 Refinement f r a m e s .. 136
5.2.3 Refinement relation ...139

5.2.4 Refinement ..140
5.2.5 Additional refinement rules ..142
5.2.6 Feasibility... 145

5.3 Case Study: Carry Look-ahead A dder...145
5.3.1 Specification.. . 145
5.3.2 Basic gates .. 146
5.3.3 Refinement .. 146
5.3.4 Space and t i m e ..149
5.3.5 Scalability... 150
5.3.6 Proof means no te s t in g ? .. 150

5.4 S u m m a ry ... 151
5.4.1 Alternative approaches... 151
5.4.2 Targets .. 151

A PLD Interpreter o f SPA RK 153
6.1 Interpreter O verview ...154

6.1.1 Architecture.. 154
6.1.2 Partitioning issues ..155

6.2 CPU-PLD I/O 156
6.2.1 Software-bus MMIO ...156
6.2.2 PLD buffering... 158
6.2.3 PLD readout ... 161
6.2.4 Writeback to bus ..161

6.3 Package I / O ... 164
6.3.1 A rb itra tio n .. 165
6.3.2 Inter-package ro u tin g ...165
6.3.3 Package o u tp u t .. 166
6.3.4 Package input ..168

6.4 Package Structure... 168
6.4.1 Storage ...168
6.4.2 Storage o p e ra tio n s 169
6.4.3 Program storage ... 170
6.4.4 Expression evaluation ..171
6.4.5 CPU instructions... 171
6.4.6 Instruction decoder.. 175
6.4.7 CPU implementation...177
6.4.8 Opcode sum m ary ... 178

6.5 The Program Model ... 178
6.5.1 T y p e s ..179
6.5.2 S ta te 180
6.5.3 Expressions...180
6.5.4 A lte rn a tio n ...182
6.5.5 Ite ra tion ... 182
6.5.6 Subprogram c a l l s 182
6.5.7 Order of ex ecu tio n .. 182

6.6 System Interface ... 183
6.7 Optim isations..183

6.8 Conclusions.. 184
6.8.1 Achievements ..184
6.8.2 Evaluation of SPARK ..184
6.8.3 Evaluation of S R P T ...185
6.8.4 Satisfaction of target a im s ... 185
6.8.5 Follow -on..185

Case Study 186
7.1 Target Aims ... 186
7.2 Carry Look-Ahead Adder ... 187

7.2.1 Simulation environment ...187
7.2.2 Building b lo ck s .. 188
7.2.3 Adder b lo ck .. 188
7.2.4 Testing..189
7.2.5 Simulation environment reliability... 189
7.2.6 Conclusion..190

7.3 Missile Guidance System - O verv iew .. 191
7.3.1 Related w o r k ... 191
7.3.2 System requirem ents...191
7.3.3 S a fe ty ..191
7.3.4 Implementation l i m i t s ... 192
7.3.5 Implementation technologies.. 192

7.4 System C om ponen ts...193
7.4.1 System clock ... 193
7.4.2 1553 b u s ...193
7.4.3 Watchdog tim e r .. 194
7.4.4 Barometric sensor... 194
7.4.5 Airspeed indicator ..195
7.4.6 Inertial navigation s y s te m ..195
7.4.7 Solid state com pass.. 196
7.4.8 Fuel tank sensor.. 196
7.4.9 Proximity fuse... 196
7.4.10 Millimetre radar sensor..196
7.4.11 Staring infra-red sensor..197
7.4.12 F i n s ...197
7.4.13 M o to r ..198
7.4.14 Self-destruct...198
7.4.15 W arhead...199

7.5 D esign ..199
7.5.1 Design decisions.. 200
7.5.2 Package s truc tu re ...200
7.5.3 Code s tru c tu r e .. 200
7.5.4 Design limitations...200

7.6 Implem entation..200
7.6.1 Development ... 202
7.6.2 Testing..203
7.6.3 Conclusions.. 203

7.7 Introduction of A P L D ..204
7.7.1 Subsection identification.. 204
7.7.2 PLD interfacing..204
7.7.3 Transform ation..205
7.7.4 Results... 205

7.8 Conclusion..206
7.8.1 Refined program s im u la tio n .. 206
7.8.2 SPARK program development... 206
7.8.3 Targets .. 207
7.8.4 Further research..208

8 Conclusions 209
8.1 Solving the Original Problem ..209

8.1.1 PLDs in safety-critical systems .. 209
8.1.2 Rigorous PLD programming.. 210
8.1.3 Mapping SPARK to hardw are... 211
8.1.4 The system development process ...212
8.1.5 Reliability and practicability.. 213

8.2 Advancement of K now ledge...214
8.2.1 Current weaknesses..214
8.2.2 Originality... 215
8.2.3 Advances m a d e ..215

8.3 Self-Critique...216
8.3.1 O m issions... 216
8.3.2 W eaknesses.. 216
8.3.3 How the state of the art would evolve without this research . . . 217

8.4 Future W ork.. . 218
8.4.1 Safety engineering with P L D s ... 218
8.4.2 Refinement .. 218
8.4.3 SPARK to P L D s ...219
8.4.4 Security applications.. 219

8.5 Concluding T h o u g h t... 219

A Collated Refinem ent Rules 237

B 1553 Bus Sim ulator 240

C Exam ple Test Scripts 247

D SPA RK R eport File for N av 252

E Original N av B ody 259

F F P G A N av B ody 263

List of Figures

2.1 Architecture of a generic F P G A 35
2.2 PLD development process flow.. 52

3.1 Development p ro cess .. 81

4.1 Combinational incrementer.. 103
4.2 Pebble blocks tracking s t a t e ...109
4.3 A simple stack .. I l l
4.4 Handshaking across b locks.. 128

5.1 SRPT frame s tru c tu r e ..137
5.2 Carry look-ahead adder s tru c tu re ..145

6.1 Interpreter architecture.. 155
6.2 PLD input b u ffe r ..160
6.3 TAP process... 164
6.4 MMIO writeback d e s ig n ... 164
6.5 Inter-package ro u tin g ..166
6.6 Package output ..167
6.7 Package RAM la y o u t.. 168
6.8 ROM and PC s to r e ... 171
6.9 Expression b locks..172
6.10 First stage of CPU pipeline ... 177
6.11 CPU core com ponent..178

7.1 Missile system design ... 201

10

List of Tables

2.1 Table of SIL probabilities from lEC 61508 20
2.2 Trade-offs for software and hardware im plem entation............................ 38

4.1 Example run for A JV D .. 86
4.2 Example of a trace of the w atchdog.. . 94
4.3 State changing p ro cess .. 109

5.1 Contrast of Morgan and SRPT refinement processes...................................136

6.1 Packet meaning encoding... 158
6.2 Memory-mapped variable representations... 158
6.3 PC action en cod ings.................. 170
6.4 Word type encodings... 172
6.5 CPU O pcodes... 1 7 3

7.1 Adder size and delay p ro p ertie s ...189

11

Chapter 1

Introduction

This chapter sets the scene for the topics discussed in the thesis. It outlines the recent
history of highly reliable software development, looks at the successes, failures and
needs of software engineers, and describes how this thesis tackles one particular section
of those needs.

1.1 The H istory of H ighly Reliable Software
Programming as we know it today was effectively invented in the early 1950s, when the
first generation of post-war computers was frustrating the first generation of experts
responsible for making the machines complete their assigned tasks. The discovery by
Grace Hopper of a moth embedded in the circuits of one malfunctioning behemoth
heralded future programmers’ frustration in trying to find errors in their programs
which had no less obscure causes.

1.1.1 Program m ing vs. software engineering
Programming is simply the act of producing data (a program) designed to be executed
by a computer. Software engineering is a wider ranging term. When considering the
incorporation of software engineers as members, the IEEE defined the term to mean:

. . . the application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the applica
tion of engineering to software. [Com90]

The systematic study of software engineering is believed to have started at the
NATO-funded conferences on the subject in 1968 and 1969 [Nor68, Nor69]. The pro
ceedings of these conferences show researchers and practitioners identifying many of
the problems which we still see today.

In the past three decades, Herculean efforts made by both academe and indus
try have led to techniques, tools and languages which permit development of complex
safety-critical software projects. The systems resulting from these projects are gen
erally as reliable as required by the user; while not perfect, they provide reasonable
functionality and reliability. There is a substantial monetary price to pay for this
reliability, but the reliability is generally delivered.

12

1.1.2 H istorical failures
There have, of course, been numerous failures of software engineering. Some of them
have been spectacular, such as the Ariane 5 flight control software numeric overflow
which resulted in a hundred-million-pound flrework display over French Guyana[Lio96].
Others have been hardly noticed by the public, but nevertheless expensive. Repeated
efforts to develop a next-generation air traffic control system for the United States
have met with failure after expensive failure, and the current Standard Terminal Au
tomation Replacement System (STARS) has slipped by four years and incurred a 60%
cost over-run so far. In the meantime, old software is operating far past its intended
lifetime [Ins02].

The more serious failures involve human loss rather than flnancial loss. Remarkably,
there are relatively few fatalities directly attributable to software failure. One of the
earliest, and worst, of such accidents was the Therac 25 incident described in [Lev95].
A number of radiotherapy patients received massive radiation overexposure as a result
of a race condition within the Therac-25 radiotherapy machine software. Notably, the
fault was also present within an earlier model of machine, but a hardware interlock
there prevented its manifestation.

1.1.3 W here th ings go wrong
The most common point of project failure is, surprisingly, in the earliest phase: re
quirements gathering. The Standish CHAOS report of 1995 [Sta95] and the later
study by Taylor [TayOl] estimate that between 30% and 48% of IT projects fail due
to requirements-related problems, even though the stage at which the projects fail is
usually late in the development cycle.

A signiflcant fraction of safety-critical software projects start to go adrift less for
technical reasons than for failures of process. The Ariane 5 explosion was traced back
to a numeric overflow in the flight-control software, written in Ada. This was the cue
for advocates of other languages and tools to leap in and say “if only you had been
using X you would have detected this possible overflow.” However, this misses the
point. The relevant section of the software was taken from the Ariane 4 programme.
It was not checked as it had been tested for Ariane 4, all known errors flxed, and had
established a reliable track record. Ariane 5 flew a faster and tighter flight profile than
Ariane 4, and so the numeric exception occurred where before the range of values was
within the defined type range.

Using the best techniques, tools and language in the world is worth very little if
your development process permits them to be circumvented, even if unintentionally. All
the assertions about reliability contained in this thesis (and, indeed, elsewhere) should
have a lengthy disclaimer attached, noting the need for a well-defined and reputable
development process to be used, and to be enforced rigorously.

Leveson has analysed a series of aerospace accidents using an event chains model [LevOl].
Her analysis showed that accidents involving large-scale engineered systems usually
have a complex series of causes, and blaming the accident on a perceived “proximal”
cause is often an over-simplification:

The causes of accidents are frequently, if not almost always, rooted in orga
nizational culture, management and structure. These factors are all critical

13

to the eventual safety of the engineered system. Oversimplifying the factors
involved in accidents limits our ability to prevent them.[WLL"""01]

It is important to remember this when we make claims about reducing accident
rates with purely technical fixes.

1.2 M odern Software Developm ent
Brooks [Bro95] wrote of the state of the software engineering art in 1975, and updated
the 20th anniversary edition of his book with a review of the progress that the software
engineering profession had made. Brooks’s original conjectures included:

1. that system development time does not scale in an inverse-linear relation to team
size, and indeed that adding more manpower to a late project makes it later (the
“mythical man-month”);

2. that there is no single development, in either technology or management tech
nique, which promises an order of magnitude improvement within a decade in
productivity, reliability or simplicity (“no silver bullet”);

3. that after building one system successfully, the design and development of a
follow-on system is prone to balloon out with pointless features and an elephantine
design (the “second system effect”); and

4. a small number of documents, in a sea of project documentation, become the crit
ical pivots around which every project’s management revolves (“the documentary
hypothesis”).

History appears to have borne out these conjectures, which have passed into every
day software engineering practice. Brooks’s forecast of “no silver bullet” in particular
has proven accurate; no single technique has produced a tenfold increase in produc
tivity or reliability. Instead, good practice and good tools have slowly increased our
confidence in building software that does increasingly complex tasks.

We assume that the system development process described in this thesis is planned
and carried out with an eye to these laws, and we focus on the task of producing
the system that the customer needs. We do not aim to reduce the time taken to
develop a safety-critical system. Instead, we aim to avoid all the extra development
time resulting from having to rework the finished system after the customer or safety
auditor has rejected it.

1.3 Hardware / Software Codesign
The bane of a software engineer’s life is when his code is required to interact with
actual physical hardware, that is, hardware external to the computer itself; “stepping
outside the sandbox”, as it is sometimes called. It is not for nothing that the writing
of device drivers for an operating system is regarded as something of a black art. Why
is this?

14

1.3.1 T he I /O problem
Taking the Universal Register Machine as the canonical computer, and ignoring for the
moment the unlimited memory space that it provides, we might well believe on first
inspection that the machine is useless. It has a list of memory “slots” , each of which
can hold an arbitrary natural number. It has an instruction counter, initially set to 1.
It operates on a numbered list of instructions, each of which is one of the following:

Z(M) Zero the value in memory slot M

S(M) Increment the value in memory slot M by 1

T(M ,N) Copy the value in slot M into slot N

J(M ,I,J) If the value in slot M is zero, set the instruction counter to I; otherwise, set
it to J

For any of the first three instructions, once it is executed the machine will increment
the instruction counter by 1. In any case, the next step of the machine will be to read
and execute the instruction pointed to by the instruction counter. If this counter points
beyond the end of the instruction list given, the machine stops.

From a black box point of view, the machine does nothing - we have no inputs or
outputs defined. To give its actions meaning we must be able to inspect the memory
locations, control the starting of the machine and possibly also feed in new programs.
This must be accomplished outside the machine’s normal operations.

It is a similar situation with embedded systems. A well-established processor -
typically one of the ARM or PowerPC families - may be coupled via a bus and memory
controller to a bank of RAM, and a program executed in the normal way. However,
something must start program execution in some way after power-on, and the rest of
the system under control (e.g. a water heating system) must be able to feed data to
the processor and read control signals out of it.

Without heavy customisation of the processor, the simplest way is often memory-
mapped I/O. This technique uses the memory management unit of the system to
flag certain locations in the processor’s memory map as “special” ; the values in those
locations may either represent data read from external sensors, or be control values
read by and used to control external actuators.

1.3.2 W hy th e interfacing is hard
The problems posed by such an apparently simple arrangement are many and subtle.
The most obvious is a change in the way that we reason about program correctness. In
our normal programming model any control path which may write two values to a given
variable in succession, without reading the first value back, is immediately suspected
of being in error.

The second problem, more insiduous, is the lack of synchronisation between the
software and hardware worlds. Events external to the processor may occur at any
point, in any order. Inside the processor we can place bounds on the number of
computational steps between two events, but introducing dependencies on external

15

events complicates the problem of producing highly reliable software which is correct
with respect to a specification.

These problems also occur in systems where there are multiple threads of control
with a shared address space. Programming languages have had to develop features
such as semaphores, monitors, protected objects and associated protocols to solve these
problems.

1.4 Program m able Logic D evices
Programmable logic devices (PLDs), as a compromise between a general-purpose CPU
and a single-function Application-Specific Integrated Circuit (ASIC), lie on the border
between software and hardware. To make a PLD program highly reliable, it must be
simple; however, PLDs (such as field-programmable gate arrays) are steadily growing
in size and complexity and so are being used for increasingly complicated tasks.

To date, programming PLDs has been done at a relatively low level with little
concern for verifiability or correctness. However, emerging standards for safety-critical
systems development such as UK Defence Standard 00-54[MoD99] and RTCA DO-
254 [RTCOO] have started to mandate formal analysis of PLD programs that are key to
system safety. Existing technologies do not support PLD programming at the higher
levels of integrity.

Many of the concepts in this thesis can apply equally well to ASICs since their
circuits are designed in much the same way as many PLD circuits. ASICs are also used
in safety-critical systems, and many safety problems are common to PLDs and ASICs.
However, the scope of this thesis is restricted to PLDs.

1.5 Thesis Aim
This thesis aims to describe a method for developing a set of functional and safety
requirements into a system incorporating PLDs and conventional software. At each
stage of development we aim to maintain correctness according to the requirements,
and facilitate verification of the final code. The development process must be able to
produce evidence that the system is fit for use at a higher level of safety integrity than
is currently possible.

In this work we incorporate existing technologies for development of software for
conventional safety-critical systems. We also use an existing synchronous process alge
bra as the basis for a formal description and refinement of a PLD program. We show
how part of a conventional software program in the SPARK Ada high-level language
can be efficiently compiled into programmable logic. The techniques are demonstrated
in a substantial case study development of a safety-critical system.

1.6 Thesis Structure
Chapter 2 is a survey of the current research in the area of programmable hardware,
and of relevant research in the areas of software and safety engineering. It looks both
at the development of formal techniques for reasoning about and producing programs

16

for programmable hardware, and at the state of the art in industrial safety-critical
software development.

Chapter 3 provides a statement of the problem which this thesis aims to address,
and gives criteria by which the reader may judge whether the problem has been solved.

Chapter 4 introduces the technologies used in the rest of the thesis to address the
problem. It describes Synchronous Receptive Process Theory (SRPT), the Pebble PLD
programming language, a generic PLD model, and the SPARK subset of Ada.

Chapter 5 builds on the existing algebra of SRPT to construct a rigorous specifi
cation and refinement system. This system allows refinement from an abstract timed
specification to provably correct implementation in Pebble. The chapter provides a
worked example of a carry look-ahead adder refinement.

Chapter 6 develops an SRPT description of an interpreter for SPARK Ada byte
code, showing how SRPT can be used to design a substantial PLD program and how
the known properties of a SPARK Ada program assist in its compilation into a PLD
program.

Chapter 7 describes a practical gate-level simulation of the adder in Chapter 5.
The chapter then draws together the techniques developed in the preceding chapters
to develop a substantial high-integrity guidance system for a missile using a design
which runs partly on a standard processor and partly in programmable hardware.

Chapter 8 summarises the topics discussed in the thesis, considers whether the
problem statements in Chapter 3 have been addressed, and points towards further
avenues of research which may follow from this work.

17

Chapter 2

Current Research

This chapter considers the use of programmable hardware in safety-critical systems.
We will:

• analyse current and emerging safety standards directly applicable to this field;

• describe the constraints placed on the design, production and testing of safety-
critical system software, and how these may apply to PLDs;

• look at current tools and techniques used in the production of such systems,
especially those related to formal methods and proof; and

• assess the effectiveness of these tools and techniques.

Since we want to use programmable logic devices (PLDs) in safety-critical systems,
we will:

• describe the state-of-the-art in PLD design and production;

• examine the systems which represent the range of use of programmable hardware
in industry;

• examine how PLDs are programmed in theory and practise; and

• critique the techniques and tools which claim to formalise the use of program
mable logic in systems.

Finally we bring together the areas of safety-critical systems and PLDs by examining
the challenges posed by the use of programmable hardware in a safety-critical system.
Our guiding aim is to identify the gaps in the current industrial practice and academic
theory, and to identify an approach that is able to cover these gaps.

Section 2.1 describes the practice in safety-critical systems development. Section 2.2
investigates current research in formal methods. Section 2.3 describes the range of
PLD architectures. Section 2.4 investigates how PLDs are programmed. Section 2.5
looks at how PLDs could be incorporated into safety-critical systems, and Section 2.6
summarises the key points of the research survey.

18

2.1 Safety-Critical System s
In [Lev95] pp 136-137, Leveson defines the term system to mean “a set of components
that act together as a whole to achieve some common goal, objective or end” and safety
as “freedom from accidents or losses”. The criticality of a system is defined by the
consequences of its failure (“inability of the system to perform its intended function”,
[Lev95] pp 172), a definition which may extend down to individual components of the
system. Combining these, we may draw the following working definition:

a safety-critical system is a collection of components acting together where
interruption of the normal function of one or more components may cause
injury or loss of life.

Such systems may be designed to fail safely in certain circumstances. A safe failure
mode is a component or system failure which does not compromise system safety. One
example might be a nuclear reactor control system where any interruption of power
or control to the subsystem holding the control rods will cause the rods to drop into
the core, effectively stopping the nuclear reaction. So the system is not keeping the
reactor running (its intended function) but it is keeping the reactor free from accidents
or losses (safety).

An unsafe failure mode, by contrast, is one which increases the likelihood of accident
or loss. A fiy-by-wire system may not be able to fail safety, since any interruption of
its normal function will cause the pilot to lose control of the aircraft.

There are other terms associated with causes of failure. A defect is taken to be an
aspect of the design of a system which turns out to have undesired consequences; for
instance, a defect of the language syntax of C is that association of single statements
with conditions in a nested i f - e ls e block is counterintuitive.

An error is an aspect of the implementation of a system which is incorrect; for
instance, a subprogram implementation which may use one of its variables before that
variable has been initialised.

A fault is the result of an error or defect, manifesting in undesired system behaviour;
for instance, if an aircraft engine shut down (because of an error in the software) then
the unexpected shutdown would be a fault. Faults may be caused by multiple errors;
conversely, not all errors may cause faults.

2.1.1 Exam ples o f safety-critical system s
An example of a safety-critical system is an air traffic control system such as GDIS
[Hal96a]. There are many components in the system including operator displays, radar
and transponder devices, and communications links. It is safety-critical because if
the communications links fail wholly or partially then the operators may be unable
to communicate with aircraft and command course changes to avoid a collision; such
a collision would be an accident and may involve loss of life or property. Hence, the
system is safety-critical when used in an operational environment. If it were linked in
to a simulator then it would not be safety-critical because there would be no severe
consequences of its failure.

Other safety-critical systems may not be assessed as such, yet still cause substantial
destruction or death on failure due to a denial-of-service effect. An example of this

19

SIL -^fail (on-demand) ^fail(P®r-hour)

4 > 10“ ̂ to < IQ-"̂ > 10“ ̂ to < 10“®
3 > 10“ ̂ to < 10“® > 10“® to < 10“"̂
2 > 10“® to < 10“^ > 10“ ̂ to < 10“®
1 > 10“ ̂ to < 10“^ > 10“® to < 10“®

Table 2.1: Table of SIL probabilities from lEC 61508

was the failure of the London Ambulance Service dispatching system which failed in
November 1992; the resulting events are described in [Tea93]. Although in this case
there was no link established by a coroner between the system failure and resulting
deaths due to delay in dispatching ambulances, there is a demonstrable mechanism
for deaths to result from a failure in normal operation (successful revival from cardiac
arrest is critically affected by the arrival of a defibrillator-equipped ambulance within
10 minutes) and so the system was safety-critical even if it was not so specified.

2.1.2 A ssessing criticality
Such systems may be graded according to their potential to cause death, serious injury
or large financial loss. The SIL convention used in the European functional safety
standard lEC 61508 [lECOO] specifies four Safety Integrity Levels (SILs), with SIL-4
systems having the greatest criticality and SIL-1 systems the least.

The SIL has two forms. For a low-demand mode of operation the SIL is calculated
based on the required probability of failure for the system or component to perform
its design function on demand. For high-demand or continuous operation, the SIL is
calculated by the required probability of a dangerous failure per hour. The probability
ranges used are shown in Table 2.1.

Example: a nuclear power station’s reactor control rod system is expected to operate
for 30 years (263000 hours) with a probability of dangerous control rod failure during
the station’s lifetime of < 10“ .̂ The required maximum probability of failure per hour
is therefore p such that

(1 - p)2630oo > (1 _ i q - 2) (2 .1)

giving p = 3.8 X 10“®, a SIL-3 system. The calculated SIL may then be used to guide
the amount and form of analysis and testing required for the system.

Other standards use similar principles of measurement, though with different nota
tions. RTCA/EUROCAE DO-178B[RTC92], for instance, specifies levels of criticality
from E (not critical) through to A (high criticality). The different treatments of risk
in these and other standards were analysed by Pygott in [Pyg99].

An example of a UK commercial SIL-4 system is the Royal Navy’s Ship Helicopter
Operating Limits Information System [KHCP99] designed to assist landing of heli
copters on Royal Navy Type 23 frigates. Failure of this system could result in the
death of helicopter pilots and passengers, loss of a helicopter and damage to the ship.
This is unacceptable for normal operation, hence SIL-4 reliability is required to give

20

sufficient confidence that such an accident will not happen during the in-service life
time of the system. Since SHOLIS is a relatively low-demand system, this indicates
a required probability of failure to perform its function on demand between 10“ ̂ and
10- ® .

2.1.3 Standards
Makers and users of safety-critical systems in the UK have a legal mandate to ensure
that the risk of serious failure is as low as reasonably practicable (ALARP.) McGee-
Osborne and Hall considered this as far as it relates to the rail transport sector in
[MOH97]. The Health and Safety at Work Act 1974 (known as “HSWA” or “HA-
SAWA”) imposes general duties on employers to protect the health and safety of em
ployees and non-employees, using the key phrase “to the extent reasonably practicable”.
Thus any employer operating a safety-critical system owes a “duty of care” to those
who may reasonably be affected by the system. Failure in this respect may result in
any of the following:

• litigation by affected parties for damages caused;

• an enforcing order from the Health and Safety Executive requiring the removal
of the system from operation or immediate modifications to the system; or

• criminal prosecution of individuals for negligence leading to harm of others.

It is notable that successful prosecution for such negligence is rare.
Since many safety-critical systems may affect public safety, governmental and asso

ciated oversight agencies have drawn up standards documents for the development of
safety-critical systems. Some of the best-known standards documents are UK Defence
Standards 00-55 and 00-56 [MoD97, MoD96], RTCA/EUROCAE DO-178B [RTC92],
the CENELEC EN 50126, 50128, 50129 European rail standards [CEN99, CEN02b,
CEN02a] and the aforementioned European lEC Standard 61508 [lECOO].

2.1.4 Safety-critical m arket sectors
We split the safety-critical systems market into five sectors. For each sector we describe
one or more mainstream standards or guidance documents used in the United Kingdom
or internationally, then summarise the main principles that have been established.

Each of these sectors has a regulatory regime which has driven the development
and adoption of standards. Other market sectors such as the automotive and medical
equipment industries have regulatory regimes but do not have specific standards for
assessing software and programmable hardware.

In the UK medical equipment industry, for instance, the Medicines and Healthcase
products Regulatory Agency (MHRA) applies UK and European law, principally the
EC Medical Devices directives. These directives will require manufacturers to demon
strate that critical medical devices are appropriately safe, but does not specify a process
or any specific criteria against which the equipment’s software or electronic hardware
must be assessed.

21

Within the automotive industry, the increasing problem with faulty software has
driven the development of the MISRA-C subset for critical automotive software spec
ified in [MIR98]. However adoption of this subset is not mandatory, and indeed some
of the MISRA-C rules are difficult to enforce.

Rail

The Railtrack “Yellow Book” [RaiOO] provides guidance on the safety management of
changes to the UK rail network. It is detailed but not prescriptive; it allows projects to
tailor its recommended approach, although the Railtrack Safety Approval Body must
approve the approach taken.

The CENELEC standards are derived from lEC 61508. Standard EN 50128[CEN02b]
relates to the safety-related software in railway systems, and EN 50129[CEN02a] to
safety-related electronic control and protection equipment. Since they are based on
lEC 61508, the comments below on this encompassing standard apply.

N uclear power generation

“Software for Computers in the Safety of Nuclear Power Stations” , lEC Standard 880
[IEC86] is intended for safety-related software in computers forming part of nuclear
reactor safety systems. It lays down in detail a recommended development process,
guidance on choice of language and tools, and a suggested maintenance process. The
report was written in 1986, and the language and concepts used display this, but it is
not yet regarded as obsolete. The very prescriptive nature of this old standard should
be contrasted with the more modern standards described in this section.

The Four Party Regulatory Consensus Report on the Safety Case for Computer-
Based Systems in Nuclear Power Plants [Hea97] is a set of agreed principles for building
a safety case from the nuclear regulatory authorities of the UK, USA, France and
Canada. It is not a standard as such, but presents the elements of a safety case
perceived as helpful in gaining regulatory approval.

Aerospace (m ilitary)

UK Defence Standard 00-54[MoD99] (hereafter abbreviated Def Stan 00-54) is a new in
terim standard for the use of safety-related electronic hardware (SREH) in UK defence
equipment. It relates to systems developed under the Def Stan 00-56 safety systems
document or an equivalent international standard, and is appropriate if an electronic
element in the system is identified to have a safety integrity level of between SIL-1 and
SIL-4. This standard is covered in more detail later.

Def Stan 00-55 (software) [MoD97] specifies the requirements and guidance for the
development of safety-related software by or for the UK Ministry of Defence. There
is very heavy emphasis on the development process and suitable documentation, but
the actual requirements about the implementation method and language are few and
general. There is emphasis on using formal methods wherever possible. The key
message appears to be “do what is reasonable and safe, but show how your decisions
were made and justify them.” This goal-based approach foreshadows the rewriting of
CAP 670 SW01[Civ02], described below.

2 2

Def Stan 00-56 (system safety) [MoD96] is 00-55’s counterpart relating to system
safety. It lays down how the safety management activities of a development program
should work. A “risk class” is calculated according to how probable and severe are the
system hazards, and governs how the safety activities are carried out on the program.
It requires the production of a “safety case”, a well-organised and reasoned justification
that the system is acceptably safe.

Def Stan 00-56 is undergoing a rewrite for Issue 3. The first public draft for com
ments [MoD03] was released on 18th July 2003. It shows that the new format will be
for Part 2 (the Code of Practice) to contain volumes addressing specific issues: vol
ume 1 describes how to interpret Part 1 (the guidance), volume 2 describes the risk
management process, and the revised forms of Defence Standards 00-55 and 00-54 will
form volumes 3 and 4 respectively. The standard itself is due for publication at the
end of March 2004 after public comment on parts 1 and 2.

Aerospace (civil)

Penny et al.[PEBB01] describe practical experience with a “goal-based” form of safety
standard in the development of CAP 670 SW01[Civ02], part of the regulations for
ground-based air traffic services in the UK. They split evidence into two forms: direct,
which directly relates to the safety of the system (such as evidence that static analysis
has been carried out and no dangerous faults found), and backing which shows that
the direct evidence is credible and sound (such as test reports and error history of the
static analysis tool used).

RTCA/EUROCAE DO-178B [RTC92] is intended to provide guidance on how to
satisfy airworthiness requirements for software use on aircraft. It relies heavily on
software testing to demonstrate reliability. However at the highest level of software
integrity the amount of testing required is very expensive.

RTCA/EUROCAE DO-254[RTCOO] is the analogue of DO-178B for electronic hard
ware. It is a more recent document, released in reaction to the increasing complexity of
electronic safety-critical hardware performing avionics functions. The Federal Aviation
Authority is currently considering how DO-254 should be applied to the development
of ASICs and PLD programs.

In a comparison of avionics standards, Pygott and Newton [Pyg99] compared the
requirements of RTCA DO-178B with the requirements of Def Stan 00-55 and Def Stan
00-56. They concluded that the main difference was that civil aviation standards pro
vided mostly recommendations, whereas the Defence Standard clauses were mandatory.
The Defence Standard placed much more emphasis on the use of static analysis and
formal methods, though both were mentioned in DO-178B. In addition there were
mismatches between Development Assurance Levels (DALs) and SILs which made
comparing standards difficult.

Pygott and Newton also noted that all of the standards reviewed did not say much
about the use of commercial off-the-shelf software (COTS), which they regard as being
a significant feature of new development programs.

Finance

Finance systems are rarely safety-critical, but are often business critical. There are
some financial systems which have the potential to “create” money; these have sufficient

2 3

potential impact on a country’s economy that their correctness is a matter of concern to
the country’s government. In this situation the pressures are similar to those around
safety-critical systems, and so it is worth examining how these critical systems are
regulated and developed to compare and contrast the approach with those used by
safety-critical systems.

In the UK, the government Communications Electronics Security Group defines six
levels of IT security: levels ITSEC 1 through 6 where 6 denotes the most secure systems.
The ITSEC criteria are described in [Com91]. These fed into the international Common
Criteria[Com99]. Like safety-critical systems, security-critical systems are classed as
high-assurance.

Hall, in [Hal02], describes the specification and development of a Certification Au
thority (C A) for the MULTOS smart cards. This development was notable for the
application of safety-critical software development tools (static analysis and proof with
the SPARK and SPADE toolsets) in the security domain. It turned out that these
techniques translated well across the domains.

The specification and security proof of the associated smartcard operating system is
described by Stepney and Cooper in [SCOO]. This demonstrated that formal proof tech
niques were mature enough to be applied to a real industrial application of substantial
size, and well enough supported to be off the critical path of system development.

Cross-sector

lEC Standard 61508 [lECOO] is intended to apply across multiple industry sectors, set
ting out a generic safety management approach for systems with electrical, electronic
or programmable electronic components. Part 2 in particular is the requirements for
the electrical, electronic and programmable devices; part 3 deals with software require
ments.

Part 2 ranges over a wide range of aspects of hardware, giving guidance on errors
to check. A number of specified hardware faults may need to be detected (e.g. stuck-at
failures for registers, bus faults and welded-together contacts) as well as properties of
the software (e.g. correct “watch-dog” operation, information redundancy) with the
analysis list determined by the required diagnostic coverage, related in turn to the SIL
and resulting safety calculations. Interestingly, the programmable part of the systems is
not addressed in detail; there are requirements for aspects of the design to be analysed,
but no real requirements for implementation language or related aspects. It may be
that the authors assume implicitly that Part 3 of the standard (software requirements)
is to be applied where appropriate.

lEC 61131-3 [IEC03] applies to programmable logic controllers. These are not
true PLDs, but the document provides information on controller design that may be
applicable to some classes of PLD program.

A relevant comment in the HSE report [Hea97] is no. 70: “The programmable
logic controller (PLC) is one typical example of an off-the-shelf system, albeit that the
applications program must be provided by the purchaser. It is not sufficient simply to
show that the production of the applications program has met the full safety system or
safety-related system requirements. Such equipment typically embodies a complex op
erating system with which the applications software is associated. The demonstration
must relate to the full system.’̂ (my italics.) This clearly indicates that PLC (and, by

24

extension, PLD) programs must be validated both stand-alone and as a component of
a whole system.

2.1.5 C om m entary
Standards are normally divided into a number of different types of information; le
gal requirements, approved code of practice (ACOP) and guidance. It is rare that a
developer will follow every single recommendation; in practice they will justify their
omission of one or more recommended practices on grounds of practicality and cost. It
is worth noting that the second issue of Def Stan 00-55 was noticeably less prescriptive
than the first issue in the sense that many recommended procedures were changed to
guidances; this gave each system developer more freedom to choose the development
practices which were most appropriate to their particular system. There has been in
conclusive debate in the safety-critical systems community about whether the reduced
level of prescription compromised safety. This has been echoed in the different lev
els of prescription between the UK Defence Standards and the RTCA / EURO CAE
documents discussed earlier.

If a procedure in the ACOP was not followed and an accident resulted then (under
British law) the onus would be on the developer to prove that their differing approach
was acceptably safe. Guidances may be taken merely as potentially useful suggestions
for development practice.

2.1.6 Standards sum m ary
The approach of the above standards is very general, with the exception of the 14-
year old lEC 880. They tend to outline approaches rather than prescribe detailed
procedures.

It is usual for safety-critical systems developers to be required to show to the sys
tem’s customer or to a regulatory agency (such as the UK Health and Safety Ex
ecutive) that their development process has followed one or more specified standards
documents. These documents typically address the development process, configuration
management, implementation language, production of safety cases, testing and main
tenance issues. The system may require formal certification from a regulatory agency
before it may be brought into service.

Standards evolution

UK Defence Standards undergo periodic rewriting: 00-55 and 00-56 are at issue 2
already, and issue 3 is due to appear in 2004. The rewritings reflect both feedback from
practical application of the previous standards and advances in the state-of-the-practice
of system development. The changes from issue 1 to issue 2 of 00-55 reflect industrial
comments that the approach prescribed in issue 1 was too hard to apply in general,
although at least one project was successfully developed under issue 1[KHCP99].

If experts dispute such issues, and standards documents show that conflict, how
do we find a generic development process applicable to all standards? How can we
anticipate the requirements of future versions of existing standards? We cannot, but
we can focus on the areas of agreement noted above: the standards aim to support the
process of producing a system which is demonstrably safe at a quantifiable level.

25

Correctness vs. safety

Demonstrable correctness is often important in a safety-critical system. Note that
correctness is not the same thing as safety; a military aircraft stores management
system which could never arm a bomb would clearly be acceptably safe, but not correct!
Leveson’s experience with an aerospace firm’s torpedo was salutary:

And later, when they tested this torpedo, they told me, they called me up
and said “Well you know, we took her out into this testing ground and we
tested this torpedo and every time we tried to fire it, it came out of the
torpedo tube and turned itself off and went down to the bottom and it just
sort of lay there.” And I said, “Well, it’s safe.” And they said, “Well the
Navy didn’t want to pay for this safe torpedo.” [LC96]

However correctness and safety are often linked in that correct operation of a system
may be key to its safety; if a release sequence for the aforementioned stores management
system is faulty then armed stores may be released at too small an interval and make
aircraft-proximate detonation likely.

Correctness is only meaningful in the context of a specification; if we take System 1
consisting of a single AND gate, and System 2 consisting of a single OR gate then both
gates may operate perfectly and so both systems may naively be regarded as “correct”.
However the environment of the system may be such that the system is required to
signal on its output wire only when both input wires are high; in this case, only System
1 would be correct.

For the above reasons we now look at how formal methods may be applied to assist
us in the task of producing an acceptably safe system which is correct with respect to
its specification.

26

2.2 Application of Formal M ethods
“Formal methods” is a catch-all term for a collection of mathematical techniques used
to reason formally about the behaviour of a system or component thereof. Most of
these techniques are covered under two main system development activities:

verification which we define as providing evidence that a set of system requirements
have been satisfied; and

validation which we define as checking that the supplied evidence is satisfactory in
respect of the requirements.

Verification is therefore commonly associated with activities involving formal nota
tions and analysis, such as those presented later in this thesis. Validation is commonly
associated with unit, functional, system and integration testing, although it may also
cover manual or automatic inspection of proofs produced during verification.

The number of formal methods techniques in existence appears to increase at every
Formal Methods conference; for instance, FM’99 published a paper introducing the
VSPEC behavioural interface specification language for VHDL [ARB99] which may be
used to check VHDL designs against requirements. This method, like many others,
is well-defined and addresses a specific problem. However, proportionally very few
methods have gained widespread acceptance in industrial software development. Why
is this?

2.2.1 The benefits o f form al m ethods
Rushby [Rus93] wrote a seminal report on the application of formal methods to safety-
critical systems. He summarises the main benefits as

• formal specification reduces or highlights design ambiguities;

• formal verification makes explicit assumptions, axioms and deductions used to
conclude that a function is performed correctly, in addition to providing a sub
stantial confidence increase in its actual correctness;

• formal verification also has the effect of closely analysing the design and high
lighting implications of supposedly simple changes; and

• formal methods add an analytical component to manual reviews that may in
crease the effectiveness of such scrutiny.

However the report also indicates that formal methods have their flaws. Key among
these include the possible disparity between the programmer’s mental model of the
design and that which he or she specifies formally, especially because many formal
specifications (e.g. Z [Spi92]) are hard to write or read correctly. Formal verification
may also fall down in that real world properties are often hard to characterise formally.

Moreover if the verification process is partly automated then a great deal of faith is
required in the software tools involved. Developing high-integrity tools is not easy, but
has been demonstrated to be feasible. The development of a high-integrity compiler

27

for the UK Atomic Weapons Establishment [Ste98] was done using a Z specification,
recast into Prolog (the implementation language). The compiler was put through a
validation test by experienced compiler-breakers, and only one error was discovered;
this error was in an area of the compiler which had not yet been proven correct.

Rushby concludes that formal methods should at least be in the mind of software
engineers, if only to increase the rigour with which they reason about their software.
Industry should be encouraged to develop further and apply formal methods, but to
know when they are appropriate and when not. The report also remarks that large-
scale application of formal methods in airborne software (the author’s speciality) is
impractical. It is instructive to note that this report appeared in 1993; the ten years
following have brought significant new formal methods and techniques, notably the rise
of the SPARK Ada language and broader use of static analysis tools in UK and USA
aerospace software.

2.2.2 Formal m ethods in use
Common formal notations used in industrial projects include Z [Spi92], VDM-SL
[Jon86] and B[Abr96] for set- or model-oriented specification. Variants of CCS[Mil90]
or CSP [Hoa85] are used to specify and prove properties of interacting processes. Static
analysis tools such as the SPARK Examiner[CC90] permit verification that programs
satisfy a set of desired properties before they are run. In addition there are general-
purpose proof tools such as PVS[ORS92], used for interactive semi-automated proof.

Z is a formal specification language based on sets. Z usage is supported by tools such as
fUZZ [SpiOO] and Cadiz [Yor97] for type checking, typesetting and proving properties
of Z specifications. Z has been applied successfully in a number of industrial projects,
and extensions such as Object-Z have been applied to problem domains where basic Z
is difficult to apply.

Z is a specification language, and was not designed with a particular method of
implementation in mind. It permits proof of certain properties of and relations between
specifications, but by itself does not admit a method of developing a specification to
executable code; this must be done on a case-by-case basis. For example, Sennett has
shown [Sen92] how Z can be used to specify a program and how then to demonstrate
that an Ada program meets or does not meet that specification.

A common problem with Z is that its schemas are often written with a wide range of
non-ASCII symbols which many people find intimidating and hard to read “naturally” .
An ISO standard for Z was released in 2002 [iec02], but until then the Z Notation
Reference Manual by Mike Spivey [Spi92] was used as a de facto standard and indeed
not all Z practitioners have read the ISO standard in detail.

B and V D M

B, as a method for specifying, designing and coding software systems, is supported
mainly by the B Toolkit [Ltd98]. This is an integrated set of tools to assist the developer
using the B method to develop high-integrity systems. It is based on the concept
of an abstract machine, which is an object that may have internal variables (giving

28

state), invariants (making statements about the variables which must always hold) and
operations (enabling other machines to operate on its state.) The B method permits
refinement of machines from very abstract forms to a form suitable for implementation
in a high-level language such as C, Ada or Modula. This refinement allows us to
prove that the final implementation satisfies the initial specifications of the machine.
The difficulty is that it implicitly assumes an equivalence between the implementation
language and the language of the B method, Dijkstra’s language of guarded commands
[Dij76]. Languages such as C and Ada do not have a well-defined semantics, and so
certain assumptions must be made by the developer.

VDM-SL [Int96] is the specification language of the Vienna Development Method.
It is model-oriented, unlike Z. It is not as widely used in general as Z, but does have a
history of practical use in projects such as CDIS[Hal96a].

CSP and CCS

CSP [Hoa85, Hen88] is an algebra for describing communicating processes. Each pro
cess is given an alphabet of events, and a description of the sequences of these events
in which it participates. Parallel processes must be able to agree at least one sequence
of events in the intersection of their alphabets, or the processes fail (deadlock). In
addition, if a process is free to engage in an unbounded number of events not in any
other process’s alphabet, then that process is said to diverge. CSP is a useful way of
describing interactions between separate systems and detecting common errors such
as deadlock and diverge. Commercially its use is supported by the FDR tool [For97]
which is a model-checking tool based on the theory of CSP. The developer determines
whether a particular property holds for a system by writing a description of a transition
system capturing this property; the tool then attempts to refine this transition system
to the candidate machine and reports success (in which case the property holds) or
failure (in which case the property may not hold). It can also check that a state ma
chine is deterministic; this is an important property in safety-critical systems. Finally,
it can detect potential deadlock in a system. FDR was used by Inmos to develop and
verify communications hardware in the T9000 transputer and C104 routing chip.

CCS, the Calculus of Communicating Systems, is similar in concept to CSP but is
more abstract and algebraic in nature. It was devised by Robin Milner and has been
used in designing industrial systems including the aforementioned CDIS[Hal96a].

LOTOS

LOTOS [Int93] is the Language Of Temporal Ordering Specification. It is a formal
description technique, with roots from CCS and CSP, used as an unambiguous language
in standards for expressing parallel activities. It has been used to describe systems such
as bus architectures and embedded systems programs. As an lEC Standard (ISO/IEC
8809) it has the strength of a well-formed public definition. Its syntax is reminiscent of
CSP with alternation, input and output and parallel operators used to express parallel
interacting processes. As such it shows no clear advantage for our purposes over CSP,
with CSP at least backed by analysis tools.

29

Static analysis

Static analysis is the process of deducing properties of programs via inspection, au
tomated or otherwise, of the program code before compilation. By contrast, dynamic
analysis analyses program behaviour by actual or symbolic execution of the code. Tech
nically, manual review of program code against a predefined standard counts as static
analysis, although in practice the term is usually used to refer to a process which is
automated or semi-automated. The “lint” checking tool for C programs[Joh78] is a
widely-used static analysis tool.

Programs such as the SPARK Examiner[GC90] take advantage of a rigorous defi
nition of their program verification criteria to perform deep static analysis checks such
as well-formed program control flow, the absence of any reads of uninitialised mem
ory and conformance to a language subset; in this case, the SPARK subset of Ada
95[FW99, Int95].

P roof tools

PVS, a product of the SRI Computer Science Laboratory, is a verification system com
posed of a specification language, support tools and an automated theorem prover. It
has been in existence since 1992 and so can be considered reasonably mature as a tool.
Rusu and Singerman, in [RS99], use PVS as a key tool to prove safety properties of
reactive systems. This system uses PVS’s considerable automatic proving abilities to
good effect; the user chooses the direction of his proof process, guided by the results
of previous proofs, and lets the PVS theorem prover attempt to prove properties au
tonomously. Like any theorem prover, the key to successful PVS proofs is a supply of
well-formed, relevant and precise rulesets; these are usually accumulated over time on
a project, though of course they must be carefully reviewed to ensure their correctness
otherwise whole proofs can be invalid.

Recently one of the designers of PVS, Natarajan Shankar, reviewed the FM in
dustry’s progress in producing big proving engines and their success across a range of
domains [Sha02]. He argues that problem-driven techniques are likely to be more effec
tive than the uniform proof search procedures used at present. Since PVS is a classic
example of the latter approach, Shankar’s arguments should be carefully considered
since they appear to be based on substantial experience and evidence.

2.2.3 D irection o f formal m ethods use
In [CW96], Clarke et al lay out a strategic direction for the advance of formal methods.
They point out that the past view of formal methods as obscure, badly scaling and
without adequate tools has now been changed and that successful industrial case studies
have proven the essential practicality of formal methods. This view appears to be
supported by the use of the aforementioned tools in substantial industrial applications.

Key elements of their suggested direction include reusable models and theories,
combinations of mathematical theories to tackle hybrid safety-critical systems, and
integration with the system development process. It will be instructive to assess existing
techniques by these criteria, to bear in mind Rushby’s comments on the limitations of
formal methods as well as their benefits, and to consider Shankar’s recommendations
on proof strategies.

30

2.2.4 Value o f form al m ethods
The issue of why formal methods are not currently in widespread use is tackled by
Heitmeyer [Hei98]. She makes a number of interesting propositions, including the divi
sion of formal methods into “soft” , primarily passive techniques such as static analysis,
and the “hard”, primarily active techniques such as interactive proof editors. This is
useful because it is usually easier to persuade developers to take up a passive “soft”
method requiring little training than it is to convince them to invest substantially in
training and time to adopt an active “hard” method. If the formal methods community
is to encourage wider adoption of the “hard” methods then they need to be able to
demonstrate real and substantial benefits from them.

Example: GDIS

In [PH97] Pfleeger and Hatton discuss the issue of whether formal methods affect
code quality, and if so then how. The project evaluated by the authors is the GDIS
air traffic control information system [Hal96a] developed by Praxis pic. The formal
methods used during development included VDM for formal specification of critical
system elements, CCS to specify concurrency and finite state machines for specification
of individual processes. The evaluation of Pfleeger and Hatton is that the project
statistics on faults reported over time did not show qualitative evidence that code
produced using formal design techniques was of higher quality than informally-designed
code. However the formal specification process led to components that were relatively
simple and independent, and the delivered system was measurably better than most
other measured systems. The authors conclude that formal specification can be part
of the solution to improving code quality but it is not the whole answer.

It is notable that the 10-year warranty period on GDIS recently expired. There was
one warranty fix made during system testing at the start of the project; since then,
none were required. Note also that this was achieved with the technology available in
1990.

Example: SHOLIS

SHOLIS, described in Section 2.1.2, is a commercial safety-critical system where formal
methods were used. It is described by King et al in [KHCP99]. The development effort
built upon the experience from implementing the GDIS air traffic control system, as
described above and in [Hal96a]. The system was partly developed to SIL 4 standards
with the rest of the system roughly at SIL 3, and around 27,000 lines of Ada code. The
techniques used were Z for system specification, the SPARK Examiner static analysis
tool [Bar97], and proof of system properties using Z and the semi-automatic code proof
system of the SPADE Simplifier and Proof Checker [Pra98].

The technological advances over the earlier GDIS work were mainly at the imple
mentation stage. The SPARK Ada 83 subset [Ame99] enforced by the SPARK Exam
iner is a significant advance on the GDIS implementation language (C); the well-defined
semantics of the language permit formal proof of code properties, and the SPADE
toolset partially automates such proof work to permit a higher proof productivity. In
deed, the combination of the Examiner and proof tools enabled the development team

31

to prove (to the standard required for system certification) the complete absence of
any run-time exceptions in all of the SPARK Ada code.

The conclusions of King et al provide sharp contrast to the opinions expressed
by Pfleeger and (to some extent) Rushby[PH97, Rus93]. Z proof was found to be
significantly the most efficient phase at finding faults, and the ability to prove the
absence of run-time errors adds extra confidence in the system. Whereas the GDIS
effort was apparently unable to gain much from formal methods once the code was being
written, such methods contributed to the SHOLIS effort throughout the development
cycle.

Still, it is true that techniques such as proof in Z are nontrivial to use well and
effectively, and require the development team to make a positive effort to undertake
training and to use them properly. However they are easier to use than is commonly
perceived, and the GDIS and SHOLIS projects have shown that they confer significant
benefits in system reliability.

2.2.5 T he lim itations o f testin g
Testing is a vital part of system development. The main kinds of testing are:

• informal testing by developers that the feature they are developing works at least
approximately as designed;

• unit testing to exercise each component of a program (typically by subprogram
or module, depending on the implementation language);

• functional testing to check that all known requirements are covered; and

• system testing to verify that the entire system operates as designed without any
errors.

However, we should not lose sight of what testing cannot achieve. Modern testing
techniques are efficient and successful within a limited framework, but (as noted above)
even the most stringent testing can miss an error that other techniques such as static
analysis can detect.

Aim s and achievem ents o f testin g

Dijkstra said “Program testing can be used to show the presence of bugs, but never
to show their absence!” [Dij70]. Functional testing aims to show that functional
requirements are met, but at best can show that no errors occur while the function is
being exercised in a range of common ways.

Unit testing aims to exercise each individual component (unit) in a program. There
are formal notions of how thoroughly a unit has been tested - statement coverage,
branch coverage, MC/DC etc. - but the limiting factor in unit testing is often the
person writing the test. They should know the required result of each test before
writing it. The temptation to derive the test result from the code is substantial, so
unit test results should ideally be written before the unit is written. But then, the
tests are unlikely to cover all of the unit.

3 2

System testing can only realistically exercise a small section of the system’s state
space. Detecting and counting errors during continuous system test can give an indi
cation of the number of detectable errors remaining in the system, but can never assure
the developer, certification authority or customer that all the errors are gone.

U ntest able conditions

SIL-4, the highest level of safety integrity, requires no more than 1 failure per 10®
hours. Since this is just over 114,150 years we can immediately see that system testing
to demonstrate this level of reliability with any confidence will likely be impractical.
These limitations have been discussed in more detail by Littlewood[LS93] who applied
Bayesian statistical analysis to the problem of demonstrating reliability rates through
testing.

There are also more specific aspects of program correctness which are difficult to
achieve by testing. Absence of run-time errors can only be shown by testing if the test
exercises every path in the entire program for all values of input data. This is normally
computationally infeasible.

W hen to test

If testing finds faults, as good testing should, those faults will normally need to be
corrected and the system re-tested. The later in development that a fault is found, the
more rework is likely to be required. As an example, if testing locates a fault with a
system requirement then the system may need fixes to the requirements, design, im
plementation, and potentially many tests. This will be very expensive in development
time.

Croxford and Sutton[SC95] described the economic benefits of using static analysis
early in the development of the C-130J aircraft engine control software, allowing many
errors to be found before testing took place and reducing the associated rework. Given
this data point, it is clearly sensible to test system components as early as possible in
the development process.

2.2.6 Sum m ary o f form al m ethods
Formal methods have been successfully used in the development of safety-critical sys
tems such as GDIS and SHOLIS to improve the reliability of the software in the system.
They can provide assurance of reliability that conventional testing alone cannot. How
ever, the behaviour of the system hardware in conjunction with the software is harder
to capture and reason about.

We will now look at one particular common component of a safety-critical system,
programmable logic devices, to see how they are currently used and how we can increase
confidence in their correct operation to specification at an acceptable level of safety.

33

2.3 PLDs
PLDs were a development of the simple Programmable Logic Array (PLA) which has
been available in electronics design since the early 1980s. The early history of field-
programmable logic is reviewed by Moore in [ML91]. The most common (and interest
ing) form of PLD in use is a Field Programmable Gate Array (FPGA).

The key characteristics of an FPGA are as follows:

• “Field-Programmable” denotes their ability to have their program contents changed
upon power-up, i.e. in the field;

• “Gate Array” indicates their structure of a regular array of logic gates;

• they provide a logic device of relatively low complexity;

• they compute some function of a set of digital inputs to produce a set of digital
outputs;

• they have semi-permanent state in terms of programmed lookup tables, typically
implemented as static random access memory (SRAM);

• they operate mainly in a highly-parallel manner;

they are programmed by the download of lookup table data from an external
source;

• they differ from other programmable logic devices (PLAs, PROMs, CPLDs) by
allowing a more complex flow of data through themselves; and

• they also differ from Application Speciflc Integrated Circuits (ASICs) by trading
speciality of design for speed of development and economy of small-scale produc
tion.

In this section we will look at the concept of FPGAs and typical modern imple
mentations. We will examine how they are used in real systems, and critique different
approaches for producing an FPGA implementation from a subsystem design. We will
also look at how an FPGA can be given a semantics, and how the integration of FPGAs
with other systems presents more problems for a system designer.

2.3.1 Introduction to F P G A s
FPGAs made their first appearance in 1984, manufactured by the company Xilinx
[SWCL99]. They are a compromise between a software implementation of their function
(easier to program but somewhat slower) and a custom-made chip (faster and more
reliable, but expensive and requiring more time to design and fabricate). A diagram
of a “generic” FPGA is shown in Figure 2.1. The key components are the input and
output pins, the array of look-up tables (LUTs), the routing logic, the external control
and configuration loading, and the interfaces to external RAM and ROM blocks.

As a result of this compromise, FPGAs are typically used in building a prototype
system in place of a custom ASIC. It is significantly cheaper and quicker to use such

34

Kzzî - ik
LUT ; LUT i LUT

LUT LUT j LUT

Y\
LUT LUT LUT

— \L \ i \ :-
■ ■ ■ ■ ■ m mmmmmmmmmmm ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

Figure 2.1: Architecture of a generic FPGA

devices when the alternative is a minimum production run of 5000 ASICs in a different
company’s fabrication plant (“fab”). A small-scale single run of ASIC production can
easily cost $750,000 and take months from submission of VHDL design information to
the fab to the arrival of the silicon.

There can be significant commercial gain in using FPGAs rather than ASICs. Time-
to-market is reduced, since there is not the delay in setting up and making the ASIC
production run, and there is little overhead if an error is subsequently found in the
device. There is also the potential for increased time-in-market, providing mid-life
upgrades to the FPGA code without having to replace the hardware.

FPGAs are also found in end-user products. Their ability to take processing load
off the main system processor (e.g. as a bus interface) means that they provide a cheap
way of increasing a system’s speed without the complexity and expense added by an
ASIC or second processor. Most PC sound, graphics and network cards will feature
one or more FPGAs.

For very simple combinatorial logic functions, FPGAs can be too complex a solu
tion: devices such as Complex Programmable Logic Devices (CPLDs), or even PLAs
may be appropriate.

The majority of PLDs are usually programmed in VHDL [IEE91] or Verilog[IEE95].
These Hardware Description Languages (HDLs) have substantial standard libraries,
allowing a certain amount of code reuse. They model the PLD as interconnected
blocks rather than providing higher-level functions such as one to operate on a data
stream. Even if a higher-level language or design tool is used, it will normally compile
its input into VHDL or Verilog.

FPGAs can play a useful role in system development and be an effective component
in end-user systems.

35

2.3.2 D escription
An FPGA is characterised by a collection of cells, each of which has a number of single
bit inputs and outputs. It typically uses a single clock for the whole device; multiple
clocks are usually possible but seriously complicate programming. At each clock tick,
the cell uses an internal lookup table to compute a function of its inputs, and possibly
some internal state value, resulting in a defined output and possibly a change of state.
The output is routed to other cells in a predefined manner, and new inputs are read in
preparation for the next cycle.

The FPGA’s interface to the outside world occurs at a set of pins, each of which
is a single-bit input or output. Since the pins are normally electrically identical, each
pin’s function will depend on the user-programmed routing inside the FPGA. These
pins are linked to cell inputs or outputs respectively; the precise linkages will again
depend on the user’s routing scheme.

The way that a user programs the FPGA will depend on the FPGA type. Some have
SRAM cells which need to be reprogrammed whenever the device is powered up; others
use Flash memory which retains data even when power to the device is removed. Both
of these technologies may allow the user to reprogram the device mid-computation, with
varying effects on the device’s state. Some may use once-only programming (such as
antifuse technology) which again retains data across power cycling but which requires
a new device if the programming is to be changed.

The reprogrammable aspect of an FPGA concerns the cell lookup tables, and also
the routing tables in many FPGAs. Data for these tables are loaded using special
control pins to supply a stream of bits to the FPGA. The FPGA will typically be
configured in a period of tens of milliseconds.

More advanced FPGAs may include small banks of random access memory (RAM)
or other specialised devices such as DSP units which interface to cells. We will ignore
such complications in the rest of this survey since they do not affect the fundamental
functionality of FPGAs, and could be viewed as devices separate from the main FPGA
circuitry; they just happen to be on the same piece of silicon.

2.3.3 Variants o f PL D s
Moore, in [ML91], classifies programmable logic devices into the following categories.

PLA s

The original PLD was the Programmable Logic Array (PLA), a device whose outputs
compute logical “sums of products” of their inputs. The internal structure of this
device holds an array of AND gates, each of which takes a subset of the device inputs.
The outputs of these AND gates are in turn fed into a number of OR gates, the outputs
of which form the outputs of the device. The user programs the device by feeding a
high current through certain interconnections to break them, thus selecting precisely
the required inputs to each AND and OR gate.

The PLA is good for relatively simple, quick logic calculations but lacks flexibility
or internal state. Some devices have additions such as registered outputs or feedback
of outputs to inputs, but the basic design is simple and hence very easy to program
correctly.

36

C PLDs

The CPLD was the logical next step from the PLA, retaining the same basic structure
but with modifications to improve performance and flexibility. Larger arrays draw
more power and are harder to design for a given clock speed, so the CPLD introduced
an internal logic array which is structured hierarchically (blocks within blocks within
blocks) and has more complex input/output logic, allowing buffering of inputs for
example. The key difference from the PLA is that these devices each contain several
PLAs whose outputs go into flip-flops, then are routed elsewhere in the device. These
devices can support more complex calculations than PLAs, but it is still relatively easy
to map designs into them; the internal data flow is not normally a design bottleneck,
unlike in FPGAs.

Typical CPLDs such as the Altera MAX series [KF91] are configured using Flash
memory or antifuse technology.

Systolic arrays

Systolic arrays are informally defined in [Meg94] as “an array of synchronised proces
sors (or cells) which process data in parallel by passing it from cell to cell in a regular
rhythmic patterri^ (my italics). From this definition, an FPGA could certainly imple
ment a small systolic array; however in practice the systolic array is often operating on
data in 16-bit or larger chunks, unlike the 2 or 4 bits common at the cell level inside an
FPGA. Systolic chips may contain one or more processing elements (PEs), may have a
limited amount of flexibility in the precise calculations performed, and are often used
in sizeable numbers in a regular array.

An example of a commercial systolic array is the SAND neural processor [Ins97],
used for pattern recognition and image processing, which contains four parallel proces
sor elements and runs at 50 MHz. It reads in data in 16-bit “weights” and “activities”
streams, performs internal processing according to a 34 bit control word supplied by
its sequencing chip (an FPGA in some configurations), and outputs streams of 16-bit
data and addresses.

Compared to systolic arrays, FPGAs provide greater flexibility in the function of
each cell and the wide range of routing possible, but their generality makes them less
suitable for certain high-performance tasks such as those doing numerical calculations
involving 16 or 32 bit data.

ASICs

The most complex programmable logic device is the ASIC, an integrated circuit de
signed for a speciflc task and mass-produced. While an ASIC will nearly always out
perform an FPGA, FPGAs are much cheaper than ASICs in small volumes. They are
also easy to reconfigure on a minute-by-minute basis, allowing one chip to perform
many different functions rather than requiring one chip for each. Therefore if there is
any signiflcant chance that the function of a chip may change during the development
and testing process then it is normally worth accepting the lowered system speed to
replace an ASIC with an FPGA.

A FPGA draws significantly more power than the equivalent ASIC, and hence gen
erates more heat. In compact electronic devices this can be a signiflcant complication

37

Microprocessor PLA FPGA Systolic ASIC
Speed

Unit cost
Batch cost
Flexibility

Power draw
Program

Slow
Cheap
Cheap
High
Low
C, Ada

Medium
Cheap
Cheap
Low
Medium
Ladder logic

Medium
Medium
Medium
Medium
High
VEDL

Fast
Medium
Medium
Low
Medium
Custom

Fast
Expensive
Moderate
None
Medium
VHDL

Table 2.2: Trade-offs for software and hardware implementation

since the heat must be radiated away before other components are damaged; in battery-
powered devices the extra power drain may have a significant effect on battery life. For
these reason CPLDs or ASICs can sometimes be preferable.

Table 2.2 contrasts the effects of implementing a given algorithm in a range of device
types. CPLDs are grouped with FPGAs since their differences for these purposes are
not significant.

2.3.4 Specification
A FPGA’s topology can be represented as a directed graph where each node corre
sponds to a cell or pin, and the arcs represent the routing. Any node without outgoing
arcs is an output pin, and any node without incoming arcs is an input pin. We ig
nore power and configuration pins of the device in this representation. Note that the
graph need not be connected. Acyclic graphs are possible; they are easier to reason
about since they compute a finite-step known-duration computation of the input data.
Cyclic graphs, representing loop constructs, are common in the more complex FPGA
routings.

An example may be an iterative square-root real number function which takes a
16-bit positive integer representation as input X and produces the integer part of this
number’s positive square root as an 8-bit output T; the loop construct in this case
may be a successive approximation calculation, ending in a unit which computes
and (F -h 1) ̂ and sets a “valid result” bit if F^ < A < (F -f 1) .̂ If this calculation was
non-iterative then its FPGA representation would require many more cells and each
calculation of a root would take the same (i.e. worst-case) time; however, it may then
be possible to pipeline calculations.

Each cell represents a function fc : S x I S x P where S is the set of possible
cell states, I is the set of input values and P the set of output values. The latter are
normally represented by natural numbers between 0 and 2 ̂— 1 where k is the number
of wires forming the input or output. This is because the relatively small calculations
performed by FPGAs are normally numeric or logical in nature rather than string- or
symbol-based.

The user programming defines each function /c, and if the particular FPGA permits
user-defined routing then it selects a particular graph structure from a set defined by
the FPGA’s design.

2.3.5 D evice features
A key factor in evaluating an FPGA device’s performance and usability is its “logic
gate equivalence” , which is taken to be the total number of logic gates which it is
possible to emulate at once. As an example, an FPGA with a 16 x 16 block structure,
each block having four cells, and each cell having two inputs and four outputs, able
to compute any function of the two inputs for each output, would have a logic gate
equivalence of 256 x 4 x 4 = 4096.

Xilinx define one gate-counting method in their on-line Virtex FAQ list [Xil99c].
They state that each logic cell used as logic provides the equivalent of 12 system
gates, or 64 system gates if used as distributed memory (4 gates per bit with a 16
bit capacity.) They therefore will make an assessment of what fraction F of cells
in a device will typically be used as memory and state that the C cells will provide
64FC -f 12(1 — F)C system gates equivalent. Of course, there may not actually be
that number of recognisable gates in the hardware; the above works on the principle of
functional equivalence to a standard gate structure. Other devices such as digital delay
locked loops (DLLs) contribute an arbitrary number of system gates to the count; each
DLL counts as 7000 gates, for instance.

The above calculations also assume that data can be routed correctly between each
cell to make each cell useful; in practice many cells will not be usable in a computation
because the scarce routing resources around them have already been used. A circuit
which is regular in design may not suffer from this problem, but less regular layouts will
do; this is an inevitable result of the restricted size of an FPGA and the compromise
between number of cells and routing resources. Therefore we should only regard “gate
equivalence” as an indication of a device’s size and complexity, not its usability, and
in any case treat it with a degree of caution when using it to compare capacities of
competing FPGAs.

The difficulty of place-and-route is shown by Inuani and Saul in [IS97]. They
describe a algorithm for place-and-route for heterogeneous FPGAs based on look-up
tables, in particular the Xilinx 4000 series [Xil96]. For a range of benchmark programs
their algorithm improves by 10-24% the logic block usage compared to two other sets
of published results, while being significantly quicker in computation time. This shows
that good packing algorithms are far from obvious, even for a relatively simple ar
rangement such as the Xilinx 4000 series under consideration. Placing and routing for
modern, more complex devices, such as Virtex, will be harder to optimise.

Most FPGAs support read-back of the programming data. This is a simple but
effective way of detecting corruption in the programming bitstream. There is also
the JTAG standard (IEEE 1149.1[IEE01]) for test access and boundary-scan of such
devices.

2.3.6 Current devices
The main manufacturers of programmable logic devices at the time of writing are
Xilinx, Act el. Altera and Cypress Semiconductor. Their mainstream devices included
the Virtex and XC6200 series (Xilinx), the ProASIC 500K and Stratix families (Actel),
the FLEXlOK series (Altera) and the Delta39K (Cypress). We now look at 1999 and
2003 snapshots of devices from some of these manufacturers.

39

1999

The Virtex-E family have a gate equivalence of between fifty thousand and four million
system gates by the above reckoning, corresponding to 1,728 and 73,008 logic cells
respectively. The family is described in [XilQQb] and is intended principally for next-
generation telecommunications systems. They are manufactured using a 0.18 micron
process, and can run at internal clock speeds of up to 311 MHz. They have between
30 and 344 differential pairs of user input and output pins running at interface speeds
of up to 311 MHz and so could execute a theoretical 3 x 10® operations per second on
32-bit data words. A military version of the family, the QPRO Virtex series [Xil99a],
is produced using a 0.22 micron process and runs at speeds of up to 200 MHz with a
third of the number of logic gates in Virtex-E. Note the lowering of peak performance
and resources required to comply with military specification reliability under wide
temperature ranges and high EM noise environments.

By comparison the Actel ProASIC family, described in [Cor99], can have between
98000 and 1.1 million system gates depending on system configuration, manufactured
at 0.25 microns. Unlike the SRAM-based Virtex devices ProASICs use Flash memory,
so can be programmed once and retain that data through multiple power cycles. They
also feature a “security bit” which prevents read-back of the programmed data; this
can be commercially useful because manufacturers can distribute pre-programmed de
vices containing proprietary algorithms without having to worry about the algorithms
becoming known (directly, at least). The ProASIC internal structure is a “sea of tiles”
with each tile (up to 51,200 in the larger devices) forming a 3-input logic function or
fiip-fiop. The tiles are interconnected by four levels of routing, an indicator of the
perceived difficulty of place-and-route in modern FPGAs.

The Altera FLEXlOK series are SRAM-based CPLDs. An example of the series
is the 10K130V part which has 6656 cells, each holding a 4-input lookup table plus
flip-flop, and routing logic. These are grouped in blocks of 8 cells. Additionally there
is 32Kb of memory on the device and there are 464 user I/O cells.

2003

In 2003 the Xilinx Virtex family is still going, although the lead device is now the
Virtex-H Pro (XC 2VP125) at 125,000 logic cells, with 42Mbits of config data and up
to 1200 user I/O pins. It incorporates up to 4 PowerPC processor cores and 556 18x18
multipliers.

Altera have launched their Stratix architecture, described in [LB"""03]. The archi
tecture itself was evolved through a repeated posit-and-evaluate process where Altera
engineers proposed designs; these were modelled and benchmark circuits compiled onto
them. The aim was to produce a device that enabled circuits to be routed even when
most of the logic cells were used up - a notorious problem in the FPGA world. The
lead Stratix devices have 114,000 logic cells, lOMbits of memory. The devices and
associated tools support many high-speed I/O standards since FPGAs are commonly
used to pull data straight off a high-speed bus.

There has been no recent significant change in the forms of the designs of FPGAs
marketed by the major FPGA manufacturers, though the Altera approach to producing
a new architecture is interesting; they seem to be aiming to solve old problems better
rather than looking for new problems.

40

2.3.7 Perform ance
The maximum attainable clock speed of FPGAs has been increasing roughly in line
with the decreasing process size. Note that the quoted speed of an FPGA is often an
order of magnitude more than that actually achieved. This is because normal compiled
system implementations require substantial cross-chip communication and so several
iterations are required for the data to make its way across the chip. The Virtex series
for instance has a general routing matrix (GRM) associated with each logic block,
each of which routes to adjacent and 6-distant GRMs in north, south, west and east
directions. There are 12 “Longlines” running the full length and width of the device
for fast long-distance communication. In addition, the “VersaRing” routes between
the I/O pins and the logic blocks. These four different interconnection schemes make
routing very flexible, but at the same time very hard to reason about compared to a
homogeneous grid with only nearest-neighbour connections.

This communication feature is a major weakness of FPGAs. They require major
effort to be put into placement and routing of designs in order to come close to their
maximum efficiency. For this reason good comprehension of the information flow in
a program is vital in producing an efficient FPGA implementation, hence allowing a
smaller and cheaper device to be used. This is similar in some respects to the prob
lems involved in deriving an efficient data flow through a systolic array, in that the
arrangement revolves around dependency information. The difference is that the sys
tolic array pipeline is normally replicated many times in order to increase performance
across many devices, whereas in each piece of mass-produced equipment using FPGAs
the number of FPGA devices is normally few in number.

The difference which an FPGA architecture makes to design algorithms and soft
ware is illustrated by Hartenstein et al in [HHG98]. The authors explore the difficulties
posed by the architecture of the Xilinx XC6200. The main difference between this de
vice and other FPGAs is that the device has a 32-bit data bus which allows a coupled
processor to read or write directly registers in the FPGA; in addition, routing resources
of the device are limited. The authors conclude that the restrictions of the vendor tools
for the device and its structure indicate that designs should be partitioned into a control
part and a datapath. The key fact to emerge, however, is that the FPGA architecture
affects the development process right from the point of synthesising the behavioural
VHDL into the target’s primitive gates.

2.3.8 O ther architectures
M ultiple-C ontexts

An additional feature for FPGAs was explored by MIT with the design and construction
of their “Delta” Multi-context Programmable Gate Array (MPGA) [TEC'^95]. This
has an additional pair of control pins which distribute a “context” value across the
chip. Cells and routers may use this value to select one of a set of lookup tables.
In practice this permits an MPGA to switch between several different functions in a
couple of clock cycles, rather than requiring the tens of milliseconds normally required
to reload lookup tables. Since the area of an FPGA chip increases much more quickly
with number of cells and routing complexity than with cell size, this appears to be
generally advantageous for FPGA design. For a given chip area, an MPGA design

41

should be able to implement a more complex set of programs than an FPGA design.
In [FMA+97], Faura et al present a RAM-based FPGA with two configuration

contexts. It has the important property of allowing reconfiguration of one context while
the other is active; this allows a switch between dynamically-loaded configurations
within a couple of clock cycles. This system, termed FIPSOC (Field Programmable
System On-Chip) couples the FPGA cells with a microprocessor core. Tellingly, the
main digital I/O of the chip is routed through the FPGA cells first rather than through
the microprocessor, and the FPGA cell outputs are mapped onto the microprocessor
memory space. The system has clearly been designed with fast throughput in mind,
so the (negligible) cost of a context change will be important.

The other important fact to arise from [FMA"^97] is that the extra chip area taken
up by an additional context is not prohibitive; the implementation of the Digital Macro
Cells (DMC) uses around 56% of its space for context-related storage and processing,
with a roughly 50-50 split between contexts, so the cost of the extra context can be
estimated as a 30% increase in DMC area.

T ight B inding to Processor

An alternative to a separate FPGA device is to bind it more tightly to the main
system processor. This was the approach described by Hauser et al in [HW97] with
their work on the Garp processor. Garp is a standard MIPS processor with a slave
reconfigurable array incorporated on the same piece of silicon as the processor. The
suggested method of use is for the main processor to handle normal execution itself,
with programs handing off certain computationally-intensive tasks to the reconfigurable
array. The reconfigurable array is programmed by feeding an array configuration into
a “configurator” program which outputs a set of configuration bits; these are used
to generate C code which is compiled into a standard program and executes at the
appropriate point to write the bits into the reconfigurable array.

Garp was faster than an UltraSPARC 1/170 by factors of 24, 9 and 2 for their
benchmark computations of DES, image dithering and array sorting respectively. These
were reasonable, but this was a simulated run of a Garp, and the programs were no
different from standard FPGA benchmarks. There was no clear indication given in
[HW97] that a Garp chip was better than a standard processor interfacing to an FPGA
over a PCI bus. The authors suggest that Garp would be more easily adopted than
FPGA-only machines, but offer no evidence to support this claim, and do not address
the FPGA-PCI configuration which seems to be in common use.

Donlin describes in [Don98] an architecture called “Flexible URISC” which breaks
down a CPU into a bus on which sit arbitrary logic units; the controller of the archi
tecture has only one instruction, MOVE x y, which moves the contents of location x to
location y. All more complicated processing is done by the logic units whose input and
output registers are mapped into the processor memory space. Such an interface sits
well with FPGA devices like the previously discussed Xilinx XC6200 series. In fact, a
prototype core has been implemented using XC6200 devices. However, the performance
gain of such an architecture is still not clear, and programming of the prototype must
currently be done at the instruction level. It appears to be an interesting development,
but lacks an obvious application, and none is suggested in [Don98].

Graham and Nelson, in [GN99], describe the simulated coupling of an Analog De-

42

vices SHARC DSP with a Xilinx 4000-series FPGA architecture. Their reasoning for
this coupling is that DSPs have a memory architecture permitting many independent
memory ports to the programmable logic - a key to increased performance. The pro
grammable logic is seen as a way of performing the tasks to which DSPs are ill-suited
such as bit-level data manipulation. While the performance increase vs. area increase
figures are estimated rather than taken from actual trials, they estimate that increases
in chip area by between 0 and 60% can typically speed up DSP benchmarks by factors
of between 4 and 6. Of course, actually programming such a system is far from trivial.

System -on-C hip

The trend towards widespread use of small hand-held devices such as the PalmOS and
PocketPC Personal Digital Assistants (PDAs) and the late-second generation cellular
phones has driven a requirement for compact low-power microcircuitry with substantial
computing power.

A typical cellular phone has five major components: the aerial, the screen, the key
pad, the battery and the circuitboard. The screen and keyboard sizes are determined
by user interface issues such as eyesight and fingertip size, and the aerial by the need
to be able to receive and transmit a signal to a network cell at a typical distance.
Battery technology is improving, but innovations such as colour screens will continue
to increase power requirements. Hence the obvious place to look for space and power
saving is the circuit board.

One solution is to incorporate the maximum amount of logic on a single custom
integrated circuit rather than placing a number of generic ICs on a circuit board. This
is practicable in a cellular phone because of the large number of phones produced. This
approach is called “System-on-Chip”, abbreviated ‘SoC’.

An example of SoC is the DReAM architecture, described by Becker et al in
[BPGOO]. DReAM couples a number of reconfigurable processing units (RPUs), con
nected together directly and then interfacing to other components on the chip (DSP,
memory, microcontroller) via dedicated I/O units and a bridge. The authors have
mapped a CDMA “rake” finger onto four RPUs, in a DReAM architecture running at
lOOMHz. This is a classic off-loading of a computationally intensive operation from
the DSP or CPU, and indeed the rake is an important part of the operation of third
generation WCDMA mobile phones.

SoC can deliver increased performance in a system and reduce the component count,
at the cost of increased silicon area and hence losing several of the financial benefits of
using mass-market PLDs.

Non-silicon A rchitectures

The use of reconfigurability is not restricted to silicon. McCaskill and Wagler, in
[MWOO], describe the design of a reconfigurable microfiuidic network where routing is
controlled by magnetic or photonic activation. The actual processing elements can mix,
separate, react, detect or simply transport different fiuids. These designs are not pro
duced on silicon, but rather in materials such as polymer. The actual reconfiguration
would be handled by a digital mirror which refiected ultraviolet light onto appropriate
parts of the network.

43

Such devices would be expensive to fabricate, at least at first, and the obvious ques
tion is whether there is a need for them. McCaskill and Wagler suggest programmable
biochemistry as one field which might find such devices useful. The programmable
logic research community should track the future progress of this class of device to see
whether it solves any technical problems of silicon-based PLDs.

2.3.9 D evelopm ent environm ent
An old but widely-used Xilinx device family is the XC6200 series [Xil97]. Xilinx pro
duced the XC6200DS Development System based around a device from this family,
the XC6216. [NG97] describes this development system. It is aimed at developers who
want to produce applications based around the XC6216 device (64 x 64 logic cells, 1
register per cell). The key components of this system are:

• XC6216 device on a standard PCI board, coupled with up to 2 Mb of SRAM;

• extra PCI mezzanine slots on the board for custom hardware;

• XACTstep Series 6000 graphical design tool, reading EDIF format design input;

• Java and C/C-H+ run-time support software which interfaces to the board; and

• WehScope graphical debug interface to the XC6200 device.

The development process involves the user deciding what task the device is to
perform, designing the XC6216 configuration using XACTstep, saving the resulting
configuration data on the PC, then writing his or her control program which is linked
with the supplied run-time support software. When run, the program will read the
stored configuration data and upload it to the XC6216 device, then start the user’s
task. At any point the user will be able to use WebScope to check the configuration
and register state of the XC6216.

Analogue design

This process is adequate for systems which are experimental, but the hardware and
software design processes are very different. The software design and development
(in Java or C/C-f—{-) expresses the programmer’s intent at a relatively abstract level
where the details of the target machine do not greatly affect the programmer. The
hardware design is done at a much lower level, analogous to programming software at
the machine code level; the machine is being told precisely how to do a task rather
than what task needs to be done. Here the programmer is having to be his or her own
compiler; since modern compilers such as gcc [FouOO] are regarded as reliable and very
efficient in terms of size and speed of code produced, the programmer is likely to be
poor in comparison.

We expect that many of the errors in a programmed system’s execution will arise
at the hardware / software interface; incorrect handshaking and erroneous mapping of
FPGA outputs to software variables are the two most obvious classes of error. This is
because we will generally express the requirements for a system at a high level, then
decompose them as the system itself decomposes into hardware and software parts; the

44

interface between hardware and software does not have any requirements to start with,
but rather such requirements emerge as the system is implemented. This means that
the requirements have to be applied retroactively to the parts of the system that were
implemented before the requirement emerged, leading to parts of the system that are
overlooked or are incorrectly changed.

For a safety-critical system, such a development process is clearly inadequate. The
emphasis (as shown by the inclusion of WehScope) is on getting a program which com
piles and runs, then debugging the hardware and software components until sufficiently
few errors are apparent for the program to be regarded as effective.

The contrasting processes

The requirements - design - implementation - unit test - integration test cycle typical
of safety-critical projects conforming to Def Stan 00-55 and RTCA DO-178B[MoD97,
RTC92] implies that we need to understand completely how the hardware and software
parts interact before we start to implement them. While a certain amount of iteration
through the cycle may be necessary due to changing requirements or unforeseen system
limitations, the emphasis is on getting the system’s behaviour correct by design.

Sutton and Croxford [SC95] describe how this “correctness by construction” ap
proach was been shown to save time (and therefore money) in development of a new
avionics system for the C130J Hercules II aircraft, while achieving a specified level of
system reliability. We have previously discussed the limits of confidence that can be at
tained by testing. An analytical rather than empirical approach is to be recommended.

2.3.10 F P G A usage in system s
FPGAs are used in many common electronics systems. They are used to implement
“glue logic” and bus interface protocols such as PCI [AASR98]. In these systems
their relatively small size and well-defined specifications enable testing to demonstrate
quickly that they are adequately correct for the level of integrity required. However
FPGAs have also been adopted for use in certain specialised computing machines, as
described below.

Custom M achines

SPLASH and SPLASH 2 represent a previous generation of FPGA technology (the
Xilinx XC4000 series in the case of SPLASH 2, developed between 1991 and 1994).
They were large architectures consisting of 16 or more FPGAs coupled with each other
and with banks of RAM. We focus on SPLASH 2, detailed in [BAK96].

The design of SPLASH 2 had FPGAs as atomic processing elements, each coupled
with 512 Kb of fast static memory. The FPGAs were connected by crossbar switches
in groups of 16, each group forming one element of a linear array.

SPLASH 2 was used for several distinct tasks: a major one was searching genetic
databases at a rate of 5-12 million characters per second, obtaining several orders
of magnitude performance increase compared to its contemporary workstations, while
priced in the $40,000-$60,000 range. It was also trialled for fingerprint matching, which
was previously done by very expensive custom computing machines. This task involved
image processing to extract the skeleton features of a fingerprint, a very different task

45

to the text matching that the database search required. Again, the performance in
crease over a contemporary workstation (SPARCStation 10) was a factor of 1500. This
increase would have scaled well if more processing boards had been added, speed being
approximately proportional to the number of boards.

SPLASH 1 had been programmed at the logic gate level, but the difficulties that this
posed to the programmers meant that the developers designed a higher-level software
environment for SPLASH 2. The main development language was VHDL, coupled with
automatic synthesis and simulation tools. The designers chose not to use a C subset, on
the grounds that writing a C-to-hardware compiler would have taken effort away from
the mainstream of SPLASH development. Arnold [Arn96] writing in [BAK96] notes
that the developers believed that “the best model for custom computing machines is to
develop higher-level programming languages that can be compiled into a form suitable
for input to commercial CAD tools.” We examine this later in Section 4.3.10.

SPLASH 2 showed that a custom FPGA-based computing machine could signif
icantly outperform a workstation for certain tasks, and yet be flexible enough to do
very different tasks equally well.

Specialised Processing Elem ents

A practical use of the characteristics of FPGAs is described by Robinson et al [RCD98].
Their RCA-2 board, incorporating three Altera 10K130V CPLDs, is designed to process
blocks of signal data at rates of 100 Mbytes per second or greater. The CPLDs are
given local and shared SRAM, and programmed with signal processing algorithms.
This is a near-ideal application of programmable logic; the CPLDs give a flexibility
unattainable by ASICs or systolic arrays, are sufficiently fast to process the data at
the given speeds, and the circuit board is less complex than would be required to
implement the processing with a dedicated microprocessor. The resulting data can be
passed down low-bandwidth lines for more leisurely and detailed processing.

A different application obtaining similar benefits is cryptography. Charlwood and
James-Roxby [CJR98], implement encipherings such as Blowflsh-16 [Sch94] in an XC6216
device. A 20 MHz non-pipelined implementation attained 119 Kb/s throughput, which
translated to an 8 Mb/s pipelined implementation. For comparison, a contemporary
300 MHz Pentium II processor attained less than 25% of this performance. One ob
stacle was the number of cells required by a pipelined implementation: over 4000,
as opposed to 603 for the non-pipelined version. We see from this that FPGAs can
give significant performance gains over conventional microprocessors, at much lower
clock rates. This gives us a motivation for incorporating FPGAs in high-performance
systems.

The contenders in the recent Advanced Encryption Standard (AES) contest were
specifically evaluated for their suitability for implementation in hardware. Chodowiec
et al [CKGOl], described pipelined implementations of four of the contenders. The use
of mixed inner- and outer-round pipelining enabled implementation of the contenders in
a Virtex XCV3006 device, at throughputs of 7.5 to 16.8 Gbit/sec. Mixed architecture
sharply increased CLB slice usage, by around an order of magnitude over inner-round
pipelining. More recent work by Jarvinen et al [JTS03] has improved this to a prac
tical implementation at 17.8 Gbit/sec on an existing device using a fully pipelined
memory less design.

46

In contrast to the above performance gains, Shand [Sha97] examined the task of
finding approximate solutions of over-constrained systems of equations over the Galois
field GF(2). He compared the DEGPeRLe-1 FPGA co-processor [VBR+96] with a 150
MHz Alpha 21064, which was the approximate contemporary of the DECPeRLe-1 in
terms of technology. While the FPGA machine (16 Xilinx 3000-series devices) was
faster by a factor of 60 in the search for a particular data set, the Alpha software can
be optimised for a particular data set and recompiled in seconds to close the gap to a
factor of 2 or 3. Recompiling the FPGA program data to be data-specific would take
tens of minutes, losing any advantage. So for these kind of isolated problem solutions
the FPGA is superior by far; for repeated solutions for different data sets, the FPGA
recompilation overhead becomes significant.

These studies have shown that FPGAs can confer a significant speed advantage over
conventional microprocessors ; however, the performance gain appears to be sensitive
to the specific problem.

Plug-In Boards

Boards designed to be plugged into standard PCs are commonly used to research the
programming and use of FPGAs. A typical research FPGA board is Riley-2, described
in [MCLS97].

Riley-2 is a PCI board with four Xilinx XC6216 FPGAs, each coupled with 512
Kb of fast memory. There is also a RISC core (Intel 1960JF) on board, and 16 Mb of
shared memory. The XC6216s can be controlled directly by the i960 chip because their
configuration bits are directly accessible in the i960’s address space. There is also a
44-pin external I/O connector for external hardware such as video.

The FPGAs on Riley-2 are programmed in Cedar, an extension of C for parallel
hardware similar in many ways to the Handel-C language described in Section 2.4.4; the
i960 and the PC host software are normally written in C or G-I-+. It allows the use of
multiple dynamically reconfigurable FPGAs rather than a single FPGA, experimenting
with shared vs. private memory, and partitioning tasks over multiple FPGAs.

Em ulation

FPGAs are often designed into systems which also contain high-performance logic chips.
These may be microprocessors, but may also be ASICs. In the design of these logic
chips, emulation is an important step in validating the design before it is sent to be
etched into silicon. Krupnova and Saucier, in [KSOO], survey the commercial emulation
systems in existence which are based on FPGAs. Compared to custom chip emulators,
these give the key characteristic of high performance, although require CPU-intensive
compilation of the simulation programs. Krupnova and Saucier regard the FPGA pin
count as the limiting factor in their use, although pin multiplexing can overcome this
to some extent.

A modern FPGA-based machine for emulation is BEE[CKRB03]. BEE is a custom
machine built with 20 large Virtex-E FPGAs and copious I/O, connected to a network
by a commodity controller card. It makes practical the emulation of a 10-million-
gate ASIC at 60MHz in real time, using up to 90Gbit/sec of data, running at over
200Gops/sec.

47

2.3.11 Sem antics o f P L D s
The incorporation of programmable logic devices into safety critical systems brings
with it a need to be able to reason formally about safety and partial correctness in the
context of programs executing on the device. Here we have three distinct needs for a
semantics of FPGA operation. It will enable us to:

demonstrate that “programs” (data programmed into FPGA cell and routing
look-up tables) satisfy their specifications;

• refine high-level designs into code while demonstrating semantic equivalence; and

• reason about behaviour at the interface between software and programmable
logic.

The cell-and-router structure of an FPGA device leads us to consider a collection of
small individual processes reacting to input signals to produce output signals, since this
is essentially what is happening when cells are viewed as processes and their routing
is viewed as describing which signals pass to which process. Since such FPGAs may
normally be clocked by a single chip-wide low-skew clock signal to all logic blocks we
can add the additional constraint that the system be synchronous, at least from the
point of view of the cells; in reality, the interface between the FPGA and an IC such
as SRAM may not run at the same clock rate.

A model which is simple but sufficient to describe synchronous FPGA programs,
and which has a rigorous semantics, is Synchronous Receptive Process Theory. This
is described in [Bar93] and was developed from Josephs’ Receptive Process Theory
[Jos92]. It is similar in some ways to CSP, but better expresses the synchronous and
fundamentally receptive nature of logic gates: CSP allows processes to refuse events
(inputs) whereas actual gates cannot normally exercise any direct choice over the inputs
that they receive from cycle to cycle. We explore this in much more detail in Chapter 5.

Another formal representations which could be used is Timed CSP [SD95]. Timed
CSP is an improvement on standard CSP since it can express the concept of an event
occurring within a specific time (e.g. a clock cycle) whereas CSP can only have a known
event happening or not. Timed CSP uses the “maximal progress” mechanism where
an event happens whenever all participants are ready to engage in them. Representing
an FPGA program in Timed CSP would certainly be possible. However Timed CSP
is more complex than SRPT, allowing as it does asynchronous events. We are looking
for the simplest possible model which is sufficiently descriptive for our purposes.

Z has been mentioned before as useful in the specification of complex systems. We
could attempt to use it to describe an FPGA program. It is certainly worth considering
in terms of specifying the whole program, and perhaps even parts of the program, but
we would like our specification to be easy to refine into an implementation in something
like Pebble or VHDL. As previously noted, Z does not in itself provide mechanisms for
refinement, and the task of developing such a rigorous refinement mechanism would be
considerable.

A similar refinement-based objection can be raised for the B-Tool; it provides its
own target language, but this language is imperative and provides no native support
for parallelism.

48

One promising unified theory is Circus [CSW02], an integration of the CSP process
algebra and the Z specification language. This uses a Z schema to describe the state
of each process and CSP-like action to describe the control behaviour of each process.
Circus has well-defined refinement rules for transforming specifications from abstract
to concrete form.

Circus is appropriate to a development process at a higher level than SRPT. It
provides a way to refine down from an initial abstract specification to a collection of
relatively independent processes, omitting specific timing descriptions as long as they
are irrelevant.

Circus is as yet untested in an industrial-scale development; nevertheless, its frame
work and the rigour of its specification and refinement laws show promise for practical
system specification.

2.3.12 Issues o f co-design
An FPGA is almost always only a computational component of a system. Other
components may include one or more microprocessors executing software, a bus (such
as PCI or the military-standard 1553) and other specialised devices on the bus. When
designing the system architecture, an important question to resolve is “how shall we
divide the work among the components?” This decision will affect the critical system
properties of speed and reliability. The trade-offs to consider include timing constraints,
cost, complexity, redundancy, component functionality and required reliability.

At the moment the decision on what work to allocate to FPGAs is relatively simple
to make. Their small size means that very specialised tasks such as bus interface logic
are ideal, and most other tasks do not suit their capabilities. FPGAs work best on
processing large amounts of data in a simple way, which is not a common task in most
safety-critical systems; where it is required, such devices as DSPs are currently used.
However the increasing capacity of commercial FPGAs will enable them to undertake
increasingly complex tasks, taking load off the main processors of the system.

Partitioning Software

The decision on how to split software between a conventional microprocessor and pro
grammable logic relates closely to the field of hardware-software codesign. There are
three basic choices about when and how to partition the software:

• at design time, manually;

• at compilation time, semi-automatically; or

• dynamically during execution.

The first option is self explanatory. When the system is designed, the design team
decides which functionality should be in programmable logic and codes it explicitly.
As noted earlier, common implementation languages are VHDL and Verilog.

The second option has the software implemented in some high-level language. Dur
ing compilation sections of the software are selected for programmable logic according
to some defined criteria, and extra “glue” logic is added to allow these sections to

49

communicate with the other software sections. The manual effort in this selection and
mapping can vary from none to total.

The final option has a set of software sections implemented in netlist format. There
will be a system controller which dynamically loads the netlist data into reprogram
mable logic as required. This normally requires an FPGA capable of on-the-fiy re
configuration, since otherwise the device will have to be power-cycled and interrupt
system execution. With current technology we must have constructed our library of
programmable logic routines beforehand; the place-and-route overhead is usually too
high to make any other approach practicable.

Note that the decision on when to partition is coupled with the choice of imple
mentation language. If we are to decide partition details at compile time or later then
we need a language amenable to translation into a HDL or netlist (normally EDIF)
format. The choice of language will depend on the compilation tools supplied by our
device vendor.

2.3.13 Sum m ary o f PL D technology
PLDs exist in a wide variety of designs and sizes. Their most common form for use is the
FPGA. They are widely used as glue logic, and have been used for specialised processing
tasks where an ASIC would be too expensive and a conventional microprocessor too
slow or too complicated.

We will now look at how PLD programs may be designed.

50

2.4 Program m ing PLDs
The implementation of a PLD-based system can be done in many ways. The target
“object code” will be a vendor-specific “netlist” which specifies the data to be loaded
into each cell and router of the device. To reach netlist form, several intermediate
compilation steps are normally required.

2.4.1 N etlist specifics
EDIF (“Electronic Design Interchange Format”) [IntOOa, IntOOb] is a textual language
designed to allow electronic design information transfer between different CAD systems.
It is currently implemented for netlist and schematic circuit descriptions, although
different tool vendors have significant differences in their implementations so it is not
as portable as it could be. Netlists are often stored in EDIF.

A common step in most PLD programming methods is compilation from a HDL
to the netlist; device vendors normally supply software to do this as part of the device
toolkit. This compilation has the advantage that the source program structure is
similar to the target structure since HDL designs are normally expressed in terms of
procedural logic functions. These functions map naturally onto the FPGA cells-and-
routers model. However for larger systems it is hard to ensure that a large and complex
low-level design satisfies the system specification. Note, too, that HDL and the netlist
have to deal with issues of clock signal distribution and skew across the chip, driving
of inputs and outputs, and other VLSI-related issues; such complexities should ideally
not appear in higher-level descriptions.

2.4.2 P rocess fiow
A typical PLD development process fiow is shown in Figure 2.2. It illustrates the key
steps and decisions that need to be made. Note that the fiow may be changed because
of different project needs. In a safety-critical system development there would be safety
case work going on in parallel which would exert a substantial infiuence over design
and implementation decisions.

Where the PLD is expected to interact with system software there would be inte
gration work to ensure that the two components worked correctly together.

2.4.3 H igh-level hardware design
Substantial effort was made in the 1980s and 1990s to develop a hardware design lan
guage that supported formal reasoning and abstraction, two features absent from HDLs
such as VHDL and Verilog. The main exponent of this approach was ELLA[MC93], a
non-proprietary language with a formal basis.

ELLA was not a strict competitor to VHDL and Verilog, but in practice it was
treated as such. The relatively small size of hardware designs made design in existing
HDLs feasible, if not optimal. It may be that, as hardware designs and PLD dies
continue to grow in size, high-integrity requirements will make ELLA or similar design
languages more necessary. This change was seen in software with the emergence of
structured design methods as program sizes grew beyond what one developer could

51

c Functional Requirements

^ Design, partitioning J

Target device selection ^

^ VHDL coding

Compiling:
Netlist

P lace-and-route
Optimisation

S m u a to n

Testing]

Figure 2.2: PLD development process flow

manage; it is reasonable that a similar effect will eventually be seen in programmable
logic program design.

2.4.4 H igh-level language im plem entation
The use of a more abstract implementation language for PLD designs has received
considerable attention and is emerging as practical for some industrial applications.
The two-step compile (i.e. initially compiling to an intermediate language) is relatively
easily achieved since a number of languages have been compiled into VHDL; of note
are Ada (in [She96, WA02a]), Java (in [MK98]) and C (in [Swe98, She96]). Below we
analyse the results of this work.

Fine-grain vs. coarse-grain parallelism

A key property of programmable logic systems (each system incorporating both the
hardware and programming interface) is the granularity of the possible parallelism.
Coarse-grain parallelism is represented by programs which have individual data spaces
and communicate via specialised protocols. Fine-grain parallelism is represented by
subprograms which share a single data space and rely on careful programming by the
user to avoid race conditions.

The fine-grain model is a better representation of a typical PLD program, where the
limited space on the device may be used most effectively by a large number of simple
parallel computations which share data wherever possible; duplication of data storage
(the way of coarse-grain parallelism) wastes device space. We believe that aiming for
fine-grain parallelism from the outset holds the key for a significant general increase in
the use and speed of PLDs.

52

Java

The JVX Java prototyping system [MK98], for instance, compiles a single method in
isolation to VHDL and uses a modified JVM interpreter to interface with any methods
in reprogrammable logic. However, it appears that it is not currently possible to com
pile into hardware any method which calls another method. The automatic interfacing
between the JVM and the FPGA is an interesting step from the point of view of par
titioning; the user need make no special changes to a method for it to become VHDL.
However it is not clear that the Java language itself gives any significant benefit to the
effort.

Snider et a l , in [SSCOl], map a generic object-oriented language (subsets of G4-4-
and Java are given as examples) directly into device configuration data for Virtex
devices. The general approach is to write classes that extend a Machine base class,
taken to be the smallest unit of execution. Functions s tep O , input () and output ()
define the machine’s actions. The compilation relies on heavy optimisation in order
to extract fine-grained parallelism from the user’s medium-grain specified parallelism.
Low-level optimisation specific to the target is then performed; this section of the
compiler would therefore have to be rewritten for each target device.

The interesting points about this approach are that the source language is essentially
unmodified, and that the compilation does not go through VHDL or Verilog. However,
the full range of the source language is not used.

Xilinx have recently released their FORGE design language which is Java-based, but
it is immature and there is little public information about its structure and reliability.

Com posing hardware

An early compositional hardware language was Ruby [JS90]. Ruby was based on
the idea that circuits are built from parts by a process of composition, which has
mathematical properties similar to the composition of functions and relations. It was
studied in the early years of FPGA use but fell out of use and study. However, its key
ideas have been evident in more modern work.

A modern development of Ruby is the Lava project being undertaken by Xilinx.
The project involves Mary Sheeran, one of Ruby’s original researchers. Lava[CSOO] is
a prototype HDL, not supported by official Xilinx toolsets, but has been developed
and is in use at Chalmers University in Sweden. It trades off the expressiveness of
full VHDL or Verilog for compactness and simplicity of descriptions of common circuit
layouts. Currently it is implemented by being embedded in the widely-used Haskell
functional programming language. One proposed commercial use of Lava, cryptogra
phy, is described below.

O c c a m

Mpeller-Nielsen and Caprini proposed “occam on a chip” in [MNC95]; the universal
system programming language was occam [Ltd84], some section of the software was se
lected to be implemented in hardware, and two communication channels were added to
control handshaking between software and hardware. In this particular case the target
hardware was a transputer-like chip, reducing the required amount of compilation of
the Occam program, but occam is a good starting language if the hardware is PLD-like

53

too. Occam’s bit-level variables, ease of expression of parallel computations and simple
inter-process communication channels map well onto the architecture of PLDs.

The main problem with this approach is the opposite of that with a high-level lan
guage such as Java; programming the parallel hardware part is relatively easy, but the
occam language has not proven suitable as a general-purpose programming language.
The demise of the transputer after Inmos were absorbed by SGS Thomson meant that
occam was no longer a practicable implementation language for the mainstream x86,
ARM and PowerPC-based systems.

Oxford University’s Hardware Compilation Group have taken a number of ap
proaches to this problem. Their earlier approaches included Ruby (described above)
and Handel [PS93], which was an occam-like innately parallel synchronous language.
Handel was much more of a programming language than Ruby, allowing an elegant
expression of the parallelism of a program, but required much more effort on place-
and-route than Ruby’s compositional model.

Handel-C

The company Celoxica (formerly Embedded Solutions Ltd.), spun off from the Hard
ware Compilation group, is focused around use of the Handel-C language and the as
sociated DK Design Suite. The Handel-C language is described in [Cel02]. It extends
ISO-C syntax in the following ways:

• variables specified in bit-width;

• macros for bit-manipulation; and

• explicit RAM/ROM hardware elements.

Its semantics, however, are closely related to those of occam (and hence, CSP). The
language model includes:

a timing model, where each assignment or delay statement takes exactly one time
step to complete;

• signals and channels for inter-thread communication; and

• a deterministic parallelism model.

An example of the use of Handel-C for a real application appears in [Swe97]. Handel-
C is interesting both as a syntactic extension of a widely-used medium-level language
and as a rewriting of the (implicit) sequential semantics of one language into explicit
a timed parallel semantics. Nevertheless it falls short of the ideal language for our
safety-critical systems, principally because C is an inherently unsuitable language for
the implementation of highly reliable systems and because Handel-C borrows so much
from C that it includes many of C’s defects.

C’s failings are described by Romanski in [Rom96]. The author is a recognised
expert at making systems conform to the RTCA/EUROCAE DO-178B civil aviation
safety standard. He makes the key comment “The [C] language attempts to hide
the underlying machine so that programs become portable between different machines.

54

Unfortunately, the target characteristics show through.” The lack of strong typing, sub
stantial unspecified or implementation-dependent behaviour, and language constructs
such as unbracketed single clauses and admissibility of assignment into conditions in
C are viewed by Romanski as some of the chief deficiencies that make it unsuitable for
inclusion in safety-critical systems, even if a “safe” subset is used. Additionally, if we
wish to abstract away as much as possible of the details of the target hardware then
the use of a low-level language such as C appears to be going in the wrong direction.

An example of the problems Handel-C faces is the par construct, allowing parallel
execution of multiple statements. Strictly speaking, race conditions cannot arise be
tween threads because of the deterministic timing model. If thread 1 writes to variable
A and thread 2 reads from variable A, whenever the program is run thread 2 will al
ways get the same value of A. However, changing the order of statements in thread 1
may change the value of A read by thread 2. This instance of “law of the unintended
consequence” would be a significant worry in building a safety-critical sub-system in
Handel-C. The language also allows the use of types without explicit bit width, per
mitting their actual width to be inferred at compile time. This can only lower the
predictability of such programs.

Handel-C may well prove useful in lower-integrity system development, and its use
of fine-grain parallelism is intelligent, but it cannot seriously be considered for critical
systems.

A da

The syntax of Ada is very similar to the syntax of VHDL, which leads to the natural
question of whether it is feasible to map between the two underlying languages. This
was initially addressed by Sheraga[She96], with more recent work by Ward and Audsley
[WAOl, WA02b, WA02a] making progress towards a viable compiler.

Ada was designed as a language suitable for programming safety-critical systems,
and includes facilities for precise definition of type ranges and parallel programming
(“tasking”) which are required for many embedded systems programs. Ward and Auds
ley describe the construction of the York Hardware Compiler for sequential Ada[WA01]
and its extension to the Ravenscar subset of Ada’s tasking facilities [WA02b]. It should
be noted that they choose to use the SPARK Ada subset due to the structural re
strictions which it imposes on Ada, which improves analysability. The compilation
produces a netlist implementation of the program which can be compiled directly to a
target device.

The motivation for this compilation has been to improve worst-case execution time
analysis; bounding execution time on a program executing on a real-time operating
system is more difficult than for the same program executing alone on a PLD. However,
no mention is made of bounding loop execution counts, which is fundamental to such
calculation. Since SPARK Ada admits proof of selected program properties such as
maintenance of loop invariants and strict monotonie decline of variants, this should
have been exploited. Worst-case timing analysis of SPARK has been analysed in detail
by Chapman[Cha94] but this work has not been referenced by Ward and Audsley.

There is little discussion of interfacing a PLD-compiled program to another program
running in software, which is fundamental to making PLD programming effective for
large systems. In [WA02c] the authors discuss practical improvements to the Ada

55

language to make it easier to interface to PLDs and improve fine-grain parallelism of
Ada programs, but fail to exploit the known data-fiow in SPARK programs for this
purpose. The evidence of scalability in program size is very limited. Compilation
of some small programs is demonstrated, but none incorporating subprogram calls or
tasking constructs are shown. There is no discussion of optimising the compiler for
time or space.

This approach is interesting, in that it shows that Ada compilation can be done
in practice and that SPARK Ada and Ravenscar are useful subsets to adopt, but the
approach not been shown to be effective and practical for programs similar to those
used in actual development and has not exploited SPARK Ada’s features to the full.

Esterai

The synchronous programming language Esterel[BerOO] was used by Hammarberg et al
[HNT03] to implement a demonstration hydraulic fluid detection system on an FPCA.
Esterel is a language for programming reactive systems; we contrast it with the SRPT
process algebra in Section 4.1.10. It can be compiled to VHDL or Verilog, which is
how the fluid detection system was produced. It is certainly suitable for programming
reactive systems on PLDs, and has a formal (synchronous) semantics, but there is
as yet no public information about its use programming PLDs for real safety-critical
reactive systems.

D om ain-specific languages

One high-level alternative to conventional programming languages is CoreFire, de
scribed in [McH02]. This is used to produce high performance applications to run on
the Annapolis Wild FPGA boards. It uses a “sticks and bubbles” graphical interface
to draw program data fiow. The main drawback with this system is the tie to the Wild
board, whereas anything that compiles to VHDL will normally target a much wider
range of commodity hardware. However, this has not deterred engineers at the Naval
Research Laboratory (NRL) in Washington D.C., who are developing FPGA solutions
for electronic warfare using CoreFire. It demonstrates that in restricted application
domains there is a role for high-level design methods.

A more recent proposal has been made in the domain of cryptography. Launch-
bury and Singh [LS03] propose the use of the declarative functional language Cryptol.
This allows compact expression of common cryptographic transforms in a functional
language syntax. It is currently supported by compilers targeting the C (imperative)
and Haskell (declarative functional) languages. The authors propose a PLD-targeted
tool chain, using the Lava language embedded within Haskell. This work is at proposal
stage, and depends on immature tools, but its concepts appear to be sensible.

2.4.5 Low-level language im plem entation
Describing a PLD program in a high-level language may be inappropriate; indeed, for
early PLDs it was not practicable because of the small size of the devices. Even with
large modern FPGAs, certain programs may be better designed at the logic component
level.

56

In [ABOO] Abke and Barke describe CoMGen, a tool to render low-level component
descriptions into look-up tables. The input descriptions are in Verilog macro and gate-
level netlists. The generator is not tied to one FPGA; it has an interface to an external
floorplanner for sizing components appropriately for the target device, and does its own
place-and-route. Mapping the finished netlists to a form suitable for programming the
target device is done externally.

This approach is of interest because it classifies the low-level compilation steps into
general and target-specific classes. How low-level programming for a given application
is actually done will depend on several factors. If multiple devices are to be used,
reducing the device dependence by using a tool like CoMGen makes sense. If a single
device is to be used, the decision will depend on the perceived quality and useability
of the vendor’s tools.

2.4.6 Pebble
The “Pebble” language described in [LM98] is a more abstract representation of VHDL.
The language is based upon the definition, instantiation and coupling of logical “blocks”
which perform simple tasks synchronously. A Pebble representation of a half adder,
for instance, is:

BLOCK halfadder [si,s2:Wire] [cout,sum:Wire]
BEGIN

xor2 [sl,s2] [sum];
and2 [sl,s2] [cout]

END;

This expresses the half-adder as a coupling of XOR and AND gates. The naming
of the wires within the block relate input and output wires of blocks. Other Pebble
constructs allow parametrisation of blocks by size, placement constraints and condi
tional compilation. The “primitive” blocks in Pebble are expressed as blocks with an
empty body; these will be constructs which the target device can implement with a
single cell.

Pebble appears to hold considerable promise as a target for higher-level languages.
A compiler for Pebble into structural VHDL or a netlist for the “Rebecca” simulator
has already been demonstrated and is also described in [LM98]. The structural VHDL
produced can then be compiled into a specific device by the appropriate vendor tools.

Pebble is especially interesting in this context because it may be viewed as an
abstract representation of a PLD program which may be directly reduced to a cell-
level implementation. As an example take a carry-look ahead A-bit adder which can
be composed recursively by half-sized CLA adders until the single-bit level is reached;
at this point full adder blocks can be used to form the building blocks of the system.
We express this in more detail in Section 5.3.

Once the PLD program has been reduced to wire-connected computational blocks,
the unavoidable device-specific mapping occurs. In a Xilinx 6200-series device, for
instance, a half adder can be built on one cell, but simpler devices with only one
output per cell would require two or more of their cells to be configured and linked to
produce the full adder functionality. Therefore Pebble is in some respects the lowest
level device-independent step in a compilation. This is a strong indication that Pebble

57

should be considered as a target for high-level compilers. We develop this approach in
Section 4.2 and apply it in Section 7.2.

2.4 .7 Testing PLD program s
Testing is a vital part of the development cycle of any significant system. It has three
main aims;

1. to verify that the program loaded was the program intended;

2. to locate errors in the system software during development; and

3. to provides a level of assurance that the completed product fulfils its requirements.

Aim 1 is normally achieved by readback, as described in Section 2.3.5.
Aim 2 is normally achieved by what is commonly called unit testing; assuming that

the software is divided into modules, the elements of each module are tested according
to their design. Problems may arise here when the software design is very detailed;
there is a temptation to derive tests from the code, which nullifies many of the benefits
of testing. Ideally, the author of the tests would be independent of the author of the
software, and would not have access to the implementation details of the source code
for which he or she was writing the tests.

Aim 3 is achieved by running on the completed product a series of tests derived from
the requirements (often called functional testing or integration testing, run in sections
during development to check that modules work together properly), and showing that
each test result is correct. The level of assurance provided will depend on a number of
factors:

• the number and range of tests provided;

• the rigour with which the tests are derived from the requirements; and

• the proof that the system components tested are those in the final product.

The latter point is not trivial. Without good configuration management in the
project, it is difficult to prove the required proof.

How should we test PLDs? Since they are a mixture of software and hardware
engineering, we should examine testing techniques from both fields. We must also
consider testing methods particular to the peculiar design of PLDs.

Requirem ents testing

The first set of tests will be requirements-based, checking that a given set of inputs
produce the desired set of outputs within a specified time. Generating test cases from
requirements is a well-understood problem, and there is little more to say here. The
key is to make requirements independent of implementation techniques where possible,
to avoid unnecessary restriction of the solution space to software or programmable
hardware.

If a high-level language has been used to specify the PLD program then it may be
useful to write unit tests for the PLD based on that high-level representation; this acts
as a check that the potentially complex compilation and optimisation of the FPGA
netlist has worked correctly.

58

Hardware fault detection

The hardware aspects of the PLD require more thought. Renovell, in [RenOO], de
scribes a scheme for testing the interconnect, logic cells and RAM cells in a symmetric
SRAM-based FPGA. These tests consider cases such as open and short between inter
connections, stuck-at cases for logic and RAM cells, transition faults, coupling faults
and address decoder faults in RAM cells.

This testing is done by feeding in explicit test configurations into the FPGA before
loading the actual system configuration. Hence, we have a reasonable likelihood of de
tecting faults inherent in the FPGA, but must also consider the possibility of spasmodic
errors in the configuration data. Our testing here will be affected by the permanence
of the FPGA configuration. An SRAM-based FPGA will have its configuration loaded
at each power-on, and so will have a greater likelihood of configuration error than a
Flash-based FPGA which may only be reprogrammed three or four times in its life
time. When drawing up a test plan for a system incorporating FPGAs, these factors
must be considered. The developers will have to choose whether to ignore configuration
errors, detect and report them (possibly shutting down the system subsequently), or
taking measures to mitigate their risk such as using redundant hardware, exploiting
PLD program readback or using a voting scheme.

An example of a triple-redundant PLD program design scheme including error de
tection and periodic program re-loading is described by Lima et al [LCR03].

Tim ing errors

Timing issues are a significant consideration in designing ASICs, and serious computa
tional effort is devoted towards simulating ASIC designs in order to catch timing issues.
This simulation is not generally available for normal FPGA designs, but the problem
of timing issues is still present. Krasniewski, in [KraOO], shows how delay faults can be
detected in an FPGA. His approach is to modify the contents of look-up tables in such
a way that the LUTs become much more vulnerable to path delay; random testing of
the modified program is then carried out to attempt to detect such faults.

Crosstalk

“Crosstalk” is the phenomenon due to inter-wire capacitance whereby switching in one
trace of the FPGA may change the voltage in another trace. The shrinking feature
size of integrated circuits has made crosstalk an increasingly important consideration
in place-and-route. Wilton, in [WilOl], describes a routing scheme which optimizes
for delay in the presence of crosstalk, and which demonstrated a 7.1% improvement
in routing delay over its parent routing scheme. This indicates how important the
consideration of crosstalk can be for system performance. It is also another complexity
in the design of routers, especially in safety-critical systems when all potential crosstalk
effects must be eliminated.

2.4.8 Sum m ary o f program m ing PL D s
PLDs are generally programmed at the HDL level, in Verilog or VHDL. There is a
move towards programming in subsets of C and Java, adapted to take advantage of the

59

PLD’s parallelism. However, these programming languages appear to be inadequate for
programming components of high-integrity systems. The occam fine-grained parallel
model appears to be a useful base for language design. The use of Ada is promising
but remains to be shown to be practical.

There are mechanisms for testing PLDs, but their reconfigurability means that a
class of reconfiguration errors must be explicitly tested for, over and above the normal
software and hardware tests.

The hardware nature of PLDs introduces extra potential faults, such as crosstalk
and timing issues, which require trapping and testing over and above that used for
conventional software.

Given these issues, we will now look at the suitability of PLDs for use in safety-
critical systems. We will also examine the state of the practice for such use.

60

2.5 Safety-Critical PLDs

2.5.1 Research d irections
Any new work on incorporating PLDs into safety-critical systems should represent
an advance in concurrency research. Before we investigate this problem, we should
bear in mind the conclusions of Cleaveland et al [CS*̂ 96] in their recommendations on
concurrency research. They isolate the following relevant topics for which challenges
exist:

A lgorithm ic support to develop methods which can cope with the state-space ex
plosion problem inherent in concurrent system design and verification, perhaps
by a decomposition and refinement process;

Tool support to make tools portable and scalable, and better integrated into the
software engineering lifecycle;

Technology transfer to expose existing design and verification technology to real life
industrial and defence applications, to improve the technologies and to encourage
their uptake by example; and

Program m ing languages to design usable, safe and secure languages incorporating
a well-understood concurrency model.

We will incorporate these aspects in our problem statement in Section 3.5.
In this section we look at the emerging UK Defence Standard 00-54 and the RTCA

standard DO-254, relevant to PLDs in safety critical systems. We see how a system
safety analysis should incorporate any programmable logic in the system, and discuss
how we might improve a PLD program to increase safety and reliability. Finally we
summarise the key needs for the system developers who build programmable logic into
their systems.

2.5.2 Safety o f PL D s
Placing a programmable logic device into a safety critical system should result in an
immediate assessment of the impact of the device’s behaviour on the rest of the system.
This enables the system designers to establish whether the addition of the device has
made the system less safe. A “white box” safety analysis procedure, such as described
by Simpson and Ainsworth in [SA99], will trace the output data of the device through
the system and determine whether it can contribute to any predetermined system
hazard.

An example might be an FPGA built to compute a customised Fast Fourier Trans
form of some data. If this data is determined to be safety-critical, for example as an
input to an aircraft’s fly-by-wire control system, then the safety analysis must show
that the data produced has an adequate probability of being correct. Suppose that a
10~® chance of an aircraft being lost on a typical mission due to system failure was
deemed acceptable. The onus would then be on the safety team to prove that the prob
ability of dangerous data being generated by the FPGA on such a mission, multiplied
by the probability of such data causing aircraft loss, was less than 10“®.

61

The system designers typically face a dilemma; should they ensure that the device’s
functionality is limited to prevent it contributing to a hazard, or should they attempt
to demonstrate its correctness? The former may require a major system redesign; the
latter requires a solid formal basis from which to argue.

White box safety allows us to analyse the errors that might occur in the FFT
computation. If we can show, for instance, that the expected results of an erroneous
calculation are distributed evenly across the result space, and that a simple sanity-check
can detect 90% of such errors, then we could perhaps formulate an argument that only a
10“ ̂probability of calculation error is required. However, things are seldom so simple!

Gibbons and Ames, in [GA99], describe the experience of using an FPGA as a key
element in the circuitry of a pyrotechnic release for the NASA Wide Field Infrared
Explorer (WIRE) satellite experiment. The telescope cover was prematurely opened,
causing hydrogen venting from the spacecraft and consequent high torque rates, venting
all the solid-hydrogen cryogen within hours and rendering the instrument unusable for
its intended mission. The premature opening was due to undefined behaviour of the
FPGA (an Actel 1020) during power-up that permitted a 14 millisecond power spike
on the outputs. Spacecraft hardware testing did not detect this problem.

A PLD program could be proven to be completely correct against its specification.
However, correctness cannot avoid failures triggered by phenomena which can occur
even before the program starts its execution, such as in the case of the WIRE satellite.
In general, proof of correctness only guarantees that the program will be able to address
conditions explicitly considered in the formal specification; nothing else is guaranteed.

2.5.3 Safety standard: D efence Standard 00-54
The UK Defence Standard 00-54 [MoD99] specifies requirements for electronic hardware
in military systems. It is considered to be appropriate if an electronic element of the sys
tem affects the system’s safety. As with other UK Defence Standards [MoD97, MoD96]
it is split into two parts; Requirements and Guidance. The techniques described in the
document are to be used to analyse complex electronic designs for systematic failures;
dealing with random failures is discussed in Defence Standard 00-42 [MoD94]. All of
00-54’s recommended procedures are to take place under the umbrella of the safety
management standard Def Stan 00-56 [MoD96].

Relevant quotations

The standard’s recommendations which are of particular interest to us are in sections
12.2.1, 13.4.1 and 13.4.4. To quote:

§12.2.1: A formally defined language which supports mathematically based reasoning
and the proof of safety properties shall be used to specify a custom design.

§13.4.1: Safety requirements shall be incorporated explicitly into the Hardware Spec
ification using a formal representation.

§13.4.4: Correspondence between the Hardware Specification and the design imple
mentation shall be demonstrated by analytical means, subject to assumptions
about physical properties of the implementation.

62

where “custom design” refers to the particular electronic component in question and
in particular to a PLD’s program data.

M otivation

The standard’s guidances provide more information about the motivation behind the
standard. To quote: “The principal concern which has caused this Interim Standard to
be produced is that electronic hardware designs used in critical applications have been
getting steadily more complicated [...] Therefore the focus of this Interim Standard
is on analysis and proof to supplement test.” It also notes that widely used standard
HDLs without formal semantics, such as VHDL and Verilog, present compliance prob
lems if used as a design capture language. Examples given of suitable languages are Z
and VDM.

Standards evolution

The standard is only interim, and its contents will almost certainly change when it is
incorporated into Issue 3 of Def Stan 00-56 in early 2004. Nevertheless, the concerns
which it expresses about existing practices and its suggestions for process improvements
are worth careful scrutiny. A language which supports formal reasoning about PLD
behaviour is what is required for compliance with this standard.

There is an on-going program in the UK Ministry of Defence relating to the de
velopment of guidance for the design and procurement of systems conforming to the
Advanced Avionics Architecture (AAvA) for military aircraft systems. There is a spe
cific guide about the use of PLDs in such systems which has been released in preliminary
form as [HilOSa]. This in turn is expected to inform the re-write of 00-54. This guide
encourages the goal-oriented approach to generating safety evidence demonstrated in
the rewrite of the SWOl regulatory impact assessment for the CAP 670 Air Traffic
Safety requirements [Civ02]. It seems reasonable that most parts of Issue 3 of 00-56
will adopt this form.

The previously noted increase in PLD capacity and speed, enabling them to perform
more complex and time-critical tasks, in turn increases the likelihood that they will be
a critical component in a safety-critical system. Without a generally applicable method
of reasoning about their correctness to the standard that SIL-4 requires, such a system
is unlikely to gain regulatory approval.

2.5.4 Safety standard: R TCA D O -254
RTCA DO-254[RTCOO] is the programmable hardware counterpart of RTCA DO-
178B[RTC92]. It was approved by the FAA in 2003 for use in aviation systems de
velopment. The author of this thesis has had experience in applying it in practice to a
hardware development, and therefore has a well-founded perspective on its practicality.

Like its software counterpart DO-178B, DO-254 defines a set of required integrity
levels A to D, with Level A being the highest integrity. The emphasis in DO-254 is
on providing a practical guide to the development process for the PLD program and
associated documentation. The advice is normally generic for the integrity level, with
Appendix B describing particular techniques that may be appropriate for high integrity
systems which DO-254 defines as Levels A and B. It is not normally prescriptive, leaving

63

it to the developers to choose (and justify) the advanced analysis methods to use in
high-integrity systems.

The key to producing high-integrity systems conforming to DO-254 is to do func
tional failure path analysis (FFPA) as described in Appendix B section 2.0 of DO-254
to identify system hazards, deduce where the system may cause them, and justify how
in each case the hazard is mitigated. Arguments may include manual analysis of the
HDL or net list, formal analysis techniques, mitigation through features of the system
architecture, and in-service experience. Interestingly, it makes practical recommenda
tions on qualifying hardware compilers for high-integrity work.

Where Defence Standard 00-55 and RTCA DO-178B are distinctly different in con
tent, with 00-55 emphasising rigour over DO-178B’s extensive testing. Defence Stan
dard 00-54 and DO-254 are more complementary. DO-254 provides practical advice
without forfeiting the requirement of a rigorous approach where appropriate; 00-54
provides the detail of appropriate rigorous approaches.

2.5.5 PLD correctness
We have already noted the difference between safety and correctness. How should we
go about demonstrating that a PLD’s behaviour is correct?

There are two choices for a strategy here. The more common is “show that the
implementation does what the requirements say.” This tends to rely on model-checking
with a theorem-proving tool. The second strategy is often initially harder: “develop
the requirements into an implementation” which is known as refinement.

M odel-checking

The essentially synchronous property of a PLD’s circuits may help the model-checking
problem. Pierre, in [Pie95] describes the use of the Boyer-Moore Theorem Prover
to verify synchronous circuits. He uses a 4-bit binary-coded decimal (BCD) checker
and an iterative integer factorial generator as examples. The verification process was
automatic for the first example, but required several man hours for the second, more
abstract example.

Here we see the key weakness of such an approach: model checking is hard, interac
tive, and usually will only be able to tell you whether your system is correct, not what
is required to fix it. Tracing the cause of and correcting a failure is a separate process.
In addition, if care is not taken then the size of the model can easily grow to the point
where it is computationally infeasible to model-check it completely. Often it will be
better to prove correct the critical subset of the PLD logic.

Model-checking has been used successfully in verification of specialised processors.
Srivas and Miller describe in [SM95] the verification of the Rockwell AAMP5 micropro
cessor. The verification was carried out at instruction-set and register-transfer levels.
This was possible even though the AAMP5 microprocessor was not designed for formal
verification, illustrating the strength of model-checking as a retrospective technique.
However, AAMP5 was not a general-purpose microprocessor and was not available
directly for public use.

The use of model-checking to identify undesirable properties in complex commercial
hardware has recently been demonstrated by Intel[SchOS] in their verification of the

64

Pentium 4 processor. Following a 3-4 fold increase of pre-silicon logic errors in each
generation of the IA-32 architecture, Intel applied model checkers to verify the critical
properties of non-floating point arithmetic of the Pentium 4 at the netlist RTL level.
The floating-point arithmetic required the addition of a theorem prover to formally
verify correctness, model-checking alone being impractical.

For a very small or very structured PLD program, manual inspection of the netlist
may suffice. This must be judged on a case-by-case basis, and it may be necessary to
use techniques such as fault injection to estimate the reliability of the inspection.

Refinem ent

As with the first strategy, rigidly defined requirements and an implementation language
with properly defined semantics are necessary for the approach to be meaningful. Re
finement of requirements to a PLD implementation is usually done in a series of small
steps. Each step’s induction from the previous one relies on the correct use of a set
of predefined refinement rules. There is a gradual progression from the high level lan
guage of the requirements to a low-level language which may be implemented on the
target device.

This second approach requires more “up-front” investment of time and effort. A
working implementation may not appear until late in the development process as it
is produced by the very last step of refinement. However, the correctness of the im
plementation is guaranteed, excepting the possibility of human error in the refinement
steps. These refinement steps are normally amenable to individual verification by man
ual inspection. The main disadvantage of refinement compared to the model-checking
is that a late change in requirements may require much of the refinement process to be
repeated.

For a high-integrity or safety-critical system of substantial size, the above consid
erations suggest that the second strategy be the approach of preference. The main
difllculties in using it will be in the choice of a suitable low-level language with well-
defined semantics, and in the early and correct elicitation of requirements. For the
latter task, there are well-established requirements engineering tools such as Cradle
[Str98] and methods such as REVEAL [Vic98].

2.5.6 Verification
We have already covered the issue of how PLD programs are tested in Section 2.4.7.
For high-integrity systems we must also consider verification of PLD programs.

Robinson and Lysaght [RLOO] examined the problem peculiar to FPGAs of verify
ing dynamically reconfigurable logic. They extended the Dynamic Circuit Switching
framework to track the status of dynamic tasks, and monitor these statuses to detect
certain classes of error. However, this testing is dynamic and so acts more as a run-time
self-test than as a method to exclude the possibility of error in the first place.

Bartzick et al [BHKWOO] presented a design of FPGA which is intended to detect
simple faults within itself and hence be fault-tolerant. The test of the FPGA is executed
after programming, and occurs in 32 clock cycles so is not significant in terms of total
program execution time. Each block has three normal cells plus a fourth “X” cell which
takes over if any one of the cells is determined to be faulty. This approach is worth
considering in designing an FPGA for use in high-integrity systems.

65

Sawitzki et al [SSSSOO] described how they verified the data path of a microprocessor
including a reconfigurable processing unit. This was done according to a specification
in hardware description notation, describing the change in state of the processor for
each instruction. They used the Stanford Validity Checker [BDL96] proof tool. The 16
hardwired instructions took an average of 80 minutes each to verify; the 9 reconfigurable
instructions took over ten times that time each. However, they did not describe in detail
why the reconfigurable instructions took so much longer to verify.

2.5.7 Self-testing
A technique in current use for PLDs is the use of self-testing and fault detection. Lima
et al [LCR03] described a modification to the existing practice of triple-redundant
circuits on FPGAs prone to disruption from charged particles. The use of delay in
circuits, voting on outputs and regular re-programming of the FPGA (“scrubbing”).
This allows 100% detection of single-event upsets in the FPGA, and approximately
90% elimination of the errors.

This is not a replacement for more formal techniques, but provides a useful brute-
force method of reducing the impact of common problems.

2.5.8 Em ulation o f PLD s
During development of a system, it may be that the developers need to integrate
their software modules with the programmable logic. Here we run up against the
practicalities of system manufacture. It is unlikely that the system hardware will be
built until relatively late in the development process. How then should developers do
this integration?

One option is for developers to fit their PCs with a standard PLD development card
which are available from the device manufacturers. These boards, such as the XS40
[XES99] from XESS Corporation, can fit in a standard PCI slot or parallel port on the
PC, and provide an FPGA which can be accessed by software on the PC. This is an
extra expense, but is unlikely to be significant in a large project. The difficulty is that
the program for the PLD may not yet be written, or at least still be in a state of fiux.

If a high-level language is being used to program the PLD with a program D, and
can be compiled into the main software program P, this makes life easier. The initial
integration testing can take place using D, then the program can be changed to access
the PLD proper as it becomes available. This also has the advantage that, if a module
functions properly with D but fails systematically when the actual device is used, this
may indicate a failure in the hardware compilation process; the implementation (PLD)
does not do what the specification (D) does.

For purposes of realism, there will need to be some form of wrapper W () around D
when it is compiled into P since interfacing with a PLD adds complexities which the
wrapper must emulate, notably:

• the PLD runs in parallel with P, with no natural synchronisation;

• communication with the PLD must be done in a hardware-specific manner, pos
sibly also in a compiler-specific manner; and

66

• communication must normally be assumed to be asynchronous.

The way that such a wrapper will be implemented will vary significantly according
to the high-level language and PLD chosen. Ideally W{P) will encapsulate the details
and present an interface which is very similar to that for interfacing with the real PLD.

2.5.9 Im plem entation too ls
The state of the art in languages and tools used in safety-critical systems tends to lag
behind the leading edge of industry by several years. It is instructive to examine why,
as the reasons have significant implications for the choice of techniques to program
systems involving PLDs.

The foremost reason is reliability. A compiler, microprocessor or design tool is
typically shipped with a number of errors, some known at shipping time or shortly
thereafter (e.g. the infamous Pentium FDIV bug), but other more subtle problems
may take months or even years to become evident. For this reason, implementors of
safety-critical software tend to choose a compiler that has been stable for at least a
year and then work around the known errors. Newer versions of the compiler may have
these known errors fixed but there is no guarantee that new unknown errors have not
been introduced.

This was particularly evident when the Ada 95 compilers started to be released;
for a while safety-critical systems customers were still choosing the Ada 83 compiler
because it was a known quantity, even though the Ada 95 language was far better
in general functionality and had fixed long-standing problems of Ada 83 such as the
inability to read output-only parameters in subprograms. The author is personally
aware that Ada 83 compiler licenses were still being sold by vendors such as Rational,
and Ada 83 programs being written from scratch, in early 2003.

As far as hardware is concerned, the usual choice for a complex IC in a safety critical
system is a chip which is one or more years behind the state-of-the-art at the time of
system design. This is because any design defects in the IC should have become evident
by then, and related software tools (such as netlist compilers in the case of FPGAs)
will have had a similar period of use to uncover errors. Also, since many safety-critical
systems have a long development and production cycle, by the time of release the
system’s hardware may be several years behind the leading edge.

For these reasons, if we are looking to incorporate PLDs running a compiled lan
guage into a safety-critical system then we ought to choose a well-established compiler
and a device which is not leading-edge in technology. As a consequence, devising an
all-new language for programming our safety-critical PLD runs the risk that no devel
oper will use it until someone else has tried to do so and has discovered most of the
compiler and language errors; by this logic, no safety-critical developer would take the
risk of being the first to use the technique in a real system.

2.5.10 K ey directions
Taking the preceding data into consideration, we can summarise the following require
ments for PLDs to be incorporated into a safety-critical system;

• a specification or design language to codify formally the system requirements;

67

• inclusion of the PLD program within the safety analysis of the system;

• a well-defined semantics of the target device to permit full or partial proof of
correctness of the system;

• a formally defined refinement process for developing specifications to PLD imple
mentations;

• a suitable high-integrity high-level language for implementation of the software
component of the system;

• an appropriate generalised and adaptable testing process to test PLD programs
in isolation and within the system; and

• a method for interfacing system software with either the PLD or a software
emulation of it, as transparently as possible.

6 8

2.6 Conclusions
PLDs in their current state provide sufficient performance and size to perform substan
tive (if relatively simple) tasks. With their increasing complexity comes the likelihood
that they will be incorporated into more and more safety-critical systems as critical
components, yet to date there is no satisfactory or widely-used method of reasoning
about their functional correctness at either the component or system level. Without
this they are a point of failure waiting to fail, with potentially catastrophic conse
quences, and new safety-critical electronics standards such as Def Stan 00-54 or RTCA
DO-254 may prevent their incorporation as critical system components.

2.6.1 W eaknesses o f current research
The main weaknesses of the existing research are:

• high-level PLD programming languages are not related to the requirements of
DefStan 00-54[MoD99] and RTCA DO-254 [RTCOO];

• the formal specification and analysis techniques used for synchronous parallel
systems are not related to the development of practical and useful hardware-
software systems under DefStan 00-54 and RTCA DO-254;

• the existing high-level programming languages which can be compiled into PLDs,
with the exception of Ada, are not suitable for programming critical systems;

• the existing compilation techniques for Ada do not take full advantage of the
SPARK Ada subset and have not demonstrated scalability to practical program
sizes and designs;

• the existing compilation techniques for Ada do not address the development of
an Ada program partly in software and partly in hardware; and

• there is a general deficiency in demonstrating techniques to be practical at the
scale of a typical modern embedded control system.

This thesis must address as many of these needs as possible. In Section 8.2 we will
re-visit these weaknesses to see which of them we have covered and to what degree.

2.6.2 R esearch needs
The greatest need in this field is for a generalised model of a PLD with a well-defined
semantics, and a low-level device-independent language (with similarly rigid semantics)
such as Pebble to act as a target for high-level languages. Without it, any attempt
to reason formally about PLD correctness will depend too much upon the particular
properties of the device under examination.

Such a model would permit research into high-level languages and techniques for
safety-critical system implementation without the concern that the results of such
research would be tied to a particular implementation, and provide a sound formal
basis for proving safety properties of the PLD and the system in general.

In the next chapter we provide a detailed statement of the problem arising from
the above information, and set out criteria for judging whether it has been solved.

69

Chapter 3

Statem ent of Problem

This chapter identifies the problem which this thesis aims to address and sets out
criteria for deciding whether and how the problem has been solved.

The purpose of this chapter is to provide a direction for the rest of the thesis. We
summarise the current state of research in the fields of programmable logic and safety-
critical systems, as detailed in the previous chapter, state the problem we intend to
solve, and identify the areas in which this research will make advances. We then specify
the advances we intend to make.

At the end of this thesis we will need to determine whether its contents have pro
vided a substantial addition to knowledge in the use of programmable logic devices in
safety-critical systems. To this end we lay down a series of targets for our research,
and for each of them list criteria for deciding whether that target has been met.

Finally we list the targets addressed by each of the future thesis chapters.

3.1 Current State of The Art
The literature survey has established the following facts relevant to this thesis. The
list below includes appropriate references in Chapter 2.

1. current commercial PLDs are of sufficient size and complexity to perform sig
nificant computational tasks useful to modern software-hardware systems (Sec
tion 2.3.10);

2. programmable logic has a place in the development of systems where software
alone does not provide adequate computational power (Section 2.3.1);

3. programmable logic allows much faster development turn-around than use of
ASICs which must be fabricated (Section 2.3.1);

4. programming PLDs with a high-level language is feasible, and a number of lan
guages and tools for this purpose exist (Section 2.4);

5. PLDs are currently used in safety-critical systems (Section 2.5);

6. several national and international safety standards bodies have made specific
recommendations about the development of safety-critical systems incorporating
safety-related electronic hardware (Section 2.5.3);

70

7. when seeking to advance the field of formal methods, we should aim for reusable
models and theories, combinations of mathematical theories to tackle hybrid
safety-critical systems, and integration with the system development process (Sec
tion 2.2.3);

8. when seeking to advance the field of concurrent programming we should aim to
provide algorithmic support, tool support, suitable programming languages and
appropriate technology transfer (Section 2.5.1);

9. no existing development techniques for programmable logic software appear to
satisfy these recommendations (Section 2.4, Section 2.5.9);

10. developing software for safety-critical systems is a problem which is well under
stood and supported by a range of tools and techniques (Section 2.1); and hence

11. the use of PLDs in safety-critical systems is an emerging problem in need of a
solution.

3.2 Scope of Analysis
In the research work described previously we have taken an international view. For the
remainder of this thesis we will focus on the standards applicable for defense-related
equipment in the United Kingdom, as a domain with which the author is familiar and
for which a well-defined set of standards exist.

Within this domain, we will in practice concentrate on avionics systems although
the techniques will generally be applicable across the whole domain of defence sys
tems; such systems tend to be embedded, real-time, safety-related and developed to
similar (prescriptive) standards. Additionally they are procured by a single organisa
tion, the Defence Procurement Agency (DPA), so will undergo a standardised process
of acquisition and certification.

When we come across problems with existing PLD development practice, we shall
first look (when sensible) for solutions from the field of software engineering.

3.3 Target Level of Criticality
Private discussion[Pri03] with one of the authors of Interim Defence Standard 00-54
and domain experts responsible for certification of systems to Defence Standards 00-54,
00-55 and 00-56 confirmed our conjecture (Section 2.5.9) that current technology and
tools do not support the development of systems incorporating PLDs with SIL-3 or
SIL-4 functionality. Indeed, there is debate about whether even SIL-2 functionality is
feasible.

As a result, the development of tools and techniques to support development of
PLDs with SIL-3 functionality matching the requirements of 00-54 will represent a
clear advance in the current state of industrial practice.

71

3.4 Levels of Rigour
Before discussing the issues of rigorous development and proof, it will be useful to
codify a common understanding of the levels of rigour we will use in this thesis.

ad-hoc a handwaving argument which may appeal to previous experience or statistics.

system atic use of analysis tools and/or a thorough testing strategy.

rigorous providing a specification in an unambiguous notation along with a sketch
proof of satisfaction.

form al providing a specification in an unambiguous notation and a proof in a system
with axioms and deduction rules.

These definitions are somewhat arbitrary but do admit some degree of classification
and comparison between levels of rigour.

3.5 Statem ent
The problem we intend to solve is:

What methodology is suitable for developing a set of safety-critical system
requirements into an implementation which executes partially in a conven
tional microprocessor and partly on a programmable logic device?
Such a methodology should be rigorous and formal enough to admit veri
fication and validation to the standards demanded by DefStan 00-54 and
RTCA DO-254 (electronic hardware), DefStan 00-55 (software) and DefStan
00-56 (system safety) for SIL-3 and SIL-4 systems (RTCA DO-254 Level A
and B).

The problem has the following characteristics:

• use of existing proven methods for producing a system design;

• partitioning of the design into hardware and software components;

• development of the software component using existing proven methods suitable
for the integrity demanded;

• provision of a formal model to describe the semantics of a program executing on
a PLD;

• provision of a process and tools to develop part of a system design into a program
for a generic PLD;

• provision of a process and tools to develop a program for a generic PLD into a
netlist or HDL suitable for execution on a specific device;

• identification of criteria for making general design or implementation decisions
during development; and

72

• provision of suitable evidence of acceptable safety and correctness with respect
to a specification for construction of a safety case for the system.

As noted above, we shall aim to use best practice from software engineering to solve
these problems, where possible.

3.6 Target Aim s
In the remainder of this chapter we list a number of target aims. Each target has a
unique identifier, used in later chapters to cross-reference back to the target. In this
way the reader can track whether the chapter is covering the issues that it is intended
to cover.

These aims set out our vision for a safety-critical PLD development process; we
will not necessarily meet all of them completely, but will strive to achieve this. Failing
to meet some of the aims may reduce the level of integrity which we can claim for our
process.

Following each target aim is a list of criteria which will be used in the covering
chapter to judge whether the target has been met.

Each target aim will be augmented by definitions of terms to clarify its meaning,
as necessary.

3.7 Research Programm e
In the remainder of this thesis we aim to develop a process to produce a hardware /
software safety-critical system incorporating a SIL-3 programmable logic component,
satisfying the current UK Defence standards.

3.7.1 Identified deficiencies
As discussed in Section 2.5, the existing tools and techniques for PLD program devel
opment appear deficient in the following areas:

Rigor - there is no way of showing that a given program satisfies a given specification
without exhaustive testing.

A m biguity - the higher-level programming languages used, such as Handel-C, do not
have a well-defined semantics; the developer depends on the compiler writer’s
interpretation of the language specification. The requirements and guidance in
Defence Standards 00-54 and 00-55 [MoD97, MoD99] repeatedly aim to remove
ambiguity in requirements, design and implementation.

High level design - the benefits of programming in HDLs such as VHDL or Verilog
are analogous to the benefits of writing software in assembly language. Compared
to high-level languages, these languages remove ambiguity and allow much greater
programmer control at the cost of increased development and maintenance time.
Writing a program in EDIF is analogous to writing software in machine code.

73

V ulnerability - the later an error shows up in a development process, the more ex
pensive it is in time and resources to fix, as discussed in Section 2.2.5 where
we contrasted late system testing with the correctness-by-construction approach.
Static analysis of a program aims to detect semantic errors missed by the syn
tactic checks of a compiler. No static analysis tools for programmable hardware
languages are known, and in any case they require a rigorous language definition
to be effective.

We aim to show an advance in all these areas. To ensure that this is the case, we
introduce the following target areas for subsequent validation.

Target 1 The process we define must be rigorous.

C riterion 1.1 there must be checkpoints where the system in development must be
evaluated manually or by automatic tools, so that inadequate systems can be rejected.

C riterion 1.2 all transformation steps in the process must, in theory, be able to be
shown to be mathematically sound.

Definition: a transformation step is where a specification or program is wholly or
partially changed to be less abstract than before.

Target 2 The process must help the developer to write unambiguous programs.

Definition: an ambiguous program is one where different compilers, both conforming
to the language specification, may produce object code programs that have observably
different behaviour.

C riterion 2.1 ambiguous programs must be rejected by the compiler or rendered im
possible by constriction of the language definition.

Target 3 The process must allow the programs to have sections written in a low-level
language for speed and flexibility, but not allow these sections to compromise overall
program reliability.

C riterion 3.1 the developer must be able to mark out a section of the high-level lan
guage program and transform it to a low-level implementation.

C riterion 3.2 such an implementation must allow the developer to take advantage of
aspects of programmable logic architecture abstracted away by the high-level language.

C riterion 3.3 it must be feasible to show that the compiled version of the original
section is equivalent to the low-level implementation, using appropriate behavioural
models for the two machines that execute the programs.

Target 4 The process must admit substantial static analysis to discover semantic pro
gram errors at or before compile time.

C riterion 4.1 each implementation language used should have a strict syntactic defi
nition which is easily enforceable.

C riterion 4.2 each implementation language used should have a semantic definition
to supplement the syntactic definition.

C riterion 4.3 each semantic definition should define an set of rules which can be
machine-checked in polynomial time, to determine whether a given source program is
semantically well-formed.

74

3.7.2 M aintaining ex istin g benefits
We must not throw away the existing benefits of incorporating programs into program
mable logic

Target 5 The program produced must be easy to test.

Criterion 5.1 the specifications for the program must be of a form suitable for pro
ducing a test plan.

Criterion 5.2 it should be feasible to instrument the compiled version of the original
program so that the developer can observe relevant data flow within the program.

Criterion 5.3 there must be a working and verified software simulator for the compiled
program.

Criterion 5.4 the test plan produced from the specification should be suitable for the
production of test vectors for the simulator.

Target 6 The program must be able to be compiled onto a range of existing and an
ticipated PLDs.

Criterion 6.1 given a program which performs a non-trivial computation, it must be
developed using the specified process into a form where it may be compiled and run
using some existing programmable logic device and toolset.

Criterion 6.2 the compilation chain must target one of the VHDL[IEE91], Verilog[IEE95]
or EDIFflntOOb] languages at some point.

Target 7 The process must reuse existing proven tools where feasible.

Criterion 7.1 at every point where the process requires a new tool, the process must
justify why existing tools are inadequate and how the new tool overcomes those inade
quacies.

Criterion 7.2 at each point where an existing tool is used, the process must show how
the tool supports the programmable logic environment and the required system integrity
level.

3.8 Com ponents
Given these target aims, we can already deduce much about the form of the process.
For instance, we can begin to look inside at the components that will make up the
process. These will include:

• a specification and proof system suitable for the programmable logic architecture;

• a set of refinement rules suitable and adequate for refining a specification to an
entity in the proof system;

75

• a mapping process from a subset of entities in the proof system to a form accept
able as input to a compiler with an HDL program as target output;

• a high-level language suitable for writing relevant realistic programs as parts of
a safety-critical system;

• an mapping process for subsections of these programs to equivalent programs in
a chosen HDL; and

• a compiler for mapping programs from the HDL to actual PLDs.

Note that the last item is provided for each specific PLD by their manufacturer, so
we can assume that this exists if the HDL is Verilog, VHDL, EDIF or a subset of these
languages.

3.9 Process
Moreover, the following target aims determine the relationship between the above com
ponents, and the necessary characteristics that the process must have to make it suit
able for safety-critical system development;

Target 8 The process must guide the developer in the appropriate use of each compo
nent.

Criterion 8.1 for each component there should he clear guidelines about what forms
of input are suitable and what form of output is required.

Target 9 The process should indicate what kinds of error may arise at each stage.

Criterion 9.1 for each process stage there should be guidance on the likely sources of
error, their consequences, and an estimation of the probability that they will occur.

Target 10 The process should provide flexibility so that it may be used in situations
not anticipated in its original design.

Criterion 10.1 it should indicate which steps in the process may be adapted to differ
ent needs.

Target 11 The process must admit justification to the project safety authority that the
programs output by the process are of an adequate integrity level.

Criterion 11.1 it should cross-reference apposite sections of relevant safety standards.

Criterion 11.2 it must specify the maximum safety integrity level of software produced
by the process.

Criterion 11.3 it should justify each process step against the relevant safety standard
requirements.

Criterion 11.4 it should support suitable unit, functional and system testing at each
development stage.

76

3.10 Existing Standards
To be able to produce a system which can be certified as acceptably safe, we must also
conform to current safety standards. The following criteria, specifically appropriate to
our phases of the development process, are taken from DefStan 00-54. They must be
satisfied for the process to be suitable from the safety point of view.

A requirement is “relevant” if it pertains to the development of software for safety-
related electronic hardware (SREH) at SILs 3 and 4, since this indicates that it relates
to best practice in producing high-integrity systems. From DefStan 00-54 (Require
ments) we extract the following relevant requirements.

Choosing and testing the characteristics of the physical device and its vendor-
supplied compiler is outside the scope of the process. So is external validation of
the development process, except in so far as our process must provide evidence to
support this validation.

For each requirement we indicate (in square brackets) where it is covered in the
above targets and criteria. Note that some of them are covered by the work in this
chapter. Where necessary we introduce new targets and criteria.

7.3.1 (d) The development of SREH shall include ...safety analysis of the SREH
development process . . . ; [Target 9, Target 11]

8.2.2 The safety case shall justify the claimed safety integrity level of the SREH by
means of:

(b) evidence that the methods and processes used in hardware development are
appropriate; [summarised in Section 3.1]

(c) safety arguments justifying the safety integrity of the design of any custom
items. [Target 11]

8.4.1 A safety analysis of the SREH development process shall be carried out to
demonstrate how the development process will deliver SREH which meets the
safety requirements. [Target 11, C riterion 11.3]

8.5.1 The safety arguments for the integrity of the design of a hardware item shall
include both analytical arguments and arguments from test. [Criterion 1.2,
C riterion 3.3, C riterion 11.4, Target 5]

Definition: an analytical argument is an argument which is presented as a set of
statements written in one or more formal notations. These statements are then related
and justified by the application of deduction rules from a logic system defined over the
formal notations.

Target 12 [00-54 8.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification
complies with the safety requirements;

(ii) any formal arguments that the functional design satisfies the formal specification;

77

(ni) for non-functional properties with specified safety requirements, analysis of the
achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques
as diverse implementations.

C riterion 12.1 The process shall use a formal specification language which is amenable
to analysis to specify its input [parts (i),(ii)[.

C riterion 12.2 At each stage of the process, there shall be a formal argument that the
output of the stage refines the input of the stage [part (ii)[.

C riterion 12.3 The specification language used shall be able to capture some non
functional system properties such as performance and timing [part (Hi)].

C riterion 12.4 Each stage of process development shall indicate the forms of errors
which it can mitigate [part (iv)[.

Target 13 [00-54 ^2.1.2] The Design Plan shall define the life cycle that is to be
followed in the development of the custom circuit, including a specification process, a
development process and a verification process.

C riterion 13.1 there shall be an unambiguous and clear description of the system
program development process;

C riterion 13.2 the description shall show clearly the relations between the process
stages;

C riterion 13.3 the tools and techniques used at each stage shall be clearly described.

12.2.1 A formally defined language which supports mathematically based reasoning
and the proof of safety properties shall be used to specify a custom design, unless
it is agreed with the MOD PM (Ministry of Defence project manager) that this
is inappropriate. [Criterion 12.1]

12.2.2 The choice of specification language shall be justified in the safety programme
plan. [Criterion 12.1]

12.2.3 Tools used to compile, analyse, animate and transform formal language shall
be .. .justified in the safety programme plan. [Target 7]

12.4.3 A simulation plan, with input vectors and expected output vectors shall be
defined as part of the Design Plan. [Target 5]

12.7.2 Appropriate safeguards shall be put into place as a defence against identified
hazards in the development process in such a way that the complete SREH de
velopment process achieves the required safety assurance. [Target 9]

13.1 The activities performed in custom circuit development shall include all of the
following:

78

(c) formal analysis of the design; [Target 4]
(d) simulation and physical test. [Target 5]

Target 14 [00-54 13.3.1] A Hardware Specification shall be produced which defines the
SREH in terms of its behaviour and properties.

C riterion 14.1 there shall be a formal model of a generic programmable logic device
which may be directly mapped onto a range of actual programmable logic devices;

C riterion 14.2 the formal model must incorporate a useful (though not necessarily
complete) range of common components of a programmable logic device.

C riterion 14.3 [00-54 13.4-1]: Safety requirements [that have expression in function
ality] shall be incorporated explicitly into the Hardware Specification using a formal
representation.

Note: there may be non-functional safety requirements, such as liveness, that cannot
easily be incorporated into the Hardware Specification. These will have to be addressed
at a higher level of design or assurance in the system.

13.4.2 The consistency and unambiguity of the Hardware Specification shall be veri
fied using analytic methods. [C riterion 14.1, C riterion 2.1, C riterion 1.2]

13.4.3 The safety functions and safety properties of the Hardware Specification shall
be shown to fulfil the safety requirements. [Criterion 14.3, C riterion 1.2]

13.4.4 Correspondence between the Hardware Specification and the design implemen
tation shall be demonstrated by analytical means, subject to assumptions about
physical properties of the implementation.
[Criterion 1.2]

13.4.5 Static analysis shall be used to demonstrate freedom from classes of error de
fined in the safety programme plan. [Target 4]

13.5.1 A representative set of simulation results shall be obtained at all levels of the
design, illustrating that the SREH operates as expected, based on a white box
understanding of the internal construction of the custom circuit. [C riterion 5.3,
C riterion 5.4]

3.11 General Questions
As well as these targets and satisfaction criteria, there are more general questions which
should be asked to help gauge whether the process is sufficiently reliable and practical.
These questions have arisen from practical experience in software engineering for real
safety-critical systems. The questions will be answered, where possible, in Chapter 8.

79

3.11.1 R eliability
1. How many distinct stages are there in the methodology?

2. What is the probability and effect of introducing an error at each stage?

3. What do 1 and 2 imply for the reliability of the system as a whole?

4. What classes of error are specifically checked for in the development process?

3.11.2 P racticality
1. Is there adequate tool support for the developers of the target systems?

2. What level of technical expertise, and how much time, is required for each devel
opment stage?

3. Given appropriate same-generation hardware, does the generic PLD implemen
tation produced have significant performance advantages over an all-software
implementation?

4. How well does the process allow late changes in requirements to be incorporated
into the system?

3.12 Overall Process
In the following chapters we shall describe the components of the development process
shown in Figure 3.1. This process is taken to start when safety engineering activities
have identified the system hazards, accidents and resulting safety requirements. The
process end is when the high-level specifications have been developed into a mix of
SPARK Ada and Pebble code that together implement the system and demonstrably
satisfy the safety requirements.

3.13 Future Chapters
Chapter 4 aims to adapt existing technologies to match our requirements. We will
demonstrate a proof system based on Synchronous Receptive Process Theory, show
that processes from this system may be transformed into implementations in the Peb
ble language, and demonstrate that SPARK Ada has suitable features for SPARK
programs to be compilable into programmable logic devices. We will describe the de
velopment process as a whole. The targets addressed in Chapter 4 are 1, 2, 3, 4, 6, 7,
10, 11, 12, 14.

Chapter 5 provides a rigorous proof system for refining specifications into equivalent
SRPT processes. Taking the Chapter 4 work mapping between SRPT and Pebble, this
allows us to refine a specification into a full implementation on a commercial PLD. The
targets addressed in Chapter 5 are 1, 2, 5, 6, 9, 10, 12.

Chapter 6 builds on the Chapter 4 SPARK Ada work to show how SPARK programs
can be run on an interpreter running on a PLD. The targets addressed in Chapter 6
are 1, 2, 3, 4, 10.

80

Safety engineering

Safety requirements

Software Hardware

Development

SPARK (S4.3)

Main Aux

Refinement (ch5)

1
SRPT (s4.1)

Compile (s7.7)

interpreter (ch6)

Compile

Object code

I
Transform (s4.2)

Pebble (s4.2)

~ ~ r ~
Simulate (s7.2)

Compile

I
VHDL

Figure 3.1: Development process

81

Chapter 7 is a practical validation of the process, building a safety-critical system
by following the process. The targets addressed in Chapter 7 are 1, 2, 3, 4, 5, 6, 7, 9,
11, 12, 13.

Finally, Chapter 8 evaluates the material in Chapters 4 to 7 against the aims given
in this chapter. Chapter 8 addresses Target 8 and also addresses the more general
questions in Section 3.11 above.

8 2

Chapter 4

Developm ent technologies

This chapter describes the technologies used in the development process which we detail
later in this thesis.

Section 4.1 introduces Synchronous Receptive Process Theory (SRPT), a process
algebra which we will use to model the execution of a program within a PLD. We
demonstrate how to specify requirements about SRPT processes and how to prove
that an SRPT process satisfies a requirement.

Section 4.2 introduces Pebble, a simple programming language for synchronous
PLDs which can be compiled into VHDL or directly into netlists for particular PLDs.
We establish a formal connection between Pebble and SRPT, and provide a formal
definition of how we expect Pebble programs to execute. Pebble abstracts away target
device details so we will imagine Pebble as executing on a “generic” PLD.

Finally, Section 4.3 examines SPARK Ada, an imperative programming language
intended for programming safety-critical systems. We describe those characteristics
relevant to our work and lay the groundwork for compiling a subset of a SPARK
programs into an SRPT system description executing on our generic PLD model.

83

4.1 Synchronous R eceptive Process Theory
Synchronous Receptive Process Theory (SRPT) is a process algebra described by
Barnes in [Bar93].

4.1.1 Introduction
The process algebra CSP [Hoa85] has been used successfully to demonstrate partial
correctness of protocols and industrial parallel systems. Supporting tools such as FDR
[For97] allow semi-automatic analysis of relatively large and complex parallel systems,
proving them free from deadlock and livelock. However, CSP is not suitable for de
scribing all aspects of PLDs. In particular its asynchronous nature requires that traces
consist of a sequence of single event names (“interleaving concurrency”) meaning that
distinct events cannot happen at the same time, and it is not receptive since CSP pro
cesses can refuse events, which complicates the modelling of digital logic. As noted in
Section 2.3.11, Timed CSP is a development of CSP which is adequate for digital logic
modelling but is a more complex system than we need for a single clock system.

SR P T in a nutshell

Synchronous Receptive Process Theory (SRPT) was developed by Barnes by combining
Receptive Process Theory [Jos92] and CSP [Hoa85]. It is a process algebra i.e., an
algebraic theory to formalize the notion of concurrent computation. As a process
algebra it consists of a syntax for describing process terms and their composition,
and a notion of behaviour. In contrast to CSP it is synchronous: like SCCS [Mil83],
events happen only at integer time intervals, and it is receptive: SRPT processes may
not refuse events if their environment offers them. Barnes[Bar93] provides a rigorous
definition of SRPT, and demonstrates its applicability to clocked digital circuits.

The use of algebra to specify digital logic circuits is not new. Such specification has
been done using a wide range of formalisms, for instance CSP [Hoa85] and its timed
and synchronous variants. We discuss alternatives to SRPT in Section 4.1.10.

Aims and objectives

In this section we describe a deterministic subset of SRPT, show how it may be used to
describe digital circuits, and demonstrate specification and partial proof of determin
istic SRPT processes. We also lay the foundations for the SRPT refinement system in
Chapter 5.

The definition work which follows aims to establish that deterministic SRPT is a
valid closed subset of SRPT. We require a solid formal basis from which to construct
our proof and refinement systems. We build on the work done by Barnes[Bar93] in
defining and exploring SRPT, rather than re-creating it.

4.1.2 D eterm in istic SR P T
An SRPT system description has an alphabet E of events. There are a countable (if
not necessarily finite) number of processes V = {Pjt}, for which each process P G V
has an input alphabet lP ÇT, and output alphabet oP Ç S. For each P, lP and oP

84

must be disjoint, finite, and their union must be non-empty. lP consists of the events
to which process P may react, and oP the events which the process controls. There is
a set Var of process variables, each of which will range over V.

Processes in our deterministic subset are defined using the following grammar:

P ::= X process variable
I \\0 ?X ^ Px] output prefix
I P II P parallel composition
I P \ 0 hiding
I P[S] renaming

The grammar we use differs from that of Barnes in the following ways:

• it omits the non-deterministic constructs because our interest is solely in deter
ministic circuits for the purposes of this study; and

• we incorporate the recursion operator defined for full SRPT into the output prefix
model, hence restricting recursion in our SRPT subset to guarded recursion. This
means that the recursive definition always leads to a single process. The details
of recursion in full SRPT are in Barnes[Bar93] §5.1.2.

In the above definition, 0 denotes a subset of the output alphabet oP, X denotes a
subset of the input alphabet iP and S is an automorphism over E (a bijection E —> E).
Each P G P is then a function

P : ¥{lP) X P(oP) V

where each function Q G ran P is such that lQ = cP, oQ Ç oP.
Px oP ^ V represents a curried process such that P%(T) = P(X , T).
The operators of SRPT are defined in [Bar93] pp. 76-80; intuitively, in comparison

with CSP for instance, only the output prefix will appear unfamiliar. Since we will use
the output prefix form extensively, it is worth providing an informal definition here.
[! 0 IX —> Px] specifies a process that will immediately output all events in 0 and
receive from the environment some set of events X Ç. lP in its input alphabet. Prom
the next timestep onwards it behaves as process P%, i.e. P parametrised by X as
explained above.

The definition of a process P is in terms of a reaction to input events (a subset of
iP). Unlike in CSP, an SRPT process cannot refuse an event which is in iP\ it simply
observes such events happening. What it can do is react to those events by signalling
events in its output alphabet. The nature of SRPT means that processes may receive
and output any number of events at once.

Barnes [Bar93] defines a set of axioms and derives laws for algebraic combination
of terms from this grammar. For example:

a-10 : [\ B l X - ^ P x] jj Qy] =
\ \ { B U C) ? Z P { Z \ j c) r \ L P I I Q { z u B) n L o \

This states that when combining two output-prefixed processes, we initially see the
combined output of both processes, which we would naturally expect. From then on

85

Time 0 1 2 3 4 5 6 . . .

Input a, b a, — 3 a, b a, b - b a, b • • •

Result — c — — c c — 0 > • •

Table 4.1: Example run for AND

P ’s behaviour may additionally be affected if its input alphabet includes one or more
events from the output alphabet of Q, and vice versa.

As an example of an SRPT system definition, in the following subsection we will
describe a 1-cycle 2-input AND gate with the SRPT algebra.

4.1.3 Exam ple — A N D G ate
An AND gate has no control over its two inputs; it exerts control over its output
according to the values of the inputs in the previous timestep. It cannot provide an
output at time t which relates to inputs received at time t] there is always a delay
before the reaction is visible.

We define the main process in the SRPT system as

lAND = {a, &}
oAND = {c}

AND{R) = [!P ?A -^ if{a,& }C AthenAJVD({c})eIseAiVD(0)]
AND = AJVD(0)

Two points on notation are worth making. We may use functional application
instead of subscripting for processes, which has advantages of clarity when the subscript
text is complex. The if . . . th e n . . . else construct is valid because it defines a process
map parameterised by events in the input alphabet, and each process in the range of
that map has identical input and output alphabets to AND{R).

In the above definition of AND, the occurrence of an event at one tick of the clock
corresponds to the presence of a high value on the wire named by that event at that
time. So if a is present in one element of a trace of AND then this means that the
gate has received a high voltage on the a input wire at that point. If a is absent, this
is interpreted as a low voltage on a. a and b are taken to be the two input wires, and
c the single output wire. This will be the convention used throughout this thesis.

The process definition states that AND initially makes no output, then subsequently
it will raise the c event at time ̂-f 1 if and only if both a and b were present at time
t. The \R IX part of the process description means “output all events in R and let X
be the set of inputs which we have received in this timestep.”

Note that our process definition parametrises process AND to tell it what to output.
This effectively encodes state within the process, though in this example state at time
t never affects the process after time t 4-1.

An example “run” for AJVD(0) could be as shown in Table 4.1. Note that the
environment controls when a and b appear; only the c event is controlled by the
process.

8 6

4.1.4 C om position
Composition is a key tool to allow us to build complex systems out of more simple
processes. SRPT allows us to compose processes to form larger ones, in serial (for
sequential composition) or in parallel.

Parallel composition is done with the || operator, but the most useful composition
is normally serial since this allows us to break down a calculation into multiple stages.
Serial composition is effected by renaming process alphabets so that output events in
one process are input events in another process.

The different forms of composition are analysed by Hall[Hal96b] where the struc
tures imposed by CCS and CSP on a parallel system (synchronisation trees and traces,
respectively) are compared against an algebra for high-level Petri Nets.

4.1.5 D enotational sem antics
To be able to make rigorous analytical arguments about what does or does not happen
in an SRPT system, to the level required by standards such as Defence Standard 00-54
[MoD99] for the most safety-critical of systems we must consider SRPT’s meaning for
the behaviour of a system. Barnes defines the meaning of a system in SRPT in terms
of process traces.

In a given system, each process P with input alphabet / and output alphabet O
has a semantics defined in terms of its set of traces RTj^o-

RT;,o = (P(/U O))*

Unlike CSP, but similar to Discrete Time CSP[Jef91], SRPT defines a trace t G
RTj^o as a sequence of sets of events: t : seqP(7 U 0). Each element of the sequence
corresponds to a (non-negative integer) time value of the global clock, and gives the
events in 7 and 0 for that process which happen at that time. Discrete Time CSP
uses bags rather than sets.

Trace axioms

As is usual in process algebras with traces, traces are prefix-closed and the empty zero-
length trace () is valid. There is an additional constraint that the environment can
offer any subset of input events at a given step, and the output at that step must be
independent of the input of that step; this means that processes cannot react instantly
to an input, corresponding to the delay in a logic gate output reacting to its inputs,
and must be able to “handle” any combination of possible inputs. Formally, for a set
of traces T :

g ^ (A) G T A y Ç 7 => g ^ ((% n O) U y) G T

i.e., suppose T Ç RT} o, then T represents the trace set of a process with input 7 and
output 0. Here s and r are traces, (and) delimit a trace element and is the trace
concatenator.

Sem antic function

The full derivation of semantic functions is given in Barnes[Bar93] §5.4; again, we
summarise.

8 7

RM is the set of all triples (/, 0 , T) , where T is a trace set satisfying the conditions
above and I and 0 are input and output alphabets satisfying the restrictions given in
Section 4.1.2. The binding function BINDr maps from a set Var of process variables
to RM. This is what the user is effectively defining when he or she writes the process
definitions and decides on the names of the process variables.

The semantic function A4n maps each process term to an element of RM. The
associated function Tn maps process terms to RM t (the set of all sets of traces for
processes), and l, o map process terms to their input and output alphabets Ç PE.
Hence where a represents an element of BINDr we have:

M n l P h = {4P ja , ojPja, TnlP^a)

This can be read as “Given the user definition a oî P and associated SRPT pro
cesses, M-tz maps P onto its input alphabet, output alphabet, and the set of all traces
valid for it.”

All that then remains is to define l, o and for each of the process terms. The
interested reader is referred to Barnes[Bar93] §5.4 (Definitions 5.3 and 5.4) for details
of these definitions; here we present the definitions for the output prefix construct as
an example.

If R Ç o|[P{}]]<7 and

V c Ç 4 P {}h ■ 4 P c h = 4P{}1(^ A = 0 [?{}]! 0-

then
t m i X ^ P x \ h =
o l \ ! .B lX ^ P x \ \a =

and in all cases the traces are defined:

TnWB IX Px\i(T = {()} U {{B U 7)^ 5 \ Y Ç I ^ s e rn iP yicj}

where I = 4\\B IX —>

Equivalence and congruence
P and Q are observationally congruent, according to Milner[Mil89], if F{P) is obser-
vationally equivalent to F{Q) for any environment F. In SRPT, this environment
corresponds to a sequence of sets of process input events.

It will not be unexpected to the reader familiar with process algebraic theory that,
because of the removal of non-deterministic process constructs, process equivalence
(defined as the processes possessing identical trace sets) and process congruence (as
defined above) are coincident. In particular, suppose P and Q are equivalent. It is easy
to see that they must have the same input alphabets, since by the trace well-formedness
rules any event in the input alphabet may be offered at any step. By assumption, they
have the same traces.

To show that congruence is implied by trace equivalence we must show that F{P)
and F{Q) are observationally equivalent. To see this we appeal to the absence of
non-determinism; an environment offering F = {F\, F2 , . ..) to P will, because of de
terminism, elicit a single behaviour Sp = (si, S2> • • •) say, where SiC\ iP = Fi. As P

and Q share traces, Q must also have this behaviour, and since Q is deterministic Sp
must also be Q’s response to this environmental offering. Hence F{P) and F{Q) are
the same for each environmental offering F. The argument is symmetric in P and Q.
□

Note that because P and Q can differ on their output alphabets (therefore being
different processes according to the SRPT definition of equality) process equality im
plies trace equivalence but is not implied by it. P and Q may be equivalent, and hence
observationally congruent, but not equal.

Establishing this relationship between congruence and equality demonstrates the
amenability of deterministic SRPT to algebraic proofs about its properties, and marks
a clear algebraic difference between deterministic and non-deterministic SRPT.

4.1.6 Specification and proof
Barnes’s rigorous definition of SRPT, and our definition of the deterministic subset of
SRPT, will allow us to reason formally about SRPT processes. In designing a system
in which we wish to prove partial correctness (i.e., may not terminate, but correct if
it does terminate) we need to be able to make concise and precise specifications of the
legal and illegal actions of the system, and prove their presence or absence formally
without too much effort.

In this subsection we will prove a useful property of a class of SRPT processes
relevant to modelling an FPGA. To provide specifications for the actions of a process,
we make statements about its traces. Given A, B and Z pairwise disjoint subsets of
E where A and B are of size n and Z has an arbitrary finite size, we will define a
system of SRPT processes to model an FPGA cell with 2n inputs CELLnj point wise
computing a logic function / : PA x PR —> ¥Z. We define this system as follows:

iCELLnj = A U R = /
0 CELLnf = Z

CELLnj iR) = [\ R ? X - ^ C E L L n , f { f { X n A , X n B))]
CELLnj = CELLnj m

We form the specification for CELLnj by constructing a set comprehension with a
boolean satisfaction expression quantified over all elements of each valid trace. This is
an approach demonstrated in Hoare[Hoa85], sections 1.8 and 1.9. We use t[i] to refer
to the ith element of the trace t, indexing starting at 0. The specification must be true
for any trace of the process CELLnj, and is as follows:

TjilCELLnj^cr = {t I > 0 t[0] n Z = (/}) A y 1 < i < ■
t[i\ n z = f{t[i - 1] n A ,t[i - 1] n R)} (4.1)

This can be read as “if the trace at step i — 1 has input events C from set A and
D from set R then the output events in the trace at step i must represent the result of
f { C , D y \ We constrain the initial output set to make the satisfying process unique.
The cr in the specification represents the translation of the abstract event sets A, B , Z
in the process definition of CELLnj into real events from the system event set E.

We abbreviate this specification on a trace t t o S{t). To show that V ̂ G 7^[[CELL„j]]cr-
S{t), we first show that the process is deterministic in its initial value:

89

Lem m a 1

y E Ç Z - TTzlCELLn,f{E)P = {(| # (> 0 => Z[0] D Z = E}

[i.e., the output set E passed as a parameter to CELLnj will always appear as the first
output.]

For a process [\E IX —> Px] with input alphabet I, Barnes’s definition for output
prefix is:

T n m - l X ^ P x\\a =
{()} U { { E u X) ^ s \ X C l A s € T n . l P x h }

To prove Lemma 1:

TnlC E LLnj{E)P = Tnl^.E IX CELLnj]i(J =
{(>} U { { EUX) ^ s \ X (ZI A

g G 7 ;^ |[C E L L » X /(^ ^ A ,X n R))W (4.2)

by definition. As X Ç I, X and Z are disjoint. Therefore the output events in the
first element of any non-null trace must be exactly E. □

We now show that the correct values continue to be output by the process as the
trace grows:

Lem m a 2

VR Ç R.
t e Tn lCE LL nj {E) l a ^

t = { { X C I) U E) ^ r => r e r n l C E L L n j { f { X n A , X n B)) } a

[i.e., after the first step of CELLnj {E) , the subsequent trace r is the trace of CELLnj {Y)
for some Y as a function of the environment’s input.]

This follows directly from Equation 4.2 and the definition of CELLnj.
Combining Lemmas 1 and 2 gives us the proof that all the traces of CELLnj satisfy

the two parts of the specification S in Equation 4.1:

t[o] n z = 0

This comes from Lemma 1: CELLnj is defined to be CELLnj(0) so R = 0.

y i < i < ftt • t[i] n z = f{t[i — 1] n A , t[i — i] n R)

This comes from Lemmas 1 and 2: let X Ç (A U R) be the set of input events at
time ̂ — 1, let R = / (X n A , X n R) , then Lemma 2 says that the trace of t from
time i onwards is r = T^[[CRLL„j(R)]](7. Lemma 1 says that r[0] f] Z = E. Since
r\j] = t[i-\-j], the result is proven. □

This result is applicable to all stateless one-cycle cells (i.e. those cells where output
at time t - f l is solely dependent on input at time t), and is a useful foundation for proof
at a higher level of abstraction. We give an example of this in the following section.

The exact method of proof is not particularly important; what it does show is that
such proof is feasible and details one way that it can be done.

90

4.1 .7 Safety m onitor exam ple
System definition

For an example, we take a military aircraft stores management system (SMS) which is
designed to control the arming and release of ordnance from designated “hardpoints”
(pylons containing hydraulic and electrical release equipment) on the aircraft. This kind
of system is clearly safety-critical because malfunction could easily lead to premature
release or detonation of ordnance; see below for an expansion of this argument.

An SMS will often contain several PLDs implementing simple (though perhaps
critical) functionality. As noted in Section 2.3.1, such a low-volume production benefits
from the low fabrication cost and quick turnaround of a PLD as opposed to an ASIC.

System hazards

The hazards of an aircraft stores management system include:

1. release and subsequent detonation of a store while the aircraft is on the ground;

2. release of a store while the aircraft is in an inappropriate attitude (e.g. turn
ing and descending in such a direction that the released store may impact the
aircraft); and

3. arming and release of a store over “friendly” territory such as a town near the
aircraft’s home airfield.

Other hazards (such as arming and fusing a store which may detonate on the wing)
are normally mitigated by the store rather than the SMS. An air-launched torpedo, for
instance, might only arm itself on contact with salt water.

System safety

The safety features of this system will include:

• a hardware watchdog timer which must be reset every 25ms or the watchdog will
shut down the system (to stop or restart a hung system); and

• the use of keywords to command dangerous actions.

A keyword is a unique data value which enables a dangerous action. The use of
a keyword is an application of probability theory; a keyword is usually 4-16 bytes
long and chosen such that no value matching the keyword is normally present in the
processor’s address space. The chance of the keyword arising accidentally is unlikely;
the chance of a single bit in a control word being set erroneously is orders of magnitude
more likely.

The functionality required to implement these operations is well within the ability
of a PLD (if we ignore the aforementioned concerns about PLD safety) since they
are simple in design, and benefit from being outside the direct address space of the
microprocessor once they are implemented in the PLD.

To implement these operations within a safety-critical system we must specify them
and show that the specifications are satisfied, and it is this that we illustrate with an
example here.

91

Watchdog timer specification

The Watchdog Timer has a single input, which is toggled to reset the timer, and a single
output which is typically used to raise a high-priority interrupt and trigger a system
shutdown. We will define an SRPT process WATCHk with the following behaviour.

We assume that there is a single input w to the watchdog timer and a single output
d. We will produce a timer specification with parametrised delay since the PLD timer
delay will be expressed in PLD clock ticks, and we may not know the actual PLD clock
frequency until later in the development cycle.

The specification of the watchdog WATCHk which shuts down after k 1 steps
without an input toggle, for each trace t, is as follows. First, we define the events we
are reasoning about:

iWATCHk = {w}
oWATCHk = {d}

where w and d represent high voltages on the corresponding input and output wires,
following the convention described in Section 4.1.3.

For convenience, we define a function to pick up points at which an event’s status
changes within a trace. For a trace t and event x, let breaks {t, x) G seq # be such
that:

y i < i < j - breaks (,̂ rr)[z] < breaks (,̂ a:)[;]
ran (breaks {t, x)) = {i | {i = 0) V ({a;} D i [z] ^ { a : } 1])}

This is an example of a syntactic abbreviation that is applicable to (although not
necessarily useful in) all SRPT processes. Here, 7^ and S refer to all possible SRPT
trace and event sets.

The specification S{k){t) for t G T^jWATCH^Jcr is then:

S{k)(t) =
{Vi < j : d ^ ([:]) A {'ii > j : d G ([;])

where: B = breaks (t,w)
a = min m : B[m + 1] — B[m] > {k -j-1)
j = B[a] k

Here a is the number of the earliest break point after which the same value is
received along the input wire too many times in succession, j is the trace index
following this break point where the failure signal d starts to appear.

Watchdog process derivation

We now define specifications for processes WOk{x) and Wlk{x). The WOk{x) process
describes a watchdog where the last input toggle was to 0 (low voltage) and there are x
steps left until shutdown trigger. Wlk{x) is the same except that the last input toggle
was to 1 (high voltage).

Specification So,k{x){t) is true iff ̂G 7^[[W0fc(2;)Jcr:

92

So,k{x){t) =
{ y O < i < x - d ^ [̂z]) A
{ y o < i < x - w ^ t[i] => y j > X • d e t\j]) a

(a ;> lA w G i[0] Si^k{k){t[l...])) A
{ x > l A w ^ t [0] => Ro.fcCa: - 1)(^[1...]))

Si,k{^)(4 is defined similarly, reversing membership tests of w and swapping in
stances of Si and Sq.

For a; = 0 the processes satisfying these specifications are trivial:

WOt(O) = [!{d}?X-.W O t(0)]
W i , (0) = [! { d } ? X - > Wlfc(O)]

For all a: > 1 we use a recursive definition of the required processes. Assuming that
WOk{x — 1) and Wlk{x — 1) have been defined and satisfy So,k{x — 1)(), Si^k{x — 1)(),
we can define processes for value x as:

WOk{x) = \ } S ? X i i { w e X) t h e n W l k { k) e l s e W O k { x - l)]
Wlk{x) = [!0 ? X ^ if(wG X)thenW Ifc(a;-l)elseW O fc(Â ;)]

The structure of these processes is sufficiently similar to the structure of the speci
fications for specification satisfaction to be clear.

W atchdog specification satisfaction

It remains only to show that SQ^k{k){t) corresponds to our original specification S{k)
for WOk{k). We can then state that the SRPT description of WATCHk is WOk{k),
and we will have satisfaction of the specification. We will not aim for a full formal
proof, but instead show the main derivation steps required.

Our proof is two-stage. First we show that the specifications agree that d either
never appears, or that there is some index j where d starts to appear in the trace and
will always appear from then on.

For S{k){t), this is clear from the specification:

yy i < j : d ^ t[i]) A (y i > j : d e t[i])

For So^k{k){t) this follows since the following is part of all So and Si specifications,
with the w membership test inverted for Si:

{ y O < i < X ' d ^ [̂z]) A
{ y o < i < x - w ^ [̂z] => y j > X - d e t\j])

We now show that the value of that index j is the same in the two specifications.
For S{k){t), j is defined by:

B = breaks {t, w)
a = min m : B [m 1] — B[m] > { k 1)
j = B[a] 4- k

93

Time 1 2 3 4 5 6
Process W0&(2) WOk{l) WIk(3) WI&(2) Wlk{l) WI&(0)

Input - w w w w -

Output - - - - - d

Table 4.2: Example of a trace of the watchdog

For So^k{k){t), we make an inductive argument on the “crucial” break number a.
IÎ a = 1, j = k since B[l] = 0 by definition of b reaks. This corresponds to the
case where the event w does not appear for k successive points in the trace. The 5b
specification part

{ \ / 0 < i < k - d ^ t[i])
(y O < i < k - w ^ t[i]

A
y j > k - d e t\j])

corresponds to this case.
If a > 1, we need to show that all preceding breaks with index below a do not trigger

a d sequence. It is clear from the preceding part of the proof that a d sequence, if it
starts at all, must start at index k from the start of a process specified by SN,k{k){t).
We need only show that the breaks correspond to the start of 5iv,fc(^)(0 specifications.
This comes from the second part of the specification for So^k{k){t):

{k > 1 A w G t[0]
{k > 1 A w ^ [̂0]

5i,k(A;)# . . .]))A
So,k{x — 1)([̂1 • • •]))

Since Sq only applies to traces where w is currently absent, the appearance of w
indicates a break point and hence a switch to Si^k{k){s) for the remainder of the trace
s. A mirror argument holds for 5%. This gives us that S{k){t) = So,k(k){t). □

W atchdog trace exam ple

An example of w being “stuck-on” for A: = 3 is shown in Table 4.2.

Keyword checker specification

A keyword checker is a process which takes as input a w-bit keyword along with a lines
which denote the actuator to activate. No more than one of the actuator lines may be
raised at any one time.

We will define an SRPT process KEYWw,a with the following behaviour. When
an actuator line is raised, the keyword checker validates the given keyword against the
actuator line selected: the result is one of on, off or bad. If on then the checker raises
the appropriate actuator output line. If off or bad then it lowers the line, and if bad
or more than one input actuator line is raised then it sets a “failure” output for one
timestep.

We assume that o n ^ off ^ bad.
This is a more complex example of the specification and SRPT description of a

process. Again, we define the events of the system KEYWw,a first:

94

p — { p i . . • P a } 1 Q — { ç i • • • Q.w}J P — { r i • • • ^o}

I = lK E Y W = P \J Q
0 = o K E Y W ^ ,. = R U {/}

P events are actuator selection, Q events form keywords, and R events are actuator
controls. {/} is the failure signal.

We define the internal event set K to represent keyword evaluation:

K = {on, off, bad}

The keyword evaluation is given by function w ev , mapping a set of keyword events
and actuator number to an action word:

wev : ¥Q x N —> X

The specification S{t) of each trace t G TnlKEYWw^aia is as follows:

S{t) = V zG N -V j G 1 ...Q -
(R n a[z]) = 0 => t[i -f 2] n 0 = {t[i +1] n 0) \ { f }

{P n A[z]) = }pj} — on) 44" {vj G t[i + 2])
A {z = bad) 44" (/ G t[i + 2])
A {z = off) ^ {rj,f ^t [i -^2])

][{P n t[i]) > 2 =4" t [i 2] n 0 = {f }

where z = wev (Q D t[i],j).
This requires that:

• zero commands will maintain the status quo except that a failure will cease to
be flagged;

• exactly one actuator command will cause the actuator to turn on (if on), off (if
off) or flag an error (if bad); and

• more than one actuator command at once will cause a failure and turn all output
controls off.

Note that this system has a 2-cycle delay rather than the 1-cycle delay of the previ
ous example. This is because the eventual implementation is in terms of two processes
processing in sequence, hence at least two cycles are required for this implementation
to be feasible.

We define internal event set M to represent the actuator chosen to be activated:

M = {mo . . . ma}.

The process description is a parallel composition with hidden events, as follows:

KEYW^,a = (KW^,a(0) II F IL T E R a m \{M U K)

95

where K W evaluates the keywords and FILTER acts on the output of K W to select
the outputs. Note that the hiding operation applies to K W and FILTER rather than
KEYW] this distinction is important as hiding is defined in terms of a subset of a
process’s output alphabet, and K E Y W does not contain K oi M.

We will specify KWw,a first. Given alphabets

iKWyj^a = PU Q, oKWyj^a = M U K

the specification K{t) of each trace t G Pn^KW-w^ala is:

K{t) = y o < i •
A (A[z] n P) = 0 => {t[i + 1] n oKW) = 0

A (A[z] n P) = {pj} =4- (t[i + l]n oKW) = {k,7rij}
where k = wev(A[z] D Q, j)

{ t [i] n P) > 2 => { t[i -^ l]n o K W) = {bad}

A suitable process satisfying this specification follows:

KW«,,a(P) = [!P ?X ^ if # (X n P) > 2 KW^,a({bad})
elsif 3 j : {X n P) = {pj} KWyj^a{{k, mj})
else KW^a,a(0)]

where k = wev {X fl Q,j)

As an implementation detail, note that the case where exactly one element of P is
present in the input need not search all the elements of P in sequence; instead, the pj
inputs would be linked to the mj outputs with an intervening AND gate to check that
all other elements of P are low. As the size of P grows, this becomes less likely to be
feasible within the single clock cycle specified unless the target device provides AND
gates with many inputs.

We now specify process FILTERa. Given alphabets:

iFILTERa = I = M U K, oFILTERa = 0 = RU { f}

the specification F(t) of each trace t G TtiIFILTERo^o- is:

F{t) = VO < z •
bad G t[i] =4> {t[i + 1] n 0) = {/}

A {t[i] n M) = 0 =4" {t[i + 1] n 0) = {t[i] n O) \ {/}
A 3 j : (A [z] n /) = {on, mj} =4- {t[i + 1] n 0) = {rj}

A otherwise =4 {t[i + 1] D 0) = 0

A suitable process satisfying this specification is:

FILTERaiS) = [!5 ? r if bad G Y FILTERa{{f})
elsif r n M = 0 FILTERa{S\{f})
elsif 3 j : Y = {on,mj} FILTERa{{rj})
else FILTERai^)]

96

A proof of correctness here would be repetitive given the earlier satisfaction ar
gument for Watchdog, but the principle strategy is to observe that K W outputs
events that control the output of FILTER, but not vice versa. Therefore we define
R = (KW^,a(0) II FILTERai^)) and since

by definition, we expand the definition of K by evaluating how the RHS of the clauses
of K maps onto the LHS of the clauses of F , hence rewriting the RHS of K in terms
of the output alphabet of FILTER. This is then compared with the definition of S to
show that y u G R ■ F{u) A K{u) =4 S{u).

This example has shown how parallel composition can be used to form processes
with internal events providing communication between them.

4.1.8 N on-rigorous com ponents
The refinement model also allows us to incorporate “black box” processes into our
overall design. As long as we can specify the inputs and outputs of a black-box process
B in terms of events in E, we can reason about its interaction with the other processes
for which we have more rigorous specifications.

For instance, edge areas of an FPGA may be given over to an I/O pad implementing
an interface protocol such as the PC peripheral connector standard PCI. Mak[Mak03]
discusses the thorny problems involved in placing these I/O pads when multiple I/O
standards (and hence varying voltages) are present in the device. We need not be con
cerned about the specific implementation details of the I/O pad, and it need not even
run at the same clock as the rest of our FPGA model as long as there are intervening
gates outside our model but with the same clock, buffering the I/O voltages. As long
as we can make some statements about the transitions of the outputs from the I/O
pad, and establish minimum-switch times for the inputs, it need not affect our ability
to reason about the behaviour of the rest of the device.

4.1.9 C om m entary
We have taken two typical components of a safety-critical system which have the po
tential to be implemented using PLDs, have provided SRPT-based specifications and
implementations for them and proven that the behaviour of the implementations sat
isfies the specifications.

We have seen that carefully-chosen syntactic abbreviations can express the SRPT
trace-based specifications in a few lines and yet make rigorous and useful statements
about the required properties of a process. The previous section has shown how it is
possible to prove rigorously that a SRPT process description satisfies a specification,
though clearly there is some way to go until this proof mechanism is easy enough to
use effectively in a commercial project.

Note that there is a clear gap between the SRPT description of a process and its
final implementation as a set of programmed cells in a LUT-based FPGA. It is however
relatively simple to map such SRPT descriptions as given here into equivalent VHDL,
Pebble or netlist formats. We expand on this in Section 4.2.7.

97

We have used SRPT as a compromise between the high-level specification languages,
such as Z, and the low-level implementation languages such as EDIF and VHDL. The
tradeoff we make is in ease of specification against simplicity of compiling to our target
format.

According to the definitions in Section 3.4 we can classify this work as rigorous
since formal specifications and sketch proofs were provided.

4.1.10 A lternatives to SR P T
SRPT is far from the only method of describing reactive systems. In this subsection
we present some established alternative methods.

Language details

In [BerOO], Berry presents the basics of the Esterel language, and reviews a number of
other synchronous languages. He distinguishes between “reactive” systems, where the
computer reacts to external events, and “interactive” systems where the computer’s
clients request services from the computer. The latter requires attention to avoid dead
lock and unfairness, and the former requires correct and timely operation. According
to these definitions, SRPT describes reactive systems.

Languages such as Signal and Lustre use a data-fiow programming style, routing
data through “fixed” operation nodes. In hardware terms this is similar to program
ming a DSP chip or FPGA rather than a conventional microprocessor. Variables in
the language consist of a sequence of values at a set of times, e.g. X = {X\, X2, ...} .
Nodes combine values of different variables. The flow of data in the system occurs
at each (integer) time steps. Some variables may be over-sampled or under-sampled,
flowing at whole time multiples faster or slower than the “master” flow.

The data-flow model corresponds well with our intuitive understanding of how data
flows through an FPGA. The problems with this model would come with a variable
depending on more than one time index of another variable, e.g. = Fi 4- 2 * Yt-i.
This would complicate the placement and routing of such programs within a PLD.

Berry terms the programming model of Esterel “imperative”, which is an extension
of one common definition of imperative languages as sequential modifications to a
state but does capture the intent of defining how the result is to be produced instead
of what properties the result exhibits [IP 96]. In this model the basic structure is a
module. A module has a defined set of input and output events, and a “body” in
which a conventional imperative program executes. The imperative program is able
to do blocking waits (“await”) on input events and cause (“emit”) output events.
Statements can be combined in parallel, so that a module can wait for a disjunction
or conjunction of events, and there are language operators to support pre-emption
and exception raising. Body statements execute instantaneous except where delay is
required by the purpose of the statement, e.g. the “await” operator.

Esterel provides more powerful abstract operators than SRPT, but at the price of
a semantic gap between the Esterel program and the corresponding FPGA netlist.

98

Language evaluation

These approaches to programming languages could conceivably be used to program
PLDs. Indeed, there are commercial tools such as “Esterel Studio” (from Virtual
Prototypes Inc.) which allow such programming. The reason why we have chosen
SRPT as our representative language is that the process-event structure of an SRPT
system maps naturally onto the block-wire combinatorial logic and routing model of
most PLDs.

Esterel’s semantic gap with respect to FPGAs is its key weakness. Signal and
Lustre’s data-flow model is an interesting expression of a class of programs, and closer
to the FPGA model, but has the placement problems noted above.

Our choice

These languages are possible alternatives to SRPT, but they do not have an obvious
advantage to SRPT for our purposes. Indeed, we have identified deficiencies in their
support for targeting FPGAs.

Preliminary work by the author in establishing the suitability of SRPT for compi
lation to PLDs showed that SRPT’s semantics was suitably rich to support rigorous
definition of programs and mapped well onto the PLD program model. In our work
to date there have been no serious shortcomings of SRPT that have indicated that
CCS-based or other algebras are superior for synchronous PLD programming.

4.1.11 C onclusions
In this section we have shown how SRPT can be used to model non-trivial FPGA
programs and prove certain safety properties in a rigorous way. We have also seen that
it provides a precise way of specifying the requirements for an FPGA program, which
makes it easier to define correctness tests.

Of the targets in Chapter 3 we have addressed or partially addressed:
Target 1: The process we define must be rigorous.
We have established a formal specification system for SRPT processes and demon

strated rigorous justification that processes match their specifications.
Target 2: The process must help the developer to write unambiguous programs.
The trace-based specification of SRPT processes is an unambiguous notation, and

our deterministic subset of SRPT described in Section 4.1.2 makes SRPT programs
unambiguous.

Target 3: The process must allow the programs to have sections written in a
low-level language for speed and flexibility, but not allow these sections to compromise
overall program reliability.

We have explicitly considered non-rigorous components in Section 4.1.8.
Target 12: [OO-Sf 8.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification
complies with the safety requirements;

(ii) any formal arguments that the functional design satisfies the formal specification;

99

(ni) for non-functional properties with specified safety requirements, analysis of the
achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques
as diverse implementations.

(i) is achieved by use of an unambiguous notation for specification. We demon
strated the proof system required by (ii) in the watchdog timer example. Timing
requirements can be addressed by specifications about relative positions of events in
traces, addressing (iii). We have not addressed (iv).

In the next section we will explore the relationship between SRPT and the Pebble
synchronous programmable logic programming language.

100

4.2 Pebble

4.2.1 Introduction
In Section 2.4.6, we described the Pebble language for low-level programming of syn
chronous FPGAs. In this section we expand on this to give a more complete definition
of Pebble, and show how SRPT processes can be mapped onto Pebble programs.

The version of Pebble described here is Pebble 3.0, as described in Appendix A of
[Luk99]. Our comments on Pebble in this section are likely, but not certain, to apply
to future versions of the Pebble language.

4.2.2 Target device issues
Pebble may be compiled onto a number of different PLDs. These devices may differ
substantially in which “primitive” cells they support. For instance, one device’s cell
may support any logic function of 3 inputs; another device’s cell may provide any
function of 2 inputs on one output wire, and the inverted result of that function on
the output wire. The primitives for a given device are typically stored in a prelude file
that is supplied to the compiler.

A complete Pebble program will consist of a number of these primitive cells with a
certain interlinking. Each cell will be one of a (likely small) set of types, e.g. 3-input
AND, half-adder, single-input NOT. Normally these primitives will be chosen so that
each of them can complete in one clock tick on the target device. However, it may
be that some of the primitives require two or more ticks to complete whereas others
only require one tick. In this case a naive compilation to the target device will have
to add delays to each type of cell so that they all take the same time to complete
calculation. In practice, it is likely that the circuit can be partitioned and optimised
so that relatively few of the partitions need to operate at the maximum delay.

4.2.3 Language elem ents
A Pebble program consists of a set B of block instantiations, with links between blocks
provided by a set W of wires. There is a set D of block declarations which can be
considered as function signatures with named formal parameters from a set P. A
block {d G D, f i , f o) G B represents an agglomeration of logic function computational
cells on the target device. The formal parameters of d are renamed to elements of W by
the functions f j , fo : P W ior input and output wires respectively. In conventional
imperative language terms, the block declarations are subprogram declaration and the
wires are global program variables. The blocks correspond to actual subprogram calls.

Each block declaration d G D contains named formal parameter lists Fj and Fq
which are sequences of input and output wire names respectively. The block declara
tion includes a (potentially null) list of width parameters G to allow instantiation of
the block in a range of bit-widths. These parameters may be specified in the block
declaration, or left open for when the block is later instantiated. The block declaration
also includes a (potentially null) list of internal wires L.

A block declaration’s internal structure consists of a series (which may be null) of
block instantiations. Note that these instantiations are not necessarily elements of B,

101

since they may have wires from the block declaration’s parameters. In addition there
is a series of direct connections between wires.

Block instantiations consist of block declaration names with the formal parameters
renamed to the names of wires in scope, i.e. chosen from the union of Fj, Fq and L.
If the block instantiated has any unspecified width parameters (in G) then these must
be set at the instantiation.

Block instantiation can also be done in groups using the GENERATE FOR mechanism,
specifying an “instantiation loop” where the characteristics of each block instantiated
inside the loop may depend on the loop variable.

4.2 .4 Exam ple
Taking the example of a combinational incrementer implemented from half adders, as
described in the Pebble 3.0 manual [Luk99], Appendix A, section 8;

BLOCK main [c : WIRE; e : VECTOR (n-1..0) OF WIRE]
[d : WIRE; f : VECTOR (n-1..0) OF WIRE];

BLOCK main [fcin : WIRE; fdin : VECTOR (n-1..0) OF WIRE]
[fcout : WIRE; fdout : VECTOR (n-1..0) OF WIRE]

VAR i;
CONST n : GENERIC := 3;
VAR Ic : VECTOR(n..0) OF WIRE

BEGIN
lc(0) <- fcin;
GENERATE FOR i = 0 .. (n-1)
BEGIN

hadd[lc(i),fdin(i)][lc(i+l),fdout(i)]
END;
fcout <- lc(n)

END;

The first BLOCK statement is an instantiation of block main, and the binding of
actual parameters to its formal parameter list given in the following BLOCK declaration.
The wires c, d, e (0 . . .n-1) and f (0. . .n-1) are actual wires in the system, and the
Pebble simulator would be able to control the values of the input wires and measure
the values of the output wires.

The declaration of main comes next. After listing the formal parameters, the next
set of declarations are variables and wires whose scope is local to the BLOCK declaration,
i is simply a loop variable, n is a generic width parameter; the declaration fixes it at
3, but it could as easily have been left unassigned and instead set at instantiation.
l c (0 . . .n) are internal wires, used to propagate the carry values along the chain of
half-adders (hadd).

The body of the declaration first connects internal wire Ic (0) to formal parameter
fc in . The next statement is a multiple instantiation, the number of instantiations
governed by the generic width parameter n. Each instantiation is of the half adder
hadd, with connections governed by the instantiation number. The final statement
connects formal parameter fcout to internal wire lc (n).

102

fdout[0] fdout[1] fdout[n-1]

fcin
ic[0]

HADD
lc[1]

H A D D -

n-1]

H A D D -
lc[n]

fcout

fdinroi fdinhl fdinIn-1]

Figure 4.1: Combinational incrementer

Figure 4.1 shows a pictorial illustration of the declaration of main. The parameter
n has been left unspecified. If n were 3, as specified in the block, there would be
three HADD blocks in the diagram. The figure illustrates clearly that Pebble is mainly
about defining relationships between predefined blocks by using shared wires. This
is analogous to the way that SRPT defines relationships between processes by using
shared events. In the next section we will explore this analogy in more detail.

4.2.5 Formal description
Following the earlier notation:

D = {main, hadd}
B = {(main,//,/o)}
W = {c, d, e(0. . .n-1), f (0. . .n-1)}

where

fi = (c, e(0. . .n-1))
fo = (d,f (0. . .n -D)

For block hadd we define the formal parameters, internal wires and generic parameters
as:

F i= (fil,fi2)
Fo = (fs, fc)

L = 0
G = 0

and for block main:

Fj = (fcin, fdin(0... n-1))
Fq = (fcout, fdout(0... n-1))

L = {lc(0... n)}
G = {n = 3}

103

Note that the hadd block, since it has no internal wires, is assumed to be a primitive
of whatever target device it is instantiated on. It cannot be constructed out of other
primitives in series since this would require internal wires to connect the primitives. It
could be constructed out of primitives in parallel.

The instantiations of hadd in the declaration of main are as follows:

(hadd , (fil = lc(0),fi2 = fd in (0),fs = fdout(0),fc = l e d)))
(hadd , (fil = lc (l) ,f i2 = fd in (l) ,f s = fd o u t(l) ,fc = lc (2)))
(hadd , (fil = lc(2),fl2 = fd in (2),fs = fdout(2),fc = lc (3)))

with the direct connections lc (0) <- fc in and fcou t <- lc (3).
Applying the renaming functions f i , fo of the main instantiation then produces

the following fundamental instantiations where every block instantiated is a primitive
component for the target device:

(hadd , (fil = lc(0),fi2 = e(0),fs = f(0),fc = lc (D)
(hadd , (fil = lc (l) ,f i2 = e (l) ,f s = f (l) , f c = lc (2))
(hadd , (fil = lc(2),fi2 = e(2),fs = f (2),fc = lc (3))

with direct connections lc (0) <- c and d <- lc (3).
Note that although no formal parameters are left as wires there are local wires in

these declarations such as lc (0).
Having established this model, how does it react to data? Partly this will depend

on the implementation of hadd in the target device; we assume that it is a conventional
half-adder that outputs the carry on the first output and the sum on the second output.
To have any meaningful basis for arguing about program correctness we must have
verifiable functional and timing information about target device primitives.

The data flow through the model is modelled by a function wire : IF x N ^ B
which is true for (w, t) iff wire w has a high voltage at time step t. Wires are considered
bi-state (high or low voltage). We may ignore the possibilities of transients since the
Pebble compiler manages these details; a “wire” in Pebble has delay and switching
properties unlike a physical wire in electronic devices. The rule is that if wire Wi is
connected directly to wire Wj then:

V n ^ 0 : wire{wi, t) = wire{wj, A 4-1)

With wires connected directly in this fashion we describe wire W{ as the source of
Wj, and similarly wire wj as a destination oi Wi.

Primitive gates such as the half-adder are defined by a function mapping sequences
of input parameter values to sequences of output parameters. Sequences are represented
in the expressions below by strings of binary digits, highest bit first. For hadd:

hadd : seqB seqB
hadd = {0 0 -^0 0 ,0 1 -> 0 1 ,1 0 -> 0 1 ,11-» 10}

The rule for values flowing through an instantiation (hadd,//,/o) is:

fl — \w\, . . . , Wri\ A fo — {t l̂, ; Xfn} =4
V A > 0 :
{wire{vi, A 4 -1),..., wire{vm, A 4-1)) =
hadd(Wre(wi, t) , . . . , wire{wn, t))

104

Note that this assumes that the instantiation of a device primitive computes all its
outputs in one cycle and is stateless. The target may have other components such as
RAM stores, which have state, or ROM stores which may take several time cycles to
produce output. The target data supplied to the Pebble simulator will have to provide
this information to allow accurate simulation.

4.2.6 C om pleteness o f definition
Given the above description, it is useful to know whether the system is completely
defined. It may be, for instance, that an instantiated gate has one input wire which is
not a destination wire of any other gate, nor the destination of any other wire. Such a
gate can be regarded as floating with no defined values at any time step.

Similarly, if a wire is the destination of more than one gate or wire, it is regarded
as shorting these sources, and again has no defined value at any time step.

Floating wires are useful because they provide the ability to input data to the
system. In the above instantiation in Equation 4.3, we see that wires c, eo, ei, 62 fioat.
No wires are shorted, which should be normal policy.

We now take the formalism developed so far and translate it into SRPT terms.

4.2 .7 SR P T representation
Using the notation given above, we map each of the wires in W onto a unique event
in E. A block declaration d G D corresponds to a process description P^.

A block instantiation (d, f i , fo) G B corresponds to the equivalent process Pd being
renamed with events in E. // and fo produce the input and output alphabets of the
process.

The SRPT process CT[x, y\s, d] connects wire s to wire d, equivalent to having
the input of source s appear one cycle later on in destination d:

lCT = {x}
oCT = {y}
CTx = [!X ? y if rr G X th e n C Ty else CT^y]

If a system Z consists of the instantiated processes P%, . . . , P^ then the floating
wires are those in

FLOATz = (U t i i - P i) \ (U)=i o P ,)

and the shorted wires are those s G SHORTz such that

3 i j : {i f j) A{s G oPi) A { s G oPj)

We have already provided the SRPT definitions for a gate computing an arbitrary
n-bit function / in Section 4.1.6 as CELLnj. Here we provide SRPT definitions for
some other useful logic constructs, ROM and RAM. Within a typical safety-critical
system, ROM is used to store constant look-up tables (e.g. for bomb aiming data with
varying wind speed and direction), and RAM for holding PLD program state that is
too large to store in the available collections of registers.

105

These definitions must capture the behaviour of typical real implementations of
these constructs, so will be more complex than the gate-based examples from earlier.
If high-SIL subsystems are based on these definitions then we must rigorously test
the real implementations with test data based on the behaviour of these definitions,
and demonstrate that the real behaviour refines the definitions’ behaviour. These
definitions illustrate that real-world components can be modelled in SRPT, and provide
a measure of their complexity in SRPT terms.

ROM

ROM provides a read-only store of data grouped in words, using an input address to
index a given individual word and then putting the word data onto its output.

A ROM table has 2”̂ entries of n bits. We assume that lookup is done in t steps
and that the lookup is not pipelined (so that the inputs must remain stable for t steps
for the output to be valid). A 1-step ROM table (the lowest feasible value of t), if
given address input data at time index i, will output word data at time index z + 1.
If the (distinct) address bits are represented by set A = {a i , . . . , am}, the data bits by
D = {di , . . . , dn} and the internal data is modelled by the function d : PA —> FD then
the SRPT definition of ROM for fixed m ,n , t ,d is:

lROM = A
o R O M = D

R O M = R O M y j j j y

ROMx,<,z = [! X ? y ^
i i i = t A Z = Y then ROM d{z) , t , z

elsif Z = Y then ROMx , i + i , z

else ROMx ,i,y]

This implementation provides deterministic behaviour in the case where the specifi
cation does not define it, i.e. the case of a read address being changed before the output
has been sent. It will start off a new read in this case, dropping the previous request.
In all cases, the output will stay the same from cycle to cycle until a read-output cycle
has been computed.

Because this process carries significant internal state it is not equivalent to a simple
combination of CELLnj functions. To incorporate it in a safety-critical system we
would have to make formal specifications of its behaviour and show that they are met.

RAM

A RAM table is more complex. It has two modes: read and write. In real RAM blocks
reading is often quicker than writing. We assume that the inputs must remain stable for
u steps for the write to be effective, whereas reading occurs in t steps as in the ROM
block. There is no explicit indication of when the outputs are valid; users of RAM
blocks must know the timing properties of their blocks and design the surrounding
circuits accordingly.

We take the m-element address and rz-element data sets A and D from the ROM
definition above. The RAM block internal function d : FA —> FD will, unlike the

106

ROM block, change during operation as writes are made. The extra input w controls
whether a write is being commanded, and the n extra inputs E supply data for input.
For fixed m, n, t, u:

E = {e i,...,en }
lRAM = { w } u A u E
oRAM = D
RAM = RAMR{yjjyj'PA^{}}

We define a pair of process sets, one for reading operations and one for writing
operations. The reading operation is RAMR:

if z = 1 A (y \ R) = ZthenRAMRd(xnA),i,z,d
elsif z > l A (y \ R) = Z then RAMRx,i-i,z,d
elsif w e Y th.enRAMWx,u,Y,d
else RAMRx,t,YnA,d]

and the writing operation is R A M W :

RAMWx,̂ ,z,d = [!X?y-^
if z = 1 A y = Z then RAMWq(znE),i,z,d'
elsif z > 1 A y = ZthenRAM W x,i-i,^,d
elsif w ^ Y then RAMRx,t,YnA,d
else R A M W x ,u ,Y ,d]

where di G X 4=4 e* G q{X)
and d = d 0 (Z n A i—> 5'(Z n R))

Section 6.4.3 and Section 6.2.3 in a later chapter will demonstrate the use of ROM
and RAM blocks in a complex PLD program.

4.2.8 SR P T to Pebble
Having shown how Pebble constructs can be mapped into SRPT, we now examine how
SRPT processes can be refined into Pebble.

Constructors

The correspondence between Pebble wires and SRPT events has already been noted.
For an SRPT process P with alphabets lP and oP, we declare a Pebble block Pb_P
with formal parameters matching the union of the alphabets of P.

As previously noted, SRPT has a set of basic constructors. We deal with each of
them in turn.

• Process variable x corresponds to an instantiation of a declared block Pb_x.

• P II Q is a Pebble block which contains the instantiations of Pb_P and Pb_Q.

107

• p \ o is a Pebble block where the wires in O are removed from the formal
parameters list and instead made internal wires by adding them to the Pebble
block’s internal wires list L.

• P[5] is an instantiation of a declared block Pb_P with formal parameters replaced
by actual wires as defined by the renaming function 5 : P —> W.

More complex is P = [!0 ?X —> Px]. The way that we define P in Pebble will
depend on P.

Stateless processes
We assume first of all that we can define a Pebble block equivalent to any “stateless”
SRPT process, i.e. if we define the group of Pebble processes

Pf {Y) = V . Y 7 X ^ P , (f { X))]

where / ; FtPf —> PoPy, then there is an equivalent Pebble block Pb_Pf. This should
be feasible as long as the primitive gates provided in the Pebble library include NAND
since any logic function can be constructed from these gates. As noted in Section 4.1.3,
the if-then-else construction represents a straight map from input events to output
events.

A significant problem is that there is no external control over the output of any
Pebble block on the first tick of the clock, whereas we can specify this output in
SRPT. In practice it is conventional for blocks to assume the output corresponding to
low voltages on all inputs; an OR gate would then output a low voltage on the first
clock tick, whereas a NAND gate would output a high voltage.

Therefore we allow the SRPT processes { Pf { Y) | Y Ç oP/} as above, but make
the restriction that when any such process is instantiated, the first output events must
be /({}). This must be manually checked for each SRPT process definition in our
system.

Processes with state
If the process has state, we write the process description as

PfAy) = PfMxAfi^. «))]

where q g N and g : FiP x N —> N. This is harder to represent. We need a way for the
Pebble blocks to track the current state. In this case we would have to define a Pebble
block Pb_Pg which computed the state transform function g, as well as a block Pb_Pf
which computed / , and connect them so Pb_Pg fed into the state inputs of Pb_Pf as
well as to its own inputs. Figure 4.2 shows such a layout.

Note that Pb_Pf and Pb_Pg have enabling inputs ey, eg which must be high for their
output to change; this prevents incorrect outputs occurring during the computation

The progress of state throughout these blocks is illustrated in Table 4.3. Starting
in a stable state, a change of input from xq to xi propagates through to a state change
and output in two ticks. Note that the new state propagates through to Pb_Pf the
clock tick after Pb_Pf is giving the correct output; it is only then that another change
of X will pass through the state block correctly.

108

P a s s (2)

e p g

Figure 4.2: Pebble blocks tracking state

Time A e s s' Y
0 Xo 0 So So f{xo,So)
1 Xl 1 So So f{xo,So)
2 Xi 0 So g{xi,so) f{xi,so)
3 Xi 0 g{xi,so) g{xi,so) fî l̂ So)

Table 4.3: State changing process

SRPT processes with more than one numerical state index can be transformed
into single-number index forms by an appropriate diagonalisation function. Note that
we may not make the right hand function depend on Y explicitly, according to this
classification.

We now give an example of translating SRPT to Pebble.

4.2.9 Exam ple: S R P T to Pebble
A common data structure is a stack, modelling the First-In, First-Out (FIFO) data
flow. The basic operations on a stack are Push (insert a datum onto the top of the
stack) and Pop (remove the datum on top of the stack). This example is a stack
modelled in Pebble.

We define a stack as follows. We assume that it has a capacity of 2”̂ entries, each
of n bits. We note that the behaviour of a fixed-depth stack is that of a RAM block;
we assume (for simplicity) that this RAM block is single-tick read/write. Our stack’s
behaviour is to output continuously the number last input.

We take our previous RAM block definition and simplify it accordingly to give an
SRPT description of the RAM block component of our stack.

iSRAM = {w} \J A{J E
oSRAM = D
SRAM = SRAM{)x)

SRAMx,d = [I X? Y- ^
i î { w ^ Y) then SRAMd{YnA),d
else SRAMq(^Yr\E),d']

109

where d' = d ® {Y C\ A q{Y H E)).
The stack has an input data stream, and a pair of controls which specify whether

the input data is to be pushed (push) or popped {pop). When a pop signal is received,
the data next output will be the input data last-pushed-but-one.

Another part of the stack process will control the interface to the RAM block. The
RAM block will output the value of the top element on the stack, so a push will have
to increment the address value and a pop will have to decrement the address value. In
addition, it controls the write bit of the RAM block so that a pushed value is written
in.

lSCTRL = {push, pop}
oSCTRL = { w } u A

SCTRL = SCTRLqa
SCTRLx,k = [!A ? y -^

if {push e Y A k < 2"̂ - l)thenSCTRLa{k+i)u{w},k+i
elsif {pop e Y A k > 0) th en SCTRLa(k-i),k-i
else SCTRLxr\A,k]

where a : N —> PA encodes a numerical address into the appropriate bits. We have
refined our informal description of the stack to define unspecified behaviour, specifi
cally the actions for full and empty stacks and for both commands occurring at once
{push has priority). This corresponds to the implementation decisions made during
conventional coding.

Another process we will need is PASSn which is an n-bit wide single-delay pass
gate.

The definition of STACK is now a direct composition of processes with appropriate
event renaming:

^ — {/17 • • • j /n }

lSTACK = F U {push, pop}
oSTACK = D

STACK = {SRAM || PASS„[F][F;] || SCTRL)
\ { E U { w } U A)

Note that the process has a two-cycle delay. At the end of the first cycle SCTRL
has set the correct bits for entering the address, and the new data has gone through
the pass block. At the end of the second cycle, SRAM has updated itself accordingly
and has output the new top stack data.

With regard to the SRPT, readers should note that the || operator is associative
according to Law 2 in Barnes[Bar93] §5.1.1. Explicit bracketing is therefore not re
quired.

A diagram of this circuit is shown in Figure 4.3.
Translating STACK to Pebble, we see that there are several process instantiations

combined with a hiding operator; we must therefore define {f i , . . . ,fn, o i , . . . , On,w}
as internal wires. The parameters of Pb_STACK are taken straight from the process
alphabet. The translations of processes SCTRL, PASSn and SRAM blocks to Pebble
are straightforward block instantiations as described below.

110

push
pop

PASS

SCTRL

SRAM

Figure 4.3: A simple stack

If Pb_PASSn does not already exist then it is simple to define, as it merely connects
each input to a corresponding output with a one cycle delay. Pb_SRAM is a RAM block,
which we assume to be primitive to our chosen target. If it is not a primitive then we
will have to compose other primitives to build it, increasing its delay (and hence the
delay of the stack block) by many cycles.

Pb_SCTRL is an output prefix process with state parameter k. We therefore use
the previously-described design of an internal state generator block, instantiated along
with the normal decision block. The state generator consists of one path generating
the successor state, a second path generating the predecessor state, and a multiplexer
to choose between them.

All this yields the following Pebble declaration:

/* Declarations for our target.
* Assume that all these blocks are single-cycle.
* /

BLOCK ram(kl,k2 : GENERIC) [w : wire;
a : VECTOR (kl..l) OF WIRE;
e : VECTOR(k2..1) OF WIRE]
[d : VECTOR (k2..1) OF WIRE];

/* Incrementer; increments a by 1,
unless a is all Is already */

BLOCK inc(k : GENERIC)[a : VECTOR (k..1) OF WIRE]
[b : VECTOR (k..1) OF WIRE]

BLOCK passCk : GENERIC)[a : VECTOR (k..1) OF WIRE]
[b : VECTOR (k..1) OF WIRE]

/* Decrementor; decrements a by 1, unless a is 0 already */
BLOCK dec(k : GENERIC)[a : VECTOR (k..1) OF WIRE]

[b : VECTOR (k..l) OF WIRE]
/* 3-way multiplexer; select one of a, b or c as output d */
BLOCK mux3(k : GENERIC)[cl : WIRE; c2 : WIRE;

VECTOR (k.a
b
c
[d

1) OF WIRE;
VECTOR (k..1) OF WIRE;
VECTOR (k..1) OF WIRE]
VECTOR (k..1) OF WIRE]

111

/* Output if X and not y */
BLOCK xandnoty[x : WIRE; y : WIRE] [z : WIRE]

/* Our own declarations */

/* SCTRL state generator; 2-cycle duration */

BLOCK sgen_sctrl (m : GENERIC)
[push : WIRE; pop : WIRE;
k : VECTOR(m..1) OF WIRE]
[n : VECTOR(m

VAR i
VAR u
VAR d

1) OF WIRE]
VECTORCm..1) OF WIRE
VECTOR(m..1) OF WIRE;
VECTORCm..1) OF WIRE;

VAR iw : WIRE;
VAR dw : WIRE;

BEGIN
/* k can either increment, decrement or stay

the same */
inc (m) [k] [i] ;
pass(m) [k] [u] ;
dec(m) [k] [d] ;
/* A multiplexer decides */
mux3(m)[iw,dw,u,i,d][n];
/* And the multiplex choice is determined by: */
xandnoty[push,pop][iw];
xandnoty[pop,push][dw];

END;

/* SCTRL itself */

BLOCK sctrl (m : GENERIC)
[push : WIRE; pop : WIRE]
[w : WIRE; a : VECTORCm..1) OF WIRE]

VAR n : VECTORCm..1)
VAR p : WIRE;

BEGIN
/* Note the output-input loopback connection ^a’ */
sgen_sctrlCm)[push,pop,a][a];
/* sgen_sctrl is 2-cycle so need a delay here */
xandnoty[push,[pop][p];
pass Cl) [p] [w] ;

END;

/* And now STACK. Note that we’ve had to add an extra
* PASS block because sctrl is 2-cycle.
* This means that STACK is now 3-cycle Cassuming

112

* ram blocks are 1-cycle).
* /

BLOCK stack (m,n : GENERIC)
[push : WIRE; pop : WIRE;
f : VECTOR(n..1) OF WIRE]
[d : VECTOR(n..l) OF WIRE]

el : VECTORCn..1) OF WIRE;
e2 : VECTORCn..1) OF WIRE;
a : VECTORCm..1) OF WIRE;
w : WIRE;

BEGIN
ram(m,n) [w,a,e2] [d] ;
sctrl(m)[push,pop][w,a];
pass(n)[f] [el];
pass(n)[el] [e2];

END;
It is important to note that mapping into Pebble has not been straightforward. We

should have written the SCTRL description using a formal generator function from
the outset. In addition, target device restrictions (needing two cycles to calculate the
generator function) have meant the insertion of extra delays in order for all the data to
match up. In later work in Chapter 5, when we look at refining SRPT processes and
implementing them in Pebble, we will have to remember that timing issues are likely
to appear in the Pebble mapping.

However, the above Pebble file appears to be an accurate description of a stack and
is parametrised by data width (n) and logarithmic stack size (m). Its reliability will
still have to be established by testing appropriate to its required reliability in systems.

4.2.10 Sum m ary
In this section we have examined the Pebble language, summarising its main constructs
and showing how these can be translated to and from similar SRPT constructs. This
has established SRPT as a practical synchronous calculus in which to work, and has
highlighted those SRPT constructs which should not be used in our future work.

Of the targets in Chapter 3 we have addressed or partially addressed:
Target 1: The process we define must be rigorous.
We have provided a systematic method for translating SRPT constructs into Peb

ble, although we have not produced rigorous demonstration that the semantics of the
constructs are equivalent or refined.

Target 3: The process must allow the programs to have sections written in a
low-level language for speed and flexihility, but not allow these sections to compromise
overall program reliability.

We have allowed SRPT process declarations but not definitions, and shown how
Pebble itself permits the description and incorporation of primitive blocks whose op
eration is undefined.

Target 6: The program must be able to be compiled onto a range of existing and
anticipated PLDs.

113

Pebble can be translated into VHDL, and hence onto most PLDs (with the usual
requirements for space).

Target 7: The process must reuse existing proven tools where feasible.
The Pebble-to-VHDL compiler already exists. An SRPT-to-Pebble compiler which

needs to be created does not yet exist; it is necessary to bridge the gap between the
abstract state of SRPT processes and the restricted state handling in Pebble.

Target 10: The process should provide flexibility so that it may be used in situa
tions not anticipated in its original design.

This is addressed by the previously described facility to incorporate non-Pebble
blocks into a Pebble program.

Target 14 ' [00-54 13.3.1] A Hardware Specification shall be produced which de
fines the SREH in terms of its behaviour and properties.

Pebble works by assuming uniform device-independent behaviour of the VHDL
into which it is compiled. A step towards compilation of the Hardware Specification is
verification of the behaviour of this VHDL subset.

In the next section we examine the SPARK Ada safety-critical systems development
language. Our eventual aim will be to transform a SPARK Ada program fragment into
an SRPT system, and from that form into an equivalent Pebble program. The following
chapter with therefore evaluate SPARK Ada with that goal in mind.

114

4.3 SPARK Ada

4.3.1 Introduction to SPA R K A da
SPARK Ada is an annotated subset of the Ada language, as defined in the Ada 83
and 95 Language Reference Manuals[U.S83, Int95]. Its target market is safety-critical
subsystems, which are often embedded. It supports substantial static analysis of pro
grams including proof of absence of run-time exceptions, data and information flow
analysis, and proof of correctness in the form of pre- and post-conditions on subpro
grams. Enforcement of the SPARK Ada subset and static analysis is done by the
SPARK Examiner, a tool produced by Praxis Critical Systems Ltd. Proof of correct
ness and of absence of exceptions is aided by the SPADE Simplifier and Proof Checker,
also Praxis tools.

For the purposes of this report we shall concentrate on the Ada 95 version of SPARK
Ada, henceforth referred to as SPARK^ for brevity. The syntax of the SPARK language
is defined in the SPARK Report [FW99]. A more detailed description of and tutorial
in SPARK Ada is given in the book “High Integrity Software - The SPARK Approach
to Safety and Security” [Bar03] to which the reader is referred for more detail.

As an Ada subset, SPARK code can be compiled with existing industrial compilers
and tools. For this reason it has been more successful than languages designed to
bring more rigour into the software engineering development process, such as RSRE’s
NewSpeak[Cur84]. Annex H of the Ada 95 Language Reference Manual[Int95] makes
recommendations for restricting use of the full Ada language in Safety and Security
applications, and SPARK’s language restrictions support these recommendations.

This section aims to demonstrate the suitability of SPARK Ada as a high-level lan
guage for implementing a design in a software / programmable hardware combination.
We examine the features of the SPARK Ada language, and of its supporting tools to
see how they support reliability and verifiability. We also see how they could be used
to provide supplemental information to a compiler.

We then look at how SPARK Ada programs might be transformed into equiva
lent HDL or SRPT processes. This lays the foundations for the refinement work in
Chapter 5 where we will aim to prove formally this equivalence, and the case study
in Chapter 7 where we do a case study on extracting a fragment from a SPARK Ada
program into an HDL form.

4.3.2 Safety-critical system developm ent process
Our goal in producing a safety-critical system is to start with a well-defined set of
requirements, produce a high-level design for the system, refine this into a program
in a suitable high-level language, compile this into machine code and use the code to
program a suitable processor-memory combination in the hardware of the system being
produced. Section 2.1 examined current practice in this area.

Coupled with a rigorous development process, a design methodology well-matched
to the language chosen and to the system being developed should be chosen. Al
though the choice of such a process will be dictated by the agency in charge of de-

^Note: The SPARK programming language is not sponsored by or affiliated with SPARC Interna
tional Inc. and is not based on the SPARC™ architecture.

115

velopment, and may use a diverse range of design tools (e.g. Rational Rose[EK99] or
other tools based on UML) one methodology particularly well-suited to SPARK Ada
is “INFORMED” [AmeOO] which produces a top-down design that can be translated
into efficient SPARK. The examples developed in this thesis will use the INFORMED
approach.

The tools for SPARK Ada development are the SPARK Examiner[Cha01] and
the SPADE Simplifier and Proof Checker [Pra95, Pra98]. The Examiner enforces the
SPARK language restrictions, and produces proof conditions on program properties
which may be proven (or disproven) via the other two tools. More detail on these tools
is given in Section 4.3.4.

The top-down development of INFORMED relies on early and frequent use of the
SPARK Examiner to ensure that the program maintains a consistent structure. This
contrasts with the traditional bottom-up development in C or Ada where the compiler
validates the code, hence the code analysed must form a compilation closure. IN
FORMED design can proceed from the top downwards, when much of the lower-level
code is incomplete, because the SPARK language allows the developer to express their
intentions for unwritten code with annotations. In Section 4.3.3 we describe what
annotations are, and how they are used.

4.3.3 G eneral language properties
As a general programming language, SPARK’s level of abstraction is approximately
that of Ada, more abstract than standard C. Its type system is more detailed than the
C type system and more strongly enforced than either the Ada or C type systems, at
the cost of such operations as string checking or alteration requiring numerous type
declarations and careful type conversions.

Com pilation

SPARK, being a subset of Ada, will be compiled by any standard Ada 95 compiler,
including the validated compilers being used in the industry such as GNAT Pro (Ada
Core Technologies), Object Ada (Aonix) and CM ART (Green Hills). Indeed, the intent
of the language restrictions is that SPARK programs cannot be “erroneous” in the Ada
sense of producing different results with different compilers; for instance, the aliasing
rules make the semantics of pass-by-reference and copy-in-out compilers equivalent
for all SPARK programs. An added benefit is that since the SPARK subset throws
out many of the more complex Ada constructs such as generics, it tends to tread the
well-trodden (and hence well-tested) paths in the compiler.

Ada 83 and 95 have fairly good syntactic and semantic definitions in their respec
tive Language Reference Manuals[U.S83, Int95], and SPARK builds on that with the
SPARK Report [FW99], stating how the Ada 83 and 95 LRMs map on to SPARK
Ada. As regards a formal definition, one has been written[Ltd94a, Ltd94b] by Pro
gram Validation Limited with support from the UK Defence Research Agency. This
consists of the static and dynamic semantics of a subset of SPARK Ada, given in the
Z language[Spi92]. The defined semantics has been used within Praxis but is insuffi
cient to specify the current language subset because of two points: the language has
since moved on (e.g. embracing Ada 95, allowing individual record fields as procedure

116

parameters, allowing read-only and write-only variables) and the subset fully defined
omits some aspects of the language such as type ranges and named aggregates which
are now common in SPARK programs.

R un-tim e

After compilation Ada programs are normally linked in with a compiler-specific run
time which provides the services associated with the more complex language properties
such as tasking. Certain Ada language profiles such as GNORT (Ada Core Technolo
gies), CM ART (Green Hills) and Raven (Aonix) are designed to eliminate or minimise
the size of this run-time for reliability and space reasons. The SPARK subset requires
minimal run-time support and works with these profiles.

Typing

Ada’s strong type system provides better visibility and enforcement of the numeric
range of a variable than languages such as C afford. Ada’s run-time C onstrain t_E rror
exception indicates that a variable’s value has gone outside its defined type. Taking this
idea further, the SPARK Examiner run-time checker generates verification conditions
that aim to show that the code is free from run-time exceptions e.g., due to arithmetic
overfiow or to a variable’s value falling out of type.

SPARK includes a subset of Ada 95 modular types, which is useful for arithmetic
using arbitrary bit widths. It also includes the ability to declare types of arbitrary
numerical range. This will enable us to perform calculations confident that a variable is
within a restricted range of values, and the run-time checks generated would determine
whether the result of the calculation will also fit in a restricted range.

Control flow

SPARK includes most of Ada’s control flow constructs, except the goto statement.
The restrictions it places on control flow relate to control flow graphs being well-
formed according to the Semi-Structured Flow Graph grammar [FKZ75]. For instance,
the exit points of a loop must always be at the “edge” of the loop, not inside compound
statements within the loop. This ensures that each exit check is traversed once during
a full loop.

The control flow restrictions allow information flow analysis as described by Carré
and Bergeretti [CB85]. This is key to SPARK’s ability to detect ineffective statements
and use of potentially uninitialised variables.

Program structure

As a subset of Ada, SPARK has many features typical of high-level imperative lan
guages, including a module hierarchy. The Ada language, and SPARK, provide two
structural components for programs: packages and subprograms. A package comes in
two parts: a specification which declares the types, variables and subprograms which it
exports, and a body which contains the private data of the package as well as the imple
mentations of all declared subprograms. Packages may contain state variables whose

117

values persist while the packages are in scope; for packages that are not embedded
within a procedure, this state persists for the duration of the program.

The top level of an Ada program consists of a single main_program subprogram,
commonly called Main, with any number of separate packages. Execution works
through Main until the end of that subprogram. In practice, many embedded sys
tems (irrespective of programming language) tend to run in an infinite loop after some
initialisation calculations.

Packages and subprograms may be embedded in package bodies and in the local
variable declaration area of subprograms. So, for instance, in the body of package Q
might be a subprogram Parse, which relies on operations provided by a package Stack
within it. Stack itself may have an internal subprogram Pop. Using the Ada dotted
notation of nesting, a subprogram within Parse would refer to the Pop subprogram as
Stack.Pop and the main subprogram would refer to Pop as Q .Parse.Stack.Pop. In
practice, Ada visibility rules make this second reference illegal.

Ada 95 introduced child packages which, among other features, enable developers
to split a single package specification into subunits, each of which has direct visibility
of the basic types and subprograms declared by the parent package. SPARK supports
these with additional restrictions on visibility.

A nnotations

SPARK adds annotations to the subset of Ada that it uses. These are Ada comments
(denoted by two dashes in sequence) followed by a third character, typically a hash.
As a comment, an annotation has no effect on compiled code but is visible to the
Examiner.

Annotations are used primarily to declare information that the Examiner must
check on first inspection, then later may use to check items further up the package and
subprogram hierarchy. They allow checks such as “no mutual recursion” to be made
in linear time since SPARK visibility and declaration rules mean that a procedure P
cannot call procedure Q if P comes before Q. Examples of these annotations are —#
own X (declare package state X) and —# derives X from Y (expresses information
fiow of a subprogram operating on variables X and Y).

V isibility

Ada requires that packages explicitly list any other packages whose types, subprograms
or variables they reference directly. This listing is done using the Ada with context
clause. SPARK additionally requires that indirectly referenced packages are also listed,
using the —# in h e r it annotation.

For instance, if package P contains state variable V which is changed by subprogram
P.X, and procedure Q.Y in package Q calls subprogram P.X, then Ada would require
that package Q list P as a referent. If subprogram R.Zin package R calls Q.Y then Ada
would only require that R list Q as a referent in its —# in h e r it annotation; SPARK
would however require that P also be listed.

These visibility rules allow the SPARK Examiner to prevent any circular references,
which includes banning simple and mutual recursion in subprograms. The subprogram
dependency directed acyclic graph allows the Examiner to define an examination order
which has the following properties:

118

• each package specification is examined before its body; and

• each subprogram declaration is examined before any subprogram body containing
a call to that subprogram is examined.

Banning recursion enables static calculation of the maximum depth of the stack
during program execution, allowing the programmer to demonstrate that the stack will
never overfiow. This is of particular importance in embedded systems where programs
are required to have a high mean time between resets.

State

A package may have any number of state variables. These come into scope and are
given initial values (if specified) when the package is elaborated; for a top-level package
this occurs at the start of the program execution. Package elaboration order is a
significant issue in Ada, but the visibility rules in SPARK allow developers to ignore
it.

A subprogram may declare any number of local variables. These, in addition to
the subprogram parameters, are only in scope and retain data for the duration of
the subprogram. This is also true for the state variables of any packages or other
subprograms embedded in the subprogram.

Ada subprogram parameters are given modes which describe whether the parameter
is an input (in), output (out) or both (in out). It is illegal to write to a mode in
parameter, though it is legal to read an out parameter.

SPARK additionally requires that subprograms list in a —# global annotation all
the state variables which they use, along with their modes. In the earlier example,
subprogram R.Z would have to list variable P.V - even though P.V may well not be
visible to it under Ada rules! Through the SPARK annotation, all the side effects of a
subprogram can be known at analysis time, allowing precise flow analysis.

SPARK requires that the state variables in a package be declared in an —# own
variable annotation in the package specification. Any variables declared in the body
may be aggregated into a single abstract state variable. This enables encapsulation of
the package state inter-dependencies in the body, reducing the complexity of annota
tions for any subprograms calling subprograms in the package specification.

Flow analysis

Data flow analysis[CB85] of a subprogram S validates that the variables imported and
exported by the subprogram correspond to those specified by the user in the declaration
and in the declarations of all subprograms called by S.

SPARK has the option of allowing information flow analysis as well. This goes
further, allowing the developer to specify how the exported variables depend on the
imported variables and checking that the program information flow matches the devel
oper’s design intent. This is done by computing the products and transitive closures
of Boolean matrices representing the variable dependency information of individual
subprogram statements.

119

Tasking

A significant omission in current SPARK, as compared to Ada, is Ada’s notion of
tasking. Tasking was omitted from the SPARK subset because it can be extremely
complex and difficult to reason about.

Because the Ada 95 tasking model has improved on the Ada 83 tasking model,
it has become possible to define subsets of the tasking constructs with desirable de-
terminacy and performance properties. The Ravenscar tasking profile[BDR98] is the
a deterministic scheduling subset of Ada 95 which will be adopted formally in the
Ada OY language; in the meantime, it has been incorporated into release 7 of SPARK
Ada[Cha03].

M em ory-m apped I /O

Previous use of SPARK in embedded systems such as SHOLIS [KHCP99] using memory-
mapped 10 pointed to a problem in the way it treats variable initialisation. Suppose
that we have a design that uses page zero of memory to communicate with a PLD or
other piece of hardware across a bus. Ada (and, indeed, SPARK) allows us to define
a variable supplemented with a “use clause” that specifies the exact memory location
and / or data format to be used. We might define two 8-bit registers X and Y for input
and output respectively thus:

BASE_ADDR : co n stan t ;= 0;
type Byte i s mod 256;
fo r Byte^Size use 8;
X : Byte;
fo r X’Address use (BASE_ADDR + 16#010#);
Y : Byte;
fo r Y’Address use (BASE_ADDR + 16#014#);

This maps X to location hex 010 and Y to location hex 014. Typical use would be
to write a value to Y to transfer the data to a PLD, and to read from X to read data
from the same PLD.

We might produce some control code which looks like:

Y := START.PROCESSING;
w hile (X /= ENDED_PRGCESSING) loop

U t i l i t i e s . S leep (S);
end loop ;
Y := RESET.REGISTERS;

The intention of this is to start some processing in the PLD, then every 5 millisec
onds poll the PLD for a “completed” flag. Once this is done we reset the PLD registers
in preparation for a new calculation.

Naively, the SPARK Examiner would not accept this code. From its point of view,
Y is being written to twice without being read, hence the first assignment is ineffective.
And in the loop, X is not an export of procedure U t i l i t i e s .Sleep so the loop will
either not happen at all, or will be infinite.

120

However, the SPARK language now permits specification of variables as read-only
or write-only, and the Examiner can correctly flow-analyse code which uses them. X
and Y would be declared as package own variables where they would be given modes in
and out respectively. The release note for the SPARK Examiner 6.0 [ChaOl] describes
this concept in detail in Appendix A; there are some complexities involving mixed
mode state in package refinements that can trip up the unwary developer.

Since Ada programs are likely to use memory-mapped I/O to communicate with
external devices such as PLDs it is important that we have a model in SPARK for how
this communication occurs.

4.3 .4 S tatic analysis and provability
SPARK is designed to perform static analysis as defined in Section 2.2.2. Using the
Examiner for information flow analysis picks up not only common errors such as use
of uninitialised variables, infinite loops and potential aliasing, but also reveals quite
detailed information about the structure of the program in terms of data coupling
between packages.

The user can also choose to employ more detailed methods for selected procedures.
The Examiner contains a Verification Condition (VC) Generator that can be used to
attempt to prove correct a subprogram in terms of the pre- and post-condition model
on which Z is based, and which we will use in Chapter 5. Using the run-time exception
and overfiow checks option, discussed above, also enables the user to show absence of
run-time exceptions.

From a given subprogram, a set of Verification Conditions (VCs) is generated for
each path through the subprogram. The VC set for a given path consists of a list of
hypotheses which are true for that path, and one or more conclusions which need to
be deduced from the hypotheses for the path to be well-formed.

The extra complexity of these options arises because the Examiner itself simply
generates files describing the sematics of the subprograms concerned, along with the
user’s requests (e.g. that no variable goes outside its type range.) Use of two other
tools is then required. The SPADE Simplifier[Pra95] processes these files to eliminate
irrelevant and redundant information, and performs some automatic simplification of
hypotheses and conclusions. It is possible that these simplifications will be sufficient
to discharge the VCs. If not, the user may either to prove the remaining assertions by
hand or use the SPADE Proof Checker[Pra98].

In Chapter 7 we generate run-time exception checks with overfiow for a substantial
SPARK program to demonstrate that it is a practical technique for software develop
ment.

4.3.5 Sum m ary o f SPA R K
For the purpose of this work, SPARK Ada’s strengths as a language for hardware /
software co-design of safety-critical systems are in its formal definition, the information
it provides about variable data types and flow, compatibility with industry-strength
validated compilers and the existence of tools to support detailed analysis and proof
of programs written in SPARK Ada.

121

Its main weaknesses are the gaps in its formal semantics and omission of some use
ful Ada constructs which would be amenable to analysis e.g. simple generic package
declaration and instantiation. However, despite these weaknesses the language is fun
damentally strong enough and well-defined enough for us to use and reason about its
behaviour.

4.3.6 SPA R K interfaces
Now that we understand the main properties of SPARK, we examine how to interface
SPARK to programmable logic. The architecture that we are assuming for the system
discussed in the remainder of this section is a conventional microprocessor and memory
on a bus, executing a compiled SPARK program, with a PLD also interfaced to the
bus.

Suppose that we have a set of operations, and maybe some state, that are held
within a PLD, to be controlled by a SPARK Ada program. The rest of the system
is intended to run in software on the microprocessor. We will now consider how to
interface beween the PLD and the Ada software. This section aims to establish that
Ada programs can communicate with PLDs and be annotated in such a way that the
SPARK Examiner accepts the Ada code and correctly models the actual information
flow in this interface.

M em ory-m apped I /O

We will need to be able to access the input and output pins of a PLD from Ada. As
explained in Section 4.3.3, memory-mapped I/O can be set up so that, for instance,
one page of addressable memory is mapped to the PLD input and output pins, via
the memory management hardware of the system, and variable X (respectively Y) is
mapped to the input (respectively output) pin area of the page. Assigning a value to
X will effectively input to the PLD pins; reading from Y will effectively read from the
output pins.

The variables X and Y will be state variables of some package P, so according to
SPARK rules X and Y must be declared as —# own variables of P. However, since X
and Y are memory-mapped then the developer must specify whether they are mapped
as an input (mode in) or output (mode out) in order that the Examiner not complain
that the variable is never assigned to (for mode in) or never read (for mode out).

Library interfaces

An alternative is to control writing to and reading from the PLD with a software
library which is not written in Ada; C is a common choice by device or COTS operating
system vendors. However, there needs to be some interface at the Ada level. To do
this, the Ada language requires the developer to provide a package body incorporating
subprogram declarations marked by a pragma In te rface statement, denoting a library
interface call. Ada calls to these subprograms are translated by the compiler to calls
to the library subroutines.

The package specification will declare SPARK-compliant subprograms that wrap
each interfaced routine. SPARK requires this package specification so that it can
perform an analysis of the program where calls to this package are made; the developer

122

is therefore required to add SPARK annotations that represent the actions of the
library for each call. It is usual to give the package specification a single —# own
(state) variable representing the state of the logic device, and have the state change
at each operation. The package body is typically excluded from SPARK analysis since
local types may need to be declared that are not SPARK-compliant.

It is important for the correct information fiow analysis of the rest of the program
that the developer’s annotations be a faithful representation of the PLD’s operations.
For example, if the PLD’s state changes as the result of an operation K, but the anno
tation for K does not reveal this state change, then any safety or security arguments
which rely on the PLD not changing state between two points cannot usefully appeal
to the information flow analysis done by the Examiner; all the possible paths between
the points would have to be checked for calls to K.

4.3 .7 Partial com pilation
It is conceivable that a developer would have an existing SPARK program which runs
entirely in software, and wish to compile some of it into programmable logic. This
could occur if:

1. the software as it stands cannot meet performance requirements;

2. the PLD hardware is planned to arrive late in the project schedule and the
program must be unit- and system-tested before it arrives; or

3. an emerging system hazard has indicated the need to move some functionality
out of the program’s direct address space (e.g. a safety monitor).

Assume that the software to be compiled is some package P of the program. How
should we go about this?

First, we should establish that the software to compile is true SPARK; this is easily
done by running the Examiner on P’s specification, body and subprograms. Second,
we should show that the software is free from run-time exceptions, by generating VCs
with the Examiner and proving them via the Simplifier and Proof Checker or manual
proof review. At this point we should consider whether adding proof statements to
some of P’s subprograms would be helpful to the compiler; if so, these will need to be
proven as well.

Next, we need to consider whether we wish to make the use of a PLD explicit in the
program. If we do, we can use either the library interface package scheme to make PLD
library calls, or write directly to registers with an MMIO scheme, replacing existing
code in subprograms. We must then change our annotations to reflect the new state
variables and rerun the Examiner on the subprograms.

The disadvantage of these approaches is that any new state or subprogram in
formation fiow changes will “bubble up” through the program, causing any package
depending on our compiled package to change its annotations. This is tedious, espe
cially since operations pushed out to programmable logic tend to be at the leaves of
the program calling tree, and so much of the program may be affected.

Better would be to leave the original package annotations intact. But how can
we be sure that they are accurate? This will depend on the reliability of the compile
transformation.

123

If we can ensure that the compiled PLD code and the original SPARK are refine
ments of the same original specification, this gives us the advantage of being able to
develop and test the software independent of the hardware, removing a dependency
tie from the system development plan. Certainly there will eventually have to be tests
to check that the PLD program integrates properly with the software with particular
attention paid to timing issues, but these can be run quite late in the development pro
cess since timing-related changes should be localised in the program and not change
the results of much of the unit, system and functional coverage tests.

With this in mind, we now look at how to partition a SPARK program into hardware
and software components.

4.3.8 P artition ing
A SPARK program provides significantly more information relevant to partitioning
than an Ada program. For each subprogram we know exactly the variables which it
requires as imports and exports, the numeric ranges of these variables, and we can even
add extra constraints on imported variable values and show whether they are satisfied
at every point in the program where the subroutine is called.

Information flow annotations additionally describe how the subprogram imports
depend on the exports, which may give us a starting point for a decomposition of the
subprogram.

If increasing (or, indeed, maintaining) overall program execution speed is important,
we must establish that the increased calculation speed provided by the PLD offsets
the cost of I/O between software and PLD; the imported variables are copied to the
memory-map inputs, then the program waits for the output values to be flagged as
ready and copies them back to the exported variables. Therefore a selected subprogram
should have a software execution time significantly greater than this two-way copy and
transmit operation.

The bit width of imports and exports should be calculated, and “narrow” subpro
grams be favoured over “wide” ones. The developer should bear in mind the bandwidth
and routing problems that affect most PLDs.

Finally, we should aim to encapsulate changes. Therefore, if the PLD-migrated
subprogram S calls subprogram T, then both S and T need to go into hardware; if T is
not called from any other part of the software then all the better, since it will effectively
become an embedded subprogram of S. Essentially, we are aiming to create a package
with the minimum of public subprograms where a compilation closure of a subset of
the package body is in hardware.

4.3.9 C om pilation - a first cut
Suppose we have selected subprogram S to be compiled into hardware, with imports
fi, . . . , im and exports j i , . .. ,jn- We shall ignore the case where a variable is both
imported and exported since the input and output pins are physically separate on the
PLD and so there is no issue with the newly calculated PLD outputs interfering with
the original PLD inputs. For each variable we have a known data range, which we will
translate into a bit width. At the moment we will assume that all these widths are

124

small as this allows us to assume simple bit-parallel communication of variable data
which completes in one clock tick.

The information flow annotations of S describe variable dependency. For each
export we know exactly which imports it depends on. We can therefore produce a
design where each export is the single output of a block, whose inputs are the imports
that the export depends on.

The subprogram that computes each export can be derived from the original sub
program as follows:

1. delete all imports that do not affect our selected export, and all exports apart
from the selected one;

2. delete every statement in the subprogram that uses any deleted import, or assigns
to any export other than the one we want;

3. rerun the SPARK Examiner, and delete all the assignments which it reports as
ineffective;

4. if any ineffective assignments were reported, go back to step 1.

This can be shown to be semantically equivalent to the original by arguing that:

1. the Examiner correctly identifies the information fiow in any subprogram;

2. we create a subprogram for every export, and therefore our argument reduces to
showing that the algorithm works for any given export;

3. there is a finite number of assignments in the subprogram and therefore our
algorithm terminates;

4. in any statement except a procedure call with more than one export, all imports
of that statement affect the statement export;

5. we have already recursively applied this algorithm down the subprogram tree to
such change procedure calls to sequential calls to reduced procedures computing
single exports; and

6. if there were a statement which affected our export and which we had deleted,
it must have either used a deleted import (in which case the import must have
affected our export and hence could not have been deleted) or been reported as
ineffective (in which case it could not have affected our export at all).

Now we are left with a subprogram that computes one export. How do we compile
it to a form suitable for execution in a PLD?

125

4.3.10 C om pilation o f SPA R K code
We examine the general problem of mapping SPARK code from inside a subprogram
directly onto a typical PLD. We do not consider the specific (and substantial) prob
lems involved in producing a safety-critical PLD implementation, e.g. making the
transformation suitable for arguments about preservation of program semantics.

We examine three possible paths from SPARK to PLD:

1. to develop, for each SPARK construct, a bespoke PLD “interpretation” which
can be composed together;

2. to formally transform source code to PLD through formal refinement, based on
the previously-provided semantics; or

3. the development of a SPARK “interpreter” on a PLD.

The first is the hardest to implement, it being difficult to show that the transfor
mations induced are sound with respect to our semantics. For illustration of these
difl[iculties, we describe the transformations envisaged as necessary, isolating the parts
that would introduce real difficulties.

The second leaves the developer with work to do every time that the refinement is
needed. The benefits are that the semantics that justifies the transformation already
exists, and it can work at various levels of criticality - from a handwaving justification
that a predicate is true through to a 10-page proof that a given refinement step is valid.

The third has the benefit that, once the transformation is proven correct, its subse
quent use produces valid hardware that is suitable for safety-critical use whenever the
original SPARK code was suitable. Of course, as Stepney has shown[Ste98] the steps
involved in high-integrity transformation are difficult to get right. It is unlikely that
such a PLD-based interpreter could be certified as appropriate for the higher levels of
integrity. We do not attempt to produce these transformations in this work.

We begin with the first option, the development of PLD representations of each
SPARK language construct.

Syntax

Sequential SPARK subprogram body code consists of a sequence of the following classes
of code:

• assignment of an expression

• fo r loop

• i f - e l s i f - e lse - end i f block

• while loop

• simple loop

• procedure call

• case block

126

There are two forms of in-statement evaluation: an expression (as found on the
RHS of an assignment) and a condition (as found following i f or e ls i f) . Note that,
unlike C or full Ada, conditions and expressions may not have side effects; they change
no variables themselves. Expressions and conditions may involve calls to functions but
these functions do not have side effects.

Sequential com position

For each item in the sequence, the SPARK flow analyser will tell us its imports and ex
ports. Any subprogram local variables are included in the flow analysis, and eventually
removed for the purpose of calculating the whole subprogram flow analysis. Iterative
constructs such as while loops have their information flow calculated using the algo
rithm described by Barnes[BarOS] §10.8. If we can produce a block for each sequence
item, we can connect inputs and outputs in the appropriate sequence to produce a full
computation.

Note that some items in the sequence may produce an output that is not needed by
their successor. In that case the output can be connected directly to the first successor
that needs it. If consecutive items P,Q are such that no export of P is an import of
Q then P and Q can be placed in parallel. They must, however, be synchronised in
some way so that the computations that follow will process P and Q only when both
are ready.

To manage this, and the more general issue of “computation complete” for the
subprogram we implement a simple protocol with input and output control bits. Each
hierarchical block B in the program has one input and one output bit, with each output
bit connected to the inputs of one or more other blocks that use the data from B. At
program start each input bit is low and each output bit is low.

When the PLD receives data from the SPARK program, the input bit for the entire
subprogram block will be set high to signal valid input data. The PLD computation
then starts, with the high input bit travelling across the PLD to track the computation
progress. When each block’s computation is complete the output bit is set high and the
block waits for the input bit to go low. The blocks to which the output bit is routed will
then copy over the block’s output data and signal back that this has happened; once
all child blocks have signalled back, the block pulls its output bit back to low and is
left waiting for its input to go high again. The entire subprogram block will eventually
have its output bit go high, at which point it writes data back to the SPARK program.

Figure 4.4 shows an example of data being passed from block A to block B to block
C, with the computation complete signal travelling the same path later on.

Code constructs

SPARK assignment will be represented in the PLD by a set of lookup tables which
compute the RHS expression in stages. This is not hard unless a function forms part
of the expression; in this case we will have to produce a block for that function and
wire it into the computation.

A fo r loop provides a loop variable which its enclosed block takes as an additional
input. Short loops with static iteration ranges could be unrolled altogether; however, in
the general case it would be necessary for the loop’s block to route its outputs back to
its inputs, and to have control logic that raises a flag once the computation is complete.

127

Calculation

A ou t / B l n

B o u t / 0 in

0 o u t

Time

Figure 4.4: Handshaking across blocks

Conditionals such as i f and case blocks have code blocks which are placed in par
allel, and a multiplexer which selects inputs depending on the conditional statements.
Note that each block in these statements must have the same exports, so must import
any exports which they don’t change.

while loops and simple loops work like fo r loops but without the loop variable.
Any use of the e x it statement will set the “output valid” control, as will the main
loop test for the while condition. The SPARK restrictions on control flow (following
a semi-structured flow graph) help in this respect as the exit points are always on the
outermost part of the calculation.

Subprogram (procedure) calls are inlined by inserting the block representing that
subprogram. The enforced ban on circular or recursive subprogram calls ensures that
the inlining will eventually terminate at a set of “leaf” subprograms that do not contain
any further subprogram calls. Note that this method would be inefficient in space usage
if a particular subprogram was called at several points within the compiled program.

Packages w ith state

Suppose a package has internal state, invisible to other packages by Ada rules. This
state will be stored in the PLD, so will change the aforementioned layout by adding a
RAM block to store the state, routing the RAM output into the sequence items like
a normal import, and, in the case of a write, routing the exported data back to the
RAM store with a write bit set.

B it serial versus bit parallel

All the above has assumed that we are working in bit parallel form. However, there
are many cases where input data may be very wide, for instance in the case of an
array with a wide range or a record with many fields. Passing this into the PLD in bit
parallel form would quickly use up routing resource, especially if the entire variable is
routed between several statement items. Is there an alternative?

128

For records, it is not hard to slim down the data. The Examiner does flow analysis of
subprograms at the record component level, so although the entire variable is imported
the Examiner knows which flelds will be imported and exported at each stage. It is a
relatively simple matter to treat the record as a list of distinct variables.

Arrays are more difficult. Array indexing is, in general, dynamic and hence not
susceptible to static analysis. In the worst case it is computationally infeasible to
determine which array elements may be used at a given stage of computation. However,
there are optimisations which may be used in some cases at the possible expense of the
clarity of correspondence between the PLD and SPARK representations.

Often, entire arrays (or subranges of them) are changed with a for loop. If a rela
tively small subrange is used, the Examiner would be able to check that any reference
to an array element is made with an index with a given subrange, reducing the amount
of array data that needs to be exported or imported. This would require a modification
to the Examiner to maintain a “defined” flag bit for each element of any non-imported
array with a range below a set limit.

Alternatively, we could find that the only references to an array are within a fo r
loop, with array indices corresponding to a 1-1 function of the loop variable (and of no
other variables). As long as the RHS of any assignment to the array is not dependent
directly or indirectly on the loop variable, the entire function can be replicated any
number of times to calculate the array value over arbitrary subranges. In addition, the
SPARK code could supply the subrange parameters and so use a number of calls to
the hardware to compute the entire array change in sections. This gives the developer
an ideal opportunity to trade execution speed against PLD area.

These techniques are intended as an example of the trade-offs that can be made in
compilation. They show how the extra information obtained by the SPARK Examiner
can be used to have confidence that such optimisations preserve the correctness of the
code.

Justification o f equivalence

The dynamic semantics of SPARK Ada[Ltd94b] are defined for each construct in terms
of modifications to a collection of variable state information. In order to reason about
the correctness of transformations into PLD form we need to be able to relate the
semantics of a SPARK statement P to the semantics of a PLD block Q which is intended
to represent P.

We must define the semantics of the PLD block Q in terms of its transformations of
data between its input control bit being set high and the block setting its output control
bit high. Our SPARK-to-PLD transformation has defined some functions Q7, QO :
V X N —> P W from the legal values of each imported (respectively, exported) SPARK
variable from the variable set F = V/ U Ko to appropriate representations of the data
by high voltages on a combination of wires Ç W going in to (respectively, coming
out of) the block. We represent the distinct values of a variable by natural numbers;
that this is adequate follows from an argument appealing to the behaviour of a correct
compiler which must represent each value of any variable by a bit pattern within a
flxed-length field in memory. The inverse functions QI~^, Q0~^ describe the variable
values represented by a given combination of wire high-voltage states.

Any given statement in the SPARK program P updates the variable store a to

129

represent its action on variable values. The simple assignment of an expression ev to
a local variable fullname^ for instance, is expressed by a deduction rule AsgnDl (on
page 109 of [Ltd94b]) which updates a by:

a 0 {fullname ev}

The corresponding definition on Q will be in terms of the traces of the SRPT process
representing Q. If ci is the input control bit and co is the output control bit then an
equivalent statement for the assignment block A in Q would be:

V/ >Q .
[ci ^ t[i] A ci e t[i + 1]) => {3k > 0 : co E t[i-h I /?])

A Q0~^{fullname, t[i + 1 -i-k]) =
ev{QI~^{t[i-\-l]))

Clearly, the semantic mapping outlined above would have to be expanded and
formalised if this hierarchical translation method was to be developed formally. The
weakest precondition semantics of each SPARK construct would have to be refined by
the PLD implementation.

4.3.11 R efinem ent
A second approach is to produce a formal specification of the function performed by
a SPARK subprogram, and refine this to a custom implementation in hardware. This
throws away the SPARK implementation, taking advantage of the parallel computa
tional model presented by the PLD. How do we ensure that the SPARK implementation
is therefore equivalent?

SPARK enables the developer to specify pre- and post- conditions for subprograms,
and prove the correctness of postconditions given preconditions by generating and
proving verification conditions. Therefore we can have confidence that our SPARK
implementation does what is specified. Alternative approaches are model-checking and
animation, both of which are used by the P r o B tool which supports programs written
in the B language [Abr96].

The implementation difficulty is going to be showing that our custom implementa
tion satisfies the VCs as well. This is something we address in Chapter 5. The separate
difficulty of providing an accurate specification is a well-known software engineering
problem[DvLF93, Vic98, HRHOl] which lies outside the scope of this thesis.

4.3.12 SPA R K interpreter
The third alternative to the approach of transforming an isolated package into PLD
form is to produce a SPARK “interpreter” that runs on an PLD. Such an interpreter
would be able to operate on any number of SPARK packages, running a computa
tionally intensive program without any need to synchronise control with conventional
SPARK code. It would also have the advantage that its operation need only be proven
correct once; any SPARK program would be represented as data within it.

In Chapter 6 we describe one possible interpreter, with a number of customisable
parameters. Different designs are certainly possible; this is only one example.

130

We do not attempt to reason in any way about the correctness of this particular
design. An analytic proof (such as would be required by standards such as Defence
Standard 00-54[MoD99] for system functions at SIL 3 or SIL 4) would be much more dif
ficult than that for the refinement or hierarchical implementation approaches described
above, since the ability to map between relatively small SPARK and PLD constructs
would be lost; the proof would not be that a particular program was executed correctly,
but rather than any valid SPARK program was executed correctly.

Conventional Ada 95 compilers are validated against the ISO standard ISO/IEC-
18009:1999[cJ99] using the publicly-available test suite “ACATS” which contains over
3600 programs. At the minimum, validation of a SPARK interpreter would have to
include running each SPARK-compliant AC ATS program and verification of the results.
This may be adequate to qualify the use of the interpreter for system functions of
limited criticality, although each project using the interpreter would have to justify its
use in the project safety case.

High integrity Ada compilers such as GNAT Pro High-Integrity (Ada Core Tech
nologies) and Object Ada (Aonix) go through additional verification activities and
provide documentation of these activities to end-users; for safety-critical implementa
tions they use restricted subsets of Ada 95, such as GNAT NO RunTime (GNORT),
C-SMART and RAVEN. The verification for a SPARK interpreter at high levels of
integrity would include at minimum the proof of key interpreter properties (liveness,
preservation of data ordering, freedom from race conditions), but the list of verification
activities required for a particular safety integrity level and application domain would
emerge from a detailed safety assessment.

4.3.13 Sum m ary
In this section we have described the SPARK Ada 95 subset, shown how its properties
are helpful in the task of compiling it into a form suitable for execution on a PLD, and
described two possible compilation forms as well as more general considerations for the
SPARK-PLD interface.

Of the targets in Chapter 3 we have addressed or partially addressed:
Target 2 : The process must help the developer to write unambiguous programs.
We are programming in SPARK Ada 95, an annotated Ada subset with compiler-

independent semantics.
Target 3: The process must allow the programs to have sections written in a

low-level language for speed and flexibility, but not allow these sections to compromise
overall program reliability.

SPARK shadows and hide annotations allow the insertion of arbitrary Ada code,
which may include assembly language.

Target 4 : The process must admit substantial static analysis to discover semantic
program errors at or before compile time.

The SPARK subset is enforced by the SPARK Examiner, which also performs
information- and data- flow analysis to verify the program against design information.

Target 6 : The program must be able to be compiled onto a range of existing and
anticipated PLDs.

We have made no assumptions about the target PLD other than that it is large
enough to contain the SPARK program (or interpreter) being transformed.

131

Target 7; The process must reuse existing proven tools where feasible.
The SPARK Examiner tool already exists, and we have noted where it may be

extended in small ways to support transformation activities. The information held
by the tool after the analysis phase strongly supports PLD-targeted transformation
activities.

Target 10: The process should provide flexibility so that it may be used in situa
tions not anticipated in its original design.

We have presented three approaches to transforming SPARK programs, aimed at
code of differing integrity levels.

Target 11: The process must admit justification to the project safety authority
that the programs output by the process are of an adequate integrity level.

We have shown in Section 4.3.10 how the hierarchical transformation process might
be validated against the existing semantics for SPARK, and how the refinement ap
proach changes the validation required to the proof that an SRPT process refines a
specification.

Chapter 5 will demonstrate how to produce a custom PLD implementation from a
formal subprogram specification, allowing us to produce SPARK and PLD implemen
tations which are formally equivalent but markedly different in form. This supports
the second approach discussed in Section 4.3.11, of transformation-by-rehnement.

Chapter 6 will break down this section’s overview of a SPARK interpreter into
a detailed implementation, showing how the conflicts discussed in Section 4.3.12 are
resolved and aiming for demonstrable reliability.

The case study in Chapter 7 will demonstrate construction of an example safety-
critical system in SPARK Ada and mapping part of it into a PLD while preserving its
functionality.

132

Chapter 5

Refining To SR PT

Refinement is one of the building blocks of formal methods. It is a way of going
from a relatively abstract statement of a problem to a system which can be built with
no further intelligent, human involvement, and which can be shown mathematically
to solve the problem stated. Much research has established formal refinement as of
appropriate rigour for safety critical systems development ([ORS96] is a pre-eminent
example, distinguished by its completeness).

In this chapter we describe a formal refinement calculus for high-integrity software
running on a PLD. Through the refinement calculus, we will be able to address the
concerns of rigour.

5.1 The Refinement M odel
There are many approaches to refinement; for instance, see Back [BvW94] and Morgan
[Mor94]. Of particular relevance to our approach in being based on reactive action
systems is the refinement of Back. There, refinement is defined in terms of traces. We
follow a broadly similar form in our semantics, although the deterministic nature of
our SRPT subset means that we avoid some of the complications encountered by Back.

Action systems describe the behaviour of a parallel system in terms of the atomic
actions that can take place during the execution of the system. Back’s approach to trace
refinement uses simulations between action systems to construct an abstract behaviour
that approximates a given concrete behaviour. By contrast, the deterministic SRPT
subset that we use allows us to refine traces directly.

The syntax of our abstract specification is similar to that used by Morgan. This
describes a system:

w : [p r e , post]

where w is a set of free (changeable) variables in the system, p re is a predicate speci
fying the precondition on states that can be assumed for the system, and p ost is the
predicate on w which the program produced by the system must satisfy.

This model is based on the predicate calculus. The pre-conditions and post
conditions are predicate calculus formulae. The conditions define a contract for a
program to fulfil, as described by Morgan. We now give an overview of the refinement
process in Morgan’s model as an example of what we are aiming to achieve.

133

5.1.1 O verview o f a refinem ent process
Within Morgan’s model, each system being developed is refined through a series of
well-defined transformations based on proven sound refinement laws to a program ex
pressed in a simple machine-independent language. The language used by Morgan as
“code” (the executable form of a program) is a language of guarded commands, which
has alternation, iteration and subprogram call control structures similar to those found
in most modern imperative programming languages. Commands are composed sequen
tially within subprograms. This language is augmented with Morgan’s program speci
fication syntax to express parts of the program which have not yet been developed to
code. The semantic basis of the refinement is Dijkstra’s weakest precondition calculus
[Dij75].

The theoretical basis o f refinem ent

Refinement itself occurs in a system defined by pointwise extension of a partially ordered
set (“poset”) which itself is equivalent to a lattice. The poset comprises a set L of
elements (predicates) and a binary ordering operator (the partial order) for elements
of L denoted <. Partially ordered sets are described in more detail by Miller and
Dushnik[DM41].

The programs in Morgan’s model are predicate transformers, transforming predi
cates according to weakest precondition semantics. Given a program P = w : [p r e , post]
and a predicate q, ii q => pre then P{q) = q' where q' is q transformed by post
according to weakest precondition semantics. The refinement relation Ç between pro
grams corresponds to the ordering of the predicates on which they are based. More
detail is given by Back[BvW94].

The symbol = in the context of refinement means “refines in both directions” . If
X = Y then X Q Y and Y Ç. X .

Exam ple o f refinem ent

In Morgan’s system, denotes the simultaneous substitution of E for each
instance of w in expression X . Law 1.3 (p.9) states that if

pre => post [w\E]

then

w, X : [p re , post] Q w E

where Ç is read “refines to” and : = denotes the assignment operation in the language
of guarded commands. The variable x is unaffected by the simultaneous substitution of
E and in fact vanishes after the refinement; since w and x are independent, an intuitive
interpretation of this is that the true or false value of post was unaffected by x.

According to this law, the program statement w : = 5 is a refinement of the speci
fication

w : [tr u e , w = 5 V w = 6]

since true (5 = 5) V (5 = 6).
Other code constructors include alternation, sequential composition iteration and

procedures, and there exist laws for introducing these from certain specifications.

134

Pathological specifications

Some specifications cannot be refined to code, and are termed “infeasible” . Other
specifications can be satisfied by almost any code. Pathological examples of these
forms of specification include:

w : [false, tru e] “abort”
w : [tru e , tru e] “choose w”
w : [t r u e , false] “magic”

ab o rt is never guaranteed to terminate and may do anything to its variables, choose
w terminates and changes w to an arbitrary value. The program statement skip is a
special case of choose where no variable w is supplied, magic always terminates and
establishes the impossible condition false ; no program can satisfy this specification.

R etrenchm ent

There also is an issue of feasibility regarding the types of variables permitted. For
instance, assignments involving set operations are permitted, though conventional im
perative languages do not implement such operations natively. Exact arithmetic with
irrational numbers is also allowed, in contrast to the imprecise fioating point arithmetic
model used in common imperative languages such as C, Perl and Ada.

This problem is a known issue in the development of software for high-integrity
systems. A common solution is to specify real-number calculations using error bounds
(often denoted e) so that a specification of an implementation F of a real-number
calculation might be:

I F{x, y) - -h 3%̂) |< e

This may be an acceptable approach for individual equations, but for a system
which depends on sequential real-number calculations this approach can quickly make
specifications hard to read accurately.

Large-scale formal reasoning about moving from exact to imprecise calculations may
require the use of re/renc/imen/[BP98]. This is in many ways the opposite approach
to refinement, allowing strengthening of the specification precondition and weakening
of the precondition to reason about the program correctness in the context of loss
of accuracy in the data type transformation. Since PLDs are often used for numeric
calculations, retrenchment or related techniques may prove useful when specifying and
refining programs to run on them.

5.1.2 Suitability o f m odel
Morgan’s refinement model starts with a specification at an arbitrary level of abstrac
tion, and allows step-by-step refinement of that specification to a program form which
is executable. The developer needs to define the program statements which he regards
as directly executable. Each refinement step is done according to a law in the refine
ment calculus, and may be independently verified by presentation of the specification
before and after refinement and a statement of the refinement law that was applied.

135

Characteristic Morgan SRPT
Specification domain
Language
Data fiow forms
Calculations at:
State model
Implementation

Predicates
Guarded imperative
Serial, subprogram

Assignment : =
Variable-value function

Ada, C, Pascal

Timed predicates
Processes

Serial, parallel
Primitive blocks
Events in traces

Pebble

Table 5.1: Contrast of Morgan and SRPT refinement processes

We noted in Section 4.3 that a similar pre-post specification notation is used in the
SPARK Ada language proof tools. We presented three main options for developing
a SPARK Ada subprogram into a PLD implementation, and one of them was to rely
solely on the subprogram specification. Since Morgan’s refinement model (and hence
the SRPT model that we will develop later in this chapter) only requires a specifi
cation in [p r e , post] form, we have sufficient information to start refinement of the
subprogram.

The refinement process we wish to use will start with a specification at the level
of process events (corresponding to voltage highs on the input wires to a PLD) and
be refined to a set of SRPT processes. Section 4.2 has described a systematic, if
not yet rigorous, method to translate SRPT into an equivalent Pebble program and
hence compile it into a PLD. Table 5.1 contrasts Morgan’s refinement process with the
refinement process we desire.

The approach that refinement provides is therefore appropriate to our needs. Mor
gan’s specification notation matches with the specification notation that SPARK sub
programs use. However, because of the differences between the semantic bases of
Morgan and our trace-based approach we will consider a modified version of Back’s
refinement process.

5.2 Refinem ent for SR PT

5.2.1 A im s for refinem ent
With our system derived from the above models we aim to replace the notion of an
imperative program as a final result to a process expressed in Barnes’ Synchronous
Receptive Process Theory. Specifications may also be expressed in conjunction with a
non-negative integer time at which they are true.

The building blocks of our new system, i.e. the components corresponding to as
signment statements in Table 5.1, will be processes describing logic constructs similar
to FPGA cells. For the moment these cells shall be stateless, and their outputs at time
/ 4-1 shall be purely functions of their inputs at time t.

5.2.2 R efinem ent frames
A refinement frame is a new construct which we will incorporate into the SRPT nota
tion, allowing us to express parts of an SRPT system in specification form. A refinement

136

X

post(Y)

Figure 5.1: SRPT frame structure

frame (shortly, “frame”) P in a program takes the form:

P = y t e N ■ lX : oY : [[pre]^, [post]f+fc] (5.1)

representing the specification “for the process P with input alphabet containing X and
output alphabet containing Y, at all times t, if pre is true at time t then at time
t 3 - k post is true.” A; is a constant which will be determined by the timing needs of
the program at specification time.

Figure 5.1 illustrates frame P as an SRPT process.
Back[BvW94] does not use these refinement frames; instead, the start and points

for refinement are action systems operating on state spaces; refinement moves from ab
stract state spaces to concrete ones with the individual actions of the systems changing
as required to handle the decreasing abstraction of the state. An action system refine
ment can be regarded as complete when its state space is sufficiently concrete to be
implemented on whatever computing system is available.

Process sem antics

If a frame is to represent an SRPT process, as do the other components in the SRPT
algebra, it must have a set of traces obeying the SRPT trace axioms discussed in
Section 4.1.5. Concerning the underlying SRPT process P, the frame in Equation 5.1
specifies that:

Vs e T^jPjcrV t e N ' p re {s[t..]) => post (s[/..])

i.e. that in every trace of P the frame’s postcondition holds at all points where the
precondition holds.

pre (s) is a shorthand for a substitution; the timed event predicate p re can be
seen as a Boolean function of subsets of timed event occurrences p re : P(S x N) —> B.
Since the trace s is a sequence of time steps at which each event in the alphabets of P
either occurs or does not occur, it defines a similar function s r : {iP fl oP) x N — B.
Therefore p re (s) is equivalent to:

V Z Ç P(E X N) • p re {Z) => {{z, t) E Z ^ s r { z , t))

The SRPT trace axioms require that for the refinement frame in Equation 5.1:

137

1. the empty (zero-length) trace is in T^KPjcr;

2. T^jPjcr is prefix-closed; and

3. any input events may be offered at any step, and the output events at that step
must be independent of those input events.

Axiom 1 follows since the quantification of t is over a null set. Axiom 2 follows
because the quantification of t is unbounded, so if Si is a prefix of % G then
the specification must hold for all of si. The justification of Axiom 3 is more lengthy,
and is given in Section 5.2.3 below.

N otation

In the frame P, the presence of an event x at time t is depicted by [x]t. This value
corresponds to the presence or absence of x at time index i in a trace of P. We also
introduce the shorthand \f{x,y) = c]t for f([x]t,[y]t) = [c]t where / i s a constant
function within a predicate.

t and k are necessary because an SRPT process computes in a “pipelined” (systolic
or overlapping) manner; t marks a point where a computation starts and k expresses
the length of the pipeline which produces the result. The V t G N is usually omitted
for brevity.

Where variables are involved in arithmetic expressions the values true and false
are taken to correspond to the integers 1 and 0 respectively.

Purpose o f a specification

As described above, the specification described by a frame defines a set of traces and
so can be considered an SRPT process (if an abstract one!).

The aim of the refinement is to synthesise a concrete SRPT process that has traces
that are “the same or better” than the specification. As we will see below, this trans
lates to a subset ordering on the set of traces.

Rules of a specification

We define the following rules for the frame contents in order to exclude some infeasible
specifications. The phrase “A related to T ” in a predicate refers to the situation where
the truth of the predicate depends on a logical relation between variables X and Y .
In all of the following, x is taken to be a single event in the input event set i X and y
is a single event in the output event set oY.

1. Predicate pre may only refer to variables in the input event set X.

2. the postcondition post may only refer to variables in the input event set X and
output event set Y .

3. the highest time index t of any variable in pre must be less than the lowest time
index of any output variable (from T) in p o s t .

4. where variables [x] t+i and [y] t+j are related in p o s t , i < j.

138

Rules 3 and 4 are “anti-oracle” rules, excluding specifications that cannot be imple
mented by an SRPT process since they would have traces that violated the “delayed
reaction to input” SRPT trace axiom.

The purpose of Rule 3 is to restrict the production of preconditions requiring knowl
edge of the future, e.g.

Vt e N • iA : o 7 : [[a;]f+i, [y]t]

where the program clearly has no way of knowing what [a;]f+i will be, so the obvious
action for the developer in this case is to weaken the precondition to true (a valid
refinement as we will see in Section 5.2.5).

The purpose of Rule 4 is to restrict the production of infeasible postconditions, e.g.

\ f t e N - lX : oY : [p re , [x]t = [y]t\

where the program clearly cannot know [a;]* in time to output [y]t.

Exam ple specification

A 1-cycle AND gate with input events A = {xi^xq} and output events Y = {y} would
have refinement frame

lX : oY : [tr u e , [xi A X2]t = [y]t+i]

The possible traces (each of which will be a trace prefix) of this process include:

(fe } , k , %}, y}), ({â i, %}, X2 , y}, {%}) and ()

An example of an incorrect trace prefix is ({a:i},{a^,y}).

5.2.3 R efinem ent relation
Definition: For SRPT processes P and Q we say that P is refined by Q whenever

Informally, P is refined by Q if any trace of Q is a valid trace of P. Our notion of
refinement is a specialisation of that of Back[BvW94] to the case when P and Q are
deterministic processes. As noted above. Back uses simulation between action systems
whereas SRPT provides a denotational semantics for the traces model.

It may at first appear that a process R with a minimal trace set, consisting (say)
of the empty trace will refine any other process. However, this is not the case.
Because of SRPT trace axiom 3, which requires that any input events may be offered
at any step, process R must define output events in response to each possible input
event set combination at each time. The only time when a strict subsetting is possible
would be when P offers two or more possible responses to a given set of inputs (non-
deterministic behaviour).

Whenever P is a valid deterministic SRPT process, P will only ever offer one
response to a given set of inputs, so the refinement relation is direct equivalence of
trace sets.

Given a specification S = uX : oY : [[pre]^, [post we define its traces 7%[[P]|<7
as:

139

/ G T n l S ^ a ^ y O < t < { # f - k) ■ [pre(/)]f [p o s t(/)](+& (5.2)
If we are to refine S into processes then we need to show that 7 ^ [Pier satisfies the

SRPT trace axioms. In Section 5.2.2 we demonstrated that Axioms 1 and 2 were met.
It remains to show Axiom 3, that at any step the process represented by 7%[P|cr can
accept any input, and the input cannot affect the output at that step.

To demonstrate that the process represented by 7^[P |(j can accept any input at any
step without affecting that step, let / = 5 ^ {Z) G 7^[P|cr. Then, from Equation 5.2:

/ G T n l S p VO < ̂ < (# / - A:) • [pre (/)]* => [post {f)]t+k

Now we must show that

y U C X - r = s ^ { V U U) r e T n lS ^ a
where V = {Z Y)

because this shows that every process r identical to / except for input events is in
rnPla.

Since s prefixes / , we know that s G 7^[P|cr from SRPT Axiom 2. We need then
only show that:

[pre(r)]#^_(A:+i) => [post (r)]#^_i

i.e., the pre-post relationship holds for the last element of trace r.
The rules on pre- and post-condition time indices restrict post from specifying

outputs at A, or from t-\- k onwards, and similarly restrict p re from specifying inputs
from t-\-k — l onwards. Hence any events in U (at time index — 1) cannot affect the
precondition. By construction, the output events V do not change from / t o r , hence
the postcondition is similarly unaffected, and therefore the third closure condition is
met.

This allows us to treat process refinement frames as SRPT processes in the following
refinement rules.

5.2.4 R efinem ent
A half-adder could be specified as follows:

VA G N • i{a, 6} : o{c, s} : [t r u e , [2c + s]f+i = [a+ b]t] (5.3)

We have already seen in Section 4.1.6 the definition of the SRPT process CELLf
which computes the function / in one step. We make our first refinement law:

Refinem ent 1 Stateless 1 -bit function

V t 6 N • tX : o{y} : [t r u e , [j/],+i = /([X]i)[
Ç CELL, l I \X][0\ {y}]

This is justified by inspection of traces: the definition of the [p r e , p ost] form of
refinement frame in Section 5.2.2 defines the traces of this frame S to be:

s G TtiIS^œ => VA G N - (tru e [y]t+i = /([%]<))

140

which corresponds to the traces of CELLf with the appropriate event renaming. Vari
ants of CELL are the basic constructors of combinatorial logic as they are a represen
tation of primitive blocks in Pebble.

We could use this to define cells that calculated either c o r a i n our half-adder, but
not both. We need a way of expressing parallelism. This is our second refinement law:

Refinem ent 2 Parallelism

VA G N - 6% : o (y U Z) : [p re , post i A p o s t2]
Ç iX : oY : [p re , post 1] || iX : oZ : [p re , p o s t2]

whenever:

y , Z are non-empty and non-intersecting
V y G • post 1 [Z\ V] = post 1
V W G • p o s t 2 [y \ W] = post 2

where B^ is the set of n-ary boolean strings

Informally, this says that if there are two parts of the output of a process, post 1
and post 2, which have a null intersection of output events then the process can be
split into two, each computing one of the parts. Note that it is trivial to extend this
refinement to any finite number of parallel components since || is associative according
to Law 2 in Barnes[Bar93] §5.1.1.

The justification of this refinement law is again by traces; we show that the trace
set of the original frame is equal to the parallel combination of the traces of the two
new frames, using the semantics of the || operator from Barnes[Bar93] §5.1.

Returning to our original specification Equation 5.3, we can apply refinement law 2
and the logic arithmetic definition:

a P b = 2(<2 A 6) (fl ©2 6)

where ©2 denotes addition modulo 2, to produce:
V A G N • i{a, b} : o{c, 5} : [t r u e , [2c + s]t+i = [a + 6]f]

Ç i{a, b} : o{c} : [t r u e , [c]t+i = [a A b]t] (5.2.4.1)
II i{a, b} : o{s} : [t r u e , [s]t+i = [a ©2 b]t] (5.2.4.2)

We apply refinement law 1 to (5.2.4.1), with function a n d , noting that A is equiv
alent to a n d , to produce:

(5.2.4.1) Ç CELL^^^[I\{a,b}][0\{c}]

and similarly to (5.2.4.2), with function x o r, noting that ©2 is equivalent to x o r , to
produce:

(5.2.4.2) Ç CELL^or[I\{a, 6}][0\{s}]

and we have refined our original specification into two parallel 2-input 1-output cells:

CELLa„d[/\{a,6}][0\{c}] || CELLxor[/\{a, 6}][0\{5>]

141

5.2.5 A dditional refinem ent rules
We now introduce supplementary refinement rules. We start with counterparts of laws
given by Morgan [Mor94], whose justifications come from predicate calculus and are
not given here because our refinement of frames is also expressed in terms of predicate
calculus.

Refinem ent 3 Weaken precondition

If p re =4> p re ’ then:

y t e N - i X : oY : [p re , post] Ç V A G N • : oY : [p re ’ , post]

Refinem ent 4 Strengthen postcondition

If p o s t’ => post then:

V A G N • iA : oF : [p re , post] □ V A G N • iX : oT : [p re , p o s t’]

Refinem ent 5 Expand frame

V A G N • iA : oY : [p re , post] Ç
V A G N • i {X U A) : o{Y U B) : [p r e , p o s t]

where A fi F = 0 and B D A = 0.

Refinem ent 6 Contract frame

Let P = iX \ oY : [p re , post]. If:

3 A Ç A - ^ I s e T n l P h V B Ç A VAGN-
G T'r\P \o’ • (r [A] = [s[t] \ A) U B) A (V A ^ A - r[i] = s[«])

i.e., we can change the occurrence of A input events at any timestep to some arbitrary
subset B without changing any of the subsequent output events (input variables A are
irrelevant to the outputs), then:

i {X U A) : oY : [p re , post] Ç l {X \ A) : oY : [pre \ A, post \ A]

i.e., we can remove the A events. This refinement can be justified by observing that
removing the A input events from the precondition will weaken it, and the condition
for this refinement means that the output events are unaltered.

Now we introduce rules peculiar to our timed parallel model, along with justifica
tions.

Refinem ent 7 Introduce intermediate

142

If g j , k , m id are timed predicates over subsets of events such that:

V disjoint X , Y , Z Ç. S-
g{[Y]t+2 , m ^ k { [Y U 2 , [Z]t+i) A j{[Z]t+u[X]t)
and j([Z]t+i, \X\t =¥ m id

then:

tX : oY : [p re , ^^([F]f+2, [A]f)] =
{lX : oZ : [p re , j([^]f+i, [X]t)] ||

lZ : oY : [m id , A;([F]f+2, [^]m)]) \ ^

i.e., we may split into two parts a process for which an “intermediate calculation”
exists.

The natural interpretation of this law is an intermediate calculation on the inputs
X , using the spare time slot between each input and corresponding output to produce
intermediate results Z, and the final results Y .

As an example, let the predicates be:

#({&, 6,c,d},{e}) = e = a A b A c A d
;({o, 6, c,d}, {/,&}) = f = (aAb) A h = { cAd)

&({/,&}, {e}) = e = f A h
m id = tru e

which allows refinement of a two-delay four-input AND gate into two parallel 2-1
AND gates feeding into a third 2-1 AND gate.

We justify this law in terms of the SRPT processes G, K and J represented by the
three frames. The refinement rule requires that:

GIX,Y] = {J[X,Z] \\K[Z, Y])\Z

and so we must show that the traces of the left and right hand side are equivalent. We
specify the most general traces possible for each side, and aim to show their equivalence.

A new notation we introduce is the use of a horizonal bar % to represent groups of
events from a set X.

We first construct the traces of the right-hand side. Given s G

s = (xi,a{xi) U %,&(%) U % , . . .)
where p re (a) => {j(b, a) 4=̂ b = a{a))

The process J can then be specified in SRPT notation as:

= [!A ?M ^ Ja{M)]

Similarly, for u G 7^[[Ajcr:

where m id (o) (A;(&, a) ^ b = (3{a)

The process K can then be specified in SRPT notation as:

143

K b = [!H 7N ^

We apply law a-10 from Barnes[Bar93] pp. 78 to get:

Ja I I Kb = [!(A U B)7Q ^ '^{qub)dlJq I I ^{qua)diKq^

We know from the disjoint process input and output alphabets that this simplifies
to:

[\{AU B)7Q ^ JQnx || K q^z]

This establishes that, at any point in any of its traces, the tail of process J || K is
always equivalent to J a \\ K b for some A and B.

Given this parallel construct, process J guarantees that Zt+i = a{xt). Process
K guarantees that ÿt+ 2 = P{zt+i) = j3{a{xt)). From the earlier definitions then,
k{ÿt+2 , 0 '{^))-

Similarly, p re {xt) => j{zt+i, Xt) = Zt+\ = a{xt). We can join these two to get:

p re (xt) k{ÿt+2 ,zt+i) Aj{zt+i,xt)

which, from the precondition in this refinement law, is equivalent to:

pre{xt) g{ÿt+2 ,xt)

This matches the original frame specification in the refinement law definition, show
ing that the left and right hand sides are indeed equivalent, and we have proven the
refinement law. □

Refinem ent 8 Introduce delayed intermediate

If g,j^ k, m id are timed predicates over subsets of events, and di, > 1, such that:

V disjoint X , Y , Z C S-
9{[^]t+di+d2: [K]t) <=> k{[Y]t+di+d2 ̂l^]t+di) 7\j{[Z]t+di^
and j{[Z]t+di: [A]f m id

then:

lX : oY : [pre , g{[Y]t+di+d2 AK]t)] =
{iX : oZ : [pre, j{[Z]t+d^, [A]f)] ||

iZ : oY : [m i d ,k{[Y]t+di+d2,[^]t+di)]) \ Z

i.e., we may split into two parts a process for which an “intermediate calculation” exists
at some time point between start and end of calculation.

This law is justified by repeated application of refinement law 7.

144

A2 B2

C2

MUX PASS

Figure 5.2: Carry look-ahead adder structure

5.2.6 Feasibility
We construct the maximal trace set m ax of two event sets X , Y by:

0 G m ax(X , y)

t G m a x{X , Y) \ / A C X , B C y .
{t ^ {A\J B)) G m a x {X, Y)

i.e., the well-formed trace set with all combinations of input and events possible at
each time step.

The specification P = \ / 1 E N • lX : oY : [[pre]*, [post]f+fc] is feasible if it is
well-formed according to the refinement frame rules listed in Section 5.2.2, and:

3 5 G m ax {X, y) : V^ G N • p re {s[t]) post {s[t - f k])

i.e. there is some well-formed trace which, at every time point, satisfies the postcondi
tion as long as the precondition is true.

5.3 Case Study: Carry Look-ahead Adder
A carry look-ahead adder is an adder whose design is optimised towards minimal exe
cution time rather than towards minimal area. It works by splitting an addition into
two halves (high and low bits), and carrying out two parallel calculations for the high
half sum - one for if a carry is received, one for if it isn’t. A multiplexer then selects the
correct high bits calculation based on the carry-out bit of the lower half calculation.
Figure 5.2 shows the structure of one of these devices.

We will now specify this adder and refine it.

5.3.1 Specification
For an n = 2 ̂ bit adder, CLAAk'.

l{A U B) : oC: [t r u e , [N(C)],+i+, = [N(A) -h n{B)]t]

145

where N(X) maps the subsets of X onto the natural number given by the binary
representation of the events. A and B must contain n events, C must contain n -}-1.

We will in fact find it useful to specify and refine the processes CLAAk(x) for all
X e N < k , where [N(C')]f+i+A; = [N(A) + N(5) + x]t.

Note that the specification requires that the computation complete in 1 + /: time
steps. A simple ripple-carry adder could not in general satisfy this specification since
it takes time linear in 2 ̂ to complete; each bit of the sum is computed sequentially
with the lowest bit first.

5.3.2 Basic gates
If we set k to 0, and hence n to 1, we get a half adder:

HADD = i{a, b} : o{c, s} : [t r u e , [2c + s]t+i = [a + b]t]

which we already know how to construct, from Section 5.2.4. We note that this takes
two of our 2-input, 1-output cells. We assume that the only cells available for construc
tion are 2-input, 1-output and 3-input, 1-output. This will restrict what we regard as
“final code” in our refinement.

We will also want a pass gate (for delays) and a 1-bit choice gate. These have the
following specifications:

PASS = : o{y} : [tru e , [y]f+i = [a;]̂]
MUX = i{a, b, c} : o{y} : [t r u e , [y]t+i = [(& A c) V (a A ->c)]f]

We can have the 1-input, 1-output PASS gate because it can be embedded into a
2-input, 1-output cell where the second input is taken from ground (i.e. a permanent
low value).

5.3.3 R efinem ent
We proceed by induction on k. The base case for A: = 0 requires an implementation of
the specification of the half adder above. It is possible that the half-adder is a primitive
gate on the target device. If not, we apply refinement law 2 to refine the HADD process
into:

HADD = LO II HI where
LO = i{a, 6} : o{s} : [t r u e , [s]f+i = [axor 6]f]
HI = t{a, b} : o{c} : [tru e , [c]f+i = [aand b]t]

and we will take LO, HI to be primitive gates since they are equivalent to XOR and
AND gates respectively.

We therefore assume as the induction hypothesis that we have complete implemen
tations for all processes CLAAk{y) for all y < k. We aim to prove the hypothesis for
k 1 .

Let n = 2^. Then 2n is the number of bits for each of the two input numbers to
CLAAk+i{y). Let A = A iU A 2 where Ai = {%, . . . , a„} and A2 = {fln+i, • • • ? 02n}-
Define Ri, Rg, Q similarly and C2 = {c^+i,. . . , C2n+i}- From now on, for convenience
we will omit the N in the arithmetic by referring to direct addition of event sets.

146

We start with the process specification of CLAAk+i{x):

l{A U B) : oC :
[t r u e ,

[C]t+2+k = [A B -{■ x]t]

then expand the input and output set definitions:

i(^Ai U A 2 U B \ U B 2) : a(Ci U C2) :
[t r u e ,

[Ci]t+2+k = ([Ai + Bi~{- a:]f) m od 2 A
[C2]t+2+fc = ([Ai + + x]t) div 2 + [A2 + B2]t]

Applying refinement law 8 (Introduce delayed intermediate) we introduce the inter
mediate event set (Ri U R2 U R3 U {c}), the components of which have respective sizes
n, n -f 1, n 4-1 and 1. We also introduce the set union abbreviation notation Xa,b for
XaU Xb. We may rewrite this as:

(^ (A i , 2 U ^ 1,2) : o (R i ^2,3 U { c }) :

[t r u e ,
[Ri]t+i+k = ([Ai Bi x]t) m od 2 A
[R2]t+l+k = IA2 + B2]t A
[Rslt+i+k = 1 + [A2 + B2]t A
[c]f+i+fc = ([Ai + + x]t) div 2] (1)

II ^(-^1,2,3 U {c}) : oCi,2 :
[t r u e ,

[Ci]t+i = [Ri]f A
[QÎf+i = [(-Rs A c) V (R2 A -ic)](] (2)

) \ (Ri ,2,3 U {c})

To show that this refinement law has been applied correctly, we need to define the
predicate functions g , j , k , p r e , m id and the delays di, as specified in the refinement
law precondition. These are as follows:

9 — [Ci]f+2+fc = ([Ai-f -}-a;]f) m od 2 A
[C2]t+2+k = ([Ai + + x]t) div 2 -f [A2 + B2]t

j = [Ai]f+i+it = ([Ai + Bi x]t) m od 2 A
[R2]t+l+k = [A2 + B2]t A
[Rslt+i+k = 1 + [A2 + B2]t A
[c]f+i+fc = ([Ai Bi + div 2

k = [Ci]i+2+fc ~ [Rl]f+1+A: A
[C2]t+2+k = [(^3 A c) V (R2 A ->c)]f+i+jfc

d\ = 1 -{- Â:
di = 1

pre = tru e
m id = tru e

To show that j , k combined are equivalent to 5̂ , we must show that the values for

147

C\ and C2 in the composition of j and k are equivalent to their values in g:

[C\]t+i = [Ri]t
[Aijf+1+A: = ([Ai + Ri + m od 2
[Cijf+2+fc = ([Ai + + a:]f) m od 2
[C2]t+1 = [(^3 A c) V (i?2 A -ic)]t
[R2]t+l+k = [A2 + B2]t
[• ^ 3] f + l + f c = 1 + [A2 + B2]t
[c]f+i+A; = ([Ai + Ri -f- x]t) div 2
[C2]f+2+jfc = [A2 + B2]t + ([Ai + + x]t) div 2

which is as required.
We take each of the refined processes in turn for further refinement.

(1) Ç via refinement law 2 {Parallelism) :
^(Ai,2 U ^ 1,2) : o{Ri U {c}) :

[t r u e ,
[Ri]t+i+k = ([Ai + + x]t) m od 2 A
[c]t+i+k = ([Ai + Ri + x]t) div 2] (3)

II ^(Ai,2 U ^1,2) : 0 R2 :
[t r u e , [R2]t+i+k = [A2 + B2]t] (4)
II <'(Ai,2 U ^1,2) : 0R3 :
[t r u e , [Rsjf+i+fc = 1 + [A2 + B2]t] (5)

We apply refinement law 6 {Contract frame) to remove A i,B i from (4), (5) and
A2,B2 from (3), giving:

i{Ai U Bi) : o{Ri U {c}) :
[t r u e ,

[Ri]f+i+fc = ([Ai + Ri 4- x]t) m od 2 A
[cji+i+A; = ([Ai 4- Ri 4- x]t) div 2] (3a)

II f'{A2 U B2) : 0R2 :
[t r u e , [R2]t+i+k = [A2 4- B2]t] (4a)

II i{A2 U B2) : 0R3 :
[t r u e , [R3]t+i+k = 14- [A2 4- B2]t] (5a)

Here, (3a), (4a) and (5a) are equivalent to the specifications of processes CLAAk{x),
CLAAk{0) and CLAAk{l) respectively, with input and output wires renamed appro
priately. Since each specification has a well-defined trace set, and equality of trace sets
means equivalence of processes, we can substitute in the renamed CLAAk processes.

The second part of the refinement proceeds as follows.

(2) = 1 '{R i ,2,3 U { c }) : o C i , 2 :

[t r u e ,
[Ci]t+i = [Ri]f A
[C2]f+1 = [(-̂ 3 A c) V (i?2 A->c)]f]

148

Ç via refinement law 2 {Parallelism) :
4^1,2 ,3 U {c}) : oCi :
[true,[C i]f+i = [Ri]t] (6)

I I 4 ^ 1 , 2 , 3 U { c }) : 0 C2 :
[t r u e , [C2]t+i = [(^3 A c) V {R2 A ic)]t] (7)

We apply refinement law 6 (Contract frame) to remove R2 3 from (6) and Ri from
(7):

i{Ri U {c}) : oCi :
[true,[(7i]t+i = [i?i]f] (6a)

I I i{R2,3 U {c}) : 0 C2 :
[t r u e , [C2]t+i = [(^3 A c) V {R2 A ->c)]f] (7a)

(6a) is equivalent to n parallel PASS processes between Ri and Q ; we apply
refinement law 2 {Parallelism) and substitute the renamed PASS processes as noted
above.

(7a) is equivalent to n + 1 parallel MUX cells, choosing from R2 and R3 using
c, sending to (%. Again, we apply refinement law 2 and substitute renamed MUX
processes.

We can now collate the refinement to produce:
l{A UB) : oC : [t r u e , [C]t+2 +k = [A + B x]t]

C
CLAAk{x)[Ai, Bi][Ri, c] (3)
CLAA&(0)[A2,B2][R2] (4)
CLAAk{l)[A2,B2][R3] (5)
PASSln][ci] (6)
MUX , r2n-\-i J (7)

) \ (R i ,2 , 3 U { c })

\i=lin+1
li=l

With a relatively short formal derivation we have produced a full implementation
for a family of arithmetic functions, parametrised by size, and demonstrated that the
calculations complete in the specified time. This has been done using a predefined set
of simple gates HADD, PASS and MUX.

5.3.4 Space and tim e
The specification tells us that the computation completes in 1 + A: time steps, and since
it is true for all values of ̂ G N it tells us that a new calculation result is delivered at
every timestep from t = 1 + k onwards, i.e. the calculation is pipelined.

As far as space is concerned, we define a function C{k) which gives the number
of cells used by CLAAk and which comes from the final (recursive) definition of the
process:

C{k) = S C { k - l) + P(2^-i) + M{1,2^-1)

where P{b) is the number of cells for an n-bit PASS block and M{a, b) is the number
of cells for an a-bit choice, 6-bit output multiplexer. P{b) = b and M{l ,b) = b in this
case, so:

149

C{k) = Z C { k - l) + 2^

for Â; > 0, and C(0) = 2. This gives (7(1) = 8, (7(2) = 28 and so on. This indicates
that cell usage varies as (7(3^) where n is the size in bits of each argument. A 32-bit
adder, producing a 33-bit answer, would require (7(5) = 908 cells.

Note that a simple ripple-carry adder would not satisfy the specification in general
because its computation time is linear in its argument length. If the timing require
ments were relaxed, ripple-carry adders could be inserted instead of carry-lookahead
adders in some layers. This would not, however, save cells; the requirement to have the
entire result come out at one time point means that the adder needs a large number of
PASS cells.

5.3.5 Scalability
The above approach has illustrated a number of key concepts. An important one is the
use of previously defined processes in development. We saw this where smaller CL A A
blocks were used in the construct of a larger one.

If this refinement method were used in the creation of a substantial PLD program
then it would be useful to build up a library of specifications and the processes that
satisfy them. Note that several processes may meet one specification, and the developer
may choose one based on available cell configurations, computation time and cell usage.

The Introduce intermediate refinement law is a powerful one because it encapsulates
an activity, hiding the internal events which are needed to make the calculation. This
enables the effective top-down design and implementation of a complex programmable
logic program. The design will refine the initial specification into a number of parallel
sub-specifications, which will either match existing library components or which can
be handed to individual developers to implement. The specification carries inside it
the interface and timing information needed by the developer.

Blocks on the PLD which perform a fixed function can have a specification written
for them retroactively. This enables them to be part of a refined system and interface
to other refined components. The difficulty is in writing their specifications correctly.

5.3.6 P roof m eans no testing?
Bearing in mind Knuth’s famous quote “Beware of bugs in the above code; I have only
proved it correct, not tried it” [Knu77] we implemented the above structure in a simple
Pebble simulator written in Perl and tested it with random input data.

Knuth was proven prudent. In the original refinement, (3) had mistakenly been
asserted equivalent to CLAAk{0) rather than CLAAk{x). The tests detected this, it
was corrected, and the tests rerun. No errors were found in the corrected version for
values of k from 0 to 5. The simulator was later expanded and rewritten, with the
results given in Section 7.2.

This is more a comment on the methodology that we used to arrive at our start
ing point rather than the subsequent refinement. In essence, no matter how good
a refinement, it can only be as good as the starting specification from which it was
derived. To validate that a system fits its purpose requires testing of the system in
conditions as close as possible to the intended operational environment, as no single
formal verification procedure can be sufficient.

150

There is clearly value in independent inspection of refinement to pick up problems
such as these. In order to measure the reliability of the inspection, it may be useful to
inject a number of faults into the proof before inspection.

5.4 Summary
In this chapter we have presented a refinement calculus with a specification notation
based on Morgan’s notation for refinement, using SRPT as the implementation lan
guage and adding an integer time aspect to the variables. We have shown how existing
refinement laws can be adapted to suit the new calculus, introduced a new law specific
to the parallel process model and shown how it can be proven.

We have demonstrated the specification and complete refinement of a carry look
ahead adder. The refinement was not lengthy or particularly complex, and few im
plementation decisions were required. One mistake occurred during refinement, which
was detected and corrected during testing. This indicates that the refinement model
is practical, at least for one class of specifications, but is not a panacea.

This refinement calculus is open for further development by adding new refinement
laws, for instance concerning iteration or alternation.

The refinement rules and notation described in this chapter are summarised in
Appendix A.

5.4.1 A lternative approaches
A complementary approach to parallel refinement was presented by Sanders and Lai in
[LS97]. The approach is also based on Morgan’s stepwise refinement model, extending
it to refine into a parallel communicating programming language with a syntax similar
to Occam[Ltd84] rather than Dijkstra’s language of guarded commands.

This approach diverges from our approach principally in that the system modelled
does not operate on a synchronous discrete clock but rather in the asynchronous model
familiar from CSP. It is useful however to observe that the refinement laws established
by Sanders and Lai (e.g. strengthen postcondition, weaken precondition, sequential
composition, parallel composition) are similar in intent to those we defined in Sec
tion 5.2. The authors identify the same weaknesses in their system with respect to
scalability that we have found. It represents a comrade rather than competitor system
for our SRPT refinement process.

5.4.2 Targets
Of the targets in Chapter 3 we have addressed or partially addressed:

Target 1 : The process we define must he rigorous.
We have extended a subset of the rigorous process algebra SRPT, described in Sec

tion 4.1, to include a “refinement frame” syntactic construct. We have also developed
a refinement calculus to support refinement between constructs in this notation, and
hence between trace sets in SRPT. This work has been supported with formal proof of
relevant assertions and refinement laws.

Target 2: The process must help the developer to write unambiguous programs.

151

The use of the refinement calculus produces programs that demonstrably meet their
specification.

Target 5: The program produced must be easy to test.
Test cases may be generated from the program specification.
Target 6 : The program must be able to be compiled onto a range of existing and

anticipated PLDs.
The mapping between SRPT and Pebble, as described in Section 4.2, is PLD-

independent.
Target 9: The process should indicate what kinds of error may arise at each stage.
We have seen how the manual refinement process may introduce errors, and indi

cated how manual review may address this.
Target 1 0: The process should provide flexibility so that it may be used in situa

tions not anticipated in its original design.
SRPT allows incorporation of processes that may act in an arbitrary way; our proof

system allows us to incorporate them in a system and reason formally about the effect
they may have on the rest of the system.

Target 12: [00-54 8.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification
complies with the safety requirements;

(a) any formal arguments that the functional design satisfies the formal specification;

(in) for non-functional properties with specified safety requirements, analysis of the
achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques
as diverse implementations.

(i) is addressed because the safety requirements may be expressed as post-conditions
in a process specification, (ii) is addressed because the refinement process produces
an evidence trail, amenable to manual review, that the SRPT process satisfies its
specification, (iii) is addressed because the timed specification process allows timing
requirements to be stated explicitly and shown to be met. (iv) is not addressed.

152

Chapter 6

A PLD Interpreter o f SPARK

In Chapter 5 we specified a process for refining high-level specifications into SRPT
processes, and hence transforming them into implementations in Pebble. This is an
effective method for relatively simple specifications, but a. iX : o Y : [p re , post]
refinement frame which described a substantial program would normally be unwieldy
and difficult to manage.

Section 4.3.12 outlined a possible design for an interpreter for SPARK Ada, running
on one or more PLDs. This interpreter would be difficult to verify to the degree
required for high-integrity PLD programs, but may be appropriate for running PLD
programs at lower levels of required integrity. In this chapter we expand this outline
to build a SPARK interpreter out of SRPT processes, using refinement to build small
computational units in the interpreter and defining a higher-level protocol to manage
execution of the SPARK “bytecode”.

We will describe the interpreter architecture, then break down its structure to
examine how individual units of SPARK code are executed within it. We will also
see how our techniques of refining specifications from Chapter 5 are useful in making
custom combinational logic sequences.

Target aims

This chapter chiefly addresses Target 2 (the process must force the developer to write
unambiguous programs) and Target 4 (it must enable as much static analysis as
possible). We aim to achieve this by allowing developers to write programs in the
SPARK language which already satisfies these requirements.

Our aim is to produce a design for a SPARK interpreter which runs on a generic
PLD. The interpreter should:

1. be amenable to arguments that it correctly executes SPARK;

2. interpret as large a subset of SPARK Ada 95 as possible;

3. not depend on any feature of a specific PLD;

4. make relatively efficient use of available PLD resources; and

5. scale in performance with increased resources.

153

The design must be practical, since in Chapter 7 we will have to produce a working
implementation of the interpreter as part of the case study.

There is a secondary aim, related to the SRPT specification and refinement work
in Chapter 5. We will specify a number of SRPT processes in our description of the
interpreter, which will be a test of the usability of the specification form. We aim
to use these tests to measure whether our SRPT specification scheme is suitable for
specifying significant complex systems with a range of functions.

Scope

The SPARK constructs recognised by the interpreter are restricted in that no constructs
particular to the Ravenscar tasking profile are permitted. This is to simplify the
interpreter’s architecture.

The interpreter is intended to be a proof-of-concept, not an optimised design.
No particular assumptions are made about limiting features of PLD design e.g.

available cells or routing resources. For this reason we refer to the target PLD as the
“virtual” PLD.

Structure

Section 6.1 presents an overview of the interpreter design. Section 6.2 describes the
mechanism for communicating between the CPU and the PLD. Section 6.3 describes
the mechanism for communicating between package units upon the PLD. Section 6.4
details the structure of the package units. Section 6.5 describes how SPARK programs
are transformed into a form suitable for execution on the interpreter. Section 6.6
discusses how SPARK software interacts with the PLD program.

Finally, Section 6.7 discusses optimisations to the interpreter and Section 6.8 draws
conclusions from the chapter.

6.1 Interpreter Overview
We now describe the design of the interpreter to give the reader a context for the rest
of the chapter.

6.1.1 A rchitecture
The interpreter is designed to contain a SPARK package P and any other packages
on which P depends, directly or indirectly. It will be controlled at the top level from
software; in the SPARK program compiled for the normal CPU there will be a shadow
package for P which will manage sending data to and from the interpreter. P is hence
forth referred to as the root package.

Each package is implemented as one contiguous unit on the virtual PLD, with data
connections between packages corresponding to subprogram calls. There is a connection
from package P to package Q if and only if there is a call from a subprogram of P to a
subprogram of Q. The SPARK rules on inheritance order guarantee that there cannot
then be a call from Q to P.

154

CPU

RAM

ROM
PLD

BUS

Figure 6.1: Interpreter architecture

The top-level architecture is shown in Figure 6.1. This example shows root package
P with direct dependencies on A and B, and indirect dependencies on C and D.

There are then three major components to the interpreter; the I/O between CPU
and PLD, the I/O between packages and the internal workings of the package itself.
This is the taxonomy we will use in the rest of this chapter.

Note that place-and-route issues may break a contiguous design unit over several
parts of an actual PLD.

6.1.2 P artitioning issues
The performance of the interpreter, in terms of execution speed and PLD cell usage,
will depend on the packages selected for compilation. There are rules and guidance on
package selection as follows.

A note on terminology: a package with state is one that contains at least one state
variable, either directly in its spec or body, or in an embedded or child package. This
correspond to the package having at least one own variable in SPARK terms.

Rules

1. No package with state may be present in both the software and programmable
logic programs. This is to prevent multiple copies of a global package variable.

2. The packages compiled into programmable logic must form a valid SPARK pro
gram and a complete Ada program closure. This is essential for the integrity of
the compilation process.

3. This program must have run-time checks performed on it by a tool such as the
SPARK Examiner (using the -exp switch), which must show that it is free from
any potential run-time overflows.

4. Packages may not be embedded in subprograms. This is to reduce the complexity
of the compiler’s task.

155

Guidance

1. Packages should contain as few variables and as little code as possible.

2. The user should aim to minimise data transfer between packages.

3. Variables should be typed with as small a range as possible in order to reduce
storage space and transmission time.

6.2 C PU -PLD I /o
The key point in CPU-PLD I/O is that, in general, there is no clock synchronisation
between the two components. The I/O must take account of this, and hence be more
complex than the inter-package I/O discussed below.

We assume that the access to the PLD from the software is via memory-mapped
I/O, and that within the SPARK program the interface is accessed via a copy of the
specification of the root package. Given this, there are four stages of the data’s journey
to the PLD and back again:

1. between the software and the bus, via MMIO (both ways);

2. from the bus to the PLD’s bus interface;

3. from inside the PLD to the PLD’s bus interface; and

4. from the PLD’s bus interface to the bus.

The apparent asymmetry in stages 2 and 3 is due to the way that the PLD buffers its
input information from the bus, turning it into discrete packets, then after computation
aggregates packets until a complete frame of data may be transmitted back to the bus.

6.2.1 Software-bus M M IO
The PLD access process starts when a subprogram in the software component makes
a call to a subprogram in the root package. As well as the original package specifica
tion, there will be a package body where each subprogram from the specification has
an implementation. These implementations will be responsible for the data transfer
process.

There will also be set of variables, declared using Ada’s fo r X’Address use A
mechanism to map a variable to a specific location in memory. In this case they will
be mapped to the input and output pins of the PLD. There will be four canonical
variables:

TX Transmit byte. Initially zero, increases as the data is copied across.

TD Transmit data, of type Word.

RX Receive byte. Set by the PLD to indicate the progress of copy-back of data.

RD Receive data, of type Word. Set by the PLD.

156

Transmit

The transmit algorithm is as follows. We assume that the input data is held in an
array A : a rray (1..M) of Word.

TX := 0;
— Wait fo r the RX byte to c le a r , showing a ready PLD
while (RX /= 0) loop

delay(1 . 0);
end loop;
fo r idx in range 1..M loop

TD := A (idx); TX := idx;
— Wait fo r PLD to increment i t s counter, showing ready
while (RX < idx) loop

delay (1 . 0);
end loop;
—# a s se r t (RX = Idx) and (TX = Id x) ;

end loop;
TX := 0;

Conventionally the receive code would follow directly. However, the processing of
the data might well take a while. For a program which has a main loop running every
20ms or so the implementer may choose to implement a polling structure and associated
state machine. Note that the use of tasking constructs would simplify this significantly.

Receive

The receive algorithm is as follows. We assume that the output data is held in B :
array (1..N) of Word.

— Wait fo r the PLD to s ig n a l ready
while (RX = 0) loop

delay(1 . 0);
end loop;
fo r idx in range 1..N loop

B(idx) := RD; TX := idx;
— Wait fo r PLD to increment i t s counter, showing ready
while (RX = idx) loop

delay(1 . 0);
end loop;
—# a s se r t (RX > Id x);

end loop;
TX := 0;

This has implemented an asynchronous copy to and from the PLD’s pins. We now
look at how the PLD buffers the data.

157

Bits Meaning
00
01
10
11

No message / end of message
Ignore this packet, message continues
Message body
Message start

Table 6.1: Packet meaning encoding

Variable Bits
TX U = {wi,. • }
TD R = {ri , .. • 5 ^m}
RX V = {vi,.
RD S = {si,.. • 7 7̂1}

Table 6.2: Memory-mapped variable representations

6.2.2 PLD buffering
The above transmit algorithm maps a chunk of data to the input pins of an PLD and
waits for acknowledgement before writing the next chunk. We now need to turn this
data stream into the form used to communicate between packages. This means that we
can compile the root package in the same form as other packages, with a standardised
way of receiving data.

Packages receive data as a stream of packets. Each packet has two marker bits to
describe the data coming in, as shown in Table 6.1.

The packet width must then be at least 3 bits. The 01 packets are intended to deal
with delays in the message chunks arriving at the input pins.

Event representations

We represent the memory-mapped variables with the event sets shown in Table 6.2 and
the input bits of the packet pipeline with P = {p i,. . . ,pjb} and Q = {^1,^2} where
m = X X k. This enables us to guarantee that each set of input data from TD can be
transmitted in exactly x packets. We define functions u , r , v , s to map the event sets
onto representations in N.

Specification for B U F F E R

The BUFFER process must satisfy the specification given in Equation 6.1. The speci
fication captures the key correctness criteria:

1. RX is reset to 0 when TX is reset to 0;

2. RX increments by exactly 1 each time;

3. RX is only ever 0 or 1 lower than TX;

4. the message header bits coming out of Q form a legal message; and

158

5. the message data bits coming out of P exactly represent the data arriving through
TD with each change of TX.

We define the function : N seqB to translate a natural number into
its A;—digit binary representation, least significant bit first. We define the function
concat (S) to translate a sequence of sequences S into a single joined sequence:

concat (S) = (^[«[y]] I 0 < i < #5[i] | 0 < z < # 5)

We additionally define the following abbreviations for predicates and operations on
a trace t:

breaks { t , f
resets {t,u

p a rtitio n {t,S
stepping {t,u
follows {t ,v ,u

validhdr {t,q,k
validftr {t,q,k
validm sg {t,q
h i t s e q { t j , g

uisgseq{t,p ,q

(̂ + 1 I l /] i 7̂ l f] i+l)
(% + 1 I [w]i 7̂ 0 A [w]î+i = 0)
{t[S[k]. . . 5 [A; + 1] - 1] I 0 < A; < # 5)
VO < i • [w]i = [u]i+i V [w]i + 1 = [w]i+i
VO < « < • [u]i = [v]i V [u]i = M i + 1
(VO < z < A: • [q]i = 0) A [q]k = 3
3 m - (V A : < i < m - l < [q]i < 2) A (Vj > m • [q]j = 0)
3 k • validhdr {t, q, k) A validftr {t, q, k)
concat { {Bm{ [f] i) I * G breaks (i, p)))
concat ((5A:([p]i) I {[q]i = 3 V [q]i = 2) A i G 0 . . . #A))

The specification is then:

yt e Tn^BUFFERp
stepping (/, w)

V I G partition {t, resets (A, w)) •
=> 3 A: • resets (/, v) = {k)
A stepping (/[A:...], ?;)
A follows (/[A;. . .] , -y, w)
A validm sg (/, g)
A b itseq { l [k . . .] , r , w) = m sgseq (/, p , q) (6 .1)

Design for B U F F E R

We define a set of SRPT processes to handle the input. SPOT checks the TX value for
changes and signals event n to SIGNAL; event z is signalled instead if TX has changed
back to zero, indicating end of data. SIGNAL breaks the TD value into packets and
sends them off, sending 01 packets and signalling d to ACK if it runs out of data. ACK
sends the correct RX back to the software client once it gets the signal from SIGNAL,
and listens for the z event from SPOT. RD is unused for this part of the communication.

Figure 6.2 shows the processes and connections.
The SRPT specifications of the buffering processes are then as follows. They are

parametrised by possible delays in calculations. Some delays (e.g. e = 0) may be
infeasible for certain PLD architectures.

159

PIPELINE

TDTX RD RX

SPOT ACK

SIGNAL

Figure 6.2: PLD input buffer

S P O T , tU : o{n, z} :
t r u e ,

0) [^]t+2+eiW]t 7̂ [^]t+l ^ 0) [^]t+2+e
[^]i+l — 0) 4^ [z]f+2+e

1
ACKf =

A

L{d, z } : oV :
t r u e ,
{{[z]t A 3 i : [-^d]t...t+i) { [v]t+i+f . . . t+i+f+i = 0))

{{[d]t A 3 i : [~^d]t+i...t+i)

(M f + 1 = [v] t+f+l A [v] t+f+2 . . . t+f+i+l = M f4 - /+ l))

(6 .2)

The SIGNAL process can be split further into HDR and DATA which send out
the header bits and data bits for each packet simultaneously. Note the precondition,
which states that new data signals must not arrive until there has been time to send
out packets for all the current data.

SIGNAL = HDR \\ DATA
HDR = i { n , z } : o{QU { d }) :

I W i => b (n V z)]t+i. . . t+x,

{[n]t A 3 y > x : [-^(n V z)]t+i . . . t+y)

([Çi A q2]t+i A [q2 A ^ q i] t + 2 ...t+x A

[qi A ~'q2]t+x+l. . . t+y) A

([~’d]f+l...t+o; A [d]f4-a;+l A [~~>d]t^x+2...t+y)

A {[z]t A 3 y : [-^n]t+i...t+y) 44

V Ç2 V d)]t+i . . . t+y+i

(6 .3)

D A TA = l{R U {n}) : oP :

160

[Wf [-'n]t+i...t+x,
VI < z < fc-
VI < j < T-

N i ^ {[Pi]t+j = [r (j - i) k+i] t +j - i)

The set of traces of these processes in parallel, with all events other than P and Q
hidden, define a sequence of messages:

BUFFER = l{ U U R) : o{ P U Q U V) :
(S P O T , II ACKf II HDR || DATA) \ {n, z, d}

In Section 6.3 we examine the format of these messages in more detail.

6.2.3 PLD readout
We assume that the root package has made the appropriate computations and updated
its internal state as required, and is now ready to send back the data to its caller. We
further assume that the data is at a fixed location in the package’s local RAM store
and is of a known length w words. The RAM store must be capable of a multi-word
serial read, started with signal s and outputting the word data D = { d i , . . . , dk} for
the subsequent w cycles.

We name the bus interface signals P and Q for data and header bits respectively,
as above. Since there are two header bits, Q = {qi, q2}- If the “start output” signal is
g then the two processes IHDR^ and IDATA will manage between them:

IHDR^ = i { g } : o { s , qi, %} :
[[9] t ^ [~yg]t+i...t+w+3,

[gjt ^
[s A ^{qi,2)]t+i A [- < s] (+ 2. . . t + w +3 A
[~̂ qi,2]t+2 A [qi,2]t+3 A [q2 A ->qi]t+4...t+w+2 A

[* ^ 1, 2] f + i ü + S
] (6.4)

JDATA = lD : oP :
[tru e , VI < i < k - ([d̂]̂ 44 N]m)]

Note that IDATA is a simple PASSk process.
This will send the root package return data along the standard bus to the MMIO

writeback processes.

6.2 .4 W riteback to bus
The final task is to map the return data onto RD in chunks, signalling with RX to the
software routine that the new data is available and checking TX for acknowledgements
that each data chunk has been received.

161

The key difficulty here is that the output data has to be buffered in a local RAM
store since the software can wait an arbitrarily long time to acknowledge each data
chunk. The write-back buffer has to incorporate a store large enough to hold the entire
return message.

D esign

The strategy is to set up one group of processes to parse the incoming packets and
write them serially into RAM, a second group to count when sufficient data has been
written into RAM for the next data chunk to be written out, and a third group to
handle the protocol of communicating with the software.

Note that the RAM has varying bit widths on its ports, k data bits will come off
the input bus each cycle, so the input write port will be k bits wide. If the maximum
length of a return message is 2 ̂ words of k bits then the input write address port will
be y bits wide. The output MMIO register RD is an arbitrary n bits wide, so the input
read address port will be I = [log2(2^fc/n)] bits wide.

Parsing

The first group of processes contains PASS which relays the P = {p i , . . . ,pk} packet
data bits to the RAM data input pins D = {di , . . . , d^}, PASS to pass event Ç2 through
to the serial write start pin w of RAM, and CTRL which increments the RAM write
address register bits A = {ai , . . . , ay} by one each time, starting from zero when a
message start packet comes in.

Let a map the events of A onto N, then the CTRL process can be specified:

CTRL = lQ : oA :
[[qi,2]t ^ 3 Z ' [^2 A ^ q i] t + i . . . t + i A [->gi,2]i+i+i,

[qi,2]t <=> ([a]m = 0) A (Vj < z : [a]t+2+j = 1 + [a]z+i+j)

Counting

The second group assesses when the next write is ready according to two criteria.
Sufficient data must have been written to RAM, and the previously sent TD data must
have been acknowledged.

We can re-use process SPOT to observe changes on TX, signalling event n. We can
use an AND gate on the Q events so that the output signal z signals the start of a new
message sending. In addition we introduce a new process RADDR which outputs the
RAM read address with event set B = {&i,. . . , 6/}. RADDR need not know whether
the correct data has yet been written into the RAM slots being read as long as the
third group ensures that RX is not incremented until sufficient data is in.

If b maps the events of B onto N then RADDR can be specified as follows. Note
that 0 / denotes addition modulo 1.

RADDR = l { z , n} : oB :
[tr u e ,

{[z]t [6]t+i = 0) A

162

{[n A -^z]t A h (n V z)]t+i,„t+i)
[b]t+i...t+i+i = 1 0 / [b]t

C om m unicating

The third group must count the incoming packets to determine when sufficient data
has been input for the RAM output to be valid. It must also check that the software
has acknowledged the last send.

TAP will take events Q (the packet header bits) and event n out of SPOT as
input. It will output the maximum value of RX permissible given this range of valid
RAM contents.

First we need a process EVERYk which outputs signal b once for every k times
that the input a is high. We also need a “semaphore” process SEM which maintains
an internal counter of b events and checks for n events. SEM will send out a d signal
to allow transmission once a n event has been received and the b counter is non-zero.
When the d signal is sent it will clear its n signal receipt and decrement its b counter by
one. This has the effect of signalling d only when a transmission has been acknowledged
and sufficient data has been read.

Note that an initial n event must be supplied when the message sending starts,
since the PLD must take the initiative in the return data protocol. For this reason the
n input into SEM should be O R ed with the message start event z = qi AN D q2 to
produce event m.

Finally, we reuse process ACK from Equation 6.2 to write incrementing values onto
RX. It takes events z and d as input.

TAP is then EVERYi[a\q2] || SEM || ACK || OR[a, 6, c\n, z, m].
To specify EVERYk we need to define a counter state function c() where ra n c =

0. . . ^ — 1, and similarly for SEM we need a counter s() where ran s = —1.. .2^ where
2 ̂ is the maximum number of data packets in a return message. There will be a multi
cycle delay for most values of k in most architectures so we need to specify this with
parameters v,w > 0 îov EVERY and SEM respectively:

EVERYk,v = &{&}: o{b} :
[[c]o = 0,

[u]f ^ ([c]f+v — [cjf+u—1 0& 1)

A ([fl]/ A [c]f = {k — 1))

SEM^

A
A
A

i{m^ b} : o{d} :
[s]o = 0 A V i : {[s]t < 0) =>
[m A ^b]t (M/+W = 1 + [s]/+u;-i A [~̂ d]t+w)
[m A b]t ^ ([s]/+«, = [s]t+«,-i A
[b A -im]f = [s](+w-i - 1 A [~̂ d]t+v})
[~>(6 V V7î)]f 4=̂ ['Sji+u;—1 A

163

V ORSEMACK

EVERY

Figure 6.3: TAP process

w

SPOT

AND

PASS

RADDR

RX

TX

PASS

CTRL

TAP

TD

RAM
ar

aw

dout

din

Figure 6.4: MMIO writeback design

EVERY 2 can be constructed using a toggle switch TOG where holding the input
high over a clock cycle toggles its internal state bit and holding the input low maintains
the state:

EVERY 2 = AND[a, c][b] II TOG[a][c]

EVERY 2k can then be constructed by serial composition of EVERY 2 and EVERY 2k-i.
For values of I which are not exact powers of 2 more complicated arrangements are
required, such as ring counters.

The MMIO writeback processes are shown in Figure 6.4, with TAP blown up into
its components in Figure 6.3.

6.3 Package I /O
Data is passed between packages in the form of packets as described above. There is
one significant simplification possible compared to the input buffering; the data to be

164

sent will be immediately available for writing and immediately able to be received, so
there is no general need for the 01 padding packets. The complication is that several
packages A, B, C may be sending data to package D simultaneously, requiring arbitration.

When package A needs to send a message to package D we assume that the main
package process in A has formatted the message correctly as a sequence of words in the
package internal RAM. The main package process A^MAIN will signal to the “talk
to D” process A-COMM-D that it may start communicating. It will then expect an
acknowledgement signal from A ^ C O M M ^ which may either indicate “data sent” or
“data sent and answer received”.

The scope of this section is the communication between A ^ C O M M ^ and package
D.

6.3.1 A rbitration
For each destination package D there is an arbitration process A R B d which controls
access to D from all packages that may communicate with it. Each of the n client
packages has an access-request signal in A = {r i , . . . , Tn} and an access-granted signal
in G = {^1, . . . , There is also a set of junction routing signals 5 = {si , . . . , Sn-i}-
The function 5 : (1. . . n) then describes the set of junction control signals that
correctly route each client’s data.

The key criteria are that no more than one client may be granted access at once,
and that access, once granted, continues until the client stops requesting it.

A R B d = lR : o(G U S) :
[t r u e ,

[rilt.-.t+j = ^ 3 k > l -

(,[~^9i\t+l...t+k-l A [p A s(z)]f+fc...i+ i+l)

A [Qi a gj]t = j)

6.3.2 Inter-package routing
The routing of data between packages is managed as shown in Figure 6.5. This has
packages A, B, C and D routing data to descendant package E. Each junction routing
signal goes to a junction package Ji which multiplexes data from the client packages
onwards to the destination package, and demuxes the return data to the client package.

For the client-destination data flow we name the input data sets Wi, W2 and the
output data set X. For the destination-to-client data flow we name the input data set
Y and the output data sets Zi,Z2 . Event s is the routing switch: when off it routes
W\,Zi through and when on it routes W2, Z2 through.

The process, for ^-bit wide data sets, is then specified by:

6(Wi,2U y u { g }) : o (X U ^ i , 2) :
tr u e ,

< i < k •

1)

Ji

V i ^ ^ /c '

([(wu A -.s) V {W2 i A s)] t ^ N m]

165

ARB

Figure 6.5: Inter-package routing

A {[y i] t ^ [{z i i A ->5) V (z 2 i A s)]t+i)

6.3.3 Package output
The process A-COMM-D will read in data from RAM, packetise it and send it out
onto the bus in a similar manner to process SIGNAL described in Equation 6.3. The
difference is that the data will be read by requesting a serial copy from RAM, with the
port data width set at design time to match the bus data width, hence no buffering or
change signalling is needed.

A-COMM-D is split into the following processes:

WAIT Waits for the start signal from the package, requests the granted signal from
ARB, then keeps the request active until the result has been received from the
package.

IHDRw Waits for the granted signal from ARB, then kicks off the serial read from
RAM and writes out the correct header bits to the bus. Parameter w is the
number of packets of output data.

IDATA Continually copies data across from the RAM port to the data bits of the bus.

OHDR Keeps a watch on the header bits coming back from the destination package,
starts a serial write to RAM, and once concluded signals the finish pack to the
package.

ODATA Continually copies data across from the data bits of the bus to the RAM
port.

Let the RAM read interface be input event s\ to start a read, output set Di =
{dll , . . . , dik} of data. We ignore any signal that the read is complete since we already
know the message size at compile time.

166

P a c k a g e

Q1

02

P2

D2

IHDR

O D A T A

W AIT

ID ATA

O H D R

A R B

RAM

RAM

DATA

HDR

DATA

HDR

Figure 6.6: Package output

The RAM write interface similarly is input event % to start a write, input set
D2 = {(hi, ■ ■ ■ 1 (hk} of data and input event / to signal that the write is complete.

For the outside arbitration, let r be the arbitration request (which needs to be
held high during the request, writing and returning read) and ^ be the access granting
event.

For the bus output, let Qi = {qn,qi2 } be the packet marker bits and Pi =
{ P i i , • ■ • , P i k } be the packet data bits. Similarly the bus input is Q2 = {^ 2 1 ,^ 22}
for the packet marker bits and P 2 = {P 2 1 , • • • ? P2k} for the packet data bits.

The interface to the rest of the package is input signal s for the “start a broadcast”
request and an output signal / for the “communication finished” acknowledgement.

These processes are illustrated in Figure 6.6. IDATA and ODATA are simply PASSk
processes. IHDRyj has already been defined in Equation 6.4. The other two processes
are specified as follows:

WAIT = t { s , f } : o{r} :
[tr u e ,

{[s]t A 3 z : [-.(5 V f)]t+i...t+i A \f]t+i+i) <=>

]
OHDR = i{qi,q2} ’ o{s2,f} :

[[qi,2]t => 3% : V I < ; < % -

([% A -^qi]t-\-i. ..t+i A [- iqi^2] t+ i+ i) ,

{[qi ,2]t A 3 Î : [q2] t+ i. . . t+ i A <=>
[s2 A -^f]t+i A [->(S2 V f)]t+i...t+i+i A
[/ A -iS2]t+i+2

167

CPU

READ
ONLY

WRITE
ONLY

READ/
WRITE

CONSTANTS

A OUTPUT
B OUTPUT
Q RECEIVE
R RECEIVE

A INPUT
B INPUT
QSEND
RSEND

PACKAGE
GLOBALS

SUBPROG
LOCALS

I/O

o -

o

o

CHILDREN

PARENTS

Figure 6.7: Package RAM layout

6.3.4 Package input
The input in destination package D uses a mirror of the above structure to receive the
packeted data and write it into RAM.

In addition, it will need a START process to set the initial PC value according
to the start ID that heads the data stream, and then monitor the PC store for when
the last PC value is popped off the stack indicating subprogram termination. It must
then kick off the return transmission of the data from the area of RAM storing the
subprogram mode out parameters.

6.4 Package Structure
We have described in detail the mechanism for sending data between packages,
now look at the details of the implementation of the package units.

We

6.4.1 Storage
Key to the operation of each package P are the internal ROM and RAM stores. The
ROM contains the compiled SPARK from the original package subprograms. The RAM
contains all the constant data used in the package (initialised when the PLD program
is loaded), areas for data to send to and receive from inherited packages, areas for data
to receive from and send to packages that inherit P, all the package global variables,
and all variables declared in all subprograms of the package. The last group includes
the subprogram parameters and function return values.

Figure 6.7 is an example of RAM layout for a package P that inherits A and B and
is inherited by Q and R.

RAM has two main parameters: the bit width of each word in it, and the number of
words held in RAM. These can be determined at the interpreter’s compile time and will
depend on the variables in the SPARK package. Wide words will speed up transfer of

168

large amounts of data at the cost of wasted RAM space when many sub-word variables
(e.g. booleans) are stored.

6.4.2 Storage operations
The RAM blocks must be able to implement serial reads and writes of data as well as
individual reads and writes. For the package I/O work we have already seen the serial
interfaces required for effective communication.

CPU access to RAM will be managed by a RAM controller RCTRL. This must be
able to implement the following operations:

1. serial read of N words starting to read from address A;

2. serial write of N words starting to write at address R; and

3. internal copy of N words, starting to read at address A and starting to write at
address B.

The reason for the final operation is that both subprogram calls and plain assign
ments (i.e. with a variable or constant as the rvalue rather than an expression) are
effectively copy requests. In our I/O model, subprogram calls require mode in vari
ables to be copied into the RAM slot representing the subprogram parameter, whether
in this package or in an inherited package, and mode out variables to be copied back
out. Doing this copying as a basic RAM operation is an efficiency measure.

With the following event namings, RAM width I, RAM word count 2 ̂ and RAM
state functions 5̂ : N FR, Sw : N ^ PW we can specify RCTRLk^i. We use the
abbreviation that [A]t means “the subset of A events present at time

A = {ai , . . . , ttk}, a : F A N
B = {bi, . . . ,bk},b : F B N
N = {t2i, . . . , n̂ ;}, n : PA ^ N
R = { r i , . . . , n }

W = {wi,...,W(}
C = {ci, C2}

RCTRLk,i = i { A u B U N U W U C) : o{RU{d}):
[([ci V C2](A 3 i => [->ci^2\t+i...t+i,

[ci]t VO < j < [n]t •
iWt +j+2 = [Sr{j + [^]t)]t+j) A ([s]t+j+2 = W O

A [C2 A -iCi]t <=> VO < j < [n]f -

Wf+i+i = ® ((i + [-^10 ^ [^]t+j))
A [ci,2]t ^ y 0 < j < [n]t '

[s]t+j+2 = W<+i+i ® (Ü + [-^10 [^0 +
A [ci V C2]t {[-^d]t+i..A+[n]t-l A [d]t+[n]t)

169

Bits
ÔÔ“
01
10
11

Meaning
Do nothing
Push the PC value on N onto the top of the PC stack
Pop the top item off the PC stack
Change the top item on the PC stack to the value of N

Table 6.3: PC action encodings

C are the control bits selecting the operation. ci represents a serial read, C2 rep
resents a serial write and the two C events together represent a copy. The above
specification, by delaying read output by one cycle, allows for an extra step whereby
the implementation may treat a copy like a read and a write in parallel, but internally
route the read output into the RAM write data port instead of routing the W events.

d is the “operation complete” bit. The precondition states that, once a command
is given, no further commands are given until the “operation complete” is signalled.

6.4.3 Program storage
There are three components to manage program storage. The ROM itself stores the
compiled SPARK code in fixed-width words. Data is read out by the program counter
process PCfc. This maintains a current PC value, but can also store up to k other PC
values in a stack for use when there are internal subroutine calls. The stack size can be
bounded at compile time because SPARK’s ban on recursion means that the longest
subprogram chain can be statically determined and in any case is no longer than the
total number of subprograms.

PCk outputs the PC to ROM with events P = {pi, . . . ,pk}- It has input events for
a new PC value N = {%, . . . , %}, PC increment request i, and control input events
(7 = {ci, C2} with the encodings shown in Table 6.3.

SNIP waits for event r to command a read. It then checks the instructions coming
out of the ROM, signalling i each time to get the next piece of data, and when the
end of an instruction arrives stops signalling i. The data is output using the event set
Q = { qi, ■ " ■) Qy} where y is the standard instruction set data item width. Since event
d is the negation of i, d will then be signalled back to the CPU.

We specify PCk as follows. We will hold over the definition of SNIP until Sec
tion 6.4.5 when we specify the instruction set. We define functions n() and p{) to
translate the input and output counters into N. We also define state functions c : N
and function pc : N h->- N so that pc{j) gives the program counter at location j in the
stack, with the top of the stack at location c.

PCk = 6({%} U N u C) : o P :
[[ci V C2]t

h (c i V C2)]t <=>

([c]f+i = [c]t) A ([pc]i+i = [pc]t)
A [ci A ->C2]t ^

([c]f+i = [c]t + 1) A ([pc]f+i = [pc]t © {[c]t+i ^ [n]t))
A [c2 A -'Cijt

170

IN V

SNIP

PC a d d r

d a t a

ROM

Figure 6.8: ROM and PC store

([c]i+i = [c]t - 1) A i[pc]t+i = [pc]t)
A [ci,2]i

([c]f+i = [c]t) A {[pc]t+i = [pc]t © ([c]t [n]i))
A [%]; <=>

([c]f+i = [c]t) A ([pc]t+i = [pc]t © {[c]t 1 + [pc{c)]t))

1
Figure 6.8 shows the relations between the program storage components.

6.4.4 Expression evaluation
Expression evaluation is managed by custom expression blocks. These take a stream
of data bits as input and produce a stream of data bits as output. There may be any
number of expression blocks in a package.

Control of the process is managed by the write-data signal w and the process-data
signal g. w sets the data in RAM to the input D. This data is output in the next step
to the event set A. A multiplexer MUX routes the w and A events to the expression
block selected by the events E from the CPU.

The expression blocks themselves take a “start” signal gi and input data set Ai as
inputs, and give out a “finished” signal hi and output data set Bi. Their implementation
will depend on the particular expression. The developer may choose to design them by
hand in order to take advantage of PLD features.

Once the expression block has finished, it signals hi and outputs its data on Bi.
This is routed to the output RAM via DMUX, again controlled by E.

Note that the other components are constructs which we have come across be
fore and do not require specification. Figure 6.9 shows how the expression evaluation
components fit together.

6.4.5 C P U instructions
The instructions from the ROM, previously referred to, are fed by the program store
to the CPU. They are key to the control path of the package.

171

EXP2EXP1

DMUX

MUX

CPU

Figure 6.9: Expression blocks

Bits Meaning
00
01
10
11

End of instruction (no-op)
Continuation of instruction sub-component
Start of instruction sub-component
Opcode

Table 6.4: Word type encodings

An instruction consists of a sequence of y-hit words, fed to the CPU from the
program store with event set Q. The sequence will always start with an opcode, which
may then be followed by any number of sub-components such as addresses and data.

This section breaks down the decoding and execution process of the instructions.

Encoding scheme
Each word in ROM uses its top two bits to indicate the type of the data in it, according
to Table 6.4.

The end of each complete instruction is signalled by a word with zero headers bits.
We can now specify the SNIP process from Section 6.4.3. It need only check the

top two bits of the data coming through. As long as they are not both 0 it will continue
to raise event i, incrementing the PC to get the next part of the instruction. As soon
as they are both 0 it will cease to signal i.

SNIP = i { Q U { r }) : o { i } :
[true, ([r], V V qi]t)

172

Opcode Arguments Meaning
NOP - Do nothing
DEPON id : E Instruction depends on id
COPY I : D, s ,d : A Copy I words from s to d
LOGIC op: E, { Œi} Evaluate logic operator
CMP op : E, a, b : A,

I
id : E

Compare a and b of length I

SUBEXT Subprogram id call
LOOP - New loop marker
LPEXIT a : P Exit current loop, skip PC to a
LPRET - Return to loop start
IFELSE { Oil A, pii P } if-then-elsif
EXEVAL id : E Evaluate expression id
EXWRT I : D,s : A Copy I words from s in RAM to expres

sion input block
EXREAD I : D,d : A Copy I words from the expression out

put block to d in RAM
SUBJMP a : P Jump to local subroutine at a in ROM
SUBRET - Return from subroutine, restoring PC
IDXRD s : A, i : A, t j :

d : A
Indexed read from s to d

IDXWRT s : A, i : A ̂ :
D, d : A

Indexed write from s to d

Table 6.5: CPU Opcodes

Instruction O pcodes

Table 6.5 lists the possible opcodes for the ROM instructions. The ROM output must
be wide enough for each instruction to be identified uniquely in one word, including
the aforementioned two header bits.

In the table, A denotes an address in RAM, P a program counter value, E an
enumeration and D a data chunk. { X } denotes one or more instances of X.

Each opcode has a condition flag bit C. If set, the opcode is only executed if the
current CPU condition fiag is set.

Not all these opcodes need be implemented. At compile time, if an opcode is not
present in the compiled program then it and its associated components need not be
put into the package.

D ependencies

The first opcode of a message may be DEPON. The following word gives the ID of an
instruction which must complete before the current instruction can start. This is useful
for starting a long operation (e.g. external subprogram call), processing data in the
meantime, but having the facility to block when the long operation’s data is required

173

but unavailable. Any number of instances of this opcode and its data may be present
at the head of a instruction.

The set of dependency IDs are mapped to the different operation blocks in the CPU
core, therefore correspond to an instruction’s opcode.

If the main opcode has its conditional bit set then the conditional bit in DEPON
must be set too. This will have the effect of throwing away the entire instruction before
any dependencies are checked.

The DEPON opcodes and their data are followed immediately by a normal instruc
tion and its data.

O pcode D escriptions

COPY is a direct command to the RAM to copy I words from address s to address d.
We have already seen that our RAM components implement this directly.

LOGIC takes an operand identifier op, which selects an n-ary logic operator, and
applies it in sequence to the data at the specified RAM addresses. The result (t rue
or false) is assigned to the CPU conditional flag.

CMP takes an operand identifier op which selects one of the six numeric comparators
= , /=, <, <=> >> >=, two addresses a,b identifying variables and a word count I.
The variables are evaluated against each other as if they were unsigned integers of the
appropriate length. The result is assigned to the CPU conditional flag.

SUBEXT calls a subprogram external to the package, id identifies the destination
package and the necessary message header data

LOOP identifies the start of a new loop. It pushes the current program counter
onto the PC stack, leaving the stack topped with duplicate values v. v will then be
the PC address of the first instruction in the loop.

LPEXIT jumps out of the loop by popping the top value off the PC stack and then
setting the current PC value to a.

LPRET returns to the top of the loop by popping the top value off the PC stack,
reading the next PC value, and pushing it back onto the PC stack to have duplicate
values as in LOOP.

IFELSE takes a string of RAM and PC addresses. If the value at ai is non-zero then
the PC jumps to pi. Otherwise the value at 02 is examined, and so on. A catch-all else
can be implemented by specifying the last as the address of a non-zero constant.

EXEVAL uses id to select routing to the expression blocks as described in Sec
tion 6.4.4, then signals the expression block to evaluate the current set data.

EXWRT reads I words from address s in RAM and writes them into the expression
input RAM block.

EXREAD reads the expression output RAM block and writes the I words into address
d in RAM.

SUBJMP is an internal subroutine jump. It pushes the specified PC value a onto
the PC stack, making the CPU execute instructions from a onwards.

SUBRTN returns from the internal subroutine by popping the top value off the PC
stack.

IDXRD reads the number from address i, multiplies by t words and adds to s before
reading I words from the resulting address and copying them to d.

174

IDXRD reads I words from s then reads the number from address i, multiplies by t
words and adds to d before copying the read words to the resulting address.

6.4.6 Instruction decoder
The first stage of the pipeline coming out of the ROM store carrying the instruc
tions handles dependency stalls and opcode selection. At the end of this stage of the
pipeline the instruction’s dependencies have been met, conditional instructions have
been checked and dropped if the condition is not met, and the instruction’s data (if
any) multiplexed to the correct control unit with an activation signal.

For clarity we define a “valid instruction form” function [m{A)]t..,t+i. This is read
as “the message formed by the events in A from time t through time Z + %isa valid
instruction according to the restrictions in this section”. There are corresponding func
tions m'O and m"() which respectively describe messages without leading dependency
lists and with a dependency ID moved to the back.

The conditionals are checked first. COND takes lines Z out of the ROM store and
CPU conditional status line v out of the CPU core as inputs. If v is clear (meaning
“last CPU condition evaluated to false”) and an opcode pattern in Z is conditional
then the rest of the instruction is thrown away, up to the first word with header bits
00. Additionally signal u is sent to the CPU core, meaning “conditional instruction
not executed” so that the core can request the next instruction from ROM.

The specification of COND assumes that the conditional bit of an opcode is bit c.

COND = i{Z U { v }) : o{A U {%}) :
[[m{Z)]t...t+i,

c]t A [-iv]i) {[u]t+i A hao,i]m...t+i+i)
A ([%]; V ->[2b,i,c]f) =>

[m{A)]t+i...t+i+i A V1 < j < (z 4-1) •
[{ûQ) • • ■ 5 ~ • • • 5 ■2'n— 1

The decoder takes the lines A out of COND, where oo,i are the header bits, and
processes the dependency stalls in DEPCODE. This outputs unstalled data to DECID
along lines B. Any required dependency is queried along lines P, and signal p is received
once the dependency is satisfied.

The new decoding processes are specified as follows. We define the function opcodeA,p{X)
to map the subset A of A to the equivalent opcode encoding in P, ignoring the condi
tional fiag.

DEPCODE is parametrised by the length of an internal buffer which it uses to
store a blocked message. The precondition of DEPCODE/^ states that there is some
number A; > 0 of dependencies in front of each message, and the message less its
dependencies is still a valid message.

The postcondition states that if there are no dependencies then it is passed straight
through in N+1 steps; if there are dependencies then it must signal the first dependency
ID, then a p event must occur before any message can be passed through.

DEPCODEm = l(A U {p}) : o{B U P) :

175

[[m{A)]t...t+i A 3 k :yO < j < k : [m{A)]t+2j...t+i,

([flo,i]t A opcode A,p {[A] t) = DEPON)
[opcodeA,p{[A] t+i)] t+N+i A

i h p \ t+ N . . . t+ N + d A [p]t+N+d+l) =>

V s ([??2^(R)]g A s]> (a + A)) =4* (s > i + A + d + l)

A “ >([oo,i]i A opcodeA,p{[A]t) = DEPON) =4>

[m'{B)]t+N+i. . . t+N+i+i A

[{^Oj • • • j ^n—l}]t+ i\r + l...f+ A T + l+ i —

• • • 5

]

DECID registers the dependency id, then passes the instruction along C to the
opcode decode OP.

DECID = lB : o{C U D):
[l‘m'{B)]t.. .t+i,

[bo,i]t ^ [opcodeB,D{[B]t)] t+i

A (“ '[&o,i]f) <=> [o p c o d e s , D W] t + i

A [{ ^ 5 • • • 7 ^n—l }] f + l [{^Oj • • • 5 ^n—l }] f

A [m" {C)]t+i. . . t+i+i

OP produces the control lines E and data lines P U { s } routed into the multiplexer.
The s event is the “operation start” signal. The multiplexer then routes the data along
the correct route O* to the operation’s particular processing block.

The OP process has a relatively simple specification. The condition on [co,i]f is not
strictly needed as it is implied by the precondition of a well-formed message, but it
aids clarity. Here we specify OPk with a delay A: > 1.

OPk = iC : o{E U P U {s}) :

[co,i]t ^ [s]t+k

A • • • 3 Cn—3,y]t+k.. .t+i+k ~ [{^2, • . ■ , l }] f

A [{ /0 3 • • • 3/l}]f+fc = {O3 0}
A V 1 < j < i :

[{.^3 • • • ̂fn—iy\ t+ j+k — [{Q33 ' ' • 3 n̂—l}] t+ i

Process REG acts as a dependency register. Input lines D are used to note that an
instruction with ID di has gone through. Input lines H are used to note that CPU block
hi has completed. REG has the internal state function & : N —> B identifying whether
each instruction ID has gone through and not been acknowledged. State variable I : N
stores the last dependency ID query received through P.

176

MUXCORE

C O N D

ROM

REG

OP

DECIDDECODE

Figure 6.10: First stage of CPU pipeline

REGk is parameterised by its delay A: > 1.

REGk = t{P U H U D) : o{p} :
t r u e ,

V i :

A

Hit

Hit

= [s © [i ^ t r u e)] f A

Figure 6.10 shows the decoder pipeline flow.

6.4.7 C P U im plem entation
Specifying each component of the CPU core here would be a laborious process. We
have already made formal speciflcations for the key components with which they com
municate. In this section we outline the generic method of operation.

A core component receives data from the decoder multiplexer. Start of data is sig
nalled by a high on start wire d. The data itself comes in standard packets (with header
bits 10 for start of item and 01 for item continuation) on wires G = {g'o, • • •, 5'n-i}-

The input data will typically be stored in one or more small blocks of RAM or in
flip-flops, as required. As each part of the instruction is received the component will
change state to route the next instruction part appropriately. The actual computation
may involve communication with RAM, the ROM store, the PC store or external
package interfaces.

The dependency analysis in the compiler and decoder guarantees that the compo
nent will not be in the middle of computation when the new data arrives. It does
require that the component signal on output h once the computation is complete and
all output data has been sent to the appropriate destination. This signal h will end up
at the REG process.

177

ST

D2

MUX

ANDREG

MUX

Figure 6.11: CPU core component

Figure 6.11 illustrates a generic CPU core component. State machine S T receives
the start signal and controls the routing of MUX to direct the instruction packets to
the appropriate destinations. Block A l builds up an address and does a read request
of external block FI, which might for instance be RAM or the PC store. Data is
eventually returned into Y, which processes it and passes to X, where it is used as
the address for a write to external block F2 of the data built up in D2. Completion is
signalled once S T has seen the end of the message and block F2 has signalled success.

6.4.8 O pcode sum m ary
With the preceding work we have produced a substantial and detailed design for a inter
preter of the instructions defined in Section 6.4.5. The interpreter contains mechanisms
for asynchronous communication with client software and for synchronous communi
cation between component packages. The design has a range of parameters relating
to processing delay and bit width of communication channels, and allows removal of
components which are not needed for a particular program.

We assert that this interpreter is suitable for running a compiled version of a se
quential SPARK 95 program. To demonstrate this, in Section 6.5 we detail how the
SPARK Ada constructs are mapped to sequences of interpreter instruction codes. We
also show how the control- and data-flow properties of a SPARK program validate a
range of assumptions made in the interpreter design.

6.5 The Program M odel
In Section 4.3 we described the SPARK Ada language and the SPARK Examiner
enforcing tool. We now describe how to map valid SPARK programs into the interpreter
that we have defined.

For the rest of this chapter, “a SPARK program” should be taken to mean “a
sequential Ada 95 program which conforms to the SPARK language definition and
which is free of exceptions.” In practice this normally means a program which passes
the SPARK 95 Examiner checks, and for which the run-time checks generated by the
Examiner (using the -exp switch) are all proven free of exceptions.

178

There are legal SPARK programs not allowed by the Examiner, and also illegal
SPARK programs allowed by the Examiner. Clearly, the latter are potentially serions
if part of a safety-critical system, since the Examiner’s acceptance may lead to undue
trust of the program. However, the known cases of this problem over the years of
commercial Examiner use have been relatively small in number. Each project’s safety
authority will have to make their own judgement on the reliability of the Examiner.

6.5.1 Types
Basic SPARK types are subsets of integers, fixed-point or floating point numbers,
and characters. Enumerated types can be viewed as integers where no arithmetic is
normally performed.

Compound SPARK types use the array constructor, with integers or enumerated
types as indices and any other types as the element type, or the record constructor,
with field names as indices.

The interpreter has one form of type: a sequence of a fixed number of words. Word
size is fixed within a package. The sequence length depends on the original SPARK
type, and in the case of compound types will normally be the sum of the lengths of
the components of the component types. Basic types will be stored in a non-negative
integer number of words within a package.

As an example, the SPARK basic types:

type N i s range 1 ..300;
type E i s (Red, Amber, Green);

are represented in a package with word length of four bits by sequences of three and
one words respectively.

The SPARK compound types:

type R is record
A : N;
B : E;

end record;
type A is array(N,E) of R;

have sequences of 4 and (300 x 3) x 4 = 3600 words respectively. A “slice” of the array
A, selected by the first index only, would be 3 x 4 = 12 words.

The remaining difficulty is in indexing into a compound type. Indexing into a record
is easy since all record fields and sizes are known at compile time, so the offset and
length of the component are known. Indexing into an array is more difficult since the
index is not generally determined at compile time.

The interpreter IDXRD and IDXWRT instructions are designed to allow this. Mul
tiple indices require multiple uses of the instructions.

As an example, if the variables X : A ; Y : N ; Z : E were stored at locations Oo,a\,cu2

in RAM, then the assignment W := X(Y,Z) ; would be accomplished by the following
sequence:

IDXRD aO a l 12 4 a4 # s to re X(Y) in T
IDXRD a4 a2 3 4 aS # s to re T(Z) in W

179

where W was stored at location % and «4 held a temporary variable of size array (E)
of R.

Given this, we see that we have the mechanism for determining type size in package
words at compile time. Differing word sizes between packages are irrelevant since
the inter-package pipeline transports data at a packet size independent of source and
destination word sizes.

6.5.2 S tate
SPARK program variables are made visible either when a package is elaborated, or
when a subprogram is called. Each variable is associated with a named type (see
above) and may have an initialised value. Each variable has a unique fully-qualified
name.

Variables in the interpreter have a fixed location in the RAM of their containing
package. All of their locations and word sequence lengths are determined at compile
time. The safest strategy makes all variables disjoint. SPARK’s ban on recursion
removes the need for a dynamic variable stack.

However, it is possible to optimise RAM usage by allowing certain subprogram
variables to overlap. Variables from subprograms P and Q can overlap if there is no
subprogram calling sequence which allows Q to be called directly or indirectly from P
or vice versa.

All package variables are initialised at interpreter programming time, to 0 unless
an explicit initialisation is given in the SPARK. The SPARK Ada rules remove the
elaboration order problems with Ada and allow package variable initial values to be
determined during static analysis.

Subprogram variables which are initialised at declaration must be explicitly ini
tialised at the start of the compiled version of the subprogram. Space must also be
allocated for subprogram parameters, both in and out.

Constants are treated as variables but placed in the section of RAM which is read
only to the package core.

6.5.3 Expressions
A SPARK expression combines variables, function calls and literals to produce an
output of a type that is known at static analysis time. Expressions are either static
(can be determined at compile time) or non-static. We shall ignore static expressions
since they will be reduced to literals at compile time.

Expressions may occur in the following places:

1. on the right hand side of an assignment or declaration;

2. as an input parameter in a subprogram call;

3. as an index in a component reference (e.g. an array);

4. as the selector in a case statement;

5. after the re tu rn at the end of a function;

180

6. within a type conversion; or

7. after an i f or e l s i f , as a boolean condition.

The simplest expression is a numeric literal. This will be stored in RAM in the same
way as a declared constant. Note that the type of the literal is known at compile time,
so 5 : range 0 .. 7 and 5 : range 0 . . 9999 will be stored in different locations
since they are “different 5s”.

Another simple expression is a single variable or constant name, possibly with record
selectors following. This can be handled entirely within RAM by the COPY instruction
since the variables’ addresses and length are known immediately.

A more complicated expression is a variable or constant with one or more array
selectors. In Section 6.5.2 we saw that the IDXRD could be used to emulate this.
Similarly IDXWRT can be used to emulate assigning to an array-selected component
of a variable.

Boolean expressions (such as those after i f statements) consist of one or more
boolean sub-expressions separated by logic operators. The LOGIC instruction provides
a shortcut to evaluating n-ary boolean logic, and additionally sets or clears the CPU
conditional flag which we will later find useful.

Numeric comparisons are done with CMP which works in a similar way to LOGIC.
It can also meaningfully compare two variables (of the same type) for equality or non
equality.

Type conversions are not trivial, since they may move data between word sizes.
s p a r k ’s run-time exception checks ensure that the conversion is always valid (5 can
never be converted to a variable of range 0 . . . 4, for example), but the conversion itself
is an arithmetic problem.

Expressions may incorporate function calls, but the SPARK rules mean that there
are no side effects (the functions do not change the values of any variables) and all
variables used by the function, directly or indirectly, are known. These expressions
will be rearranged by the compiler so that the function call occurs first, saving data to
a temporary variable, then that variable replaces the function in the expression.

Expressions within subprogram calls will need to be saved to the variable corre
sponding to the appropriate subprogram parameter.

Arithmetic expressions are difficult. The general solution is the use of expression
evaluation blocks within the CPU; each arithmetic expression in a package subprogram
will normally need its own block. The EXxxxx instructions allow writing to, execution
of and reading from these blocks.

The logic for an expression block may be produced automatically by the compiler;
the normal Ada arithmetic and logical operations will have a library of blocks pre
defined, parametrised by argument type size. We have already seen an adder; other
arithmetic blocks can be produced using well-understood programmable logic designs.

Alternatively the developer may choose to produce a manual design, refining the
required specification in the process described in Chapter 5. This may confer perfor
mance and space benefits, at the cost of increased development time and chance of
error in the refinement.

181

6.5 .4 A lternation
There are two SPARK forms of iteration: i f - th e n - e ls i f - e l s e and case. The latter
can be treated as a special case of the former.

The IFELSE instruction is the key to emulating alternation. It contains a list of
boolean variable addresses paired with PC values to jump to. A terminating “else”
can be emulated with the address of a constant Boolean true. The set-up to IFELSE
will normally be a series of expression and boolean evaluations matching the various
conditions.

6.5.5 Iteration
The interpreter supports loops with the LOOP, LPEXIT and LPRTN instructions.

SPARK loops come three main forms:

1. fo r loops iterate an index variable through a sequence of values; these are equiv
alent to a conditional loop preceded by an initialisation of the index variable with
the first statement of each loop being an index variable.

2. while loops have a boolean condition which is checked at the start of each loop
iteration, and which if met will cause immediate loop termination.

3. plain loops have no condition and nominally loop forever.

Loops may also have e x it statements within them, which may or may not be
conditional. These exit out of the immediately-enclosing loop.

LOOP sets up a loop in the program counter by marking a PC value as the start of
the loop. LPRTN returns control to the start of the loop, and will therefore be the last
statement in the compiled loop block. LPEXIT will break out of the loop. Together
then these allow emulation of the SPARK looping constructs.

6.5.6 Subprogram calls
Internal subprogram calls are made by writing the parameter data to the mode in sub
program parameter addresses in RAM, then calling SUBJMP to push the subprogram’s
start address on the PC stack. At the end of the subprogram SUBRTN will restore
the PC, and the new mode out parameter values will be read from the subprogram
parameter addresses.

External subprogram calls are made by writing parameter values into the appropri
ate area of (write-only) RAM and then using SUBEXT to identify the external package
and subprogram to call. The details of I/O to other packages were given in Section 6.3.

6.5 .7 Order o f execution
A sequence of statements in a SPARK program are executed strictly in order by a con
ventional Ada compiler. In fact, this need not be the case. The data flow information
gathered by the SPARK Examiner allows the compiler to determine that one or more
statements may be executed simultaneously.

182

The instruction dependency features of the interpreter can be used conservatively
to make each instruction dependent on its predecessor, and this is the recommended
process when testing the newly-compiled software. Out-of-order computations must
be carefully calculated.

Two sequential instructions I i , I2 cannot be executed in parallel if:

1. I\ affects the conditional flag and I2 is conditional;

2. Il and I2 both write to the same package resource;

3. I\ reads from a resource that I2 writes to, or vice versa; or

4. Il and I2 are handled by the same core component.

All these conditions can be checked by the compiler, but add complexity and hence
increase the chance of a compiler error. The interpreter is deterministic, so at least
errors should be repeatable and hence not so hard to track down. Still, it is better to
avoid errors in the first place.

6.6 System Interface
As noted in Section 6.2, Ada provides methods for communicating with entities out
side the conventional CPU and memory model. It would be reasonable to allow the
interpreter to communicate directly with these entities rather than having to let the
CPU do the direct communication and pass data between them.

One solution is to use the package input mechanism given in Section 6.3.4, but
couple it to custom logic that controls the device’s input and output pins directly. This
has the benefit of being encapsulated by the normal interpreter package mechanism,
but does mean that it cannot interrupt the normal program control flow. Instead there
has to be an explicit call to the package for the main program to have access to any
data that is gathered. However, the data gathering can run in parallel with the rest of
the program.

Another solution could involve an extra expression block in a conventional package,
hiding the external interface. This removes the inter-package connection overhead at
the cost of potential unconventional CPU core component behaviour.

The exact solution for a particular project is a project design decision.

6.7 O ptim isations
The above model is relatively slow and unoptimised. Compared with a conventional
compiler/CPU combination its potential advantages are the out-of-order execution and
parallel computations. It will suffer from the overhead of being in programmable
logic rather than an ASIC, and likely to run at perhaps one twentieth the speed of a
conventional CPU for a relatively narrow bus width.

The key to performance gain is to use what the model is good at. Writing data to
the PLD, and reading data back from it, can be done at a relatively high burst speed
(depending on the system bus). The PLD can process this data while the main CPU

183

executes the rest of its program, polling the PLD to see when the processed data is
ready. This takes load off the main CPU, increasing system performance.

Section 6.6 showed how part of an PLD program could be customised to monitor
off-PLD signals. This too can reduce CPU load.

Designing the system architecture is necessary early in the system development
process. The designer needs to decide what tasks PLD programs should take from
the CPU. Once this is done, the PLD implementation can vary without the main
program design needing to change. This is important since it is not yet apparent how
one can predict overall system performance with confidence without a mostly-working
implementation.

Optimisations of a particular implementation will normally include removal of re
dundant components and adjusting word and bus widths. The latter appears to be
more of an empirical process than an analytic one. At the moment we have no heuristics
for identifying implementation bottlenecks. This area is open for further research.

6.8 Conclusions
This chapter has seen a design and outline implementation of a sequential SPARK
95 interpreter running on a generic PLD, intended for running PLD programs of low
criticality.

6.8.1 A chievem ents
We placed no artificial limits on the set of SPARK 95 programs that the interpreter
could execute. The limitation of no nested packages was for clarity of exposition,
and could be removed by careful management of the name spaces while compiling the
top-level package.

We showed that the control and data flow within SPARK could be emulated by a
relatively small set of primitive instructions. We produced a detailed mechanism for
asynchronous transfer of data between a software SPARK program and the SPARK
interpreter. We also produced a mechanism for synchronous transfer of data between
package blocks on the PLD.

We made no detailed estimates of the practicality of implementing the design, or
of the compilation errors that could plausibly occur.

6.8.2 Evaluation o f SPA R K
We found the following SPARK features, enforced by the Examiner, key to our design:

1. recursion banned;

2. package ordering in a directed acyclic graph;

3. known data flow of subroutines;

4. exits from loops only possible in immediately-enclosing loop;

5. compile-time knowledge of type sizes; and

6. ability to show freedom of programs from run time exceptions.

184

6.8.3 Evaluation o f S R P T
The SRPT notation proved useful in specifying the input and output events of pro
cesses and their relationships. The pre- and post-condition specifications varied in their
clarity. There is scope for improved notation and conventions to reduce the size and
complexity of the specifications without reducing their precision.

The key test of the notation will be when processes are implemented from their
specification. In Section 7.2 we translate the relatively simple stateless processes of
the Carry Look-Ahead Adder into gates, but the more complex state-holding processes
of the SPARK interpreter are an entirely different problem. This is an area open for
further research.

6.8.4 Satisfaction o f target aim s
Of the targets in Chapter 3 we have addressed or partially addressed:

Target 1: The process we define must he rigorous.
This is partly addressed; SPARK programming is a rigorous process, and the in

terpreter design has been given in an unambiguous notation (SRPT). However, we
have not produced any rigorous demonstration that the interpreter correctly executes
SPARK, and indeed have stated that the attainable integrity of the interpreter is not
sufficient for critical applications.

Target 2: The process must help the developer to write unambiguous programs.
This approach allows PLD programming in SPARK, and SPARK programs are

unambiguous. The SRPT specification of the interpreter is unambiguous, and so an
interpreter implementation which satisfies the specification will likewise run programs
deterministically.

Target 3: The process must allow the programs to have sections written in a
low-level language for speed and flexibility, but not allow these sections to compromise
overall program reliability.

The interpreter design allows arbitrary connection to other PLD components as
long as they implement the same I/O interface as the interpreter modules.

Target 4- The process must admit substantial static analysis to discover semantic
program errors at or before compile time.

SPARK programs may be subjected to static analysis via the use of the SPARK
Examiner.

Target 10: The process should provide flexibility so that it may be used in situa
tions not anticipated in its original design.

The interpreter design provided is parameterised and modular, allowing individual
modular designs to be modified as and when necessary and desirable (within limits
imposed by communication protocols and PLD architecture.)

6.8.5 Follow-on
This chapter has not gone into great depth for each of the interpreter components for
reason of space and chapter focus. The key measure of feasibility is whether such an
interpreter can actually be implemented, and whether its performance is comparable
to a conventional CPU. This requires further work, and hence this study is listed as a
possible future item of research in Section 8.4.3.

185

Chapter 7

Case Study

This chapter brings together the work of the preceding chapters and shows how it can
be used to solve a simple yet realistic problem.

There are two phases to the study. The first phase is a validation of the SRPT
specification work. Based on the high-level SRPT specification in Chapter 5 we develop
and validate “building-block” processes, then implement the Carry Look-Ahead Adder
design. We implement this design in Perl, measure its size and assess its performance.

The task of the second phase is to produce an embedded system to control a ballistic
missile interceptor. As far as possible, we use development and analysis techniques
described as suitable for SIL-3 systems by MoD Defence Standards 00-55 and 00-54
[MoD97, MoD99].

7.1 Target Aim s
We address the following targets from Chapter 3:

Target 5 The program produced must be easy to test.

Target 6 It must be able to be compiled onto a range of existing and anticipated logic
devices.

Target 7 It must reuse existing proven tools where feasible.

In addition we consider the question of the practicality of development of significantly-
sized systems.

186

7.2 Carry Look-Ahead Adder
In this section we present the construction of a general-purpose simulator for a generic
single-clock synchronous PLD. We then show how it was used to implement the design
of a carry look-ahead adder (CL A A) from Section 5.3.

We do not aim to make the simulator implementation conform to SIL-3 or SIL-4
software standards. Instead, we treat it as a testing tool; we require confidence that
it fulfils its requirements accurately, and that it has been constructed in such a way
as to highlight errors in its design and implementation. It should provide an overall
increase in confidence in the circuits it simulates, but will not provide the sole evidence
of correctness of the circuit.

7.2.1 Sim ulation environm ent
The environment used was the Perl programming language. This was chosen for its
ease of use, cross-platform compatibility and support of 0 0 inheritance. Java was an
alternative choice but the author had more experience of Perl.

Structure

The base Perl modules used by the simulator were:

Blocks.pm Generic blocks

Gates.pm Logic gates (single-cycle, stateless)

Utils.pm General utilities for conversion between data types

Functions.pm Logical functions for logic gates

The first two modules in the list implement object instantiation in the standard
Perl way. The other two export functions for use by other modules, and are stateless.
All of them raise no errors under the Perl -w and use s t r i c t syntax checks.

Program m ing interface

The Blocks module implements the following methods:

new(specs) Initialise a new block with the given specs

gate_count() Count the number of gates in the block

copy (old) Copy an existing block old

set_in_map(map) Set the mapping of input pins to inputs inside the block

set_out_map (map) Set the mapping of outputs inside the block to output pins

se t_ ro u te (route) Set the routing between internal blocks

map_in() Map input pin values onto the relevant inputs

187

map_out() Map output values onto the relevant output pins

s e t_ in p u t(id x ,b it) Set input pin idx to b i t

get_outpu t(idx) Get the value of output pin idx

get_delay() Get a block’s computational delay

evalO Evaluate internal blocks and gates

route 0 Route data between internal blocks and gates

add_object (obj) Add a block or gate obj to the block contents

cycle () Cycle a block (map_in() ;ev a l() ;map_out() ; route ())

Testing

The modules’ code has been tested by comparing the results of computations with
results worked out by hand in a range of blocks. This would clearly be inadequate for
a tool intended to support SIL-3 software development, where such techniques such
as white-box testing, regression testing and independent code review might be used.
General testing and validation strategy is discussed further in Section 7.2.5.

7.2.2 B uild ing blocks
The first step towards allowing module building was to define a range of logic gates in
the Gates and Functions modules. Each of these was taken to complete its calculations
in 1 cycle. Most gates had 1, 2 or 3 inputs. The exceptions were n-ary a n d , o r , pass
and xor gates in the Functions module.

The Gates module allows the user to define the maximum number of inputs permis
sible on these gates, causing a runtime error at the instantiation of any gate with more
than the permissible number of inputs. This corresponds to specifying the maximum
inputs and outputs on each cell in a particular PLD.

The user can now build their modules out of these gates. These modules subclass
module FPGA::Blocks. A module’s block is formed by Perl functions which instantiate
a container block and then instantiate and connect a series of other blocks and gates in
the container. All such modules are placed in the Useful include directory as standard.

7.2.3 A dder block
The CLAA was implemented in the module FPGA::Useful::Adder in the manner de
scribed above.

This class’s new() method requires parameters NAME for the name of the adder,
WIDTH for the bit-width of each adder input and ADDON for the number to add on to
the basic sum; this would typically be 0 or 1.

The main task of the module was to declare a block containing the three sub-adders
and other gates according to the design developed in Section 5.3. These were given
widths according to the user-input width for the containing adder.

If the WIDTH parameter was 1, the module built a simple half-adder block from an
X OR and AND gate.

188

Bit width w Gates g Delay d [log2(w - 1)J
1 2 1 -

2 9 2 0
3 25 3 1
4 31 3 1
5 64 4 2
6 80 4 2
7 93 4 2
8 100 4 2
9 171 5 3

Table 7.1: Adder size and delay properties

7.2.4 Testing
A c la s s_ te s t Perl script and Makefile system provided a generic facility to test a
given FPGA::Blocks subclass. The script was a wrapper around use of the subclass
s e lf _ te s t() method. Typically, this method iterated through a range of block size
parameters (WIDTH in the case of the CLAA). In each case it created a suitable instance
of the block, extracted test data from the te s t_ c a se s () method and tested the block
against the expected output.

The te s t_ c a se s () method implemented random checking of a CLAA, generat
ing random input data and checking that the sum of the random data emerged in a
pipelined fashion after the block’s declared output delay.

Testing revealed no functional errors, and produced concrete statistics about the
implementation. Table 7.1 shows the properties of the Adder for a range of bit widths.
The delay is measured in PLD clock cycles.

The delay was indeed logarithmic in bit width, matching our performance specifi
cation. For width w > 1, delay d = 2 + [log2(w — 1)J as the table shows. Gate size
leapt, and delay increased by one, at each 1 + 2 ̂ for integer A: as we would expect.

The testing of larger devices revealed an omission in the simulation environment.
Since basic gates were limited to 3 inputs, when a 4-gate PASS gate was requested
the Gates module raised an error. This was overcome by extending the module’s new()
method to instantiate a block with as many smaller pass gates as needed. Re-running
the fixed simulation produced the correct results.

7.2.5 Sim ulation environm ent reliability
The simulation environment is a key component in the argument for correctness of
our programmable logic system, since inadequate or incorrect simulation may lead to
construction of a system which simulates correctly but behaves incorrectly in real life.
This creates a debate about the required level integrity of simulation and analysis tools
in a safety-critical system.

Perl is clearly an unsuitable language in which to implement a safety-critical system.
The key reasons are:

1. it is an interpreted language, causing a significant performance penalty compared

189

to compiled languages;

2. the Perl interpreter is large and thus difficult to verify in any meaningful way;

3. the interpreter does periodic garbage collection, making program execution effec
tively non-deterministic;

4. the language is purposefully very weakly typed;

5. Perl is not a “static” language; rather, it develops steadily over time and language
constructs may change their meaning; and

6. Perl itself has a number of language concepts (such as default variables) which
obscure the meaning of program statements and are prone to cause error.

Comparing these properties with the requirements for selection of programming
language in Section 28 of DefStan 00-55 [MoD97], we see that the weak typing, lack of
formal syntax and lack of predictable program execution clearly make it an unsuitable
programming language.

However, the Praxis Critical Systems Perl Coding Standard [LeeOO] provides guid
ance on developing Perl programs designed for reliability. Using this, with indepen
dent verification of programs against this standard. Praxis have justified the use of
Perl tools in support of a safety-critical system development. Performance issues are
negated since programs are not required to run in real-time, the standard requires the
use of a “well-trodden” subset of the main language, and coding rules combined with
manual inspection of the code reduce the risks posed by weak typing.

7.2.6 C onclusion
Although not conclusive proof that the CLAA refined design was perfect, or indeed that
the simulation was error-free, this simulation and testing leads to increased confidence
in the design. This fulfils the main requirement for the simulator which we expressed
at the start of this section. The simulation also demonstrates that development of the
CLAA is easy to test (target 5) according to its criteria from Section 3.7.2:

5.1 amenable to production of a test plan from the specification;

5.2 amenable to instrumentation of the compiled program so that relevant data flow
can be observed;

5.3 with a working, verified simulator; and

5.4 test vectors for the simulator can easily be produced from the test plan.

Target 6 is met according to its criteria from Section 3.7.2:

6.1 a non-trivial program being developed into a form for compilation and running
using an existing PLD and toolset

since a simple gate-level description is trivially mapped into VHDL, Verilog or netlist
format.

In the next section we will construct a program and test harness for a real-time
safety-critical system, using the techniques described in the preceding chapters.

190

7.3 M issile Guidance System — Overview
This case study addresses the problem of incorporating a programmable logic compo
nent into an existing safety-critical system which was not originally designed for it.
This is not the ideal way to construct a safety-critical system, but it is a reflection of
current practice and has the bonus of providing a stringent test of our techniques.

We first implement the system in conventional software, written in the high-integrity
SPARK subset of Ada 95, using state-of-the art analysis tools to prove safety-related
properties of our software. We then select a subsection of the code to be implemented in
programmable hardware, and transform the code to a form suitable for communicating
with a PLD.

We aim to identify the main difficulties in this re-engineering process, and (where
possible) propose and demonstrate solutions. A secondary aim is to identify which
features of the SPARK Ada subset are less amenable to transformation into PLD form
and propose transformation strategies for them.

7.3.1 R elated work
Demonstration software systems have been used for studies before. Napier et al
[NMH99] described the implementation of on-line diagnostics for safety-critical sys
tems, using a boiler water control system implemented in Ada as part of an earlier
study by the UK Health and Safety Executive. This system had 70 Ada packages, and
communicated with a GUI over a serial link.

The advantage of a publicly-available software system (and associated test harness)
is that it provides common ground for future studies. It also permits some degree of
direct comparison between studies. For this reason, the software and test harness for
this system will be made publicly available.

7.3.2 System requirem ents
The system is the main control unit (MCU) for an endo-atmospheric interceptor mis
sile, armed with a low-yield fission warhead. This system is clearly safety-critical; a
detonation of the warhead at the launch site is a definite hazard to life. Of course,
there are mission-critical requirements as well; if the warhead were never to go off, the
missile targeted for interception would probably get through to its destination and be
likewise a hazard.

We assume that the live warhead is only connected on a production missile in the
operational environment, and hence there are no special safety considerations during
development and testing of the system.

7.3.3 Safety
The main hazard of the system will be detonation of the on-board warhead at an unsafe
location (i.e., close to the launch point, or below a certain altitude). This dictates safety
considerations such as having confidence in the estimated distance from launch point.

We assume that the overall system has been assessed as SIL-4, but the program
mable part has been assessed as SIL-3. In a real project this reduction would be

191

justified by non-programmable measures taken to mitigate the main system hazard,
e.g. an analogue timer and accelerometer in series with the software warhead deto
nator wire, designed to only enable transmission on the wire after a certain time and
after the missile has maintained a certain acceleration for a certain amount of time.

According to Defence Standards 00-54 and 00-55, SIL-3 indicates the use of some
formal notations (e.g. for specification) and semi-formal analysis techniques. It does
not require proof of object code.

7.3.4 Im plem entation lim its
Since we lack appropriate hardware, we can only implement this system in pure soft
ware. We must therefore produce appropriate simulation and test software in order to
have any justifiable confidence that the system does what is required. We have already
discussed (in Section 7.2) the reliability requirements for such software.

In this particular system simulator we will apply some SIL-3 development techniques
to the test harness software, implementing it in SPARK Ada where possible and plain
Ada where required. We will not measure the system’s real-time performance.

The time taken to implement and test the full system will likely be in the order of
the square of the number of interacting components. For this reason, we will test only
a subset of the total system’s functionality, ensuring only that the existing components
work well enough to support the functioning of the missile’s safety-critical functionality.

7.3.5 Im plem entation technologies
The system (and most of the accompanying simulation and test code) was written
in the SPARK subset of Ada 95. The standard switches used for analysis are shown
below:

-i= m issile -exp -lis tin g _ ex ten sio n = ls_ -config=gnat - s t

They indicate, respectively:

• use of the SPARK index file m iss ile .id x ;

• generation of full exception checks including arithmetic overflow;

• listing output to . Is s and . Isb for Ada specifications and bodies respectively;

• use of file g n a t. cf g to specify the target-specific ranges of the base Ada types;
and

• generation of statistics on Examiner table usage.

The compiler used was GNAT 3.2 on 1686 Linux, although the system was also
compiled and checked on GNAT for Windows 2000 and Solaris. Note that if a differ
ent compiler was used e.g. to cross-compile to a PowerPC target, then the compiler
configuration file given to SPARK must represent the target compiler.

The overflow checks generate verification condition (VC) files for each package body
analysed. These conditions must be shown to be true in order for the developer to be
confident that the system is free of all run-time exceptions. The strategy used was

192

to use the Simplifier tool to discharge the maximum number of VCs automatically,
and then justify key remaining VCs using manual inspection, recording results in proof
review (.prv) files. This strategy avoids the extra effort needed for semi-automatic
proof of the VCs with the Proof Checker tool, at the risk of manual justification of
VCs being incorrect.

7.4 System Com ponents
The system has the following components. For each requirement we list the operational
(functional) and safety (non-functional) requirements. The safety requirements are
those that would be produced as a result of the system hazard analysis.

7.4.1 S ystem clock
1. Measures time since system power-on.

2. Time measured in milliseconds with an accuracy of 0.002% (under 2 seconds in
24 hours).

The clock was constructed with package clock. The simulation body was imple
mented with a clock that incremented by 1 millisecond after every read, and had an
external interface to allow simulator adjustment of the clock value.

Additional functions to operate on clock times were supplied in package c lo ck _ u tils .

7.4.2 1553 bus
1. Allows communication between the MCU and the other LRUs.

2. The MCU is the bus controller.

3. The “bus catalogue” is a list of pages; each page relates to the interaction between
the MCU and an LRU.

4. A bus catalogue page has a list of Rx (MCU to LRU) and Tx (LRU to MCU)
16-bit words used to communicate, assigning meaning to the bits in each word.

5. Each word is marked with a “fresh” bit by the sender when it is to be sent. The
receiver can inspect any of the sent words at any time, and can see the “fresh”
bit along with a “valid” bit controlled by the bus.

6. Maximum time lag between the sender marking a word as fresh and the receiver
seeing the fresh data is 15ms + 1 system cycle.

Safety requirements:

1. A bus failure indication (no-data condition) for any Tx word for more than 2
seconds is taken to indicate total failure of the sending LRU.

2. The bus must report a valid self-test on start-up.

193

The bus was constructed with packages bus, bcl553 and rtl553 . These provide
a simulation of a standard 1553 bus, and interfaces to the simulation for a Bus Con
troller and Remote Terminal. The bus simulator was tested with program test_bus
to demonstrate basic functionality.

Copies of the test program and interface package specifications are given in Ap
pendix B. The test program in particular shows how the Test package is used during
testing.

7.4.3 W atchdog tim er
This is a standard component for safety-critical systems, used to detect system failures
such as program run-away. When such failures occur it will either reset the system (if
it can be safely reset), or take more drastic action such as self-destruction.

Properties:

1. Provides a reset interface to the MCU.

2. After a reset, the timer will count out 750ms. If not reset within this time, the
timer will go off.

3. If the timer goes off, the watchdog will immediately command a missile self-
destruct.

Operational requirements:

1. The timer must be reset within 600ms of a previous reset during normal system
operation.

Safety requirements:

1. The watchdog timer may only be reset at one point within the program.

2. The watchdog timer reset command must be so placed in the program as to
detect as many kinds of system failure as possible.

3. The program must not send a timer reset if any system failure is detected.

The watchdog timer was constructed with package watchdog. The simulation body
interfaced to the clock to check for timeout when commanded.

7.4.4 B arom etric sensor
This sensor detects altitude above mean sea level using barometric pressure.

Properties:

1. Measures current altitude above sea level.

2. Accuracy is ±5% at sea level, up to ±10% at 20 000m.

3. Above 20 000m barometric readings will read as if at 20 000m.

194

4. Must be calibrated with current altitude at system start.

5. Polling frequency is 200ms.

The barometer emulator was constructed with package barometer. The MCU
interface to the barometer bus messages was constructed with package if-barom eter.
These packages were tested using the main test harness with test script barom eter.in
which is listed in Appendix C along with its output.

7.4.5 A irspeed indicator
This sensor measures the speed of the missile relative to the air it passes through. As
the altitude increases, the sensor’s accuracy will decrease.

Properties:

1. Measures current speed relative to still air, in meters per second.

2. Accuracy is ±1% at sea level, up to ±10% at 20 000m.

3. Above 20 000m, airspeed readings should be regarded as random.

4. Maximum airspeed measured is 2550 m/sec

The airspeed emulator was constructed with package airspeed. The MCU interface
to the airspeed bus messages was constructed with package if-a irsp e e d .

7.4.6 Inertial navigation system
This sensor measures the missile’s displacement from its starting point using a ring
laser gyro set to measure relative movement.

Properties:

1. Accuracy is ±0.3% at speeds above lOOm/s, ±1% below that.

2. The co-ordinate system places the origin at the initial centre-of-gravity of the
missile.

3. A left-handed axis set is used.

4. The Y axis runs along the long axis of the missile’s initial attitude.

5. The X axis runs in the direction of the number 0 steering fin.

6. The Z axis runs in the direction of the number 1 steering fin.

7. Polling rate is 50ms

The INS emulator was constructed with package ins. The MCU interface to the
INS bus messages was constructed with package i f - in s .

195

7.4.7 Solid sta te com pass
This sensor is a solid-state compass which detects missile attitude relative to the Earth’s
magnetic field.

Properties:

1. Must be initialised at start-up with the local normal vector to Earth’s surface.

2. Accuracy is within a 0.04 radian cone at sea level, decreasing linearly to a 0.2
radian cone at 40,000m.

The compass emulator was constructed with package compass. The MCU interface
to the compass bus messages was constructed with package i f _compass.

7.4.8 Fuel tank sensor
This sensor reads the amount of fuel in the missile motor’s tank.

Properties:

1. Measures fuel remaining in kilos, from a maximum 100kg fuel load.

2. Accuracy is ± lkg down to the measurement of a 5kg fuel load, below which the
reading must be assumed to be a random value between 0 and 6kg.

The fuel tank emulator was constructed with package fue l. The MCU interface to
the fuel tank bus messages was constructed with package i f _fuel.

7.4.9 P roxim ity fuse
This sensor is a rapidly nutating (rotating) UV laser proximity fuse.

Properties:

1. Will only detect a refiection off a valid target within 1000m of the target.

2. Refiection is not guaranteed as the detection area is limited by an angle of ±1
radian from the normal to the sensor window.

The fuse emulator was constructed with package fuze. The MCU interface to the
fuse bus messages was constructed with package if_ fuze.

7.4.10 M illim etre radar sensor
This sensor is a phased-array millimetre-wave radar in the nose of the missile.

Properties:

1. Will detect a valid target within a cone of 0.8 radian width off the missile’s long
axis towards the nose.

2. Maximum guaranteed detection distance of a valid target is 10 000m.

3. Accuracy of location is ±0.02 radians and ±10m range.

196

4. Doppler processing will read the speed of the target relative to the missile in the
direction of detection with accuracy of ±3%.

The radar emulator was constructed with package radar. The MCU interface to
the radar bus messages was constructed with package if_ rad ar.

7.4.11 Staring infra-red sensor
This sensor is an array of infra-red sensing cells in the nose of the missile.

Properties:

1. Will detect a valid target within a cone of 1.2 radian width off the missile’s long
axis towards the nose.

2. Maximum guaranteed detection distance of a valid target is 30 000m.

3. Accuracy of location is ±0.1 radians.

4. Approximate range information is given by expected target temperature, and will
be accurate to ±30% for a valid target.

The IR sensor emulator was constructed with package i r . The MCU interface to
the IR sensor bus messages was constructed with package i f _ ir .

7.4.12 Fins
The missile has four independent steering fins, spaced equally around the missile body.

Properties:

1. Each fin has a possible deflection (position) of between -1 and +1 radians from
neutral.

2. Extreme rotation of a fin in a high atmospheric drag environment (high speed /
low altitude) can lead to fin mechanical failure.

3. Maximum response time from position command to position achieved is 800ms.

Operational requirements:

1. Avoid “chatter” (a rapid sequence of positive and negative values) in fin steering
commands in order to reduce the probability of fin mechanical failure.

2. Lock the fins in neutral position at system start.

Safety requirements:

1. Fins must report valid self-test at startup.

The fins emulator was constructed with package s tee r. The MCU interface to the
fins bus messages was constructed with package if_ s te e r .

197

7.4.13 M otor
The missile has a liquid-fuel rocket motor to provide thrust along its long axis.

Properties:

1. Variable thrust between 5 and 35 kN.

2. Optimal fuel consumption is at 21.5 kN thrust.

3. Thrust efficiency decreases by a small amount with increased altitude due to
reduced atmospheric oxygen partial pressure and hence a leaner fuel mix.

4. Maximum thrust at zero atmospheric oxygen is 29kN.

Operational requirements:

1. Avoid chatter in thrust level commands in order to reduce the probability of
thrust chamber mechanical failure.

2. Avoid repeated thrust ramp-up and ramp-down in order to conserve fuel and
reduce the probability of thermal cracking in the thrust chamber.

3. Ramp-up to 30% of maximum thrust at system ignition.

4. Do not change this thrust level until missile has travelled over 100m vertically.

Safety requirements:

1. Motor must report valid self-test at system start-up.

The motor emulator was constructed with package motor. The MCU interface to
the motor bus messages was constructed with package i f _motor.

7.4.14 Self-destruct
For safety, the missile must be able to destroy itself safely. There are four separate
charges placed throughout the missile body.

Properties:

1. Detonation will fragment the missile body and destroy the warhead without caus
ing warhead detonation.

2. Self-destruct with a full fuel load at low altitude will cause an explosion with
blast effects approximately equivalent to a conventional blast-effect 250kg bomb.

3. Self-destruct requires a timed sequence of keywords to be sent to the self-destruct
bus unit. There is no acknowledgement back from the unit.

Operational requirements:

1. Self-destruct must not be initiated if the missile is still capable of flying its des
ignated mission safely.

198

Safety requirements:

1. Self-destruct must be initiated before the missile impacts the ground.

2. Self-destruct must be initiated whenever any sensor or actuator failure occurs that
significantly increases the probability of warhead detonation outside detonation
parameters.

3. Self-destruct must not be initiated within 1000m of the launch point.

4. Self-destruct must report valid self-test at system start-up.

The self-destruct emulator was constructed with package d estru c t. The MCU
interface to the self-destruct bus messages was constructed with package if -d e s tru c t .

7.4.15 W arhead
The missile has a 12kT fission warhead as payload.

Properties:

1. Detonation requires a timed sequence of keywords and a challenge-response au
thentication between the command unit and the warhead unit.

Operational requirements:

1. A valid target for the warhead is an object travelling at over 400m/s whose 10-
second historic track places or will place it within a 10 000m sphere with origin
equal to the launch point.

2. Optimal detonation distance is 800m from a valid target.

Safety requirements:

1. The warhead must not be detonated within 10 000m of the ground.

2. The warhead must not be detonated within 20 000m of the launch point.

3. The warhead may only be detonated within 2 000m of a valid target.

4. The warhead must report valid self-test at system start-up.

The warhead emulator was constructed with package warhead. The MCU interface
to the warhead bus messages was constructed with package i f —warhead.

7.5 Design
The software system was designed using the INFORMED [AmeOO] design method. The
package hierarchy was extracted from the above system components, augmented with
basic types packages and interface packages.

199

7.5.1 D esign decisions
Significant design decisions included:

• two SPARK boundaries, one for the main missile controller and one for the
emulator code, overlapping lower in the inheritance hierarchy;

• top-down design as per INFORMED, ensuring each specification was written and
valid SPARK before implementing the corresponding body;

• supplementing each state package with a non-SPARK test procedure;

• implementing as much of the simulator as possible in valid SPARK; and

• using a script-based test harness above the main program.

7.5.2 Package structure
Figure 7.1 shows the design of the system with the SPARK and simulation boundaries.
Each significant package is shown; a red circle indicates the presence of state within a
package. The arrows show the direct with (package hierarchy) relations. A represen
tative subset of the component packages are shown, for reasons of diagram space and
clarity.

7.5.3 C ode structure
The top-level system program in design unit Main is a simple polling loop, calling a
sequence of embedded subprograms to deal with each system component.

7.5.4 D esign lim itations
The current lack of tasking (coarse-grain parallel processing) in SPARK Ada was keenly
felt. The main program broke down naturally into a small set of loosely-coupled tasks
managing functions such as location tracking, target tracking and self-test. In se
quential Ada these had to happen in an artificial order in a polling loop, introducing
artificial dependency relations between their states.

The addition of the Ravenscar tasking profile [BDR98] to SPARK 95 should make
such programs easier to express.

7.6 Im plem entation
The implementation was done in the following main phases:

1. construction of basic types packages;

2. design, build and test of the bus interfaces and emulator;

3. construction of the simulator and interface for the Barometer package;

4. construction of the basic test harness;

200

Main
W a tch d o g

Nav C lo ck

If F in s
A irsp eedB arom eter W arhead

BC1553

System

Inputs, OutputsSimulation

RT1553

B arom eter F insA irsp eed W arhead

T e st_
H a rn ess

Figure 7.1; Missile system design

201

5. testing of the Barometer code and subsequent fixes to the code and test harness;

6. addition of one sensor at a time, extending harness code and adding types pack
ages where required;

7. construction of the Nav package for position estimation; and then

8. construction of the main M issile package.

7.6.1 D evelopm ent
The development methodology for each package was:

1. writing of the specification;

2. SPARK of the specification, fixing identified errors;

3. writing of the body;

4. SPARK of the body, fixing identified errors and updating the specification anno
tations where needed;

5. Simplifying of VCs for the package and fixing code fiagged by any obviously false
VCs;

6. writing of the Command testing subprogram for the package;

7. compilation of the package;

8. creation of the test script for the package; and then

9. testing of the package, fixing code and amending the test script where required.

This late use of the compiler was effective in that very few compilation errors
were reported on the first compile; those that occurred were normally in the Command
non-SPARK routine. The VC inspection was a relatively effective method of locating
potential program errors for a small investment of manual inspection, especially for
numeric overfiow errors for the results of calculations.

The SPARK report for the analysis of the Nav package body is given in Appendix D.
It shows the SPARK Examiner options used, the packages that needed to be analysed
due to dependency by Nav on them, and the fraction of the Examiner tables used.

The final code count was 504K of Ada files, with 16 800 lines. Of these, 2 500 lines
were annotations, 2 900 were comments, 1 300 were blank, and the remaining 10 000
(forming 330K) were Ada code. 20K of this Ada was test-related code. There were 75
packages and public child packages, with 9 of those packages related to testing. This
verifies that the system is not trivial in size.

202

7.6.2 Testing
The testing was done with a script-driven test harness, written in Ada but not using
the SPARK subset. Each significant module has a Command subroutine which reads
data from standard input and acts upon test script commands relevant to that routine.
The subroutine is made separate from the package body and marked as —# derives
n u ll so that the Examiner will not examine it and will assume that it has no effect on
the “interesting” (annotated) part of the system.

The test routines call package Test whenever they perform a check; successful
checks increment the Pass count, and unsuccessful checks increment the F a il count.
The results of each test are shown on standard output. Test scripts can change aspects
of the simulated packages (e.g. the current time or the current estimated height) and
display comments about what is being tested. At the end of a test run, the harness
shows the total number of pass and fails.

An example test script for testing the basic functionality of package Barometer is
shown in Appendix C.

7.6.3 Conclusions
The development produced the following lessons and statistics related to SPARK and
Ada development:

A developer will have to do things properly eventually, such as provide I/O and
check functions for all major types, and no time will be gained by trying to short
cut this.

• The -exp switch is effective at locating overfiow errors when combined with
Simplifier usage.

• The public child packages provided in Ada 95 and SPARK 95 are a great aid
to testing since they can easily be excluded from a SPARK analysis yet provide
direct visibility to their parent package for I/O and check functions.

• The use of a Makefile makes project management much easier, especially with
regard to keeping testing up to date.

• The Examiner processed a large system in acceptable time (8.163 seconds of
real time to SPARK everything SPARK-able with the standard switches, on a
1.35GHz Athlon XP processor).

• Of the 3085 VCs produced for this project, 32% were discharged by the Examiner
(version 6.2) and 58% by the Simplifier (demonstration version) leaving 8% to
prove manually. Simplification of the entire system took 364 seconds on the
aforementioned PC. Trial use of version 7.0 of the Examiner discharged 35% of
the VCs directly.

203

7.7 Introduction of A PLD
With the system passing SPARK analysis, compilation and testing, it was then nec
essary to choose some system functionality to incorporate into a PLD. We aimed to
produce a new program, with minimal changes to the original program annotations.

The three phases of this work were:

1. identify a suitable subsection for transformation;

2. replacing the existing code with calls to a PLD interface; and

3. transform the replaced code into a VHDL implementation;

7.7.1 Subsection identification
The code chosen for transformation was the Nav package, which tracks estimated missile
position. It is suitable for transformation because it requires relatively infrequent
updates from the main software (periodic updates on time and estimated missile speed
and attitude) and produces on-demand estimation of the current delta position from
launch. These properties match up well with those we described in Section 4.3.8.

7.7.2 PLD interfacing
The original implementation of Nav is given in Appendix E. It provides public functions
for accessing its internal tracking of recent sensor measurements (abstract variable
Location_State) and sensor states (abstract variable Sensor_State). The M aintain
polling routine calls the Handle_XX routines for Airspeed, Barometer, Compass and
INS sensors; these routines check the named sensor’s current readings, and if the sensor
has failed will attempt to use other sensor readings to estimate appropriate values. The
Estimate_Height and Handle_Airspeed subprograms are shown in full form in the
appendix; the others have been made separate for brevity.

The design decision was made to transform the package to have no intrinsic state,
but instead use memory-mapped state variables to communicate with the PLD. The
two existing abstract state variables were retained and their refinement components
mapped onto PLD output pins, and a new abstract state variable FPGA_Inputs was
added which was mapped onto PLD input pins. No synchronisation code was necessary
since the PLD implementation is stateless and hence may be pipelined.

The existing public functions were left essentially the same, with only minor changes
to memory-mapped variable accesses made due to SPARK rules. The Handle_XX
subprograms were unnecessary due to being moved onto the PLD and were removed.
The Maintain routine was changed to read each sensor’s state and write them directly
out to the PLD input pins.

The resulting package body Nav_FPGA is listed in Appendix F. The correspondence
with the original is quite clear. The most significant change is the addition of declara
tions for calculating type bit widths and mapping variables into memory. In fact, some
of these bit width calculations will not actually compile under GNAT since they are not
properly static; in practice, they would have to be replaced by actual numbers. They
have been left in the code in order to show the derivation. Again, Estimate_Height
is given in full form and the other Estim ate routines are made separate.

204

7.7.3 Transform ation
The high-level structural steps of transformation of the selected Handle_XX subpro
grams of package Nav into VHDL were:

1. replace global variables in the subprogram declaration and body with the appro
priate PLD input and output vector names;

2. identify each subprogram’s in and out argument and global data and create a
VHDL architecture declaration for it;

3. add appropriate Clock and Reset inputs to the declaration;

4. connect the appropriate PLD input and output pins to the subprogram’s inputs
and outputs;

5. create the VHDL implementation for the subprogram by declaring architectures
for the major Ada control flow elements;

6. add declarations for appropriate vectors to connect these architectures; and then

7. add the required connections between blocks and architecture inputs and outputs.

At the level of translating subprogram body code from SPARK Ada to VHDL, no
initial effort was made to enable hne-grain parallelism. Instead, SPARK Ada program
constructs (principally alternation and assignment) were mapped into the most di
rectly corresponding VHDL representation (respectively, multiplexing from expression
evaluation and data routing).

No compilation or simulation of the VHDL was done since it was a capability
demonstration. A process for producing timing-robust VHDL from a SPARK design
is clearly required for this transformation process to be practically useful.

7.7.4 R esu lts
The transformation process produced the following discoveries:

Software im plem entation to PLD interface

• Relatively little of the package specification changed. The abstract state variables
gained SPARK modes, and one extra output abstract variable was required, but
the global and derives annotations did not change greatly.

• Most of the work in the package body involved mapping concrete state variables
onto the correct area of memory. External global data (from the sensors) was
passed directly onto the PLD inputs.

• The transformation was not quite automatic, but was effected quickly and was
amenable to manual inspection for correctness.

205

Software im plem entation to PLD im plem entation

• The SPARK annotations were very helpful in characterising the inputs and out
puts quickly, making VHDL architecture declarations simple to write.

• Bit widths could be easily calculated manually, and minimised by use of pragma
PackO and Ada representation clauses. There seems no reason why these widths
could not be estimated by a relatively simple tool, given a SPARK syntax tree.

• The guarantee of no expression overflow given by the Examiner -exp flag (and
subsequent proof) would greatly simplify the process of writing VHDL to compute
arithmetic expressions.

7.8 Conclusion
In this chapter we demonstrated that our Chapter 5 work on refining a carry look-ahead
adder specification into an SRPT form could be mapped into a gate-level simulation
of a generic PLD. We constructed a suitable simulator and used it to verify that the
implementation met its specification.

We then wrote a controller program for a high-integrity embedded system, us
ing existing state-of-the-art software development tools and techniques, and simulated
mapping a section of the program into a programmable logic device.

The main conclusions of this work are as follows:

7.8.1 R efined program sim ulation
1. The refined program worked as expected in a gate-level simulated implementa

tion.

2. A gate-level simulator with a single clock is not hard to produce, and provides
increased confidence in such programs.

3. The creation of large, parametrised designs by instantiating and composing smaller
blocks can be easily expressed in an imperative language supporting inheritance.

7.8.2 SPA R K program developm ent
1. Writing a SPARK 95 program with information-fiow analysis can be done at a

similar speed to writing conventional full Ada programs.

2. Maintenance of SPARK annotations during development does not take significant
time.

3. Top-down program development with late compilation is quite feasible, with a
properly-formed design.

4. The time taken to run the SPARK Examiner and SPADE Simplifier on a sub
stantial program is not noticeable on a conventional 1.5GHz 1686 PG.

5. The recent addition of tasking to the current SPARK model is likely to be valuable
in designing embedded controllers.

206

7.8.3 Targets
Of the targets in Chapter 3 we have addressed or partially addressed:

Target 1: The process we define must be rigorous.
We have based PLD program design in the rigorous and formally-specified SPARK

Ada 95 language. We have shown how key program properties such as freedom from
arithmetic overfiow can be demonstrated. The transformation process from SPARK
Ada to VHDL is currently manual and not rigorous, but we have demonstrated that
the new interfacing code can be valid and meaningful SPARK.

Target 2: The process must help the developer to write unambiguous programs.
SPARK Ada is unambiguous by definition, removing all Ada language features that

may introduce compiler-dependence.
Target 3: The process must allow the programs to have sections written in a

low-level language for speed and flexibility, but not allow these sections to compromise
overall program reliability.

The use of VHDL enables the VHDL implementation of arbitrary blocks in the
original SPARK program to be replaced with custom VHDL code while leaving their
architecture (interface) unchanged. Verilog could be used similarly.

Target 4 ' The process must admit substantial static analysis to discover semantic
program errors at or before compile time.

SPARK Ada can be analysed by the Examiner for a range of statically-verified
properties, and verification conditions generated to admit proof of run-time properties.

Target 5: The program produced must be easy to test.
We have addressed SPARK program testing, but the testing of the VHDL compo

nent was not addressed.
The Perl PLD simulator has demonstrated that refined PLD programs are amenable

to automatic test.
Target 6: The program must be able to be compiled onto a range of existing and

anticipated PLDs.
We have used VHDL as a target language, compilers for which exist for most

substantial PLDs.
Target 7; The process must reuse existing proven tools where feasible.
We have employed existing tools (the Examiner and Simplifier) without modifi

cation, but suggested areas such as bit width calculation where extra tools may be
useful.

Target 9: The process should indicate what kinds of error may arise at each stage.
The static analysis results limited the errors that may be present in the SPARK.

Errors in proven and tested SPARK programs are likely to be requirements-related
rather than “accidental”.

Target 11: The process must admit justification to the project safety authority
that the programs output by the process are of an adequate integrity level.

The use of SPARK as a design tool for and interface to the PLD program provides
traceability for the PLD program design and implementation. The PLD program may
be manually inspected and reviewed against the original SPARK implementation to
demonstrate coverage of requirements. SPARK has been used and accepted at SIL-4,
although if only used as a design tool it is unlikely that a SIL-4 argument can be made
for the resulting PLD program without substantial extra evidence.

207

Target 12: [00-54 8.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification
complies with the safety requirements;

(a) any formal arguments that the functional design satisfies the formal specification;

(in) for non-functional properties with specified safety requirements, analysis of the
achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques
as diverse implementations.

(i) is addressed because the safety requirements may be expressed as post-conditions
in the SPARK program and the code proven against them, (ii) is addressed because
the SPARK analysis justifies the information flow annotations in the SPARK program,
showing consistency and the level of coherency of the design; (iii) is not addressed
since SPARK does not yet have any timing-related analysis; (iv) is addressed because
the SPARK implementation could be used in parallel with the VHDL implementation,
with a checking routine flagging deviations in the computed results. Only a limited
amount of diversity is present, however.

Target 13: [00-54 12.1.2] The Design Plan shall define the life cycle that is to be
followed in the development of the custom circuit, including a specification process, a
development process and a verification process.

The SPARK development process is well-established in safety-critical projects. In
dividual projects place different emphasis on its components, but the core of the process
(design - analyse - implement - analyse - test - fix - re-analyse) is common. The PLD
program development is then headed by the SPARK development process, with PLD
transformation and re-test at the end.

7.8.4 Further research
The following research work would likely produce interesting and useful results:

1. a full description of the map from sequential SPARK 95 to VHDL;

2. production of SPARK and VHDL design patterns for common PLD-based func
tionality, and development of an algorithm or heuristic for selecting the design of
the SPARK-PLD interface; and

3. a study of the information-fiow results of transforming a polling-loop single
process program into appropriate SPARK Ravenscar tasks.

208

Chapter 8

Conclusions

In this final chapter we draw up the lessons we have learned in our progress through
this thesis, show how they have clarified the problems of hardware-software co-design,
and look at the avenues for future research which have opened up as a result.

8.1 Solving the Original Problem
Our original research problem statement in Chapter 3 was:

What methodology is suitable for developing a set of safety-critical system
requirements into an implementation which executes partially in a conven
tional microprocessor and partly on a programmable logic device?
Such a methodology should be rigorous and formal enough to admit veri
fication and validation to the standards demanded by DefStan 00-54 and
RTCA DO-254 (electronic hardware), DefStan 00-55 (software) and DefStan
00-56 (system safety) for SIL-3 and SIL-4 systems (RTCA DO-254 Level A
and B).

We break this down into the following components; for each component we measure
what progress we have made against the above goal. We also list the original targets
from Chapter 3 which have been covered.

8.1.1 PL D s in safety-critical system s
We have surveyed the existing major safety and software development standards rele
vant to PLDs in safety-critical systems. We have extracted the key points from these
standards and applied them in an example development. Because we based this work
on existing best-practice standards we are on solid ground for justifying the safety and
correctness of this development to a safety authority.

Current expert opinion[Pri03] is that the existing PLD technologies do not permit
SIL-3 or SIL-4 functionality to be incorporated in a PLD. The rigorous formal tech
niques proposed in this thesis appear to provide similar rigour to that required for
SIL-3 software developments, therefore there is a reasonable case that with this work
SIL-3 PLD functionality is now feasible for some systems.

The author’s experience is that PLD programs can be designed to satisfy the re
quirements of DO-254 Level A criticality, as long as formal methods (an optional part

209

of Level A safety arguments) are not required. This thesis provides suitable rigorous
techniques for specifying and analysing synchronous PLD programs, thus supporting
DO-254 Level A development by making formal methods use practical.

Targets fulfilled:
Target 1: The process we define must be rigorous.
Target 2: The process must help the developer to write unambiguous programs.
Target 10: The process should provide flexibility so that it may be used in situa

tions not anticipated in its original design.
Target 11: The process must admit justification to the project safety authority

that the programs output by the process are of an adequate integrity level.

8.1.2 R igorous PLD program m ing
We have combined the SRPT process algebra and Morgan’s refinement calculus to
provide a synchronous timed refinement calculus for developing SRPT processes into
Pebble programs. The calculus allows for reasoning about the behaviour of arbitrary
SRPT processes incorporated into an otherwise formally developed system. As well as
stepwise refinement of designs, the calculus admits trace-based proof of safety proper
ties of processes.

We have demonstrated a practical refinement from a timed specification into a
device-agnostic unambiguous implementation language (Pebble, with a semantics de
fined by SRPT), and demonstrated its accuracy via gate-level simulation. The simu
lation environment is available in an operating-system-neutral format for future use.

Targets fulfilled:
Target 1: The process we define must be rigorous.
Target 2: The process must help the developer to write unambiguous programs.
Target 3: The process must allow the programs to have sections written in a

low-level language for speed and flexibility, but not allow these sections to compromise
overall program reliability.

Target 5: The program produced must be easy to test.
Target 6: The program must be able to be compiled onto a range of existing and

anticipated PLDs.
Target 7; The process must reuse existing proven tools where feasible.
Target 10: The process should provide flexibility so that it may be used in situa

tions not anticipated in its original design.
Target 12: [00-54 8.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification
complies with the safety requirements;

(ii) any formal arguments that the functional design satisfies the formal specification;

(iii) for non-functional properties with specified safety requirements, analysis of the
achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques
as diverse implementations.

Target 14 ' [00-54 13.3.1] A Hardware Specification shall be produced which de
fines the SREH in terms of its behaviour and properties.

210

8.1.3 M apping SPA R K to hardware
We have shown how the SPARK Ada critical systems programming language is well-
suited to describing PLD programs, due to its formal definition and the analysis tools
which support it. We have examined the problem of compiling SPARK program con
structs to hardware in three different ways.

We have shown how SPARK programs can be developed and proven against formal
pre- and post-condition specifications using current tools and techniques. We have
shown how these pre- and post- conditions can be used as the basis for developing an
SRPT program that satisfies the specification, ignoring the actual SPARK code.

We have described how SPARK code can be compiled directly to circuits on PLDs,
taking advantage of Ada’s type system to reduce datapath sizes and taking advantage
of SPARK Ada program structure to simplify the compilation task. We examined the
trade-offs between PLD gate count and program execution speed with particular regard
to the implementation of data paths on the PLD.

We have provided a full SRPT specification for a (reduced) sequential SPARK 95
interpreter which demonstrated that a) SRPT can be used to specify large systems and
b) the information known at compile-time about SPARK programs contributes sub
stantially to effective implementation in hardware. The interpreter was not useful for
high integrity programs, since high integrity programming requires compilation rather
than interpretation of SPARK programs, but would be acceptable for low integrity
programs and demonstrated the use of SRPT for PLD program design.

We have examined the problem of identifying and extracting a fragment from
a SPARK Ada program for PLD execution, maintaining program correctness. We
demonstrated the technique for an industrial-scale embedded program.

Because we used a generic PLD model for this work we avoided restricting this
development to a particular class of PLD.

Targets fulfilled:
Target 1: The process we define must be rigorous.
Target 2: The process must help the developer to write unambiguous programs.
Target 4- The process must admit substantial static analysis to discover semantic

program errors at or before compile time.
Target 6: The program must be able to be compiled onto a range of existing and

anticipated PLDs.
Target 7; The process must reuse existing proven tools where feasible.
Target 8: The process must guide the developer in the appropriate use of each

component.
Target 9: The process should indicate what kinds of error may arise at each stage.
Target 12: [00-54 8.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification
complies with the safety requirements;

(ii) any formal arguments that the functional design satisfies the formal specification;

(iii) for non-functional properties with specified safety requirements, analysis of the
achieved behaviour, e.g.: performance, timing etc.;

211

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques
as diverse implementations.

8.1.4 T he system developm ent process
We have defined a rigorous development process for going from a formal specification
to SPARK and PLD implementation. This development process involves:

• early identification of PLD and software components;

• use of existing software design methods and analysis tools to produce high-
integrity SPARK code for the system;

• use of refinement techniques to produce a provably correct PLD program (such
as the carry look-ahead adder);

• the ability to simulate PLD functionality without significant change to the SPARK
program;

• the option to transform software components to PLD form at a late stage without
compromising system design or safety;

• continuous production of evidence that the system is fit for purpose and fulfils
its required safety properties; and

• the option to move the (formally defined) program components between software
and PLD during future system upgrades.

Targets fulfilled:
Target 1: The process we define must he rigorous.
Target 5: The program produced must he easy to test.
Target 8: The process must guide the developer in the appropriate use of each

component.
Target 9: The process should indicate what kinds of error may arise at each stage.
Target 10: The process should provide flexihility so that it may be used in situa

tions not anticipated in its original design.
Target 11: The process must admit justification to the project safety authority

that the programs output by the process are of an adequate integrity level.
Target 12: [00-54 8.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification
complies with the safety requirements;

(ii) any formal arguments that the functional design satisfies the formal specification;

(iii) for non-functional properties with specified safety requirements, analysis of the
achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques
as diverse implementations.

Target 13: [00-54 12.1.2] The Design Plan shall define the life cycle that is to be
followed in the development of the custom circuit, including a specification process, a
development process and a verification process.

212

8.1.5 R eliability and practicability
In Section 3.11 we listed general questions about the development process which aimed
to measure the process’s reliability and practicability. We now answer them.

How many distinct stages are there in the methodology?
Two extra stages have been introduced into the standard software development pro

cess: identifying parts of the specification to refine directly to hardware, and identifying
parts of the SPARK Ada program to compile into hardware.

The refinement process itself has four stages: rewrite the specification, refine it to
SRPT, compile to Pebble/VHDL and test it.

The SPARK Ada program fragment extraction has five stages: rewrite the SPARK
package body, update the package specification annotation, map the original SPARK
body into VHDL, test the VHDL in isolation and then test the SPARK-PLD interac
tion.

What is the probability and effect of introducing an error at each stage?
We have not gathered numeric data on probabilities, but can estimate the effect of

errors from experience in software development.
Incorrectly rewriting the specification for SRPT refinement is likely to make the

entire refinement incorrect and, if detected, will probably require the refinement to be
re-done. Whether it is detected will depend on the depth of system testing against the
original system specification.

Making an error in SRPT refinement is likely, in our experience noted in Sec
tion 5.3.6, to be picked up during PLD program testing.

Making an error in extracting the SPARK Ada program fragment into a PLD is
likely to be picked up in testing, especially if test results for the software implementation
are compared against those for the PLD implementation.

What do the above imply for the reliability of the system as a whole?
The reliability of a system function refined into an SRPT program, where the

refinement has been independently checked, is likely to be high. This does assume that
the original specification was correct.

Extracting a SPARK Ada program fragment into PLD form is likely to make the
program less reliable, but the alternatives (writing the PLD program in VHDL or a
high-level language from scratch) remove the ability to compare diverse implementa
tions of the PLD program and are more error-prone than Ada implementation in the
same way that assembly language or C program development is more error-prone than
Ada program development.

What classes of error are specifically checked for in the development process?
Information-fiow, control-fiow and data-flow errors are checked for by the SPARK

Examiner. Numeric overflow and proof condition violation are checked for by the
SPADE Simplifier and manual inspection of VCs. Errors in the SRPT refinement
process are checked for by independent inspection of the refinement steps. Errors in
PLD program extraction are checked for by comparing all-software and software-PLD
implementation results.

Is there adequate tool support for the developers of the target systems?
A qualified yes. The SPARK Examiner and SPADE toolset already exist and are

mature. The York hardware compiler for Ada exists, although has not yet been shown
to be effective at typical industrial system sizes. There is as yet no tool support for

213

SRPT refinement.
What level of technical expertise, and how much time, is required for each develop

ment stage?
Refinement of a specification into an SRPT process requires a good understanding

of logic in general, and technical expertise in refinement in particular.
SPARK Ada program development requires basic imperative programming skills.

SPARK Ada proof work requires an understanding of first-order logic. Extracting a
SPARK program fragment into a PLD program requires an understanding of VHDL
and the ability to operate PLD compilation and simulation tools.

Given appropriate same-generation hardware, does the generic PLD implementation
produced have significant performance advantages over an all-software implementation?

We have not produced performance figures which answer this question. It was
established in Section 2.3.10 that PLD programs could significantly outperform micro
processor programs for some tasks, and we have shown that SRPT refinement allows
a high-performance PLD program to be developed from a specification, but we have
not shown whether Ada code compiled onto a PLD can run more quickly than on a
contemporary microprocessor.

How well does the process allow late changes in requirements to he incorporated into
the system?

If the requirements can be traced into the design, the data-fiow and information
fiow annotations of SPARK Ada can bound the program units which must be examined
to see if changes are necessary. The abstraction present throughout the system may
reduce the impact of some requirements changes, but this is not certain. If refinement
is used, requirements change may require some refinements to be redone from scratch
which will be labour-intensive.

8.2 Advancem ent of Knowledge
We outline the weaknesses of the current research, in what respects our research is
original and how it improves on the current research.

8.2.1 Current weaknesses
Section 2.6.1 described the weaknesses of the current research, which can be sum
marised as:

• there is no relation of high-level PLD programming languages to the requirements
of DO-254 and Def Stan 00-54;

• there is no relation of synchronous parallel specification and analysis techniques
to the requirements of DO-254 and Def Stan 00-54;

• Ada is the only high-level language suitable for programming high-integrity sys
tems, and the existing PLD compilers for it are immature and omit rigour; and

• there is a general lack of demonstration that PLD design and programming tech
niques for high-integrity will scale to be practical for typical modern systems.

214

8.2.2 O riginality
The main direction of research in this thesis is original because the problem of producing
demonstrably correct PLD programs, suitable for use in high-integrity systems, has
been specified (in Defence Standard 00-54[MoD99] and RTCA DO-254[RTCOO]) but
has not been solved. There has been no published work that explicitly addresses the
problems raised by conforming to 00-54 and DO-254 in PLD program development.

The work on specification and refinement of synchronous parallel systems (using
SRPT) is not original in itself, as Barnes[Bar93] specified SRPT and demonstrated
its use in system specification, and Morgan, Back and others[Mor94, BvW94] demon
strated rigorous calculi for refinement in synchronous systems. It is original in that
it provides a full refinement calculus for SRPT, making SRPT practical for specifica
tion and refinement of PLD programs. It is original in relating the work explicitly to
the requirements of 00-54 and DO-254 for high-criticality systems. It is also original
in describing the practical translation of the refined program into a PLD-compilable
form.

The work on compilation of SPARK Ada into PLDs is not original in itself, as
Sheraga[She96] and Ward[WA01, WA02c] have investigated Ada and SPARK Ada com
pilation for PLDs. It is original in that it exploits the properties of SPARK Ada to
increase confidence in the correctness of the compilation and optimise the PLD pro
gram for space and execution time. It is also original in relating the work explicitly to
the requirements of 00-54 and DO-254 for high-criticality systems.

The PLD-software development process proposal is original in that it explicitly
addresses the requirements of 00-54 and DO-254. It is also original in identifying the
problems that arise throughout the software-PLD process and providing solutions to
them. It expands the domain of applications for which the SPARK Ada programming
language can be used. It is original in that it details an industrial-scale safety-critical
embedded system and applies appropriate parts of the development process to move
an identified part of the program into programmable hardware.

8.2.3 A dvances m ade
The research from thesis has been fed into the production of a practical guide to
certifying PLD programs for safety-critical avionics [Hil03a]. As such, it has already
made a practical contribution to the production of safety-critical PLD programs.

The advances made by this research are:

• a practical process for high-integrity programming of PLDs (Section 3.12);

• a refinement calculus for SRPT (Chapter 5);

• a mapping which permits SRPT programs to be compiled directly onto PLDs
(Section 4.2.7);

• a publicly-available simulator to support simulation of programs generated by
this mapping (Section 7.2);

• a design for mapping SPARK Ada programs onto PLDs (Section 7.7);

• a design for a SPARK Ada interpreter to run on a PLD (Chapter 6); and

215

• a substantial example of a safety-critical program to be used in future hardware
compilation work (Section 7.3).

Overall, this research has made feasible the production of programs that satisfy the
requirements of Defence Standard 00-54 for SIL-3 and SIL-4 systems, which was not
feasible before.

8.3 Self-Critique
We now consider the omissions and weaknesses of this research. We also consider how
PLD program development would proceed if this research was not around, and how
this research is an improvement.

8.3.1 O m issions
The major omissions from this work are:

1. the demonstration of the PLD programs we produced being compiled into netlists,
simulated with commercial FPGA simulators and run on real FPGAs;

2. the demonstration of a SPARK program communicating with a real FPGA;

3. the construction of a formal safety case for the case study including hazard iden
tification and fault tree analysis; and

4. relation of this work to information security standards such as the Common
Criteria[Com99].

The first three omissions mean that the practicality of the techniques described
in this research is not yet demonstrated. They also leave open the integration of the
proposed process into a full safety-critical system development, and its assessment by an
independent safety authority. Until this is done it is not possible to say with confidence
that these techniques and this process are suitable for SIL-3 software development.

The final omission is an area that is suitable for future research. SPARK Ada
has already been demonstrated in high-security applications such as the MULTOS
CA[AC02]. We consider this further in Section 8.4.4.

8.3.2 W eaknesses
The major weaknesses of the components of this work are that:

1. we have not considered how to take advantage of design features of existing PLDs
(such as embedded processor cores);

2. our focus on SPARK has excluded the Ravenscar tasking profile, which appears
to be helpful to construction of parallel SPARK programs; and

3. we have not established how the SRPT refinement system scales with increasing
complexity of the specification.

216

The general issue of how well refinement techniques scale up is an open topic and
is being examined in planned UK refinement research. We anticipate that useful in
formation relevant to SRPT refinement will arise from this research in the next 1-2
years.

The omission of Ravenscar is, to some extent, the result of the timing of this
research. SPARK Ravenscar has only just been officially released, and so it was difficult
to make specific recommendations about using it in the context of PLD programming.
Ravenscar will clearly become important in the construction of safety-critical parallel
Ada systems in future years, particularly when Ada OY (the successor to Ada 95) is
finalised.

8.3.3 How th e sta te o f th e art would evolve w ithout th is re
search

We now consider how the state of the art of PLD programming for high-integrity
systems would develop if this research had not been done or had not been published.

Safety-critical PLD program developm ent

UK Interim Defence Standard 00-54 and RTCA DO-254 are already published, and
so future safety-critical PLD programs would have to conform to them in any case.
However, the formal methods recommendations in both standards have not been ad
dressed in current PLD program developments. Without a clear demonstration that
formal specification and development of PLD programs is practical, and guidance on
the use of specific methods, the incorporation of formal methods in industrial PLD
developments is likely to be haphazard.

Notably, Def Stan 00-54 is only an interim standard and its contents will be amended
when it becomes part of Issue 3 of Defence Standard 00-56 in 2004. If industrial devel
opers believe that the requirements for SIL-3 and SIL-4 PLD program development are
impractical then they are likely to lobby for the SIL-3 and SIL-4 requirements to be
ameliorated. This would be bad for system safety, and in the end is likely to increase
the cost of systems; experience by major hardware developers such as Intel[Sch03]
shows that formal verification for hardware can make economic sense.

Refinem ent for synchronous parallel system s

There is already a range of refinement calculi for synchronous parallel systems. How
ever, these have not been applied to practical PLD developments and so it is not yet
possible to go from a formally refined system to a compiled PLD implementation and
argue that semantics and correctness have been preserved. Without this assurance,
the motivation for use of formal specification and refinement in PLD program design
is significantly reduced.

PLD high-level programming

Languages such as Handel-C are likely to be used increasingly in PLD program de
velopment in the coming years. Without a practical high-integrity competitor such as

217

Ada, they are likely to start to be used for high-integrity PLD programming despite
the manifest deficiencies of the C language in this respect.

The work by Ward and Audsley[WA01, WA02b] on hardware compilation of SPARK
Ada and Ravenscar is promising but it remains to be seen whether it is practical for
real systems and whether the correctness of the compilation process can be justified.
Without better exploitation of the known information fiow and semantics of SPARK
Ada programs, this compilation will not be as effective as it could be.

8.4 Future Work
There are several major areas of work opened up by this thesis which remain unex
plored. We now state what they are and outline how one might start to address them.

8.4.1 Safety engineering w ith PL D s
As noted in Section 8.3.2 it is necessary to obtain a safety engineering perspective on
the processes described in this thesis. This requires the input of experienced safety
engineers and safety assessors.

A useful start would be to produce a generic guidance document for incorporating
PLDs into critical systems, along the lines of UK Defence Standard 00-54 but brought
up to date with current PLD technologies.

There is an ongoing project by the UK defence establishment to produce a document
similar to this, restricted to the problem of incorporating PLDs into Advanced Avionics
Architectures (AAvA) compliant systems. The first release of this document[Hil03a]
has been informed by the research in this thesis. Future releases of the document will
incorporate the lessons learned from a suitable case study.

RTCA DO-254 is a useful support to safety-critical PLD programming work, but
its Appendix B on high-integrity PLD programming would similarly benefit from such
a guidance document.

8.4.2 R efinem ent
We have produced a rigorous basis for refinement in SRPT in Chapter 5. The refine
ment rules produced were adequate for our demonstration study but there is a clear
need to extend them if other, more ambitious systems are to be refined.

We suggest the study and extension of the existing refinement rules for SRPT, build
ing up a parametrised library of useful processes. Generic arithmetic routines would be
one class of such processes. This work should then be applied to the implementation
of a substantial critical function on a PLD.

We have only considered SRPT refinement in isolation. As noted in Section 2.3.11,
a hybrid formal specification language such as Circus may be appropriate for specifying
a combined hardware-software system.

We suggest using Circus (or a receptive, synchronous variant of it) to specify a
complete software-PLD system, refining it down into appropriate components. This
work should use a combination of full refinement, proof of selected safety properties and
static analysis. The aim should be to identify and address deficiencies in the existing
notations and tool support.

218

8.4.3 SPA R K to PL D s
Our efforts in translating SPARK Ada subsections to PLDs have been demonstrative
in nature and purely manual in practice. To make SPARK Ada usable as a PLD
programming language, this translation should be mostly automatic and well-supported
by tools.

We suggest producing an automatic or semi-automatic tool to translate SPARK
Ada into a form suitable for compilation into a PLD. It should be tested out on a
range of SPARK 95 code, measuring the size and complexity of the PLD programs
produced. It may also be useful to study ways to optimise the PLD programs with
respect to gate count and execution time.

The York hardware compiler described by Ward[WA02c] may be a suitable basis
for this work but requires critical study in the light of the issues raised by this thesis.
Ravenscar is a good deterministic tasking model, and its use should be integral to
compiler development.

The SPARK interpreter specified in Chapter 6 has not been implemented in any
way. Implementing a restricted version of the interpreter will test the practical usability
of the SRPT specification, and should be used to measure metrics including:

• effort / productivity payoff of interpreting versus compiling SPARK;

• PLD space usage and routability of the interpreter and directly compiled SPARK
code; and

• run-time performance of interpreted versus compiled SPARK code.

8.4.4 Security applications
Our work has been done with reference to the requirements of RTCA DO-254 and
Def Stan 00-54. This covers the domain of safety-critical systems, but many aspects of
safety are mirrored in the requirements for high security applications.

The definitive information security standard is currently the Common Criteria[Com99].
A comparison of the criteria in this document against the Defence Standards and RTCA
documents would be required to identify:

• how current PLD programming practice for security systems is deficient;

• how applicable are the methods illustrated in this thesis; and

• what additional analysis or programming techniques may be mandatory or helpful
for the security domain.

8.5 Concluding Thought
The discipline of software engineering dates from around 1968, when the first NATO
conference on software engineering was held [Nor68] and Dijkstra made his proposal
about reducing the use of COTO [Dij68]. In the thirty five years that have followed,
we have made steady progress to the point today where we have a wealth of languages.

219

tools and techniques to support the discipline of producing sufficiently reliable, well-
engineered software for execution on microprocessors.

This thesis aimed to translate these techniques into the emerging field of program
ming PLDs. We used unambiguous formal notations to specify PLD programs so
that we knew what they should produce. Developing a refinement system allowed us
to produce PLD programs that were provably correct. The high-integrity program
ming language SPARK Ada allowed us to produce a program design amenable to
hardware-software partitioning. The properties of the language proved useful in map
ping program segments into a PLD-compatible form. We demonstrated that combined
hardware-software development at high integrity levels was practical for a substantial
embedded system.

We conclude that existing software engineering practice does translate into PLD
programming, and recommend that it is applied as soon as possible to critical PLD-
based systems. We must not forget the lessons we have learned in the microprocessor
field: thirty five years is too long to wait for highly reliable PLD programs.

220

Bibliography

[AASR98] P. Reinhart A. Abo Shosha and F. Rongen. Reconfigurable PCI-bus
interface (RPCI). In Hartenstein and Keevallik [HK98], pages 485-489.

[ABOO] Jorg Abke and Erich Barke. CoMGen: Direct mapping of arbitrary
components into LUT-based FPGAs. In Hartenstein and Griinbacher
[HGOO], pages 191-200.

[Abr96] J-R Abrial. The B Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

[AC02] Peter Amey and Rod Chapman. Industrial strength exception freedom.
In Proceedings of ACM SIC Ada Annual International Conference. ACM
Press, December 2002.

[ACM96] ACM Computing Surveys, volume 28, December 1996.

[ACMOl] ACM SICDA. ACM/SICDA Ninth International Symposium on Field
Programmable Cate Arrays (FPCA’Ol). ACM Press, February 2001.

[ACM03] ACM SICDA. Eleventh ACM International Symposium on Field-
Programmable Cate Arrays. ACM Press, February 2003.

[Ame99] Peter Amey. SPARK - the SPADE Ada Kernel. Technical Report 1.0,
Praxis Critical Systems Ltd., 1999.

[AmeOO] Peter Amey. INFORMED design method for SPARK. Technical report.
Praxis Critical Systems Ltd., October 2000.

[ARB99] Perry Alexander, Murali Rangarajan, and Phillip Baraona. A brief sum
mary of VSPEC. In Wing et al. [WWD99], pages 1068-1088.

[Arn96] J. M. Arnold. Software Architecture, chapter 5, pages 46-59. Volume 1
of Buell et al. [BAK96], 1996.

[BAK96] D. A. Buell, J. M. Arnold, and W. J. Kleinfelder, editors. Splash 2:
FPCAs in a Custom Computing Machine. IEEE Computer Society Press,
California, 1996.

[Bar93] Janet E. Barnes. A mathematical theory of synchronous communication.
Technical report, Oxford University Computing Laboratory, 1993.

[Bar97] John Barnes. High Integrity Ada - The SPARK Approach. Addison-
Wesley, 1997.

221

[Bar03] John Barnes. High Integrity Software: The SPARK Approach to Safety
And Security. Addison Wesley, April 2003.

[BDL96] C. W. Barrett, D. L. Dill, and J. R. Levitt. Validity checking for combi
nations of theories with equality. In M. Srivas and A. Camilleri, editors.
Proceedings of FMCAD’96, volume 1166 of Lecture Notes in Computer
Science. Springer-Verlag, November 1996.

[BDR98] Alan Burns, Brian Dobbing, and George Romanski. The Ravenscar task
ing profile for high integrity real-time programs. In L. Asplund, editor.
Reliable Software Technologies, Proceedings of the Ada Europe Confer
ence, volume 1411 of Lecture Notes In Computer Science, pages 263 -
275. Springer-Verlag, June 1998.

[BerOO] G. Berry. The foundations of Esterel. In G. Plotkin, C. Stirling, and
M. Tofte, editors. Proof, Language and Interaction: Essays in Honour of
Robin Milner, Foundations of Computing. MIT Press, 2000.

[BHKWOO] T. Bartzick, M. Henze, J. Kickler, and K. Woska. Design of a fault-
tolerant FPGA. In Hartenstein and Griinbacher [HCOO], pages 151-156.

[BP98] R. Banach and M. Poppleton. Retrenchment: An engineering variation
on refinement. In D. Bert, editor, B-98: Recent Advances in the De
velopment and Use of the B Method, volume 1393 of Lecture Notes in
Computer Science, pages 129-147, April 1998.

[BPCOO] Jürgen Becker, Thilo Pionteck, and Manfred Clesner. DReAM: A dy
namically reconfigurable architecture for future mobile communication
applications. In Hartenstein and Crünbacher [HCOO], pages 312-321.

[Bro95] Frederick P. Brooks, Jr. The mythical man month: essays on software
engineering. Addison Wesley Longman Inc., anniversary edition, 1995.

[BvW94] Ralph-Johan Back and Joakim von Wright. Trace refinement of action
systems. In International Conference on Concurrency Theory, pages
367-384, 1994.

[CB85] Bernard Carré and J.-F. Bergeretti. Information-fiow and data-fiow anal
ysis of while-programs. ACM Transactions on Programming Languages
and Systems, 7(1):37-61, January 1985.

[Cel02] Celoxica Ltd. Handel-C Language Reference Manual, 3.1 edition, 2002.

[CEN99] CENELEC. Railway applications - the specification and demonstration
of dependability, reliability, availability, maintainability and safety. Tech
nical Report EN 50126, European Committee for Electrotechnical Stan
dardization, 1999.

[CEN02a] CENELEC. Railway applications - safety-related electronic systems for
signalling. Technical Report EN 50129, European Committee for Elec
trotechnical Standardization, 2002.

222

[CEN02b] CENELEC. Railway applications - software for railway control and pro
tection systems. Technical Report EN 50128, European Committee for
Electrotechnical Standardization, 2002.

[Cha94] R. Chapman. Worst-case timing analysis via finding longest paths in
SPARK Ada basic-path graphs. Technical report. Department of Com
puter Science, York University, October 1994.

[ChaOl] Rod Chapman. SPARK Examiner release note - release 6.0. Technical
report. Praxis Critical Systems Ltd., August 2001.

[Cha03] Rod Chapman. SPARK Examiner release note - release 7.0. Technical
report. Praxis Critical Systems Ltd., August 2003.

[Civ02] Civil Aviation Authority. CAP 670 ATS Safety Requirements, June 2002.
SWOl Regulatory Impact Assessment.

[cJ99] ISO commitee JTC 1/SC 22. Ada: Conformity assessment of a language
processor. ISO/IEC, December 1999.

[CJR98] Stephen Charlwood and Philip James-Roxby. Evaluation of the XC6200-
series architecture for cryptographic applications. In Hartenstein and
Keevallik [HK98], pages 218-227.

[CKCOl] Pawel Chodowiec, Po Khuon, and Kris Caj. Fast implementations of
secret-key block ciphers using mixed inner- and outer-round pipelining.
In ACM/SICDA Ninth International Symposium on Field Programmable
Cate Arrays (FPCA’Ol) [ACMOl], pages 94-102.

[CKRB03] Chen Chang, Kimmo Kuusilinna, Brian Richards, and Robert W.
Brodersen. Implementation of BEE: a real-time large-scale hardware
emulation engine. In Eleventh ACM International Symposium on Field-
Programmable Cate Arrays (FPCA’03) [ACM03], pages 91-99.

[Com90] IEEE Committee. Standard glossary of software engineering technology.
Technical Report 610.12, Institute of Electrical and Electronics Engi
neers, inc., 1990.

[Com91] Communications Electronics Security Croup. Information Technology
Security Evaluation Criteria (ITSEC), Provisional Harmonised Criteria,
June 1991.

[Com99] Common Criteria. Common Criteria for Information Technology Secu
rity Evaluation, August 1999.

[Cor99] Actel Corporation. ProASIC 500K family datasheet. Technical report,
Actel Corporation, 1999.

[CS'*'96] R. Cleaveland, S. Smolka, et al. Strategic directions in concurrency re
search. In ACM96 [ACM96].

223

[CSOO] Koen Claessen and Mary Sheeran. A Tutorial on Lava: A Hardware
Description and Verification System, August 2000.

[CSW02] Ana Cavalcanti, Augusto Sampaio, and Jim Woodcock. Refinement of
actions in Circus. In Derrick et al. [DBWvW02].

[Cur84] I. F. Currie. Orwellian programming in safety-critical systems. Techni
cal Report Memorandum 3924, Royal Signals and Radar Establishment,
1984.

[CW96] Edmund M. Clarke and Jeannette M. Wing. Formal methods: State of
the art and future directions. In ACM96 [ACM96].

[DBWvW02] John Derrick, Eerke Boiten, Jim Woodcock, and Joakim von Wright,
editors. Proceedings of REFINE 2002, volume 30 of Electronic Notes in
Theoretical Computer Science. Elsevier, November 2002.

[Dij68] Edsger W. Dijkstra. Co To statement considered harmful. Communica
tions of the ACM, 11 (3): 147-148, March 1968.

[Dij70] Edsger W. Dijkstra. Notes on structured programming, circulated pri
vately, April 1970.

[Dij75] Edsger W. Dijkstra. Cuarded commands, nondeterminacy and formal
derivation of programs. Communications of the ACM, 18(8):453-457,
1975.

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[DM41] B. Dushnik and E. W. Miller. Partially ordered sets. American Journal
of Mathematics, 63:600-610, 1941.

[DMH03] Dewi Daniels, Richard Myers, and Adrian Hilton. White box software
development. In F. Redmill and T. Anderson, editors. Proceedings of
the Eleventh Safety-Critical Systems Symposium. Praxis Critical Systems
Ltd., Springer-Verlag, February 2003.

[Don98] Adam Donlin. Self-modifying circuitry — a platform for tractable virtual
circuitry. In Hartenstein and Keevallik [HK98], pages 199-208.

[DvLF93] A. Dardenne, A. van Lansweerde, and S. Fickas. Coal-directed require
ments acquisition. Science of Computer Programming, 20, 1993.

[EK99] Alexander Egyed and Philippe B. Kruchten. Rose/architect: a tool to
visualize architecture. In Proceedings of the 32nd Annual Hawaii Con
ference on Systems Sciences, 1999.

[EL02] Lars-Henruk Eriksson and Peter Alexander Lindsay, editors. PME 2002:
Formal Methods - Cetting IT Right, volume 2391 of Lecture Notes in
Computer Science. Springer-Verlag, July 2002.

2 2 4

[FKZ75] R. Farrow, K. Kennedy, and L. Zucconi. Graph grammars and program
flow analysis. In Proceedings of 17th IEEE Symposium on Foundations
of Computer Science, pages 42-56. IEEE, 1975.

[FMA'"'97] Julio Faura, Juan Manuel Moreno, Miguel Angel Aguirre, Phuoc van
Duong, and Josep Maria Insenser. Multicontext dynamic reconfiguration
and real-time probing on a novel mixed signal programmable device with
on-chip processor. In Luk et al. [LCG97], pages 1-10.

[For97] Formal Systems (Europe) Ltd. FDR User Manual, May 1997.

[FouOO] The Free Software Foundation. GNU C Compiler home page, January
2000. http://www.gnu.org/software/gcc/gcc.html.

[FW99] Cavin Finnic and Ross Wintle. SPARK 95 - the SPADE Ada 95 Kernel.
Technical Report 1.0, Praxis Critical Systems Ltd., October 1999.

[CA99] Wally Gibbons and Harry Ames. Use of FPCAs in critical space flight
applications - a hard lesson. In 1999 Military and Aerospace Applications
of Programmable Devices and Technologies Conference. Space Dynamics
Laboratory, Utah State University, September 1999.

[CC90] Jonathan Carnsworthy and Bernard Carré. SPARK - an annotated Ada
subset for safety-critical systems. Proceedings of Baltimore Tri-Ada Con
ference, 1990.

[CN99] Paul Graham and Brent Nelson. Reconfigurable processors for high-
performance, embedded digital signal processing. In Patrick Lysaght,
James Irvine, and Reiner Hartenstein, editors. Field-Programmable Logic
and Applications, volume 1673 of Lecture Notes In Computer Science,
pages 1-10, Glasgow, UK, September 1999. Springer-Verlag.

[Hal96a] J. A. Hall. Using formal methods to develop an ATC information system.
IEEE Software, 12(6), March 1996.

[Hal96b] J. C. Hall. An Algebra of High-Level Petri Nets. PhD thesis. University
of Newcastle upon Tyne, 1996.

[Hal02] Anthony Hall. Correctness by construction: integrating formality into a
commercial development process. In Eriksson and Lindsay [EL02].

[Hea97] Health and Safety Executive. Four Party Regulatory Consensus Re
port on the Safety Case for Computer-Based Systems in Nuclear Power
Plants, November 1997.

[Hei98] Constance Heitmeyer. On the need for practical formal methods. In
A. P. Ravn and H. Rischel, editors. Formal Techniques in Real Time and
Fault Tolerant Systems (5th International Symposium), volume 1486 of
Lecture Notes in Computer Science. Springer-Verlag, September 1998.

[Hen88] Michael Hennessey. Algebraic Theory of Processes. MIT Press, 1988.

225

http://www.gnu.org/software/gcc/gcc.html

[HGOO] Reiner W. Hartenstein and Herbert Griinbacher, editors. Proceedings of
the 10th International Conference on Field Programmable Logic and Ap
plications (FPL’OO), volume 1896 of Lecture Notes In Computer Science.
Springer-Verlag, August 2000.

[HHOO] Adrian J. Hilton and Jon G. Hall. On applying software development
best practice to FPGAs in safety-critical systems. In Hartenstein and
Griinbacher [HGOO], pages 793-796.

[HH02a] Adrian J. Hilton and Jon G. Hall. Mandated requirements for hard
ware/ software combination in safety-critical systems. In Proceedings of
the workshop on Requirements for High-Assurance Systems 2002. Soft
ware Engineering Institute, Carnegie-Mellon University, September 2002.

[HH02b] Adrian J. Hilton and Jon G. Hall. Refining specifications to program
mable logic. In Derrick et al. [DBWvW02].

[HH03] Adrian J. Hilton and Jon G. Hall. Mandated requirements for hard
ware/ software combination in safety-critical systems. Technical Report
2003/2, The Open University, 2003.

[HHG98] Reiner W. Hartenstein, Michael Herz, and Frank Gilbert. Designing
for Xilinx XC6200 FPGAs. In Hartenstein and Keevallik [HK98], pages
29-38.

[Hil03a] Adrian Hilton. Practical guide to certification and re-certification of
AAvA software elements: Software for programmable logic devices. Tech
nical report, QinetiQ, July 2003.

[Hil03b] Adrian J. Hilton. Engineering software systems for customer acceptance.
In Proceedings of SEHAS’03. Praxis Critical Systems Ltd., May 2003.

[HK98] R. W. Hartenstein and A. Keevallik, editors. Field-Programmable Logic
and Applications: From FPCAs to Computing Paradigm, 8th Interna
tional Workshop (FPL’98), Proceedings, volume 1482 of Lecture Notes
In Computer Science. Springer-Verlag, September 1998.

[HNT03] Jerker Hammarberg and Simin Nadjm-Tehrani. Development of safety-
critical reconfigurable hardware with Esterel. In Eighth International
Workshop on Formal Methods for Industrial Critical Systems. Linkoping
University, Elsevier, June 2003.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall
International, 1985.

[HRHOl] Jonathan Hammond, Rosamund Rawlings, and Anthony Hall. Will it
work? In Proceedings of the 5th International Symposium on Require
ments Engineering, August 2001.

[HTH03] Adrian J. Hilton, Gemma Townson, and Jon G. Hall. Fpgas in critical
hardware/ software systems. Technical Report 2003/1, The Open Uni
versity, 2003.

226

[HW97] John R. Hauser and John Wawrzynek. Garp: A MIPS processor with a
reconfigurable coprocessor. In FPGAs for Custom Computing Machines
(FCCM’97). University of California at Berkeley, 1997.

[IEC86] International Electrotechnical Commission. Software for Computers in
the Safety of Nuclear Power Stations, lEC Standard 880, first edition,
1986.

[lECOO] International Electrotechnical Commission. lEC Standard 61508, Func
tional Safety of Electrical / Electronic / Programmable Electronic Safety-
Related Systems, March 2000.

[iec02] Z formal specification notation - syntax, type system and semantics, July
2002 .

[IEC03] International Electrotechnical Commission. lEC Standard 61131, Pro
grammable Controllers, Part 3 (programming languages), 2003.

[IEE91] IEEE. IEEE Std. 1076-1987: IEEE Standard VHDL Language Reference
Manual, 1991.

[IEE95] IEEE. IEEE Std. 1364-1995: IEEE Standard Description Language,
1995. Based on the Verilog(TM) Hardware Description Language.

[lEEOl] IEEE. IEEE Standard Test Access Port and Boundary-Scan Architecture,
2001 .

[Ins97] Institut fur Mikroelektronik Stuttgart. SAND/1 Neurochip Infosheet,
February 1997.

[Ins02] The Inspector General. Status on the Federal Aviation Adminstration’s
major acquisitions. Memorandum, U.S. Department of Transportation,
February 2002. http://www.oig.dot.gov/show_txt.php?id=701.

[Int93] International Organisation for Standardisation. ISO/IEC 8809:1989;
LOTOS: A formal description technique based on the temporal ordering
of observational behaviour, 1993.

[Int95] Intermetrics Inc. Ada 95 Reference Manual International Standard
ANSI/ISO/IEC-8652:1995. U.S. Department of Defense, January 1995.

[Int96] International Electrotechnical Commission. Information technology -
Programming languages, their environments and system software inter
faces - Vienna Development Method - Specification Language - Part 1:
Base language, December 1996.

[IntOOa] International Electrotechnical Commission. lEC Standard 61690-1, Elec
tronic Design Interchange Format (EDIF version 3.0.0, 2000.

[IntOOb] International Electrotechnical Commission. lEC Standard 61690-2, Elec
tronic Design Interchange Format (EDIF) version 4-0.0, 2000.

227

http://www.oig.dot.gov/show_txt.php?id=701

[IP96] Valerie Illingworth and Ian Pyle, editors. Oxford Paperback Reference
Dictionary of Computing. Oxford Paperbacks. Market House Books,
February 1996.

[IS97] Maurice Kilavuka Inuani and Jonathan Saul. Technology mapping of
heterogeneous LUT-based FPGAs. In Luk et al. [LGG97], pages 223-
234.

[Jef91] A. Jeffrey. Discrete timed CSP. PMG Memo 78, Programming Method
ology Group, Chalmers University, Sweden, 1991.

[Joh78] S. C. Johnson. Lint, a C Program Checker, Unix Programmer’s Manual.
AT&T Bell Laboratories, 1978.

[Jon86] C. B. Jones. Systematic Software Development Using VDM. Prentice-
Hall International, 1986.

[Jos92] Mark Josephs. Receptive process theory. Acta Informatica, 29:17-31,
1992.

[JS90] Geraint Jones and Mary Sheeran. Circuit design in Ruby. In Jprgen
Staunstrup, editor. Formal Methods for VLSI Design, pages 13-70.
North-Holland, 1990.

[JTS03] Kimmo U. Jarvinen, Matti T. Tommiska, and Jorma O. Skytta. A fully
pipelined memoryless 17.8 Gps AES-128 encryptor. In Eleventh ACM In
ternational Symposium on Field-Programmable Cate Arrays (FPCA’03)
[AGM03], pages 207-215.

[KF91] S. Kopec and D. Faria. Obtaining 70 MHz performance from the MAX
architecture. Electronic Engineering, pages 69-74, May 1991.

[KHCP99] Steve King, Jonathan Hammond, Rod Chapman, and Andy Pryor. The
value of verification: Positive experience of industrial proof. In Wing
et al. [WWD99].

[Knu77] Donald E. Knuth. Notes on the van Emde Boas construction of priority
deques: An instructive use of recursion. Memo to Peter van Emde Boas,
March 1977.

[KraOO] Andrzej Krasniewski. Exploiting reconfigurability for effective detection
of delay faults in LUT-based FPCAs. In Hartenstein and Griinbacher
[HGOO], pages 675-684.

[KSOO] Helena Krupnova and Gabriele Saucier. FPGA-based emulation: Indus
trial and custom prototyping solutions. In Hartenstein and Griinbacher
[HGOO], pages 68-77.

[LB""'03] David Lewis, Vaughn Betz, et al. The Stratix^^ routing and logic
architecture. In Eleventh ACM International Symposium on Field-
Programmable Cate Arrays (FPCA’03) [ACM03], pages 12-20.

228

[LC96] Nancy Leveson and Stan Correy. Transcript from ‘High Anxiety’. ABC
Radio national broadcast, August 1996.

[LCG97] W. Luk, P. Y.K. Cheung, and M. Glesner, editors. Field Programmable
Logic and Applications: Seventh International Workshop (FPL’97), Pro
ceedings, volume 1304 of Lecture Notes In Computer Science. Springer-
Verlag, September 1997.

[LCR03] Fernanda Lima, Luigi Carro, and Ricardo Reis. Reducing pin and area
overhead in fault-tolerant FPGA-based designs. In Eleventh ACM In
ternational Symposium on Field-Programmable Cate Arrays (FPCA’03)
[AGM03], pages 108-117.

[LeeOO] Iain Lees. Perl Coding Standard. Praxis Critical Systems Ltd., March
2000 .

[Lev95] Nancy Leveson. Safeware: System Safety and Computers. Addison-
Wesley Publishing Company, 1995.

[LevOl] Nancy G. Leveson. Evaluating accident models using recent aerospace
accidents. Technical report. Software Engineering Research Laboratory,
MIT, June 2001.

[Lio96] Jacques-Louis Lions. Ariane 5 Flight 501 failure. Technical report. The
ESA / ONES Inquiry Board, July 1996.

[LM98] Wayne Luk and Steve McKeever. Pebble — a language for parametrised
and reconfigurable hardware. In Hartenstein and Keevallik [HK98], pages
9-18.

[LS93] Bev Littlewood and Lorenzo Strigini. Validation of ultrahigh dependabil
ity for software-based systems. Communications of the ACM, 36(11):69-
80, 1993.

[LS97] Luming Lai and J. W. Sanders. A refinement calculus for communicating
processes with state. In Gerard O’Regan and Sharon Flynn, editors, 1st
Irish Workshop on Formal Methods: Proceedings, Electronic Workshops
in Computing. Springer, July 1997.

[LS03] John Launchbury and Satnam Singh. An approach to compiling Cryp-
tol to FPCAs. In 3rd Annual High Confidence Software and Systems
Conference, Proceedings, pages 137-146. Galois Connections and Xilinx,
April 2003.

[Ltd84] INMOS Ltd. occam Programming Manual. Prentice-Hall International,
1984.

[Ltd94a] Program Validation Ltd. Formal semantics of SPARK (abstract syntax).
Technical report. Program Validation Ltd., March 1994.

[Ltd94b] Program Validation Ltd. Formal semantics of SPARK (dynamic seman
tics). Technical report. Program Validation Ltd., March 1994.

229

[Ltd98] B-Core (UK) Ltd. The B-Toolkit, 1998. http://www.b-
core.com/OnLineDoc/BToolkit.html.

[Luk99] Wayne Luk. Introductory Notes for Pebble 3.0. Imperial College, January
1999.

[Mak03] Wai-Kei Mak. I/O placement for FPCAs with multiple I/O standards.
In Eleventh ACM International Symposium on Field-Programmable Cate
Arrays (FPCA’03) [ACM03], pages 51-57.

[MC93] J. D. Morison and A. S. Clarke. ELLA 2000; a Language for Electronic
System Design. McGraw-Hill Book Company, 1993.

[McH02] John McHale. The new frontier: Reconfigurable computing. Military
and Aerospace Electronics, May 2002.

[MGLS97] P. I. Mackinlay, P. Y. K. Cheung, W. Luk, and R. Sandiford. Riley-2:
A fiexible platform for codesign and dynamic reconfigurable computing
research. In Luk et al. [LCG97], pages 91-100.

[Meg94] Graham M. Megson, editor. Transformational Approaches to Systolic
Design. Chapman and Hall, 1994.

[M1183] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer
Science, 25:267-310, 1983.

[Mil89] Robin Milner. A complete axiomatisation for observational congruence
of finite-state behaviours. Information and Computation, 81 (2):227-247,
May 1989.

[Mil90] Robin Milner. Operational and algebraic semantics of concurrent pro
cesses. In Jan van Leeuwen, editor. Handbook of Theoretical Computer
Science, volume B, pages 1201-1242. Elsevier and MIT Press, 1990.

[MIR98] MIRA. Cuidelines for the Use of the C Language in Vehicle Based Soft
ware, April 1998.

[MK98] Robert Macketanz and Wolfgang Karl. JVX — a rapid prototyping
system based on Java and FPCAs. In Hartenstein and Keevallik [HK98],
pages 99-108.

[ML91] Will Moore and Wayne Luk, editors. FPCAs: Edited Proceedings of the
International Workshop on Field Programmable Logic and Applications,
1991.

[MNG95] Mpeller-Nielsen and Caprini. Replacing an occam process by a chip.
In Parallel Programming and Applications; Proceedings of Workshop on
Parallel Programming and Computation (ZEUS’96), 1995.

[MoD94] Defence Standard 00-42, 1994. Reliability and Maintainability Assurance
Guidelines.

230

http://www.b-

[MoD96] Defence Standard 00-56 issue 2, December 1996. Safety Management
Requirements for Defence Systems.

[MoD97] Defence Standard 00-55 issue 2, August 1997. Requirements for Safety-
Related Software In Defence Equipment.

[MoD99] Interim Defence Standard 00-54 issue 1, March 1999. Requirements for
Safety Related Electronic Hardware in Defence Equipment.

[MoD03] Defence Standard 00-56 issue 3 (public comment draft), July 2003. Safety
Management Requirements for Defence Systems.

[MOH97] Christopher McCee-Osborne and Denton Hall. Management of safety is
sues - a legal perspective, presentation at ‘Safety Investment in Emerging
Urban Transit Systems’: AiC Conferences, March 1997.

[Mor94] Carroll Morgan. Programming From Specifications. Prentice-Hall, second
edition, 1994.

[MWOO] John S. McCaskill and Patrick Wagler. From reconfigurability to evolu
tion in construction systems: Spanning the electronic, microfiuidic and
biomolecular domains. In Hartenstein and Griinbacher [HGOO], pages
286-299.

[NG97] Stuart Nish et and Steven A. Guccione. The XC6200DS development
system. In Luk et al. [LCG97], pages 61-68.

[NMH99] J. Napier, J. May, and G. Hughes. Implementing software on-line diag
nostics in safety-critical systems. In T. Bradley and N. J. Davies, editors,
15th Annual UK Performance Engineering Workshop, Proceedings. Re
search Press International, July 1999.

[Nor68] North Atlantic Treaty Organisation. NATO Conference on Software En
gineering, 1968.

[Nor69] North Atlantic Treaty Organisation. NATO Conference on Software En
gineering, 1969.

[ORS92] S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification sys
tem. In D. Kapur, editor, 11th International Conference on Automated
Deduction (CADE), volume 607 of Lecture Notes in Artificial Intelli
gence. Springer-Verlag, June 1992.

[ORS96] E.-R. Olderog, Anders P. Ravn, and Jens Ulrik Skakkebæk. Refining
system requirements to program specifications. In Formal Methods for
Real-Time Computing, pages 107-134. Wiley, 1996.

[PEBBOl] J. Penny, A. Eaton, P. G. Bishop, and R. E. Bloomfield. The practicali
ties of goal-based safety regulation. In Felix Redmill and Tom Anderson,
editors. Proceedings of the 9th Safety-Critical Systems Symposium, pages
35-48. GAA and Adelard, Springer-Verlag, 2001.

231

[PH97] Shri Lawrence Pfleeger and Les Hatton. Investigating the influence of
formal methods. IEEE Computer, 30(2):33-43, February 1997.

[Pie95] Laurence Pierre. Describing and verifying synchronous circuits with the
Boyer-Moore theorem prover. In Paolo Camurati and Hans Evoking,
editors, CHARME, volume 987 of Lecture Notes in Computer Science,
pages 35-55. Springer, October 1995.

[Pra95] Praxis Critical Systems Ltd. The SPADE Simplifier, 1995.

[Pra98] Praxis Critical Systems Ltd. The SPADE Proof Checker — User Manual,
January 1998.

[Pri03] Private conversation with UK expert on PLDs and avionics systems,
February 2003. source omitted for reasons of confidentiality.

[PS93] Ian Page and Mike Spivey. How to program in Handel. Technical report,
Oxford University Computing Laboratory, December 1993.

[Pyg99] C. H. Pygott. A comparison of avionics standards. Technical Report
DERA/CIS/CIS3/TR990319/1.0, UK Defence Evaluation and Research
Agency, August 1999.

[RaiOO] Railtrack. Railtrack Engineering Safety Management, 3.0 edition, Jan
uary 2000.

[ROD98] Scott H. Robinson, Michael P. Caffrey, and Mark E. Dunham. Reconfig
urable computer array: The bridge between high speed sensors and low
speed computing. In Hartenstein and Keevallik [HK98], pages 159-168.

[RenOO] M. Renovell. A specific test methodology for symmetric SRAM-based
FPCAs. In Hartenstein and Griinbacher [HGOO], pages 300-311.

[RLOO] David Robinson and Patrick Lysaght. Verification of dynamically recon
figurable logic. In Hartenstein and Griinbacher [HGOO], pages 141-150.

[Rom96] George Romanski. Review of ‘Safer C’ (by Les Hatton). Technical report,
Thomson Software Products, January 1996.

[RS99] Vlad Rusu and Eli Singerman. On proving safety properties by integrat
ing static analysis, theorem proving and abstraction. In 5th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’99), 1999.

[RTG92] RTCA / EUROGAE. RTCA DO-178B / EUROCAE ED-12: Software
Considerations in Airborne Systems and Equipment Certification, De
cember 1992.

[RTGOO] RTCA / EUROCAE. RTCA DO-254 / EUROCAE ED-80: Design As
surance Cuidance for Airborne Electronic Hardware, April 2000.

232

[Rus93] John Rushby. Formal methods and the certification of critical systems.
Technical Report CSL-93-7, SRI International, December 1993.

[SA99] Alan Simpson and Mike Ainsworth. White box safety. In Proceedings:
Avionics Conference and Exhibition. ERA Technology Ltd., 1999. ERA
Report 99-0815.

[SC95] Jim Sutton and Martin Croxford. Breaking through the V&V bottleneck.
In M. Toussaint, editor, Ada in Europe: Second International Eurospace-
Ada-Europe Symposium, volume 1031 of Lecture Notes In Computer Sci
ence. Springer-Verlag, October 1995.

[SCOO] Susan Stepney and David Cooper. Formal methods for industrial prod
ucts. In J. P. Bowen, S. Dunne, A. Galloway, and S. King, editors. First
International Conference of B and Z Users, Proceedings, volume 1878
of Lecture Notes in Computer Science, pages 374-393. Springer-Verlag,
August 2000.

[Sch94] Bruce Schneier. Description of a new variable-length key, 64-bit block
cipher (Blowfish). In B. Preneel, editor. Fast Software Encryption: Sec
ond International Workshop, volume 1008 of Lecture Notes in Computer
Science. Springer-Verlag, December 1994.

[Sch03] Tom Schubert. High level formal verification of next-generation mi
croprocessors. In Proceedings of the fOth Design Automation Post-
Conference. Intel Corporation, ACM Press, June 2003.

[SD95] Steve Schneider and Jim Davies. A brief history of Timed CSP. Theo
retical Computer Science, 138, 1995.

[Sen92] C. T. Sennett. Demonstrating the compliance of Ada programs with Z
specification. In C. B. Jones, R. G. Shaw, and T. Denvir, editors, 5th
Refinement Workshop, eWiC Series, pages 367-378. British Computer
Society, 1992.

[Sha97] Mark Shand. A case study of algorithm implementation in reconfigurable
hardware and software. In Luk et al. [LCG97], pages 333-343.

[Sha02] Natarajan Shankar. Little engines of proof. In Eriksson and Lindsay
[EL02], pages 1-20.

[She96] Robert J. Sheraga. ANSI C to behavioural VHDL translator, Ada to
behavioural VHDL translator. The RASSP Digest, 3, September 1996.

[SM95] Mandayam K. Srivas and Steven P. Miller. Applying formal verification
to a commercial microprocessor. In Steven D. Johnson, editor, CHDL
’95: 12th Conference on Computer Hardware DescriptionLanguages and
their Applications, pages 493-502, August 1995.

[Spi92] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall In
ternational, second edition, 1992.

233

[SpiOO] J. M. Spivey. The fUZZ Manual. The Spivey Partnership, second edition,
2000 .

[SSCOl] Greg Snider, Barry Shackleford, and Richard J. Carter. Attacking the
semantic gap between application programming languages and config
urable hardware. In ACM/SIGDA Ninth International Symposium on
Field Programmable Gate Arrays (FPGA’Ol) [ACMOl], pages 115-124.

[SSSSOO] Sergej Sawitzki, Jens Schonherr, Rainer G. Spallek, and Bernd Straube.
Formal verification of a reconfigurable microprocessor. In Hartenstein
and Griinbacher [HGOO], pages 781-784.

[Sta95] The Standish Group. The CHAOS report, 1995.

[Ste98] Susan Stepney. Incremental development of a high-integrity com
piler: Experience from an industrial development. In Proceedings
of the Third IEEE High-Assurance Systems Engineering Symposium
(HASE’98), Washington D.C., 1998.

[Str98] Structured Software Systems. Cradle White Paper — Overview, Febru
ary 1998. Available from http://www.threesl.com/.

[SWCL99] R. Swan, A. Wyatt, R. Cant, and C. Langensiepen. Re-configurable
computing. Crossroads (ACM), 5(3), 1999.

[Swe97] Charles Sweeney. FPGA graphics generator. Technical Report 001, Em
bedded Solutions Ltd., November 1997.

[Swe98] Charles Sweeney. Optimal features of hardware platforms. Technical
Report 006, Embedded Solutions Ltd., December 1998.

[TayOl] A. Taylor. IT projects sink or swim. ECS Review, pages 61-64, January
2001 .

[Tea93] London Ambulance Service Inquiry Team. Report of the inquiry into
the London Ambulance Service. Technical report, South-West Thames
Regional Health Authority, 1993.

[TEC"*"95] Edward Tau, Ian Eslick, Derrick Chen, Jeremy Brown, and André De-
Hon. A first generation DPGA implementation. In Third Canadian
Workshop on Field Programmable Devices, pages 138-143. MIT, May
1995.

[U.S83] U.S. Department of Defense. Reference manual for the Ada Programming
Language ANSI/MIL-STD-1815A, January 1983.

[VBR"*"96] J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, and P. Boucard.
Programmable active memories: Reconfigurable systems come of age.
IEEE Transactions on VLSI Systems, March 1996.

2 3 4

http://www.threesl.com/

[Vic98] Andy Vickers. On the use of Jackson’s principles to structure the re
quirements engineering activity. In Systems Engineering: A Matter of
Choice, Fourth Annual Symposium, pages 41-46, RAF Hendon, June
1998. International Council on Systems Engineering (UK Chapter).

[WAOl] M. Ward and N.C. Audsley. Hardware compilation of sequential Ada. In
Proceedings of CASES 2001, pages 99-107, 2001.

[WA02a] M. Ward and N. C. Audsley. Hardware implementation of programming
languages for real-time. In Proceedings of the Eighth IEEE Real-Time
Embedded Technology and Applications Symposium (RTAS’02), pages
276-284. IEEE, September 2002.

[WA02b] M. Ward and N. C. Audsley. Hardware implementation of the Raven
scar Ada tasking profile. In Proceedings of the International Conference
on Compilers, Architectures and Synthesis for Embedded Systems. ACM
Press, 2002.

[WA02c] M. Ward and N. C. Audsley. Language issues of compiling Ada to hard
ware. In 11th International Real Time Ada Workshop, April 2002.

[WilOl] Steven J. E. Wilton. A crosstalk-aware timing-driven router for FPCAs.
In ACM/SICDA Ninth International Symposium on Field Programmable
Cate Arrays (FPCA’Ol) [ACMOl], pages 21-28.

[WLL"*"01] Kathryn Weiss, Nancy Leveson, Kristina Lundqvist, Nida Farid, and
Margarent Stringfellow. An analysis of causation in aerospace accidents.
In Proceedings of A I A A Space Conference and Exposition 2001. American
Institute of Aeronautics and Astronautics, August 2001.

[WWD99] J. M. Wing, J. Woodcock, and J. Davies, editors. World Congress on
Formal Methods in the Development of Computing Systems, volume 1709
of Lecture Notes in Computer Science. Springer-Verlag, September 1999.

[XES99] XS40, XSP board vl.4 user manual, September 1999.
http: / / www.xess.com/xs40-manual-vl_4.pdf.

[X1196] Xilinx Inc., 2100 Logic Drive, San Jose, CA. The Programmable Logic
Data Book, 1996.

[Xil97] Xilinx. XC6200 Field Programmable Cate Arrays Advance Product Spec
ification, April 1997.

[Xil99a] Xilinx. QPRO Xilinx 2.5V QML Preliminary Product Specification, Oc
tober 1999.

[Xil99b] Xilinx. Virtex-E 1.8V Field Programmable Cate Arrays Advance Product
Specification, September 1999.

[Xil99c] Xilinx. FAQ, 1999. http://www.xilinx.com/prs_rls/
vtxefaq.htm.

235

http://www.xess.com/xs40-manual-vl_4.pdf
http://www.xilinx.com/prs_rls/

[Yor97] York Software Engineering. CADiZ: Computer Aided Design in Z, 1997.
h ttp :// WWW . cse-euro. demon. co. uk/yse/pro duct s / cadiz/.

236

A ppendix A

Collated Refinem ent Rules

The following definition and rules are collated from Chapter 5.
A refinement frame F in a program takes the form:

P = y t e N - lX : oY : [[pre]*, [post]f+jt]

representing the specification “for the process P with input alphabet containing X and
output alphabet containing Y , at all times t, if pre is true at time t then at time
t k post is true.” k is a constant which will be determined by the timing needs of
the program at specification time.

Refinement 1 Stateless 1-bit function

V i € N • iX : o{y} ; [tru e , [y](+i = /{[X]()]
E CELL,[I\X][0\{y}]

Refinement 2 Parallelism

V t e N - lX : o{Y U Z) : [pre, post % A post 2]
□ iX : oY : [p re , post 1) || lX : oZ : [p re , post2]

whenever:

Y , Z are non-empty and non-intersecting
V F G • post 1 [Z\ V] = post 1
V kF G • p o s t 2[y \ W] = p o s t 2
where B^ is the set of n-ary boolean strings

2 3 7

R efinem ent 3 Weaken precondition

If p re p re ’ then:

y t e N ’ iX : oY : [p r e , post] C.\/1 e N - lX : oY :[p re ’ , p ost]

Refinem ent 4 Strengthen postcondition

If p o s t’ => post then:

y t e N - i X : oY : [p re , post] t e N - iX : oY : [p re , p o s t’]

Refinem ent 5 Expand frame

y t e N • iX : oY : [p re , post] Ç
y t e N ' l{X U A) : o{ Y U B) : [p r e , post]

where A n Y = ^ and B n % = 0.

Refinem ent 6 Contract frame

Let P = lX : oY : [p r e , p o s t]. If:

3 A C X ‘ y s e T n l P p y p c A y t e N -
3 r e TtzIP}(t • {r[t] = [s[t] \ A) U B) A {y i ^ t ■ r[i] = 5[«])

i.e., we can change the occurrence of A input events at any timestep to some arbitrary
subset B without changing any of the subsequent output events (input variables A are
irrelevant to the outputs), then:

l{X U A) : oY : [p re , post] Ç i {X \ A) : oY : [pre \ A, post \ A]

i.e., we can remove the A events.

238

Refinement 7 Introduce intermediate

\ i mid are timed predicates over subsets of events such that;

V disjoint X ^ Y ,Z Ç.T,-
k { [Y] , + 2 , [Z]t+i)Aj{[Z]t+i, [X],)

and j{[Z]t+i,[X]t =#- mid

then:

l X : oY : [p re ,^^([y]<+2, [X])̂] =
{ iX : oZ : [pre j ([%]f+ i, [%]()] ||

lZ : oY : [mid, k{[Y]t+2 AZWi)]) \ Z

i.e., we may split into two parts a process for which an “intermediate calculation”
exists.

Refinement 8 Introduce delayed intermediate

If j , A:, mid are timed predicates over subsets of events, and di, > 1, such that:

V disjoint X, F, Z Ç S-
9{[^]t+di+d2^ [X]t) ^ ^{[^]t+di+d2: i^]t+di) I^j{[^]t+di, [^10
and j{[Z]t+di, [X]t=^ mid

then:

l X : oY : [pre , g{[Y]t+di+d2 ,[^]t)] =
(,X :o^:[prej([^],+d„[X],)] ||

lZ : oY : [mid ,k{[Y]t+di+d2 ,[Z]t+di)]) \ Z

i.e., we may split into two parts a process for which an “intermediate calculation” exists
at some time point between start and end of calculation.

239

A ppendix B

1553 Bus Simulator

Bus testing program
— Test harness for 1553 bus simulator
— Not really SPARK, just looks like it.

with Bus;
with Rtl553,Bcl553;
with SystemTypes;
with Test,Test.checking;
use type SystemTypes.Unsigned32;
— # inherit bus, rtl553, bcl553, test;
— # main_program
procedure Test_Bus

— # global Bus.Inputs, Bus.Outputs, Test.State;
— # derives Bus.Inputs from *, Bus.Outputs &
— # Bus.Outputs from *, Bus.Inputs &
— # Test.State from *, Bus.Inputs, Bus.Outputs
— # ;

is
Msg : Bus.Message;
V,W : Bus.Word;
I : Bus.Word_Index;

begin
— Check for data being null
Test.SectionC'BC inputs are initially null");
for Lru in Bcl553.Lru_Name loop

Bcl553.Read_Message(Src => Lru,
Subaddress.Idx =>1,
Data => Msg);

Test.Checking.bool(
S => Bcl553.Lru_Name'Image(Lru) & " is stale",
Expected => False,
Actual => Msg.Fresh);

end loop;
Test.SectionC'RT inputs are initially null");

240

for Lru in Rtl553.Lru_Name loop
Rtl553.Read_Message(Src => Lru,

Subaddress_Idx => 1,
Data => Msg);

Test.Checking.bool(
S => rt1553.Lru_Name’Image(Lru) & " is stale".
Expected => False,
Actual => Msg.Fresh);

end loop;
— Get the BC to write out some data to each LRU
Test.SectionC'RT inputs are nul after write, before cycle");
W := 1;
I := 1;
for Lru in Bcl553.Lru_Name loop

Bcl553.Write_Word(Data => W,
Idx => I,
Subaddress_Idx => 1,
Dest => Lru);

Test.Checking.boolC
S => be1553.Lru_Name^Image(Lru) & " is still stale".
Expected => false.
Actual => Msg.fresh);

W := W + 3;
end loop;
— Get each LRU to write out some data to the BC
Test.SectionC'BC inputs are nul after write, before cycle");
W := 3;
I := 1;
for Lru in Rtl553.Lru_Name loop

Rt1553.Write_Word(Data => W,
Idx => I,
Subaddress_Idx => 1,
Src => Lru);

Test.Checking.bool(
S => rtl553.Lru_Name'Image(Lru) & " is stale".
Expected => False,
Actual => Msg.Fresh);

W := W + 3;
end loop;
— Now cycle and check the RT inputs
Bus.Cycle;
Test.SectionC'RT inputs are valid after cycle");
W := 1;
I := 1;
for Lru in rtl553.Lru_Name loop

Rt1553.Read_Message(Src => Lru,
Subaddress_Idx =>1,

241

Data => Msg);
Test.Checking.bool(

S => Rtl553. Lru_Naine’Image (Lru) & " is fresh".
Expected => True,
Actual => Msg.Fresh);

rtl553.read_Word(Src => Lru,
Data => V,
Idx => I,
Subaddress_Idx => 1);

Test.Checking.unsignedlG(
S => rtl553.Lru_Name’Image(Lru) & " is " &
Bus.Word'Image(W),
Expected => W,
Actual => W);

— Acknowledge reading this message
Rtl553.Acknowledge_Message(Src => Lru,

Subaddress_Idx => 1);
Rt1553.Read_Message(Src => Lru,

Subaddress_Idx => 1,
Data => Msg);

Test.Checking.bool(S => Rt1553.Lru_Name’Image(Lru) &
" not fresh after ack".
Expected => False,
Actual => Msg.Fresh);

W := W + 3;
end loop;
— Now check the BC inputs
Test.SectionC'BC inputs are valid after cycle");
W := 3;
I := 1;
for Lru in bcl553.Lru_Name loop

bcl553.Read_Message(Src => Lru,
Subaddress_Idx => 1,
Data => Msg);

Test.Checking.bool(
S => be1553.Lru_Name’Image(Lru) & " is fresh".
Expected => True,
Actual => Msg.Fresh);

bcl553.Read_Word(Src => Lru,
Data => V,
Idx => I,
Subaddress_Idx => 1);

Test.Checking.unsignedlG(
S => be1553.Lru_Name’Image(Lru) & " is " &
Bus.Word'Image(W),
Expected => W,
Actual => v);

242

— Acknowledge reading this message
bcl553.Acknowledge_Message(Src => Lru,

Subaddress_Idx => 1);
bcl553.Read_Message(Src => Lru,

Subaddress_Idx => 1,
Data => Msg);

Test.Checking.bool(S => bcl553.Lru_Name’Image(Lru)
" not fresh after ack",
Expected => False,
Actual => Msg.Fresh);

W := W + 3;
end loop;

Test.Done;
end Test_Bus;

Bus Controller interface
— The 1553 bus interface for the Bus Controller (BC)

— All other system components are on the bus as remote
— terminals (RTs).
— R messages go BC -> RT
— T messages go RT -> BC

with Bus;
with SystemTypes;
— # inherit SystemTypes,Bus;
package BC1553
is

— Symbolic names for the Lrus
type Lru_Name is

(Barometer,
Asi,
Ins,
Compass,
Fuel,
Fuze,
Radar,
Infrared,
Fins,
Motor,
Destruct,
Warhead
);

— Write out data to the RTs

243

procedure Set_Message_Valid(
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Dest : in Lru_Name);

— # global in out Bus.Outputs;
— # derives Bus.Outputs from *, Subaddress_Idx, Dest;

procedure Write_Word(
Data : in Bus.Word;
Idx : in Bus.Word_Index;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Dest : in Lru_Name);

— # global in out Bus.Outputs;
— # derives Bus.Outputs from *, Data,
— # Idx, Subaddress_Idx, Dest;

procedure Write_Message(
Data : in Bus.Message;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Dest : in Lru_Name);

— # global in out Bus.Outputs;
— # derives Bus.Outputs from *, Data, Subaddress_Idx, Dest;

— See if a message is fresh
function Is_Fresh(Src : Lru_Name;

Subaddress_Idx : Bus.Lru_Subaddress_Index)
return Boolean;

— # global in Bus.Inputs;

— See if a message is valid
function Is_Valid(Src : Lru_Name;

Subaddress_Idx : Bus.Lru_Subaddress_Index)
return Boolean;

— # global in Bus.Inputs;

— Read data sent to the BC

procedure Read_Word(
Src : in Lru_Name;
Idx : in Bus.Word_Index;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Data : out Bus.Word);

— # global in Bus.Inputs;
— # derives Data from Src, Idx, Subaddress_Idx, Bus.Inputs;

procedure Read_Message(
Src : in Lru_Name;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;

244

Data : out Bus.Message);
— # global in Bus.Inputs;
— # derives Data from Src, Subaddress_Idx, Bus.Inputs;

— Acknowledge a message as fresh
procedure Acknowledge_Message(

Src : in Lru_Name;
Subaddress_Idx : in Bus.Lru_Subaddress_Index);

— # global in out Bus.Inputs;
— # derives Bus.Inputs from *, Src, Subaddress_Idx;

end BC1553;

R em ote Terminal interface
— The 1553 bus interface for Remote Terminals (RT)

with Bus;
with SystemTypes;
— # inherit SystemTypes,Bus;
package RT1553
is

— Symbolic names for the Lrus
type Lru_Name is

(Barometer,
Asi,
Ins,
Compass,
Fuel,
Fuze,
Radar,
Infrared,
Fins,
Motor,
Destruct,
Warhead
);

— Write out data to the BC
procedure Set_Message_Valid(

Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Src : in Lru_Name);

— # global in out Bus.Inputs;
— # derives Bus.Inputs from *, Subaddress_Idx, Src;

procedure Write_Word(

245

Data : in Bus.Word;
Idx : in Bus.Word_Index;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Src : in Lru_Name);

— # global in out Bus.Inputs;
— # derives Bus.Inputs from *, Data, Idx,
— # Subaddress_Idx, Src;

procedure Write_Message(
Data : in Bus.Message;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Src : in Lru_Name);

— # global in out Bus.Inputs;
— # derives Bus.Inputs from *, Data, Subaddress_Idx, Src;

— Read data sent to the RT

procedure Read_Word(
Src : in Lru_Name;
Idx : in Bus.Word_Index;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Data : out Bus.Word);

— # global in Bus.Outputs;
— # derives Data from Src, Idx, Subaddress_Idx, Bus.Outputs;

procedure Read_Message(
Src : in Lru_Name;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Data : out Bus.Message);

— # global in Bus.Outputs;
— # derives Data from Src, Subaddress_Idx, Bus.Outputs;

procedure Acknowledge.Message(
Src : in Lru.Name;
Subaddress.Idx : in Bus.Lru_Subaddress_Index);

— # global in out Bus.Outputs;
— # derives Bus.Outputs from *, Src, Subaddress.Idx;

end RT1553;

2 4 6

A ppendix C

Exam ple Test Scripts

This appendix contains the test script used to test the Barometer code with the main
test harness, and the output that resulted. It is typical of the sensor testing scripts.

Barom eter script input
section Barometer initialisation
clock reset
barometer init
barometer check altitude 0
if.barometer init
if.barometer check altitude false 0

section After first bus cycle
cycle
barometer set altitude 5000 3
barometer check altitude 5000
if.barometer check altitude false 0

section After second bus cycle
cycle
barometer check altitude 5000
comment New altitude has not propagated yet
if.barometer check altitude true 0

section After third bus cycle
cycle
barometer check altitude 5000
if.barometer check altitude true 5000

section After a few sections
clock increment 3000
cycle
cycle
barometer check altitude 5009

247

if.barometer check altitude true 5009

section BIT Test - aborted
if.barometer check ibit.phase off
if.barometer start.ibit
cycle
if.barometer check ibit.phase request.start
cycle
if.barometer check ibit.phase request.start
cycle
if.barometer check ibit.phase in.progress

if.barometer stop.ibit
cycle
cycle
if.barometer check ibit.phase request.stop
cycle
if.barometer check ibit.phase off

section BIT Test - fail (in 10 ticks)
if.barometer check ibit.phase off
barometer fail.next.ibit
cycle
if.barometer start.ibit
cycle
if.barometer check ibit.phase request.start
cycle
if.barometer check ibit.phase request.start
cycle
cycle
cycle
cycle
cycle
if.barometer check ibit.phase in.progress
cycle
cycle
if.barometer check ibit.phase fail
cycle
cycle

section BIT Test - pass (in 10 ticks)
if.barometer check ibit.phase fail
cycle
if.barometer start.ibit
if.barometer check ibit.phase request.start
cycle
if.barometer check ibit.phase in.progress

2 4 8

cycle
if.barometer check ibit.phase in.progress
cycle
cycle
cycle
cycle
if.barometer check ibit.phase in.progress
cycle
if.barometer check ibit.phase pass
cycle

comment That's all, folks!
done

Barom eter script output

Barometer initialisation
Clock reset
Barometer Init
Barometer Check ALTITUDE
Barometer altitude PASS
If.Barometer Init
If.Barometer Check ALTITUDE
If.Barometer altitude valid PASS

After first bus cycle
Barometer Set ALTITUDE
Barometer Check ALTITUDE
Barometer altitude PASS
If.Barometer Check ALTITUDE
If.Barometer altitude valid PASS

After second bus cycle
Barometer Check ALTITUDE
Barometer altitude PASS
New altitude has not propagated yet
If.Barometer Check ALTITUDE
If.Barometer altitude valid PASS
If.Barometer altitude PASS

After third bus cycle
Barometer Check ALTITUDE
Barometer altitude PASS
If.Barometer Check ALTITUDE
If.Barometer altitude valid PASS
If Barometer altitude PASS

249

After a few sections
Clock increment 3000ms
Barometer Check ALTITUDE
Barometer altitude
If.Barometer Check ALTITUDE
If.Barometer altitude valid
If Barometer altitude

PASS

PASS
PASS

BIT Test - aborted
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase
If.Barometer start IBIT
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase
If.Barometer stop IBIT
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase

BIT Test - fail (in 10 ticks)
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase
Barometer Fail next Ibit
If.Barometer start IBIT
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase

BIT Test - pass (in 10 ticks)
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase
If.Barometer start IBIT
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

250

If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
That's all, folks!

DONE.
Passes : 30
Fails: 0

251

A ppendix D

SPARK Report File for Nav

*

Report of SPARK Examination
SPARK95 Examiner with VC and RTC Generator Release 7.0 / 07.03

Praxis Critical Systems, Bath, England
* *

DATE : 08-SEP-2003 10:55:12.60

Options :
default switch file used
index.file=MISSILE.IDX
warning.f ile=MISSILE.WRN
notarget_compiler_data
config_file=GNAT.CFG
source_extension=ADA
listing_extension=ls_
nodictionary
report.file=SPARK.REP
no.html
exp.checks
rtc
vcs
nest
statistics
fdl.identifiers
flow_analysis=information
ada95
annotation_character=#
profile=sequential

Selected files:
NAV.ADB

Index Filename(s) used were:

252

D:\USER\MISSILE.IDX

No Meta Files used

Summary warning reporting selected for:
Pragmas: pack

Target configuration file:
Line

1 — Auto-generated SPARK target configuration file
2 — Target claims to be 'SYSTEM_NAME_GNAT'

[elided]
18 end Standard;

No summarised warnings

Source Filename(s) used were:
D:\USER\NAV.ADB
D:\USER\NAV.ADS
D :\USER\SYSTEMTYPES-MATHS.ADS
D :\USER\SENSOR_HISTORY.ADS
D :\USER\MEASURETYPES-ANGLE_OPS-TRIG.ADS
D :\USER\MEASURETYPES-ANGLE_OPS.ADS
D:\USER\CLOCK.ADS
D :\USER\CARTESIAN.ADS
D :\USER\SYSTEMTYPES.ADS
D :\USER\MEASURETYPES.ADS
D :\USER\IF_AIRSPEED.ADS
D:\USER\IF_INS.ADS
D :\USER\IF_COMPASS.ADS
D :\USER\IF_BAROMETER.ADS
D:\USER\BC1553.ADS
D:\USER\IBIT.ADS
D:\USER\BUS.ADS

Source Filename: D:\USER\NAV.ADS
No Listing File

Unit name : Nav
Unit type : package specification
Unit has been analysed, any errors are listed below.

253

No errors found

No summarised warnings

Source Filename : D :\USER\SYSTEMTYPES-MATHS.ADS
No Listing File

Unit name : Systemtypes.Maths
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings

Source Filename : D :\USER\SENSOR_HISTORY.ADS
No Listing File

Unit name: Sensor.History
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings

Source Filename : D :\USER\MEASURETYPES-ANGLE.OPS-TRIG.ADS
No Listing File

Unit name: Measuretypes.Angle.Ops.Trig
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings

Source Filename : D :\USER\MEASURETYPES-ANGLE.OPS.ADS
No Listing File

Unit name: Measuretypes.Angle.Ops
Unit type: package specification
Unit has been analysed, any errors are listed below.

254

No errors found

No summarised warnings

Source Filename: D:\USER\CLOCK.ADS
No Listing File

Unit name : clock
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings

Source Filename: D:\USER\CARTESIAN.ADS
No Listing File

Unit name : cartesian
Unit type : package specification
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings

Source Filename: D:\USER\SYSTEMTYPES.ADS
No Listing File

Unit name : Systemtypes
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings

Source Filename : D :\USER\MEASURETYPES.ADS
No Listing File

Unit name: Measuretypes
Unit type: package specification
Unit has been analysed, any errors are listed below.

255

No errors found

No summarised warnings

Source Filename: D:\USER\IF_AIRSPEED.ADS
No Listing File

Unit name : If.airspeed
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings

Source Filename: D:\USER\IF.INS.ADS
No Listing File

Unit name : If.Ins
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings

Source Filename : D :\USER\IF.COMPASS.ADS
No Listing File

Unit name : if.compass
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings

Source Filename : D :\USER\IF.BAROMETER.ADS
No Listing File

Unit name: if.barometer
Unit type: package specification
Unit has been analysed, any errors are listed below.

256

No errors found

No summarised warnings

Source Filename: D:\USER\BC1553.ADS
No Listing File

Unit name : be1553
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings

Source Filename: D:\USER\IBIT.ADS
No Listing File

Unit name : ibit
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings

Source Filename: D:\USER\BUS.ADS
No Listing File

Unit name : bus
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings

Source Filename: D:\USER\NAV.ADB
Listing Filename: D:\USER\NAV.LSB

Unit name : Nav
Unit type: package body
Unit has been analysed, any errors are listed below.

257

No errors found

No summarised warnings

Resource statistics

Table Units used Max Size % used
Relation Table 1294 50000 2
String Table 10839 1048576 1
Symbol Table 1976 10240 19
Syntax Tree 8162 262144 3
VCG Heap 4222 120000 3
Record components 7 250 2
Record errors 0 1000 0

— End of file-

258

A ppendix E

Original N av B ody

— Navigation tracking of missile

with
If.Barometer, If.Compass,
If.Ins, If.Airspeed,
Measuretypes,Angle.Ops,
Measuretypes.Angle.Ops.Trig,
Sensor.History, Cartesian,
Systemtypes, Systemtypes.Maths ;

package body Nav
— # own Location.State is
— # head.xy, head.yz, dx, dy, dz, airspeed &
— # Sensor.state is
— # barometer.ss, compass.ss, ins.ss, airspeed.ss;

is
subtype Integer32 is Systemtypes.Integer32;

type Sensor.Status is (Unknown, Valid, Failed, Restarted);

Dx, Dy, Dz, Head.Xy, Head.Yz, Airspeed :
Sensor.History.Measure.History :=

Sensor.History.Blank.History;

Barometer.SS : Sensor.Status
Compass.SS : Sensor.Status
Ins.SS : Sensor.Status
Airspeed.ss : Sensor.Status

= unknown;
= Unknown;
= unknown;
= unknown;

--------------- Sensor updates --------------

— Handle an airspeed update
procedure Handle.Airspeed(Restart : in Boolean)

— # global in if.airspeed.state;
— # in out airspeed.ss;
— # in out airspeed, clock.time;

259

— [derives elided]
i s ___

speed.Now : Meter_Per_sec;
sensor.Valid : Boolean;

begin
if Restart then

If.Airspeed.Get_Speed(Speed => Speed.Now,
Valid => sensor.Valid);

if sensor.Valid then
airspeed.ss := valid;
Sensor.History.Update.Speed.Reading

(Item => airspeed,
Data => speed.Now);

else
— Not a valid sensor yet but restarting
Airspeed.Ss := Restarted;

end if;
elsif Airspeed.Ss = Valid or Airspeed.ss = restarted then

If.airspeed.Get.speed(Speed => Speed.Now,
Valid => sensor.Valid);

if sensor.Valid then
Sensor.History.Update.Speed.Reading

(Item => airspeed.
Data => speed.Now);

else
— Whoops, gone invalid
airspeed.Ss := Failed;

end if;
else

— Not restarting, sensor not valid so ignore
null;

end if ;
end Handle.airspeed;

procedure Handle.Barometer(Restart : in Boolean)
— # global in if.barometer.state;
— # in out barometer.ss;
— # in out dz, clock.time;
is separate;

— Handle an INS update
procedure Handle.Ins(Restart : in Boolean)

— # global
— # in if.ins.state;
— # in out ins.ss;
— # in out dx, dy, dz, clock.time;
is separate;

260

— Handle a compass update
procedure Handle.compass(Restart : in Boolean)

— # global
— # in if.compass.state;
— # in out compass.ss;
— # in out head.xy, head.yz, clock.time;
is separate;

------------------ Public subroutines -------

procedure Estimate.Height(M : out Meter;
C : out confidence)

— # global in dz, barometer.ss, ins.ss;
— # derives m,c from barometer.ss, ins.ss, dz;
is

T : Clock.Millisecond;
begin

case Barometer.Ss is
when Unknown | Failed I Restarted =>

— Try a backup
if Ins.Ss = Valid then

— Secondary sensor valid
Sensor.History.Get.Recent.Meter(Item => Dz,

Recent => M,
Timestamp => T);

if (T = 0) then
— Invalid reading
C := None ;

else
C := Low;

end if;
else

M := 0;
C := None;

end if;
when Valid =>

Sensor.History.Get.Recent.Meter(Item => Dz,
Recent => M,
Timestamp => T);

— Primary sensor valid
if T = 0 then

— invalid reading
C := None;

else
C := High;

end if;
end case ;

261

end Estimate.Height;

procedure Estimate_Origin_Offset(M : out Meter;
C : out confidence)

— # global in dx, dy, ins.ss, compass.ss, airspeed.ss;
— # derives m,c from dx, dy,
— # ins.ss, compass.ss, airspeed.ss;

is separate;

procedure Estimate.Heading(A : out Angle;
C : out Confidence)

— # global in dx, dy, head.xy, compass.ss, ins.ss;
— # derives a,c from dx, dy, head.xy, compass.ss, ins.ss;
is separate;

procedure Estimate.Speed(S : out Meter.Per.Sec;
C : out Confidence)

— # global in dx, dy, airspeed, airspeed.ss,
— # compass.ss, ins.ss; in out clock.time;
is separate;

procedure Maintain(Restart : in Boolean)
— # global
— # in
— # if.barometer.State,
— # if.compass.state,
— # if.airspeed.state,
— # if.ins.state;
— # in out
— # dx, dy, dz, airspeed, head.
— # barometer.ss, ins.ss.
— # compass.ss, airspeed.ss.
— # clock.time;

is
begin

H an d le .A irsp eed (R esta rt);
H an d le .B arom eter(R esta rt);
H andle.C om pass(R eStart);
H a n d le .In s (R e s ta r t) ;

end M aintain;

— Test p o in t
procedure Command i s sep a ra te ;

end Nav;

262

A ppendix F

FPG A N av Body

— Navigation tracking of missile
— Version using an FPGA

with
Fpga,
if.barometer, if.compass,
If.Ins, If.airspeed,
Measuretypes.Angle.Ops,
Measuretypes. Angle.Ops.Trig,
Sensor.History,
Systemtypes, Systemtypes.Maths,
cartesian;

package body Nav.FPGA
— # own Location.State is
— # in head.xy, in head.yz, in dx,
— # in dy, in dz, in air.speed &
— # fpga.inputs is
— # out time.now, out is.restart,
— # out airspeed.speed, out airspeed.valid,
— # out barometer.height, out barometer.valid,
— # out compass.xy, out compass.yz,
— # out compass.valid,
— # out ins.x, out ins.y, out ins.z,
— # out ins.valid ;

— sensor.state has no refinement as it’s just an array
is

subtype Integer32 is Systemtypes.Integer32;

type Sensor.Status is (Unknown, Valid, Failed, Restarted);
for Sensor.Status’Size use 2;
for Sensor.Status use

(Unknown => 0, Valid => 1, Failed => 2, Restarted => 3);

— How big are various types?
Dist.Record.Bytes : constant :=

263

(Sensor_History.Dist_History’Size + 7)/8;
— = 185/8 = 23 bytes
Angle_Record_Bytes : constant :=

(Sensor_History.Angle_History’Size + 7)/8;
— = 141/8 = 17 bytes
Speed_Record_Bytes : constant :=

(Sensor_History.Speed_History’Size + 7)/8;
— = 161/8 = 20 bytes

— The estimates are all output by the FPGA

— LOCATION.STATE
Dx, Dy, Dz : Sensor.History.Dist.History;
for Dx’Address use Fpga.Base_Out_Address;
for Dy’Address use

Fpga.Base.Out.Address + Dist.Record.Bytes*l;
for Dz’Address use

Fpga.Base.Out.Address + Dist.Record.Bytes*2;

Head.Xy, Head.Yz : Sensor.History.Angle.History;
for Head.Xy’Address use

Fpga.Base.Out.Address + Dist.Record.Bytes*3;
for Head.Yz’Address use

Fpga.Base.Out.Address +
(Dist.Record.Bytes*3 + Angle.Record.Bytes);

Air.Speed : Sensor.History.Speed.History;
for Air.Speed’Address use

Fpga.Base.Out.Address +
(Dist.Record.Bytes*3 + Angle.Record.Bytes*2);

— As are the sensor statuses

— SENSOR.STATE
Sensor.State.Base : constant :=

(Fpga.Base.Out.Address + 4) +
(Dist.Record.Bytes * 3 +

(Angle.Record.Bytes * 2 + Speed.Record.Bytes));
— about 123 bytes plus 1 word for safety

type Sensors is (Airspeed, Barometer, Compass, Ins);
for Sensors’Size use 2;

— Size is 4 X 2 = 8 bits
type Sensor.State.Array is array(Sensors) of Sensor.Status;
pragma Pack(Sensor.State.Array);
for Sensor.State.Array’Size use 8;

2 6 4

Sensor.State : Sensor_State_Array;
for Sensor.State’Address use Sensor_State_Base;

— The sensor values are written to the FPGA

— FPGA.INPUTS
Airspeed.Speed : Meter_Per_Sec;
for Airspeed.Speed’Address use

Base.In_Address ;
Airspeed.Valid : Boolean;
for Airspeed.valid’Address use

Base.In.Address + 4;

Barometer.Height : Meter;
for Barometer.Height’Address use

Base.In.Address + 5;
Barometer.valid : Boolean;
for Barometer.valid’Address use

Base.In.Address +9;

Compass.Xy, Compass.yz : Angle;
for Compass.Xy’Address use

Base.In.Address + 10;
for Compass.Yz’Address use

Base.In.Address + 11;
Compass.Valid : Boolean;
for Compass.Valid’Address use

Base.In.Address + 12;

Ins.x, Ins.Y, Ins.Z : Meter;
for Ins.x’Address use

Base.In.Address + 13;
for Ins.Y’Address use

Base.In.Address + 17
for Ins.z’Address use

Base.In.Address + 21
Ins.Valid : Boolean;
for Ins.Valid’Address use

Base.In.Address + 25;

Time.Now : Clock.Millisecond;
for Time.Now’Address use Base.In.Address + 26;

Is.Restart : Boolean;
for Is.Restart’Address use Base.In.Address + 30;

Public subroutines

265

procedure Get_Recent_Meter
(Item : in Sensor.History.Dist.History;
Recent : out Meter;
Timestamp : out Clock.Millisecond)

— # derives recent,timestamp from item;
is

last.Idx : Sensor_History.History_Count;
begin

last.Idx := Sensor.History.Previous_Item(Item.New_Idx);
Recent ;= Item.Distance(Last.Idx);
Timestamp := Item.Times(Last.Idx);

end Get.Recent.Meter;

procedure Get.Recent.angle
(Item : in Sensor.History.angle.History;
Recent : out angle;
Timestamp : out Clock.Millisecond)

— # derives recent,timestamp from item;
is

last.Idx : Sensor.History.History.Count;
begin

last.Idx := Sensor.History.Previous.Item(Item.New.Idx);
Recent := Item.bearing(Last.Idx);
Timestamp := Item.Times(Last.Idx);

end Get.Recent.angle;

procedure Get.Recent.speed
(Item : in Sensor.History.speed.History;
Recent : out Meter.Per.sec;
Timestamp : out Clock.Millisecond)

— # derives recent,timestamp from item;
is

last.Idx : Sensor.History.History.Count;
begin

last.Idx := Sensor.History.Previous.Item(Item.New.Idx);
Recent := Item.speed(Last.Idx);
Timestamp := Item.Times(Last.Idx);

end Get.Recent.speed;

procedure Estimate.Height(M : out Meter;
C : out confidence)

— # global in dz, sensor.state;
— # derives m,c from sensor.state, dz;
is

T : Clock.Millisecond;
Baro.State, Ins.state : Sensor.Status;
Tmp.dz : Sensor.History.Dist.History;

266

begin
Baro.State := Sensor.State(Barometer); — invalid rep OK
Tmp.Dz := Dz; — invalid rep ok
case Baro.state is

when Unknown I Failed | Restarted =>
— Try a backup
Ins.State := Sensor_State(Ins); — invalid rep ok
if Ins.state = Valid then

— Secondary sensor valid
Get.Recent.Meter(Item => Tmp.Dz,

Recent => M,
Timestamp => T);

if (T = 0) then
— Invalid reading
C := None;

else
C := Low;

end if;
else

M := 0;
C := None;

end if ;
when Valid =>

Get.Recent.Meter(Item => Tmp.Dz,
Recent => M,
Timestamp => T);

— Primary sensor valid
if T = 0 then

— invalid reading
C := None;

else
C := High;

end if;
end case;

end Estimate.Height;

procedure Estimate.Origin.Offset(M : out Meter;
C : out confidence)

— # global in dx, dy, sensor.state;
— # derives m,c from dx, dy, sensor.state;

is separate;

procedure Estimate.Heading(A : out Angle;
C : out Confidence)

— # global in dx, dy, head.xy, sensor.state;
— # derives a,c from dx, dy, head.xy, sensor.state;
is separate;

267

procedure Estimate_Speed(S : out Meter_Per_Sec;
C : out Confidence)

— # global in dx, dy, air.speed, sensor.state;
— # in out clock.time;
— # derives s,c from dx, dy, air.speed, sensor.state,
— # clock.time &
— # clock.time from *, sensor.state;

is separate;

procedure Maintain(Restart : in Boolean)
— # global
— # in
•— # if.barometer.State,
— # if.compass.state,
— # if.airspeed.state,
— # if.ins.state;
— # out
— # time.now, is.restart,
— # airspeed.speed, airspeed.valid,
— # compass.xy, compass.yz, compass.valid,
— # ins.x, ins.y, ins.z, ins.valid,
— # barometer.height, barometer.valid;
— # in out
— # clock.time;
— # derives
— # barometer.height, barometer.valid
— # from if.barometer.state &
— # airspeed.speed, airspeed.valid
— # from if.airspeed.state &
— # compass.xy, compass.yz, compass.valid
— # from if.compass.state &
— # ins.x, ins.y, ins.z, ins.valid
— # from if.ins.state &
— # is.restart from restart &
— # time.now from clock.time &
— # clock.time from
— # *;

is
P : Cartesian.Position;
D : Meter;
S : Meter.Per.Sec;
R : Measuretypes.Millirad;
VI,V2 : Boolean;
T : Clock.Millisecond;

begin
— Get airspeed
If.Airspeed.Get.Speed(Speed => S,

268

Valid => VI);
Airspeed.Speed := S;
Airspeed.valid := VI;
— Get height
If.Barometer.Get.Height(Height => D,

Valid => VI);
Barometer.Height := D;
Barometer.valid := VI;
— Get headings
If.Compass.Get.Xy(Angle => r.

Valid => VI);
Compass.Xy := Measuretypes.Angle.Ops.Round.Degree(R);
If.Compass.Get.Yz(Angle => r,

Valid => V2);
Compass.Yz := Measuretypes.Angle.Ops.Round.Degree(R);
Compass.Valid := VI and V2;
— INS
If.Ins.Get_Location(Position => P,

Valid => VI);
Ins.x := P.X;
Ins.Y := P.Y;
Ins.z := P.z;
Ins.Valid := VI;
— Get time
Clock.Read(T => T,

Valid => VI);
if VI then

Time.Now := T;
else

Time.Now := 0;
end if;
— Restarting?
Is.Restart := Restart;

end Maintain;

procedure Command is separate;
end Nav.fpga;

269

Reproduced with permission of copyright owner. Further reproduction prohibited without permission.

