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A bstract

Programmable logic devices (PLDs) are increasing in complexity and speed, and 

are being used as important components in safety-critical systems. Methods for devel

oping high-integrity software for these systems are well-known, but this is not true for 

programmable logic.

We propose a process for developing a system incorporating software and PLDs, 

suitable for safety critical systems of the highest levels of integrity. This process in

corporates the use of Synchronous Receptive Process Theory as a semantic basis for 

specifying and proving properties of programs executing on PLDs, and extends the use 

of SPARK Ada from a programming language for safety-critical systems software to 

cover the interface between software and programmable logic.

We have validated this approach through the specification and development of a 

substantial safety-critical system incorporating both software and programmable logic 

components, and the development of tools to support this work.

This enables us to claim that the methods demonstrated are not only feasible but 

also scale up to realistic system sizes, allowing development of such safety-critical 

software-hardware systems to the levels required by current system safety standards.
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Donald Knuth, author of T ĵK, and Leslie Lamport, author of the macros,

ensured that typesetting this thesis was as painless as possible. Linus Torvalds and 

Richard Stallman provided an operating system and supporting tools which made 

writing a thesis a pleasurable experience. The GNAT project of Ada Core Technologies 

made available a high-quality free Ada compiler.

The organising committees and reviewers of the FPL 2000, FPGA 2001, REFINE 

2002, RHAS 2002, FPGA 2003 and SEHAS 2003 conferences and workshops provided 

great forums for trying out my ideas and for finding out more about what was hap

pening in the worlds of programmable logic, refinement and high-assurance systems.

My family and friends have been incredibly patient and encouraging while I spent 

endless nights holed up writing bits of thesis. Thank you. I promise not to write 

another one any time soon.

Derek Goldrei got me thinking about the Open University to start with, was in

credibly helpful in guiding me through the application process, and was encouraging 

as the PhD work developed. Without him, I wouldn’t have even got started on this.

Final, and most heart-felt, thanks and love to my wife Jie who by turns encouraged 

and bullied me into getting this thesis written.



Contents

1 Introduction 19

1.1 The History of Highly Reliable S o ftw a re ....................   19

1.1.1 Programming vs. software engineering .........................    19

1.1.2 Historical fa ilu res..............................................................................  20

1.1.3 Where things go w rong.....................................................................  21

1.2 Modern Software Development.................................................................... 22

1.3 Hardware /  Software Codesign.................................................................... 23

1.3.1 The I/O p ro b lem  ............................................................... 23

1.3.2 Why the interfacing is h a r d ............................................................ 24

1.4 Programmable Logic Devices.......................................................................  24

1.5 Thesis Aim  ......................................................................................  25

1.6 Thesis Structure...........................................    . 26

2 Current R esearch 27

2.1 Safety-Critical System s................................................................................  29

2.1.1 Examples of safety-critical s y s te m s ................................................ 30

2.1.2 Assessing criticality............................................................................ 30

2.1.3 S tan d ard s ...........................................................................................  32

2.1.4 Safety-critical market sectors............................................................  32

2.1.5 Commentary .....................................................................................  37

2.1.6 Standards summary............................................................................ 38

2.2 Application of Formal M e th o d s .................................................................  40

2.2.1 The benefits of formal m e th o d s ..................................................... 40

2.2.2 Formal methods in u s e ...................................................................... 41

2.2.3 Direction of formal methods u s e ......................................................  45

5



2.2.4 Value of formal m e th o d s ..................................................................  45

2.2.5 The limitations of testing ...............................................................  47

2.2.6 Summary of formal m ethods............................................................  49

2.3 PLD s.................................................................................................................  50

2.3.1 Introduction to FPG A s...................................................................... 51

2.3.2 D escrip tion ........................................................................................  52

2.3.3 Variants of P L D s ...............................................................................  53

2.3.4 Specification........................................................................................  56

2.3.5 Device fe a tu re s ..................................................................................  56

2.3.6 Current dev ices..................................................................................  58

2.3.7 Performance........................................................................................  59

2.3.8 Other architectures............................................................................  61

2.3.9 Development environm ent...............................................................  64

2.3.10 FPGA usage in s y s te m s ............................................   66

2.3.11 Semantics of PLDs  ................................................................... 70

2.3.12 Issues of co-design ............................................................................  72

2.3.13 Summary of PLD technology ..................................................   73

2.4 Programming PLDs  ...............................................................................  74

2.4.1 Netlist specifics............................................................  74

2.4.2 Process flow ........................................................................................  74

2.4.3 High-level hardware design...............................................................  75

2.4.4 High-level language implementation................................................  76

2.4.5 Low-level language im plem entation.........................................   82

2.4.6 P eb b le ..................................................................................................  82

2.4.7 Testing PLD program s........................................................   84

2.4.8 Summary of programming PLDs ...................................................  86

2.5 Safety-Critical P L D s  ...................................................................... 88

2.5.1 Research directions............................................................................  88

2.5.2 Safety of P L D s ..................................................................................  88

2.5.3 Safety standard: Defence Standard 00-54 ....................................... 90

2.5.4 Safety standard: RTCA DO-254 ......................................................  91

2.5.5 PLD correctness...........................................................................   92

6



2.5.6 V erification......................................................................................  94

2.5.7 Self-testing ....................................................................................... 95

2.5.8 Emulation of P L D s ..........................................................................  95

2.5.9 Implementation to o ls .......................................................................  96

2.5.10 Key directions.................................................................................... 97

2.6 Conclusions...............................................................................................   . 99

2.6.1 Weaknesses of current research  .................................................  99

2.6.2 Research n e e d s .................................  100

3 Statem ent o f Problem  101

3.1 Current State of The A r t .........................................................................   . 101

3.2 Scope of A nalysis...................................................................    . 102

3.3 Target Level of C ritic a lity ......................................................................   . 103

3.4 Levels of R igour............................ 103

3.5 S ta tem en t.......................................................................................................... 104

3.6 Target Aims .  .................................................................................................105

3.7 Research Program m e........................................................................................105

3.7.1 Identified deficiencies........................................................................... 105

3.7.2 Maintaining existing benefits...........................  108

3.8 Components........................  109

3.9 Process.................................................................................................................109

3.10 Existing S tan d a rd s ...........................................................................................110

3.11 General Questions..............................................................................................114

3.11.1 Reliability..............................................................................................114

3.11.2 P rac tica lity ...........................................................................................114

3.12 Overall P ro c e ss ................................................................................................115

3.13 Future Chapters................................................................................................115

4 D evelopm ent technologies 119

4.1 Synchronous Receptive Process T h eo ry ........................................................ 120

4.1.1 Introduction...........................................................................................120

4.1.2 Deterministic S R P T ........................................................................... 121

7



4.1.3 Example -  AND Gate  .............................................................123

4.1.4 Composition................... 124

4.1.5 Denotational semantics......................................................................... 124

4.1.6 Specification and proof  ................................................................127

4.1.7 Safety monitor example ...................................................................... 130

4.1.8 Non-rigorous components ...................................................................138

4.1.9 Commentary ......................................  139

4.1.10 Alternatives to SRPT ......................................................................... 140

4.1.11 Conclusions............................................................................................ 141

4.2 P e b b le ................................................................................................................. 143

4.2.1 Introduction............................................................................................143

4.2.2 Target device issues................................................................................143

4.2.3 Language e lem en ts ................................................................................143

4.2.4 Exam ple...................     144

4.2.5 Formal descrip tion .....................................................   146

4.2.6 Completeness of defin ition ............................    148

4.2.7 SRPT representation............................................................................ 149

4.2.8 SRPT to Pebble...............................     152

4.2.9 Example: SRPT to P ebb le .........................................  155

4.2.10 S u m m a ry  ................................................................................160

4.3 SPARK A d a ........................................................................................................162

4.3.1 Introduction to SPARK A d a ................................................................162

4.3.2 Safety-critical system development p ro cess....................................... 163

4.3.3 General language p ro p erties ................................................................ 164

4.3.4 Static analysis and provability.............................................................170

4.3.5 Summary of S P A R K .............................................................................171

4.3.6 SPARK interfaces...................................................................................172

4.3.7 Partial com pilation................................................................................173

4.3.8 P artitioning ............................................................................................ 175

4.3.9 Compilation - a first c u t ...................................................................... 176

4.3.10 Compilation of SPARK co d e ................................................................ 177

4.3.11 R efinem ent............................................................................................ 183



4.3.12 SPARK in te rp re te r...............................................................................184

4.3.13 S u m m ary .............................................................................................. 185

5 Refining To SR P T  187

5.1 The Refinement Model  .................................................................   187

5.1.1 Overview of a refinement p ro c e s s ...................................................... 188

5.1.2 Suitability of m odel...............................................................................191

5.2 Refinement for S R P T ............................................................................   192

5.2.1 Aims for refinement..................................  192

5.2.2 Refinement f r a m e s ...............................................................................192

5.2.3 Refinement re lation ............................................................................... 196

5.2.4 R efinem ent...............................  197

5.2.5 Additional refinement rules ................................................................. 199

5.2.6 Feasibility..................................   203

5.3 Case Study: Carry Look-ahead Adder . .  ................................................. 203

5.3.1 Specification......................................... 204

5.3.2 Basic gates ......................................... 204

5.3.3 Refinement ............................................................................................205

5.3.4 Space and t i m e ..................................................................................... 210

5.3.5 Scalability...............................................................................................210

5.3.6 Proof means no te s t in g ? ......................................................................211

5.4 S u m m a ry ......................................................................................................... 212

5.4.1 Alternative approaches.........................................................................212

5.4.2 Targets ..................................................................................................213

6 A  PLD Interpreter o f SPA RK  215

6.1 Interpreter O verview .......................................................................................217

6.1.1 Architecture............................................................................................217

6.1.2 Partitioning issues ............................................................................... 218

6.2 CPU-PLD I/O  ................................................................................................ 219

6.2.1 Software-bus M M IO ............................................................................ 219

6.2.2 PLD buffering.........................................................................................221

9



6.2.3 PLD readout ........................................................................................226

6.2.4 Writeback to b u s ..................   227

6.3 Package I / O .......................................................................................................231

6.3.1 A rb itra tio n ...........................................................................................231

6.3.2 Inter-package ro u tin g ........................................................................... 232

6.3.3 Package o u tp u t .....................................................................................233

6.3.4 Package in p u t ........................................................................................235

6.4 Package Structure............................................................................................. 235

6.4.1 Storage ................................................................................................. 235

6.4.2 Storage o p e ra tio n s .............................................................................. 236

6.4.3 Program storage ................................................................................. 238

6.4.4 Expression evaluation........................................................................... 239

6.4.5 CPU instructions........................................................... 240

6.4.6 Instruction decoder : .......................... 244

6.4.7 CPU implementation . *..........................248

6.4.8 Opcode sum m ary................................................................................. 249

6.5 The Program Model ....................................................................................... 250

6.5.1 T y p e s .......................................................................     250

6.5.2 S ta te ..........................................................................   252

6.5.3 Expressions....................................................................   252

6.5.4 Alternation  .......................................................    254

6.5.5 Ite ra tion .................................................................................................254

6.5.6 Subprogram c a l l s ....................................................     255

6.5.7 Order of ex ecu tio n .................................................................  255

6.6 System Interface ............................................................................................. 256

6.7 Optim isations....................................................................................................257

6.8 Conclusions...................................................................................... 257

6.8.1 Achievements.......................................................................,.................258

6.8.2 Evaluation of SPARK ........................................................................258

6.8.3 Evaluation of S R P T ....................................  258

6.8.4 Satisfaction of target a im s ....................................................   259

6.8.5 Follow-on  ...........................................................................................260

10



7 Case Study 261

7.1 Target A im s...................................................................................................261

7.2 Carry Look-Ahead Adder  ...........................................................................262

7.2.1 Simulation environment .....................................................................262

7.2.2 Building b lo c k s .................................................................................... 264

7.2.3 Adder b lo ck ...........................................................................................264

7.2.4 Testing....................................................................................................264

7.2.5 Simulation environment reliability..................................................... 266

7.2.6 Conclusion.............................................................. 267

7.3 Missile Guidance System -  O verview ............................................................268

7.3.1 Related w o r k ........................................................................................268

7.3.2 System requirem ents........................................................................... 268

7.3.3 S a fe ty  .................................................................................... 269

7.3.4 Implementation limits  ............................................................269

7.3.5 Implementation technologies........................   270

7.4 System Components ....................................................................................... 271

7.4.1 System clock ....................................................................................... 271

7.4.2 1553 b u s .................................................................................................271

7.4.3 Watchdog tim e r .................................................................................... 272

7.4.4 Barometric sensor................................................................................. 273

7.4.5 Airspeed indicator  ........................................................................... 273

7.4.6 Inertial navigation s y s te m ..................................................................274

7.4.7 Solid state compass  ...........................  274

7.4.8 Fuel tank sensor.................................................................................... 275

7.4.9 Proximity fuse....................................................................................... 275

7.4.10 Millimetre radar sensor........................................................................275

7.4.11 Staring infra-red sensor........................................................................276

7.4.12 F i n s .......................................................................................................276

7.4.13 M o to r ....................................................................................................277

7.4.14 Self-destruct...........................................................................................278

7.4.15 W arhead.................................................................................................279

7.5 D esign ....................................................................  279

11



7.5.1 Design decisions......................................................................................280

7.5.2 Package structure  ...................................................................... 280

7.5.3 Code s t r u c tu r e ...................  280

7.5.4 Design limitations...................................................................................280

7.6 Im plem entation..................................................................................................282

7.6.1 Development .........................................................................................282

7.6.2 Testing..................................................................................................... 283

7.6.3 Conclusions............................................................................................ 284

7.7 Introduction of A P L D ......................................................................................285

7.7.1 Subsection identification...................................................................... 285

7.7.2 PLD interfacing...................................................................................... 285

7.7.3 Transform ation......................................................................................286

7.7.4 Results......................................................................................................287

7.8 Conclusion............................................................................................................288

7.8.1 Refined program s im u la tio n ................................................................ 288

7.8.2 SPARK program development............................................   288

7.8.3 Targets ...................................................................................................289

7.8.4 Further research...................................................................................... 291

8 Conclusions 293

8.1 Solving the Original Problem ......................................................................... 293

8.1.1 PLDs in safety-critical systems ...............................................   294

8.1.2 Rigorous PLD programming................................................ 294

8.1.3 Mapping SPARK to hardw are ............................................................. 295

8.1.4 The system development process ....................................................... 297

8.1.5 Reliability and practicability.................................................................298

8.2 Advancement of K now ledge.............................................................................301

8.2.1 Current weaknesses................................................................................ 301

8.2.2 Originality................................................................................................301

8.2.3 Advances m a d e ...................................................................................... 302

8.3 Self-Critique.........................................................................................................303

8.3.1 O m issions................................................................................................303

12



8.3.2 W eaknesses..........................................................................................304

8.3.3 How the state of the art would evolve without this research . . .  304

8.4 Future W ork................................................................................................   . 306

8.4.1 Safety engineering with P L D s .............................................................306

8.4.2 R efinem ent...................................................................................... 306

8.4.3 SPARK to P L D s ................................................................................. 307

8.4.4 Security applications...........................................................................308

8.5 Concluding T h o u g h t........................    . 308

A C ollated R efinem ent R ules 333

B 1553 Bus Sim ulator 337

C Exam ple Test Scripts 349

D SPA RK  R eport File for N av 357

E Original N av B ody 367

F F P G A  N av B ody 373

13



14



List of Figures

2.1 Architecture of a generic F P G A .............................................................   . 51

2.2 PLD development process flow................................................................   . 75

3.1 Development p ro cess ................................................................................   . 116

4.1 Combinational incrementer............................................................................. 146

4.2 Pebble blocks tracking s t a t e .......................................................................... 154

4.3 A simple stack............................................................................................   . 157

4.4 Handshaking across b locks.......................................................................  . 180

5.1 SRPT frame structure  ...................................................................  . 193

5.2 Carry look-ahead adder s tru c tu re .........................................................   . 204

6.1 Interpreter architecture................................................................................... 218

6.2 PLD input b u ffe r .............................................................................................224

6.3 TAP process...............................................................................................  . 230

6.4 MMIO writeback d e s ig n ................................................................................ 230

6.5 Inter-package ro u tin g .......................................................................................232

6.6 Package o u tp u t .........................................................................................  . 234

6.7 Package RAM la y o u t.......................................................................................236

6.8 ROM and PC s to re ..........................................................................................239

6.9 Expression b locks......................................................................................  . 240

6.10 First stage of CPU pipeline ...........................................................................248

6.11 CPU core com ponent................................................................................   . 249

7.1 Missile system design .......................................................................................281

15



16



List o f Tables

2.1 Table of SIL probabilities from lEC 61508 ..............................................  31

2.2 Trade-offs for software and hardware im plem entation...........................  55

4.1 Example run for A N D .................................................................................... 124

4.2 Example of a trace of the w atchdog.............................................................. 135

4.3 State changing p ro cess .................................................................................... 154

5.1 Contrast of Morgan and SRPT refinement processes.................................. 191

6.1 Packet meaning encoding........................ 222

6.2 Memory-mapped variable representations.....................................................222

6.3 PC action en cod ings..................... 238

6.4 Word type encodings.......................................................................................241

6.5 CPU O pcodes.......................................................................... 242

7.1 Adder size and delay p ro p erties .................................................................... 265

17



18



Chapter 1

Introduction

This chapter sets the scene for the topics discussed in the thesis. It outlines the recent 

history of highly reliable software development, looks at the successes, failures and 

needs of software engineers, and describes how this thesis tackles one particular section 

of those needs.

1.1 The H istory of H ighly Reliable Software

Programming as we know it today was effectively invented in the early 1950s, when the 

first generation of post-war computers was frustrating the first generation of experts 

responsible for making the machines complete their assigned tasks. The discovery by 

Grace Hopper of a moth embedded in the circuits of one malfunctioning behemoth 

heralded future programmers’ frustration in trying to find errors in their programs 

which had no less obscure causes.

1.1.1 Program m ing vs. software engineering

Programming is simply the act of producing data (a program) designed to be executed 

by a computer. Software engineering is a wider ranging term. When considering the 

incorporation of software engineers as members, the IEEE defined the term to mean:

. . .  the application of a systematic, disciplined, quantifiable approach to the 

development, operation, and maintenance of software; that is, the applica

tion of engineering to software. [Com90]
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The systematic study of software engineering is believed to have started at the 

NATO-funded conferences on the subject in 1968 and 1969 [Nor68, Nor69]. The pro

ceedings of these conferences show researchers and practitioners identifying many of 

the problems which we still see today.

In the past three decades, Herculean efforts made by both academe and indus

try have led to techniques, tools and languages which permit development of complex 

safety-critical software projects. The systems resulting from these projects are gen

erally as reliable as required by the user; while not perfect, they provide reasonable 

functionality and reliability. There is a substantial monetary price to pay for this 

reliability, but the reliability is generally delivered.

1.1.2 H istorical failures

There have, of course, been numerous failures of software engineering. Some of them 

have been spectacular, such as the Ariane 5 flight control software numeric overflow 

which resulted in a hundred-million-pound firework display over French Guyana[Lio96]. 

Others have been hardly noticed by the public, but nevertheless expensive. Repeated 

efforts to develop a next-generation air traffic control system for the United States 

have met with failure after expensive failure, and the current Standard Terminal Au

tomation Replacement System (STARS) has slipped by four years and incurred a 60% 

cost over-run so far. In the meantime, old software is operating far past its intended 

lifetime [Ins02].

The more serious failures involve human loss rather than financial loss. Remarkably, 

there are relatively few fatalities directly attributable to software failure. One of the 

earliest, and worst, of such accidents was the Therac 25 incident described in [Lev95]. 

A number of radiotherapy patients received massive radiation overexposure as a result 

of a race condition within the Therac-25 radiotherapy machine software. Notably, the 

fault was also present within an earlier model of machine, but a hardware interlock 

there prevented its manifestation.
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1.1.3 W here th ings go wrong

The most common point of project failure is, surprisingly, in the earliest phase: re

quirements gathering. The Standish CHAOS report of 1995 [Sta95] and the later 

study by Taylor [TayOl] estimate that between 30% and 48% of IT projects fail due 

to requirements-related problems, even though the stage at which the projects fail is 

usually late in the development cycle.

A significant fraction of safety-critical software projects start to go adrift less for 

technical reasons than for failures of process. The Ariane 5 explosion was traced back 

to a numeric overflow in the flight-control software, written in Ada. This was the cue 

for advocates of other languages and tools to leap in and say “if only you had been 

using X you would have detected this possible overflow.” However, this misses the 

point. The relevant section of the software was taken from the Ariane 4 programme.

It was not checked as it had been tested for Ariane 4, all known errors fixed, and had 

established a reliable track record. Ariane 5 flew a faster and tighter flight profile than 

Ariane 4, and so the numeric exception occurred where before the range of values was 

within the defined type range.

Using the best techniques, tools and language in the world is worth very little if 

your development process permits them to be circumvented, even if unintentionally. All 

the assertions about reliability contained in this thesis (and, indeed, elsewhere) should 

have a lengthy disclaimer attached, noting the need for a well-defined and reputable 

development process to be used, and to be enforced rigorously.

Leveson has analysed a series of aerospace accidents using an event chains model[LevOl]. 

Her analysis showed that accidents involving large-scale engineered systems usually 

have a complex series of causes, and blaming the accident on a perceived “proximal” 

cause is often an over-simplification:

The causes of accidents are frequently, if not almost always, rooted in orga

nizational culture, management and structure. These factors are all critical 

to the eventual safety of the engineered system. Oversimplifying the factors 

involved in accidents limits our ability to prevent them.[WLL'^01]

It is important to remember this when we make claims about reducing accident 

rates with purely technical fixes.
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1.2 M odem  Software D evelopm ent

Brooks [Bro95] wrote of the state of the software engineering art in 1975, and updated 

the 20th anniversary edition of his book with a review of the progress that the software 

engineering profession had made. Brooks’s original conjectures included:

1. that system development time does not scale in an inverse-linear relation to team 

size, and indeed that adding more manpower to a late project makes it later (the 

“mythical man-month”);

2. that there is no single development, in either technology or management tech

nique, which promises an order of magnitude improvement within a decade in 

productivity, reliability or simplicity (“no silver bullet”);

3. that after building one system successfully, the design and development of a 

follow-on system is prone to balloon out with pointless features and an elephantine 

design (the “second system effect”); and

4. a small number of documents, in a sea of project documentation, become the crit

ical pivots around which every project’s management revolves ( “the documentary 

hypothesis”).

History appears to have borne out these conjectures, which have passed into every

day software engineering practice. Brooks’s forecast of “no silver bullet” in particular 

has proven accurate; no single technique has produced a tenfold increase in produc

tivity or reliability. Instead, good practice and good tools have slowly increased our 

confidence in building software that does increasingly complex tasks.

We assume that the system development process described in this thesis is planned 

and carried out with an eye to these laws, and we focus on the task of producing 

the system that the customer needs. We do not aim to reduce the time taken to 

develop a safety-critical system. Instead, we aim to avoid all the extra development 

time resulting from having to rework the finished system after the customer or safety 

auditor has rejected it.
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1.3 Hardware /  Software Codesign

The bane of a software engineer’s life is when his code is required to interact with 

actual physical hardware, that is, hardware external to the computer itself; “stepping 

outside the sandbox”, as it is sometimes called. It is not for nothing that the writing 

of device drivers for an operating system is regarded as something of a black art. Why 

is this?

1.3.1 T he I /O  problem

Taking the Universal Register Machine as the canonical computer, and ignoring for the 

moment the unlimited memory space that it provides, we might well believe on first 

inspection that the machine is useless. It has a list of memory “slots” , each of which 

can hold an arbitrary natural number. It has an instruction counter, initially set to 1. 

It operates on a numbered list of instructions, each of which is one of the following:

Z(M ) Zero the value in memory slot M

S(M ) Increment the value in memory slot M  by 1

T (M ,N ) Copy the value in slot M  into slot N

J(M ,I ,J )  If the value in slot M  is zero, set the instruction counter to I; otherwise, set 

it to J

For any of the first three instructions, once it is executed the machine will increment 

the instruction counter by 1. In any case, the next step of the machine will be to read 

and execute the instruction pointed to by the instruction counter. If this counter points 

beyond the end of the instruction list given, the machine stops.

From a black box point of view, the machine does nothing -  we have no inputs or 

outputs defined. To give its actions meaning we must be able to inspect the memory 

locations, control the starting of the machine and possibly also feed in new programs. 

This must be accomplished outside the machine’s normal operations.

It is a similar situation with embedded systems. A well-established processor -  

typically one of the ARM or PowerPC families -  may be coupled via a bus and memory
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controller to a bank of RAM, and a program executed in the normal way. However, 

something must start program execution in some way after power-on, and the rest of 

the system under control (e.g. a water heating system) must be able to feed data to 

the processor and read control signals out of it.

Without heavy customisation of the processor, the simplest way is often memory- 

mapped I/O. This technique uses the memory management unit of the system to 

flag certain locations in the processor’s memory map as “special” ; the values in those 

locations may either represent data read from external sensors, or be control values 

read by and used to control external actuators.

1.3.2 W hy th e  interfacing is hard

The problems posed by such an apparently simple arrangement are many and subtle. 

The most obvious is a change in the way that we reason about program correctness. In 

our normal programming model any control path which may write two values to a given 

variable in succession, without reading the first value back, is immediately suspected 

of being in error.

The second problem, more insiduous, is the lack of synchronisation between the 

software and hardware worlds. Events external to the processor may occur at any 

point, in any order. Inside the processor we can place bounds on the number of 

computational steps between two events, but introducing dependencies on external 

events complicates the problem of producing highly reliable software which is correct 

with respect to a speciflcation.

These problems also occur in systems where there are multiple threads of control 

with a shared address space. Programming languages have had to develop features 

such as semaphores, monitors, protected objects and associated protocols to solve these 

problems.

1.4 Program m able Logic D evices

Programmable logic devices (PLDs), as a compromise between a general-purpose CPU 

and a single-function Application-Speciflc Integrated Circuit (ASIC), lie on the border
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between software and hardware. To make a PLD program highly reliable, it must be 

simple; however, PLDs (such as field-programmable gate arrays) are steadily growing 

in size and complexity and so are being used for increasingly complicated tasks.

To date, programming PLDs has been done at a relatively low level with little 

concern for verifiability or correctness. However, emerging standards for safety-critical 

systems development such as UK Defence Standard 00-54[MoD99] and RTCA DO- 

254[RTC00] have started to mandate formal analysis of PLD programs that are key to 

system safety. Existing technologies do not support PLD programming at the higher 

levels of integrity.

Many of the concepts in this thesis can apply equally well to ASICs since their 

circuits are designed in much the same way as many PLD circuits. ASICs are also used 

in safety-critical systems, and many safety problems are common to PLDs and ASICs. 

However, the scope of this thesis is restricted to PLDs.

1.5 Thesis Aim

This thesis aims to describe a method for developing a set of functional and safety 

requirements into a system incorporating PLDs and conventional software. At each 

stage of development we aim to maintain correctness according to the requirements, 

and facilitate verification of the final code. The development process must be able to 

produce evidence that the system is fit for use at a higher level of safety integrity than 

is currently possible.

In this work we incorporate existing technologies for development of software for 

conventional safety-critical systems. We also use an existing synchronous process alge

bra as the basis for a formal description and refinement of a PLD program. We show 

how part of a conventional software program in the SPARK Ada high-level language 

can be efficiently compiled into programmable logic. The techniques are demonstrated 

in a substantial case study development of a safety-critical system.
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1.6 Thesis Structure

Chapter 2 is a survey of the current research in the area of programmable hardware, 

and of relevant research in the areas of software and safety engineering. It looks both 

at the development of formal techniques for reasoning about and producing programs 

for programmable hardware, and at the state of the art in industrial safety-critical 

software development.

Chapter 3 provides a statement of the problem which this thesis aims to address, 

and gives criteria by which the reader may judge whether the problem has been solved.

Chapter 4 introduces the technologies used in the rest of the thesis to address the 

problem. It describes Synchronous Receptive Process Theory (SRPT), the Pebble PLD 

programming language, a generic PLD model, and the SPARK subset of Ada.

Chapter 5 builds on the existing algebra of SRPT to construct a rigorous specifi

cation and refinement system. This system allows refinement from an abstract timed 

specification to provably correct implementation in Pebble. The chapter provides a 

worked example of a carry look-ahead adder refinement.

Chapter 6 develops an SRPT description of an interpreter for SPARK Ada byte

code, showing how SRPT can be used to design a substantial PLD program and how 

the known properties of a SPARK Ada program assist in its compilation into a PLD 

program.

Chapter 7 describes a practical gate-level simulation of the adder in Chapter 5. 

The chapter then draws together the techniques developed in the preceding chapters 

to develop a substantial high-integrity guidance system for a missile using a design 

which runs partly on a standard processor and partly in programmable hardware.

Chapter 8 summarises the topics discussed in the thesis, considers whether the 

problem statements in Chapter 3 have been addressed, and points towards further 

avenues of research which may follow from this work.
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Chapter 2

Current Research

This chapter considers the use of programmable hardware in safety-critical systems.

We will:

• analyse current and emerging safety standards directly applicable to this field;

• describe the constraints placed on the design, production and testing of safety- 

critical system software, and how these may apply to PLDs;

• look at current tools and techniques used in the production of such systems, 

especially those related to formal methods and proof; and

• assess the effectiveness of these tools and techniques.

Since we want to use programmable logic devices (PLDs) in safety-critical systems, 

we will:

• describe the state-of-the-art in PLD design and production;

• examine the systems which represent the range of use of programmable hardware 

in industry;

• examine how PLDs are programmed in theory and practise; and

• critique the techniques and tools which claim to formalise the use of program

mable logic in systems.
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Finally we bring together the areas of safety-critical systems and PLDs by examining 

the challenges posed by the use of programmable hardware in a safety-critical system. 

Our guiding aim is to identify the gaps in the current industrial practice and academic 

theory, and to identify an approach that is able to cover these gaps.

Section 2.1 describes the practice in safety-critical systems development. Section 2.2 

investigates current research in formal methods. Section 2.3 describes the range of 

PLD architectures. Section 2.4 investigates how PLDs are programmed. Section 2.5 

looks at how PLDs could be incorporated into safety-critical systems, and Section 2.6 

summarises the key points of the research survey.
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2.1 Safety-Critical System s

In [Lev95] pp 136-137, Leveson defines the term system to mean “a set of components 

that act together as a whole to achieve some common goal, objective or end” and safety 

as “freedom from accidents or losses”. The criticality of a system is defined by the 

consequences of its failure ( “inability of the system to perform its intended function”, 

[Lev95] pp 172), a definition which may extend down to individual components of the 

system. Combining these, we may draw the following working definition:

a safety-critical system is a collection of components acting together where 

interruption of the normal function of one or more components may cause 

injury or loss of life.

Such systems may be designed to fail safely in certain circumstances. A safe failure 

mode is a component or system failure which does not compromise system safety. One 

example might be a nuclear reactor control system where any interruption of power 

or control to the subsystem holding the control rods will cause the rods to drop into 

the core, effectively stopping the nuclear reaction. So the system is not keeping the 

reactor running (its intended function) but it is keeping the reactor free from accidents 

or losses (safety) .

An unsafe failure mode, by contrast, is one which increases the likelihood of accident 

or loss. A fiy-by-wire system may not be able to fail safety, since any interruption of 

its normal function will cause the pilot to lose control of the aircraft.

There are other terms associated with causes of failure. A defect is taken to be an 

aspect of the design of a system which turns out to have undesired consequences; for 

instance, a defect of the language syntax of C is that association of single statements 

with conditions in a nested i f - e l s e  block is counterintuitive.

An error is an aspect of the implementation of a system which is incorrect; for 

instance, a subprogram implementation which may use one of its variables before that 

variable has been initialised.

A fault is the result of an error or defect, manifesting in undesired system behaviour; 

for instance, if an aircraft engine shut down (because of an error in the software) then 

the unexpected shutdown would be a fault. Faults may be caused by multiple errors;
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conversely, not all errors may cause faults.

2.1.1 Exam ples o f safety-critical system s

An example of a safety-critical system is an air traffic control system such as GDIS 

[Hal96a]. There are many components in the system including operator displays, radar 

and transponder devices, and communications links. It is safety-critical because if 

the communications links fail wholly or partially then the operators may be unable 

to communicate with aircraft and command course changes to avoid a collision; such 

a collision would be an accident and may involve loss of life or property. Hence, the 

system is safety-critical when used in an operational environment. If it were linked in 

to a simulator then it would not be safety-critical because there would be no severe 

consequences of its failure.

Other safety-critical systems may not be assessed as such, yet still cause substantial 

destruction or death on failure due to a denial-of-service effect. An example of this 

was the failure of the London Ambulance Service dispatching system which failed in 

November 1992; the resulting events are described in [Tea93]. Although in this case 

there was no link established by a coroner between the system failure and resulting 

deaths due to delay in dispatching ambulances, there is a demonstrable mechanism 

for deaths to result from a failure in normal operation (successful revival from cardiac 

arrest is critically affected by the arrival of a defibrillator-equipped ambulance within 

10 minutes) and so the system was safety-critical even if it was not so specified.

2.1.2 A ssessing criticality

Such systems may be graded according to their potential to cause death, serious injury 

or large financial loss. The SIL convention used in the European functional safety 

standard lEC 61508 [lECOO] specifies four Safety Integrity Levels (SILs), with SIL-4 

systems having the greatest criticality and SIL-1 systems the least.

The SIL has two forms. For a low-demand mode of operation the SIL is calculated 

based on the required probability of failure for the system or component to perform 

its design function on demand. For high-demand or continuous operation, the SIL is 

calculated by the required probability of a dangerous failure per hour. The probability
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SIL Pfail (on-demand) ^fail(PGr-hour)

4 > 10-^ to < 10-^ > 10"® to < 10"®

3 > 10“  ̂ to < 10"^ > 10-^ to < 10-'^

2 > 10“  ̂ to < 10"^ > lO-"̂  to < 10-®

1 > 10“  ̂ to < 10“^ > 10-® to < 10-®

Table 2.1: Table of SIL probabilities from lEC 61508

ranges used are shown in Table 2.1.

Example: a nuclear power station’s reactor control rod system is expected to operate 

for 30 years (263000 hours) with a probability of dangerous control rod failure during 

the station’s lifetime of < 10“ .̂ The required maximum probability of failure per hour 

is therefore p such that

(1  -  p)263000 >  (1  _  1 0 “ ^)- 2 \ (2.1)

giving p =  3.8 X 10 a SIL-3 system. The calculated SIL may then be used to guide 

the amount and form of analysis and testing required for the system.

Other standards use similar principles of measurement, though with different nota

tions. RTCA/EUROCAE DO-178B[RTC92], for instance, specifies levels of criticality 

from E (not critical) through to A (high criticality). The different treatments of risk 

in these and other standards were analysed by Pygott in [Pyg99].

An example of a UK commercial SIL-4 system is the Royal Navy’s Ship Helicopter 

Operating Limits Information System [KHCP99] designed to assist landing of heli

copters on Royal Navy Type 23 frigates. Failure of this system could result in the 

death of helicopter pilots and passengers, loss of a helicopter and damage to the ship. 

This is unacceptable for normal operation, hence SIL-4 reliability is required to give 

sufficient confidence that such an accident will not happen during the in-service life

time of the system. Since SHOLIS is a relatively low-demand system, this indicates 

a required probability of failure to perform its function on demand between 10”  ̂ and

i o - \
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2.1.3 Standards

Makers and users of safety-critical systems in the UK have a legal mandate to ensure 

that the risk of serious failure is as low as reasonably practicable (ALARP.) McGee- 

Osborne and Hall considered this as far as it relates to the rail transport sector in 

[MOH97]. The Health and Safety at Work Act 1974 (known as “HSWA” or “HA- 

SAWA”) imposes general duties on employers to protect the health and safety of em

ployees and non-employees, using the key phrase “to the extent reasonably practicable”. 

Thus any employer operating a safety-critical system owes a “duty of care” to those 

who may reasonably be affected by the system. Failure in this respect may result in 

any of the following:

• litigation by affected parties for damages caused;

• an enforcing order from the Health and Safety Executive requiring the removal 

of the system from operation or immediate modifications to the system; or

• criminal prosecution of individuals for negligence leading to harm of others.

It is notable that successful prosecution for such negligence is rare.

Since many safety-critical systems may affect public safety, governmental and asso

ciated oversight agencies have drawn up standards documents for the development of 

safety-critical systems. Some of the best-known standards documents are UK Defence 

Standards 00-55 and 00-56 [MoD97, MoD96], RTCA/EUROCAE DO-178B [RTC92], 

the CENELEC EN 50126, 50128, 50129 European rail standards [CEN99, CEN02b, 

CEN02a] and the aforementioned European lEC Standard 61508 [lECOO].

2.1.4 Safety-critical m arket sectors

We split the safety-critical systems market into five sectors. For each sector we describe 

one or more mainstream standards or guidance documents used in the United Kingdom 

or internationally, then summarise the main principles that have been established.

Each of these sectors has a regulatory regime which has driven the development 

and adoption of standards. Other market sectors such as the automotive and medical
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equipment industries have regulatory regimes but do not have specific standards for 

assessing software and programmable hardware.

In the UK medical equipment industry, for instance, the Medicines and Healthcase 

products Regulatory Agency (MHRA) applies UK and European law, principally the 

EC Medical Devices directives. These directives will require manufacturers to demon

strate that critical medical devices are appropriately safe, but does not specify a process 

or any specific criteria against which the equipment’s software or electronic hardware 

must be assessed.

Within the automotive industry, the increasing problem with faulty software has 

driven the development of the MISRA-C subset for critical automotive software spec

ified in [MIR98]. However adoption of this subset is not mandatory, and indeed some 

of the MISRA-C rules are difficult to enforce.

Rail

The Railtrack “Yellow Book” [RaiOO] provides guidance on the safety management of 

changes to the UK rail network. It is detailed but not prescriptive; it allows projects to 

tailor its recommended approach, although the Railtrack Safety Approval Body must 

approve the approach taken.

The CENELEC standards are derived from lEC 61508. Standard EN 50128[CEN02b] 

relates to the safety-related software in railway systems, and EN 50129[CEN02a] to 

safety-related electronic control and protection equipment. Since they are based on 

lEC 61508, the comments below on this encompassing standard apply.

N uclear power generation

“Software for Computers in the Safety of Nuclear Power Stations” , lEC Standard 880 

[IEC86] is intended for safety-related software in computers forming part of nuclear 

reactor safety systems. It lays down in detail a recommended development process, 

guidance on choice of language and tools, and a suggested maintenance process. The 

report was written in 1986, and the language and concepts used display this, but it is 

not yet regarded as obsolete. The very prescriptive nature of this old standard should 

be contrasted with the more modern standards described in this section.
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The Four Party Regulatory Consensus Report on the Safety Case for Computer- 

Based Systems in Nuclear Power Plants [Hea97] is a set of agreed principles for building 

a safety case from the nuclear regulatory authorities of the UK, USA, France and 

Canada. It is not a standard as such, but presents the elements of a safety case 

perceived as helpful in gaining regulatory approval.

A erospace (m ilitary)

UK Defence Standard 00-54[MoD99] (hereafter abbreviated Def Stan 00-54) is a new in

terim standard for the use of safety-related electronic hardware (SREH) in UK defence 

equipment. It relates to systems developed under the Def Stan 00-56 safety systems 

document or an equivalent international standard, and is appropriate if an electronic 

element in the system is identified to have a safety integrity level of between SIL-1 and 

SIL-4. This standard is covered in more detail later.

Def Stan 00-55 (software) [MoD97] specifies the requirements and guidance for the 

development of safety-related software by or for the UK Ministry of Defence. There 

is very heavy emphasis on the development process and suitable documentation, but 

the actual requirements about the implementation method and language are few and 

general. There is emphasis on using formal methods wherever possible. The key 

message appears to be “do what is reasonable and safe, but show how your decisions 

were made and justify them.” This goal-based approach foreshadows the rewriting of 

CAP 670 SW01[Civ02], described below.

Def Stan 00-56 (system safety) [MoD96] is 00-55’s counterpart relating to system 

safety. It lays down how the safety management activities of a development program 

should work. A “risk class” is calculated according to how probable and severe are the 

system hazards, and governs how the safety activities are carried out on the program. 

It requires the production of a “safety case” , a well-organised and reasoned justification 

that the system is acceptably safe.

Def Stan 00-56 is undergoing a rewrite for Issue 3. The first public draft for com

ments [MoD03] was released on 18th July 2003. It shows that the new format will be 

for Part 2 (the Code of Practice) to contain volumes addressing specific issues: vol

ume 1 describes how to interpret Part 1 (the guidance), volume 2 describes the risk
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management process, and the revised forms of Defence Standards 00-55 and 00-54 will 

form volumes 3 and 4 respectively. The standard itself is due for publication at the 

end of March 2004 after public comment on parts 1 and 2.

A erospace (civil)

Penny et al.[PEBB01] describe practical experience with a “goal-based” form of safety 

standard in the development of CAP 670 SW01[Civ02], part of the regulations for 

ground-based air traffic services in the UK. They split evidence into two forms: direct, 

which directly relates to the safety of the system (such as evidence that static analysis 

has been carried out and no dangerous faults found), and backing which shows that 

the direct evidence is credible and sound (such as test reports and error history of the 

static analysis tool used).

RTCA/EUROCAE DO-178B [RTC92] is intended to provide guidance on how to 

satisfy airworthiness requirements for software use on aircraft. It relies heavily on 

software testing to demonstrate reliability. However at the highest level of software 

integrity the amount of testing required is very expensive.

RTCA/EUROCAE DO-254[RTCOO] is the analogue of DO-178B for electronic hard

ware. It is a more recent document, released in reaction to the increasing complexity of 

electronic safety-critical hardware performing avionics functions. The Federal Aviation 

Authority is currently considering how DO-254 should be applied to the development 

of ASICs and PLD programs.

In a comparison of avionics standards, Pygott and Newton [Pyg99] compared the 

requirements of RTCA DO-178B with the requirements of Def Stan 00-55 and Def Stan 

00-56. They concluded that the main difference was that civil aviation standards pro

vided mostly recommendations, whereas the Defence Standard clauses were mandatory. 

The Defence Standard placed much more emphasis on the use of static analysis and 

formal methods, though both were mentioned in DO-178B. In addition there were 

mismatches between Development Assurance Levels (DALs) and SILs which made 

comparing standards difficult.

Pygott and Newton also noted that all of the standards reviewed did not say much 

about the use of commercial off-the-shelf software (COTS), which they regard as being
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a significant feature of new development programs.

Finance

Finance systems are rarely safety-critical, but are often business critical. There are 

some financial systems which have the potential to “create” money; these have sufficient 

potential impact on a country’s economy that their correctness is a matter of concern to 

the country’s government. In this situation the pressures are similar to those around 

safety-critical systems, and so it is worth examining how these critical systems are 

regulated and developed to compare and contrast the approach with those used by 

safety-critical systems.

In the UK, the government Communications Electronics Security Group defines six 

levels of IT security: levels ITSEC 1 through 6 where 6 denotes the most secure systems. 

The ITSEC criteria are described in [Com91]. These fed into the international Common 

Criteria[Com99]. Like safety-critical systems, security-critical systems are classed as 

high-assurance.

Hall, in [Hal02], describes the specification and development of a Certification Au

thority (CA) for the MULTOS smart cards. This development was notable for the 

application of safety-critical software development tools (static analysis and proof with 

the SPARK and SPADE toolsets) in the security domain. It turned out that these 

techniques translated well across the domains.

The specification and security proof of the associated smartcard operating system is 

described by Stepney and Cooper in [SCOO]. This demonstrated that formal proof tech

niques were mature enough to be applied to a real industrial application of substantial 

size, and well enough supported to be off the critical path of system development.

Cross-sector

lEC Standard 61508 [lECOO] is intended to apply across multiple industry sectors, set

ting out a generic safety management approach for systems with electrical, electronic 

or programmable electronic components. Part 2 in particular is the requirements for 

the electrical, electronic and programmable devices; part 3 deals with software require

ments.
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Part 2 ranges over a wide range of aspects of hardware, giving guidance on errors 

to check. A number of specified hardware faults may need to be detected (e.g. stuck-at 

failures for registers, bus faults and welded-together contacts) as well as properties of 

the software (e.g. correct “watch-dog” operation, information redundancy) with the 

analysis list determined by the required diagnostic coverage, related in turn to the SIL 

and resulting safety calculations. Interestingly, the programmable part of the systems is 

not addressed in detail; there are requirements for aspects of the design to be analysed, 

but no real requirements for implementation language or related aspects. It may be 

that the authors assume implicitly that Part 3 of the standard (software requirements) 

is to be applied where appropriate.

lEC 61131-3 [IEC03] applies to programmable logic controllers. These are not 

true PLDs, but the document provides information on controller design that may be 

applicable to some classes of PLD program.

A relevant comment in the HSE report [Hea97] is no. 70: “The programmable 

logic controller (PLC) is one typical example of an off-the-shelf system, albeit that the 

applications program must be provided by the purchaser. It is not sufficient simply to 

show that the production of the applications program has met the full safety system or 

safety-related system requirements. Such equipment typically embodies a complex op

erating system with which the applications software is associated. The demonstration 

must relate to the full system^ (my italics.) This clearly indicates that PLC (and, by 

extension, PLD) programs must be validated both stand-alone and as a component of 

a whole system.

2.1.5 C om m entary

Standards are normally divided into a number of different types of information; le

gal requirements, approved code of practice (ACOP) and guidance. It is rare that a 

developer will follow every single recommendation; in practice they will justify their 

omission of one or more recommended practices on grounds of practicality and cost. It 

is worth noting that the second issue of Def Stan 00-55 was noticeably less prescriptive 

than the first issue in the sense that many recommended procedures were changed to 

guidances; this gave each system developer more freedom to choose the development
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practices which were most appropriate to their particular system. There has been in

conclusive debate in the safety-critical systems community about whether the reduced 

level of prescription compromised safety. This has been echoed in the different lev

els of prescription between the UK Defence Standards and the RTCA /  EURO CAE 

documents discussed earlier.

If a procedure in the ACOP was not followed and an accident resulted then (under 

British law) the onus would be on the developer to prove that their differing approach 

was acceptably safe. Cuidances may be taken merely as potentially useful suggestions 

for development practice.

2.1.6 Standards sum m ary

The approach of the above standards is very general, with the exception of the 14- 

year old lEC 880. They tend to outline approaches rather than prescribe detailed 

procedures.

It is usual for safety-critical systems developers to be required to show to the sys

tem’s customer or to a regulatory agency (such as the UK Health and Safety Ex

ecutive) that their development process has followed one or more specified standards 

documents. These documents typically address the development process, configuration 

management, implementation language, production of safety cases, testing and main

tenance issues. The system may require formal certification from a regulatory agency 

before it may be brought into service.

Standards evolution

UK Defence Standards undergo periodic rewriting: 00-55 and 00-56 are at issue 2 

already, and issue 3 is due to appear in 2004. The rewritings refiect both feedback from 

practical application of the previous standards and advances in the state-of-the-practice 

of system development. The changes from issue 1 to issue 2 of 00-55 refiect industrial 

comments that the approach prescribed in issue 1 was too hard to apply in general, 

although at least one project was successfully developed under issue 1[KHCP99].

If experts dispute such issues, and standards documents show that conflict, how 

do we find a generic development process applicable to all standards? How can we
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anticipate the requirements of future versions of existing standards? We cannot, but 

we can focus on the areas of agreement noted above: the standards aim to support the 

process of producing a system which is demonstrably safe at a quantifiable level.

C orrectness vs. safety

Demonstrable correctness is often important in a safety-critical system. Note that 

correctness is not the same thing as safety; a military aircraft stores management 

system which could never arm a bomb would clearly be acceptably safe, but not correct! 

Leveson’s experience with an aerospace firm’s torpedo was salutary:

And later, when they tested this torpedo, they told me, they called me up 

and said “Well you know, we took her out into this testing ground and we 

tested this torpedo and every time we tried to fire it, it came out of the 

torpedo tube and turned itself off and went down to the bottom and it just 

sort of lay there.” And I said, “Well, it’s safe.” And they said, “Well the 

Navy didn’t want to pay for this safe torpedo.” [LC96]

However correctness and safety are often linked in that correct operation of a system 

may be key to its safety; if a release sequence for the aforementioned stores management 

system is faulty then armed stores may be released at too small an interval and make 

aircraft-proximate detonation likely.

Correctness is only meaningful in the context of a specification; if we take System 1 

consisting of a single AND gate, and System 2 consisting of a single OR gate then both 

gates may operate perfectly and so both systems may naively be regarded as “correct”. 

However the environment of the system may be such that the system is required to 

signal on its output wire only when both input wires are high; in this case, only System 

1 would be correct.

For the above reasons we now look at how formal methods may be applied to assist 

us in the task of producing an acceptably safe system which is correct with respect to 

its specification.
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2.2 Application of Formal M ethods

“Formal methods” is a catch-all term for a collection of mathematical techniques used 

to reason formally about the behaviour of a system or component thereof. Most of 

these techniques are covered under two main system development activities:

verification which we define as providing evidence that a set of system requirements 

have been satisfied; and

validation which we define as checking that the supplied evidence is satisfactory in 

respect of the requirements.

Verification is therefore commonly associated with activities involving formal nota

tions and analysis, such as those presented later in this thesis. Validation is commonly 

associated with unit, functional, system and integration testing, although it may also 

cover manual or automatic inspection of proofs produced during verification.

The number of formal methods techniques in existence appears to increase at every 

Formal Methods conference; for instance, FM’99 published a paper introducing the 

VSPEC behavioural interface specification language for VHDL [ARB99] which may be 

used to check VHDL designs against requirements. This method, like many others, 

is well-defined and addresses a specific problem. However, proportionally very few 

methods have gained widespread acceptance in industrial software development. Why 

is this?

2.2.1 T he benefits o f formal m ethods

Rushby [Rus93] wrote a seminal report on the application of formal methods to safety- 

critical systems. He summarises the main benefits as

• formal specification reduces or highlights design ambiguities;

• formal verification makes explicit assumptions, axioms and deductions used to 

conclude that a function is performed correctly, in addition to providing a sub

stantial confidence increase in its actual correctness;
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• formal verification also has the effect of closely analysing the design and high

lighting implications of supposedly simple changes; and

• formal methods add an analytical component to manual reviews that may in

crease the effectiveness of such scrutiny.

However the report also indicates that formal methods have their fiaws. Key among 

these include the possible disparity between the programmer’s mental model of the 

design and that which he or she specifies formally, especially because many formal 

specifications (e.g. Z [Spi92]) are hard to write or read correctly. Formal verification 

may also fall down in that real world properties are often hard to characterise formally.

Moreover if the verification process is partly automated then a great deal of faith is 

required in the software tools involved. Developing high-integrity tools is not easy, but 

has been demonstrated to be feasible. The development of a high-integrity compiler 

for the UK Atomic Weapons Establishment [Ste98] was done using a Z specification, 

recast into Prolog (the implementation language). The compiler was put through a 

validation test by experienced compiler-breakers, and only one error was discovered; 

this error was in an area of the compiler which had not yet been proven correct.

Rushby concludes that formal methods should at least be in the mind of software 

engineers, if only to increase the rigour with which they reason about their software. 

Industry should be encouraged to develop further and apply formal methods, but to 

know when they are appropriate and when not. The report also remarks that large- 

scale application of formal methods in airborne software (the author’s speciality) is 

impractical. It is instructive to note that this report appeared in 1993; the ten years 

following have brought significant new formal methods and techniques, notably the rise 

of the SPARK Ada language and broader use of static analysis tools in UK and USA 

aerospace software.

2.2 .2  Form al m ethods in use

Common formal notations used in industrial projects include Z [Spi92], VDM-SL 

[Jon86] and B[Abr96] for set- or model-oriented specification. Variants of CCS[Mil90] 

or CSP [Hoa85] are used to specify and prove properties of interacting processes. Static
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analysis tools such as the SPARK Examiner[GC90] permit verification that programs 

satisfy a set of desired properties before they are run. In addition there are general- 

purpose proof tools such as PVS[ORS92], used for interactive semi-automated proof.

Z is a formal specification language based on sets. Z usage is supported by tools such as 

fu zz  [SpiOO] and Cadiz [Yor97] for type checking, typesetting and proving properties 

of Z specifications. Z has been applied successfully in a number of industrial projects, 

and extensions such as Object-Z have been applied to problem domains where basic Z 

is difficult to apply.

Z is a specification language, and was not designed with a particular method of 

implementation in mind. It permits proof of certain properties of and relations between 

specifications, but by itself does not admit a method of developing a specification to 

executable code; this must be done on a case-by-case basis. For example, Sennett has 

shown [Sen92] how Z can be used to specify a program and how then to demonstrate 

that an Ada program meets or does not meet that specification.

A common problem with Z is that its schemas are often written with a wide range of 

non-ASCII symbols which many people find intimidating and hard to read “naturally” . 

An ISO standard for Z was released in 2002 [iec02], but until then the Z Notation 

Reference Manual by Mike Spivey [Spi92] was used as a de facto standard and indeed 

not all Z practitioners have read the ISO standard in detail.

B and V D M

B, as a method for specifying, designing and coding software systems, is supported 

mainly by the B Toolkit [Ltd98]. This is an integrated set of tools to assist the developer 

using the B method to develop high-integrity systems. It is based on the concept 

of an abstract machine, which is an object that may have internal variables (giving 

state), invariants (making statements about the variables which must always hold) and 

operations (enabling other machines to operate on its state.) The B method permits 

refinement of machines from very abstract forms to a form suitable for implementation 

in a high-level language such as C, Ada or Modula. This refinement allows us to
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prove that the final implementation satisfies the initial specifications of the machine. 

The difficulty is that it implicitly assumes an equivalence between the implementation 

language and the language of the B method, Dijkstra’s language of guarded commands 

[Dij76]. Languages such as C and Ada do not have a well-defined semantics, and so 

certain assumptions must be made by the developer.

VDM-SL[Int96] is the specification language of the Vienna Development Method. 

It is model-oriented, unlike Z. It is not as widely used in general as Z, but does have a 

history of practical use in projects such as CDIS[Hal96a].

CSP and CCS

CSP [Hoa85, Hen88] is an algebra for describing communicating processes. Each pro

cess is given an alphabet of events, and a description of the sequences of these events 

in which it participates. Parallel processes must be able to agree at least one sequence 

of events in the intersection of their alphabets, or the processes fail (deadlock). In 

addition, if a process is free to engage in an unbounded number of events not in any 

other process’s alphabet, then that process is said to diverge. CSP is a useful way of 

describing interactions between separate systems and detecting common errors such 

as deadlock and diverge. Commercially its use is supported by the FDR tool [For97] 

which is a model-checking tool based on the theory of CSP. The developer determines 

whether a particular property holds for a system by writing a description of a transition 

system capturing this property; the tool then attempts to refine this transition system 

to the candidate machine and reports success (in which case the property holds) or 

failure (in which case the property may not hold). It can also check that a state ma

chine is deterministic; this is an important property in safety-critical systems. Finally, 

it can detect potential deadlock in a system. FDR was used by Inmos to develop and 

verify communications hardware in the T9000 transputer and C104 routing chip.

CCS, the Calculus of Communicating Systems, is similar in concept to CSP but is 

more abstract and algebraic in nature. It was devised by Robin Milner and has been 

used in designing industrial systems including the aforementioned CDIS[Hal96a].
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LOTOS

LOTOS [Int93] is the Language Of Temporal Ordering Specification. It is a formal 

description technique, with roots from CCS and CSP, used as an unambiguous language 

in standards for expressing parallel activities. It has been used to describe systems such 

as bus architectures and embedded systems programs. As an lEC Standard (ISO/IEC 

8809) it has the strength of a well-formed public definition. Its syntax is reminiscent of 

CSP with alternation, input and output and parallel operators used to express parallel 

interacting processes. As such it shows no clear advantage for our purposes over CSP, 

with CSP at least backed by analysis tools.

Static analysis

Static analysis is the process of deducing properties of programs via inspection, au

tomated or otherwise, of the program code before compilation. By contrast, dynamic 

analysis analyses program behaviour by actual or symbolic execution of the code. Tech

nically, manual review of program code against a predefined standard counts as static 

analysis, although in practice the term is usually used to refer to a process which is 

automated or semi-automated. The “lint” checking tool for C programs[Joh78] is a 

widely-used static analysis tool.

Programs such as the SPARK Examiner[CC90] take advantage of a rigorous defi

nition of their program verification criteria to perform deep static analysis checks such 

as well-formed program control fiow, the absence of any reads of uninitialised mem

ory and conformance to a language subset; in this case, the SPARK subset of Ada 

95[FW99, Int95].

P roof tools

PVS, a product of the SRI Computer Science Laboratory, is a verification system com

posed of a specification language, support tools and an automated theorem prover. It 

has been in existence since 1992 and so can be considered reasonably mature as a tool. 

Rusu and Singerman, in [RS99], use PVS as a key tool to prove safety properties of 

reactive systems. This system uses PVS’s considerable automatic proving abilities to 

good effect; the user chooses the direction of his proof process, guided by the results
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of previous proofs, and lets the PVS theorem prover attempt to prove properties au

tonomously. Like any theorem prover, the key to successful PVS proofs is a supply of 

well-formed, relevant and precise rulesets; these are usually accumulated over time on 

a project, though of course they must be carefully reviewed to ensure their correctness 

otherwise whole proofs can be invalid.

Recently one of the designers of PVS, Natarajan Shankar, reviewed the FM in

dustry’s progress in producing big proving engines and their success across a range of 

domains[Sha02]. He argues that problem-driven techniques are likely to be more effec

tive than the uniform proof search procedures used at present. Since PVS is a classic 

example of the latter approach, Shankar’s arguments should be carefully considered 

since they appear to be based on substantial experience and evidence.

2.2.3 D irection  o f form al m ethods use

In [CW96], Clarke et al lay out a strategic direction for the advance of formal methods. 

They point out that the past view of formal methods as obscure, badly scaling and 

without adequate tools has now been changed and that successful industrial case studies 

have proven the essential practicality of formal methods. This view appears to be 

supported by the use of the aforementioned tools in substantial industrial applications.

Key elements of their suggested direction include reusable models and theories, 

combinations of mathematical theories to tackle hybrid safety-critical systems, and 

integration with the system development process. It will be instructive to assess existing 

techniques by these criteria, to bear in mind Rushby’s comments on the limitations of 

formal methods as well as their benefits, and to consider Shankar’s recommendations 

on proof strategies.

2.2 .4  Value o f form al m ethods

The issue of why formal methods are not currently in widespread use is tackled by 

Heitmeyer [Hei98]. She makes a number of interesting propositions, including the divi

sion of formal methods into “soft” , primarily passive techniques such as static analysis, 

and the “hard”, primarily active techniques such as interactive proof editors. This is 

useful because it is usually easier to persuade developers to take up a passive “soft”

45



method requiring little training than it is to convince them to invest substantially in 

training and time to adopt an active “hard” method. If the formal methods community 

is to encourage wider adoption of the “hard” methods then they need to be able to 

demonstrate real and substantial benefits from them.

Example: GDIS

In [PH97] Pfieeger and Hatton discuss the issue of whether formal methods affect 

code quality, and if so then how. The project evaluated by the authors is the GDIS 

air traffic control information system [Hal96a] developed by Praxis pic. The formal 

methods used during development included VDM for formal specification of critical 

system elements, CCS to specify concurrency and finite state machines for specification 

of individual processes. The evaluation of Pfieeger and Hatton is that the project 

statistics on faults reported over time did not show qualitative evidence that code 

produced using formal design techniques was of higher quality than informally-designed 

code. However the formal specification process led to components that were relatively 

simple and independent, and the delivered system was measurably better than most 

other measured systems. The authors conclude that formal specification can be part 

of the solution to improving code quality but it is not the whole answer.

It is notable that the 10-year warranty period on GDIS recently expired. There was 

one warranty fix made during system testing at the start of the project; since then, 

none were required. Note also that this was achieved with the technology available in 

1990.

Example: SHOLIS

SHOLIS, described in Section 2.1.2, is a commercial safety-critical system where formal 

methods were used. It is described by King et al in [KHCP99]. The development effort 

built upon the experience from implementing the GDIS air traffic control system, as 

described above and in [Hal96a]. The system was partly developed to SIL 4 standards 

with the rest of the system roughly at SIL 3, and around 27,000 lines of Ada code. The 

techniques used were Z for system specification, the SPARK Examiner static analysis 

tool [Bar97], and proof of system properties using Z and the semi-automatic code proof
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system of the SPADE Simplifier and Proof Checker [Pra98].

The technological advances over the earlier GDIS work were mainly at the imple

mentation stage. The SPARK Ada 83 subset [Ame99] enforced by the SPARK Exam

iner is a significant advance on the GDIS implementation language (G); the well-defined 

semantics of the language permit formal proof of code properties, and the SPADE 

toolset partially automates such proof work to permit a higher proof productivity. In

deed, the combination of the Examiner and proof tools enabled the development team 

to prove (to the standard required for system certification) the complete absence of 

any run-time exceptions in all of the SPARK Ada code.

The conclusions of King et al provide sharp contrast to the opinions expressed 

by Pfieeger and (to some extent) Rushby[PH97, Rus93]. Z proof was found to be 

significantly the most efficient phase at finding faults, and the ability to prove the 

absence of run-time errors adds extra confidence in the system. Whereas the GDIS 

effort was apparently unable to gain much from formal methods once the code was being 

written, such methods contributed to the SHOLIS effort throughout the development 

cycle.

Still, it is true that techniques such as proof in Z are nontrivial to use well and 

effectively, and require the development team to make a positive effort to undertake 

training and to use them properly. However they are easier to use than is commonly 

perceived, and the GDIS and SHOLIS projects have shown that they confer significant 

benefits in system reliability.

2.2.5 T he lim itations o f testin g

Testing is a vital part of system development. The main kinds of testing are:

• informal testing by developers that the feature they are developing works at least 

approximately as designed;

•  unit testing to exercise each component of a program (typically by subprogram 

or module, depending on the implementation language);

• functional testing to check that all known requirements are covered; and
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• system testing to verify that the entire system operates as designed without any 

errors.

However, we should not lose sight of what testing cannot achieve. Modern testing 

techniques are efficient and successful within a limited framework, but (as noted above) 

even the most stringent testing can miss an error that other techniques such as static 

analysis can detect.

A im s and achievem ents o f testing

Dijkstra said “Program testing can be used to show the presence of bugs, but never 

to show their absence!” [DijTO]. Functional testing aims to show that functional 

requirements are met, but at best can show that no errors occur while the function is 

being exercised in a range of common ways.

Unit testing aims to exercise each individual component (unit) in a program. There 

are formal notions of how thoroughly a unit has been tested -  statement coverage, 

branch coverage, MC/DC etc. -  but the limiting factor in unit testing is often the 

person writing the test. They should know the required result of each test before 

writing it. The temptation to derive the test result from the code is substantial, so 

unit test results should ideally be written before the unit is written. But then, the 

tests are unlikely to cover all of the unit.

System testing can only realistically exercise a small section of the system’s state 

space. Detecting and counting errors during continuous system test can give an indi

cation of the number of detectable errors remaining in the system, but can never assure 

the developer, certification authority or customer that all the errors are gone.

U ntest able conditions

SIL-4, the highest level of safety integrity, requires no more than 1 failure per 10® 

hours. Since this is just over 114,150 years we can immediately see that system testing 

to demonstrate this level of reliability with any confidence will likely be impractical. 

These limitations have been discussed in more detail by Littlewood [LS93] who applied 

Bayesian statistical analysis to the problem of demonstrating reliability rates through 

testing.
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There are also more specific aspects of program correctness which are difficult to 

achieve by testing. Absence of run-time errors can only be shown by testing if the test 

exercises every path in the entire program for all values of input data. This is normally 

computationally infeasible.

W hen to  test

If testing finds faults, as good testing should, those faults will normally need to be 

corrected and the system re-tested. The later in development that a fault is found, the 

more rework is likely to be required. As an example, if testing locates a fault with a 

system requirement then the system may need fixes to the requirements, design, im

plementation, and potentially many tests. This will be very expensive in development 

time.

Croxford and Sutton[SC95] described the economic benefits of using static analysis 

early in the development of the C-130 J aircraft engine control software, allowing many 

errors to be found before testing took place and reducing the associated rework. Given 

this data point, it is clearly sensible to test system components as early as possible in 

the development process.

2.2.6 Sum m ary o f form al m ethods

Formal methods have been successfully used in the development of safety-critical sys

tems such as GDIS and SHOLIS to improve the reliability of the software in the system. 

They can provide assurance of reliability that conventional testing alone cannot. How

ever, the behaviour of the system hardware in conjunction with the software is harder 

to capture and reason about.

We will now look at one particular common component of a safety-critical system, 

programmable logic devices, to see how they are currently used and how we can increase 

confidence in their correct operation to specification at an acceptable level of safety.
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2.3 PLD s

PLDs were a development of the simple Programmable Logic Array (PLA) which has 

been available in electronics design since the early 1980s. The early history of field- 

programmable logic is reviewed by Moore in [ML91]. The most common (and interest

ing) form of PLD in use is a Field Programmable Gate Array (FPGA).

The key characteristics of an FPGA are as follows:

• “Field-Programmable” denotes their ability to have their program contents changed 

upon power-up, i.e. in the field;

• “Gate Array” indicates their structure of a regular array of logic gates;

• they provide a logic device of relatively low complexity;

• they compute some function of a set of digital inputs to produce a set of digital 

outputs;
'

• they have semi-permanent state in terms of programmed lookup tables, typically 

implemented as static random access memory (SRAM);

• they operate mainly in a highly-parallel manner;

• they are programmed by the download of lookup table data from an external 

source;

• they differ from other programmable logic devices (PLAs, PROMs, CPLDs) by 

allowing a more complex flow of data through themselves; and

• they also differ from Application Specific Integrated Circuits (ASICs) by trading 

speciality of design for speed of development and economy of small-scale produc

tion.

In this section we will look at the concept of FPGAs and typical modern imple

mentations. We will examine how they are used in real systems, and critique different 

approaches for producing an FPGA implementation from a subsystem design. We will 

also look at how an FPGA can be given a semantics, and how the integration of FPGAs 

with other systems presents more problems for a system designer.

50



1 RAM ROM

I
;

LUT LUT LUT

LUT LUT
; LUT

LUT LUT LUT

>(5>-

Figure 2.1: Architecture of a generic FPGA

2.3.1 Introduction  to  F P G A s

FPGAs made their first appearance in 1984, manufactured by the company Xilinx 

[SWCL99]. They are a compromise between a software implementation of their function 

(easier to program but somewhat slower) and a custom-made chip (faster and more 

reliable, but expensive and requiring more time to design and fabricate). A diagram 

of a “generic” FPGA is shown in Figure 2.1. The key components are the input and 

output pins, the array of look-up tables (LUTs), the routing logic, the external control 

and configuration loading, and the interfaces to external RAM and ROM blocks.

As a result of this compromise, FPGAs are typically used in building a prototype 

system in place of a custom ASIC. It is significantly cheaper and quicker to use such 

devices when the alternative is a minimum production run of 5000 ASICs in a different 

company’s fabrication plant (“fab”). A small-scale single run of ASIC production can 

easily cost $750,000 and take months from submission of VHDL design information to 

the fab to the arrival of the silicon.

There can be significant commercial gain in using FPGAs rather than ASICs. Time- 

to-market is reduced, since there is not the delay in setting up and making the ASIC 

production run, and there is little overhead if an error is subsequently found in the 

device. There is also the potential for increased time-in-market, providing mid-life 

upgrades to the FPGA code without having to replace the hardware.
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FPGAs are also found in end-user products. Their ability to take processing load 

off the main system processor (e.g. as a bus interface) means that they provide a cheap 

way of increasing a system’s speed without the complexity and expense added by an 

ASIC or second processor. Most PC sound, graphics and network cards will feature 

one or more FPGAs.

For very simple combinatorial logic functions, FPGAs can be too complex a solu

tion: devices such as Complex Programmable Logic Devices (CPLDs), or even PLAs 

may be appropriate.

The majority of PLDs are usually programmed in VHDL [IEE91] or Verilog[IEE95]. 

These Hardware Description Languages (HDLs) have substantial standard libraries, 

allowing a certain amount of code reuse. They model the PLD as interconnected 

blocks rather than providing higher-level functions such as one to operate on a data 

stream. Even if a higher-level language or design tool is used, it will normally compile 

its input into VHDL or Verilog.

FPGAs can play a useful role in system development and be an effective component 

in end-user systems.

2.3.2 D escription

An FPGA is characterised by a collection of cells, each of which has a number of single

bit inputs and outputs. It typically uses a single clock for the whole device; multiple 

clocks are usually possible but seriously complicate programming. At each clock tick, 

the cell uses an internal lookup table to compute a function of its inputs, and possibly 

some internal state value, resulting in a defined output and possibly a change of state. 

The output is routed to other cells in a predefined manner, and new inputs are read in 

preparation for the next cycle.

The FPGA’s interface to the outside world occurs at a set of pins, each of which 

is a single-bit input or output. Since the pins are normally electrically identical, each 

pin’s function will depend on the user-programmed routing inside the FPGA. These 

pins are linked to cell inputs or outputs respectively; the precise linkages will again 

depend on the user’s routing scheme.

The way that a user programs the FPGA will depend on the FPGA type. Some have
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SRAM cells which need to be reprogrammed whenever the device is powered up; others 

use Flash memory which retains data even when power to the device is removed. Both 

of these technologies may allow the user to reprogram the device mid-computation, with 

varying effects on the device’s state. Some may use once-only programming (such as 

antifuse technology) which again retains data across power cycling but which requires 

a new device if the programming is to be changed.

The reprogrammable aspect of an FPGA concerns the cell lookup tables, and also 

the routing tables in many FPGAs. Data for these tables are loaded using special 

control pins to supply a stream of bits to the FPGA. The FPGA will typically be 

configured in a period of tens of milliseconds.

More advanced FPGAs may include small banks of random access memory (RAM) 

or other specialised devices such as DSP units which interface to cells. We will ignore 

such complications in the rest of this survey since they do not affect the fundamental 

functionality of FPGAs, and could be viewed as devices separate from the main FPGA 

circuitry; they just happen to be on the same piece of silicon.

2.3.3 Variants o f PL D s

Moore, in [ML91], classifies programmable logic devices into the following categories. 

PLA s

The original PLD was the Programmable Logic Array (PLA), a device whose outputs 

compute logical “sums of products” of their inputs. The internal structure of this 

device holds an array of AND gates, each of which takes a subset of the device inputs. 

The outputs of these AND gates are in turn fed into a number of OR gates, the outputs 

of which form the outputs of the device. The user programs the device by feeding a 

high current through certain interconnections to break them, thus selecting precisely 

the required inputs to each AND and OR gate.

The PLA is good for relatively simple, quick logic calculations but lacks flexibility 

or internal state. Some devices have additions such as registered outputs or feedback 

of outputs to inputs, but the basic design is simple and hence very easy to program 

correctly.
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C PLDs

The CPLD was the logical next step from the PLA, retaining the same basic structure 

but with modifications to improve performance and flexibility. Larger arrays draw 

more power and are harder to design for a given clock speed, so the CPLD introduced 

an internal logic array which is structured hierarchically (blocks within blocks within 

blocks) and has more complex input/output logic, allowing buffering of inputs for 

example. The key difference from the PLA is that these devices each contain several 

PLAs whose outputs go into flip-flops, then are routed elsewhere in the device. These 

devices can support more complex calculations than PLAs, but it is still relatively easy 

to map designs into them; the internal data flow is not normally a design bottleneck, 

unlike in FPGAs.

Typical CPLDs such as the Altera MAX series [KF91] are configured using Flash 

memory or antifuse technology.

Systolic arrays

Systolic arrays are informally defined in [Meg94] as “an array of synchronised proces

sors (or cells) which process data in parallel by passing it from cell to cell in a regular 

rhythmic patterri^ (my italics). From this definition, an FPGA could certainly imple

ment a small systolic array; however in practice the systolic array is often operating on 

data in 16-bit or larger chunks, unlike the 2 or 4 bits common at the cell level inside an 

FPGA. Systolic chips may contain one or more processing elements (PEs), may have a 

limited amount of flexibility in the precise calculations performed, and are often used 

in sizeable numbers in a regular array.

An example of a commercial systolic array is the SAND neural processor [Ins97], 

used for pattern recognition and image processing, which contains four parallel proces

sor elements and runs at 50 MHz. It reads in data in 16-bit “weights” and “activities” 

streams, performs internal processing according to a 34 bit control word supplied by 

its sequencing chip (an FPGA in some configurations), and outputs streams of 16-bit 

data and addresses.

Compared to systolic arrays, FPGAs provide greater flexibility in the function of 

each cell and the wide range of routing possible, but their generality makes them less
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Microprocessor PLA FPGA Systolic ASIC

Speed Slow Medium Medium Fast Fast

Unit cost Cheap Cheap Medium Medium Expensive

Batch cost Cheap Cheap Medium Medium Moderate

Flexibility High Low Medium Low None

Power draw Low Medium High Medium Medium

Program C, Ada Ladder logic VHDL Custom VHDL

Table 2.2: Trade-offs for software and hardware implementation

suitable for certain high-performance tasks such as those doing numerical calculations 

involving 16 or 32 bit data.

ASICs

The most complex programmable logic device is the ASIC, an integrated circuit de

signed for a specific task and mass-produced. While an ASIC will nearly always out

perform an FPGA, FPGAs are much cheaper than ASICs in small volumes. They are 

also easy to reconfigure on a minute-by-minute basis, allowing one chip to perform 

many different functions rather than requiring one chip for each. Therefore if there is 

any significant chance that the function of a chip may change during the development 

and testing process then it is normally worth accepting the lowered system speed to 

replace an ASIC with an FPGA.

A FPGA draws significantly more power than the equivalent ASIC, and hence gen

erates more heat. In compact electronic devices this can be a significant complication 

since the heat must be radiated away before other components are damaged; in battery- 

powered devices the extra power drain may have a significant effect on battery life. For 

these reason CPLDs or ASICs can sometimes be preferable.

Table 2.2 contrasts the effects of implementing a given algorithm in a range of device 

types. CPLDs are grouped with FPGAs since their differences for these purposes are 

not significant.
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2.3.4 Specification

A FPGA’s topology can be represented as a directed graph where each node corre

sponds to a cell or pin, and the arcs represent the routing. Any node without outgoing 

arcs is an output pin, and any node without incoming arcs is an input pin. We ig

nore power and configuration pins of the device in this representation. Note that the 

graph need not be connected. Acyclic graphs are possible; they are easier to reason 

about since they compute a finite-step known-duration computation of the input data. 

Cyclic graphs, representing loop constructs, are common in the more complex FPGA 

routings.

An example may be an iterative square-root real number function which takes a 

16-bit positive integer representation as input X  and produces the integer part of this 

number’s positive square root as an 8-bit output F; the loop construct in this case 

may be a successive approximation calculation, ending in a unit which computes 

and ( F  +  1)  ̂ and sets a “valid result” bit if < X  < ( F-f-1) .̂ If this calculation was 

non-iterative then its FPGA representation would require many more cells and each 

calculation of a root would take the same (i.e. worst-case) time; however, it may then 

be possible to pipeline calculations.

Each cell represents a function fc : S x I  ^  S x P  where S  is the set of possible 

cell states, I  is the set of input values and P  the set of output values. The latter are 

normally represented by natural numbers between 0 and 2  ̂— 1 where k is the number 

of wires forming the input or output. This is because the relatively small calculations 

performed by FPGAs are normally numeric or logical in nature rather than string- or 

symbol-based.

The user programming defines each function /c, and if the particular FPGA permits 

user-defined routing then it selects a particular graph structure from a set defined by 

the FPGA’s design.

2.3.5 D evice features

A key factor in evaluating an FPGA device’s performance and usability is its “logic 

gate equivalence” , which is taken to be the total number of logic gates which it is 

possible to emulate at once. As an example, an FPGA with a 16 x 16 block structure,
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each block having four cells, and each cell having two inputs and four outputs, able 

to compute any function of the two inputs for each output, would have a logic gate 

equivalence of 256 x 4 x 4 =  4096.

Xilinx define one gate-counting method in their on-line Virtex FAQ list [Xil99c]. 

They state that each logic cell used as logic provides the equivalent of 12 system 

gates, or 64 system gates if used as distributed memory (4 gates per bit with a 16 

bit capacity.) They therefore will make an assessment of what fraction F  of cells 

in a device will typically be used as memory and state that the C cells will provide 

64FC 4- 12(1 — F)C  system gates equivalent. Of course, there may not actually be 

that number of recognisable gates in the hardware; the above works on the principle of 

functional equivalence to a standard gate structure. Other devices such as digital delay 

locked loops (DLLs) contribute an arbitrary number of system gates to the count; each 

DLL counts as 7000 gates, for instance.

The above calculations also assume that data can be routed correctly between each 

cell to make each cell useful; in practice many cells will not be usable in a computation 

because the scarce routing resources around them have already been used. A circuit 

which is regular in design may not suffer from this problem, but less regular layouts will 

do; this is an inevitable result of the restricted size of an FPGA and the compromise 

between number of cells and routing resources. Therefore we should only regard “gate 

equivalence” as an indication of a device’s size and complexity, not its usability, and 

in any case treat it with a degree of caution when using it to compare capacities of 

competing FPGAs.

The difficulty of place-and-route is shown by Inuani and Saul in [IS97]. They 

describe a algorithm for place-and-route for heterogeneous FPGAs based on look-up 

tables, in particular the Xilinx 4000 series [Xil96]. For a range of benchmark programs 

their algorithm improves by 10-24% the logic block usage compared to two other sets 

of published results, while being significantly quicker in computation time. This shows 

that good packing algorithms are far from obvious, even for a relatively simple ar

rangement such as the Xilinx 4000 series under consideration. Placing and routing for 

modern, more complex devices, such as Virtex, will be harder to optimise.

Most FPGAs support read-back of the programming data. This is a simple but 

effective way of detecting corruption in the programming bitstream. There is also
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the JTAG standard (IEEE 1149.1[IEE01]) for test access and boundary-scan of such 

devices.

2.3.6 Current devices

The main manufacturers of programmable logic devices at the time of writing are 

Xilinx, Actel, Altera and Cypress Semiconductor. Their mainstream devices included 

the Virtex and XC6200 series (Xilinx), the ProASIC 500K and Stratix families (Actel), 

the FLEXlOK series (Altera) and the Delta39K (Cypress). We now look at 1999 and 

2003 snapshots of devices from some of these manufacturers.

1999

The Virtex-E family have a gate equivalence of between fifty thousand and four million 

system gates by the above reckoning, corresponding to 1,728 and 73,008 logic cells 

respectively. The family is described in [Xil99b] and is intended principally for next- 

generation telecommunications systems. They are manufactured using a 0.18 micron 

process, and can run at internal clock speeds of up to 311 MHz. They have between 

30 and 344 differential pairs of user input and output pins running at interface speeds 

of up to 311 MHz and so could execute a theoretical 3 x 10  ̂ operations per second on 

32-bit data words. A military version of the family, the QPRO Virtex series [Xil99a], 

is produced using a 0.22 micron process and runs at speeds of up to 200 MHz with a 

third of the number of logic gates in Virtex-E. Note the lowering of peak performance 

and resources required to comply with military specification reliability under wide 

temperature ranges and high EM noise environments.

By comparison the Actel ProASIC family, described in [Cor99], can have between 

98000 and 1.1 million system gates depending on system configuration, manufactured 

at 0.25 microns. Unlike the SRAM-based Virtex devices ProASICs use Flash memory, 

so can be programmed once and retain that data through multiple power cycles. They 

also feature a “security bit” which prevents read-back of the programmed data; this 

can be commercially useful because manufacturers can distribute pre-programmed de

vices containing proprietary algorithms without having to worry about the algorithms 

becoming known (directly, at least). The ProASIC internal structure is a “sea of tiles”
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with each tile (up to 51,200 in the larger devices) forming a 3-input logic function or 

flip-flop. The tiles are interconnected by four levels of routing, an indicator of the 

perceived difficulty of place-and-route in modern FPGAs.

The Altera FLEXlOK series are SRAM-based CPLDs. An example of the series 

is the 1 OK 130V part which has 6656 cells, each holding a 4-input lookup table plus 

flip-flop, and routing logic. These are grouped in blocks of 8 cells. Additionally there 

is 32Kb of memory on the device and there are 464 user I/O  cells.

2003

In 2003 the Xilinx Virtex family is still going, although the lead device is now the 

Virtex-II Pro (XC 2VP125) at 125,000 logic cells, with 42Mbits of config data and up 

to 1200 user I/O  pins. It incorporates up to 4 PowerPC processor cores and 556 18x18 

multipliers.

Altera have launched their Stratix architecture, described in [LB"'"03]. The archi

tecture itself was evolved through a repeated posit-and-evaluate process where Altera 

engineers proposed designs; these were modelled and benchmark circuits compiled onto 

them. The aim was to produce a device that enabled circuits to be routed even when 

most of the logic cells were used up -  a notorious problem in the FPGA world. The 

lead Stratix devices have 114,000 logic cells, lOMbits of memory. The devices and 

associated tools support many high-speed I/O  standards since FPGAs are commonly 

used to pull data straight off a high-speed bus.

There has been no recent significant change in the forms of the designs of FPGAs 

marketed by the major FPGA manufacturers, though the Altera approach to producing 

a new architecture is interesting; they seem to be aiming to solve old problems better 

rather than looking for new problems.

2.3 .7  Perform ance

The maximum attainable clock speed of FPGAs has been increasing roughly in line 

with the decreasing process size. Note that the quoted speed of an FPGA is often an 

order of magnitude more than that actually achieved. This is because normal compiled 

system implementations require substantial cross-chip communication and so several
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iterations are required for the data to make its way across the chip. The Virtex series 

for instance has a general routing matrix (GRM) associated with each logic block, 

each of which routes to adjacent and 6-distant GRMs in north, south, west and east 

directions. There are 12 “Longlines” running the full length and width of the device 

for fast long-distance communication. In addition, the “VersaRing” routes between 

the I/O  pins and the logic blocks. These four different interconnection schemes make 

routing very flexible, but at the same time very hard to reason about compared to a 

homogeneous grid with only nearest-neighbour connections.

This communication feature is a major weakness of FPGAs. They require major 

effort to be put into placement and routing of designs in order to come close to their 

maximum efficiency. For this reason good comprehension of the information flow in 

a program is vital in producing an efficient FPGA implementation, hence allowing a 

smaller and cheaper device to be used. This is similar in some respects to the prob

lems involved in deriving an efficient data flow through a systolic array, in that the 

arrangement revolves around dependency information. The difference is that the sys

tolic array pipeline is normally replicated many times in order to increase performance 

across many devices, whereas in each piece of mass-produced equipment using FPGAs 

the number of FPGA devices is normally few in number.

The difference which an FPGA architecture makes to design algorithms and soft

ware is illustrated by Hartenstein et aim  [HHG98]. The authors explore the difficulties 

posed by the architecture of the Xilinx XC6200. The main difference between this de

vice and other FPGAs is that the device has a 32-bit data bus which allows a coupled 

processor to read or write directly registers in the FPGA; in addition, routing resources 

of the device are limited. The authors conclude that the restrictions of the vendor tools 

for the device and its structure indicate that designs should be partitioned into a control 

part and a datapath. The key fact to emerge, however, is that the FPGA architecture 

affects the development process right from the point of synthesising the behavioural 

VHDL into the target’s primitive gates.
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2.3.8 O ther architectures 

M ultiple-C ontexts

An additional feature for FPGAs was explored by MIT with the design and construction 

of their “Delta” Multi-context Programmable Gate Array (MPGA) [TEC"'"95]. This 

has an additional pair of control pins which distribute a “context” value across the 

chip. Cells and routers may use this value to select one of a set of lookup tables. 

In practice this permits an MPGA to switch between several different functions in a 

couple of clock cycles, rather than requiring the tens of milliseconds normally required 

to reload lookup tables. Since the area of an FPGA chip increases much more quickly 

with number of cells and routing complexity than with cell size, this appears to be 

generally advantageous for FPGA design. For a given chip area, an MPGA design 

should be able to implement a more complex set of programs than an FPGA design.

In [FMA'^97], Faura et al present a RAM-based FPGA with two configuration 

contexts. It has the important property of allowing reconfiguration of one context while 

the other is active; this allows a switch between dynamically-loaded configurations 

within a couple of clock cycles. This system, termed FIPSOC (Field Programmable 

System On-Chip) couples the FPGA cells with a microprocessor core. Tellingly, the 

main digital I/O  of the chip is routed through the FPGA cells first rather than through 

the microprocessor, and the FPGA cell outputs are mapped onto the microprocessor 

memory space. The system has clearly been designed with fast throughput in mind, 

so the (negligible) cost of a context change will be important.

The other important fact to arise from [FMA"^97] is that the extra chip area taken 

up by an additional context is not prohibitive; the implementation of the Digital Macro 

Cells (DMC) uses around 56% of its space for context-related storage and processing, 

with a roughly 50-50 split between contexts, so the cost of the extra context can be 

estimated as a 30% increase in DMC area.

Tight B inding to  Processor

An alternative to a separate FPGA device is to bind it more tightly to the main 

system processor. This was the approach described by Hauser et al in [HW97] with 

their work on the Garp processor. Garp is a standard MIPS processor with a slave
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reconfigurable array incorporated on the same piece of silicon as the processor. The 

suggested method of use is for the main processor to handle normal execution itself, 

with programs handing off certain computationally-intensive tasks to the reconfigurable 

array. The reconfigurable array is programmed by feeding an array configuration into 

a “configurator” program which outputs a set of configuration bits; these are used 

to generate C code which is compiled into a standard program and executes at the 

appropriate point to write the bits into the reconfigurable array.

Garp was faster than an UltraSPARC 1/170 by factors of 24, 9 and 2 for their 

benchmark computations of DES, image dithering and array sorting respectively. These 

were reasonable, but this was a simulated run of a Garp, and the programs were no 

different from standard FPGA benchmarks. There was no clear indication given in 

[HW97] that a Garp chip was better than a standard processor interfacing to an FPGA 

over a PCI bus. The authors suggest that Garp would be more easily adopted than 

FPGA-only machines, but offer no evidence to support this claim, and do not address 

the FPGA-PCI configuration which seems to be in common use.

Donlin describes in [Don98] an architecture called “Flexible URISC” which breaks 

down a CPU into a bus on which sit arbitrary logic units; the controller of the archi

tecture has only one instruction, MOVE x y, which moves the contents of location x to 

location y. All more complicated processing is done by the logic units whose input and 

output registers are mapped into the processor memory space. Such an interface sits 

well with FPGA devices like the previously discussed Xilinx XC6200 series. In fact, a 

prototype core has been implemented using XC6200 devices. However, the performance 

gain of such an architecture is still not clear, and programming of the prototype must 

currently be done at the instruction level. It appears to be an interesting development, 

but lacks an obvious application, and none is suggested in [Don98].

Graham and Nelson, in [GN99], describe the simulated coupling of an Analog De

vices SHARC DSP with a Xilinx 4000-series FPGA architecture. Their reasoning for 

this coupling is that DSPs have a memory architecture permitting many independent 

memory ports to the programmable logic - a key to increased performance. The pro

grammable logic is seen as a way of performing the tasks to which DSPs are ill-suited 

such as bit-level data manipulation. While the performance increase vs. area increase 

figures are estimated rather than taken from actual trials, they estimate that increases
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in chip area by between 0 and 60% can typically speed up DSP benchmarks by factors 

of between 4 and 6. Of course, actually programming such a system is far from trivial.

System -on-C hip

The trend towards widespread use of small hand-held devices such as the PalmOS and 

PocketPC Personal Digital Assistants (PDAs) and the late-second generation cellular 

phones has driven a requirement for compact low-power microcircuitry with substantial 

computing power.

A typical cellular phone has five major components; the aerial, the screen, the key

pad, the battery and the circuitboard. The screen and keyboard sizes are determined 

by user interface issues such as eyesight and fingertip size, and the aerial by the need 

to be able to receive and transmit a signal to a network cell at a typical distance. 

Battery technology is improving, but innovations such as colour screens will continue 

to increase power requirements. Hence the obvious place to look for space and power 

saving is the circuit board.

One solution is to incorporate the maximum amount of logic on a single custom 

integrated circuit rather than placing a number of generic ICs on a circuit board. This 

is practicable in a cellular phone because of the large number of phones produced. This 

approach is called “System-on-Chip”, abbreviated ‘SoC’.

An example of SoC is the DReAM architecture, described by Becker et al in 

[BPGOO]. DReAM couples a number of reconfigurable processing units (RPUs), con

nected together directly and then interfacing to other components on the chip (DSP, 

memory, microcontroller) via dedicated I/O  units and a bridge. The authors have 

mapped a CDMA “rake” finger onto four RPUs, in a DReAM architecture running at 

lOOMHz. This is a classic off-loading of a computationally intensive operation from 

the DSP or CPU, and indeed the rake is an important part of the operation of third 

generation WCDMA mobile phones.

SoC can deliver increased performance in a system and reduce the component count, 

at the cost of increased silicon area and hence losing several of the financial benefits of 

using mass-market PLDs.
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N on-silicon A rchitectures

The use of reconfigurability is not restricted to silicon. McCaskill and Wagler, in 

[MWOO], describe the design of a reconfigurable microfiuidic network where routing is 

controlled by magnetic or photonic activation. The actual processing elements can mix, 

separate, react, detect or simply transport different fluids. These designs are not pro

duced on silicon, but rather in materials such as polymer. The actual reconfiguration 

would be handled by a digital mirror which reflected ultraviolet light onto appropriate 

parts of the network.

Such devices would be expensive to fabricate, at least at first, and the obvious ques

tion is whether there is a need for them. McCaskill and Wagler suggest programmable 

biochemistry as one field which might find such devices useful. The programmable 

logic research community should track the future progress of this class of device to see 

whether it solves any technical problems of silicon-based PLDs.

2.3.9 D evelopm ent environm ent

An old but widely-used Xilinx device family is the XC6200 series [Xil97]. Xilinx pro

duced the XC6200DS Development System based around a device from this family, 

the XC6216. [NG97] describes this development system. It is aimed at developers who 

want to produce applications based around the XC6216 device (64 x 64 logic cells, 1 

register per cell). The key components of this system are:

• XC6216 device on a standard PCI board, coupled with up to 2 Mb of SRAM;

• extra PCI mezzanine slots on the board for custom hardware;

• XACTstep Series 6000 graphical design tool, reading EDIF format design input;

• Java and C /C ++  run-time support software which interfaces to the board; and

• WebScope graphical debug interface to the XC6200 device.

The development process involves the user deciding what task the device is to 

perform, designing the XC6216 configuration using XACTstep, saving the resulting 

configuration data on the PC, then writing his or her control program which is linked
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with the supplied run-time support software. When run, the program will read the 

stored configuration data and upload it to the XC6216 device, then start the user’s 

task. At any point the user will be able to use WebScope to check the configuration 

and register state of the XC6216.

Analogue design

This process is adequate for systems which are experimental, but the hardware and 

software design processes are very different. The software design and development 

(in Java or C /C ++) expresses the programmer’s intent at a relatively abstract level 

where the details of the target machine do not greatly affect the programmer. The 

hardware design is done at a much lower level, analogous to programming software at 

the machine code level; the machine is being told precisely how to do a task rather 

than what task needs to be done. Here the programmer is having to be his or her own 

compiler; since modern compilers such as gcc [FouOO] are regarded as reliable and very 

efficient in terms of size and speed of code produced, the programmer is likely to be 

poor in comparison.

We expect that many of the errors in a programmed system’s execution will arise 

at the hardware /  software interface; incorrect handshaking and erroneous mapping of 

FPGA outputs to software variables are the two most obvious classes of error. This is 

because we will generally express the requirements for a system at a high level, then 

decompose them as the system itself decomposes into hardware and software parts; the 

interface between hardware and software does not have any requirements to start with, 

but rather such requirements emerge as the system is implemented. This means that 

the requirements have to be applied retroactively to the parts of the system that were 

implemented before the requirement emerged, leading to parts of the system that are 

overlooked or are incorrectly changed.

For a safety-critical system, such a development process is clearly inadequate. The 

emphasis (as shown by the inclusion of WebScope) is on getting a program which com

piles and runs, then debugging the hardware and software components until sufficiently 

few errors are apparent for the program to be regarded as effective.
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T he contrasting processes

The requirements - design - implementation - unit test - integration test cycle typical 

of safety-critical projects conforming to DefStan 00-55 and RTCA DO-178B[MoD97, 

RTC92] implies that we need to understand completely how the hardware and software 

parts interact before we start to implement them. While a certain amount of iteration 

through the cycle may be necessary due to changing requirements or unforeseen system 

limitations, the emphasis is on getting the system’s behaviour correct by design.

Sutton and Croxford [SC95] describe how this “correctness by construction” ap

proach was been shown to save time (and therefore money) in development of a new 

avionics system for the C130J Hercules II aircraft, while achieving a specified level of 

system reliability. We have previously discussed the limits of confidence that can be at

tained by testing. An analytical rather than empirical approach is to be recommended.

2.3.10 F P G A  usage in system s

FPGAs are used in many common electronics systems. They are used to implement 

“glue logic” and bus interface protocols such as PCI [AASR98]. In these systems 

their relatively small size and well-defined specifications enable testing to demonstrate 

quickly that they are adequately correct for the level of integrity required. However 

FPGAs have also been adopted for use in certain specialised computing machines, as 

described below.

Custom  M achines

SPLASH and SPLASH 2 represent a previous generation of FPGA technology (the 

Xilinx XC4000 series in the case of SPLASH 2, developed between 1991 and 1994). 

They were large architectures consisting of 16 or more FPGAs coupled with each other 

and with banks of RAM. We focus on SPLASH 2, detailed in [BAK96].

The design of SPLASH 2 had FPGAs as atomic processing elements, each coupled 

with 512 Kb of fast static memory. The FPGAs were connected by crossbar switches 

in groups of 16, each group forming one element of a linear array.

SPLASH 2 was used for several distinct tasks: a major one was searching genetic 

databases at a rate of 5-12 million characters per second, obtaining several orders
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of magnitude performance increase compared to its contemporary workstations, while 

priced in the $40,000-860,000 range. It was also trialled for fingerprint matching, which 

was previously done by very expensive custom computing machines. This task involved 

image processing to extract the skeleton features of a fingerprint, a very different task 

to the text matching that the database search required. Again, the performance in

crease over a contemporary workstation (SPARCStation 10) was a factor of 1500. This 

increase would have scaled well if more processing boards had been added, speed being 

approximately proportional to the number of boards.

SPLASH 1 had been programmed at the logic gate level, but the difficulties that this 

posed to the programmers meant that the developers designed a higher-level software 

environment for SPLASH 2. The main development language was VHDL, coupled with 

automatic synthesis and simulation tools. The designers chose not to use a C subset, on 

the grounds that writing a C-to-hardware compiler would have taken effort away from 

the mainstream of SPLASH development. Arnold [Arn96] writing in [BAK96] notes 

that the developers believed that “the best model for custom computing machines is to 

develop higher-level programming languages that can be compiled into a form suitable 

for input to commercial CAD tools.” We examine this later in Section 4.3.10.

SPLASH 2 showed that a custom FPGA-based computing machine could signif

icantly outperform a workstation for certain tasks, and yet be flexible enough to do 

very different tasks equally well.

Specialised Processing Elem ents

A practical use of the characteristics of FPGAs is described by Robinson et al [RCD98]. 

Their RCA-2 board, incorporating three Altera 10K130V CPLDs, is designed to process 

blocks of signal data at rates of 100 Mbytes per second or greater. The CPLDs are 

given local and shared SRAM, and programmed with signal processing algorithms. 

This is a near-ideal application of programmable logic; the CPLDs give a flexibility 

unattainable by ASICs or systolic arrays, are sufficiently fast to process the data at 

the given speeds, and the circuit board is less complex than would be required to 

implement the processing with a dedicated microprocessor. The resulting data can be 

passed down low-bandwidth lines for more leisurely and detailed processing.
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A different application obtaining similar benefits is cryptography. Charlwood and 

James-Roxby [CJR98], implement encipherings such as Blowfish-16 [Sch94] in an XC6216 

device. A 20 MHz non-pipelined implementation attained 119 Kb/s throughput, which 

translated to an 8 Mb/s pipelined implementation. For comparison, a contemporary 

300 MHz Pentium II processor attained less than 25% of this performance. One ob

stacle was the number of cells required by a pipelined implementation: over 4000, 

as opposed to 603 for the non-pip elined version. We see from this that FPGAs can 

give significant performance gains over conventional microprocessors, at much lower 

clock rates. This gives us a motivation for incorporating FPGAs in high-performance 

systems.

The contenders in the recent Advanced Encryption Standard (AES) contest were 

specifically evaluated for their suitability for implementation in hardware. Chodowiec 

et al [CKGOl], described pipelined implementations of four of the contenders. The use 

of mixed inner- and outer-round pipelining enabled implementation of the contenders in 

a Virtex XCV3006 device, at throughputs of 7.5 to 16.8 Gbit/sec. Mixed architecture 

sharply increased CLB slice usage, by around an order of magnitude over inner-round 

pipelining. More recent work by Jarvinen et al [JTS03] has improved this to a prac

tical implementation at 17.8 Gbit/sec on an existing device using a fully pipelined 

memoryless design.

In contrast to the above performance gains, Shand [Sha97] examined the task of 

finding approximate solutions of over-constrained systems of equations over the Galois 

field GF(2). He compared the DECPeRLe-1 FPGA co-processor [VBR"'"96] with a 150 

MHz Alpha 21064, which was the approximate contemporary of the DECPeRLe-1 in 

terms of technology. While the FPGA machine (16 Xilinx 3000-series devices) was 

faster by a factor of 60 in the search for a particular data set, the Alpha software can 

be optimised for a particular data set and recompiled in seconds to close the gap to a 

factor of 2 or 3. Recompiling the FPGA program data to be data-specific would take 

tens of minutes, losing any advantage. So for these kind of isolated problem solutions 

the FPGA is superior by far; for repeated solutions for different data sets, the FPGA 

recompilation overhead becomes significant.

These studies have shown that FPGAs can confer a significant speed advantage over 

conventional microprocessors; however, the performance gain appears to be sensitive

68



to the specific problem.

P lug-In Boards

Boards designed to be plugged into standard PCs are commonly used to research the 

programming and use of FPGAs. A typical research FPGA board is Riley-2, described 

in [MCLS97].

Riley-2 is a PCI board with four Xilinx XC6216 FPGAs, each coupled with 512 

Kb of fast memory. There is also a RISC core (Intel 1960JF) on board, and 16 Mb of 

shared memory. The XC6216s can be controlled directly by the i960 chip because their 

configuration bits are directly accessible in the i960’s address space. There is also a 

44-pin external I/O  connector for external hardware such as video.

The FPGAs on Riley-2 are programmed in Cedar, an extension of C for parallel 

hardware similar in many ways to the Handel-C language described in Section 2.4.4; the 

i960 and the PC host software are normally written in C or C++. It allows the use of 

multiple dynamically reconfigurable FPGAs rather than a single FPGA, experimenting 

with shared vs. private memory, and partitioning tasks over multiple FPGAs.

Em ulation

FPGAs are often designed into systems which also contain high-performance logic chips. 

These may be microprocessors, but may also be ASICs. In the design of these logic 

chips, emulation is an important step in validating the design before it is sent to be 

etched into silicon. Krupnova and Saucier, in [KSOO], survey the commercial emulation 

systems in existence which are based on FPGAs. Compared to custom chip emulators, 

these give the key characteristic of high performance, although require CPU-intensive 

compilation of the simulation programs. Krupnova and Saucier regard the FPGA pin 

count as the limiting factor in their use, although pin multiplexing can overcome this 

to some extent.

A modern FPGA-based machine for emulation is BEE[CKRB03]. BEE is a custom 

machine built with 20 large Virtex-E FPGAs and copious I/O, connected to a network 

by a commodity controller card. It makes practical the emulation of a 10-million- 

gate ASIC at 60MHz in real time, using up to 90Gbit/sec of data, running at over
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200Gops/sec.

2.3.11 Sem antics o f  PL D s

The incorporation of programmable logic devices into safety critical systems brings 

with it a need to be able to reason formally about safety and partial correctness in the 

context of programs executing on the device. Here we have three distinct needs for a 

semantics of FPGA operation. It will enable us to:

• demonstrate that “programs” (data programmed into FPGA cell and routing 

look-up tables) satisfy their specifications;

• refine high-level designs into code while demonstrating semantic equivalence; and

• reason about behaviour at the interface between software and programmable 

logic.

The cell-and-router structure of an FPGA device leads us to consider a collection of 

small individual processes reacting to input signals to produce output signals, since this 

is essentially what is happening when cells are viewed as processes and their routing 

is viewed as describing which signals pass to which process. Since such FPGAs may 

normally be clocked by a single chip-wide low-skew clock signal to all logic blocks we 

can add the additional constraint that the system be synchronous, at least from the 

point of view of the cells; in reality, the interface between the FPGA and an IC such 

as SRAM may not run at the same clock rate.

A model which is simple but sufficient to describe synchronous FPGA programs, 

and which has a rigorous semantics, is Synchronous Receptive Process Theory. This 

is described in [Bar93] and was developed from Josephs’ Receptive Process Theory 

[Jos92]. It is similar in some ways to CSP, but better expresses the synchronous and 

fundamentally receptive nature of logic gates: CSP allows processes to refuse events 

(inputs) whereas actual gates cannot normally exercise any direct choice over the inputs 

that they receive from cycle to cycle. We explore this in much more detail in Chapter 5.

Another formal representations which could be used is Timed CSP [SD95]. Timed 

CSP is an improvement on standard CSP since it can express the concept of an event
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occurring within a specific time (e.g. a clock cycle) whereas CSP can only have a known 

event happening or not. Timed CSP uses the “maximal progress” mechanism where 

an event happens whenever all participants are ready to engage in them. Representing 

an FPGA program in Timed CSP would certainly be possible. However Timed CSP 

is more complex than SRPT, allowing as it does asynchronous events. We are looking 

for the simplest possible model which is sufficiently descriptive for our purposes.

Z has been mentioned before as useful in the specification of complex systems. We 

could attempt to use it to describe an FPGA program. It is certainly worth considering 

in terms of specifying the whole program, and perhaps even parts of the program, but 

we would like our specification to be easy to refine into an implementation in something 

like Pebble or VHDL. As previously noted, Z does not in itself provide mechanisms for 

refinement, and the task of developing such a rigorous refinement mechanism would be 

considerable.

A similar refinement-based objection can be raised for the B-Tool; it provides its 

own target language, but this language is imperative and provides no native support 

for parallelism.

One promising unified theory is Circus [CSW02], an integration of the CSP process 

algebra and the Z specification language. This uses a Z schema to describe the state 

of each process and CSP-like action to describe the control behaviour of each process. 

Circus has well-defined refinement rules for transforming specifications from abstract 

to concrete form.

Circus is appropriate to a development process at a higher level than SRPT. It 

provides a way to refine down from an initial abstract specification to a collection of 

relatively independent processes, omitting specific timing descriptions as long as they 

are irrelevant.

Circus is as yet untested in an industrial-scale development; nevertheless, its frame

work and the rigour of its specification and refinement laws show promise for practical 

system specification.
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2.3.12 Issues o f co-design

An FPGA is almost always only a computational component of a system. Other 

components may include one or more microprocessors executing software, a bus (such 

as PCI or the military-standard 1553) and other specialised devices on the bus. When 

designing the system architecture, an important question to resolve is “how shall we 

divide the work among the components?” This decision will affect the critical system 

properties of speed and reliability. The trade-offs to consider include timing constraints, 

cost, complexity, redundancy, component functionality and required reliability.

At the moment the decision on what work to allocate to FPGAs is relatively simple 

to make. Their small size means that very specialised tasks such as bus interface logic 

are ideal, and most other tasks do not suit their capabilities. FPGAs work best on 

processing large amounts of data in a simple way, which is not a common task in most 

safety-critical systems; where it is required, such devices as DSPs are currently used. 

However the increasing capacity of commercial FPGAs will enable them to undertake 

increasingly complex tasks, taking load off the main processors of the system.

Partitioning Software

The decision on how to split software between a conventional microprocessor and pro

grammable logic relates closely to the field of hardware-software codesign. There are 

three basic choices about when and how to partition the software:

• at design time, manually;

• at compilation time, semi-automatically; or

• dynamically during execution.

The first option is self explanatory. When the system is designed, the design team 

decides which functionality should be in programmable logic and codes it explicitly. 

As noted earlier, common implementation languages are VHDL and Verilog.

The second option has the software implemented in some high-level language. Dur

ing compilation sections of the software are selected for programmable logic according 

to some defined criteria, and extra “glue” logic is added to allow these sections to
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communicate with the other software sections. The manual effort in this selection and 

mapping can vary from none to total.

The final option has a set of software sections implemented in netlist format. There 

will be a system controller which dynamically loads the netlist data into reprogram

mable logic as required. This normally requires an FPGA capable of on-the-fly re

configuration, since otherwise the device will have to be power-cycled and interrupt 

system execution. With current technology we must have constructed our library of 

programmable logic routines beforehand; the place-and-route overhead is usually too 

high to make any other approach practicable.

Note that the decision on when to partition is coupled with the choice of imple

mentation language. If we are to decide partition details at compile time or later then 

we need a language amenable to translation into a HDL or netlist (normally EDIF) 

format. The choice of language will depend on the compilation tools supplied by our 

device vendor.

2.3.13 Sum m ary o f PLD  technology

PLDs exist in a wide variety of designs and sizes. Their most common form for use is the 

FPGA. They are widely used as glue logic, and have been used for specialised processing 

tasks where an ASIC would be too expensive and a conventional microprocessor too 

slow or too complicated.

We will now look at how PLD programs may be designed.
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2.4 Program m ing PLDs

The implementation of a PLD-based system can be done in many ways. The target 

“object code” will be a vendor-specific “netlist” which specifies the data to be loaded 

into each cell and router of the device. To reach netlist form, several intermediate 

compilation steps are normally required.

2.4.1 N etlist specifics

EDIF ( “Electronic Design Interchange Format” ) [IntOOa, IntOOb] is a textual language 

designed to allow electronic design information transfer between different CAD systems. 

It is currently implemented for netlist and schematic circuit descriptions, although 

different tool vendors have significant differences in their implementations so it is not 

as portable as it could be. Netlists are often stored in EDIF.

A common step in most PLD programming methods is compilation from a HDL 

to the netlist; device vendors normally supply software to do this as part of the device 

toolkit. This compilation has the advantage that the source program structure is 

similar to the target structure since HDL designs are normally expressed in terms of 

procedural logic functions. These functions map naturally onto the FPGA cells-and- 

routers model. However for larger systems it is hard to ensure that a large and complex 

low-level design satisfies the system specification. Note, too, that HDL and the netlist 

have to deal with issues of clock signal distribution and skew across the chip, driving 

of inputs and outputs, and other VLSI-related issues; such complexities should ideally 

not appear in higher-level descriptions.

2.4.2 P rocess flow

A typical PLD development process fiow is shown in Figure 2.2. It illustrates the key 

steps and decisions that need to be made. Note that the fiow may be changed because 

of different project needs. In a safety-critical system development there would be safety 

case work going on in parallel which would exert a substantial influence over design 

and implementation decisions.

Where the PLD is expected to interact with system software there would be inte-
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Figure 2.2: PLD development process flow 

gration work to ensure that the two components worked correctly together.

2.4.3 H igh-level hardware design

Substantial effort was made in the 1980s and 1990s to develop a hardware design lan

guage that supported formal reasoning and abstraction, two features absent from HDLs 

such as VHDL and Verilog. The main exponent of this approach was ELLA[MC93], a 

non-proprietary language with a formal basis.

ELLA was not a strict competitor to VHDL and Verilog, but in practice it was 

treated as such. The relatively small size of hardware designs made design in existing 

HDLs feasible, if not optimal. It may be that, as hardware designs and PLD dies 

continue to grow in size, high-integrity requirements will make ELLA or similar design 

languages more necessary. This change was seen in software with the emergence of 

structured design methods as program sizes grew beyond what one developer could 

manage; it is reasonable that a similar effect will eventually be seen in programmable 

logic program design.
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2.4.4 H igh-level language im plem entation

The use of a more abstract implementation language for PLD designs has received 

considerable attention and is emerging as practical for some industrial applications. 

The two-step compile (i.e. initially compiling to an intermediate language) is relatively 

easily achieved since a number of languages have been compiled into VHDL; of note 

are Ada (in [She96, WA02a]), Java (in [MK98]) and C (in [Swe98, She96]). Below we 

analyse the results of this work.

Fine-grain vs. coarse-grain parallelism

A key property of programmable logic systems (each system incorporating both the 

hardware and programming interface) is the granularity of the possible parallelism. 

Coarse-grain parallelism is represented by programs which have individual data spaces 

and communicate via specialised protocols. Fine-grain parallelism is represented by 

subprograms which share a single data space and rely on careful programming by the 

user to avoid race conditions.

The fine-grain model is a better representation of a typical PLD program, where the 

limited space on the device may be used most effectively by a large number of simple 

parallel computations which share data wherever possible; duplication of data storage 

(the way of coarse-grain parallelism) wastes device space. We believe that aiming for 

fine-grain parallelism from the outset holds the key for a significant general increase in 

the use and speed of PLDs.

Java

The JVX Java prototyping system [MK98], for instance, compiles a single method in 

isolation to VHDL and uses a modified JVM interpreter to interface with any methods 

in reprogrammable logic. However, it appears that it is not currently possible to com

pile into hardware any method which calls another method. The automatic interfacing 

between the JVM and the FPGA is an interesting step from the point of view of par

titioning; the user need make no special changes to a method for it to become VHDL. 

However it is not clear that the Java language itself gives any significant benefit to the 

effort.
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Snider et a l , in [SSCOl], map a generic object-oriented language (subsets of C++ 

and Java are given as examples) directly into device configuration data for Virtex 

devices. The general approach is to write classes that extend a Machine base class, 

taken to be the smallest unit of execution. Functions s tep O , input () and output () 

define the machine’s actions. The compilation relies on heavy optimisation in order 

to extract fine-grained parallelism from the user’s medium-grain specified parallelism. 

Low-level optimisation specific to the target is then performed; this section of the 

compiler would therefore have to be rewritten for each target device.

The interesting points about this approach are that the source language is essentially 

unmodified, and that the compilation does not go through VHDL or Verilog. However, 

the full range of the source language is not used.

Xilinx have recently released their FORGE design language which is Java-based, but 

it is immature and there is little public information about its structure and reliability.

Com posing hardware

An early compositional hardware language was Ruby [JS90]. Ruby was based on 

the idea that circuits are built from parts by a process of composition, which has 

mathematical properties similar to the composition of functions and relations. It was 

studied in the early years of FPGA use but fell out of use and study. However, its key 

ideas have been evident in more modern work.

A modern development of Ruby is the Lava project being undertaken by Xilinx. 

The project involves Mary Sheeran, one of Ruby’s original researchers. Lava[CSOO] is 

a prototype HDL, not supported by official Xilinx toolsets, but has been developed 

and is in use at Chalmers University in Sweden. It trades off the expressiveness of 

full VHDL or Verilog for compactness and simplicity of descriptions of common circuit 

layouts. Currently it is implemented by being embedded in the widely-used Haskell 

functional programming language. One proposed commercial use of Lava, cryptogra

phy, is described below.
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Occam

Mpeller-Nielsen and Caprini proposed “occam on a chip” in [MNC95]; the universal 

system programming language was occam [Ltd84], some section of the software was se

lected to be implemented in hardware, and two communication channels were added to 

control handshaking between software and hardware. In this particular case the target 

hardware was a transputer-like chip, reducing the required amount of compilation of 

the occam program, but occam is a good starting language if the hardware is PLD-like 

too. Occam’s bit-level variables, ease of expression of parallel computations and simple 

inter-process communication channels map well onto the architecture of PLDs.

The main problem with this approach is the opposite of that with a high-level lan

guage such as Java; programming the parallel hardware part is relatively easy, but the 

Occam language has not proven suitable as a general-purpose programming language. 

The demise of the transputer after Inmos were absorbed by SGS Thomson meant that 

occam was no longer a practicable implementation language for the mainstream x86, 

ARM and PowerPC-based systems.

Oxford University’s Hardware Compilation Group have taken a number of ap

proaches to this problem. Their earlier approaches included Ruby (described above) 

and Handel [PS93], which was an occam-like innately parallel synchronous language. 

Handel was much more of a programming language than Ruby, allowing an elegant 

expression of the parallelism of a program, but required much more effort on place- 

and-route than Ruby’s compositional model.

H andel-C

The company Celoxica (formerly Embedded Solutions Ltd.), spun off from the Hard

ware Compilation group, is focused around use of the Handel-C language and the as

sociated DK Design Suite. The Handel-C language is described in [Cel02j. It extends 

ISO-C syntax in the following ways:

• variables specified in bit-width;

• macros for bit-manipulation; and

• explicit RAM/ROM hardware elements.
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Its semantics, however, are closely related to those of occam (and hence, CSP). The 

language model includes:

• a timing model, where each assignment or delay statement takes exactly one time 

step to complete;

• signals and channels for inter-thread communication; and

• a deterministic parallelism model.

An example of the use of Handel-C for a real application appears in [Swe97]. Handel- 

C is interesting both as a syntactic extension of a widely-used medium-level language 

and as a rewriting of the (implicit) sequential semantics of one language into explicit 

a timed parallel semantics. Nevertheless it falls short of the ideal language for our 

safety-critical systems, principally because C is an inherently unsuitable language for 

the implementation of highly reliable systems and because Handel-C borrows so much 

from C that it includes many of C’s defects.

C’s failings are described by Romanski in [Rom96]. The author is a recognised 

expert at making systems conform to the RTCA/EUROCAE DO-178B civil aviation 

safety standard. He makes the key comment “The [C] language attempts to hide 

the underlying machine so that programs become portable between different machines. 

Unfortunately, the target characteristics show through.” The lack of strong typing, sub

stantial unspecified or implementation-dependent behaviour, and language constructs 

such as unbracketed single clauses and admissibility of assignment into conditions in 

C are viewed by Romanski as some of the chief deficiencies that make it unsuitable for 

inclusion in safety-critical systems, even if a “safe” subset is used. Additionally, if we 

wish to abstract away as much as possible of the details of the target hardware then 

the use of a low-level language such as C appears to be going in the wrong direction.

An example of the problems Handel-C faces is the par construct, allowing parallel 

execution of multiple statements. Strictly speaking, race conditions cannot arise be

tween threads because of the deterministic timing model. If thread 1 writes to variable 

A and thread 2 reads from variable A, whenever the program is run thread 2 will al

ways get the same value of A. However, changing the order of statements in thread 1 

may change the value of A read by thread 2. This instance of “law of the unintended
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consequence” would be a significant worry in building a safety-critical sub-system in 

Handel-C. The language also allows the use of types without explicit bit width, per

mitting their actual width to be inferred at compile time. This can only lower the 

predictability of such programs.

Handel-C may well prove useful in lower-integrity system development, and its use 

of fine-grain parallelism is intelligent, but it cannot seriously be considered for critical 

systems.

A da

The syntax of Ada is very similar to the syntax of VHDL, which leads to the natural 

question of whether it is feasible to map between the two underlying languages. This 

was initially addressed by Sheraga[She96], with more recent work by Ward and Audsley 

[WAOl, WA02b, WA02a] making progress towards a viable compiler.

Ada was designed as a language suitable for programming safety-critical systems, 

and includes facilities for precise definition of type ranges and parallel programming 

( “tasking” ) which are required for many embedded systems programs. Ward and Auds

ley describe the construction of the York Hardware Compiler for sequential Ada [WAOl] 

and its extension to the Ravenscar subset of Ada’s tasking facilities [WA02b]. It should 

be noted that they choose to use the SPARK Ada subset due to the structural re

strictions which it imposes on Ada, which improves analysability. The compilation 

produces a netlist implementation of the program which can be compiled directly to a 

target device.

The motivation for this compilation has been to improve worst-case execution time 

analysis; bounding execution time on a program executing on a real-time operating 

system is more difficult than for the same program executing alone on a PLD. However, 

no mention is made of bounding loop execution counts, which is fundamental to such 

calculation. Since SPARK Ada admits proof of selected program properties such as 

maintenance of loop invariants and strict monotonie decline of variants, this should 

have been exploited. Worst-case timing analysis of SPARK has been analysed in detail 

by Chapman[Cha94] but this work has not been referenced by Ward and Audsley.

There is little discussion of interfacing a PLD-compiled program to another program
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running in software, which is fundamental to making PLD programming effective for 

large systems. In [WA02c] the authors discuss practical improvements to the Ada 

language to make it easier to interface to PLDs and improve fine-grain parallelism of 

Ada programs, but fail to exploit the known data-fiow in SPARK programs for this 

purpose. The evidence of scalability in program size is very limited. Compilation 

of some small programs is demonstrated, but none incorporating subprogram calls or 

tasking constructs are shown. There is no discussion of optimising the compiler for 

time or space.

This approach is interesting, in that it shows that Ada compilation can be done 

in practice and that SPARK Ada and Ravenscar are useful subsets to adopt, but the 

approach not been shown to be effective and practical for programs similar to those 

used in actual development and has not exploited SPARK Ada’s features to the full.

Esterel

The synchronous programming language Esterel [BerOO] was used by Hammarberg et al 

[HNT03] to implement a demonstration hydraulic fiuid detection system on an FPGA. 

Esterel is a language for programming reactive systems; we contrast it with the SRPT 

process algebra in Section 4.1.10. It can be compiled to VHDL or Verilog, which is 

how the fiuid detection system was produced. It is certainly suitable for programming 

reactive systems on PLDs, and has a formal (synchronous) semantics, but there is 

as yet no public information about its use programming PLDs for real safety-critical 

reactive systems.

D om ain-specific languages

One high-level alternative to conventional programming languages is CoreFire, de

scribed in [McH02]. This is used to produce high performance applications to run on 

the Annapolis Wild FPGA boards. It uses a “sticks and bubbles” graphical interface 

to draw program data flow. The main drawback with this system is the tie to the Wild 

board, whereas anything that compiles to VHDL will normally target a much wider 

range of commodity hardware. However, this has not deterred engineers at the Naval 

Research Laboratory (NRL) in Washington D.C., who are developing FPGA solutions
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for electronic warfare using CoreFire. It demonstrates that in restricted application 

domains there is a role for high-level design methods.

A more recent proposal has been made in the domain of cryptography. Launch- 

bury and Singh [LS03] propose the use of the declarative functional language Cryptol. 

This allows compact expression of common cryptographic transforms in a functional 

language syntax. It is currently supported by compilers targeting the C (imperative) 

and Haskell (declarative functional) languages. The authors propose a PLD-targeted 

tool chain, using the Lava language embedded within Haskell. This work is at proposal 

stage, and depends on immature tools, but its concepts appear to be sensible.

2.4.5 Low-level language im plem entation

Describing a PLD program in a high-level language may be inappropriate; indeed, for 

early PLDs it was not practicable because of the small size of the devices. Even with 

large modern FPGAs, certain programs may be better designed at the logic component 

level.

In [ABOO] Abke and Barke describe CoMGen, a tool to render low-level component 

descriptions into look-up tables. The input descriptions are in Verilog macro and gate- 

level netlists. The generator is not tied to one FPGA; it has an interface to an external 

floorplanner for sizing components appropriately for the target device, and does its own 

place-and-route. Mapping the finished netlists to a form suitable for programming the 

target device is done externally.

This approach is of interest because it classifies the low-level compilation steps into 

general and target-specific classes. How low-level programming for a given application 

is actually done will depend on several factors. If multiple devices are to be used, 

reducing the device dependence by using a tool like CoMGen makes sense. If a single 

device is to be used, the decision will depend on the perceived quality and useability 

of the vendor’s tools.

2.4.6 P ebble

The “Pebble” language described in [LM98] is a more abstract representation of VHDL. 

The language is based upon the definition, instantiation and coupling of logical “blocks”
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which perform simple tasks synchronously. A Pebble representation of a half adder, 

for instance, is:

BLOCK halfadder [si,s2:Wire] [cout,sum:Wire]
BEGIN

xor2 [sl,s2] [sum]; 
and2 [sl,s2] [cout]

END;

This expresses the half-adder as a coupling of XOR and AND gates. The naming 

of the wires within the block relate input and output wires of blocks. Other Pebble 

constructs allow parametrisation of blocks by size, placement constraints and condi

tional compilation. The “primitive” blocks in Pebble are expressed as blocks with an 

empty body; these will be constructs which the target device can implement with a 

single cell.

Pebble appears to hold considerable promise as a target for higher-level languages. 

A compiler for Pebble into structural VHDL or a netlist for the “Rebecca” simulator 

has already been demonstrated and is also described in [LM98]. The structural VHDL 

produced can then be compiled into a specific device by the appropriate vendor tools.

Pebble is especially interesting in this context because it may be viewed as an 

abstract representation of a PLD program which may be directly reduced to a cell- 

level implementation. As an example take a carry-look ahead iV-bit adder which can 

be composed recursively by half-sized CL A adders until the single-bit level is reached; 

at this point full adder blocks can be used to form the building blocks of the system. 

We express this in more detail in Section 5.3.

Once the PLD program has been reduced to wire-connected computational blocks, 

the unavoidable device-specific mapping occurs. In a Xilinx 6200-series device, for 

instance, a half adder can be built on one cell, but simpler devices with only one 

output per cell would require two or more of their cells to be configured and linked to 

produce the full adder functionality. Therefore Pebble is in some respects the lowest 

level device-independent step in a compilation. This is a strong indication that Pebble 

should be considered as a target for high-level compilers. We develop this approach in 

Section 4.2 and apply it in Section 7.2.
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2.4.7 T esting PLD  program s

Testing is a vital part of the development cycle of any significant system. It has three 

main aims:

1. to verify that the program loaded was the program intended;

2. to locate errors in the system software during development; and

3. to provides a level of assurance that the completed product fulfils its requirements.

Aim 1 is normally achieved by readback, as described in Section 2.3.5.

Aim 2 is normally achieved by what is commonly called unit testing; assuming that 

the software is divided into modules, the elements of each module are tested according 

to their design. Problems may arise here when the software design is very detailed; 

there is a temptation to derive tests from the code, which nullifies many of the benefits 

of testing. Ideally, the author of the tests would be independent of the author of the 

software, and would not have access to the implementation details of the source code 

for which he or she was writing the tests.

Aim 3 is achieved by running on the completed product a series of tests derived from 

the requirements (often called functional testing or integration testing^ run in sections 

during development to check that modules work together properly), and showing that 

each test result is correct. The level of assurance provided will depend on a number of 

factors:

• the number and range of tests provided;

• the rigour with which the tests are derived from the requirements; and

• the proof that the system components tested are those in the final product.

The latter point is not trivial. Without good configuration management in the 

project, it is difllcult to prove the required proof.

How should we test PLDs? Since they are a mixture of software and hardware 

engineering, we should examine testing techniques from both fields. We must also 

consider testing methods particular to the peculiar design of PLDs.
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R equirem ents testing

The first set of tests will be requirements-based, checking that a given set of inputs 

produce the desired set of outputs within a specified time. Generating test cases from 

requirements is a well-understood problem, and there is little more to say here. The 

key is to make requirements independent of implementation techniques where possible, 

to avoid unnecessary restriction of the solution space to software or programmable 

hardware.

If a high-level language has been used to specify the PLD program then it may be 

useful to write unit tests for the PLD based on that high-level representation; this acts 

as a check that the potentially complex compilation and optimisation of the FPGA 

netlist has worked correctly.

Hardware fault detection

The hardware aspects of the PLD require more thought. Renovell, in [RenOO], de

scribes a scheme for testing the interconnect, logic cells and RAM cells in a symmetric 

SRAM-based FPGA. These tests consider cases such as open and short between inter

connections, stuck-at cases for logic and RAM cells, transition faults, coupling faults 

and address decoder faults in RAM cells.

This testing is done by feeding in explicit test configurations into the FPGA before 

loading the actual system configuration. Hence, we have a reasonable likelihood of de

tecting faults inherent in the FPGA, but must also consider the possibility of spasmodic 

errors in the configuration data. Our testing here will be affected by the permanence 

of the FPGA configuration. An SRAM-based FPGA will have its configuration loaded 

at each power-on, and so will have a greater likelihood of configuration error than a 

Flash-based FPGA which may only be reprogrammed three or four times in its life

time. When drawing up a test plan for a system incorporating FPGAs, these factors 

must be considered. The developers will have to choose whether to ignore configuration 

errors, detect and report them (possibly shutting down the system subsequently), or 

taking measures to mitigate their risk such as using redundant hardware, exploiting 

PLD program readback or using a voting scheme.

An example of a triple-redundant PLD program design scheme including error de
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tection and periodic program re-loading is described by Lima et al [LCR03].

T im ing errors

Timing issues are a significant consideration in designing ASICs, and serious computa

tional effort is devoted towards simulating ASIC designs in order to catch timing issues. 

This simulation is not generally available for normal FPGA designs, but the problem 

of timing issues is still present. Krasniewski, in [KraOO], shows how delay faults can be 

detected in an FPGA. His approach is to modify the contents of look-up tables in such 

a way that the LUTs become much more vulnerable to path delay; random testing of 

the modified program is then carried out to attempt to detect such faults.

Crosstalk

“Crosstalk” is the phenomenon due to inter-wire capacitance whereby switching in one 

trace of the FPGA may change the voltage in another trace. The shrinking feature 

size of integrated circuits has made crosstalk an increasingly important consideration 

in place-and-route. Wilton, in [WilOl], describes a routing scheme which optimizes 

for delay in the presence of crosstalk, and which demonstrated a 7.1% improvement 

in routing delay over its parent routing scheme. This indicates how important the 

consideration of crosstalk can be for system performance. It is also another complexity 

in the design of routers, especially in safety-critical systems when all potential crosstalk 

effects must be eliminated.

2.4.8 Sum m ary o f program m ing PL D s

PLDs are generally programmed at the HDL level, in Verilog or VHDL. There is a 

move towards programming in subsets of C and Java, adapted to take advantage of the 

PLD’s parallelism. However, these programming languages appear to be inadequate for 

programming components of high-integrity systems. The occam fine-grained parallel 

model appears to be a useful base for language design. The use of Ada is promising 

but remains to be shown to be practical.

There are mechanisms for testing PLDs, but their reconfigurability means that a 

class of reconfiguration errors must be explicitly tested for, over and above the normal
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software and hardware tests.

The hardware nature of PLDs introduces extra potential faults, such as crosstalk 

and timing issues, which require trapping and testing over and above that used for 

conventional software.

Given these issues, we will now look at the suitability of PLDs for use in safety- 

critical systems. We will also examine the state of the practice for such use.
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2.5 Safety-Critical PLDs

2.5.1 R esearch directions

Any new work on incorporating PLDs into safety-critical systems should represent 

an advance in concurrency research. Before we investigate this problem, we should 

bear in mind the conclusions of Cleaveland et al [CS"^96] in their recommendations on 

concurrency research. They isolate the following relevant topics for which challenges 

exist:

A lgorithm ic su p p o rt to develop methods which can cope with the state-space ex

plosion problem inherent in concurrent system design and verification, perhaps 

by a decomposition and refinement process;

Tool su p p o rt to make tools portable and scalable, and better integrated into the 

software engineering lifecycle;

Technology tran sfe r to expose existing design and verification technology to real life 

industrial and defence applications, to improve the technologies and to encourage 

their uptake by example; and

Program m ing languages to design usable, safe and secure languages incorporating 

a well-understood concurrency model.

We will incorporate these aspects in our problem statement in Section 3.5.

In this section we look at the emerging UK Defence Standard 00-54 and the RTCA 

standard DO-254, relevant to PLDs in safety critical systems. We see how a system 

safety analysis should incorporate any programmable logic in the system, and discuss 

how we might improve a PLD program to increase safety and reliability. Finally we 

summarise the key needs for the system developers who build programmable logic into 

their systems.

2.5.2 Safety o f PL D s

Placing a programmable logic device into a safety critical system should result in an 

immediate assessment of the impact of the device’s behaviour on the rest of the system.



This enables the system designers to establish whether the addition of the device has 

made the system less safe. A “white box” safety analysis procedure, such as described 

by Simpson and Ainsworth in [SA99], will trace the output data of the device through 

the system and determine whether it can contribute to any predetermined system 

hazard.

An example might be an FPGA built to compute a customised Fast Fourier Trans

form of some data. If this data is determined to be safety-critical, for example as an 

input to an aircraft’s fly-by-wire control system, then the safety analysis must show 

that the data produced has an adequate probability of being correct. Suppose that a 

10~® chance of an aircraft being lost on a typical mission due to system failure was 

deemed acceptable. The onus would then be on the safety team to prove that the prob

ability of dangerous data being generated by the FPGA on such a mission, multiplied 

by the probability of such data causing aircraft loss, was less than 10“®.

The system designers typically face a dilemma; should they ensure that the device’s 

functionality is limited to prevent it contributing to a hazard, or should they attempt 

to demonstrate its correctness? The former may require a major system redesign; the 

latter requires a solid formal basis from which to argue.

White box safety allows us to analyse the errors that might occur in the FFT 

computation. If we can show, for instance, that the expected results of an erroneous 

calculation are distributed evenly across the result space, and that a simple sanity-check 

can detect 90% of such errors, then we could perhaps formulate an argument that only a 

10“® probability of calculation error is required. However, things are seldom so simple!

Gibbons and Ames, in [GA99], describe the experience of using an FPGA as a key 

element in the circuitry of a pyrotechnic release for the NASA Wide Field Infrared 

Explorer (WIRE) satellite experiment. The telescope cover was prematurely opened, 

causing hydrogen venting from the spacecraft and consequent high torque rates, venting 

all the solid-hydrogen cryogen within hours and rendering the instrument unusable for 

its intended mission. The premature opening was due to undefined behaviour of the 

FPGA (an Actel 1020) during power-up that permitted a 14 millisecond power spike 

on the outputs. Spacecraft hardware testing did not detect this problem.

A PLD program could be proven to be completely correct against its specification. 

However, correctness cannot avoid failures triggered by phenomena which can occur
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even before the program starts its execution, such as in the case of the WIRE satellite. 

In general, proof of correctness only guarantees that the program will be able to address 

conditions explicitly considered in the formal specification; nothing else is guaranteed.

2.5.3 Safety standard: D efence Standard 00-54

The UK Defence Standard 00-54 [MoD99] specifies requirements for electronic hardware 

in military systems. It is considered to be appropriate if an electronic element of the sys

tem affects the system’s safety. As with other UK Defence Standards [MoD97, MoD96] 

it is split into two parts; Requirements and Guidance. The techniques described in the 

document are to be used to analyse complex electronic designs for systematic failures; 

dealing with random failures is discussed in Defence Standard 00-42 [MoD94]. All of 

00-54’s recommended procedures are to take place under the umbrella of the safety 

management standard Def Stan 00-56 [MoD96].

Relevant quotations

The standard’s recommendations which are of particular interest to us are in sections 

12.2.1, 13.4.1 and 13.4.4. To quote:

§12.2.1: A formally defined language which supports mathematically based reasoning 

and the proof of safety properties shall be used to specify a custom design.

§13.4.1: Safety requirements shall be incorporated explicitly into the Hardware Spec

ification using a formal representation.

§13.4.4: Correspondence between the Hardware Specification and the design imple

mentation shall be demonstrated by analytical means, subject to assumptions 

about physical properties of the implementation.

where “custom design” refers to the particular electronic component in question and 

in particular to a PLD’s program data.

M otivation

The standard’s guidances provide more information about the motivation behind the 

standard. To quote: “The principal concern which has caused this Interim Standard to
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be produced is that electronic hardware designs used in critical applications have been 

getting steadily more complicated [... ] Therefore the focus of this Interim Standard 

is on analysis and proof to supplement test.” It also notes that widely used standard 

HDLs without formal semantics, such as VHDL and Verilog, present compliance prob

lems if used as a design capture language. Examples given of suitable languages are Z 

and VDM.

Standards evolution

The standard is only interim, and its contents will almost certainly change when it is 

incorporated into Issue 3 of Def Stan 00-56 in early 2004. Nevertheless, the concerns 

which it expresses about existing practices and its suggestions for process improvements 

are worth careful scrutiny. A language which supports formal reasoning about PLD 

behaviour is what is required for compliance with this standard.

There is an on-going program in the UK Ministry of Defence relating to the de

velopment of guidance for the design and procurement of systems conforming to the 

Advanced Avionics Architecture (AAvA) for military aircraft systems. There is a spe

cific guide about the use of PLDs in such systems which has been released in preliminary 

form as [Hil03a]. This in turn is expected to inform the re-write of 00-54. This guide 

encourages the goal-oriented approach to generating safety evidence demonstrated in 

the rewrite of the SWOl regulatory impact assessment for the CAP 670 Air Traffic 

Safety requirements [Civ02]. It seems reasonable that most parts of Issue 3 of 00-56 

will adopt this form.

The previously noted increase in PLD capacity and speed, enabling them to perform 

more complex and time-critical tasks, in turn increases the likelihood that they will be 

a critical component in a safety-critical system. Without a generally applicable method 

of reasoning about their correctness to the standard that SIL-4 requires, such a system 

is unlikely to gain regulatory approval.

2.5 .4  Safety standard: R TC A  D O -254

RTCA DO-254[RTCOO] is the programmable hardware counterpart of RTCA DO- 

178B[RTC92]. It was approved by the FAA in 2003 for use in aviation systems de
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velopment. The author of this thesis has had experience in applying it in practice to a 

hardware development, and therefore has a well-founded perspective on its practicality.

Like its software counterpart DO-178B, DO-254 defines a set of required integrity 

levels A to D, with Level A being the highest integrity. The emphasis in DO-254 is 

on providing a practical guide to the development process for the PLD program and 

associated documentation. The advice is normally generic for the integrity level, with 

Appendix B describing particular techniques that may be appropriate for high integrity 

systems which DO-254 defines as Levels A and B. It is not normally prescriptive, leaving 

it to the developers to choose (and justify) the advanced analysis methods to use in 

high-integrity systems.

The key to producing high-integrity systems conforming to DO-254 is to do func

tional failure path analysis (FFPA) as described in Appendix B section 2.0 of DO-254 

to identify system hazards, deduce where the system may cause them, and justify how 

in each case the hazard is mitigated. Arguments may include manual analysis of the 

HDL or netlist, formal analysis techniques, mitigation through features of the system 

architecture, and in-service experience. Interestingly, it makes practical recommenda

tions on qualifying hardware compilers for high-integrity work.

Where Defence Standard 00-55 and RTCA DO-178B are distinctly different in con

tent, with 00-55 emphasising rigour over DO-178B’s extensive testing. Defence Stan

dard 00-54 and DO-254 are more complementary. DO-254 provides practical advice 

without forfeiting the requirement of a rigorous approach where appropriate; 00-54 

provides the detail of appropriate rigorous approaches.

2.5.5 PLD  correctness

We have already noted the difference between safety and correctness. How should we 

go about demonstrating that a PLD’s behaviour is correct?

There are two choices for a strategy here. The more common is “show that the 

implementation does what the requirements say.” This tends to rely on model-checking 

with a theorem-proving tool. The second strategy is often initially harder: “develop 

the requirements into an implementation” which is known as refinement.
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M o del-checking

The essentially synchronous property of a PLD’s circuits may help the model-checking 

problem. Pierre, in [Pie95] describes the use of the Boyer-Moore Theorem Prover 

to verify synchronous circuits. He uses a 4-bit binary-coded decimal (BCD) checker 

and an iterative integer factorial generator as examples. The verification process was 

automatic for the first example, but required several man hours for the second, more 

abstract example.

Here we see the key weakness of such an approach: model checking is hard, interac

tive, and usually will only be able to tell you whether your system is correct, not what 

is required to fix it. Tracing the cause of and correcting a failure is a separate process. 

In addition, if care is not taken then the size of the model can easily grow to the point 

where it is computationally infeasible to model-check it completely. Often it will be 

better to prove correct the critical subset of the PLD logic.

Model-checking has been used successfully in verification of specialised processors. 

Srivas and Miller describe in [SM95] the verification of the Rockwell AAMP5 micropro

cessor. The verification was carried out at instruction-set and register-transfer levels. 

This was possible even though the AAMP5 microprocessor was not designed for formal 

verification, illustrating the strength of model-checking as a retrospective technique. 

However, AAMP5 was not a general-purpose microprocessor and was not available 

directly for public use.

The use of model-checking to identify undesirable properties in complex commercial 

hardware has recently been demonstrated by Intel[SchOS] in their verification of the 

Pentium 4 processor. Following a 3-4 fold increase of pre-silicon logic errors in each 

generation of the IA-32 architecture, Intel applied model checkers to verify the critical 

properties of non-fioating point arithmetic of the Pentium 4 at the netlist RTL level. 

The fioating-point arithmetic required the addition of a theorem prover to formally 

verify correctness, model-checking alone being impractical.

For a very small or very structured PLD program, manual inspection of the netlist 

may suffice. This must be judged on a case-by-case basis, and it may be necessary to 

use techniques such as fault injection to estimate the reliability of the inspection.
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Refinem ent

As with the first strategy, rigidly defined requirements and an implementation language 

with properly defined semantics are necessary for the approach to be meaningful. Re

finement of requirements to a PLD implementation is usually done in a series of small 

steps. Each step’s induction from the previous one relies on the correct use of a set 

of predefined refinement rules. There is a gradual progression from the high level lan

guage of the requirements to a low-level language which may be implemented on the 

target device.

This second approach requires more “up-front” investment of time and effort. A 

working implementation may not appear until late in the development process as it 

is produced by the very last step of refinement. However, the correctness of the im

plementation is guaranteed, excepting the possibility of human error in the refinement 

steps. These refinement steps are normally amenable to individual verification by man

ual inspection. The main disadvantage of refinement compared to the model-checking 

is that a late change in requirements may require much of the refinement process to be 

repeated.

For a high-integrity or safety-critical system of substantial size, the above consid

erations suggest that the second strategy be the approach of preference. The main 

difficulties in using it will be in the choice of a suitable low-level language with well- 

defined semantics, and in the early and correct elicitation of requirements. For the 

latter task, there are well-established requirements engineering tools such as Cradle 

[Str98] and methods such as REVEAL [Vic98].

2.5.6 Verification

We have already covered the issue of how PLD programs are tested in Section 2.4.7. 

For high-integrity systems we must also consider verification of PLD programs.

Robinson and Lysaght [RLOO] examined the problem peculiar to FPGAs of verify

ing dynamically reconfigurable logic. They extended the Dynamic Circuit Switching 

framework to track the status of dynamic tasks, and monitor these statuses to detect 

certain classes of error. However, this testing is dynamic and so acts more as a run-time 

self-test than as a method to exclude the possibility of error in the first place.
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Bartzick et al [BHKWOO] presented a design of FPGA which is intended to detect 

simple faults within itself and hence be fault-tolerant. The test of the FPGA is executed 

after programming, and occurs in 32 clock cycles so is not significant in terms of total 

program execution time. Each block has three normal cells plus a fourth “X” cell which 

takes over if any one of the cells is determined to be faulty. This approach is worth 

considering in designing an FPGA for use in high-integrity systems.

Sawitzki et al [SSSSOO] described how they verified the data path of a microprocessor 

including a reconfigurable processing unit. This was done according to a specification 

in hardware description notation, describing the change in state of the processor for 

each instruction. They used the Stanford Validity Checker [BDL96] proof tool. The 16 

hardwired instructions took an average of 80 minutes each to verify; the 9 reconfigurable 

instructions took over ten times that time each. However, they did not describe in detail 

why the reconfigurable instructions took so much longer to verify.

2.5 .7  Self-testing

A technique in current use for PLDs is the use of self-testing and fault detection. Lima 

et al [LCR03] described a modification to the existing practice of triple-redundant 

circuits on FPGAs prone to disruption from charged particles. The use of delay in 

circuits, voting on outputs and regular re-programming of the FPGA (“scrubbing”). 

This allows 100% detection of single-event upsets in the FPGA, and approximately 

90% elimination of the errors.

This is not a replacement for more formal techniques, but provides a useful brute- 

force method of reducing the impact of common problems.

2.5.8 Em ulation o f PL D s

During development of a system, it may be that the developers need to integrate 

their software modules with the programmable logic. Here we run up against the 

practicalities of system manufacture. It is unlikely that the system hardware will be 

built until relatively late in the development process. How then should developers do 

this integration?

One option is for developers to fit their PCs with a standard PLD development card
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which are available from the device manufacturers. These boards, such as the XS40 

[XES99] from XESS Corporation, can fit in a standard PCI slot or parallel port on the 

PC, and provide an FPGA which can be accessed by software on the PC. This is an 

extra expense, but is unlikely to be significant in a large project. The difficulty is that 

the program for the PLD may not yet be written, or at least still be in a state of flux.

If a high-level language is being used to program the PLD with a program D, and 

can be compiled into the main software program P, this makes life easier. The initial 

integration testing can take place using D, then the program can be changed to access 

the PLD proper as it becomes available. This also has the advantage that, if a module 

functions properly with D but fails systematically when the actual device is used, this 

may indicate a failure in the hardware compilation process; the implementation (PLD) 

does not do what the specification (D) does.

For purposes of realism, there will need to be some form of wrapper W () around D 

when it is compiled into P  since interfacing with a PLD adds complexities which the 

wrapper must emulate, notably;

• the PLD runs in parallel with P, with no natural synchronisation;

• communication with the PLD must be done in a hardware-specific manner, pos

sibly also in a compiler-specific manner; and

• communication must normally be assumed to be asynchronous.

The way that such a wrapper will be implemented will vary significantly according 

to the high-level language and PLD chosen. Ideally W{F)  will encapsulate the details 

and present an interface which is very similar to that for interfacing with the real PLD.

2.5.9 Im plem entation  too ls

The state of the art in languages and tools used in safety-critical systems tends to lag 

behind the leading edge of industry by several years. It is instructive to examine why, 

as the reasons have significant implications for the choice of techniques to program 

systems involving PLDs.

The foremost reason is reliability. A compiler, microprocessor or design tool is 

typically shipped with a number of errors, some known at shipping time or shortly
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thereafter (e.g. the infamous Pentium FDIV bug), but other more subtle problems 

may take months or even years to become evident. For this reason, implementors of 

safety-critical software tend to choose a compiler that has been stable for at least a 

year and then work around the known errors. Newer versions of the compiler may have 

these known errors fixed but there is no guarantee that new unknown errors have not 

been introduced.

This was particularly evident when the Ada 95 compilers started to be released; 

for a while safety-critical systems customers were still choosing the Ada 83 compiler 

because it was a known quantity, even though the Ada 95 language was far better 

in general functionality and had fixed long-standing problems of Ada 83 such as the 

inability to read output-only parameters in subprograms. The author is personally 

aware that Ada 83 compiler licenses were still being sold by vendors such as Rational, 

and Ada 83 programs being written from scratch, in early 2003.

As far as hardware is concerned, the usual choice for a complex IC in a safety critical 

system is a chip which is one or more years behind the state-of-the-art at the time of 

system design. This is because any design defects in the IC should have become evident 

by then, and related software tools (such as netlist compilers in the case of FPGAs) 

will have had a similar period of use to uncover errors. Also, since many safety-critical 

systems have a long development and production cycle, by the time of release the 

system’s hardware may be several years behind the leading edge.

For these reasons, if we are looking to incorporate PLDs running a compiled lan

guage into a safety-critical system then we ought to choose a well-established compiler 

and a device which is not leading-edge in technology. As a consequence, devising an 

all-new language for programming our safety-critical PLD runs the risk that no devel

oper will use it until someone else has tried to do so and has discovered most of the 

compiler and language errors; by this logic, no safety-critical developer would take the 

risk of being the first to use the technique in a real system.

2.5.10 K ey directions

Taking the preceding data into consideration, we can summarise the following require

ments for PLDs to be incorporated into a safety-critical system:
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• a specification or design language to codify formally the system requirements;

• inclusion of the PLD program within the safety analysis of the system;

• a well-defined semantics of the target device to permit full or partial proof of 

correctness of the system;

• a formally defined refinement process for developing specifications to PLD imple

mentations;

• a suitable high-integrity high-level language for implementation of the software 

component of the system;

• an appropriate generalised and adaptable testing process to test PLD programs 

in isolation and within the system; and

• a method for interfacing system software with either the PLD or a software 

emulation of it, as transparently as possible.
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2.6 Conclusions

PLDs in their current state provide sufficient performance and size to perform substan

tive (if relatively simple) tasks. With their increasing complexity comes the likelihood 

that they will be incorporated into more and more safety-critical systems as critical 

components, yet to date there is no satisfactory or widely-used method of reasoning 

about their functional correctness at either the component or system level. Without 

this they are a point of failure waiting to fail, with potentially catastrophic conse

quences, and new safety-critical electronics standards such as Def Stan 00-54 or RTCA 

DO-254 may prevent their incorporation as critical system components.

2.6.1 W eaknesses o f current research

The main weaknesses of the existing research are:

• high-level PLD programming languages are not related to the requirements of 

DefStan 00-54[MoD99] and RTCA DO-254 [RTCOO];

• the formal specification and analysis techniques used for synchronous parallel 

systems are not related to the development of practical and useful hardware- 

software systems under DefStan 00-54 and RTCA DO-254;

• the existing high-level programming languages which can be compiled into PLDs, 

with the exception of Ada, are not suitable for programming critical systems;

• the existing compilation techniques for Ada do not take full advantage of the 

SPARK Ada subset and have not demonstrated scalability to practical program 

sizes and designs;

• the existing compilation techniques for Ada do not address the development of 

an Ada program partly in software and partly in hardware; and

• there is a general deficiency in demonstrating techniques to be practical at the 

scale of a typical modern embedded control system.

This thesis must address as many of these needs as possible. In Section 8.2 we will 

re-visit these weaknesses to see which of them we have covered and to what degree.
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2.6.2 R esearch needs

The greatest need in this field is for a generalised model of a PLD with a well-defined 

semantics, and a low-level device-independent language (with similarly rigid semantics) 

such as Pebble to act as a target for high-level languages. Without it, any attempt 

to reason formally about PLD correctness will depend too much upon the particular 

properties of the device under examination.

Such a model would permit research into high-level languages and techniques for 

safety-critical system implementation without the concern that the results of such 

research would be tied to a particular implementation, and provide a sound formal 

basis for proving safety properties of the PLD and the system in general.

In the next chapter we provide a detailed statement of the problem arising from 

the above information, and set out criteria for judging whether it has been solved.
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Chapter 3

Statem ent o f Problem

This chapter identifies the problem which this thesis aims to address and sets out 

criteria for deciding whether and how the problem has been solved.

The purpose of this chapter is to provide a direction for the rest of the thesis. We 

summarise the current state of research in the fields of programmable logic and safety 

critical systems, as detailed in the previous chapter, state the problem we intend to 

solve, and identify the areas in which this research will make advances. We then specify 

the advances we intend to make.

At the end of this thesis we will need to determine whether its contents have pro

vided a substantial addition to knowledge in the use of programmable logic devices in 

safety-critical systems. To this end we lay down a series of targets for our research, 

and for each of them list criteria for deciding whether that target has been met. 

Finally we list the targets addressed by each of the future thesis chapters.

3.1 Current State of The Art

The literature survey has established the following facts relevant to this thesis. The 

list below includes appropriate references in Chapter 2.

1. current commercial PLDs are of sufficient size and complexity to perform sig

nificant computational tasks useful to modern software-hardware systems (Sec

tion 2.3.10);

2. programmable logic has a place in the development of systems where software
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alone does not provide adequate computational power (Section 2.3.1);

3. programmable logic allows much faster development turn-around than use of 

ASICs which must be fabricated (Section 2.3.1);

4. programming PLDs with a high-level language is feasible, and a number of lan

guages and tools for this purpose exist (Section 2.4);

5. PLDs are currently used in safety-critical systems (Section 2.5);

6. several national and international safety standards bodies have made specific 

recommendations about the development of safety-critical systems incorporating 

safety-related electronic hardware (Section 2.5.3);

7. when seeking to advance the field of formal methods, we should aim for reusable 

models and theories, combinations of mathematical theories to tackle hybrid 

safety-critical systems, and integration with the system development process (Sec

tion 2.2.3);

8. when seeking to advance the field of concurrent programming we should aim to 

provide algorithmic support, tool support, suitable programming languages and 

appropriate technology transfer (Section 2.5.1);

9. no existing development techniques for programmable logic software appear to 

satisfy these recommendations (Section 2.4, Section 2.5.9);

10. developing software for safety-critical systems is a problem which is well under

stood and supported by a range of tools and techniques (Section 2.1); and hence

11. the use of PLDs in safety-critical systems is an emerging problem in need of a 

solution.

3.2 Scope o f Analysis

In the research work described previously we have taken an international view. For the 

remainder of this thesis we will focus on the standards applicable for defense-related
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equipment in the United Kingdom, as a domain with which the author is familiar and 

for which a well-defined set of standards exist.

Within this domain, we will in practice concentrate on avionics systems although 

the techniques will generally be applicable across the whole domain of defence sys

tems; such systems tend to be embedded, real-time, safety-related and developed to 

similar (prescriptive) standards. Additionally they are procured by a single organisa

tion, the Defence Procurement Agency (DPA), so will undergo a standardised process 

of acquisition and certification.

When we come across problems with existing PLD development practice, we shall 

first look (when sensible) for solutions from the field of software engineering.

3.3 Target Level of Criticality

Private discussion [PriOS] with one of the authors of Interim Defence Standard 00-54 

and domain experts responsible for certification of systems to Defence Standards 00-54, 

00-55 and 00-56 confirmed our conjecture (Section 2.5.9) that current technology and 

tools do not support the development of systems incorporating PLDs with SIL-3 or 

SIL-4 functionality. Indeed, there is debate about whether even SIL-2 functionality is 

feasible.

As a result, the development of tools and techniques to support development of 

PLDs with SIL-3 functionality matching the requirements of 00-54 will represent a 

clear advance in the current state of industrial practice.

3.4 Levels of Rigour

Before discussing the issues of rigorous development and proof, it will be useful to 

codify a common understanding of the levels of rigour we will use in this thesis.

ad-hoc a handwaving argument which may appeal to previous experience or statistics.

system atic  use of analysis tools and/or a thorough testing strategy.

rigorous providing a specification in an unambiguous notation along with a sketch 

proof of satisfaction.
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form al providing a specification in an unambiguous notation and a proof in a system 

with axioms and deduction rules.

These definitions are somewhat arbitrary but do admit some degree of classification 

and comparison between levels of rigour.

3.5 Statem ent

The problem we intend to solve is:

What methodology is suitable for developing a set of safety-critical system 

requirements into an implementation which executes partially in a conven

tional microprocessor and partly on a programmable logic device?

Such a methodology should be rigorous and formal enough to admit veri

fication and validation to the standards demanded by DefStan 00-54 and 

RTCA DO-254 (electronic hardware), DefStan 00-55 (software) and DefStan 

00-56 (system safety) for SIL-3 and SIL-4 systems (RTCA DO-254 Level A 

and B).

The problem has the following characteristics:

• use of existing proven methods for producing a system design;

• partitioning of the design into hardware and software components;

• development of the software component using existing proven methods suitable 

for the integrity demanded;

• provision of a formal model to describe the semantics of a program executing on 

a PLD;

• provision of a process and tools to develop part of a system design into a program 

for a generic PLD;

• provision of a process and tools to develop a program for a generic PLD into a 

netlist or HDL suitable for execution on a specific device;
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• identification of criteria for making general design or implementation decisions 

during development; and

• provision of suitable evidence of acceptable safety and correctness with respect 

to a specification for construction of a safety case for the system.

As noted above, we shall aim to use best practice from software engineering to solve 

these problems, where possible.

3.6 Target Aim s

In the remainder of this chapter we list a number of target aims. Each target has a 

unique identifier, used in later chapters to cross-reference back to the target. In this 

way the reader can track whether the chapter is covering the issues that it is intended 

to cover.

These aims set out our vision for a safety-critical PLD development process; we 

will not necessarily meet all of them completely, but will strive to achieve this. Failing 

to meet some of the aims may reduce the level of integrity which we can claim for our 

process.

Following each target aim is a list of criteria which will be used in the covering 

chapter to judge whether the target has been met.

Each target aim will be augmented by definitions of terms to clarify its meaning, 

as necessary.

3.7 Research Programm e

In the remainder of this thesis we aim to develop a process to produce a hardware /  

software safety-critical system incorporating a SIL-3 programmable logic component, 

satisfying the current UK Defence standards.

3.7.1 Identified deficiencies

As discussed in Section 2.5, the existing tools and techniques for PLD program devel

opment appear deficient in the following areas:
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Rigor -  there is no way of showing that a given program satisfies a given specification 

without exhaustive testing.

A m biguity -  the higher-level programming languages used, such as Handel-C, do not 

have a well-defined semantics; the developer depends on the compiler writer’s 

interpretation of the language specification. The requirements and guidance in 

Defence Standards 00-54 and 00-55 [MoD97, MoD99] repeatedly aim to remove 

ambiguity in requirements, design and implementation.

H igh level design -  the benefits of programming in HDLs such as VHDL or Verilog 

are analogous to the benefits of writing software in assembly language. Compared 

to high-level languages, these languages remove ambiguity and allow much greater 

programmer control at the cost of increased development and maintenance time. 

Writing a program in EDIF is analogous to writing software in machine code.

V ulnerability  -  the later an error shows up in a development process, the more ex

pensive it is in time and resources to fix, as discussed in Section 2.2.5 where 

we contrasted late system testing with the correctness-by-construction approach. 

Static analysis of a program aims to detect semantic errors missed by the syn

tactic checks of a compiler. No static analysis tools for programmable hardware 

languages are known, and in any case they require a rigorous language definition 

to be effective.

We aim to show an advance in all these areas. To ensure that this is the case, we 

introduce the following target areas for subsequent validation.

Target 1 The process we define must be rigorous.

C riterion  1.1 there must he checkpoints where the system in development must he 

evaluated manually or hy automatic tools, so that inadequate systems can he rejected.

C riterion  1.2 all transformation steps in the process must, in theory, he able to he 

shown to he mathematically sound.

Definition: a transformation step is where a specification or program is wholly or 

partially changed to he less abstract than before.
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Target 2 The process must help the developer to write unambiguous programs.

Definition: an ambiguous program is one where different compilers, both conforming 

to the language specification, may produce object code programs that have observably 

different behaviour.

Criterion 2.1 ambiguous programs must be rejected by the compiler or rendered im

possible by constriction of the language definition.

Target 3 The process must allow the programs to have sections written in a low-level 

language for speed and flexibility, but not allow these sections to compromise overall 

program reliability.

C riterion 3.1 the developer must be able to mark out a section of the high-level lan

guage program and transform it to a low-level implementation.

Criterion 3.2 such an implementation must allow the developer to take advantage of 

aspects of programmable logic architecture abstracted away by the high-level language.

C riterion 3.3 it must be feasible to show that the compiled version of the original 

section is equivalent to the low-level implementation, using appropriate behavioural 

models for the two machines that execute the programs.

Target 4 The process must admit substantial static analysis to discover semantic pro

gram errors at or before compile time.

Criterion 4.1 each implementation language used should have a strict syntactic defi

nition which is easily enforceable.

Criterion 4.2 each implementation language used should have a semantic definition 

to supplement the syntactic definition.

C riterion 4.3 each semantic definition should define an set of rules which can be 

machine-checked in polynomial time, to determine whether a given source program is 

semantically well-formed.
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3.7.2 M aintain ing ex isting  benefits

We must not throw away the existing benefits of incorporating programs into program

mable logic

Target 5 The program produced must be easy to test.

Criterion 5.1 the specifications for the program must be of a form suitable for pro

ducing a test plan.

Criterion 5.2 it should be feasible to instrument the compiled version of the original 

program so that the developer can observe relevant data flow within the program.

Criterion 5.3 there must be a working and verified software simulator for the compiled 

program.

Criterion 5.4 the test plan produced from the specification should be suitable for the 

production of test vectors for the simulator.

Target 6 The program must be able to be compiled onto a range of existing and an

ticipated PLDs.

Criterion 6.1 given a program which performs a non-trivial computation, it must be 

developed using the specified process into a form where it may be compiled and run 

using some existing programmable logic device and toolset.

Criterion 6.2 the compilation chain must target one of the VHDL[IEE91], Verilog[IEE95] 

or EDIFpntOOb] languages at some point.

Target 7 The process must reuse existing proven tools where feasible.

Criterion 7.1 at every point where the process requires a new tool, the process must 

justify why existing tools are inadequate and how the new tool overcomes those inade

quacies.

Criterion 7.2 at each point where an existing tool is used, the process must show how 

the tool supports the programmable logic environment and the required system integrity 

level.
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3.8 Com ponents

Given these target aims, we can already deduce much about the form of the process. 

For instance, we can begin to look inside at the components that will make up the 

process. These will include:

• a specification and proof system suitable for the programmable logic architecture;

• a set of refinement rules suitable and adequate for refining a specification to an 

entity in the proof system;

a mapping process from a subset of entities in the proof system to a form accept

able as input to a compiler with an HDL program as target output;

a high-level language suitable for writing relevant realistic programs as parts of 

a safety-critical system;

• an mapping process for subsections of these programs to equivalent programs in 

a chosen HDL; and

• a compiler for mapping programs from the HDL to actual PLDs.

Note that the last item is provided for each specific PLD by their manufacturer, so 

we can assume that this exists if the HDL is Verilog, VHDL, EDIF or a subset of these 

languages.

3.9 Process

Moreover, the following target aims determine the relationship between the above com

ponents, and the necessary characteristics that the process must have to make it suit

able for safety-critical system development:

T arget 8 The process must guide the developer in the appropriate use of each compo

nent.

C rite rio n  8.1 for each component there should be clear guidelines about what forms 

of input are suitable and what form of output is required.
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Target 9 The process should indicate what kinds of error may arise at each stage.

C riterion  9.1 for each process stage there should be guidance on the likely sources of 

error, their consequences, and an estimation of the probability that they will occur.

Target 10 The process should provide flexibility so that it may be used in situations 

not anticipated in its original design.

C riterion  10.1 it should indicate which steps in the process may be adapted to differ

ent needs.

Target 11 The process must admit justification to the project safety authority that the 

programs output by the process are of an adequate integrity level.

C riterion  11.1 it should cross-reference apposite sections of relevant safety standards.

C riterion  11.2 it must specify the maximum safety integrity level of software produced 

by the process.

C riterion  11.3 it should justify each process step against the relevant safety standard 

requirements.

C riterion  11.4 it should support suitable unit, functional and system testing at each 

development stage.

3.10 Existing Standards

To be able to produce a system which can be certified as acceptably safe, we must also 

conform to current safety standards. The following criteria, specifically appropriate to 

our phases of the development process, are taken from DefStan 00-54. They must be 

satisfied for the process to be suitable from the safety point of view.

A requirement is “relevant” if it pertains to the development of software for safety- 

related electronic hardware (SREH) at SILs 3 and 4, since this indicates that it relates 

to best practice in producing high-integrity systems. From DefStan 00-54 (Require

ments) we extract the following relevant requirements.
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Choosing and testing the characteristics of the physical device and its vendor- 

supplied compiler is outside the scope of the process. So is external validation of 

the development process, except in so far as our process must provide evidence to 

support this validation.

For each requirement we indicate (in square brackets) where it is covered in the 

above targets and criteria. Note that some of them are covered by the work in this 

chapter. Where necessary we introduce new targets and criteria.

7.3.1 (d) The development of SREH shall include ...safety analysis of the SREH 

development process . . .  ; [Target 9, Target 11]

8.2.2 The safety case shall justify the claimed safety integrity level of the SREH by 

means of:

(b) evidence that the methods and processes used in hardware development are 

appropriate; [summarised in Section 3.1]

(c) safety arguments justifying the safety integrity of the design of any custom 

items. [Target 11]

8.4.1 A safety analysis of the SREH development process shall be carried out to 

demonstrate how the development process will deliver SREH which meets the 

safety requirements. [Target 11, C riterion  11.3]

8.5.1 The safety arguments for the integrity of the design of a hardware item shall 

include both analytical arguments and arguments from test. [Criterion 1.2, 

C riterion  3.3, C riterion  11.4, Target 5]

Definition: an analytical argument is an argument which is presented as a set of 

statements written in one or more formal notations. These statements are then related 

and justified by the application of deduction rules from a logic system defined over the 

formal notations.

T arget 12 [00-54 0.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification 

complies with the safety requirements;
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(a) any formal arguments that the functional design satisfies the formal specification;

(in) for non-functional properties with specified safety requirements, analysis of the 

achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques 

as diverse implementations.

C riterion  12.1 The process shall use a formal specification language which is amenable 

to analysis to specify its input [parts (i),(ii)[.

C riterion  12.2 At each stage of the process, there shall be a formal argument that the 

output of the stage refines the input of the stage [part (ii)[.

C riterion  12.3 The specification language used shall be able to capture some non

functional system properties such as performance and timing [part (iii)[.

C riterion  12.4 Each stage of process development shall indicate the forms of errors 

which it can mitigate [part (iv)[.

Target 13 [00-54 12.1.2] The Design Plan shall define the life cycle that is to be 

followed in the development of the custom circuit, including a specification process, a 

development process and a verification process.

C riterion  13.1 there shall be an unambiguous and clear description of the system 

program development process;

C riterion  13.2 the description shall show clearly the relations between the process 

stages;

C riterion  13.3 the tools and techniques used at each stage shall be clearly described.

12.2.1 A formally defined language which supports mathematically based reasoning 

and the proof of safety properties shall be used to specify a custom design, unless 

it is agreed with the MOD PM (Ministry of Defence project manager) that this 

is inappropriate. [Criterion 12.1]
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12.2.2 The choice of specification language shall be justified in the safety programme 

plan. [Criterion 12.1]

12.2.3 Tools used to compile, analyse, animate and transform formal language shall 

b e . . .  justified in the safety programme plan. [Target 7]

12.4.3 A simulation plan, with input vectors and expected output vectors shall be 

defined as part of the Design Plan. [Target 5]

12.7.2 Appropriate safeguards shall be put into place as a defence against identified 

hazards in the development process in such a way that the complete SREH de

velopment process achieves the required safety assurance. [Target 9]

13.1 The activities performed in custom circuit development shall include all of the 

following:

(c) formal analysis of the design; [Target 4]

(d) simulation and physical test. [Target 5]

T arget 14 [00-54 13.3.1] A Hardware Specification shall be produced which defines the 

SREH in terms of its behaviour and properties.

C riterio n  14.1 there shall be a formal model of a generic programmable logic device 

which may be directly mapped onto a range of actual programmable logic devices;

C rite rion  14.2 the formal model must incorporate a useful (though not necessarily 

complete) range of common components of a programmable logic device.

C rite rio n  14.3 [00-54 13.4-1]: Safety requirements [that have expression in function

ality] shall be incorporated explicitly into the Hardware Specification using a formal 

representation.

Note: there may be non-functional safety requirements, such as liveness, that cannot 

easily be incorporated into the Hardware Specification. These will have to be addressed 

at a higher level of design or assurance in the system.

13.4.2 The consistency and unambiguity of the Hardware Specification shall be veri

fied using analytic methods. [C riterion 14.1, C riterion  2.1, C riterion  1.2]
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13.4.3 The safety functions and safety properties of the Hardware Specification shall 

be shown to fulfil the safety requirements. [C riterion 14.3, C rite rion  1.2]

13.4.4 Correspondence between the Hardware Specification and the design implemen

tation shall be demonstrated by analytical means, subject to assumptions about 

physical properties of the implementation.

[Criterion 1.2]

13.4.5 Static analysis shall be used to demonstrate freedom from classes of error de

fined in the safety programme plan. [Target 4]

13.5.1 A representative set of simulation results shall be obtained at all levels of the 

design, illustrating that the SREH operates as expected, based on a white box 

understanding of the internal construction of the custom circuit. [C riterion 5.3, 

C riterion  5.4]

3.11 General Questions

As well as these targets and satisfaction criteria, there are more general questions which

should be asked to help gauge whether the process is sufficiently reliable and practical.

These questions have arisen from practical experience in software engineering for real

safety-critical systems. The questions will be answered, where possible, in Chapter 8.

3.11.1 R eliability

1. How many distinct stages are there in the methodology?

2. What is the probability and effect of introducing an error at each stage?

3. What do 1 and 2 imply for the reliability of the system as a whole?

4. What classes of error are specifically checked for in the development process?

3.11.2 P racticality

1. Is there adequate tool support for the developers of the target systems?
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2. What level of technical expertise, and how much time, is required for each devel

opment stage?

3. Given appropriate same-generation hardware, does the generic PLD implemen

tation produced have significant performance advantages over an all-software 

implementation?

4. How well does the process allow late changes in requirements to be incorporated 

into the system?

3.12 Overall Process

In the following chapters we shall describe the components of the development process 

shown in Figure 3.1. This process is taken to start when safety engineering activities 

have identified the system hazards, accidents and resulting safety requirements. The 

process end is when the high-level specifications have been developed into a mix of 

SPARK Ada and Pebble code that together implement the system and demonstrably 

satisfy the safety requirements.

3.13 Future Chapters

Chapter 4 aims to adapt existing technologies to match our requirements. We will 

demonstrate a proof system based on Synchronous Receptive Process Theory, show 

that processes from this system may be transformed into implementations in the Peb

ble language, and demonstrate that SPARK Ada has suitable features for SPARK 

programs to be compilable into programmable logic devices. We will describe the de

velopment process as a whole. The targets addressed in Chapter 4 are 1, 2, 3, 4, 6, 7, 

10, 11, 12, 14.

Chapter 5 provides a rigorous proof system for refining specifications into equivalent 

SRPT processes. Taking the Chapter 4 work mapping between SRPT and Pebble, this 

allows us to refine a specification into a full implementation on a commercial PLD. The 

targets addressed in Chapter 5 are 1, 2, 5, 6, 9, 10, 12.
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Figure 3.1; Development process
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Chapter 6 builds on the Chapter 4 SPARK Ada work to show how SPARK programs 

can be run on an interpreter running on a PLD. The targets addressed in Chapter 6 

are 1, 2, 3, 4, 10.

Chapter 7 is a practical validation of the process, building a safety-critical system 

by following the process. The targets addressed in Chapter 7 are 1, 2, 3, 4, 5, 6, 7, 9, 

11, 12, 13.

Finally, Chapter 8 evaluates the material in Chapters 4 to 7 against the aims given 

in this chapter. Chapter 8 addresses Target 8 and also addresses the more general 

questions in Section 3.11 above.
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Chapter 4

D evelopm ent technologies

This chapter describes the technologies used in the development process which we detail 

later in this thesis.

Section 4.1 introduces Synchronous Receptive Process Theory (SRPT), a process 

algebra which we will use to model the execution of a program within a PLD. We 

demonstrate how to specify requirements about SRPT processes and how to prove 

that an SRPT process satisfies a requirement.

Section 4.2 introduces Pebble, a simple programming language for synchronous 

PLDs which can be compiled into VHDL or directly into netlists for particular PLDs. 

We establish a formal connection between Pebble and SRPT, and provide a formal 

definition of how we expect Pebble programs to execute. Pebble abstracts away target 

device details so we will imagine Pebble as executing on a “generic” PLD.

Finally, Section 4.3 examines SPARK Ada, an imperative programming language 

intended for programming safety-critical systems. We describe those characteristics 

relevant to our work and lay the groundwork for compiling a subset of a SPARK 

programs into an SRPT system description executing on our generic PLD model.
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4.1 Synchronous R eceptive Process Theory

Synchronous Receptive Process Theory (SRPT) is a process algebra described by 

Barnes in [Bar93].

4.1.1 Introduction

The process algebra CSP [Hoa85] has been used successfully to demonstrate partial 

correctness of protocols and industrial parallel systems. Supporting tools such as FDR 

[For97] allow semi-automatic analysis of relatively large and complex parallel systems, 

proving them free from deadlock and livelock. However, CSP is not suitable for de

scribing all aspects of PLDs. In particular its asynchronous nature requires that traces 

consist of a sequence of single event names ( “interleaving concurrency” ) meaning that 

distinct events cannot happen at the same time, and it is not receptive since CSP pro

cesses can refuse events, which complicates the modelling of digital logic. As noted in 

Section 2.3.11, Timed CSP is a development of CSP which is adequate for digital logic 

modelling but is a more complex system than we need for a single clock system.

SR P T  in a nutshell

Synchronous Receptive Process Theory (SRPT) was developed by Barnes by combining 

Receptive Process Theory [Jos92] and CSP [Hoa85]. It is a process algebra i.e., an 

algebraic theory to formalize the notion of concurrent computation. As a process 

algebra it consists of a syntax for describing process terms and their composition, 

and a notion of behaviour. In contrast to CSP it is synchronous: like SCCS [Mil83], 

events happen only at integer time intervals, and it is receptive: SRPT processes may 

not refuse events if their environment offers them. Barnes[Bar93] provides a rigorous 

definition of SRPT, and demonstrates its applicability to clocked digital circuits.

The use of algebra to specify digital logic circuits is not new. Such specification has 

been done using a wide range of formalisms, for instance CSP [Hoa85] and its timed 

and synchronous variants. We discuss alternatives to SRPT in Section 4.1.10.
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A im s and objectives

In this section we describe a deterministic subset of SRPT, show how it may be used to 

describe digital circuits, and demonstrate specification and partial proof of determin

istic SRPT processes. We also lay the foundations for the SRPT refinement system in 

Chapter 5.

The definition work which follows aims to establish that deterministic SRPT is a 

valid closed subset of SRPT. We require a solid formal basis from which to construct 

our proof and refinement systems. We build on the work done by Barnes[Bar93] in 

defining and exploring SRPT, rather than re-creating it.

4.1.2 D eterm in istic SR P T

An SRPT system description has an alphabet E of events. There are a countable (if 

not necessarily finite) number of processes V  =  {P/t}, for which each process P e V  

has an input alphabet lP C.Y> and output alphabet oP Ç E. For each P, uP and oP 

must be disjoint, finite, and their union must be non-empty. uP consists of the events 

to which process P  may react, and oP the events which the process controls. There is 

a set Var of process variables, each of which will range over V.

Processes in our deterministic subset are defined using the following grammar:

P  X process variable

I [!0  ?A —> Px] output prefix 

I P  I I  P  parallel composition 

I P \ 0  hiding

I P[S] renaming

The grammar we use differs from that of Barnes in the following ways:

• it omits the non-deterministic constructs because our interest is solely in deter

ministic circuits for the purposes of this study; and

• we incorporate the recursion operator defined for full SRPT into the output prefix 

model, hence restricting recursion in our SRPT subset to guarded recursion. This
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means that the recursive definition always leads to a single process. The details 

of recursion in full SRPT are in Barnes [Bar93] §5.1.2.

In the above definition, 0  denotes a subset of the output alphabet oP, X  denotes a 

subset of the input alphabet lP  and S  is an automorphism over E (a bijection E ^  E). 

Each P g V  is then a function

P  : F{lP) X F{oP) - >  V

where each function Q G ra n P  is such that lQ = lP, oQ C oP.

Px : oP ^  V  represents a curried process such that P%(y) =  P{X, Y).

The operators of SRPT are defined in [Bar93] pp. 76-80; intuitively, in comparison 

with CSP for instance, only the output prefix will appear unfamiliar. Since we will use 

the output prefix form extensively, it is worth providing an informal definition here. 

[! 0  I X  Px] specifies a process that will immediately output all events in 0  and 

receive from the environment some set of events X  Ç. iP  in its input alphabet. From 

the next timestep onwards it behaves as process Px,  i.e. P  parametrised by A as 

explained above.

The definition of a process P  is in terms of a reaction to input events (a subset of 

iP). Unlike in CSP, an SRPT process cannot refuse an event which is in lP\ it simply 

observes such events happening. What it can do is react to those events by signalling 

events in its output alphabet. The nature of SRPT means that processes may receive 

and output any number of events at once.

Barnes [Bar93] defines a set of axioms and derives laws for algebraic combination 

of terms from this grammar. For example:

a -1 0 : [!R ?A -> P x] II [ ! C ? F - > g r ]  =

C ) 1 Z  P{z\jc)niP I I  Q{zuB)r\LQ]

This states that when combining two output-prefixed processes, we initially see the 

combined output of both processes, which we would naturally expect. From then on 

P ’s behaviour may additionally be affected if its input alphabet includes one or more 

events from the output alphabet of Q, and vice versa.

As an example of an SRPT system definition, in the following subsection we will 

describe a 1-cycle 2-input AND gate with the SRPT algebra.
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4.1 .3  E xam ple — A N D  G ate

An AND gate has no control over its two inputs; it exerts control over its output 

according to the values of the inputs in the previous timestep. It cannot provide an 

output at time t which relates to inputs received at time t, there is always a delay 

before the reaction is visible.

We define the main process in the SRPT system as

lAND = {a, 6} 

oAND = {c}

AND{R) =  [!P ?A -^  if {a, 6} Ç A  th en  AND({c}) else AND(0)]

AND = AND(0)

Two points on notation are worth making. We may use functional application 

instead of subscripting for processes, which has advantages of clarity when the subscript 

text is complex. The if . . .  th en  . . .  else construct is valid because it defines a process 

map parameterised by events in the input alphabet, and each process in the range of 

that map has identical input and output alphabets to AND{R).

In the above definition of AND, the occurrence of an event at one tick of the clock 

corresponds to the presence of a high value on the wire named by that event at that 

time. So if a is present in one element of a trace of AND  then this means that the 

gate has received a high voltage on the a input wire at that point. If a is absent, this 

is interpreted as a low voltage on a. a and b are taken to be the two input wires, and 

c the single output wire. This will be the convention used throughout this thesis.

The process definition states that AND  initially makes no output, then subsequently 

it will raise the c event at time t +  1 if and only if both a and b were present at time 

t. The \R I X  part of the process description means “output all events in R  and let X  

be the set of inputs which we have received in this timestep.”

Note that our process definition parametrises process AND to tell it what to output. 

This effectively encodes state within the process, though in this example state at time 

t never affects the process after time t +  1.

An example “run” for AND(0) could be as shown in Table 4.1. Note that the 

environment controls when a and b appear; only the c event is controlled by the
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Time 0 1 2 3 4 5 6 • •  •

Input a, b a, — 3 a, b a, b a, b

Result — c — — c c — C • • •

Table 4.1: Example run for AND

process.

4.1 .4  C om position

Composition is a key tool to allow us to build complex systems out of more simple 

processes. SRPT allows us to compose processes to form larger ones, in serial (for 

sequential composition) or in parallel.

Parallel composition is done with the || operator, but the most useful composition 

is normally serial since this allows us to break down a calculation into multiple stages. 

Serial composition is effected by renaming process alphabets so that output events in 

one process are input events in another process.

The different forms of composition are analysed by Hall[Hal96b] where the struc

tures imposed by CCS and CSP on a parallel system (synchronisation trees and traces, 

respectively) are compared against an algebra for high-level Petri Nets.

4.1.5 D enotational sem antics

To be able to make rigorous analytical arguments about what does or does not happen 

in an SRPT system, to the level required by standards such as Defence Standard 00-54 

[MoD99] for the most safety-critical of systems we must consider SRPT’s meaning for 

the behaviour of a system. Barnes defines the meaning of a system in SRPT in terms 

of process traces.

In a given system, each process P  with input alphabet I  and output alphabet 0  

has a semantics defined in terms of its set of traces RTj^o’-

RTi,o = { n i U O ) Y

Unlike CSP, but similar to Discrete Time CSP[Jef91], SRPT defines a trace t G 

RTj^o as a sequence of sets of events; t : seq P (/ U 0). Each element of the sequence
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corresponds to a (non-negative integer) time value of the global clock, and gives the 

events in I  and 0  for that process which happen at that time. Discrete Time CSP 

uses bags rather than sets.

Trace axiom s

As is usual in process algebras with traces, traces are prefix-closed and the empty zero- 

length trace () is valid. There is an additional constraint that the environment can 

offer any subset of input events at a given step, and the output at that step must be 

independent of the input of that step; this means that processes cannot react instantly 

to an input, corresponding to the delay in a logic gate output reacting to its inputs, 

and must be able to “handle” any combination of possible inputs. Formally, for a set 

of traces T:

i.e., suppose T  Ç RTj^o, then T  represents the trace set of a process with input I  and 

output 0.  Here s and r are traces, ( and ) delimit a trace element and ^  is the trace 

concatenator.

Sem antic function

The full derivation of semantic functions is given in Barnes[Bar93] §5.4; again, we 

summarise.

RM  is the set of all triples {I, 0 ,T ) ,  where T is a trace set satisfying the conditions 

above and I  and 0  are input and output alphabets satisfying the restrictions given in 

Section 4.1.2. The binding function BINDr maps from a set Var of process variables 

to RM. This is what the user is effectively defining when he or she writes the process 

definitions and decides on the names of the process variables.

The semantic function M tz maps each process term to an element of RM. The 

associated function Tr  maps process terms to RMt (the set of all sets of traces for 

processes), and t ,o  map process terms to their input and output alphabets Ç PS. 

Hence where cr represents an element of BINDr we have:

MnlP^io- =  {4 P h :  olPjor, TnlPla)
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This can be read as “Given the user definition cr of P  and associated SRPT pro

cesses, A in  maps P  onto its input alphabet, output alphabet, and the set of all traces 

valid for it.”

All that then remains is to define t, o and Tn for each of the process terms. The 

interested reader is referred to Barnes[Bar93] §5.4 (Definitions 5.3 and 5.4) for details 

of these definitions; here we present the definitions for the output prefix construct as 

an example.

If P  Ç o[[P{}]]cr and

V C Ç 4P{}1(t • ilPc'icr =  4P{}'icr A ogPcIo" =  o[[P{}]]cr 

then

o[[[!p ? x

and in all cases the traces are defined:

T n m  I X  Px\i(T = {()} U {{B U Y ) - s  \ Y  C l  A s  e  TnlPylcr} 

where I  = il[\B I X  —> P%]]]cr.

Equivalence and congruence

P  and Q are observationally congruent^ according to Milner[Mil89], if F{P) is obser- 

vationally equivalent to F{Q) for any environment F. In SRPT, this environment 

corresponds to a sequence of sets of process input events.

It will not be unexpected to the reader familiar with process algebraic theory that, 

because of the removal of non-deterministic process constructs, process equivalence 

(defined as the processes possessing identical trace sets) and process congruence (as 

defined above) are coincident. In particular, suppose P  and Q are equivalent. It is easy 

to see that they must have the same input alphabets, since by the trace well-formedness 

rules any event in the input alphabet may be offered at any step. By assumption, they 

have the same traces.

To show that congruence is implied by trace equivalence we must show that F{P) 

and F{Q) are observationally equivalent. To see this we appeal to the absence of
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non-determinism; an environment offering F  =  {Fi,F2 , ...)  to P  will, because of de

terminism, elicit a single behaviour Sp =  (si, S2, ...)  say, where Si f) lP = Fi. As P 

and Q share traces, Q must also have this behaviour, and since Q is deterministic Sp 

must also be Q’s response to this environmental offering. Hence F{P) and F{Q) are 

the same for each environmental offering F . The argument is symmetric in P  and Q. 

□
Note that because P  and Q can differ on their output alphabets (therefore being 

different processes according to the SRPT definition of equality) process equality im

plies trace equivalence but is not implied by it. P  and Q may be equivalent, and hence 

observationally congruent, but not equal.

Establishing this relationship between congruence and equality demonstrates the 

amenability of deterministic SRPT to algebraic proofs about its properties, and marks 

a clear algebraic difference between deterministic and non-deterministic SRPT.

4.1 .6  Specification and proof

Barnes’s rigorous definition of SRPT, and our definition of the deterministic subset of 

SRPT, will allow us to reason formally about SRPT processes. In designing a system 

in which we wish to prove partial correctness (i.e., may not terminate, but correct if 

it does terminate) we need to be able to make concise and precise specifications of the 

legal and illegal actions of the system, and prove their presence or absence formally 

without too much effort.

In this subsection we will prove a useful property of a class of SRPT processes 

relevant to modelling an FPGA. To provide specifications for the actions of a process, 

we make statements about its traces. Given A, B  and Z  pairwise disjoint subsets of 

E where A  and B  are of size n and Z  has an arbitrary finite size, we will define a 

system of SRPT processes to model an FPGA cell with 2n inputs CELLnj  pointwise 

computing a logic function /  : PA x FB  —  ̂FZ.  We define this system as follows:

iCELLnj =  A U  B = I  

0 CELLnj — Z  

CELLnj(R) =  \ } . R ? X ^ C E L L n j { f { X n A , X n B ) ) ]
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CELLnj = CELLnjiH)}

We form the specification for CELLnj  by constructing a set comprehension with a 

boolean satisfaction expression quantified over all elements of each valid trace. This is 

an approach demonstrated in Hoare[Hoa85], sections 1.8 and 1.9. We use t[i] to refer 

to the ith element of the trace t, indexing starting at 0. The specification must be true 

for any trace of the process CELLnj,  and is as follows:

7n^CELLnj^(7 = {t | >O =>^[O ]nZ =  0) A V l < 2 < •

t[i] n z  = f{t[i - 1 ]  n A, t[i - 1 ]  n  B)} (4.1)

This can be read as “if the trace at step i — 1 has input events C  from set A and

D from set B  then the output events in the trace at step i must represent the result of 

f { C , D y \  We constrain the initial output set to make the satisfying process unique. 

The cr in the specification represents the translation of the abstract event sets A ,B ,Z  

in the process definition of CELLnj  into real events from the system event set S.

We abbreviate this specification on a trace t to aS'(̂ ). To show that V t G Tn^CELLnj^ic- 

S{t), we first show that the process is deterministic in its initial value:

Lem m a 1

M E C Z -  TnlCELLnj{E)la = {t \ > 0 => [̂0] 0  Z  = E}

[i.e., the output set E passed as a parameter to CELLnj will always appear as the first 

output.]

For a process [!E I X  —> Px] with input alphabet I, Barnes’s definition for output 

prefix is:

r n m i X ^ P x \ i c T  =

{(>} u { < s u x > - s | X c / A s e r K | [ P x M  

To prove Lemma 1:

%ilCELL„j{E)la =  ^  CELL„j ]P =

{(>} U { < £ U X >  — s | X C  / A

s € T n lC E L L „ j{ f { X n A ,X n B m < 7 }  (4.2)
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by definition. As X Ç I, X  and Z  are disjoint. Therefore the output events in the 

first element of any non-null trace must be exactly E. □

We now show that the correct values continue to be output by the process as the 

trace grows:

Lem m a 2

y E C Z -  

teTn][CELLn,fiP)h => 

t = { ( X C I ) u E } ^ r  ^  r e r n lC E L L n j{ f { X n A ,X n B ) ) lc T

[i.e., after the first step of CELLnj (E),  the subsequent trace r is the trace of CELLnj (Y)  

for some Y  as a function of the environment’s input.]

This follows directly from Equation 4.2 and the definition of CELLnj.

Combining Lemmas 1 and 2 gives us the proof that all the traces of CELLnj  satisfy 

the two parts of the specification «S' in Equation 4.1:

t[o ] n z  = H)

This comes from Lemma 1: CELLnj  is defined to be CELLnj(0) so E =  0.

VI < i < i[t ■ t[i]r\ Z  = f{t[i — l]n  A, t[i — 1]C\B)

This comes from Lemmas 1 and 2: let X Ç (A U R) be the set of input events at 

time t — 1, let E  = f { X  n  A,X fl B), then Lemma 2 says that the trace of t from 

time i onwards is r  =  7nlCELLnj{E)la. Lemma 1 says that r[0] n Z = E. Since 

r[j] = t[i + j], the result is proven. □

This result is applicable to all stateless one-cycle cells (i.e. those cells where output 

at time ^-fl is solely dependent on input at time t), and is a useful foundation for proof 

at a higher level of abstraction. We give an example of this in the following section.

The exact method of proof is not particularly important; what it does show is that 

such proof is feasible and details one way that it can be done.

129



4.1 .7  Safety m onitor exam ple  

System  definition

For an example, we take a military aircraft stores management system (SMS) which is 

designed to control the arming and release of ordnance from designated “hardpoints” 

(pylons containing hydraulic and electrical release equipment) on the aircraft. This kind 

of system is clearly safety-critical because malfunction could easily lead to premature 

release or detonation of ordnance; see below for an expansion of this argument.

An SMS will often contain several PLDs implementing simple (though perhaps 

critical) functionality. As noted in Section 2.3.1, such a low-volume production benefits 

from the low fabrication cost and quick turnaround of a PLD as opposed to an ASIC.

System  hazards

The hazards of an aircraft stores management system include:

1. release and subsequent detonation of a store while the aircraft is on the ground;

2. release of a store while the aircraft is in an inappropriate attitude (e.g. toirn- 

ing and descending in such a direction that the released store may impact the 

aircraft); and

3. arming and release of a store over “friendly” territory such as a town near the 

aircraft’s home airfield.

Other hazards (such as arming and fusing a store which may detonate on the wing) 

are normally mitigated by the store rather than the SMS. An air-launched torpedo, for 

instance, might only arm itself on contact with salt water.

System  safety

The safety features of this system will include:

• a hardware watchdog timer which must be reset every 25ms or the watchdog will 

shut down the system (to stop or restart a hung system); and

• the use of keywords to command dangerous actions.

130



A keyword is a unique data value which enables a dangerous action. The use of 

a keyword is an application of probability theory; a keyword is usually 4-16 bytes 

long and chosen such that no value matching the keyword is normally present in the 

processor’s address space. The chance of the keyword arising accidentally is unlikely; 

the chance of a single bit in a control word being set erroneously is orders of magnitude 

more likely.

The functionality required to implement these operations is well within the ability 

of a PLD (if we ignore the aforementioned concerns about PLD safety) since they 

are simple in design, and benefit from being outside the direct address space of the 

microprocessor once they are implemented in the PLD.

To implement these operations within a safety-critical system we must specify them 

and show that the specifications are satisfied, and it is this that we illustrate with an 

example here.

W atchdog tim er specification

The Watchdog Timer has a single input, which is toggled to reset the timer, and a single 

output which is typically used to raise a high-priority interrupt and trigger a system 

shutdown. We will define an SRPT process WATCHk with the following behaviour.

We assume that there is a single input w to the watchdog timer and a single output 

d. We will produce a timer specification with parametrised delay since the PLD timer 

delay will be expressed in PLD clock ticks, and we may not know the actual PLD clock 

frequency until later in the development cycle.

The specification of the watchdog WATCHk which shuts down after & +  1 steps 

without an input toggle, for each trace i, is as follows. First, we define the events we 

are reasoning about:

iWATCHk = {w} 

oWATCHk = {d}

where w and d represent high voltages on the corresponding input and output wires, 

following the convention described in Section 4.1.3.

For convenience, we define a function to pick up points at which an event’s status
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changes within a trace. For a trace t and event x, let breaks {t,x)  G seqTV be such 

that:

Ml < i < j  ' breaks (t,rc)[î] < breaks (i, a;)[7] 

ran ( breaks {t, x)) =  {i | {i =  0) V ({a:} n  t[i] ^  {a;} fl t[i +  1])}

This is an example of a syntactic abbreviation that is applicable to (although not 

necessarily useful in) all SRPT processes. Here, 7n  and E refer to all possible SRPT 

trace and event sets.

The specification S{k){t) for t G 7^[[WATCHfc|cr is then:

S{k){t) =

{Vi <  j  : d ^ t[i]) A {Vi > j  : d € ([«]) 

where: B = breaks (t, w)

a =  m in m : R[m +  1] — R[m] > (/: +  1) 

j  =  B[a] 4- k

Here a is the number of the earliest break point after which the same value is 

received along the input wire too many times in succession, j  is the trace index 

following this break point where the failure signal d starts to appear.

W atchdog process derivation

We now define specifications for processes WOk{x) and Wlk{x). The WOk{x) process 

describes a watchdog where the last input toggle was to 0 (low voltage) and there are x 

steps left until shutdown trigger. Wlk{x) is the same except that the last input toggle 

was to 1 (high voltage).

Specification So^k{x){t) is true iff t  G TnlWOk{x)la:

So,k{x){t) =

{ \ / 0 < i < x - d ^  i[z]) A 

{ M O < i < x - w ^  t[i] => M j  > X ■ d G t\j]) A 

(a; >  1 A ly G i[0] Sî k{k){t[l...])) A 
{ x > l A w ^ t [ Q ]  => «Sb,fc(a: -  1)(^[1 ...]))
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Si,k{x){t) is defined similarly, reversing membership tests of w and swapping in

stances of «̂ i and 6b.

For a; =  0 the processes satisfying these specifications are trivial:

W0&(0) =  [\{d}?X -^WOkiO)]

W h{0) = [\{d}?X ^ W h { 0 ) ]

For all a; > 1 we use a recursive definition of the required processes. Assuming that 

WOk{x — 1) and Wlk{x — 1) have been defined and satisfy So,k{x — 1)(), Si^k(x — 1)(), 

we can define processes for value x as:

WOk{x) =  [!0 ?X i f (w G X)  th en  W h (k )  else WOk{x -  1)]

Wlk{x) = [!0 ?X if  (w G X)  then  Wlk{x  — 1) else WOk{k)]

The structure of these processes is sufficiently similar to the structure of the speci

fications for specification satisfaction to be clear.

W atchdog specification satisfaction

It remains only to show that So,k{k){t) corresponds to our original specification S{k) 

for WOk{k). We can then state that the SRPT description of WATCHk is WOk{k), 

and we will have satisfaction of the specification. We will not aim for a full formal 

proof, but instead show the main derivation steps required.

Our proof is two-stage. First we show that the specifications agree that d either 

never appears, or that there is some index j  where d starts to appear in the trace and 

will always appear from then on.

For S{k){t), this is clear from the specification:

{M i < j  : d ^  t[i]) A { M i > j  : d G ([%])

For So^k{k)ii) this follows since the following is part of all 6b and 6'i specifications, 

with the w membership test inverted for Sy.

{ M O < i < x - d ^  [̂«]) A

{MO < i < X ■ w ^  t[i] => Mj > X ■ d G t\j])
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We now show that the value of that index j  is the same in the two specifications. 

For S{k){t), j  is defined by:

B =  breaks {t, w)

a =  m in m : B[m +  I] — B[m] > {k + 1) 

j  =  B[a] +  k

For So^k{k){t), we make an inductive argument on the “crucial” break number a. 

li a = 1, j  = k since B[l] =  0 by definition of b reak s . This corresponds to the 

case where the event w does not appear for k successive points in the trace. The 6b 

specification part

{ M O < i < k - d ^  t[i]) A 

{ M O < i < k ' W ^  t[i] \f j  > k  ■ d G t\j])

corresponds to this case.

If a > 1, we need to show that all preceding breaks with index below a do not trigger 

a d sequence. It is clear from the preceding part of the proof that a d sequence, if it 

starts at all, must start at index k from the start of a process specified by SNj{k){t). 

We need only show that the breaks correspond to the start of Sx^k{k){t) specifications. 

This comes from the second part of the specification for Soj{k){t):

{ k > l A w G t [ 0 ]  => 6i,ifc(A;)(^[l...]))  A 

{ k > l A w ^  t[0] So^k{x -  l ) { t[ l ...]))

Since 6b only applies to traces where w is currently absent, the appearance of w 

indicates a break point and hence a switch to Si^k{k){s) for the remainder of the trace 

s. A mirror argument holds for S\. This gives us that S{k){t) = So^k{k){t). □

W atchdog trace exam ple

An example of w being “stuck-on” for =  3 is shown in Table 4.2.
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Time 1 2 3 4 5 6

Process W0 , ( 2) Wlk(3) Wl&(2) W lk(l) W1&(0)

Input - w w w w -

Output - - - - - d

Table 4.2: Example of a trace of the watchdog 

Keyword checker specification

A keyword checker is a process which takes as input a w-bit keyword along with a lines 

which denote the actuator to activate. No more than one of the actuator lines may be 

raised at any one time.

We will define an SRPT process KEYWw,a with the following behaviour. When 

an actuator line is raised, the keyword checker validates the given keyword against the 

actuator line selected: the result is one of on, off or bad. If on then the checker raises 

the appropriate actuator output line. If off or bad then it lowers the line, and if bad 

or more than one input actuator line is raised then it sets a “failure” output for one 

timestep.

We assume that on ^  off ^  bad.

This is a more complex example of the specification and SRPT description of a 

process. Again, we define the events of the system KEYWw^a first:

P = . . . Pa}: Q — Qw}, P — { 1̂ • • • ^a}

I  = iKEYWw^a = P C  Q 

0  =  oKEYWw^a =  R U {/}

P  events are actuator selection, Q events form keywords, and R events are actuator 

controls. {/} is the failure signal.

We define the internal event set K  to represent keyword evaluation:

K  =  {on, off, bad}

The keyword evaluation is given by function w e v , mapping a set of keyword events 

and actuator number to an action word:
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w ev : FQ x N —> AT

The specification S{t) of each trace t G 7^|[KEYW^,alcr is as follows:

S{t) = V i G N - V j G l . . . a -  

f[{P D t[i]) = 0 =4> t[i+  2]n 0  = {t[i-h i ] n  0 ) \ { f }

{P O [̂*]) — {Pj} ^  ~  ^  iPj ^ 2])

A {z = bad) <=> {f G t[i +  2])

A {z = off) <=> ( r jJ  ^  t[i +  2])

# (P n ^ [z ] ) > 2  =4> t[i + 2 ] n O = {f }

where z =  w ev (Q D t[i],j).

This requires that:

• zero commands will maintain the status quo except that a failure will cease to 

be flagged;

• exactly one actuator command will cause the actuator to turn on (if on), off (if 

off) or flag an error (if bad); and

• more than one actuator command at once will cause a failure and turn all output 

controls off.

Note that this system has a 2-cycle delay rather than the 1-cycle delay of the previ

ous example. This is because the eventual implementation is in terms of two processes

processing in sequence, hence at least two cycles are required for this implementation 

to be feasible.

We define internal event set M  to represent the actuator chosen to be activated: 

M = {mo .. .rria},

The process description is a parallel composition with hidden events, as follows: 

KEYW^,a = (KW^,.(0) II F IL T E R a m \{M  U K)

where K W  evaluates the keywords and FILTER acts on the output of K W  to select 

the outputs. Note that the hiding operation applies to K W  and FILTER rather than
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KEYW;  this distinction is important as hiding is defined in terms of a subset of a 

process’s output alphabet, and K E Y W  does not contain K  ox M.

We will specify KWw,a first. Given alphabets

lK W w,a =  P C Q, oKWw^a =  M \J K  

the specification X (i) of each trace  ̂ G 7^[[KWt„,a]]cr is:

K{t )  =  VO <  i •

A {t[i] n P) =  0 {t[i +  1] n  oKW) = 0 

A (t[i] n  P) =  { p j }  => {t[i +  1] n  oKW) =  {k, rrij}  

where k = wev (i[z] C\ Q, j )

#(([%] n P) >  2 {t[i +  l ] n o K W )  =  {bad}

A suitable process satisfying this specification follows:

K W ^,.(P ) =  [!P ?X if  # (X  n P) >  2 KW ^,.({bad})

elsif 3 j  : (X n P) =  {pj} KWy,^a{{k, mj}) 

else KWy,^a{0)]

where k =  w ev (X D Q, j )

As an implementation detail, note that the case where exactly one element of P  is 

present in the input need not search all the elements of P  in sequence; instead, the pj 

inputs would be linked to the nij outputs with an intervening AND gate to check that 

all other elements of P  are low. As the size of P  grows, this becomes less likely to be 

feasible within the single clock cycle specified unless the target device provides AND 

gates with many inputs.

We now specify process FILTERa.  Given alphabets:

ùFILTERa =  I =  M C K,  oFILTERa =  0  =  RU { f }  

the specification F{t) of each trace t G Tn^FILTERaicr is:

F{t) =  MO < i •
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bad e  t[i] {t[i + 1] n 0) = {/}

A (t[î] n  M)  =  0 {t[i -f 1] n  0 ) =  [t[i] f] 0 ) \  { / }

A 3 j  : [t[i] n  /)  =  {on, mj} {t[i +  1] D 0) =  {r,}

A otherwise => (t[z +  1] fl 0 ) =  0

A suitable process satisfying this specification is:

FILTERa(S)  =  [!6 ? y  -> if  bad e  Y  FILTERa{{f})

elsif y  n  M =  0 FILTERa{S\{f })  

elsif 3 j  : Y  = {on, m^} FILTERa{{rj})  

else FILTERa{0)]

A proof of correctness here would be repetitive given the earlier satisfaction ar

gument for Watchdog, but the principle strategy is to observe that K W  outputs 

events that control the output of FILTER,  but not vice versa. Therefore we define 

R = (KW^,a(0) II FILTERa{0))  and since

M u e TnlR^cr • {F{u) A K{u))

by definition, we expand the definition of K  by evaluating how the RHS of the clauses 

of K  maps onto the LHS of the clauses of F , hence rewriting the RHS of K  in terms 

of the output alphabet of FILTER. This is then compared with the definition of S  to 

show that Mu e R - F{u) A K{u) => S{u).

This example has shown how parallel composition can be used to form processes 

with internal events providing communication between them.

4.1.8 N on-rigorous com ponents

The refinement model also allows us to incorporate “black box” processes into our 

overall design. As long as we can specify the inputs and outputs of a black-box process 

B  in terms of events in E, we can reason about its interaction with the other processes 

for which we have more rigorous specifications.

For instance, edge areas of an FPGA may be given over to an I/O  pad implementing 

an interface protocol such as the PC peripheral connector standard PCI. Mak[Mak03]
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discusses the thorny problems involved in placing these I/O  pads when multiple I/O  

standards (and hence varying voltages) are present in the device. We need not be con

cerned about the specific implementation details of the I/O  pad, and it need not even 

run at the same clock as the rest of our FPGA model as long as there are intervening 

gates outside our model but with the same clock, buffering the I/O voltages. As long 

as we can make some statements about the transitions of the outputs from the I/O 

pad, and establish minimum-switch times for the inputs, it need not affect our ability 

to reason about the behaviour of the rest of the device.

4.1 .9  C om m entary

We have taken two typical components of a safety-critical system which have the po

tential to be implemented using PLDs, have provided SRPT-based specifications and 

implementations for them and proven that the behaviour of the implementations sat

isfies the specifications.

We have seen that carefully-chosen syntactic abbreviations can express the SRPT 

trace-based specifications in a few lines and yet make rigorous and useful statements 

about the required properties of a process. The previous section has shown how it is 

possible to prove rigorously that a SRPT process description satisfies a specification, 

though clearly there is some way to go until this proof mechanism is easy enough to 

use effectively in a commercial project.

Note that there is a clear gap between the SRPT description of a process and its 

final implementation as a set of programmed cells in a LUT-based FPGA. It is however 

relatively simple to map such SRPT descriptions as given here into equivalent VHDL, 

Pebble or netlist formats. We expand on this in Section 4.2.7.

We have used SRPT as a compromise between the high-level specification languages, 

such as Z, and the low-level implementation languages such as EDIF and VHDL. The 

tradeoff we make is in ease of specification against simplicity of compiling to our target 

format.

According to the definitions in Section 3.4 we can classify this work as rigorous 

since formal specifications and sketch proofs were provided.
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4.1.10 A lternatives to  SR P T

SRPT is far from the only method of describing reactive systems. In this subsection 

we present some established alternative methods.

Language details

In [BerOO], Berry presents the basics of the Esterel language, and reviews a number of 

other synchronous languages. He distinguishes between “reactive” systems, where the 

computer reacts to external events, and “interactive” systems where the computer’s 

clients request services from the computer. The latter requires attention to avoid dead

lock and unfairness, and the former requires correct and timely operation. According 

to these definitions, SRPT describes reactive systems.

Languages such as Signal and Lustre use a data-flow programming style, routing 

data through “fixed” operation nodes. In hardware terms this is similar to program

ming a DSP chip or FPGA rather than a conventional microprocessor. Variables in 

the language consist of a sequence of values at a set of times, e.g. X  =  {Xi, X2, ...} . 

Nodes combine values of different variables. The flow of data in the system occurs 

at each (integer) time steps. Some variables may be over-sampled or under-sampled, 

flowing at whole time multiples faster or slower than the “master” flow.

The data-flow model corresponds well with our intuitive understanding of how data 

flows through an FPGA. The problems with this model would come with a variable 

depending on more than one time index of another variable, e.g. X^+i =  Yf -f 2 * Yt-i. 

This would complicate the placement and routing of such programs within a PLD.

Berry terms the programming model of Esterel “imperative” , which is an extension 

of one common definition of imperative languages as sequential modifications to a 

state but does capture the intent of defining how the result is to be produced instead 

of what properties the result exhibits[IP96]. In this model the basic structure is a 

module. A module has a defined set of input and output events, and a “body” in 

which a conventional imperative program executes. The imperative program is able 

to do blocking waits ( “await”) on input events and cause ( “emit”) output events. 

Statements can be combined in parallel, so that a module can wait for a disjunction 

or conjunction of events, and there are language operators to support pre-emption
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and exception raising. Body statements execute instantaneous except where delay is 

required by the purpose of the statement, e.g. the “await” operator.

Esterel provides more powerful abstract operators than SRPT, but at the price of 

a semantic gap between the Esterel program and the corresponding FPGA netlist.

Language evaluation

These approaches to programming languages could conceivably be used to program 

PLDs. Indeed, there are commercial tools such as “Esterel Studio” (from Virtual 

Prototypes Inc.) which allow such programming. The reason why we have chosen 

SRPT as our representative language is that the process-event structure of an SRPT 

system maps naturally onto the block-wire combinatorial logic and routing model of 

most PLDs.

Esterel’s semantic gap with respect to FPGAs is its key weakness. Signal and 

Lustre’s data-flow model is an interesting expression of a class of programs, and closer 

to the FPGA model, but has the placement problems noted above.

Our choice

These languages are possible alternatives to SRPT, but they do not have an obvious 

advantage to SRPT for our purposes. Indeed, we have identified deficiencies in their 

support for targeting FPGAs.

Preliminary work by the author in establishing the suitability of SRPT for compi

lation to PLDs showed that SRPT’s semantics was suitably rich to support rigorous 

definition of programs and mapped well onto the PLD program model. In our work 

to date there have been no serious shortcomings of SRPT that have indicated that 

CCS-based or other algebras are superior for synchronous PLD programming.

4.1.11 C onclusions

In this section we have shown how SRPT can be used to model non-trivial FPGA 

programs and prove certain safety properties in a rigorous way. We have also seen that 

it provides a precise way of specifying the requirements for an FPGA program, which 

makes it easier to define correctness tests.
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Of the targets in Chapter 3 we have addressed or partially addressed:

Target 1: The process we define must be rigorous.

We have established a formal specification system for SRPT processes and demon

strated rigorous justification that processes match their specifications.

Target 2: The process must help the developer to write unambiguous programs.

The trace-based specification of SRPT processes is an unambiguous notation, and 

our deterministic subset of SRPT described in Section 4.1.2 makes SRPT programs 

unambiguous.

Target 3: The process must allow the programs to have sections written in a

low-level language for speed and fiexibility, but not allow these sections to compromise 

overall program reliability.

We have explicitly considered non-rigorous components in Section 4.1.8.

Target 12: [00-54 8.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification 

complies with the safety requirements;

(ii) any formal arguments that the functional design satisfies the formal specification;

(Hi) for non-functional properties with specified safety requirements, analysis of the 

achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques 

as diverse implementations.

(i) is achieved by use of an unambiguous notation for specification. We demon

strated the proof system required by (ii) in the watchdog timer example. Timing 

requirements can be addressed by specifications about relative positions of events in 

traces, addressing (iii). We have not addressed (iv).

In the next section we will explore the relationship between SRPT and the Pebble 

synchronous programmable logic programming language.

142



4.2 Pebble

4.2.1 Introduction

In Section 2.4.6, we described the Pebble language for low-level programming of syn

chronous FPGAs. In this section we expand on this to give a more complete definition 

of Pebble, and show how SRPT processes can be mapped onto Pebble programs.

The version of Pebble described here is Pebble 3.0, as described in Appendix A of 

[Luk99]. Our comments on Pebble in this section are likely, but not certain, to apply 

to future versions of the Pebble language.

4.2.2 Target device issues

Pebble may be compiled onto a number of different PLDs. These devices may differ 

substantially in which “primitive” cells they support. For instance, one device’s cell 

may support any logic function of 3 inputs; another device’s cell may provide any 

function of 2 inputs on one output wire, and the inverted result of that function on 

the output wire. The primitives for a given device are typically stored in a prelude file 

that is supplied to the compiler.

A complete Pebble program will consist of a number of these primitive cells with a 

certain interlinking. Each cell will be one of a (likely small) set of types, e.g. 3-input 

AND, half-adder, single-input NOT. Normally these primitives will be chosen so that 

each of them can complete in one clock tick on the target device. However, it may 

be that some of the primitives require two or more ticks to complete whereas others 

only require one tick. In this case a naive compilation to the target device will have 

to add delays to each type of cell so that they all take the same time to complete 

calculation. In practice, it is likely that the circuit can be partitioned and optimised 

so that relatively few of the partitions need to operate at the maximum delay.

4 .2 .3  Language elem ents

A Pebble program consists of a set B  of block instantiations, with links between blocks 

provided by a set W  of wires. There is a set D of block declarations which can be 

considered as function signatures with named formal parameters from a set P. A
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block {d G D, f j , f o)  € B  represents an agglomeration of logic function computational 

cells on the target device. The formal parameters of d are renamed to elements of W  by 

the functions f i , fo  : P ^  IT for input and output wires respectively. In conventional 

imperative language terms, the block declarations are subprogram declaration and the 

wires are global program variables. The blocks correspond to actual subprogram calls.

Each block declaration d C D contains named formal parameter lists Fj and Fq 

which are sequences of input and output wire names respectively. The block declara

tion includes a (potentially null) list of width parameters G to allow instantiation of 

the block in a range of bit-widths. These parameters may be specified in the block 

declaration, or left open for when the block is later instantiated. The block declaration 

also includes a (potentially null) list of internal wires L.

A block declaration’s internal structure consists of a series (which may be null) of 

block instantiations. Note that these instantiations are not necessarily elements of B, 

since they may have wires from the block declaration’s parameters. In addition there 

is a series of direct connections between wires.

Block instantiations consist of block declaration names with the formal parameters 

renamed to the names of wires in scope, i.e. chosen from the union of Fj, Fq and L. 

If the block instantiated has any unspecified width parameters (in G) then these must 

be set at the instantiation.

Block instantiation can also be done in groups using the GENERATE FOR mechanism, 

specifying an “instantiation loop” where the characteristics of each block instantiated 

inside the loop may depend on the loop variable.

4.2.4 E xam ple

Taking the example of a combinational incrementer implemented from half adders, as 

described in the Pebble 3.0 manual [Luk99], Appendix A, section 8:

BLOCK main [c : WIRE; e : VECTOR (n -1 ..0 )  OF WIRE]

[d : WIRE; f  : VECTOR (n -1 ..0 )  OF WIRE];

BLOCK main [ fc in  : WIRE; fd in  : VECTOR (n -1 ..0 )  OF WIRE]

[fcou t : WIRE; fdou t : VECTOR (n -1 ..0 )  OF WIRE]
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VAR i ;

CONST n : GENERIC := 3;

VAR Ic : VECTOR(n..0) OF WIRE 

BEGIN

l c ( 0) <- fc in ;

GENERATE FOR i  = 0 . .  (n-1)

BEGIN

h a d d [ lc ( i ) , f d in ( i ) ] [ I c ( i+ 1) ,fd o u t( i ) ]

END;

fcout <- lc (n )

END;

The first BLOCK statement is an instantiation of block main, and the binding of 

actual parameters to its formal parameter list given in the following BLOCK declaration. 

The wires c, d, e (0 . . .n -1) and f  (0 . .  .n -1) are actual wires in the system, and the 

Pebble simulator would be able to control the values of the input wires and measure 

the values of the output wires.

The declaration of main comes next. After listing the formal parameters, the next 

set of declarations are variables and wires whose scope is local to the BLOCK declaration, 

i  is simply a loop variable, n is a generic width parameter; the declaration fixes it at 

3, but it could as easily have been left unassigned and instead set at instantiation. 

l c ( 0 . . .n) are internal wires, used to propagate the carry values along the chain of 

half-adders (hadd).

The body of the declaration first connects internal wire l c ( 0 ) to formal parameter 

fc in . The next statement is a multiple instantiation, the number of instantiations 

governed by the generic width parameter n. Each instantiation is of the half adder 

hadd, with connections governed by the instantiation number. The final statement 

connects formal parameter fcout to internal wire lc (n ).

Figure 4.1 shows a pictorial illustration of the declaration of main. The parameter 

n has been left unspecified. If n were 3, as specified in the block, there would be 

three HADD blocks in the diagram. The figure illustrates clearly that Pebble is mainly 

about defining relationships between predefined blocks by using shared wires. This
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fdout[0] fdout[1] fdout[n-1]

fcin
lc[0]

-o- HADD
lc[1]

H A D D J

n-1]

H A D E -
lc[n]

fcout

fdinfOI fdinMl fdin[n-1]

Figure 4.1: Combinational incrementer

is analogous to the way that SRPT defines relationships between processes by using 

shared events. In the next section we will explore this analogy in more detail.

4.2.5 Formal description

Following the earlier notation:

D =  {main, hadd}

B =  {(main,//,/o)}

W =  {c,d, e (0 . . (0 . .  .n -1)}

where

fi = (c ,e (0 . . .n -D ) 

fo  =  (d ,f (0 . . .n -1))

For block hadd we define the formal parameters, internal wires and generic parameters 

as:

Fi = 

Fo = 

L =  

G =

( f i l , f l 2 )

(fs,fc)

0
0

and for block main:
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Fi = (fcin, fdin(0 . .. n-1))

Fo = (fcout, fdout(0. .. n-1))

L = {lc(0... n)}

G = {n =  3}

Note that the hadd block, since it has no internal wires, is assumed to be a primitive 

of whatever target device it is instantiated on. It cannot be constructed out of other

primitives in series since this would require internal wires to connect the primitives. It

could be constructed out of primitives in parallel.

The instantiations of hadd in the declaration of main are as follows:

(hadd , (fil =  l c ( 0),fi2 =  fd in (0),fs =  fd o u t(0),fc =  lc ( l ) ) )

(hadd , (fil =  lc ( l ) , f i2 =  fd in ( l) ,f s  =  fd o u t( l) ,fc  =  l c ( 2)))

(hadd , (fil =  lc(2),fl2  =  fd in (2 ),fs  =  fdout(2),fc =  lc (3 )))

with the direct connections lc (0 ) <- fc in  and fcout <- lc (3 ).

Applying the renaming functions f i , fo  of the main instantiation then produces 

the following fundamental instantiations where every block instantiated is a primitive 

component for the target device:

(hadd , (fil =  l c ( 0),fi2 =  e ( 0),fs =  f ( 0),fc =  l c ( D )

(hadd , (fil =  l c ( l ) , f i2 =  e ( l ) , f s  =  f ( l ) , f c  =  l c ( 2))

(hadd , (fil =  lc(2),fi2 =  e(2),fs =  f(2) ,fc =  lc(3))

with direct connections lc(0)  <- c and d <- lc(3) .

Note that although no formal parameters are left as wires there are local wires in 

these declarations such as l c ( 0).

Having established this model, how does it react to data? Partly this will depend 

on the implementation of hadd in the target device; we assume that it is a conventional 

half-adder that outputs the carry on the first output and the sum on the second output. 

To have any meaningful basis for arguing about program correctness we must have 

verifiable functional and timing information about target device primitives.
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The data flow through the model is modelled by a function wire : IT x N —> B 

which is true for {w, t) iff wire w has a high voltage at time step t. Wires are considered 

bi-state (high or low voltage). We may ignore the possibilities of transients since the 

Pebble compiler manages these details; a “wire” in Pebble has delay and switching 

properties unlike a physical wire in electronic devices. The rule is that if wire W i  is 

connected directly to wire wj then:

Vn ^ 0 : wire{wi, t) =  wire{wj,

With wires connected directly in this fashion we describe wire W i  as the source of 

W j , and similarly wire W j  as a destination of Wj.

Primitive gates such as the half-adder are defined by a function mapping sequences 

of input parameter values to sequences of output parameters. Sequences are represented 

in the expressions below by strings of binary digits, highest bit first. For hadd:

hadd : seqB —> seqB

hadd =  {00 ^ 00, 0 1 - ^ 01, 1 0 - > 01,11 ^ 10}

The rule for values flowing through an instantiation (hadd,//,/o) is:

f l  —  { " ^ 1 ,  • • • ) W f i }  A  f o  —  { " y i j  , V m }

>  0 :

{wire{vi, i +  1 ) , . . . ,  wire{vm,  ̂+  1)) =

hadd(wzre(wi, t ) , . . . , wire{wn, t))

Note that this assumes that the instantiation of a device primitive computes all its 

outputs in one cycle and is stateless. The target may have other components such as 

RAM stores, which have state, or ROM stores which may take several time cycles to 

produce output. The target data supplied to the Pebble simulator will have to provide 

this information to allow accurate simulation.

4.2.6 C om pleteness of definition

Given the above description, it is useful to know whether the system is completely 

defined. It may be, for instance, that an instantiated gate has one input wire which is
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not a destination wire of any other gate, nor the destination of any other wire. Such a 

gate can be regarded as floating with no defined values at any time step.

Similarly, if a wire is the destination of more than one gate or wire, it is regarded 

as shorting these sources, and again has no defined value at any time step.

Floating wires are useful because they provide the ability to input data to the 

system. In the above instantiation in Equation 4.3, we see that wires c, eo, ei, 62 fioat. 

No wires are shorted, which should be normal policy.

We now take the formalism developed so far and translate it into SRPT terms.

4.2 .7  S R P T  representation

Using the notation given above, we map each of the wires in W  onto a unique event

in E. A block declaration d e  D corresponds to a process description Pd.

A  block instantiation { d j i j o )  G B  corresponds to the equivalent process Pd being 

renamed with events in S. //  and fo  produce the input and output alphabets of the 

process.

The SRPT process CT[x, y \s , d] connects wire s to wire d, equivalent to having 

the input of source s appear one cycle later on in destination d:

i CT  = {x}

oCT = {y}

C Tx = [! A ? y  ^  if a: G X th en  C Ty  else CTq]

If a system Z  consists of the instantiated processes ?% ,..., then the fioating 

wires are those in

FLOATz = (U ti  i-Pi) \  (U‘=i oPj)

and the shorted wires are those s 6  SHORTz such that

3 i j  : {i f  j )  A (s  G oPi) A { s  G oPj)

We have already provided the SRPT definitions for a gate computing an arbitrary 

72-bit function /  in Section 4.1.6 as CELLnj- Here we provide SRPT definitions for 

some other useful logic constructs, ROM and RAM. Within a typical safety-critical
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system, ROM is used to store constant look-up tables (e.g. for bomb aiming data with 

varying wind speed and direction), and RAM for holding PLD program state that is 

too large to store in the available collections of registers.

These definitions must capture the behaviour of typical real implementations of 

these constructs, so will be more complex than the gate-based examples from earlier. 

If high-SIL subsystems are based on these definitions then we must rigorously test 

the real implementations with test data based on the behaviour of these definitions, 

and demonstrate that the real behaviour refines the definitions’ behaviour. These 

definitions illustrate that real-world components can be modelled in SRPT, and provide 

a measure of their complexity in SRPT terms.

ROM

ROM provides a read-only store of data grouped in words, using an input address to 

index a given individual word and then putting the word data onto its output.

A ROM table has 2”̂  entries of n bits. We assume that lookup is done in t steps 

and that the lookup is not pipelined (so that the inputs must remain stable for t steps 

for the output to be valid). A 1-step ROM table (the lowest feasible value of t), if 

given address input data at time index i, will output word data at time index i + 1. 

If the (distinct) address bits are represented by set A =  {o i,. . . ,  am}-, the data bits by 

D =  {d i,. . . ,  dn} and the internal data is modelled by the function d : PA —> ¥D  then 

the SRPT definition of ROM  for fixed d is:

lROM = a  

oROM = D 

ROM =

ROMx,i,z = [ !A ?y ->

i î i  = t A Z  = Y  then ROM d(z),t,z 

elsif Z = Y  then ROMx,i+i,z 

else ROMx,i,y]

This implementation provides deterministic behaviour in the case where the specifi

cation does not define it, i.e. the case of a read address being changed before the output
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has been sent. It will start off a new read in this case, dropping the previous request. 

In all cases, the output will stay the same from cycle to cycle until a read-output cycle 

has been computed.

Because this process carries significant internal state it is not equivalent to a simple 

combination of CELLnj  functions. To incorporate it in a safety-critical system we 

would have to make formal specifications of its behaviour and show that they are met.

R A M

A RAM table is more complex. It has two modes: read and write. In real RAM blocks 

reading is often quicker than writing. We assume that the inputs must remain stable for 

u steps for the write to be effective, whereas reading occurs in t steps as in the ROM 

block. There is no explicit indication of when the outputs are valid; users of RAM 

blocks must know the timing properties of their blocks and design the surrounding 

circuits accordingly.

We take the m-element address and n-element data sets A and D from the ROM 

definition above. The RAM block internal function d : PA —» FD will, unlike the 

ROM block, change during operation as writes are made. The extra input w controls 

whether a write is being commanded, and the n extra inputs E  supply data for input. 

For fixed m, n, t, u:

E = { e i , . . . , e „ }  

iRAM  = {w} U A U E  

oRAM = D

RAM  =  RAMR{y^t,{},{FA^{}}

We define a pair of process sets, one for reading operations and one for writing 

operations. The reading operation is RAMR:

RAMRx.w = [!A?y-^
if z =  1 A ( y  \  £■) =  ZthenRAMRd(xnA),i,z,d 

elsif i > l A { Y \ E )  = Z  then RAMRx,i~i,z,d 

elsiî w e  Y  th en  RAMWx,u,Y,d 
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else RAMRx,t,YnA,d] 

and the writing operation is RA M W :

if  z =  1 A y  =  A thenHAMWg(^n£?),i,z,d' 

elsif z > 1 A y  =  Z th en  RAMWX,i-i,z,d 

elsif w ^  Y  th e n  RAMRx,t,Y(iA,d 

else RAMWx,u,Y,d] 

where di e X  ei G q{X)

and d =  d 0  (A n  A i—> n  E))

Section 6.4.3 and Section 6.2.3 in a later chapter will demonstrate the use of ROM 

and RAM blocks in a complex PLD program.

4.2.8 S R P T  to  P ebble

Having shown how Pebble constructs can be mapped into SRPT, we now examine how 

SRPT processes can be refined into Pebble.

C onstructors

The correspondence between Pebble wires and SRPT events has already been noted. 

For an SRPT process P  with alphabets lP  and oP, we declare a Pebble block Pb_P 

with formal parameters matching the union of the alphabets of P.

As previously noted, SRPT has a set of basic constructors. We deal with each of 

them in turn.

• Process variable x corresponds to an instantiation of a declared block Pb_x.

• P  II Q is a Pebble block which contains the instantiations of Pb_P and Pb_Q.

• P  \  0  is a Pebble block where the wires in O are removed from the formal 

parameters list and instead made internal wires by adding them to the Pebble 

block’s internal wires list L.
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• P[S] is an instantiation of a declared block Pb_P with formal parameters replaced 

by actual wires as defined by the renaming function S : P  W.

More complex is P  =  [!0 ?A —> P%]. The way that we define P  in Pebble will 

depend on P.

Stateless processes

We assume first of all that we can define a Pebble block equivalent to any “stateless” 

SRPT process, i.e. if we define the group of Pebble processes

where /  : PzP/ —> PoP/, then there is an equivalent Pebble block Pb_Pf. This should 

be feasible as long as the primitive gates provided in the Pebble library include NAND 

since any logic function can be constructed from these gates. As noted in Section 4.1.3, 

the if-then-else construction represents a straight map from input events to output 

events.

A significant problem is that there is no external control over the output of any 

Pebble block on the first tick of the clock, whereas we can specify this output in 

SRPT. In practice it is conventional for blocks to assume the output corresponding to 

low voltages on all inputs; an OR gate would then output a low voltage on the first 

clock tick, whereas a NAND gate would output a high voltage.

Therefore we allow the SRPT processes {Pf { Y)  | Y  Ç oP/} as above, but make 

the restriction that when any such process is instantiated, the first output events must 

be /({})• This must be manually checked for each SRPT process definition in our 

system.

Processes w ith  state

If the process has state, we write the process description as

Pf , , {Y)  =  [! K ?X ^  P /.s(x ,,)(/(X , q))]

where q g N and g : P tP  x N —> N. This is harder to represent. We need a way for the 

Pebble blocks to track the current state. In this case we would have to define a Pebble
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P a s s ( 2 )

e  P g

Figure 4.2: Pebble blocks tracking state

Time X e s s' Y

0 Xo 0 So So f{xo, So)

1 Xi 1 So So /(% ,% )
2 Xi 0 So g{xi,so) f{xi,So)

3 Xi 0 g{xi,so) g{xi,so) f{xi,So)

Table 4.3: State changing process

block Pb_Pg which computed the state transform function g, as well as a block Pb_Pf 

which computed / ,  and connect them so Pb_Pg fed into the state inputs of Pb_Pf as 

well as to its own inputs. Figure 4.2 shows such a layout.

Note that Pb_Pf and Pb_Pg have enabling inputs e/, Cg which must be high for their 

output to change; this prevents incorrect outputs occurring during the computation

The progress of state throughout these blocks is illustrated in Table 4.3. Starting 

in a stable state, a change of input from % to % propagates through to a state change 

and output in two ticks. Note that the new state propagates through to Pb_Pf the 

clock tick after Pb_Pf is giving the correct output; it is only then that another change 

of X  will pass through the state block correctly.

SRPT processes with more than one numerical state index can be transformed 

into single-number index forms by an appropriate diagonalisation function. Note that 

we may not make the right hand function depend on Y  explicitly, according to this 

classification.

We now give an example of translating SRPT to Pebble.
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4.2.9 Exam ple: SR P T  to  P ebble

A common data structure is a stack, modelling the First-In, First-Out (FIFO) data 

flow. The basic operations on a stack are Push (insert a datum onto the top of the 

stack) and Pop (remove the datum on top of the stack). This example is a stack 

modelled in Pebble.

We define a stack as follows. We assume that it has a capacity of 2^ entries, each 

of n bits. We note that the behaviour of a fixed-depth stack is that of a RAM block; 

we assume (for simplicity) that this RAM block is single-tick read/write. Our stack’s 

behaviour is to output continuously the number last input.

We take our previous RAM block definition and simplify it accordingly to give an 

SRPT description of the RAM block component of our stack.

lSRAM  = {w} U AU E  

oSRAM = D 

SRAM  =  SRAM q q̂ 

SRAM x,d = [ \ X 1 Y ^

if (w  ̂ Y) then SRAMd{YnA),d

else SRAM g( YnE) ,d ' ]

where d' = d ® {Y  D A q{Y D E)).

The stack has an input data stream, and a pair of controls which specify whether 

the input data is to be pushed (push) or popped (pop). When a pop signal is received, 

the data next output will be the input data last-pushed-but-one.

Another part of the stack process will control the interface to the RAM block. The 

RAM block will output the value of the top element on the stack, so a push will have 

to increment the address value and a pop will have to decrement the address value. In 

addition, it controls the write bit of the RAM block so that a pushed value is written 

in.

lSCTRL  = {push, pop} 

oSCTRL = { w } u A
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SCTRL =  SCTRLQfi 

SCTRLx,k =  [ \ X 7 Y - ^  

if  {push 6 y  A & <  2"" -  1) th en  SCTRLa{k+i)u{w},k+i 

elsif {pop e  Y A k  > 0) th en  SCTRLa(k-i),k-i 

else SCTRLxnAjk]

where a : N —> PA encodes a numerical address into the appropriate bits. We have 

refined our informal description of the stack to define unspecified behaviour, specifi

cally the actions for full and empty stacks and for both commands occurring at once 

{push has priority). This corresponds to the implementation decisions made during 

conventional coding.

Another process we will need is PASSn which is an n-bit wide single-delay pass 

gate.

The definition of STACK  is now a direct composition of processes with appropriate 

event renaming:

F  =

iSTACK = F U {push, pop} 

oSTACK =  D 

STACK =  {SRAM  || PASS„[F][E] || SCTRL) 

\ { E U { w } U A )

Note that the process has a two-cycle delay. At the end of the first cycle SCTRL 

has set the correct bits for entering the address, and the new data has gone through 

the pass block. At the end of the second cycle, SRAM  has updated itself accordingly 

and has output the new top stack data.

With regard to the SRPT, readers should note that the || operator is associative 

according to Law 2 in Barnes[Bar93] §5.1.1. Explicit bracketing is therefore not re

quired.

A diagram of this circuit is shown in Figure 4.3.

Translating STACK to Pebble, we see that there are several process instantiations 

combined with a hiding operator; we must therefore define {/i, . . . , /„ ,  o i,. . . ,  w}
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push
pop

PASS

SCTRL

SRAM

i i i n i i i i i i i i i n t i i i i i i i i i i iM i i i i i i i i i i i i i i

Figure 4.3: A simple stack

as internal wires. The parameters of Pb_STACK are taken straight from the process 

alphabet. The translations of processes SCTRL, PASSn and SRAM  blocks to Pebble 

are straightforward block instantiations as described below.

If Pb_PASSn does not already exist then it is simple to define, as it merely connects 

each input to a corresponding output with a one cycle delay. Pb_SRAM is a RAM block, 

which we assume to be primitive to our chosen target. If it is not a primitive then we 

will have to compose other primitives to build it, increasing its delay (and hence the 

delay of the stack block) by many cycles.

Pb_SCTRL is an output prefix process with state parameter k. We therefore use 

the previously-described design of an internal state generator block, instantiated along 

with the normal decision block. The state generator consists of one path generating 

the successor state, a second path generating the predecessor state, and a multiplexer 

to choose between them.

All this yields the following Pebble declaration:

/* Declarations for our target.
* Assume that all these blocks are single-cycle. 
* /

BLOCK ram(kl,k2 : GENERIC) [w : wire;
a 
e 
[d

VECTOR (kl..1) OF WIRE; 
VECT0R(k2..1) OF WIRE] 
VECTOR (k2..1) OF WIRE];
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/* Incrementor; increments a by 1, 
unless a is all Is already */

BLOCK inc(k : GENERIC)[a : VECTOR (k..l) OF WIRE]
[b : VECTOR (k..1) OF WIRE]

BLOCK passCk : GENERIC)[a : VECTOR (k..l) OF WIRE]
[b : VECTOR (k..1) OF WIRE]

/* Décrémenter; decrements a by 1, unless a is 0 already */ 
BLOCK dec(k : GENERIC)[a : VECTOR (k..l) OF WIRE]

[b : VECTOR (k..1) OF WIRE]
/* 3-way multiplexer; select one of a, b or c as output d */ 
BLOCK mux3(k : GENERIC)[cl : WIRE; c2 : WIRE;

a : VECTOR (k..1) OF WIRE;
b : VECTOR (k..1) OF WIRE;
c : VECTOR (k..1) OF WIRE]
[d : VECTOR (k..1) OF WIRE]

/* Output if X and not y */
BLOCK xandnoty[x : WIRE; y : WIRE][z : WIRE]

/* Our own declarations */

/* SCTRL state generator; 2-cycle duration */

BLOCK sgen_sctrl (m : GENERIC)
[push : WIRE; pop : WIRE; 
k : VECTORCm..1) OF WIRE]
[n : VECTORCm..1) OF WIRE]

VAR i : VECTORCm..1) OF WIRE;
VAR u : VECTORCm..1) OF WIRE;
VAR d : VECTORCm..1) OF WIRE;
VAR iw : WIRE;
VAR dw : WIRE;

BEGIN
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/* k can either increment, decrement or stay 
the same */ 

inc (m) [k] [i] ; 
pass(m)[k][u]; 
dec(m) [k] [d] ;
/* A multiplexer decides */ 
mux3(m) [iw,dw,u,i,d][n];
/* And the multiplex choice is determined by: */ 
xandnoty[push,pop][iw]; 
xandnoty[pop,push][dw];

END;

/* SCTRL itself */

BLOCK sctrl (m : GENERIC)
[push : WIRE; pop : WIRE]
[w : WIRE; a : VECTOR(m..l) OF WIRE]

VAR n : VECTORCm..1)
VAR p : WIRE;

BEGIN
/* Note the output-input loopback connection 'a' */ 
sgen_sctrlCm)[push,pop,a][a] ;
/*  sg en _ sc trl is  2-cycle so need a delay here */ 

xandnoty[push,[pop][p]; 

pass CD [p] [w] ;

END;

/* And now STACK. Note that we've had to add an extra
* PASS block because sctrl is 2-cycle.
* This means that STACK is now 3-cycle Cassuming
* ram blocks are 1-cycle).
* /
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BLOCK stack (m,n : GENERIC)
[push : WIRE; pop : WIRE; 
f : VECTORCn..1) OF WIRE]
[d : VECTORCn..1) OF WIRE] 

el : VECTORCn..1) OF WIRE; 
e2 : VECTORCn..1) OF WIRE; 
a : VECTORCm..1) OF WIRE; 
w : WIRE;

BEGIN
ram Cm,n) [w,a,e2] [d] ; 
sctrlCm)[push,pop][w,a]; 
passCn)[f][el] ; 
passCn)[el][e2];

END;

It is important to note that mapping into Pebble has not been straightforward. We 

should have written the SCTRL description using a formal generator function from 

the outset. In addition, target device restrictions (needing two cycles to calculate the 

generator function) have meant the insertion of extra delays in order for all the data to 

match up. In later work in Chapter 5, when we look at refining SRPT processes and 

implementing them in Pebble, we will have to remember that timing issues are likely 

to appear in the Pebble mapping.

However, the above Pebble file appears to be an accurate description of a stack and 

is parametrised by data width (n) and logarithmic stack size (m). Its reliability will 

still have to be established by testing appropriate to its required reliability in systems.

4.2.10 Sum m ary

In this section we have examined the Pebble language, summarising its main constructs 

and showing how these can be translated to and from similar SRPT constructs. This 

has established SRPT as a practical synchronous calculus in which to work, and has 

highlighted those SRPT constructs which should not be used in our future work.
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Of the targets in Chapter 3 we have addressed or partially addressed:

Target 1: The process we define must be rigorous.

We have provided a systematic method for translating SRPT constructs into Peb

ble, although we have not produced rigorous demonstration that the semantics of the 

constructs are equivalent or refined.

Target 3: The process must allow the programs to have sections written in a

low-level language for speed and flexibility, but not allow these sections to compromise 

overall program reliability.

We have allowed SRPT process declarations but not definitions, and shown how 

Pebble itself permits the description and incorporation of primitive blocks whose op

eration is undefined.

Target 6: The program must be able to be compiled onto a range of existing and

anticipated PLDs.

Pebble can be translated into VHDL, and hence onto most PLDs (with the usual 

requirements for space).

Target 7; The process must reuse existing proven tools where feasible.

The Pebble-to-VHDL compiler already exists. An SRPT-to-Pebble compiler which 

needs to be created does not yet exist; it is necessary to bridge the gap between the 

abstract state of SRPT processes and the restricted state handling in Pebble.

Target 10: The process should provide flexibility so that it may be used in situa

tions not anticipated in its original design.

This is addressed by the previously described facility to incorporate non-Pebble 

blocks into a Pebble program.

Target l^.: [00-54 IS.3.1] A Hardware Specification shall be produced which de

fines the SREH in terms of its behaviour and properties.

Pebble works by assuming uniform device-independent behaviour of the VHDL 

into which it is compiled. A step towards compilation of the Hardware Specification is 

verification of the behaviour of this VHDL subset.

In the next section we examine the SPARK Ada safety-critical systems development 

language. Our eventual aim will be to transform a SPARK Ada program fragment into 

an SRPT system, and from that form into an equivalent Pebble program. The following 

chapter with therefore evaluate SPARK Ada with that goal in mind.
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4.3 SPARK  Ada

4.3.1 In troduction  to  SPA R K  A da

SPARK Ada is an annotated subset of the Ada language, as defined in the Ada 83 

and 95 Language Reference Manuals[U.S83, Int95]. Its target market is safety-critical 

subsystems, which are often embedded. It supports substantial static analysis of pro

grams including proof of absence of run-time exceptions, data and information flow 

analysis, and proof of correctness in the form of pre- and post-conditions on subpro

grams. Enforcement of the SPARK Ada subset and static analysis is done by the 

SPARK Examiner, a tool produced by Praxis Critical Systems Ltd. Proof of correct

ness and of absence of exceptions is aided by the SPADE Simplifier and Proof Checker, 

also Praxis tools.

For the purposes of this report we shall concentrate on the Ada 95 version of SPARK 

Ada, henceforth referred to as SPARK^ for brevity. The syntax of the SPARK language 

is defined in the SPARK Report [FW99]. A more detailed description of and tutorial 

in SPARK Ada is given in the book “High Integrity Software -  The SPARK Approach 

to Safety and Security” [Bar03] to which the reader is referred for more detail.

As an Ada subset, SPARK code can be compiled with existing industrial compilers 

and tools. For this reason it has been more successful than languages designed to 

bring more rigour into the software engineering development process, such as RSRE’s 

NewSpeak[CurS4]. Annex H of the Ada 95 Language Reference Manual[Int95] makes 

recommendations for restricting use of the full Ada language in Safety and Security 

applications, and SPARK’s language restrictions support these recommendations.

This section aims to demonstrate the suitability of SPARK Ada as a high-level lan

guage for implementing a design in a software /  programmable hardware combination. 

We examine the features of the SPARK Ada language, and of its supporting tools to 

see how they support reliability and verifiability. We also see how they could be used 

to provide supplemental information to a compiler.

We then look at how SPARK Ada programs might be transformed into equiva-

^Note: The SPARK programming language is not sponsored by or affiliated with SPARC Interna

tional Inc. and is not based on the SPARC architecture.
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lent HDL or SRPT processes. This lays the foundations for the refinement work in 

Chapter 5 where we will aim to prove formally this equivalence, and the case study 

in Chapter 7 where we do a case study on extracting a fragment from a SPARK Ada 

program into an HDL form.

4.3.2 Safety-critical system  developm ent process

Our goal in producing a safety-critical system is to start with a well-defined set of 

requirements, produce a high-level design for the system, refine this into a program 

in a suitable high-level language, compile this into machine code and use the code to 

program a suitable processor-memory combination in the hardware of the system being 

produced. Section 2.1 examined current practice in this area.

Coupled with a rigorous development process, a design methodology well-matched 

to the language chosen and to the system being developed should be chosen. Al

though the choice of such a process will be dictated by the agency in charge of de

velopment, and may use a diverse range of design tools (e.g. Rational Rose[EK99] or 

other tools based on UML) one methodology particularly well-suited to SPARK Ada 

is “INFORMED” [AmeOO] which produces a top-down design that can be translated 

into efficient SPARK. The examples developed in this thesis will use the INFORMED 

approach.

The tools for SPARK Ada development are the SPARK Examiner[ChaOl] and 

the SPADE Simplifier and Proof Checker[Pra95, Pra98]. The Examiner enforces the 

SPARK language restrictions, and produces proof conditions on program properties 

which may be proven (or disproven) via the other two tools. More detail on these tools 

is given in Section 4.3.4.

The top-down development of INFORMED relies on early and frequent use of the 

SPARK Examiner to ensure that the program maintains a consistent structure. This 

contrasts with the traditional bottom-up development in C or Ada where the compiler 

validates the code, hence the code analysed must form a compilation closure. IN

FORMED design can proceed from the top downwards, when much of the lower-level 

code is incomplete, because the SPARK language allows the developer to express their 

intentions for unwritten code with annotations. In Section 4.3.3 we describe what
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annotations are, and how they are used.

4.3 .3  G eneral language properties

As a general programming language, SPARK’s level of abstraction is approximately 

that of Ada, more abstract than standard C. Its type system is more detailed than the 

C type system and more strongly enforced than either the Ada or C type systems, at 

the cost of such operations as string checking or alteration requiring numerous type 

declarations and careful type conversions.

Com pilation

SPARK, being a subset of Ada, will be compiled by any standard Ada 95 compiler, 

including the validated compilers being used in the industry such as GNAT Pro (Ada 

Core Technologies), Object Ada (Aonix) and GMART (Green Hills). Indeed, the intent 

of the language restrictions is that SPARK programs cannot be “erroneous” in the Ada 

sense of producing different results with different compilers; for instance, the aliasing 

rules make the semantics of pass-by-reference and copy-in-out compilers equivalent 

for all SPARK programs. An added benefit is that since the SPARK subset throws 

out many of the more complex Ada constructs such as generics, it tends to tread the 

well-trodden (and hence well-tested) paths in the compiler.

Ada 83 and 95 have fairly good syntactic and semantic definitions in their respec

tive Language Reference Manuals[U.S83, Int95], and SPARK builds on that with the 

SPARK Report [FW99], stating how the Ada 83 and 95 LRMs map on to SPARK 

Ada. As regards a formal definition, one has been written[Ltd94a, Ltd94b] by Pro

gram Validation Limited with support from the UK Defence Research Agency. This 

consists of the static and dynamic semantics of a subset of SPARK Ada, given in the 

Z language[Spi92]. The defined semantics has been used within Praxis but is insuffi

cient to specify the current language subset because of two points: the language has 

since moved on (e.g. embracing Ada 95, allowing individual record fields as procedure 

parameters, allowing read-only and write-only variables) and the subset fully defined 

omits some aspects of the language such as type ranges and named aggregates which 

are now common in SPARK programs.
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R un-tim e

After compilation Ada programs are normally linked in with a compiler-specific run

time which provides the services associated with the more complex language properties 

such as tasking. Certain Ada language profiles such as GNORT (Ada Core Technolo

gies) , GMART (Green Hills) and Raven (Aonix) are designed to eliminate or minimise 

the size of this run-time for reliability and space reasons. The SPARK subset requires 

minimal run-time support and works with these profiles.

Typing

Ada’s strong type system provides better visibility and enforcement of the numeric 

range of a variable than languages such as C afford. Ada’s run-time C onstraint_E rror 

exception indicates that a variable’s value has gone outside its defined type. Taking this 

idea further, the SPARK Examiner run-time checker generates verification conditions 

that aim to show that the code is free from run-time exceptions e.g., due to arithmetic 

overflow or to a variable’s value falling out of type.

SPARK includes a subset of Ada 95 modular types, which is useful for arithmetic 

using arbitrary bit widths. It also includes the ability to declare types of arbitrary 

numerical range. This will enable us to perform calculations confident that a variable is 

within a restricted range of values, and the run-time checks generated would determine 

whether the result of the calculation will also fit in a restricted range.

Control flow

SPARK includes most of Ada’s control flow constructs, except the goto statement. 

The restrictions it places on control flow relate to control flow graphs being well- 

formed according to the Semi-Structured Flow Graph grammar [FKZ75]. For instance, 

the exit points of a loop must always be at the “edge” of the loop, not inside compound 

statements within the loop. This ensures that each exit check is traversed once during 

a full loop.

The control flow restrictions allow information flow analysis as described by Carré 

and Bergeretti [CB85]. This is key to SPARK’s ability to detect ineffective statements 

and use of potentially uninitialised variables.
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Program  structure

As a subset of Ada, SPARK has many features typical of high-level imperative lan

guages, including a module hierarchy. The Ada language, and SPARK, provide two 

structural components for programs: packages and subprograms. A package comes in 

two parts: a specification which declares the types, variables and subprograms which it 

exports, and a body which contains the private data of the package as well as the imple

mentations of all declared subprograms. Packages may contain state variables whose 

values persist while the packages are in scope; for packages that are not embedded 

within a procedure, this state persists for the duration of the program.

The top level of an Ada program consists of a single main_program subprogram, 

commonly called Main, with any number of separate packages. Execution works 

through Main until the end of that subprogram. In practice, many embedded sys

tems (irrespective of programming language) tend to run in an infinite loop after some 

initialisation calculations.

Packages and subprograms may be embedded in package bodies and in the local 

variable declaration area of subprograms. So, for instance, in the body of package Q 

might be a subprogram Parse, which relies on operations provided by a package Stack 
within it. Stack itself may have an internal subprogram Pop. Using the Ada dotted 

notation of nesting, a subprogram within Parse would refer to the Pop subprogram as 

Stack.Pop and the main subprogram would refer to Pop as Q.Parse .Stack.Pop. In 

practice, Ada visibility rules make this second reference illegal.

Ada 95 introduced child packages which, among other features, enable developers 

to split a single package specification into subunits, each of which has direct visibility 

of the basic types and subprograms declared by the parent package. SPARK supports 

these with additional restrictions on visibility.

A nnotations

SPARK adds annotations to the subset of Ada that it uses. These are Ada comments 

(denoted by two dashes in sequence) followed by a third character, typically a hash. 

As a comment, an annotation has no effect on compiled code but is visible to the 

Examiner.
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Annotations are used primarily to declare information that the Examiner must 

check on first inspection, then later may use to check items further up the package and 

subprogram hierarchy. They allow checks such as “no mutual recursion” to be made 

in linear time since SPARK visibility and declaration rules mean that a procedure P 
cannot call procedure Q if P comes before Q. Examples of these annotations are —# 

own X (declare package state X) and —# derives X from Y (expresses information 

flow of a subprogram operating on variables X and Y).

V isib ility

Ada requires that packages explicitly list any other packages whose types, subprograms 

or variables they reference directly. This listing is done using the Ada with context 

clause. SPARK additionally requires that indirectly referenced packages are also listed, 

using the —# in h e r it  annotation.

For instance, if package P contains state variable V which is changed by subprogram 

P.X, and procedure Q.Y in package Q calls subprogram P.X, then Ada would require 

that package Q list P as a referent. If subprogram R.Z in package R calls Q.Y then Ada 

would only require that R list Q as a referent in its —# in h e r it  annotation; SPARK

would however require that P also be listed.

These visibility rules allow the SPARK Examiner to prevent any circular references, 

which includes banning simple and mutual recursion in subprograms. The subprogram 

dependency directed acyclic graph allows the Examiner to define an examination order 

which has the following properties:

• each package specification is examined before its body; and

• each subprogram declaration is examined before any subprogram body containing 

a call to that subprogram is examined.

Banning recursion enables static calculation of the maximum depth of the stack 

during program execution, allowing the programmer to demonstrate that the stack will 

never overflow. This is of particular importance in embedded systems where programs

are required to have a high mean time between resets.
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State

A package may have any number of state variables. These come into scope and are 

given initial values (if specified) when the package is elaborated', for a top-level package 

this occurs at the start of the program execution. Package elaboration order is a 

significant issue in Ada, but the visibility rules in SPARK allow developers to ignore 

it.

A subprogram may declare any number of local variables. These, in addition to 

the subprogram parameters, are only in scope and retain data for the duration of 

the subprogram. This is also true for the state variables of any packages or other 

subprograms embedded in the subprogram.

Ada subprogram parameters are given modes which describe whether the parameter 

is an input (in), output (out) or both (in  out). It is illegal to write to a mode in  

parameter, though it is legal to read an out parameter.

SPARK additionally requires that subprograms list in a —# global annotation all 

the state variables which they use, along with their modes. In the earlier example, 

subprogram R.Z would have to list variable P.V -  even though P.V may well not be 

visible to it under Ada rules! Through the SPARK annotation, all the side effects of a 

subprogram can be known at analysis time, allowing precise flow analysis.

SPARK requires that the state variables in a package be declared in an —# own 

variable annotation in the package specification. Any variables declared in the body 

may be aggregated into a single abstract state variable. This enables encapsulation of 

the package state inter-dependencies in the body, reducing the complexity of annota

tions for any subprograms calling subprograms in the package specification.

Flow analysis

Data flow analysis[CB8b] of a subprogram S validates that the variables imported and 

exported by the subprogram correspond to those specified by the user in the declaration 

and in the declarations of all subprograms called by S.

SPARK has the option of allowing information flow analysis as well. This goes 

further, allowing the developer to specify how the exported variables depend on the 

imported variables and checking that the program information flow matches the devel

168



oper’s design intent. This is done by computing the products and transitive closures 

of Boolean matrices representing the variable dependency information of individual 

subprogram statements.

Tasking

A significant omission in current SPARK, as compared to Ada, is Ada’s notion of 

tasking. Tasking was omitted from the SPARK subset because it can be extremely 

complex and difficult to reason about.

Because the Ada 95 tasking model has improved on the Ada 83 tasking model, 

it has become possible to define subsets of the tasking constructs with desirable de- 

terminacy and performance properties. The Ravenscar tasking profile[BDR98] is the 

a deterministic scheduling subset of Ada 95 which will be adopted formally in the 

Ada OY language; in the meantime, it has been incorporated into release 7 of SPARK 

Ada[Cha03].

M em ory-m apped I /O

Previous use of SPARK in embedded systems such as SHOLIS[KHCP99] using memory- 

mapped 10 pointed to a problem in the way it treats variable initialisation. Suppose 

that we have a design that uses page zero of memory to communicate with a PLD or 

other piece of hardware across a bus. Ada (and, indeed, SPARK) allows us to define 

a variable supplemented with a “use clause” that specifies the exact memory location 

and /  or data format to be used. We might define two 8-bit registers X and Y for input 

and output respectively thus:

BASE_ADDR : constant := 0; 
type Byte is mod 256; 
for Byte'Size use 8;
X : Byte;
for X'Address use (BASE_ADDR + 16#010#);
Y : Byte;
for Y 'Address use (BASE_ADDR + 16#014#);
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This maps X to location hex 010 and Y to location hex 014. Typical use would be 

to write a value to Y to transfer the data to a PLD, and to read from X to read data 

from the same PLD.

We might produce some control code which looks like:

Y := START.PRGCESSING;

while (X /= ENDED.PRGCESSING) loop 

U t i l i t i e s . S leep(5);

end loop;

Y := RESET.REGISTERS;

The intention of this is to start some processing in the PLD, then every 5 millisec

onds poll the PLD for a “completed” flag. Once this is done we reset the PLD registers 

in preparation for a new calculation.

Naively, the SPARK Examiner would not accept this code. From its point of view, 

Y is being written to twice without being read, hence the first assignment is ineffective. 

And in the loop, X is not an export of procedure U ti l i t ie s .S le e p  so the loop will 

either not happen at all, or will be infinite.

However, the SPARK language now permits specification of variables as read-only 

or write-only, and the Examiner can correctly fiow-analyse code which uses them. X 

and Y would be declared as package own variables where they would be given modes in  

and out respectively. The release note for the SPARK Examiner 6.0 [ChaOl] describes 

this concept in detail in Appendix A; there are some complexities involving mixed 

mode state in package refinements that can trip up the unwary developer.

Since Ada programs are likely to use memory-mapped I/O  to communicate with 

external devices such as PLDs it is important that we have a model in SPARK for how 

this communication occurs.

4.3 .4  S tatic analysis and provability

SPARK is designed to perform static analysis as defined in Section 2.2.2. Using the 

Examiner for information flow analysis picks up not only common errors such as use 

of uninitialised variables, infinite loops and potential aliasing, but also reveals quite
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detailed information about the structure of the program in terms of data coupling 

between packages.

The user can also choose to employ more detailed methods for selected procedures. 

The Examiner contains a Verification Condition (VC) Generator that can be used to 

attempt to prove correct a subprogram in terms of the pre- and post-condition model 

on which Z is based, and which we will use in Chapter 5. Using the run-time exception 

and overflow checks option, discussed above, also enables the user to show absence of 

run-time exceptions.

From a given subprogram, a set of Verification Conditions (VCs) is generated for 

each path through the subprogram. The VC set for a given path consists of a list of 

hypotheses which are true for that path, and one or more conclusions which need to 

be deduced from the hypotheses for the path to be well-formed.

The extra complexity of these options arises because the Examiner itself simply 

generates files describing the sematics of the subprograms concerned, along with the 

user’s requests (e.g. that no variable goes outside its type range.) Use of two other 

tools is then required. The SPADE Simplifier[Pra95] processes these files to eliminate 

irrelevant and redundant information, and performs some automatic simplification of 

hypotheses and conclusions. It is possible that these simplifications will be sufficient 

to discharge the VCs. If not, the user may either to prove the remaining assertions by 

hand or use the SPADE Proof Checker[Pra98].

In Chapter 7 we generate run-time exception checks with overflow for a substantial 

SPARK program to demonstrate that it is a practical technique for software develop

ment.

4.3 .5  Sum m ary o f SPA R K

For the purpose of this work, SPARK Ada’s strengths as a language for hardware /  

software co-design of safety-critical systems are in its formal definition, the information 

it provides about variable data types and flow, compatibility with industry-strength 

validated compilers and the existence of tools to support detailed analysis and proof 

of programs written in SPARK Ada.

Its main weaknesses are the gaps in its formal semantics and omission of some use-
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fui Ada constructs which would be amenable to analysis e.g. simple generic package 

declaration and instantiation. However, despite these weaknesses the language is fun

damentally strong enough and well-defined enough for us to use and reason about its 

behaviour.

4.3.6 SPA R K  interfaces

Now that we understand the main properties of SPARK, we examine how to interface 

SPARK to programmable logic. The architecture that we are assuming for the system 

discussed in the remainder of this section is a conventional microprocessor and memory 

on a bus, executing a compiled SPARK program, with a PLD also interfaced to the 

bus.

Suppose that we have a set of operations, and maybe some state, that are held 

within a PLD, to be controlled by a SPARK Ada program. The rest of the system 

is intended to run in software on the microprocessor. We will now consider how to 

interface beween the PLD and the Ada software. This section aims to establish that 

Ada programs can communicate with PLDs and be annotated in such a way that the 

SPARK Examiner accepts the Ada code and correctly models the actual information 

flow in this interface.

M em ory-m apped I /O

We will need to be able to access the input and output pins of a PLD from Ada. As 

explained in Section 4.3.3, memory-mapped I/O  can be set up so that, for instance, 

one page of addressable memory is mapped to the PLD input and output pins, via 

the memory management hardware of the system, and variable X (respectively Y) is 

mapped to the input (respectively output) pin area of the page. Assigning a value to 

X will effectively input to the PLD pins; reading from Y will effectively read from the 

output pins.

The variables X and Y will be state variables of some package P, so according to 

SPARK rules X and Y must be declared as —# own variables of P. However, since X 

and Y are memory-mapped then the developer must specify whether they are mapped 

as an input (mode in) or output (mode out) in order that the Examiner not complain
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that the variable is never assigned to (for mode in) or never read (for mode out). 

L ibrary  interfaces

An alternative is to control writing to and reading from the PLD with a software 

library which is not written in Ada; C is a common choice by device or COTS operating 

system vendors. However, there needs to be some interface at the Ada level. To do 

this, the Ada language requires the developer to provide a package body incorporating 

subprogram declarations marked by a pragma In te rface  statement, denoting a library 

interface call. Ada calls to these subprograms are translated by the compiler to calls 

to the library subroutines.

The package specification will declare SPARK-compliant subprograms that wrap 

each interfaced routine. SPARK requires this package specification so that it can 

perform an analysis of the program where calls to this package are made; the developer 

is therefore required to add SPARK annotations that represent the actions of the 

library for each call. It is usual to give the package specification a single —# own 

(state) variable representing the state of the logic device, and have the state change 

at each operation. The package body is typically excluded from SPARK analysis since 

local types may need to be declared that are not SPARK-compliant.

It is important for the correct information fiow analysis of the rest of the program 

that the developer’s annotations be a faithful representation of the PLD’s operations. 

For example, if the PLD’s state changes as the result of an operation K, but the anno

tation for K does not reveal this state change, then any safety or security arguments 

which rely on the PLD not changing state between two points cannot usefully appeal 

to the information fiow analysis done by the Examiner; all the possible paths between 

the points would have to be checked for calls to K.

4 .3 .7  P artial com pilation

It is conceivable that a developer would have an existing SPARK program which runs 

entirely in software, and wish to compile some of it into programmable logic. This 

could occur if:

1. the software as it stands cannot meet performance requirements;
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2. the PLD hardware is planned to arrive late in the project schedule and the 

program must be unit- and system-tested before it arrives; or

3. an emerging system hazard has indicated the need to move some functionality 

out of the program’s direct address space (e.g. a safety monitor).

Assume that the software to be compiled is some package P of the program. How 

should we go about this?

First, we should establish that the software to compile is true SPARK; this is easily 

done by running the Examiner on P’s specification, body and subprograms. Second, 

we should show that the software is free from run-time exceptions, by generating VCs 

with the Examiner and proving them via the Simplifier and Proof Checker or manual 

proof review. At this point we should consider whether adding proof statements to 

some of P’s subprograms would be helpful to the compiler; if so, these will need to be 

proven as well.

Next, we need to consider whether we wish to make the use of a PLD explicit in the 

program. If we do, we can use either the library interface package scheme to make PLD 

library calls, or write directly to registers with an MMIO scheme, replacing existing 

code in subprograms. We must then change our annotations to refiect the new state 

variables and rerun the Examiner on the subprograms.

The disadvantage of these approaches is that any new state or subprogram in

formation fiow changes will “bubble up” through the program, causing any package 

depending on our compiled package to change its annotations. This is tedious, espe

cially since operations pushed out to programmable logic tend to be at the leaves of 

the program calling tree, and so much of the program may be affected.

Better would be to leave the original package annotations intact. But how can 

we be sure that they are accurate? This will depend on the reliability of the compile 

transformation.

If we can ensure that the compiled PLD code and the original SPARK are refine

ments of the same original specification, this gives us the advantage of being able to 

develop and test the software independent of the hardware, removing a dependency 

tie from the system development plan. Certainly there will eventually have to be tests 

to check that the PLD program integrates properly with the software with particular
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attention paid to timing issues, but these can be run quite late in the development pro

cess since timing-related changes should be localised in the program and not change 

the results of much of the unit, system and functional coverage tests.

With this in mind, we now look at how to partition a SPARK program into hardware 

and software components.

4.3 .8  P artition ing

A SPARK program provides significantly more information relevant to partitioning 

than an Ada program. For each subprogram we know exactly the variables which it 

requires as imports and exports, the numeric ranges of these variables, and we can even 

add extra constraints on imported variable values and show whether they are satisfied 

at every point in the program where the subroutine is called.

Information flow annotations additionally describe how the subprogram imports 

depend on the exports, which may give us a starting point for a decomposition of the 

subprogram.

If increasing (or, indeed, maintaining) overall program execution speed is important, 

we must establish that the increased calculation speed provided by the PLD offsets 

the cost of I/O  between software and PLD; the imported variables are copied to the 

memory-map inputs, then the program waits for the output values to be ffagged as 

ready and copies them back to the exported variables. Therefore a selected subprogram 

should have a software execution time significantly greater than this two-way copy and 

transmit operation.

The bit width of imports and exports should be calculated, and “narrow” subpro

grams be favoured over “wide” ones. The developer should bear in mind the bandwidth 

and routing problems that affect most PLDs.

Finally, we should aim to encapsulate changes. Therefore, if the PLD-migrated 

subprogram S calls subprogram T, then both S and T need to go into hardware; if T is 

not called from any other part of the software then all the better, since it will effectively 

become an embedded subprogram of S. Essentially, we are aiming to create a package 

with the minimum of public subprograms where a compilation closure of a subset of 

the package body is in hardware.
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4.3 .9  C om pilation - a first cut

Suppose we have selected subprogram S to be compiled into hardware, with imports 

i i , . . . ,  V  and exports j i , . .. Jn- We shall ignore the case where a variable is both 

imported and exported since the input and output pins are physically separate on the 

PLD and so there is no issue with the newly calculated PLD outputs interfering with 

the original PLD inputs. For each variable we have a known data range, which we will 

translate into a bit width. At the moment we will assume that all these widths are 

small as this allows us to assume simple bit-parallel communication of variable data 

which completes in one clock tick.

The information flow annotations of S describe variable dependency. For each 

export we know exactly which imports it depends on. We can therefore produce a 

design where each export is the single output of a block, whose inputs are the imports 

that the export depends on.

The subprogram that computes each export can be derived from the original sub

program as follows:

1. delete all imports that do not affect our selected export, and all exports apart 

from the selected one;

2. delete every statement in the subprogram that uses any deleted import, or assigns 

to any export other than the one we want;

3. rerun the SPARK Examiner, and delete all the assignments which it reports as 

ineffective;

4. if any ineffective assignments were reported, go back to step 1.

This can be shown to be semantically equivalent to the original by arguing that:

1. the Examiner correctly identifies the information fiow in any subprogram;

2. we create a subprogram for every export, and therefore our argument reduces to 

showing that the algorithm works for any given export;

3. there is a finite number of assignments in the subprogram and therefore our 

algorithm terminates;
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4. in any statement except a procedure call with more than one export, all imports 

of that statement affect the statement export;

5. we have already recursively applied this algorithm down the subprogram tree to 

such change procedure calls to sequential calls to reduced procedures computing 

single exports; and

6. if there were a statement which affected our export and which we had deleted, 

it must have either used a deleted import (in which case the import must have 

affected our export and hence could not have been deleted) or been reported as 

ineffective (in which case it could not have affected our export at all).

Now we are left with a subprogram that computes one export. How do we compile 

it to a form suitable for execution in a PLD?

4.3 .10 C om pilation o f SPA R K  code

We examine the general problem of mapping SPARK code from inside a subprogram 

directly onto a typical PLD. We do not consider the specific (and substantial) prob

lems involved in producing a safety-critical PLD implementation, e.g. making the 

transformation suitable for arguments about preservation of program semantics.

We examine three possible paths from SPARK to PLD:

1. to develop, for each SPARK construct, a bespoke PLD “interpretation” which 

can be composed together;

2. to formally transform source code to PLD through formal refinement, based on 

the previously-provided semantics; or

3. the development of a SPARK “interpreter” on a PLD.

The first is the hardest to implement, it being difficult to show that the transfor

mations induced are sound with respect to our semantics. For illustration of these 

difficulties, we describe the transformations envisaged as necessary, isolating the parts 

that would introduce real difficulties.
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The second leaves the developer with work to do every time that the refinement is 

needed. The benefits are that the semantics that justifies the transformation already 

exists, and it can work at various levels of criticality -  from a hand waving justification 

that a predicate is true through to a 10-page proof that a given refinement step is valid.

The third has the benefit that, once the transformation is proven correct, its subse

quent use produces valid hardware that is suitable for safety-critical use whenever the 

original SPARK code was suitable. Of course, as Stepney has shown[Ste98] the steps 

involved in high-integrity transformation are difficult to get right. It is unlikely that 

such a PLD-based interpreter could be certified as appropriate for the higher levels of 

integrity. We do not attempt to produce these transformations in this work.

We begin with the first option, the development of PLD representations of each 

SPARK language construct.

Syntax

Sequential SPARK subprogram body code consists of a sequence of the following classes 

of code:

• assignment of an expression

• fo r  loop

• i f  -  e l s i f  -  e lse  -  end i f  block

• while loop

• simple loop

• procedure call

• case block

There are two forms of in-statement evaluation: an expression (as found on the 

RHS of an assignment) and a condition (as found following i f  or e ls i f ) .  Note that, 

unlike C or full Ada, conditions and expressions may not have side effects; they change 

no variables themselves. Expressions and conditions may involve calls to functions but 

these functions do not have side effects.
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Sequential composition

For each item in the sequence, the SPARK flow analyser will tell us its imports and ex

ports. Any subprogram local variables are included in the flow analysis, and eventually 

removed for the purpose of calculating the whole subprogram flow analysis. Iterative 

constructs such as while loops have their information flow calculated using the algo

rithm described by Barnes[Bar03] §10.8. If we can produce a block for each sequence 

item, we can connect inputs and outputs in the appropriate sequence to produce a full 

computation.

Note that some items in the sequence may produce an output that is not needed by 

their successor. In that case the output can be connected directly to the first successor 

that needs it. If consecutive items P,Q are such that no export of P is an import of 

Q then P and Q can be placed in parallel. They must, however, be synchronised in 

some way so that the computations that follow will process P and Q only when both 

are ready.

To manage this, and the more general issue of “computation complete” for the 

subprogram we implement a simple protocol with input and output control bits. Each 

hierarchical block B in the program has one input and one output bit, with each output 

bit connected to the inputs of one or more other blocks that use the data from B. At 

program start each input bit is low and each output bit is low.

When the PLD receives data from the SPARK program, the input bit for the entire 

subprogram block will be set high to signal valid input data. The PLD computation 

then starts, with the high input bit travelling across the PLD to track the computation 

progress. When each block’s computation is complete the output bit is set high and the 

block waits for the input bit to go low. The blocks to which the output bit is routed will 

then copy over the block’s output data and signal back that this has happened; once 

all child blocks have signalled back, the block pulls its output bit back to low and is 

left waiting for its input to go high again. The entire subprogram block will eventually 

have its output bit go high, at which point it writes data back to the SPARK program.

Figure 4.4 shows an example of data being passed from block A to block B to block 

C, with the computation complete signal travelling the same path later on.
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Calculation

A ou t  / B i n

B ou t  / 0  in

0  ou t

Time

Figure 4.4: Handshaking across blocks

Code constructs

SPARK assignment will be represented in the PLD by a set of lookup tables which 

compute the RHS expression in stages. This is not hard unless a function forms part 

of the expression; in this case we will have to produce a block for that function and 

wire it into the computation.

A fo r  loop provides a loop variable which its enclosed block takes as an additional 

input. Short loops with static iteration ranges could be unrolled altogether; however, in 

the general case it would be necessary for the loop’s block to route its outputs back to 

its inputs, and to have control logic that raises a flag once the computation is complete.

Conditionals such as i f  and case blocks have code blocks which are placed in par

allel, and a multiplexer which selects inputs depending on the conditional statements. 

Note that each block in these statements must have the same exports, so must import 

any exports which they don’t change.

while loops and simple loops work like fo r  loops but without the loop variable. 

Any use of the e x it  statement will set the “output valid” control, as will the main 

loop test for the while condition. The SPARK restrictions on control flow (following 

a semi-structured flow graph) help in this respect as the exit points are always on the 

outermost part of the calculation.

Subprogram (procedure) calls are inlined by inserting the block representing that
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subprogram. The enforced ban on circular or recursive subprogram calls ensures that 

the inlining will eventually terminate at a set of “leaf” subprograms that do not contain 

any further subprogram calls. Note that this method would be inefficient in space usage 

if a particular subprogram was called at several points within the compiled program.

Packages w ith  state

Suppose a package has internal state, invisible to other packages by Ada rules. This 

state will be stored in the PLD, so will change the aforementioned layout by adding a 

RAM block to store the state, routing the RAM output into the sequence items like 

a normal import, and, in the case of a write, routing the exported data back to the 

RAM store with a write bit set.

B it serial versus bit parallel

All the above has assumed that we are working in bit parallel form. However, there 

are many cases where input data may be very wide, for instance in the case of an 

array with a wide range or a record with many fields. Passing this into the PLD in bit 

parallel form would quickly use up routing resource, especially if the entire variable is 

routed between several statement items. Is there an alternative?

For records, it is not hard to slim down the data. The Examiner does flow analysis of 

subprograms at the record component level, so although the entire variable is imported 

the Examiner knows which fields will be imported and exported at each stage. It is a 

relatively simple matter to treat the record as a list of distinct variables.

Arrays are more difficult. Array indexing is, in general, dynamic and hence not 

susceptible to static analysis. In the worst case it is computationally infeasible to 

determine which array elements may be used at a given stage of computation. However, 

there are optimisations which may be used in some cases at the possible expense of the 

clarity of correspondence between the PLD and SPARK representations.

Often, entire arrays (or subranges of them) are changed with a for loop. If a rela

tively small subrange is used, the Examiner would be able to check that any reference 

to an array element is made with an index with a given subrange, reducing the amount 

of array data that needs to be exported or imported. This would require a modification
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to the Examiner to maintain a “defined” flag bit for each element of any non-imported 

array with a range below a set limit.

Alternatively, we could find that the only references to an array are within a fo r  

loop, with array indices corresponding to a 1-1 function of the loop variable (and of no 

other variables). As long as the RHS of any assignment to the array is not dependent 

directly or indirectly on the loop variable, the entire function can be replicated any 

number of times to calculate the array value over arbitrary subranges. In addition, the 

SPARK code could supply the subrange parameters and so use a number of calls to 

the hardware to compute the entire array change in sections. This gives the developer 

an ideal opportunity to trade execution speed against PLD area.

These techniques are intended as an example of the trade-offs that can be made in 

compilation. They show how the extra information obtained by the SPARK Examiner 

can be used to have confidence that such optimisations preserve the correctness of the 

code.

Justification o f equivalence

The dynamic semantics of SPARK Ada[Ltd94b] are defined for each construct in terms 

of modifications to a collection of variable state information. In order to reason about 

the correctness of transformations into PLD form we need to be able to relate the 

semantics of a SPARK statement P to the semantics of a PLD block Q which is intended 

to represent P.

We must define the semantics of the PLD block Q in terms of its transformations of 

data between its input control bit being set high and the block setting its output control 

bit high. Our SPARK-to-PLD transformation has defined some functions QI,QO  ; 

V X N —̂ P W from the legal values of each imported (respectively, exported) SPARK 

variable from the variable set V = VjU Vo to appropriate representations of the data 

by high voltages on a combination of wires Ç W  going in to (respectively, coming 

out of) the block. We represent the distinct values of a variable by natural numbers; 

that this is adequate follows from an argument appealing to the behaviour of a correct 

compiler which must represent each value of any variable by a bit pattern within a 

fixed-length field in memory. The inverse functions QI~^, Q0~^ describe the variable
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values represented by a given combination of wire high-voltage states.

Any given statement in the SPARK program P updates the variable store a to 

represent its action on variable values. The simple assignment of an expression ev to 

a local variable fullname, for instance, is expressed by a deduction rule AsgnDl (on 

page 109 of [Ltd94b]) which updates cr by;

<7 0  {fullname ev}

The corresponding definition on Q will be in terms of the traces of the SRPT process 

representing Q. If ci is the input control bit and co is the output control bit then an 

equivalent statement for the assignment block A in Q would be:

V /e 7 ^ p ] ] ( T .V i> 0 -

{ci ^ t[i] A ci e  t[i +  1]) => {3k > 0 : co E t[i + 1 + k])

A Q0~^{fullname^ t[i +  1 +  A;]) =  

ev{QI~^{t[i -f 1]))

Clearly, the semantic mapping outlined above would have to be expanded and 

formalised if this hierarchical translation method was to be developed formally. The 

weakest precondition semantics of each SPARK construct would have to be refined by 

the PLD implementation.

4.3.11 R efinem ent

A second approach is to produce a formal specification of the function performed by 

a SPARK subprogram, and refine this to a custom implementation in hardware. This 

throws away the SPARK implementation, taking advantage of the parallel computa

tional model presented by the PLD. How do we ensure that the SPARK implementation 

is therefore equivalent?

SPARK enables the developer to specify pre- and post- conditions for subprograms, 

and prove the correctness of postconditions given preconditions by generating and 

proving verification conditions. Therefore we can have confidence that our SPARK 

implementation does what is specified. Alternative approaches are model-checking and
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animation, both of which are used by the P r o B  tool which supports programs written 

in the B language [Abr96].

The implementation difficulty is going to be showing that our custom implementa

tion satisfies the VCs as well. This is something we address in Chapter 5. The separate 

difficulty of providing an accurate specification is a well-known software engineering 

problem[DvLF93, Vic98, HRHOl] which lies outside the scope of this thesis.

4.3.12 SPA R K  interpreter

The third alternative to the approach of transforming an isolated package into PLD 

form is to produce a SPARK “interpreter” that runs on an PLD. Such an interpreter 

would be able to operate on any number of SPARK packages, running a computa

tionally intensive program without any need to synchronise control with conventional 

SPARK code. It would also have the advantage that its operation need only be proven 

correct once; any SPARK program would be represented as data within it.

In Chapter 6 we describe one possible interpreter, with a number of customisable 

parameters. Different designs are certainly possible; this is only one example.

We do not attempt to reason in any way about the correctness of this particular 

design. An analytic proof (such as would be required by standards such as Defence 

Standard 00-54[MoD99] for system functions at SIL 3 or SIL 4) would be much more dif

ficult than that for the refinement or hierarchical implementation approaches described 

above, since the ability to map between relatively small SPARK and PLD constructs 

would be lost; the proof would not be that a particular program was executed correctly, 

but rather than any valid SPARK program was executed correctly.

Conventional Ada 95 compilers are validated against the ISO standard ISO/IEC- 

18009:1999[cJ99] using the publicly-available test suite “ACATS” which contains over 

3600 programs. At the minimum, validation of a SPARK interpreter would have to 

include running each SPARK-compliant ACATS program and verification of the results. 

This may be adequate to qualify the use of the interpreter for system functions of 

limited criticality, although each project using the interpreter would have to justify its 

use in the project safety case.

High integrity Ada compilers such as GNAT Pro High-Integrity (Ada Core Tech
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nologies) and Object Ada (Aonix) go through additional verification activities and 

provide documentation of these activities to end-users; for safety-critical implementa

tions they use restricted subsets of Ada 95, such as GNAT NO RunTime (GNORT), 

C-SMART and RAVEN. The verification for a SPARK interpreter at high levels of 

integrity would include at minimum the proof of key interpreter properties (liveness, 

preservation of data ordering, freedom from race conditions), but the list of verification 

activities required for a particular safety integrity level and application domain would 

emerge from a detailed safety assessment.

4.3.13 Sum m ary

In this section we have described the SPARK Ada 95 subset, shown how its properties 

are helpful in the task of compiling it into a form suitable for execution on a PLD, and 

described two possible compilation forms as well as more general considerations for the 

SPARK-PLD interface.

Of the targets in Chapter 3 we have addressed or partially addressed:

Target 2 : The process must help the developer to write unambiguous programs.

We are programming in SPARK Ada 95, an annotated Ada subset with compiler- 

independent semantics.

Target 3: The process must allow the programs to have sections written in a

low-level language for speed and flexibility, but not allow these sections to compromise 

overall program reliability.

SPARK shadows and hide annotations allow the insertion of arbitrary Ada code, 

which may include assembly language.

Target 4- The process must admit substantial static analysis to discover semantic 

program errors at or before compile time.

The SPARK subset is enforced by the SPARK Examiner, which also performs 

information- and data- fiow analysis to verify the program against design information.

Target 6: The program must be able to be compiled onto a range of existing and

anticipated PLDs.

We have made no assumptions about the target PLD other than that it is large 

enough to contain the SPARK program (or interpreter) being transformed.
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Target 7; The process must reuse existing proven tools where feasible.

The SPARK Examiner tool already exists, and we have noted where it may be 

extended in small ways to support transformation activities. The information held 

by the tool after the analysis phase strongly supports PLD-targeted transformation 

activities.

Target 10: The process should provide flexibility so that it may be used in situa

tions not anticipated in its original design.

We have presented three approaches to transforming SPARK programs, aimed at 

code of differing integrity levels.

Target 11: The process must admit justification to the project safety authority

that the programs output by the process are of an adequate integrity level.

We have shown in Section 4.3.10 how the hierarchical transformation process might 

be validated against the existing semantics for SPARK, and how the refinement ap

proach changes the validation required to the proof that an SRPT process refines a 

specification.

Chapter 5 will demonstrate how to produce a custom PLD implementation from a 

formal subprogram specification, allowing us to produce SPARK and PLD implemen

tations which are formally equivalent but markedly different in form. This supports

the second approach discussed in SectidiT4.3.11, of transformation-by-rehnement.

Chapter 6 will break down this section’s overview of a SPARK interpreter into 

a detailed implementation, showing how the conflicts discussed in Section 4.3.12 are 

resolved and aiming for demonstrable reliability.

The case study in Chapter 7 will demonstrate construction of an example safety- 

critical system in SPARK Ada and mapping part of it into a PLD while preserving its 

functionality.
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Chapter 5

Refining To SR PT

Refinement is one of the building blocks of formal methods. It is a way of going 

from a relatively abstract statement of a problem to a system which can be built with 

no further intelligent, human involvement, and which can be shown mathematically 

to solve the problem stated. Much research has established formal refinement as of 

appropriate rigour for safety critical systems development ([ORS96] is a pre-eminent 

example, distinguished by its completeness).

In this chapter we describe a formal refinement calculus for high-integrity software 

running on a PLD. Through the refinement calculus, we will be able to address the 

concerns of rigour.

5.1 The Refinem ent M odel

There are many approaches to refinement; for instance, see Back [BvW94] and Morgan 

[Mor94]. Of particular relevance to our approach in being based on reactive action 

systems is the refinement of Back. There, refinement is defined in terms of traces. We 

follow a broadly similar form in our semantics, although the deterministic nature of 

our SRPT subset means that we avoid some of the complications encountered by Back.

Action systems describe the behaviour of a parallel system in terms of the atomic 

actions that can take place during the execution of the system. Back’s approach to trace 

refinement uses simulations between action systems to construct an abstract behaviour 

that approximates a given concrete behaviour. By contrast, the deterministic SRPT 

subset that we use allows us to refine traces directly.
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The syntax of our abstract specification is similar to that used by Morgan. This 

describes a system:

w : [p re , post]

where w is a set of free (changeable) variables in the system, p re  is a predicate speci

fying the precondition on states that can be assumed for the system, and post is the 

predicate on w which the program produced by the system must satisfy.

This model is based on the predicate calculus. The pre-conditions and post

conditions are predicate calculus formulae. The conditions define a contract for a 

program to fulfil, as described by Morgan. We now give an overview of the refinement 

process in Morgan’s model as an example of what we are aiming to achieve.

5.1.1 O verview  o f a refinem ent process

Within Morgan’s model, each system being developed is refined through a series of 

well-defined transformations based on proven sound refinement laws to a program ex

pressed in a simple machine-independent language. The language used by Morgan as 

“code” (the executable form of a program) is a language of guarded commands, which 

has alternation, iteration and subprogram call control structures similar to those found 

in most modern imperative programming languages. Commands are composed sequen

tially within subprograms. This language is augmented with Morgan’s program speci

fication syntax to express parts of the program which have not yet been developed to 

code. The semantic basis of the refinement is Dijkstra’s weakest precondition calculus 

[Dij75].

T he theoretica l basis of refinem ent

Refinement itself occurs in a system defined by pointwise extension of a partially ordered 

set ( “poset”) which itself is equivalent to a lattice. The poset comprises a set L of 

elements (predicates) and a binary ordering operator (the partial order) for elements 

of L denoted < Partially ordered sets are described in more detail by Miller and 

Dushnik[DM41j.

The programs in Morgan’s model are predicate transformers, transforming predi

cates according to weakest precondition semantics. Given a program P = w : [ p r e , p o st ]
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and a predicate g, if g p re  then P{q) = q' where g' is g transformed by post 

according to weakest precondition semantics. The refinement relation Ç between pro

grams corresponds to the ordering of the predicates on which they are based. More 

detail is given by Back[BvW94].

The symbol =  in the context of refinement means “refines in both directions”. If 

X = Y  then X □ 7  and T □ X.

Exam ple of refinem ent

In Morgan’s system, X[w\E] denotes the simultaneous substitution of E for each 

instance of w in expression X.  Law 1.3 (p.9) states that if

p re  post [w\E]

then

w,x  : [p re , post] C .w := E

where Ç is read “refines to” and : = denotes the assignment operation in the language 

of guarded commands. The variable x is unaffected by the simultaneous substitution of 

E  and in fact vanishes after the refinement; since w and x are independent, an intuitive 

interpretation of this is that the true or false value of post was unaffected by x.

According to this law, the program statement w : = 5 is a refinement of the speci

fication

w : [ tru e  ,w = SV w = 6 ]

since tru e  (5 =  5) V (5 =  6).

Other code constructors include alternation, sequential composition iteration and 

procedures, and there exist laws for introducing these from certain specifications.

Pathological specifications

Some specifications cannot be refined to code, and are termed “infeasible” . Other 

specifications can be satisfied by almost any code. Pathological examples of these 

forms of specification include:

189



w : [ fa lse , tru e  ] “abort” 

w : [ t r u e , tru e  ] “choose w”

w : [ tru e , false] “magic”

a b o rt is never guaranteed to terminate and may do anything to its variables, choose 

w terminates and changes w to an arbitrary value. The program statement skip is a 

special case of choose where no variable w is supplied, m agic always terminates and 

establishes the impossible condition false ; no program can satisfy this specification.

R etrenchm ent

There also is an issue of feasibility regarding the types of variables permitted. For 

instance, assignments involving set operations are permitted, though conventional im

perative languages do not implement such operations natively. Exact arithmetic with 

irrational numbers is also allowed, in contrast to the imprecise fioating point arithmetic 

model used in common imperative languages such as C, Perl and Ada.

This problem is a known issue in the development of software for high-integrity

systems. A common solution is to specify real-number calculations using error bounds 

(often denoted e) so that a specification of an implementation F  of a real-number 

calculation might be:

\ F (x,y) -  \< e

This may be an acceptable approach for individual equations, but for a system 

which depends on sequential real-number calculations this approach can quickly make 

specifications hard to read accurately.

Large-scale formal reasoning about moving from exact to imprecise calculations may 

require the use of retrenchment [BP98]. This is in many ways the opposite approach 

to refinement, allowing strengthening of the specification precondition and weakening 

of the precondition to reason about the program correctness in the context of loss 

of accuracy in the data type transformation. Since PLDs are often used for numeric 

calculations, retrenchment or related techniques may prove useful when specifying and 

refining programs to run on them.
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Characteristic Morgan SRPT

Specification domain 

Language 

Data fiow forms 

Calculations at:

State model 

Implementation

Predicates 

Guarded imperative 

Serial, subprogram 

Assignment : = 

Variable-value function 

Ada, C, Pascal

Timed predicates 

Processes 

Serial, parallel 

Primitive blocks 

Events in traces 

Pebble

Table 5.1: Contrast of Morgan and SRPT refinement processes 

5.1.2 Suitab ility  o f m odel

Morgan’s refinement model starts with a specification at an arbitrary level of abstrac

tion, and allows step-by-step refinement of that specification to a program form which 

is executable. The developer needs to define the program statements which he regards 

as directly executable. Each refinement step is done according to a law in the refine

ment calculus, and may be independently verified by presentation of the specification 

before and after refinement and a statement of the refinement law that was applied.

We noted in Section 4.3 that a similar pre-post specification notation is used in the 

SPARK Ada language proof tools. We presented three main options for developing 

a SPARK Ada subprogram into a PLD implementation, and one of them was to rely 

solely on the subprogram specification. Since Morgan’s refinement model (and hence 

the SRPT model that we will develop later in this chapter) only requires a specifi

cation in [ p r e , post ] form, we have sufficient information to start refinement of the 

subprogram.

The refinement process we wish to use will start with a specification at the level 

of process events (corresponding to voltage highs on the input wires to a PLD) and 

be refined to a set of SRPT processes. Section 4.2 has described a systematic, if 

not yet rigorous, method to translate SRPT into an equivalent Pebble program and 

hence compile it into a PLD. Table 5.1 contrasts Morgan’s refinement process with the 

refinement process we desire.

The approach that refinement provides is therefore appropriate to our needs. Mor

gan’s specification notation matches with the specification notation that SPARK sub

191



programs use. However, because of the differences between the semantic bases of 

Morgan and our trace-based approach we will consider a modified version of Back’s 

refinement process.

5.2 Refinem ent for SR PT

5.2.1 A im s for refinem ent

With our system derived from the above models we aim to replace the notion of an 

imperative program as a final result to a process expressed in Barnes’ Synchronous 

Receptive Process Theory. Specifications may also be expressed in conjunction with a 

non-negative integer time at which they are true.

The building blocks of our new system, i.e. the components corresponding to as

signment statements in Table 5.1, will be processes describing logic constructs similar 

to FPGA cells. For the moment these cells shall be stateless, and their outputs at time 

i  -t- 1 shall be purely functions of their inputs at time t.

5.2.2 R efinem ent frames

A refinement frame is a new construct which we will incorporate into the SRPT nota

tion, allowing us to express parts of an SRPT system in specification form. A refinement 

frame (shortly, “frame” ) P  in a program takes the form:

P = V t ■ lX  : oY  : [[pre]*, [post]*+&] (5.1)

representing the specification “for the process P  with input alphabet containing X  and 

output alphabet containing Y , at all times t, if p re  is true at time t then at time 

t + k post is true.” A: is a constant which will be determined by the timing needs of 

the program at specification time.

Figure 5.1 illustrates frame P  as an SRPT process.

Back[BvW94] does not use these refinement frames; instead, the start and points 

for refinement are action systems operating on state spaces; refinement moves from ab

stract state spaces to concrete ones with the individual actions of the systems changing
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post(Y)

Figure 5.1: SRPT frame structure

as required to handle the decreasing abstraction of the state. An action system refine

ment can be regarded as complete when its state space is sufficiently concrete to be 

implemented on whatever computing system is available.

Process sem antics

If a frame is to represent an SRPT process, as do the other components in the SRPT 

algebra, it must have a set of traces obeying the SRPT trace axioms discussed in 

Section 4.1.5. Concerning the underlying SRPT process P, the frame in Equation 5.1 

specifies that:

y  s e  T^KPjcr V t e N • p re  {s[t..]) post {s[t..])

i.e. that in every trace of P  the frame’s postcondition holds at all points where the 

precondition holds.

p re  (s) is a shorthand for a substitution; the timed event predicate p re  can be 

seen as a Boolean function of subsets of timed event occurrences p re  : P(E x N) —> B. 

Since the trace s is a sequence of time steps at which each event in the alphabets of P  

either occurs or does not occur, it defines a similar function s r  : {lP H oP) x  N —> B. 

Therefore p re  (s) is equivalent to:

y  Z  C P(E X N) • p re  (Z) => ((z, t) e  Z  s r {z , t))
The SRPT trace axioms require that for the refinement frame in Equation 5.1:

1. the empty (zero-length) trace is in T^JPjcr;
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2. T^jPjcr is prefix-closed; and

3 . any input events may be offered at any step, and the output events at that step 

must be independent of those input events.

Axiom 1 follows since the quantification of t is over a null set. Axiom 2 follows 

because the quantification of t is unbounded, so if s\ is a prefix of % G 7^|[P]]cr then 

the specification must hold for all of si. The justification of Axiom 3 is more lengthy, 

and is given in Section 5.2.3 below.

N otation

In the frame P, the presence of an event x at time t is depicted by [x]t. This value 

corresponds to the presence or absence of x at time index t in a trace of P. We also 

introduce the shorthand \f{x,y) = c]* for f{[x]t,[y]t) = [c]t where /  is a constant 

function within a predicate.

t and k are necessary because an SRPT process computes in a “pipelined” (systolic 

or overlapping) manner; t marks a point where a computation starts and k expresses 

the length of the pipeline which produces the result. The VA G N is usually omitted 

for brevity.

Where variables are involved in arithmetic expressions the values tru e  and false 

are taken to correspond to the integers 1 and 0 respectively.

P u rpose  of a  specification

As described above, the specification described by a frame defines a set of traces and 

so can be considered an SRPT process (if an abstract one!).

The aim of the refinement is to synthesise a concrete SRPT process that has traces 

that are “the same or better” than the specification. As we will see below, this trans

lates to a subset ordering on the set of traces.

Rules of a  specification

We define the following rules for the frame contents in order to exclude some infeasible 

specifications. The phrase “X related to T ” in a predicate refers to the situation where
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the truth of the predicate depends on a logical relation between variables X  and Y . 

In all of the following, x  is taken to be a single event in the input event set 6% and y 

is a single event in the output event set oY.

1. Predicate pre may only refer to variables in the input event set X.

2. the postcondition post may only refer to variables in the input event set X and 

output event set F.

3 . the highest time index t of any variable in pre must be less than the lowest time 

index of any output variable (from F) in p o s t .

4. where variables [x]t+i and [y]t+j are related in p o s t , i < j.

Rules 3 and 4 are “anti-oracle” rules, excluding specifications that cannot be imple

mented by an SRPT process since they would have traces that violated the “delayed 

reaction to input” SRPT trace axiom.

The purpose of Rule 3 is to restrict the production of preconditions requiring knowl

edge of the future, e.g.

V  A G  N  • t X  : o T  : [ [ a ; ] * + i ,  [ î / ] i ]

where the program clearly has no way of knowing what [a:]*+i will be, so the obvious 

action for the developer in this case is to weaken the precondition to true (a valid 

refinement as we will see in Section 5.2.5).

The purpose of Rule 4 is to restrict the production of infeasible postconditions, e.g.

y t e N ' i X i o Y :  [p re , [x]t = [y]t]

where the program clearly cannot know [x]t in time to output [y]t.

Exam ple specification

A 1-cycle AND gate with input events X =  {xi^x^} and output events Y  =  {y} would 

have refinement frame

lX  : o Y  : [ tr u e , [% A %]* =  [y]t+i]
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The possible traces (each of which will be a trace prefix) of this process include: 

({a;i}, {xi,X2 }, {%, y}), ({%, %}, {%,%, y}, {?/}) and ()

An example of an incorrect trace prefix is {{x\},{xQ,,yY).

5.2.3 R efinem ent relation

Definition: For S R P T  processes P  and Q we say that P  is refined by Q whenever 

T n m c j  Ç TnlPia.

Informally, P  is refined by Q if any trace of Q is a valid trace of P.  Our notion of 

refinement is a specialisation of that of Back[BvW94] to the case when P  and Q are 

deterministic processes. As noted above. Back uses simulation between action systems 

whereas SRPT provides a denotational semantics for the traces model.

It may at first appear that a process R  with a minimal trace set, consisting (say) 

of the empty trace 7 [̂[]]cr will refine any other process. However, this is not the case. 

Because of SRPT trace axiom 3, which requires that any input events may be offered 

at any step, process R  must define output events in response to each possible input 

event set combination at each time. The only time when a strict subsetting is possible 

would be when P  offers two or more possible responses to a given set of inputs (non- 

deterministic behaviour).

Whenever P  is a valid deterministic SRPT process, P  will only ever offer one 

response to a given set of inputs, so the refinement relation is direct equivalence of 

trace sets.

Given a specification S =  i X  : o Y  : [[pre]*, [post]*+^], we define its traces 7%[[P]]<7

as:

/  € < t < ( i f f - k ) -  [pre(/)]* [post(/)]*+fc (5.2)

If we are to refine S  into processes then we need to show that satisfies the

SRPT trace axioms. In Section 5.2.2 we demonstrated that Axioms 1 and 2 were met. 

It remains to show Axiom 3, that at any step the process represented by can

accept any input, and the input cannot affect the output at that step.

To demonstrate that the process represented by 7^[[5]|a- can accept any input at any 

step without affecting that step, let /  =  s (Z) G T^jPjcr. Then, from Equation 5.2:
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/  G TniS'^o- VO < A < ( # /  -  A:) • [pre (/)]* [post {f)]t+k 

Now we must show that

y U C X - r  = s ^ { V U U )  r e T n i S l a

where V = {Z 0  Y)

because this shows that every process r identical to /  except for input events is in 

TnlSla.

Since s prefixes / ,  we know that s G from SRPT Axiom 2. We need then

only show that:

[pre(r)]#^_(fc+i) => [post (r)]#^_i

i.e., the pre-post relationship holds for the last element of trace r.

The rules on pre- and post-condition time indices restrict post from specifying 

outputs at A, or from t-\-k  onwards, and similarly restrict p re  from specifying inputs 

from A +A; — 1 onwards. Hence any events in U (at time index — cannot affect the 

precondition. By construction, the output events V do not change from /  to r, hence 

the postcondition is similarly unaffected, and therefore the third closure condition is 

met.

This allows us to treat process refinement frames as SRPT processes in the following 

refinement rules.

5.2 .4  R efinem ent

A half-adder could be specified as follows:

V A G N • i{a, b} : o{c, s} : [ t r u e , [2c -|- s]t+i =  [a +  6]*] (5.3)

We have already seen in Section 4.1.6 the definition of the SRPT process CELLf 

which computes the function /  in one step. We make our first refinement law:

Refinem ent 1 Stateless 1 -bit function
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y t e N - i X :  o{y} : [true , [y]t+i =f{[X]t)]

□ CELLf[I\X][0\{y}]

This is justified by inspection of traces: the definition of the [p re , post] form of 

refinement frame in Section 5.2.2 defines the traces of this frame S  to be:

s € Tn lS la  V A G N • ( true => [y]t+i = /([X]*))

which corresponds to the traces of CELLf with the appropriate event renaming. Vari

ants of CELL are the basic constructors of combinatorial logic as they are a represen

tation of primitive blocks in Pebble.

We could use this to define cells that calculated either c or s in our half-adder, but 

not both. We need a way of expressing parallelism. This is our second refinement law:

Refinem ent 2 Parallelism

VAGN- i X : o{Y U Z) : [ p r e , post i A post 2 ]

□ lX  : oY  : [p re , post 1 ] || iX  : oZ : [pre, p o s t 2 ] 
whenever:

Y , Z  are non-empty and non-intersecting

V V G • post 1 [Z\ V] =  post 1

V W G B^^ " p o s t2[y \W ] =  post 2

where B^ is the set of n-ary boolean strings

Informally, this says that if there are two parts of the output of a process, post 1 

and post 2 , which have a null intersection of output events then the process can be 

split into two, each computing one of the parts. Note that it is trivial to extend this 

refinement to any finite number of parallel components since || is associative according 

to Law 2 in Barnes[Bar93] §5.1.1.

The justification of this refinement law is again by traces; we show that the trace 

set of the original frame is equal to the parallel combination of the traces of the two 

new frames, using the semantics of the || operator from Barnes[Bar93] §5.1.

Returning to our original specification Equation 5.3, we can apply refinement law 2 

and the logic arithmetic definition:

a b = 2(fl A 6) (fl 02  b)
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where 02  denotes addition modulo 2 , to produce:
V t e N  ■ ù{a, b} : o{c, s} : [ t r u e , [2c +  s]t+i =  [a +  b]t]

Ç i{a, 6} : o{c} : [ t r u e , [c]f+i =  [a A &]*] (5.2.4.1)

II i{a, b} : o{s} : [ t r u e , [s]t+i = [a ©2 b]t] (5.2.4.2)
We apply refinement law 1 to (5.2.4.1), with function a n d , noting that A is equiv

alent to a n d , to produce:

(5.2.4.1) E CELLa„d[A{«,6}][0\{c}]

and similarly to (5.2.4.2), with function x o r , noting that ©2 is equivalent to x o r , to 

produce:

{5.2A.2)nCELL^oT[I\{a,b}][0\{s}]  

and we have refined our original specification into two parallel 2-input 1-output cells: 

CELL^^^[I\{a,b}][0\{c}]  || CELL^or[I\{a,b}][0\{s}]

5.2.5 A dditional refinem ent rules

We now introduce supplementary refinement rules. We start with counterparts of laws 

given by Morgan [Mor94], whose justifications come from predicate calculus and are 

not given here because our refinement of frames is also expressed in terms of predicate 

calculus.

R efinem ent 3 Weaken precondition 

If p re  p re ’ then: 

y  t G'M ■ iX  : oY  : [p re , post] □ Vt G N • tX : oY  : [p re’ , post]

R efinem ent 4 Strengthen postcondition 

If p o s t’ post then: 

y t e N ' i X  : oY  : [p re , post] n.\f t e N  • lX  : oY  : [p re , p o s t’]

R efinem ent 5 Expand frame
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y t e N - i X ’. o Y :  [ p re , post] Ç

Vt G N • l(X  U A) : o{ Y  U B) : [p re , post]

where A C \Y  = ^ and 5  f lX  =  0.

R efinem ent 6 Contract frame

Let P = iX  : oY  : [ p re , post]. If:

3 A Ç X -  V s e T n l P p  ^ B C A  Vt GN-  

3 r  G • (r[t] =  (s[t] \  v4) U B) A (V t ^  t - r[i] = s[«])

i.e., we can change the occurrence of A input events at any timestep to some arbitrary 

subset B  without changing any of the subsequent output events (input variables A are 

irrelevant to the outputs), then:

i{X  U A) : oY  : [ p re , post] Ç l{X \  v4) : oY  : [pre \  A, p ost \  A]

i.e., we can remove the A events. This refinement can be justified by observing that 

removing the A input events from the precondition will weaken it, and the condition 

for this refinement means that the output events are unaltered.

Now we introduce rules peculiar to our timed parallel model, along with justifica

tions.

R efinem ent 7 Introduce intermediate

If j ,  A;, m id are timed predicates over subsets of events such that:

V disjoint %, Y, Z Ç E-

S([K],+2, [%];) 4» k{[Y]t+2 , [Z]t+l) A j{ [ Z U u  M ») 

and j{[Z]t+u [X]t mid

then:

iX  : oY  : [ p r e  ,p ( [ Y ] t + 2 , [^ ]< )] =

{lX : o Z  : [ p r e  J{[Z]t+i, [% ]()] I I

i Z : o Y : [ r a i d , k { [ y ] t + 2 A Z ] t + i ) ] )  \ Z  
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i.e., we may split into two parts a process for which an “intermediate calculation” 

exists.

The natural interpretation of this law is an intermediate calculation on the inputs 

X, using the spare time slot between each input and corresponding output to produce 

intermediate results Z, and the final results Y .

As an example, let the predicates be:

^({a, 6, c, d}, {e}) =  e =  a A b A c A d  

j { { a , b , c , d } , { f , h } )  =  f  =  ( aAb)  A h =  { c Ad)

=  e =  f  Ah  

m id =  tru e

which allows refinement of a two-delay four-input AND gate into two parallel 2-1 

AND gates feeding into a third 2-1 AND gate.

We justify this law in terms of the SRPT processes G, K  and J  represented by the 

three frames. The refinement rule requires that:

G[X, Y]  = {J[X ,Z ] \ \K [Z ,Y ] ) \Z

and so we must show that the traces of the left and right hand side are equivalent. We 

specify the most general traces possible for each side, and aim to show their equivalence.

A new notation we introduce is the use of a horizonal bar % to represent groups of 

events from a set A.

We first construct the traces of the right-hand side. Given s E Tn^J^cr:

s =  (%, u(%) U U %,.. .)

where p re  (a) {j{b, a) ^  b = a{a))

The process J can then be specified in SRPT notation as:

d y l  =  [ ! A  ? M  — >  J a ( M ) ]

Similarly, for u G 7^[[A]]cr:

u =  (%, zi,/3(zi) U %,/)(%) U %,.. .)

where m id (a) {k{b, a) <=> b = (3{a)
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The process K  can then be specified in SRPT notation as:

K b = [!B W

We apply law a-10 from Barnes[Bar93] pp. 78 to get:

A  I I  K b =  [!(.4  U B )  ^  •^(0uB )n.J() II ^(QuA)n,K„]

We know from the disjoint process input and output alphabets that this simplifies

to:

[\{A U B)7Q  JQnx || Kgnz]

This establishes that, at any point in any of its traces, the tail of process J  || K" is 

always equivalent to J^i || for some A and B.

Given this parallel construct, process J  guarantees that Zt+i = a{xt). Process 

K  guarantees that ÿt+ 2  = From the earlier definitions then,

k{ÿt+2 , 0L{ t̂))-

Similarly, p re  {xt) => %) =  zt+\ = a{xt). We can join these two to get:

p re  (xt) k{ÿt+2 , Zt+i) A j(^+ i, Xt) 

which, from the precondition in this refinement law, is equivalent to:

p r e { x t )  ^  g{ÿt+2 , ^ )

This matches the original frame specification in the refinement law definition, show

ing that the left and right hand sides are indeed equivalent, and we have proven the 

refinement law. □

R efinem ent 8 Introduce delayed intermediate

If j ,  A;, m id are timed predicates over subsets of events, and di, da > 1, such that: 

V disjoint X , Y , Z  Ç S-

9{[^]t+di+d2, | ]̂f) ^  k{[Y]t+di+d2 7 l^]t+di) I^j{[Z]t+dij [ ]̂i) 
and j{[Z]t+di, [X]t => m id

then:
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iX  : o Y  : [ p re , ^ ^ ( [ [ A ] t ) ]  =

{iX  : oZ : [preJ{[Z]t+d,A^]t)] I I

iZ : oY  : [ m i d  ,k{[Y]t+di+d2 A^]t+di)]) \  Z

i.e., we may split into two parts a process for which an “intermediate calculation” exists 

at some time point between start and end of calculation.

This law is justified by repeated application of refinement law 7.

5.2.6 Feasibility

We construct the maximal trace set m ax of two event sets A, Y by:

0 G m ax (A, Y)

 ̂ G m ax (A, Y) => VA Ç A, R Ç Y -

{ t ^ { A u B ) )  G m ax (A, Y)

i.e., the well-formed trace set with all combinations of input and events possible at 

each time step.

The specification P =  Mt E N - lX  : oY  : [[p r e ]̂ , [ p o s t i s  feasible if it is 

well-formed according to the refinement frame rules listed in Section 5.2.2, and:

3 s G m ax (A, Y) : V t G N • p re  [s[t]) post {s[t -f k])

i.e. there is some well-formed trace which, at every time point, satisfies the postcondi

tion as long as the precondition is true.

5.3 Case Study: Carry Look-ahead Adder

A carry look-ahead adder is an adder whose design is optimised towards minimal exe

cution time rather than towards minimal area. It works by splitting an addition into 

two halves (high and low bits), and carrying out two parallel calculations for the high 

half sum -  one for if a carry is received, one for if it isn’t. A multiplexer then selects the
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A2 B2

PASSMUX

Figure 5.2: Carry look-ahead adder structure

correct high bits calculation based on the carry-out bit of the lower half calculation. 

Figure 5.2 shows the structure of one of these devices.

We will now specify this adder and refine it.

5.3.1 Specification

For an 71 =  2  ̂ bit adder, CLAAk".

l{A U B ) : oC:  [ t r u e , [N(C)]*+i+, =  [N(^) +  N{B)]t]

where N(X) maps the subsets of X  onto the natural number given by the binary 

representation of the events. A  and B  must contain n events, C must contain n -f 1.

We will in fact find it useful to specify and refine the processes CLAAk{x) for all 

X e N  < k ,  where [N(C)]f+i+jfc =  [N(^) -f N{B) +  x]t.

Note that the specification requires that the computation complete in 1 -f A; time 

steps. A simple ripple-carry adder could not in general satisfy this specification since 

it takes time linear in 2  ̂ to complete; each bit of the sum is computed sequentially 

with the lowest bit first.

5.3.2 B asic gates

If we set A: to 0, and hence ti to 1, we get a half adder:

HADD = i{a, b} : o{c, s} : [ t r u e , [2c +  s]t+i =  [a +  b]t]
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which we already know how to construct, from Section 5.2.4. We note that this takes 

two of our 2-input, 1-output cells. We assume that the only cells available for construc

tion are 2-input, 1-output and 3-input, 1-output. This will restrict what we regard as 

“final code” in our refinement.

We will also want a pass gate (for delays) and a 1-bit choice gate. These have the 

following specifications:

PASS = : o{y}  : [ t r u e , [?/]f+i =  [a;]*]

MUX = i{a, b, c} : o{y}  : [ t r u e , [y]t+i =  [{b A c) V (a A - ’c)]f]

We can have the 1-input, 1-output PASS gate because it can be embedded into a 

2-input, 1-output cell where the second input is taken from ground (i.e. a permanent 

low value).

5.3.3 R efinem ent

We proceed by induction on k. The base case for A; =  0 requires an implementation of 

the specification of the half adder above. It is possible that the half-adder is a primitive 

gate on the target device. If not, we apply refinement law 2 to refine the HADD  process 

into:

HADD = LO  II HI where

LO =  t{a, 6} : 0( 5} : [ tru e , [5]f+i =  [axor 6]t]

HI = i{a, b} : o{c} : [ tru e , [c]f+i =  [aand b]t]

and we will take LO, HI to be primitive gates since they are equivalent to XOR and 

AND gates respectively.

We therefore assume as the induction hypothesis that we have complete implemen

tations for all processes CLAAk{y) for all y < k. We aim to prove the hypothesis for 

A: 1.

Let n = 2^. Then 2n is the number of bits for each of the two input numbers to 

CLAAk+i{y). Let A = A iU  A2 where Ai = {%, . . . ,  a„} and A2 = {«n+i, , oan}-

Define Ri, B2, Oi similarly and Q  =  {cn+i,. • •, C2n+i}- From now on, for convenience

we will omit the N in the arithmetic by referring to direct addition of event sets.
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We start with the process specification of CLAAk+i{x):

i{A U B) : oC :

[ t r u e ,

[C]t+2+k = [A-\- B  + x]t ] 

then expand the input and output set definitions:

i{^A\ U A2 U B\ U B2) : o(Ci U C2) :

[ t r u e ,

[Ci]t+2+k = (Ml +  Li +  x]t) m od 2 A

[C2]t+2+k = (Ml + Bi + x]t) div 2 +  M2 +  B2]t ]

Applying refinement law 8 {Introduce delayed intermediate) we introduce the inter

mediate event set {Ri U i 2̂ U U {c}), the components of which have respective sizes 

71, 77 +  1, 77 +  1 and 1. We also introduce the set union abbreviation notation Xâ b for 

XaU Xb. We may rewrite this as:

( ^(Ai,2 U ^ 1,2) : o(i?i,2,3 U {c}) :

[ tru e ,

Mijf+i+fc =  (Ml +  -̂ 1 +  x]t) m od 2 A

[R2]t+i+k = M2 +  B2]t A

[Bslt+i+k =  1 +  M2 +  -̂ 2] 7 A

[c]t+i+fc =  (Ml +  Li +  o:]f) div 2 ] (1)

II ^(-^1,2,3 U {c}) : oCi 2̂ :

[ t r u e ,

[Cl] 7+1 =  Ml] 7 A

[C2]7+l =  [(^3 A c) V {R2 A ->c)]t ] (2)

) \  {Ri,2,3 U {c})

To show that this refinement law has been applied correctly, we need to define the

predicate functions g j j k ,  p r e , m id and the delays di, as specified in the refinement

law precondition. These are as follows:

9 — [Ci]f+2+jfc =  (Ml +  Ri +  a;]f) m od2 A

[C2]7+2+A: =  (Ml +  Ri +  x]t) div 2 +  M2 +  B2]t
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j  = Mi]i+i+A: =  (Ml +  Li +  x]t) m od 2 A 

M2]7+l+fc =  M2 +  -̂ 2] 7 A

M s ] 7 + l + f c  =  1  +  M 2 +  ^ 2] 7 A

[c]7+i+jfc =  (Ml +  -̂ 1 +  x]t) div 2

k = [Ci]f+2+fc =  Mi]7+1+Ai A

{C2]t+2+k =  K-Rs A c) V {R2 A ^c)]t+i+k 

di =  1 +  A;

7̂2 =  1

pre =  true  

m id =  true

To show that j ,  k combined are equivalent to 5̂ , we must show that the values for 

Cl and C2 in the composition of j  and k are equivalent to their values in g:

l C i ] t + i  =  Ml] 7

Mi]<+i+* ~  (Ml +  -Ri +  2:]f) mod 2 

[Ci]f+2+A; =  (Ml +  -Ri +  x]t) mod 2

[G]7+i =  [(-R3 A c) V {R2 A ->c)]f 

M 2]7+l+fc =  M 2 +  -R2]7

[Rslt+l+k =  1 +  M 2 +  -R2]7 

[c]7+i+fc =  (Ml +  -Ri +  x]t) div 2 

=+ [C2]7+2+fc =  M2 +  -R2]7 +  (Ml +  -Rl +  x]t) div 2

which is as required.

We take each of the refined processes in turn for further refinement.
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(1) Ç via refinement law 2 {Parallelism) :

l{Ai 2̂ U L i ,2) : o{Ri U {c}) :

[ tr u e ,

[Ri]t+i+k =  (M l +  L i +  x]t) mod 2 A 

[c]t+i+k =  (Ml +  L i +  a:]f) div 2 ] (3)

I I  7 ' ( - ^ i , 2  U  L i , 2 )  :  0 R 2 :

I tr u e , [ R 2] t + i + k  =  M2 +  L2]i ] (4)

I I  f ' { A \^2 U  L i , 2 )  :  0 R 3  :
[ tr u e , Msjf+i+fc =  1 +  M2 +  L2]( ] (5)

We apply refinement law 6  {Contract frame) to remove A i,B i  from (4), (5) and 

^ 2 , ^ 2  from (3), giving:

i{A\ U Li) : o{Ri U {c}) :

[ tr u e ,

[Rijf+i+fc =  (Ml +  Li +  a:]t) mod2 A 

[c]t+i+k =  (Ml +  Li +  a;]f) div 2 ] (3a)

II i{A2 U B2 ) : 0 R2 :

[ tr u e , [ R 2] t + i + k  =  M2 +  ^ 2)7 ] (4a)

II i{A2 U B2) : 0R3 :

[ tr u e , Msjf+i+fc =  1 +  M2 +  ^ 2 ]̂  ] (5a)

Here, (3a), (4a) and (5a) are equivalent to the specifications of processes CLAAk{x), 

CLAAk{0) and CLAAk{l) respectively, with input and output wires renamed appro

priately. Since each specification has a well-defined trace set, and equality of trace sets 

means equivalence of processes, we can substitute in the renamed CLAAk processes.

The second part of the refinement proceeds as follows.

(2) =  i'{Ri,2,3 U {c}) • oC\^2 '

[ tr u e ,

[C\]t+i =  [Ri]t A

[Q 17+1 =  [{R3  A c) V {R2  A -ic)]* ]
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Ç via refinement law 2 {Parallelism) : 

t(Li,2,3 u  {c}) : oCi :

[trueJCilt+i =  Mi]t ] (6)

I I  ^ { R i , 2 , 3  U { c } )  :  0 C 2  :

[ t r u e , [Cjf+i =  [{R3 A c) V {R2 A -^c)]t ] (7)

We apply refinement law 6 ( Contract frame) to remove i?2,3 from (6) and Ri from

(7):

l{Ri U { c } )  : oCi :

[ tru e , [Cl](+1 =  Mi]f ] (6a)

I I  4 ^ 2 , 3  U  { c } )  :  0 C 2  :
[ t r u e , [C2]t+i = [(L3 A c) V {R2 A ~^c)]t ] (7a)

(6a) is equivalent to n parallel PASS processes between R\ and Q ; we apply 

refinement law 2 {Parallelism) and substitute the renamed PASS processes as noted 

above.

(7a) is equivalent to n +  1 parallel MUX cells, choosing from R2 and R3 using 

c, sending to Q . Again, we apply refinement law 2 and substitute renamed MUX 

processes.

We can now collate the refinement to produce: 

i{A U B) : oC : [ t r u e , [C]t+2+k =  [A +  L +  x]t]

□

( CLAAt(T)M i,Li]M i,c] (3)

II CLAAfc(0)M2,L2]M2] (4)

I I  CLAA,(1)[A2,L2]M3] (5)
PASS[n][ci] (6)

MUX\rji-\-ij 72n+i) c][Cn+i] (7)

) \  (Li,2,3 U {c})

li=l
in+1
li=l

With a relatively short formal derivation we have produced a full implementation 

for a family of arithmetic functions, parametrised by size, and demonstrated that the 

calculations complete in the specified time. This has been done using a predefined set 

of simple gates HADD, PASS and MUX.
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5.3.4 Space and tim e

The specification tells us that the computation completes in 1 +  A; time steps, and since 

it is true for all values of  ̂ € N it tells us that a new calculation result is delivered at 

every timestep from t = 1 + k onwards, i.e. the calculation is pipelined.

As far as space is concerned, we define a function C{k) which gives the number 

of cells used by CLAAk and which comes from the final (recursive) definition of the 

process:

C{k) = 3 C { k - l )  + P(2^-i) +  M (l, 2^-1)

where P{b) is the number of cells for an n-bit PASS block and M{a, b) is the number 

of cells for an a-bit choice, 6-bit output multiplexer. P{b) = b and M (l, 6) =  6 in this 

case, so:

C{k) = S C { k - l) - \-2 ^

for A: > 0, and (7(0) =  2. This gives (7(1) =  8, (7(2) =  28 and so on. This indicates 

that cell usage varies as 0(3^) where n is the size in bits of each argument. A 32-bit 

adder, producing a 33-bit answer, would require (7(5) =  908 cells.

Note that a simple ripple-carry adder would not satisfy the specification in general 

because its computation time is linear in its argument length. If the timing require

ments were relaxed, ripple-carry adders could be inserted instead of carry-lookahead 

adders in some layers. This would not, however, save cells; the requirement to have the 

entire result come out at one time point means that the adder needs a large number of 

PASS  cells.

5.3.5 Sccdability

The above approach has illustrated a number of key concepts. An important one is the 

use of previously defined processes in development. We saw this where smaller CL A  A  

blocks were used in the construct of a larger one.

If this refinement method were used in the creation of a substantial PLD program 

then it would be useful to build up a library of specifications and the processes that 

satisfy them. Note that several processes may meet one specification, and the developer 

may choose one based on available cell configurations, computation time and cell usage.

210



The Introduce intermediate refinement law is a powerful one because it encapsulates 

an activity, hiding the internal events which are needed to make the calculation. This 

enables the effective top-down design and implementation of a complex programmable 

logic program. The design will refine the initial specification into a number of parallel 

sub-specifications, which will either match existing library components or which can 

be handed to individual developers to implement. The specification carries inside it 

the interface and timing information needed by the developer.

Blocks on the PLD which perform a fixed function can have a specification written 

for them retroactively. This enables them to be part of a refined system and interface 

to other refined components. The difficulty is in writing their specifications correctly.

5.3.6 P ro o f m eans no testing?

Bearing in mind Knuth’s famous quote “Beware of bugs in the above code; I have only 

proved it correct, not tried it” [Knu77] we implemented the above structure in a simple 

Pebble simulator written in Perl and tested it with random input data.

Knuth was proven prudent. In the original refinement, (3) had mistakenly been 

asserted equivalent to CLAAk{0) rather than CLAAkix). The tests detected this, it 

was corrected, and the tests rerun. No errors were found in the corrected version for 

values of k from 0 to 5. The simulator was later expanded and rewritten, with the 

results given in Section 7.2.

This is more a comment on the methodology that we used to arrive at our start

ing point rather than the subsequent refinement. In essence, no matter how good 

a refinement, it can only be as good as the starting specification from which it was 

derived. To validate that a system fits its purpose requires testing of the system in 

conditions as close as possible to the intended operational environment, as no single 

formal verification procedure can be sufficient.

There is clearly value in independent inspection of refinement to pick up problems 

such as these. In order to measure the reliability of the inspection, it may be useful to 

inject a number of faults into the proof before inspection.
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5.4 Summary

In this chapter we have presented a refinement calculus with a specification notation 

based on Morgan’s notation for refinement, using SRPT as the implementation lan

guage and adding an integer time aspect to the variables. We have shown how existing 

refinement laws can be adapted to suit the new calculus, introduced a new law specific 

to the parallel process model and shown how it can be proven.

We have demonstrated the specification and complete refinement of a carry look

ahead adder. The refinement was not lengthy or particularly complex, and few im

plementation decisions were required. One mistake occurred during refinement, which 

was detected and corrected during testing. This indicates that the refinement model 

is practical, at least for one class of specifications, but is not a panacea.

This refinement calculus is open for further development by adding new refinement 

laws, for instance concerning iteration or alternation.

The refinement rules and notation described in this chapter are summarised in 

Appendix A.

5.4.1 A lternative approaches

A complementary approach to parallel refinement was presented by Sanders and Lai in 

[LS97]. The approach is also based on Morgan’s stepwise refinement model, extending 

it to refine into a parallel communicating programming language with a syntax similar 

to Occam[Ltd84] rather than Dijkstra’s language of guarded commands.

This approach diverges from our approach principally in that the system modelled 

does not operate on a synchronous discrete clock but rather in the asynchronous model 

familiar from CSP. It is useful however to observe that the refinement laws established 

by Sanders and Lai (e.g. strengthen postcondition, weaken precondition, sequential 

composition, parallel composition) are similar in intent to those we defined in Sec

tion 5.2. The authors identify the same weaknesses in their system with respect to 

scalability that we have found. It represents a comrade rather than competitor system 

for our SRPT refinement process.
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5.4.2 Targets

Of the targets in Chapter 3 we have addressed or partially addressed:

Target 1: The process we define must be rigorous.

We have extended a subset of the rigorous process algebra SRPT, described in Sec

tion 4.1, to include a “refinement frame” syntactic construct. We have also developed 

a refinement calculus to support refinement between constructs in this notation, and 

hence between trace sets in SRPT. This work has been supported with formal proof of 

relevant assertions and refinement laws.

Target 2: The process must help the developer to write unambiguous programs.

The use of the refinement calculus produces programs that demonstrably meet their 

specification.

Target 5: The program produced must be easy to test.

Test cases may be generated from the program specification.

Target 6: The program must be able to be compiled onto a range of existing and

anticipated PLDs.

The mapping between SRPT and Pebble, as described in Section 4.2, is PLD- 

independent.

Target 9: The process should indicate what kinds of error may arise at each stage.

We have seen how the manual refinement process may introduce errors, and indi

cated how manual review may address this.

Target 10: The process should provide flexibility so that it may be used in situa

tions not anticipated in its original design.

SRPT allows incorporation of processes that may act in an arbitrary way; our proof 

system allows us to incorporate them in a system and reason formally about the effect 

they may have on the rest of the system.

Target 12: [00-54 S. 5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification 

complies with the safety requirements;

(ii) any formal arguments that the functional design satisfies the formal specification;
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(ni) for non-functional properties with specified safety requirements, analysis of the 

achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques 

as diverse implementations.

(i) is addressed because the safety requirements may be expressed as post-conditions 

in a process specification, (ii) is addressed because the refinement process produces 

an evidence trail, amenable to manual review, that the SRPT process satisfies its 

specification, (iii) is addressed because the timed specification process allows timing 

requirements to be stated explicitly and shown to be met. (iv) is not addressed.
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Chapter 6

A PLD Interpreter of SPARK

In Chapter 5 we specified a process for refining high-level specifications into SRPT 

processes, and hence transforming them into implementations in Pebble. This is an 

effective method for relatively simple specifications, but a, lX  : oY : [p re , post] 

refinement frame which described a substantial program would normally be unwieldy 

and difficult to manage.

Section 4.3.12 outlined a possible design for an interpreter for SPARK Ada, running 

on one or more PLDs. This interpreter would be difficult to verify to the degree 

required for high-integrity PLD programs, but may be appropriate for running PLD 

programs at lower levels of required integrity. In this chapter we expand this outline 

to build a SPARK interpreter out of SRPT processes, using refinement to build small 

computational units in the interpreter and defining a higher-level protocol to manage 

execution of the SPARK “bytecode”.

We will describe the interpreter architecture, then break down its structure to 

examine how individual units of SPARK code are executed within it. We will also 

see how our techniques of refining specifications from Chapter 5 are useful in making 

custom combinational logic sequences.

T arget aims

This chapter chiefly addresses Target 2 (the process must force the developer to write 

unambiguous programs) and Target 4 (it must enable as much static analysis as 

possible). We aim to achieve this by allowing developers to write programs in the 

SPARK language which already satisfies these requirements.
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Our aim is to produce a design for a SPARK interpreter which runs on a generic 

PLD. The interpreter should:

1. be amenable to arguments that it correctly executes SPARK;

2. interpret as large a subset of SPARK Ada 95 as possible;

3. not depend on any feature of a specific PLD;

4. make relatively efficient use of available PLD resources; and

5. scale in performance with increased resources.

The design must be practical, since in Chapter 7 we will have to produce a working 

implementation of the interpreter as part of the case study.

There is a secondary aim, related to the SRPT specification and refinement work 

in Chapter 5. We will specify a number of SRPT processes in our description of the 

interpreter, which will be a test of the usability of the specification form. We aim 

to use these tests to measure whether our SRPT specification scheme is suitable for 

specifying significant complex systems with a range of functions.

Scope

The SPARK constructs recognised by the interpreter are restricted in that no constructs 

particular to the Ravenscar tasking profile are permitted. This is to simplify the 

interpreter’s architecture.

The interpreter is intended to be a proof-of-concept, not an optimised design.

No particular assumptions are made about limiting features of PLD design e.g. 

available cells or routing resources. For this reason we refer to the target PLD as the 

“virtual” PLD.

Structure

Section 6.1 presents an overview of the interpreter design. Section 6.2 describes the 

mechanism for communicating between the CPU and the PLD. Section 6.3 describes 

the mechanism for communicating between package units upon the PLD. Section 6.4 

details the structure of the package units. Section 6.5 describes how SPARK programs
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are transformed into a form suitable for execution on the interpreter. Section 6.6 

discusses how SPARK software interacts with the PLD program.

Finally, Section 6.7 discusses optimisations to the interpreter and Section 6.8 draws 

conclusions from the chapter.

6.1 Interpreter Overview

We now describe the design of the interpreter to give the reader a context for the rest 

of the chapter.

6.1.1 A rchitecture

The interpreter is designed to contain a SPARK package P and any other packages 

on which P depends, directly or indirectly. It will be controlled at the top level from 

software; in the SPARK program compiled for the normal CPU there will be a shadow 

package for P which will manage sending data to and from the interpreter. P is hence

forth referred to as the root package.

Each package is implemented as one contiguous unit on the virtual PLD, with data 

connections between packages corresponding to subprogram calls. There is a connection 

from package P to package Q if and only if there is a call from a subprogram of P to a 

subprogram of Q. The SPARK rules on inheritance order guarantee that there cannot 

then be a call from Q to P.

The top-level architecture is shown in Figure 6.1. This example shows root package 

P with direct dependencies on A and B, and indirect dependencies on C and D.

There are then three major components to the interpreter; the I/O  between CPU 

and PLD, the I/O  between packages and the internal workings of the package itself. 

This is the taxonomy we will use in the rest of this chapter.

Note that place-and-route issues may break a contiguous design unit over several 

parts of an actual PLD.

217



CPU

RAM

ROM
PLD

BUS

Figure 6.1: Interpreter architecture 

6.1.2 P artition ing issues

The performance of the interpreter, in terms of execution speed and PLD cell usage, 

will depend on the packages selected for compilation. There are rules and guidance on 

package selection as follows.

A note on terminology: a package with state is one that contains at least one state 

variable, either directly in its spec or body, or in an embedded or child package. This 

correspond to the package having at least one own variable in SPARK terms.

Rules

1. No package with state may be present in both the software and programmable 

logic programs. This is to prevent multiple copies of a global package variable.

2. The packages compiled into programmable logic must form a valid SPARK pro

gram and a complete Ada program closure. This is essential for the integrity of 

the compilation process.

3. This program must have run-time checks performed on it by a tool such as the 

SPARK Examiner (using the -exp switch), which must show that it is free from 

any potential run-time overflows.

4. Packages may not be embedded in subprograms. This is to reduce the complexity 

of the compiler’s task.
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G uidance

1. Packages should contain as few variables and as little code as possible.

2. The user should aim to minimise data transfer between packages.

3. Variables should be typed with as small a range as possible in order to reduce 

storage space and transmission time.

6.2 C PU -PLD  I /o

The key point in CPU-PLD I/O  is that, in general, there is no clock synchronisation 

between the two components. The I/O  must take account of this, and hence be more 

complex than the inter-package I/O  discussed below.

We assume that the access to the PLD from the software is via memory-mapped 

I/O, and that within the SPARK program the interface is accessed via a copy of the 

specification of the root package. Given this, there are four stages of the data’s journey 

to the PLD and back again:

1. between the software and the bus, via MMIO (both ways);

2. from the bus to the PLD’s bus interface;

3. from inside the PLD to the PLD’s bus interface; and

4. from the PLD’s bus interface to the bus.

The apparent asymmetry in stages 2 and 3 is due to the way that the PLD buffers its 

input information from the bus, turning it into discrete packets, then after computation 

aggregates packets until a complete frame of data may be transmitted back to the bus.

6.2.1 Softw are-bus M M IO

The PLD access process starts when a subprogram in the software component makes 

a call to a subprogram in the root package. As well as the original package specifica

tion, there will be a package body where each subprogram from the specification has
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an implementation. These implementations will be responsible for the data transfer 

process.

There will also be set of variables, declared using Ada’s fo r  X’Address use A 

mechanism to map a variable to a specific location in memory. In this case they will 

be mapped to the input and output pins of the PLD. There will be four canonical 

variables:

TX Transmit byte. Initially zero, increases as the data is copied across.

TD Transmit data, of type Word.

RX Receive byte. Set by the PLD to indicate the progress of copy-back of data.

RD Receive data, of type Word. Set by the PLD.

Transm it

The transmit algorithm is as follows. We assume that the input data is held in an 

array A : a rray  (1..M) of Word.

TX := 0;
—  Wait for the RX byte to clear, showing a ready PLD 
while (RX /= 0) loop 

delay(1.0); 
end loop;
for idx in range 1..M loop 

TD := A(idx); TX := idx;
—  Wait for PLD to increment its counter, showing ready 
while (RX < idx) loop 

delay(1.0); 
end loop;
— # assert (RX = Idx) and (TX = Idx); 

end loop;
TX := 0;
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Conventionally the receive code would follow directly. However, the processing of 

the data might well take a while. For a program which has a main loop running every 

20ms or so the implementer may choose to implement a polling structure and associated 

state machine. Note that the use of tasking constructs would simplify this significantly.

R eceive

The receive algorithm is as follows. We assume that the output data is held in B : 

a rray  (1..N ) of Word.

—  Wait for the PLD to signal ready 
while (RX = 0) loop 

delay(1.0); 
end loop;
for idx in range 1..N loop 

B(idx) := RD; TX := idx;
—  Wait for PLD to increment its counter, showing ready 
while (RX = idx) loop 

delay(1.0); 
end loop;
— # assert (RX > Idx); 

end loop;
TX := 0;

This has implemented an asynchronous copy to and from the PLD’s pins. We now 

look at how the PLD buflfers the data.

6.2 .2  PL D  buffering

The above transmit algorithm maps a chunk of data to the input pins of an PLD and 

waits for acknowledgement before writing the next chunk. We now need to turn this 

data stream into the form used to communicate between packages. This means that we 

can compile the root package in the same form as other packages, with a standardised 

way of receiving data.
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Bits

00

01

10

11

Meaning

No message /  end of message 

Ignore this packet, message continues 

Message body 

Message start

Table 6.1: Packet meaning encoding

Variable Bits

TX U =  {wi,. • , %}
TD R = {ri, .. • J ^m}
RX V = {î;i, .

RD S = {si,.. •  5 ^n}

Table 6.2: Memory-mapped variable representations

Packages receive data as a stream of packets. Each packet has two marker bits to 

describe the data coming in, as shown in Table 6.1.

The packet width must then be at least 3 bits. The 01 packets are intended to deal 

with delays in the message chunks arriving at the input pins.

Event representations

We represent the memory-mapped variables with the event sets shown in Table 6.2 and 

the input bits of the packet pipeline with P  =  {p i,. . .  ,Pk} and Q = {qi, Ç2} where 

m =  X X k. This enables us to guarantee that each set of input data from TD can be 

transmitted in exactly x packets. We define functions u , r , v , s  to map the event sets 

onto representations in N.

Specification for B U F F E R

The BUFFER process must satisfy the specification given in Equation 6.1. The speci

fication captures the key correctness criteria:

1. RX is reset to 0 when TX is reset to 0;
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2. RX increments by exactly 1 each time;

3. RX is only ever 0 or 1 lower than TX;

4. the message header bits coming out of Q form a legal message; and

5. the message data bits coming out of P  exactly represent the data arriving through 

TD with each change of TX.

We define the function : N seqB to translate a natural number into 

its A;—digit binary representation, least significant bit first. We define the function 

concat {S) to translate a sequence of sequences S into a single joined sequence:

concat (S) = | 0 < j  < #5[i] | 0 < i < # 5 )

We additionally define the following abbreviations for predicates and operations on 

a trace t:

breaks { t ,f  

resets {t, u 

p a r titio n  (A, S 

stepp ing  (t, u 

follows { t,v ,u  

validhdr {t, q, k 

validftr {t,q ,k  

validm sg {t, q 

b itseq(A ,/,p  

m sgseq(i,p , g

=  («■ +  1  I \f]i ^  \f]i+l)

= (% +  1 I  M i ^  0 A [w]i+i =  0)

= { t [ s [ k ] . . . s [ k  +  i ] - i ] \ o < k < n ^ s )

= VO < « <  • [w]i =  [u]i+i V [u]i +  1 =  [u]i+i

=  VO <  % <  - [u]i =  Mi  V Mi  =  Mi  + 1

=  (VO < i  < k  - [q]i =  0) A [q]k =  3

=  3 m - ( V A ; < « < m - l <  [g']i <  2) A (Vj >  m  • =  0)

=  3 k  • validhdr { t ,  g, k)  A validftr {t, q, k)

=  concat {{Bm{[f]i) | i G breaks (t, g)))

=  concat {(Bk{[p]i) | {[q]i =  3 V [q]i =  2) A i G 0. . .  # () )

The specification is then:

V t G InlBUFFEB^a  VI G p a rtitio n  {t, resets {t, u))

s te p p in g (l,u) 3 k  - r e s e ts (/, v) = (k)

A stepping  (Z[A;...], ?;)
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PIPELINE

TD RD RXTX

SPOT ACK

SIGNAL

Figure 6.2: PLD input buffer

A follows ( / [ Â : w )

A validm sg (;, g)

A b itseq  {l[k...], r, w) =  m sgseq (/, p, q) (6.1)

Design for B U F F E R

We define a set of SRPT processes to handle the input. SPOT  checks the TX value for 

changes and signals event n to SIGNAL; event z is signalled instead if TX has changed 

back to zero, indicating end of data. SIGNAL breaks the TD value into packets and 

sends them off, sending 01 packets and signalling d to ACK  if it runs out of data. ACK  

sends the correct RX back to the software client once it gets the signal from SIGNAL, 

and listens for the z event from SPOT. RD is unused for this part of the communication.

Figure 6.2 shows the processes and connections.

The SRPT specifications of the buffering processes are then as follows. They are 

parametrised by possible delays in calculations. Some delays (e.g. e =  0) may be 

infeasible for certain PLD architectures.

SPOTe =  iU  : o{n ,z]  :

[ t r u e ,

([w]f 9̂  [^]f+l A [w]f+i 7  ̂ 0) <=> [n]t+2+e

A {[u]t^  [w]i+l A [u]t+i =  0) [z]t+2+e
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A C K f = i{d ,z}  : oV  :

[ t r u e ,

(([z]f A 3 z : hd]f..j+i) 4=> {[v]t+i+f,,,t+i+f+i = 0)) 

A {{[d]t A 3 i  : [-^d]t+i...t+i) <=> 

([%]f +  1 =  [v]t+f+l A [v]t+f+2...t+f+i+l = Hf+/+l))

] (&2)

The SIGNAL process can be split further into HDR and DATA which send out

the header bits and data bits for each packet simultaneously. Note the precondition,

which states that new data signals must not arrive until there has been time to send 

out packets for all the current data.

SIGNAL = HDR \\ DATA (6.3)

HDR =  i{n ,z}  : o{Q U {d}) :

[ Wt ^  h ( ^  V z)]t+i...t+x,

{[n]t A 3 y > x :  [--(n V z)]t+i...t+y) ^  

([gi A g2]t+l A [g2 A ~'gi]i+2...i+a: A 

[gi A ~ig2]f+x+i...i+y} A 

A [d]i+x+l A [~id]f+x+2...Z+j/) 

A {[z]t A 3 y  : [-^n]t+i...t+y) <=>

[-i(gi V g2 V d)]t+i,..t+y+i

]

DATA = i{RU {n}) : oP :

[ Wi hn]t+i...t+x,

y  1 < i < k ■ 

y i  < j  < X ' 

[n]t <=> {[Pi]t+j = [r(j_i)fc+i]f+j-i)

]

The set of traces of these processes in parallel, with all events other than P  and Q 

hidden, define a sequence of messages:
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BUFFER = l{U U R ) : o { P U Q U V ) :  

{SPOTe I I  ACKf I I  HDR || DATA) \  {n, z, d}

In Section 6.3 we examine the format of these messages in more detail.

6.2.3 PL D  readout

We assume that the root package has made the appropriate computations and updated 

its internal state as required, and is now ready to send back the data to its caller. We 

further assume that the data is at a fixed location in the package’s local RAM store 

and is of a known length w words. The RAM store must be capable of a multi-word 

serial read, started with signal s and outputting the word data D = {d \,. . . ,  dk} for 

the subsequent w cycles.

We name the bus interface signals P  and Q for data and header bits respectively, 

as above. Since there are two header bits, Q = {qi, Q2}- If the “start output” signal is 

g then the two processes IHDR^ and IDATA will manage between them:

IHDRyj = i{g} : o{s, gi, gg} :

[ \.9\t  ̂ [ '5̂ ]i+l...i+îü+3j

[9]t ^  

[s A -i(gi,2 )]t+l A [-'5]f+2...t+u,+3 A

h ^ l,2]i+ 2  A [gi,2]z+3 A [g2 A -^qi]t+4...t+w+2 A

[ ’Çl,2]f+îu+3

] (6.4)

IDATA =  l D : o P :  

[ tru e , VI < i < k -  {[di]t [pi]f+i)l

Note that IDATA is a simple PASSk process.

This will send the root package return data along the standard bus to the MMIO 

writeback processes.
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6.2 .4  W riteback to  bus

The final task is to map the return data onto RD in chunks, signalling with RX to the 

software routine that the new data is available and checking TX for acknowledgements 

that each data chunk has been received.

The key difficulty here is that the output data has to be buffered in a local RAM 

store since the software can wait an arbitrarily long time to acknowledge each data 

chunk. The write-back buffer has to incorporate a store large enough to hold the entire 

return message.

D esign

The strategy is to set up one group of processes to parse the incoming packets and 

write them serially into RAM, a second group to count when sufficient data has been 

written into RAM for the next data chunk to be written out, and a third group to 

handle the protocol of communicating with the software.

Note that the RAM has varying bit widths on its ports, k data bits will come off 

the input bus each cycle, so the input write port will be k bits wide. If the maximum 

length of a return message is 2  ̂ words of k bits then the input write address port will 

be y bits wide. The output MMIO register RD is an arbitrary n bits wide, so the input 

read address port will be I = |’log2(2^fc/n)] bits wide.

Parsing

The first group of processes contains PASS which relays the P  =  {p i,. ..,p&} packet 

data bits to the RAM data input pins D = {d i,. . . ,  dk}, PASS to pass event q2 through 

to the serial write start pin w of RAM, and CTRL which increments the RAM write 

address register bits A = {%, . . . ,  by one each time, starting from zero when a 

message start packet comes in.

Let a map the events of A onto N, then the CTRL process can be specified:

CTRL = lQ : oA :

[ [91,2]( => 3 z • [Ç2 A ~^q\]t+\. . . t+i A [--gi,2]f+i+i,

[?i,2]z ^  ([®]z+i =  0) A (Vj <  z : [a]t+2+j =  1 +  [o ] t+ i+ j)
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C ounting

The second group assesses when the next write is ready according to two criteria. 

Sufficient data must have been written to RAM, and the previously sent TD data must 

have been acknowledged.

We can re-use process SPOT  to observe changes on TX, signalling event n. We can 

use an AND  gate on the Q events so that the output signal z signals the start of a new 

message sending. In addition we introduce a new process RADDR  which outputs the 

RAM read address with event set B — {b i,. . .  ,bi}. RADDR  need not know whether 

the correct data has yet been written into the RAM slots being read as long as the 

third group ensures that RX is not incremented until sufficient data is in.

If b maps the events of B  onto N then RADDR  can be specified as follows. Note 

that ®i denotes addition modulo I.

RADDR = l{ z, n} : oB :

[ tr u e ,

{[At ^  Wt+i = 0) A
([n A -iz]f A [->(71 V z)]t+i...t+i)

[&]f+i...<+i+i =  1 ©/ [At

Com m unicating

The third group must count the incoming packets to determine when sufficient data 

has been input for the RAM output to be valid. It must also check that the software 

has acknowledged the last send.

TAP  will take events Q (the packet header bits) and event n out of SPOT as 

input. It will output the maximum value of RX permissible given this range of valid 

RAM contents.

First we need a process EVERYk which outputs signal b once for every k times 

that the input a is high. We also need a “semaphore” process SEM  which maintains
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an internal counter of b events and checks for n events. SEM  will send out a d signal 

to allow transmission once a n event has been received and the b counter is non-zero. 

When the d signal is sent it will clear its n signal receipt and decrement its b counter by 

one. This has the effect of signalling d only when a transmission has been acknowledged 

and sufficient data has been read.

Note that an initial n event must be supplied when the message sending starts, 

since the PLD must take the initiative in the return data protocol. For this reason the 

n input into SEM  should be O R  ed with the message start event z = qi AND % to 

produce event m.

Finally, we reuse process ACK  from Equation 6.2 to write incrementing values onto 

RX. It takes events z and d as input.

TAP  is then EVERYi[a\q2] || SEM  || ACK  || OR[a, b, c\n , z,m].

To specify EVERYk we need to define a counter state function c() where ran  c =  

0 . . .  A; — 1, and similarly for SEM  we need a counter s() where ran  s =  — 1. . .  2  ̂where 

2  ̂ is the maximum number of data packets in a return message. There will be a multi

cycle delay for most values of k in most architectures so we need to specify this with 

parameters v, w > 0 for EVERY  and SEM  respectively:

EVERYk,v = &{&} : o{b} :

I [c]o =  0,

[ â ] f  <4. ( [ c ] f + u  =  ®k 1 )

A {[a]t A [c]t = { k -  1)) <=> [b]t+v 

]

SEMy, = i{m, b} : o{d} :

[ [s]o =  0 A VA : {[s]t < 0) => [~̂ b]t,

[m A =  1 +  [5]f+u,-i A

A [m A b]t<^ (Wi+«, =  A [d]t+yj)

A [& A ->m]t ([s]f+«, =  [s]t+^_i — 1 A

A [->(6 V m)]t <=> ([s]t+w = [s]f+^_i A [~̂ d]t+w)
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Figure 6.4: MMIO writeback design

EVERY 2 can be constructed using a toggle switch TOG where holding the input 

high over a clock cycle toggles its internal state bit and holding the input low maintains 

the state:

EVERY 2 = AND[a, c][b] II TOG[a][c]

EVERY 2k can then be constructed by serial composition of EVERY 2 and EV ER Y 2k-i. 

For values of I which are not exact powers of 2 more complicated arrangements are 

required, such as ring counters.

The MMIO writeback processes are shown in Figure 6.4, with TAP  blown up into 

its components in Figure 6.3.
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6.3 Package I /O

Data is passed between packages in the form of packets as described above. There is 

one significant simplification possible compared to the input buffering; the data to be 

sent will be immediately available for writing and immediately able to be received, so 

there is no general need for the 01 padding packets. The complication is that several 

packages A, B, C may be sending data to package D simultaneously, requiring arbitration.

When package A needs to send a message to package D we assume that the main 

package process in A has formatted the message correctly as a sequence of words in the 

package internal RAM. The main package process A-M AIN  will signal to the “talk 

to D” process A-COM M -D  that it may start communicating. It will then expect an 

acknowledgement signal from A-COM M -D  which may either indicate “data sent” or 

“data sent and answer received”.

The scope of this section is the communication between A-COM M -D  and package

D.

6.3.1 A rbitration

For each destination package D there is an arbitration process A R B d which controls 

access to D from all packages that may communicate with it. Each of the n  client 

packages has an access-request signal in R = {r i , . . . ,  r„} and an access-granted signal 

in C =  {^1, . . . ,  ^n}- There is also a set of junction routing signals S = {si , . . . ,  s„_i}. 

The function s : (1. . .  n) —» PS then describes the set of junction control signals that 

correctly route each client’s data.

The key criteria are that no more than one client may be granted access at once, 

and that access, once granted, continues until the client stops requesting it.

A R B d — lR o{G \J S) \

[ tr u e ,

>  1 •

{[~'9i\ t+l . . . t+k—l A [p A 

A [di A Çj]t (î =  j )
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ARB =1

Figure 6.5: Inter-package routing 

]

6.3.2 Inter-package routing

The routing of data between packages is managed as shown in Figure 6.5. This has 

packages A, B, C and D routing data to descendant package E. Each junction routing 

signal goes to a junction package Ji which multiplexes data from the client packages 

onwards to the destination package, and demuxes the return data to the client package.

For the client-destination data flow we name the input data sets Wi, W2 and the 

output data set X . For the destination-to-client data flow we name the input data set 

Y  and the output data sets Zi,Z 2 . Event s is the routing switch: when off it routes 

Wi, Zi through and when on it routes W2 , Z2 through.

The process, for A;-bit wide data sets, is then specified by:

J i  = Wi,2 U y  U {5}) : o{X U %i,2) :

[ tr u e ,

([(WH a  - .5 ) V {U)2i A 5)]f [X i] t+ i)

A ( W f <4̂  [(zif A -.g) V (%( A g)](+i)
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6.3.3 Package ou tput

The process A-COM M -D  will read in data from RAM, packetise it and send it out 

onto the bus in a similar manner to process SIGNAL described in Equation 6.3. The 

difference is that the data will be read by requesting a serial copy from RAM, with the 

port data width set at design time to match the bus data width, hence no buffering or 

change signalling is needed.

A-COM M -D  is split into the following processes:

WAIT  Waits for the start signal from the package, requests the granted signal from 

ARB, then keeps the request active until the result has been received from the 

package.

IHDRyj Waits for the granted signal from ARB, then kicks off the serial read from 

RAM and writes out the correct header bits to the bus. Parameter w is the 

number of packets of output data.

IDATA Continually copies data across from the RAM port to the data bits of the bus.

OHDR Keeps a watch on the header bits coming back from the destination package, 

starts a serial write to RAM, and once concluded signals the finish pack to the 

package.

ODATA Continually copies data across from the data bits of the bus to the RAM 

port.

Let the RAM read interface be input event si to start a read, output set Di = 

{d ll,. . . ,  dik} of data. We ignore any signal that the read is complete since we already 

know the message size at compile time.

The RAM write interface similarly is input event % to start a write, input set 

D2 = {dai, • • ■, d^k} of data and input event /  to signal that the write is complete.

For the outside arbitration, let r  be the arbitration request (which needs to be 

held high during the request, writing and returning read) and g be the access granting 

event.
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Figure 6.6: Package output

For the bus output, let Qi = {çn, Ç12} be the packet marker bits and Pi =  

{Pii: • ■ ■ iPik} be the packet data bits. Similarly the bus input is %  =  {^215 2̂2} 

for the packet marker bits and P2 = {p2i, • • •, P2k} for the packet data bits.

The interface to the rest of the package is input signal s for the “start a broadcast” 

request and an output signal /  for the “communication finished” acknowledgement.

These processes are illustrated in Figure 6.6. IDATA and ODATA are simply PASSk 

processes. IHDR^ has already been defined in Equation 6.4. The other two processes 

are specified as follows:

WAIT = i{ s , f}  : o{r} :

[ tr u e ,

{[s]t  A 3  2 : [ - .(s  V f ) ] t+i . . . t+i  A [/] t+ i+ i)

(H i+ 1...2+ i+ l A [-ir]f+i+2)

OHDR =  i{qi, :

[ [ ? i , 2 ] i  : V I  <  j  <  2 •

([^2 A ->qi]t+ i. . . t+ i A  [->qi^2 ] t+ i+ i ) ,

{[qi,2 ]t A 32 : [q2 ]t+ i. . . t+ i A h % ]2+^+1) <=> 
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[S2 A A [~ (̂S2 V f ) ] t + i . . . t+ i+ i  A

[/ A ->S2]t+i+2

6.3 .4  Package input

The input in destination package D uses a mirror of the above structure to receive the 

packeted data and write it into RAM.

In addition, it will need a START  process to set the initial PC value according 

to the start ID that heads the data stream, and then monitor the PC store for when 

the last PC value is popped off the stack indicating subprogram termination. It must 

then kick off the return transmission of the data from the area of RAM storing the 

subprogram mode out parameters.

6.4 Package Structure

We have described in detail the mechanism for sending data between packages. We 

now look at the details of the implementation of the package units.

6.4.1 Storage

Key to the operation of each package P  are the internal ROM and RAM stores. The 

ROM contains the compiled SPARK from the original package subprograms. The RAM 

contains all the constant data used in the package (initialised when the PLD program 

is loaded), areas for data to send to and receive from inherited packages, areas for data 

to receive from and send to packages that inherit P, all the package global variables, 

and all variables declared in all subprograms of the package. The last group includes 

the subprogram parameters and function return values.

Figure 6.7 is an example of RAM layout for a package P  that inherits A and B and 

is inherited by Q and R.

RAM has two main parameters: the bit width of each word in it, and the number of 

words held in RAM. These can be determined at the interpreter’s compile time and will 

depend on the variables in the SPARK package. Wide words will speed up transfer of
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Figure 6.7: Package RAM layout

large amounts of data at the cost of wasted RAM space when many sub-word variables 

(e.g. booleans) are stored.

6.4.2 Storage operations

The RAM blocks must be able to implement serial reads and writes of data as well as 

individual reads and writes. For the package I/O  work we have already seen the serial 

interfaces required for effective communication.

CPU access to RAM will be managed by a RAM controller RCTRL. This must be 

able to implement the following operations:

1. serial read of N  words starting to read from address A;

2. serial write of N  words starting to write at address P; and

3. internal copy of N  words, starting to read at address A  and starting to write at 

address B.

The reason for the final operation is that both subprogram calls and plain assign

ments (i.e. with a variable or constant as the rvalue rather than an expression) are 

effectively copy requests. In our I/O  model, subprogram calls require mode in  vari

ables to be copied into the RAM slot representing the subprogram parameter, whether
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in this package or in an inherited package, and mode out variables to be copied back 

out. Doing this copying as a basic RAM operation is an efficiency measure.

With the following event namings, RAM width /, RAM word count 2  ̂ and RAM 

state functions ŝ . : N —» PR, : N —» PW  we can specify RCTRLk,i. We use the 

abbreviation that [A]t means “the subset of A events present at time f \

A =  Gjk}, Q : PA —> N

B =  {&i,. . . ,  &fc}, 6 : P P  —̂ N  

N  = {ni , . . . ,  nfc}, n : P A  —> N  

P  =  { n ,  " ,  n }

W =

C =  {ci, C2}

RCTRLk,i = L { A U B U N U W U C ) : o { R U { d } ) :

[ ([ci V C2]t A 3 2 : [-^d]t+i...t+i) => hci,2]i+i...2+i,

< j  < [ n \ f

{ [ B ] t+ j+ 2  =  [^rO +  [-^]t)]i+j) A ([s]f+j+ 2  =  [s]t )

A [c2 A -̂ C\]t V0 < j  < [n]t •

Wi+i+i =  [s]t+ j ® { { j  +  [ B ] t ) ^  [ ^ ] t + j ) )

A [ci,2]t ^  VO <  j  <  [n]i •

[s]t+i+ 2  =  Wf+j+l © (0 +  [P]i) [5 O +

A [ci V C2]t ^  Mf+wJ

C are the control bits selecting the operation. c\ represents a serial read, C2 rep

resents a serial write and the two C events together represent a copy. The above 

specification, by delaying read output by one cycle, allows for an extra step whereby 

the implementation may treat a copy like a read and a write in parallel, but internally 

route the read output into the RAM write data port instead of routing the W  events.

d is the “operation complete” bit. The precondition states that, once a command 

is given, no further commands are given until the “operation complete” is signalled.
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Bits

00

01

10

11

Meaning 

Do nothing

Push the PC value on N  onto the top of the PC stack

Pop the top item off the PC stack

Change the top item on the PC stack to the value of N

Table 6.3: PC action encodings

6.4.3 Program  storage

There are three components to manage program storage. The ROM itself stores the 

compiled SPARK code in fixed-width words. Data is read out by the program counter 

process PCk- This maintains a current PC value, but can also store up to k other PC 

values in a stack for use when there are internal subroutine calls. The stack size can be 

bounded at compile time because SPARK’s ban on recursion means that the longest 

subprogram chain can be statically determined and in any case is no longer than the 

total number of subprograms.

PCk  outputs the PC to ROM with events P  = {pi , . . . ,  pa:}- It has input events for 

a new PC value N  = {ni , . . . ,  n^}, PC increment request 2, and control input events 

C =  {ci, C2} with the encodings shown in Table 6.3.

SNIP waits for event r  to command a read. It then checks the instructions coming 

out of the ROM, signalling 2 each time to get the next piece of data, and when the 

end of an instruction arrives stops signalling 2 . The data is output using the event set 

Q = {qii - - • i^y] where y is the standard instruction set data item width. Since event 

d is the negation of 2 , d will then be signalled back to the CPU.

We specify PCk as follows. We will hold over the definition of SNIP until Sec

tion 6.4.5 when we specify the instruction set. We define functions n{) and p() to 

translate the input and output counters into N. We also define state functions c : N 

and function pc : N N so that pc{j) gives the program counter at location j  in the 

stack, with the top of the stack at location c.

PCk =  ^({2} U N U C ) : o P :

[ [ci V C2]t
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Figure 6.8: ROM and PC store

’(ci V C2)]t ^

[c]t+l =  

Cl A - 1C2] 

[c]t+l =

C2 A -I  Cl] 

[c]f+l =  

Cl,2]t

[cjm =

i ] t <=> 

c ] t+i  =

c]f) A {[pc]t+i = [pc]t)

c]t +  1) A {[pc]t+i = [pc]t © ([c]f+i [n]t))

cjf -  1) A ( H f + i  =  [pcjf)

c]i) A ([pc]t+i =  [pc]t © ([cji Wf))

c]f) A {[pc]t+i = [pc]t © i[c]t 1 +  bc(c)jt))

Figure 6.8 shows the relations between the program storage components.

6.4 .4  Expression evaluation

Expression evaluation is managed by custom expression blocks. These take a stream 

of data bits as input and produce a stream of data bits as output. There may be any 

number of expression blocks in a package.

Control of the process is managed by the write-data signal w and the process-data 

signal g. w sets the data in RAM to the input D. This data is output in the next step
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to the event set vl. A multiplexer MUX  routes the w and A events to the expression 

block selected by the events E  from the CPU.

The expression blocks themselves take a “start” signal gi and input data set Ai as 

inputs, and give out a “finished” signal hi and output data set Bi. Their implementation 

will depend on the particular expression. The developer may choose to design them by 

hand in order to take advantage of PLD features.

Once the expression block has finished, it signals hi and outputs its data on Bi.

This is routed to the output RAM via DMUX, again controlled by E.

Note that the other components are constructs which we have come across be

fore and do not require specification. Figure 6.9 shows how the expression evaluation 

components fit together.

6.4.5 C P U  instructions

The instructions from the ROM, previously referred to, are fed by the program store

to the CPU. They are key to the control path of the package.

An instruction consists of a sequence of y-bit words, fed to the CPU from the
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Bits

00

01

10

11

Meaning

End of instruction (no-op)

Continuation of instruction sub-component 

Start of instruction sub-component 

Opcode

Table 6.4: Word type encodings

program store with event set Q. The sequence will always start with an opcode, which 

may then be followed by any number of sub-components such as addresses and data. 

This section breaks down the decoding and execution process of the instructions.

Encoding schem e

Each word in ROM uses its top two bits to indicate the type of the data in it, according 

to Table 6.4.

The end of each complete instruction is signalled by a word with zero headers bits. 

We can now specify the SNIP process from Section 6.4.3. It need only check the 

top two bits of the data coming through. As long as they are not both 0 it will continue 

to raise event i, incrementing the PC to get the next part of the instruction. As soon 

as they are both 0 it will cease to signal i.

SNIP = i{Q U {r}) : o{i} :

[ t r u e , ([r]i V [qo V qi]t) ^  [i]t+i

Instruction  O pcodes

Table 6.5 lists the possible opcodes for the ROM instructions. The ROM output must 

be wide enough for each instruction to be identified uniquely in one word, including 

the aforementioned two header bits.

In the table, A denotes an address in RAM, P  a program counter value, E  an 

enumeration and D a data chunk. { X } denotes one or more instances of X .
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Opcode Arguments Meaning

NOP - Do nothing

DEPON id : E Instruction depends on id

COPY I : D, s ,d  : A Copy I words from s to d

LOGIC op: E, { tti} Evaluate logic operator

CMP op : E, a, b : A, 
1

Compare a and b of length I

SUBEXT id : E Subprogram id call

LOOP - New loop marker

LPEXIT a : P Exit current loop, skip PC to o

LPRET - Return to loop start

IFELSE { Oi : A,pi : P } if-then-elsif

EXEVAL id : E Evaluate expression id

EXWRT I : D ,s : A Copy I words from s in RAM to expres

sion input block

EXREAD I : D ,d  : A Copy I words from the expression out

put block to d in RAM

SUBJMP a : P Jump to local subroutine at a in ROM

SUBRET - Return from subroutine, restoring PC

IDXRD s : A, i : A, t, I : Indexed read from s to d

D ,d : A

IDXWRT s : A, i : A, t , l  : Indexed write from s to d

D ,d : A

Table 6.5: CPU Opcodes
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Each opcode has a condition flag bit C. If set, the opcode is only executed if the 

current CPU condition flag is set.

Not all these opcodes need be implemented. At compile time, if an opcode is not 

present in the compiled program then it and its associated components need not be 

put into the package.

Dependencies

The first opcode of a message may be DEPON. The following word gives the ID of an 

instruction which must complete before the current instruction can start. This is useful 

for starting a long operation (e.g. external subprogram call), processing data in the 

meantime, but having the facility to block when the long operation’s data is required 

but unavailable. Any number of instances of this opcode and its data may be present 

at the head of a instruction.

The set of dependency IDs are mapped to the different operation blocks in the CPU 

core, therefore correspond to an instruction’s opcode.

If the main opcode has its conditional bit set then the conditional bit in DEPON 

must be set too. This will have the effect of throwing away the entire instruction before 

any dependencies are checked.

The DEPON opcodes and their data are followed immediately by a normal instruc

tion and its data.

O pcode D escriptions

COPY is a direct command to the RAM to copy I words from address s to address d. 

We have already seen that our RAM components implement this directly.

LOGIC takes an operand identifier op, which selects an n-ary logic operator, and 

applies it in sequence to the data at the specified RAM addresses. The result ( tru e  

or false ) is assigned to the CPU conditional flag.

CMP takes an operand identifier op which selects one of the six numeric comparators 

= » /=, <> <=, >, >=, two addresses a,b identifying variables and a word count I. 

The variables are evaluated against each other as if they were unsigned integers of the 

appropriate length. The result is assigned to the CPU conditional flag.
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SUBEXT calls a subprogram external to the package, id identifies the destination 

package and the necessary message header data

LOOP identifies the start of a new loop. It pushes the current program counter 

onto the PC stack, leaving the stack topped with duplicate values v. v will then be 

the PC address of the first instruction in the loop.

LPEXIT jumps out of the loop by popping the top value off the PC stack and then 

setting the current PC value to a.

LPRET returns to the top of the loop by popping the top value off the PC stack, 

reading the next PC value, and pushing it back onto the PC stack to have duplicate 

values as in LOOP.

IFELSE takes a string of RAM and PC addresses. If the value at Oi is non-zero then 

the PC jumps to pi. Otherwise the value at oa is examined, and so on. A catch-all else 

can be implemented by specifying the last as the address of a non-zero constant.

EXEVAL uses id to select routing to the expression blocks as described in Sec

tion 6.4.4, then signals the expression block to evaluate the current set data.

EXWRT reads I words from address s in RAM and writes them into the expression 

input RAM block.

EXREAD reads the expression output RAM block and writes the I words into address 

d in RAM.

SUBJMP is an internal subroutine jump. It pushes the specified PC value a onto 

the PC stack, making the CPU execute instructions from a onwards.

SUBRTN returns from the internal subroutine by popping the top value off the PC 

stack.

IDXRD reads the number from address i, multiplies by t words and adds to s before 

reading I words from the resulting address and copying them to d.

IDXRD reads I words from s then reads the number from address i, multiplies by t 

words and adds to d before copying the read words to the resulting address.

6.4.6 Instruction  decoder

The first stage of the pipeline coming out of the ROM store carrying the instruc

tions handles dependency stalls and opcode selection. At the end of this stage of the
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pipeline the instruction’s dependencies have been met, conditional instructions have 

been checked and dropped if the condition is not met, and the instruction’s data (if 

any) multiplexed to the correct control unit with an activation signal.

For clarity we define a “valid instruction form” function This is read

as “the message formed by the events in A from time t through time t i is a valid 

instruction according to the restrictions in this section”. There are corresponding func

tions m'O and m"{) which respectively describe messages without leading dependency 

lists and with a dependency ID moved to the back.

The conditionals are checked first. COND takes lines Z  out of the ROM store and 

CPU conditional status line v out of the CPU core as inputs. If v is clear (meaning 

“last CPU condition evaluated to fa lse”) and an opcode pattern in Z  is conditional 

then the rest of the instruction is thrown away, up to the first word with header bits

00. Additionally signal u is sent to the CPU core, meaning “conditional instruction 

not executed” so that the core can request the next instruction from ROM.

The specification of COND assumes that the conditional bit of an opcode is bit c.

COND = l{Z U {v}) : o{A U {u}) :

[ [ m {Z ) ] t . . . t + i ,

([/%,!,c]f A [-u;]^) <=> ([w]t+i A hao,i]t+i...i+i+i)

A (H t  V-.[2b,i,c]i) ^

[ m { A ) ] t+ i . . . t + i+ i  A V 1 <  j  <  (z 4-1) •

• • • 3 ® n — l } ] t + i  ~  [ " [ % 3  3

]

The decoder takes the lines A out of COND, where oo,i are the header bits, and 

processes the dependency stalls in DEPCODE. This outputs unstalled data to DECID 

along lines B. Any required dependency is queried along lines P, and signal p is received 

once the dependency is satisfied.

The new decoding processes are specified as follows. We define the function opcodeA,p{X) 

to map the subset A of A to the equivalent opcode encoding in P, ignoring the condi

tional fiag.

D E P C O D E is parametrised by the length of an internal buffer which it uses to
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store a blocked message. The precondition of DEPCODE/^ states that there is some 

number A; > 0 of dependencies in front of each message, and the message less its 

dependencies is still a valid message.

The postcondition states that if there are no dependencies then it is passed straight 

through in N+1 steps; if there are dependencies then it must signal the first dependency 

ID, then a p event must occur before any message can be passed through.

DEPCODEn =  i[A  U {p }) : o{B U P)  :

[ [m{A)]t,..t+i A 3 k \ \ f b < j < k :  [m{A)]t+2j...t+u 

([oo,i]f A opcodeA,p{[AI\t) =  DEPON) =>

[opcodeA,p{\A]t+\)]t+N+i A

(h p ]f+ ^ ...W + d  A [ p ] t + N + d + i )

[“ ’^o,i]t+v+i...i+iV+d A

V s : ([77i^(B)]s A s >  (^ +  A )) ( s > i  +  A  +  d +  l )

A -"([Go,i]( A opcodeA,p{[A]t) =  DEPON) =4>

[m'{B)] t+N+i . . . t+N+i+i  A

[ { bo ,  . . . , —

[{ûQj • • . , t t n —

]

DECID  registers the dependency id, then passes the instruction along C  to the 

opcode decode OP.

DECID =  lB \ o{ C C D ) :

[bo,i]t [opcodes,D{[B]t)]t+i 

A {-^[bo,i]t) ^  [opcodes,DW]t+i

A ["f • J n̂—l}]t+l [{̂ Oj • • • 3 n̂—l}]i

A [m" {C)]t+i...t+i+i
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OP produces the control lines P  and data lines PU {s} routed into the multiplexer. 

The s event is the “operation start” signal. The multiplexer then routes the data along 

the correct route Q  to the operation’s particular processing block.

The OP process has a relatively simple specification. The condition on [co,i]t is not 

strictly needed as it is implied by the precondition of a well-formed message, but it 

aids clarity. Here we specify OPfc with a delay k >1.

OPk = iC  : o{E U P  U {s}) :

[co,l]t <=> [s]t+k

A  3 ^ n —s l j f + f e . - . f + i + A :  “  [ '{^ 2 3  • • •  : ^ n —l } ] f

A [ { / o , . . . , / l } ] t + A :  =  {0,0}

A V1 < j  < z :

[ { . ^ 3  • • • 3 / n — l } ] i + i + f c  —  [ { 0 ) 3  3 ^ n — l } ] f + j

]

Process REG  acts as a dependency register. Input lines D are used to note that an 

instruction with ID di has gone through. Input lines H  are used to note that CPU block 

hi has completed. REG has the internal state function 6 : N —> B identifying whether 

each instruction ID has gone through and not been acknowledged. State variable I : N 

stores the last dependency ID query received through P.

REGk is parameterised by its delay k >1.

REGk =  i{P U P  U D) : o{p} :

[ t r u e ,

Vz: [h i] t^

[s]f+fc =  [g 8  (z false)]* A 

{ [ i \ t  =  i )  [p]*+A:

A [di]t =>

[s]*+fc =  [s © (z true)]* A 

[l]t+k = i 
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Figure 6.10: First stage of CPU pipeline

Figure 6.10 shows the decoder pipeline flow.

6.4 .7  C P U  im plem entation

Specifying each component of the CPU core here would be a laborious process. . We 

have already made formal speciflcations for the key components with which they com

municate. In this section we outline the generic method of operation.

A core component receives data from the decoder multiplexer. Start of data is sig

nalled by a high on start wire d. The data itself comes in standard packets (with header 

bits 10 for start of item and 01 for item continuation) on wires G = {qq̂ . . . ,  Qn-i}-

The input data will typically be stored in one or more small blocks of RAM or in 

flip-flops, as required. As each part of the instruction is received the component will 

change state to route the next instruction part appropriately. The actual computation 

may involve communication with RAM, the ROM store, the PC store or external 

package interfaces.

The dependency analysis in the compiler and decoder guarantees that the compo

nent will not be in the middle of computation when the new data arrives. It does 

require that the component signal on output h once the computation is complete and 

all output data has been sent to the appropriate destination. This signal h will end up 

at the REG  process.
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Figure 6.11: CPU core component

Figure 6.11 illustrates a generic CPU core component. State machine ST  receives 

the start signal and controls the routing of MUX to direct the instruction packets to 

the appropriate destinations. Block A1 builds up an address and does a read request 

of external block F I, which might for instance be RAM or the PC store. Data is 

eventually returned into Y, which processes it and passes to X, where it is used as 

the address for a write to external block F2 of the data built up in D2. Completion is 

signalled once ST  has seen the end of the message and block F2 has signalled success.

6.4 .8  O pcode sum m ary

With the preceding work we have produced a substantial and detailed design for a inter

preter of the instructions defined in Section 6.4.5. The interpreter contains mechanisms 

for asynchronous communication with client software and for synchronous communi

cation between component packages. The design has a range of parameters relating 

to processing delay and bit width of communication channels, and allows removal of 

components which are not needed for a particular program.

We assert that this interpreter is suitable for running a compiled version of a se

quential SPARK 95 program. To demonstrate this, in Section 6.5 we detail how the 

SPARK Ada constructs are mapped to sequences of interpreter instruction codes. We 

also show how the control- and data-flow properties of a SPARK program validate a 

range of assumptions made in the interpreter design.
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6.5 The Program  M odel

In Section 4.3 we described the SPARK Ada language and the SPARK Examiner 

enforcing tool. We now describe how to map valid SPARK programs into the interpreter 

that we have defined.

For the rest of this chapter, “a SPARK program” should be taken to mean “a 

sequential Ada 95 program which conforms to the SPARK language definition and 

which is free of exceptions.” In practice this normally means a program which passes 

the SPARK 95 Examiner checks, and for which the run-time checks generated by the 

Examiner (using the -exp switch) are all proven free of exceptions.

There are legal SPARK programs not allowed by the Examiner, and also illegal 

SPARK programs allowed by the Examiner. Clearly, the latter are potentially serious 

if part of a safety-critical system, since the Examiner’s acceptance may lead to undue 

trust of the program. However, the known cases of this problem over the years of 

commercial Examiner use have been relatively small in number. Each project’s safety 

authority will have to make their own judgement on the reliability of the Examiner.

6.5.1 T ypes

Basic SPARK types are subsets of integers, fixed-point or floating point numbers, 

and characters. Enumerated types can be viewed as integers where no arithmetic is 

normally performed.

Compound SPARK types use the array constructor, with integers or enumerated 

types as indices and any other types as the element type, or the record constructor, 

with field names as indices.

The interpreter has one form of type: a sequence of a fixed number of words. Word 

size is fixed within a package. The sequence length depends on the original SPARK 

type, and in the case of compound types will normally be the sum of the lengths of 

the components of the component types. Basic types will be stored in a non-negative 

integer number of words within a package.

As an example, the SPARK basic types:

type N is  range 1..300;
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type E is (Red, Amber, Green);

are represented in a package with word length of four bits by sequences of three and 

one words respectively.

The SPARK compound types:

type R is  record 

A : N;

B : E; 

end record;

type A i s  array(N,E) of R;

have sequences of 4 and (300 x 3) x 4 =  3600 words respectively. A “slice” of the array 

A, selected by the first index only, would be 3 x 4 =  12 words.

The remaining difficulty is in indexing into a compound type. Indexing into a record 

is easy since all record fields and sizes are known at compile time, so the offset and 

length of the component are known. Indexing into an array is more difficult since the 

index is not generally determined at compile time.

The interpreter IDXRD and IDXWRT instructions are designed to allow this. Mul

tiple indices require multiple uses of the instructions.

As an example, if the variables X : A ; Y : N ; Z : E were stored at locations oo, %, Ug

in RAM, then the assignment W := X(Y,Z) ; would be accomplished by the following

sequence:

IDXRD aO a l 12 4 a4 # s to re  X(Y) in  T

IDXRD a4 a2 3 4 aS # s to re  T(Z) in  W

where W was stored at location og and 04 held a temporary variable of size array  (E) 

of R.

Given this, we see that we have the mechanism for determining type size in package 

words at compile time. Differing word sizes between packages are irrelevant since 

the inter-package pipeline transports data at a packet size independent of source and 

destination word sizes.
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6.5.2 S tate

SPARK program variables are made visible either when a package is elaborated, or 

when a subprogram is called. Each variable is associated with a named type (see 

above) and may have an initialised value. Each variable has a unique fully-qualified 

name.

Variables in the interpreter have a fixed location in the RAM of their containing 

package. All of their locations and word sequence lengths are determined at compile 

time. The safest strategy makes all variables disjoint. SPARK’s ban on recursion 

removes the need for a dynamic variable stack.

However, it is possible to optimise RAM usage by allowing certain subprogram 

variables to overlap. Variables from subprograms P and Q can overlap if there is no 

subprogram calling sequence which allows Q to be called directly or indirectly from P 

or vice versa.

All package variables are initialised at interpreter programming time, to 0 unless 

an explicit initialisation is given in the SPARK. The SPARK Ada rules remove the 

elaboration order problems with Ada and allow package variable initial values to be 

determined during static analysis.

Subprogram variables which are initialised at declaration must be explicitly ini

tialised at the start of the compiled version of the subprogram. Space must also be 

allocated for subprogram parameters, both in  and out.

Constants are treated as variables but placed in the section of RAM which is read

only to the package core.

6.5.3 Expressions

A SPARK expression combines variables, function calls and literals to produce an 

output of a type that is known at static analysis time. Expressions are either static 

(can be determined at compile time) or non-static. We shall ignore static expressions 

since they will be reduced to literals at compile time.

Expressions may occur in the following places:

1. on the right hand side of an assignment or declaration;
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2. as an input parameter in a subprogram call;

3. as an index in a component reference (e.g. an array);

4. as the selector in a case statement;

5. after the re tu rn  at the end of a function;

6 . within a type conversion; or

7. after an i f  or e l s i f , as a boolean condition.

The simplest expression is a numeric literal. This will be stored in RAM in the same 

way as a declared constant. Note that the type of the literal is known at compile time, 

so 5 : range 0 ..  7 and 5 : range 0 .,  9999 will be stored in different locations

since they are “different 5s”.

Another simple expression is a single variable or constant name, possibly with record 

selectors following. This can be handled entirely within RAM by the COPY instruction 

since the variables’ addresses and length are known immediately.

A more complicated expression is a variable or constant with one or more array 

selectors. In Section 6.5.2 we saw that the IDXRD could be used to emulate this. 

Similarly IDXWRT can be used to emulate assigning to an array-selected component 

of a variable.

Boolean expressions (such as those after i f  statements) consist of one or more 

boolean sub-expressions separated by logic operators. The LOGIC instruction provides 

a shortcut to evaluating n-ary boolean logic, and additionally sets or clears the CPU 

conditional flag which we will later find useful.

Numeric comparisons are done with CMP which works in a similar way to LOGIC. 

It can also meaningfully compare two variables (of the same type) for equality or non

equality.

Type conversions are not trivial, since they may move data between word sizes. 

s p a r k ’s run-time exception checks ensure that the conversion is always valid (5 can 

never be converted to a variable of range 0 . . .  4, for example), but the conversion itself 

is an arithmetic problem.
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Expressions may incorporate function calls, but the SPARK rules mean that there 

are no side effects (the functions do not change the values of any variables) and all 

variables used by the function, directly or indirectly, are known. These expressions 

will be rearranged by the compiler so that the function call occurs first, saving data to 

a temporary variable, then that variable replaces the function in the expression.

Expressions within subprogram calls will need to be saved to the variable corre

sponding to the appropriate subprogram parameter.

Arithmetic expressions are difficult. The general solution is the use of expression 

evaluation blocks within the CPU; each arithmetic expression in a package subprogram 

will normally need its own block. The EXxxxx instructions allow writing to, execution 

of and reading from these blocks.

The logic for an expression block may be produced automatically by the compiler; 

the normal Ada arithmetic and logical operations will have a library of blocks pre

defined, parametrised by argument type size. We have already seen an adder; other 

arithmetic blocks can be produced using well-understood programmable logic designs.

Alternatively the developer may choose to produce a manual design, refining the 

required specification in the process described in Chapter 5. This may confer perfor

mance and space benefits, at the cost of increased development time and chance of 

error in the refinement.

6.5 .4  A lternation

There are two SPARK forms of iteration: i f - th e n - e ls i f - e l s e  and case. The latter 

can be treated as a special case of the former.

The I PELSE instruction is the key to emulating alternation. It contains a list of 

boolean variable addresses paired with PC values to jump to. A terminating “else” 

can be emulated with the address of a constant Boolean tru e . The set-up to IFELSE 

will normally be a series of expression and boolean evaluations matching the various 

conditions.

6.5.5 Iteration

The interpreter supports loops with the LOOP, LPEXIT and LPRTN instructions.
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SPARK loops come three main forms;

1. fo r  loops iterate an index variable through a sequence of values; these are equiv

alent to a conditional loop preceded by an initialisation of the index variable with 

the first statement of each loop being an index variable.

2. while loops have a boolean condition which is checked at the start of each loop 

iteration, and which if met will cause immediate loop termination.

3. plain loops have no condition and nominally loop forever.

Loops may also have e x it  statements within them, which may or may not be 

conditional. These exit out of the immediately-enclosing loop.

LOOP sets up a loop in the program counter by marking a PC value as the start of 

the loop. LPRTN returns control to the start of the loop, and will therefore be the last 

statement in the compiled loop block. LPEXIT will break out of the loop. Together 

then these allow emulation of the SPARK looping constructs.

6.5.6 Subprogram  calls

Internal subprogram calls are made by writing the parameter data to the mode in  sub

program parameter addresses in RAM, then calling SUBJMP to push the subprogram’s 

start address on the PC stack. At the end of the subprogram SUBRTN will restore 

the PC, and the new mode out parameter values will be read from the subprogram 

parameter addresses.

External subprogram calls are made by writing parameter values into the appropri

ate area of (write-only) RAM and then using SUB EXT to identify the external package 

and subprogram to call. The details of I/O  to other packages were given in Section 6.3.

6.5 .7  Order o f execution

A sequence of statements in a SPARK program are executed strictly in order by a con

ventional Ada compiler. In fact, this need not be the case. The data flow information 

gathered by the SPARK Examiner allows the compiler to determine that one or more 

statements may be executed simultaneously.
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The instruction dependency features of the interpreter can be used conservatively 

to make each instruction dependent on its predecessor, and this is the recommended 

process when testing the newly-compiled software. Out-of-order computations must 

be carefully calculated.

Two sequential instructions I\ , I2 cannot be executed in parallel if:

1. Il affects the conditional flag and I2 is conditional;

2. Il and I2 both write to the same package resource;

3. h  reads from a resource that I2 writes to, or vice versa; or

4. 7i and I2 are handled by the same core component.

All these conditions can be checked by the compiler, but add complexity and hence 

increase the chance of a compiler error. The interpreter is deterministic, so at least 

errors should be repeatable and hence not so hard to track down. Still, it is better to 

avoid errors in the first place.

6.6 System  Interface

As noted in Section 6.2, Ada provides methods for communicating with entities out

side the conventional CPU and memory model. It would be reasonable to allow the 

interpreter to communicate directly with these entities rather than having to let the 

CPU do the direct communication and pass data between them.

One solution is to use the package input mechanism given in Section 6.3.4, but 

couple it to custom logic that controls the device’s input and output pins directly. This 

has the benefit of being encapsulated by the normal interpreter package mechanism, 

but does mean that it cannot interrupt the normal program control flow. Instead there 

has to be an explicit call to the package for the main program to have access to any 

data that is gathered. However, the data gathering can run in parallel with the rest of 

the program.

Another solution could involve an extra expression block in a conventional package, 

hiding the external interface. This removes the inter-package connection overhead at 

the cost of potential unconventional CPU core component behaviour.
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The exact solution for a particular project is a project design decision.

6.7 O ptim isations

The above model is relatively slow and unoptimised. Compared with a conventional 

compiler/CPU combination its potential advantages are the out-of-order execution and 

parallel computations. It will suffer from the overhead of being in programmable 

logic rather than an ASIC, and likely to run at perhaps one twentieth the speed of a 

conventional CPU for a relatively narrow bus width.

The key to performance gain is to use what the model is good at. Writing data to 

the PLD, and reading data back from it, can be done at a relatively high burst speed 

(depending on the system bus). The PLD can process this data while the main CPU 

executes the rest of its program, polling the PLD to see when the processed data is 

ready. This takes load off the main CPU, increasing system performance.

Section 6.6 showed how part of an PLD program could be customised to monitor 

off-PLD signals. This too can reduce CPU load.

Designing the system architecture is necessary early in the system development 

process. The designer needs to decide what tasks PLD programs should take from 

the CPU. Once this is done, the PLD implementation can vary without the main 

program design needing to change. This is important since it is not yet apparent how 

one can predict overall system performance with confidence without a mostly-working 

implementation.

Optimisations of a particular implementation will normally include removal of re

dundant components and adjusting word and bus widths. The latter appears to be 

more of an empirical process than an analytic one. At the moment we have no heuristics 

for identifying implementation bottlenecks. This area is open for further research.

6.8 Conclusions

This chapter has seen a design and outline implementation of a sequential SPARK 

95 interpreter running on a generic PLD, intended for running PLD programs of low 

criticality.
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6.8.1 A chievem ents

We placed no artificial limits on the set of SPARK 95 programs that the interpreter 

could execute. The limitation of no nested packages was for clarity of exposition, 

and could be removed by careful management of the name spaces while compiling the 

top-level package.

We showed that the control and data flow within SPARK could be emulated by a 

relatively small set of primitive instructions. We produced a detailed mechanism for 

asynchronous transfer of data between a software SPARK program and the SPARK 

interpreter. We also produced a mechanism for synchronous transfer of data between 

package blocks on the PLD.

We made no detailed estimates of the practicality of implementing the design, or 

of the compilation errors that could plausibly occur.

6.8.2 E valuation o f SPA R K

We found the following SPARK features, enforced by the Examiner, key to our design:

1. recursion banned;

2. package ordering in a directed acyclic graph;

3. known data flow of subroutines;

4. exits from loops only possible in immediately-enclosing loop;

5. compile-time knowledge of type sizes; and

6. ability to show freedom of programs from run time exceptions.

6.8.3 E valuation o f SR P T

The SRPT notation proved useful in specifying the input and output events of pro

cesses and their relationships. The pre- and post-condition specifications varied in their 

clarity. There is scope for improved notation and conventions to reduce the size and 

complexity of the specifications without reducing their precision.
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The key test of the notation will be when processes are implemented from their 

specification. In Section 7.2 we translate the relatively simple stateless processes of 

the Carry Look-Ahead Adder into gates, but the more complex state-holding processes 

of the SPARK interpreter are an entirely different problem. This is an area open for 

further research.

6.8 .4  Satisfaction  o f target aim s

Of the targets in Chapter 3 we have addressed or partially addressed:

Target 1: The process we define must be rigorous.

This is partly addressed; SPARK programming is a rigorous process, and the in

terpreter design has been given in an unambiguous notation (SRPT). However, we 

have not produced any rigorous demonstration that the interpreter correctly executes 

SPARK, and indeed have stated that the attainable integrity of the interpreter is not 

sufficient for critical applications.

Target 2: The process must help the developer to write unambiguous programs.

This approach allows PLD programming in SPARK, and SPARK programs are 

unambiguous. The SRPT specification of the interpreter is unambiguous, and so an 

interpreter implementation which satisfies the specification will likewise run programs 

deterministically.

Target 3: The process must allow the programs to have sections written in a

low-level language for speed and flexibility, but not allow these sections to compromise 

overall program reliability.

The interpreter design allows arbitrary connection to other PLD components as 

long as they implement the same I/O  interface as the interpreter modules.

Target 4 ' The process must admit substantial static analysis to discover semantic 

program errors at or before compile time.

SPARK programs may be subjected to static analysis via the use of the SPARK 

Examiner.

Target 10: The process should provide flexibility so that it may be used in situa

tions not anticipated in its original design.

The interpreter design provided is parameterised and modular, allowing individual
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modular designs to be modified as and when necessary and desirable (within limits 

imposed by communication protocols and PLD architecture.)

6.8.5 Follow-on

This chapter has not gone into great depth for each of the interpreter components for 

reason of space and chapter focus. The key measure of feasibility is whether such an 

interpreter can actually be implemented, and whether its performance is comparable 

to a conventional CPU. This requires further work, and hence this study is listed as a 

possible future item of research in Section 8.4.3.
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Chapter 7

Case Study

This chapter brings together the work of the preceding chapters and shows how it can 

be used to solve a simple yet realistic problem.

There are two phases to the study. The first phase is a validation of the SRPT 

specification work. Based on the high-level SRPT specification in Chapter 5 we develop 

and validate “building-block” processes, then implement the Carry Look-Ahead Adder 

design. We implement this design in Perl, measure its size and assess its performance.

The task of the second phase is to produce an embedded system to control a ballistic 

missile interceptor. As far as possible, we use development and analysis techniques 

described as suitable for SIL-3 systems by MoD Defence Standards 00-55 and 00-54 

[MoD97, MoD99].

7.1 Target Aim s

We address the following targets from Chapter 3:

T arget 5 The program produced must be easy to test.

T arget 6 It must be able to be compiled onto a range of existing and anticipated logic 

devices.

T arget 7 It must reuse existing proven tools where feasible.

In addition we consider the question of the practicality of development of significantly- 

sized systems.
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7.2 Carry Look-Ahead Adder

In this section we present the construction of a general-purpose simulator for a generic 

single-clock synchronous PLD. We then show how it was used to implement the design 

of a carry look-ahead adder (CL A A) from Section 5.3.

We do not aim to make the simulator implementation conform to SIL-3 or SIL-4 

software standards. Instead, we treat it as a testing tool; we require confidence that 

it fulfils its requirements accurately, and that it has been constructed in such a way 

as to highlight errors in its design and implementation. It should provide an overall 

increase in confidence in the circuits it simulates, but will not provide the sole evidence 

of correctness of the circuit.

7.2.1 Sim ulation environm ent

The environment used was the Perl programming language. This was chosen for its 

ease of use, cross-platform compatibility and support of 0 0  inheritance. Java was an 

alternative choice but the author had more experience of Perl.

Structure

The base Perl modules used by the simulator were:

Blocks.pm Generic blocks

Gates.pm Logic gates (single-cycle, stateless)

Utils.pm General utilities for conversion between data types 

Functions.pm Logical functions for logic gates

The first two modules in the list implement object instantiation in the standard 

Perl way. The other two export functions for use by other modules, and are stateless. 

All of them raise no errors under the Perl -w and use strict syntax checks.

Program m ing interface

The Blocks module implements the following methods:
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new(specs) Initialise a new block with the given specs 

gate_count() Count the number of gates in the block 

copy (old) Copy an existing block old

set_in_map(map) Set the mapping of input pins to inputs inside the block

set_out__map (map) Set the mapping of outputs inside the block to output pins

se t_ rou te  (route) Set the routing between internal blocks

map_in() Map input pin values onto the relevant inputs

map_out() Map output values onto the relevant output pins

set_ in p u t(id X jb it) Set input pin idx to b it

get_outpu t(idx) Cet the value of output pin idx

get_delay() Cet a block’s computational delay

evalO  Evaluate internal blocks and gates

route 0  Route data between internal blocks and gates

add_object(obj) Add a block or gate obj to the block contents

cycleO  Cycle a block (map_in() ;ev a l()  ;inap_out() ;ro u te ())

Testing

The modules’ code has been tested by comparing the results of computations with 

results worked out by hand in a range of blocks. This would clearly be inadequate for 

a tool intended to support SIL-3 software development, where such techniques such 

as white-box testing, regression testing and independent code review might be used. 

General testing and validation strategy is discussed further in Section 7.2.5.
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7.2.2 B uild ing blocks

The first step towards allowing module building was to define a range of logic gates in 

the Gates and Functions modules. Each of these was taken to complete its calculations 

in 1 cycle. Most gates had 1, 2 or 3 inputs. The exceptions were n-ary a n d , o r , pass 

and xor gates in the Functions module.

The Gates module allows the user to define the maximum number of inputs permis

sible on these gates, causing a runtime error at the instantiation of any gate with more 

than the permissible number of inputs. This corresponds to specifying the maximum 

inputs and outputs on each cell in a particular PLD.

The user can now build their modules out of these gates. These modules subclass 

module FPGA::Blocks. A module’s block is formed by Perl functions which instantiate 

a container block and then instantiate and connect a series of other blocks and gates in 

the container. All such modules are placed in the Useful include directory as standard.

7.2.3 A dder block

The CLAA was implemented in the module FPGA::Useful::Adder in the manner de

scribed above.

This class’s new() method requires parameters NAME for the name of the adder, 

WIDTH for the bit-width of each adder input and ADDON for the number to add on to 

the basic sum; this would typically be 0 or 1.

The main task of the module was to declare a block containing the three sub-adders 

and other gates according to the design developed in Section 5.3. These were given 

widths according to the user-input width for the containing adder.

If the WIDTH parameter was 1, the module built a simple half-adder block from an 

X O R and AND gate.

7.2.4 Testing

A c la s s_ te s t  Perl script and Makefile system provided a generic facility to test a 

given FPGA::Blocks subclass. The script was a wrapper around use of the subclass 

s e lf_ te s t( )  method. Typically, this method iterated through a range of block size
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Bit width w Cates g Delay d [log2(^ -  1)J

1 2 1

2 9 2 0

3 25 3 1

4 31 3 1

5 64 4 2

6 80 4 2

7 93 4 2

8 100 4 2

9 171 5 3

Table 7.1: Adder size and delay properties

parameters (WIDTH in the case of the CLAA). In each case it created a suitable instance 

of the block, extracted test data from the te s t_ c a se s ()  method and tested the block 

against the expected output.

The te s t_ c a se s ()  method implemented random checking of a CLAA, generat

ing random input data and checking that the sum of the random data emerged in a 

pipelined fashion after the block’s declared output delay.

Testing revealed no functional errors, and produced concrete statistics about the 

implementation. Table 7.1 shows the properties of the Adder for a range of bit widths. 

The delay is measured in PLD clock cycles.

The delay was indeed logarithmic in bit width, matching our performance specifi

cation. For width w > 1, delay d =  2 -f- [log2(w — 1)J as the table shows. Cate size 

leapt, and delay increased by one, at each 14-2^ for integer k as we would expect.

The testing of larger devices revealed an omission in the simulation environment. 

Since basic gates were limited to 3 inputs, when a 4-gate PASS gate was requested 

the Gates module raised an error. This was overcome by extending the module’s newO 

method to instantiate a block with as many smaller pass gates as needed. Re-running 

the fixed simulation produced the correct results.
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7.2.5 S im ulation  environm ent reliability

The simulation environment is a key component in the argument for correctness of 

our programmable logic system, since inadequate or incorrect simulation may lead to 

construction of a system which simulates correctly but behaves incorrectly in real life. 

This creates a debate about the required level integrity of simulation and analysis tools 

in a safety-critical system.

Perl is clearly an unsuitable language in which to implement a safety-critical system. 

The key reasons are:

1. it is an interpreted language, causing a significant performance penalty compared 

to compiled languages;

2. the Perl interpreter is large and thus difficult to verify in any meaningful way;

3. the interpreter does periodic garbage collection, making program execution effec

tively non-deterministic ;

4. the language is purposefully very weakly typed;

5. Perl is not a “static” language; rather, it develops steadily over time and language 

constructs may change their meaning; and

6. Perl itself has a number of language concepts (such as default variables) which 

obscure the meaning of program statements and are prone to cause error.

Comparing these properties with the requirements for selection of programming 

language in Section 28 of Def Stan 00-55 [MoD97], we see that the weak typing, lack of 

formal syntax and lack of predictable program execution clearly make it an unsuitable 

programming language.

However, the Praxis Critical Systems Perl Coding Standard [LeeOO] provides guid

ance on developing Perl programs designed for reliability. Using this, with indepen

dent verification of programs against this standard. Praxis have justified the use of 

Perl tools in support of a safety-critical system development. Performance issues are 

negated since programs are not required to run in real-time, the standard requires the 

use of a “well-trodden” subset of the main language, and coding rules combined with 

manual inspection of the code reduce the risks posed by weak typing.
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7.2.6 C onclusion

Although not conclusive proof that the CLAA refined design was perfect, or indeed that 

the simulation was error-free, this simulation and testing leads to increased confidence 

in the design. This fulfils the main requirement for the simulator which we expressed 

at the start of this section. The simulation also demonstrates that development of the 

CLAA is easy to test (target 5) according to its criteria from Section 3.7.2:

5.1 amenable to production of a test plan from the specification;

5.2 amenable to instrumentation of the compiled program so that relevant data flow

can be observed;

5.3 with a working, verified simulator; and

5.4 test vectors for the simulator can easily be produced from the test plan.

Target 6 is met according to its criteria from Section 3.7.2:

6.1 a non-trivial program being developed into a form for compilation and running 

using an existing PLD and toolset

since a simple gate-level description is trivially mapped into VHDL, Verilog or netlist 

format.

In the next section we will construct a program and test harness for a real-time 

safety-critical system, using the techniques described in the preceding chapters.
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7.3 M issile Guidance System  — Overview

This case study addresses the problem of incorporating a programmable logic compo

nent into an existing safety-critical system which was not originally designed for it. 

This is not the ideal way to construct a safety-critical system, but it is a reflection of 

current practice and has the bonus of providing a stringent test of our techniques.

We first implement the system in conventional software, written in the high-integrity 

SPARK subset of Ada 95, using state-of-the art analysis tools to prove safety-related 

properties of our software. We then select a subsection of the code to be implemented in 

programmable hardware, and transform the code to a form suitable for communicating 

with a PLD.

We aim to identify the main difficulties in this re-engineering process, and (where 

possible) propose and demonstrate solutions. A secondary aim is to identify which 

features of the SPARK Ada subset are less amenable to transformation into PLD form 

and propose transformation strategies for them.

7.3.1 R elated  work

Demonstration software systems have been used for studies before. Napier et al 

[NMH99] described the implementation of on-line diagnostics for safety-critical sys

tems, using a boiler water control system implemented in Ada as part of an earlier 

study by the UK Health and Safety Executive. This system had 70 Ada packages, and 

communicated with a GUI over a serial link.

The advantage of a publicly-available software system (and associated test harness) 

is that it provides common ground for future studies. It also permits some degree of 

direct comparison between studies. For this reason, the software and test harness for 

this system will be made publicly available.

7.3.2 S ystem  requirem ents

The system is the main control unit (MCU) for an endo-atmospheric interceptor mis

sile, armed with a low-yield fission warhead. This system is clearly safety-critical; a 

detonation of the warhead at the launch site is a definite hazard to life. Of course,
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there are mission-critical requirements as well; if the warhead were never to go off, the 

missile targeted for interception would probably get through to its destination and be 

likewise a hazard.

We assume that the live warhead is only connected on a production missile in the 

operational environment, and hence there are no special safety considerations during 

development and testing of the system.

7.3.3 Safety

The main hazard of the system will be detonation of the on-board warhead at an unsafe 

location (i.e., close to the launch point, or below a certain altitude). This dictates safety 

considerations such as having confidence in the estimated distance from launch point.

We assume that the overall system has been assessed as SIL-4, but the program

mable part has been assessed as SIL-3. In a real project this reduction would be 

justified by non-programmable measures taken to mitigate the main system hazard, 

e.g. an analogue timer and accelerometer in series with the software warhead deto

nator wire, designed to only enable transmission on the wire after a certain time and 

after the missile has maintained a certain acceleration for a certain amount of time.

According to Defence Standards 00-54 and 00-55, SIL-3 indicates the use of some 

formal notations (e.g. for specification) and semi-formal analysis techniques. It does 

not require proof of object code.

7.3.4 Im plem entation  lim its

Since we lack appropriate hardware, we can only implement this system in pure soft

ware. We must therefore produce appropriate simulation and test software in order to 

have any justifiable confidence that the system does what is required. We have already 

discussed (in Section 7.2) the reliability requirements for such software.

In this particular system simulator we will apply some SIL-3 development techniques 

to the test harness software, implementing it in SPARK Ada where possible and plain 

Ada where required. We will not measure the system’s real-time performance.

The time taken to implement and test the full system will likely be in the order of 

the square of the number of interacting components. For this reason, we will test only
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a subset of the total system’s functionality, ensuring only that the existing components 

work well enough to support the functioning of the missile’s safety-critical functionality.

7.3.5 Im plem entation  technologies

The system (and most of the accompanying simulation and test code) was written 

in the SPARK subset of Ada 95. The standard switches used for analysis are shown 

below:

-i= m iss ile  -exp -lis tin g _ ex ten sio n = ls_  -config=gnat - s t

They indicate, respectively:

• use of the SPARK index file m is s i le . idx;

• generation of full exception checks including arithmetic overflow;

• listing output to .I s s  and .Isb  for Ada specifications and bodies respectively;

• use of file g n a t. of g to specify the target-specific ranges of the base Ada types; 

and

• generation of statistics on Examiner table usage.

The compiler used was GNAT 3.2 on 1686 Linux, although the system was also 

compiled and checked on GNAT for Windows 2000 and Solaris. Note that if a differ

ent compiler was used e.g. to cross-compile to a PowerPC target, then the compiler 

configuration file given to SPARK must represent the target compiler.

The overflow checks generate verification condition (VC) files for each package body 

analysed. These conditions must be shown to be true in order for the developer to be 

confident that the system is free of all run-time exceptions. The strategy used was 

to use the Simplifier tool to discharge the maximum number of VCs automatically, 

and then justify key remaining VCs using manual inspection, recording results in proof 

review (.prv) files. This strategy avoids the extra effort needed for semi-automatic 

proof of the VCs with the Proof Checker tool, at the risk of manual justification of 

VCs being incorrect.
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7.4 System  Com ponents

The system has the following components. For each requirement we list the operational 

(functional) and safety (non-functional) requirements. The safety requirements are 

those that would be produced as a result of the system hazard analysis.

7.4.1 S ystem  clock

1. Measures time since system power-on.

2. Time measured in milliseconds with an accuracy of 0.002% (under 2 seconds in 

24 hours).

The clock was constructed with package clock. The simulation body was imple

mented with a clock that incremented by 1 millisecond after every read, and had an 

external interface to allow simulator adjustment of the clock value.

Additional functions to operate on clock times were supplied in package c lo ck _ u tils .

7.4.2 1553 bus

1. Allows communication between the MCU and the other LRUs.

2. The MCU is the bus controller.

3. The “bus catalogue” is a list of pages; each page relates to the interaction between 

the MCU and an LRU.

4. A bus catalogue page has a list of Rx (MCU to LRU) and Tx (LRU to MCU) 

16-bit words used to communicate, assigning meaning to the bits in each word.

5. Each word is marked with a “fresh” bit by the sender when it is to be sent. The 

receiver can inspect any of the sent words at any time, and can see the “fresh” 

bit along with a “valid” bit controlled by the bus.

6. Maximum time lag between the sender marking a word as fresh and the receiver 

seeing the fresh data is 15ms 4- 1 system cycle.

Safety requirements:
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1. A bus failure indication (no-data condition) for any Tx word for more than 2 

seconds is taken to indicate total failure of the sending LRU.

2. The bus must report a valid self-test on start-up.

The bus was constructed with packages bus, bcl553 and rtl553 . These provide 

a simulation of a standard 1553 bus, and interfaces to the simulation for a Bus Con

troller and Remote Terminal. The bus simulator was tested with program test_ b u s  

to demonstrate basic functionality.

Copies of the test program and interface package specifications are given in Ap

pendix B. The test program in particular shows how the Test package is used during 

testing.

7.4.3 W atchdog tim er

This is a standard component for safety-critical systems, used to detect system failures 

such as program run-away. When such failures occur it will either reset the system (if 

it can be safely reset), or take more drastic action such as self-destruction.

Properties:

1. Provides a reset interface to the MCU.

2. After a reset, the timer will count out 750ms. If not reset within this time, the 

timer will go off.

3. If the timer goes off, the watchdog will immediately command a missile self- 

destruct.

Operational requirements:

1. The timer must be reset within 600ms of a previous reset during normal system 

operation.

Safety requirements:

1. The watchdog timer may only be reset at one point within the program.
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2. The watchdog timer reset command must be so placed in the program as to 

detect as many kinds of system failure as possible.

3. The program must not send a timer reset if any system failure is detected.

The watchdog timer was constructed with package watchdog. The simulation body 

interfaced to the clock to check for timeout when commanded.

7.4 .4  Barom etric sensor

This sensor detects altitude above mean sea level using barometric pressure. 

Properties;

1. Measures current altitude above sea level.

2. Accuracy is ±5% at sea level, up to ±10% at 20 000m.

3. Above 20 000m barometric readings will read as if at 20 000m.

4. Must be calibrated with current altitude at system start.

5. Polling frequency is 200ms.

The barometer emulator was constructed with package barometer. The MCU 

interface to the barometer bus messages was constructed with package i f  _barometer. 

These packages were tested using the main test harness with test script barom eter. in  

which is listed in Appendix C along with its output.

7.4.5 A irspeed  indicator

This sensor measures the speed of the missile relative to the air it passes through. As 

the altitude increases, the sensor’s accuracy will decrease.

Properties:

1. Measures current speed relative to still air, in meters per second.

2. Accuracy is ±1% at sea level, up to ±10% at 20 000m.

3. Above 20 000m, airspeed readings should be regarded as random.
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4. Maximum airspeed measured is 2550 m/sec

The airspeed emulator was constructed with package airspeed. The MCU interface 

to the airspeed bus messages was constructed with package if-a irsp e e d .

7.4.6 Inertial navigation system

This sensor measures the missile’s displacement from its starting point using a ring 

laser gyro set to measure relative movement.

Properties:

1. Accuracy is ±0.3% at speeds above lOOm/s, ±1% below that.

2. The co-ordinate system places the origin at the initial centre-of-gravity of the 

missile.

3. A left-handed axis set is used.

4. The Y axis runs along the long axis of the missile’s initial attitude.

5. The X axis runs in the direction of the number 0 steering fin.

6. The Z axis runs in the direction of the number 1 steering fin.

7. Polling rate is 50ms

The INS emulator was constructed with package ins. The MCU interface to the 

INS bus messages was constructed with package if_ in s .

7.4 .7  Solid sta te  com pass

This sensor is a solid-state compass which detects missile attitude relative to the Earth’s 

magnetic field.

Properties:

1. Must be initialised at start-up with the local normal vector to Earth’s surface.

2. Accuracy is within a 0.04 radian cone at sea level, decreasing linearly to a 0.2 

radian cone at 40,000m.

274



The compass emulator was constructed with package compass. The MCU interface 

to the compass bus messages was constructed with package i f  _compass.

7.4.8 Fuel tank sensor

This sensor reads the amount of fuel in the missile motor’s tank.

Properties:

1. Measures fuel remaining in kilos, from a maximum 100kg fuel load.

2. Accuracy is ± lkg  down to the measurement of a 5kg fuel load, below which the 

reading must be assumed to be a random value between 0 and 6kg.

The fuel tank emulator was constructed with package fuel. The MCU interface to 

the fuel tank bus messages was constructed with package i f  _fuel.

7.4.9 P roxim ity fuse

This sensor is a rapidly nutating (rotating) UV laser proximity fuse.

Properties:

1. Will only detect a reflection off a valid target within 1000m of the target.

2. Reflection is not guaranteed as the detection area is limited by an angle of ±1 

radian from the normal to the sensor window.

The fuse emulator was constructed with package fuze. The MCU interface to the 

fuse bus messages was constructed with package if_fuze.

7.4.10 M illim etre radar sensor

This sensor is a phased-array millimetre-wave radar in the nose of the missile. 

Properties:

1. Will detect a valid target within a cone of 0.8 radian width off the missile’s long 

axis towards the nose.

2. Maximum guaranteed detection distance of a valid target is 10 000m.
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3. Accuracy of location is ±0.02 radians and ±10m range.

4. Doppler processing will read the speed of the target relative to the missile in the 

direction of detection with accuracy of ±3%.

The radar emulator was constructed with package radar. The MCU interface to 

the radar bus messages was constructed with package if_ rad a r.

7.4.11 Staring infra-red sensor

This sensor is an array of infra-red sensing cells in the nose of the missile.

Properties:

1. Will detect a valid target within a cone of 1.2 radian width off the missile’s long 

axis towards the nose.

2. Maximum guaranteed detection distance of a valid target is 30 000m.

3. Accuracy of location is ±0.1 radians.

4. Approximate range information is given by expected target temperature, and will 

be accurate to ±30% for a valid target. -•

The IR sensor emulator was constructed with package i r .  The MCU interface to 

the IR sensor bus messages was constructed with package i f  _ ir .

7.4.12 Fins

The missile has four independent steering fins, spaced equally around the missile body. 

Properties:

1. Each fin has a possible deflection (position) of between -1 and ±1 radians from 

neutral.

2. Extreme rotation of a fin in a high atmospheric drag environment (high speed /  

low altitude) can lead to fin mechanical failure.

3. Maximum response time from position command to position achieved is 800ms.
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Operational requirements:

1. Avoid “chatter” (a rapid sequence of positive and negative values) in fin steering 

commands in order to reduce the probability of fin mechanical failure.

2. Lock the fins in neutral position at system start.

Safety requirements:

1. Fins must report valid self-test at startup.

The fins emulator was constructed with package s tee r. The MCU interface to the 

fins bus messages was constructed with package i f  _ stee r.

7.4.13 M otor

The missile has a liquid-fuel rocket motor to provide thrust along its long axis. 

Properties:

1. Variable thrust between 5 and 35 kN.

2. Optimal fuel consumption is at 21.5 kN thrust.

3. Thrust efficiency decreases by a small amount with increased altitude due to

reduced atmospheric oxygen partial pressure and hence a leaner fuel mix.

4. Maximum thrust at zero atmospheric oxygen is 29kN.

Operational requirements:

1. Avoid chatter in thrust level commands in order to reduce the probability of 

thrust chamber mechanical failure.

2. Avoid repeated thrust ramp-up and ramp-down in order to conserve fuel and 

reduce the probability of thermal cracking in the thrust chamber.

3. Ramp-up to 30% of maximum thrust at system ignition.

4. Do not change this thrust level until missile has travelled over 100m vertically.
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Safety requirements:

1. Motor must report valid self-test at system start-up.

The motor emulator was constructed with package motor. The MCU interface to 

the motor bus messages was constructed with package if_motor.

7.4.14 Self-destruct

For safety, the missile must be able to destroy itself safely. There are four separate 

charges placed throughout the missile body.

Properties:

1. Detonation will fragment the missile body and destroy the warhead without caus

ing warhead detonation.

2. Self-destruct with a full fuel load at low altitude will cause an explosion with 

blast effects approximately equivalent to a conventional blast-effect 250kg bomb.

3. Self-destruct requires a timed sequence of keywords to be sent to the self-destruct 

bus unit. There is no acknowledgement back from the unit.

Operational requirements:

1. Self-destruct must not be initiated if the missile is still capable of flying its des

ignated mission safely.

Safety requirements:

1. Self-destruct must be initiated before the missile impacts the ground.

2. Self-destruct must be initiated whenever any sensor or actuator failure occurs that 

significantly increases the probability of warhead detonation outside detonation 

parameters.

3. Self-destruct must not be initiated within 1000m of the launch point.

4. Self-destruct must report valid self-test at system start-up.

The self-destruct emulator was constructed with package de s tru c t. The MCU 

interface to the self-destruct bus messages was constructed with package i f  _ d estru c t.
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7.4.15 W arhead

The missile has a 12kT fission warhead as payload.

Properties:

1. Detonation requires a timed sequence of keywords and a challenge-response au

thentication between the command unit and the warhead unit.

Operational requirements:

1. A valid target for the warhead is an object travelling at over 400m/s whose 10- 

second historic track places or will place it within a 10 000m sphere with origin 

equal to the launch point.

2. Optimal detonation distance is 800m from a valid target.

Safety requirements:

1. The warhead must not be detonated within 10 000m of the ground.

2. The warhead must not be detonated within 20 000m of the launch point.

3. The warhead may only be detonated within 2 000m of a valid target.

4. The warhead must report valid self-test at system start-up.

The warhead emulator was constructed with package warhead. The MCU interface 

to the warhead bus messages was constructed with package i f  _warhead.

7.5 Design

The software system was designed using the INFORMED [AmeOO] design method. The 

package hierarchy was extracted from the above system components, augmented with 

basic types packages and interface packages.
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7.5.1 D esign  decisions

Significant design decisions included:

© two SPARK boundaries, one for the main missile controller and one for the 

emulator code, overlapping lower in the inheritance hierarchy;

• top-down design as per INFORMED, ensuring each specification was written and 

valid SPARK before implementing the corresponding body;

• supplementing each state package with a non-SPARK test procedure;

• implementing as much of the simulator as possible in valid SPARK; and

• using a script-based test harness above the main program.

7.5.2 Package structure

Figure 7.1 shows the design of the system with the SPARK and simulation boundaries. 

Each significant package is shown; a red circle indicates the presence of state within a 

package. The arrows show the direct w ith (package hierarchy) relations. A represen

tative subset of the component packages are shown, for reasons of diagram space and 

clarity.

7.5.3 C ode structure

The top-level system program in design unit Main is a simple polling loop, calling a 

sequence of embedded subprograms to deal with each system component.

7.5.4 D esign  lim itations

The current lack of tasking (coarse-grain parallel processing) in SPARK Ada was keenly 

felt. The main program broke down naturally into a small set of loosely-coupled tasks 

managing functions such as location tracking, target tracking and self-test. In se

quential Ada these had to happen in an artificial order in a polling loop, introducing 

artificial dependency relations between their states.
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Figure 7.1: Missile system design
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The addition of the Ravenscar tasking profile[BDR98] to SPARK 95 should make 

such programs easier to express.

7.6 Im plem entation

The implementation was done in the following main phases:

1. construction of basic types packages;

2. design, build and test of the bus interfaces and emulator;

3. construction of the simulator and interface for the Barometer package;

4. construction of the basic test harness;

5. testing of the Barometer code and subsequent fixes to the code and test harness;

6. addition of one sensor at a time, extending harness code and adding types pack

ages where required;

7. construction of the Nav package for position estimation; and then

8. construction of the main M issile  package.

7.6.1 D evelopm ent

The development methodology for each package was:

1. writing of the specification;

2. SPARK of the specification, fixing identified errors;

3. writing of the body;

4. SPARK of the body, fixing identified errors and updating the specification anno

tations where needed;

5. Simplifying of VCs for the package and fixing code flagged by any obviously false 

VCs;
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6. writing of the Command testing subprogram for the package;

7. compilation of the package;

8. creation of the test script for the package; and then

9. testing of the package, fixing code and amending the test script where required.

This late use of the compiler was effective in that very few compilation errors 

were reported on the first compile; those that occurred were normally in the Command 

non-SPARK routine. The VC inspection was a relatively effective method of locating 

potential program errors for a small investment of manual inspection, especially for 

numeric overflow errors for the results of calculations.

The SPARK report for the analysis of the Nav package body is given in Appendix D. 

It shows the SPARK Examiner options used, the packages that needed to be analysed 

due to dependency by Nav on them, and the fraction of the Examiner tables used.

The final code count was 504K of Ada files, with 16 800 lines. Of these, 2 500 lines 

were annotations, 2 900 were comments, 1 300 were blank, and the remaining 10 000 

(forming 330K) were Ada code. 20K of this Ada was test-related code. There were 75 

packages and public child packages, with 9 of those packages related to testing. This 

verifies that the system is not trivial in size.

7.6.2 Testing

The testing was done with a script-driven test harness, written in Ada but not using 

the SPARK subset. Each significant module has a Command subroutine which reads 

data from standard input and acts upon test script commands relevant to that routine. 

The subroutine is made separate from the package body and marked as —# derives 

n u ll  so that the Examiner will not examine it and will assume that it has no effect on 

the “interesting” (annotated) part of the system.

The test routines call package Test whenever they perform a check; successful 

checks increment the Pass count, and unsuccessful checks increment the F a il count. 

The results of each test are shown on standard output. Test scripts can change aspects 

of the simulated packages (e.g. the current time or the current estimated height) and

2 8 3



display comments about what is being tested. At the end of a test run, the harness 

shows the total number of pass and fails.

An example test script for testing the basic functionality of package Barometer is 

shown in Appendix C.

7.6.3 C onclusions

The development produced the following lessons and statistics related to SPARK and 

Ada development:

• A developer will have to do things properly eventually, such as provide I/O  and 

check functions for all major types, and no time will be gained by trying to short 

cut this.

• The -exp switch is effective at locating overflow errors when combined with 

Simplifier usage.

• The public child packages provided in Ada 95 and SPARK 95 are a great aid 

to testing since they can easily be excluded from a SPARK analysis yet provide 

direct visibility to their parent package for I/O  and check functions.

• The use of a Makefile makes project management much easier, especially with 

regard to keeping testing up to date.

• The Examiner processed a large system in acceptable time (8.163 seconds of 

real time to SPARK everything SPARK-able with the standard switches, on a 

1.35GHz Athlon XP processor).

• Of the 3085 VCs produced for this project, 32% were discharged by the Examiner 

(version 6.2) and 58% by the Simplifier (demonstration version) leaving 8% to 

prove manually. Simplification of the entire system took 364 seconds on the 

aforementioned PC. Trial use of version 7.0 of the Examiner discharged 35% of 

the VCs directly.
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7.7 Introduction of A PLD

With the system passing SPARK analysis, compilation and testing, it was then nec

essary to choose some system functionality to incorporate into a PLD. We aimed to 

produce a new program, with minimal changes to the original program annotations. 

The three phases of this work were:

1. identify a suitable subsection for transformation;

2. replacing the existing code with calls to a PLD interface; and

3. transform the replaced code into a VHDL implementation;

7.7.1 Subsection  identification

The code chosen for transformation was the Nav package, which tracks estimated missile 

position. It is suitable for transformation because it requires relatively infrequent 

updates from the main software (periodic updates on time and estimated missile speed 

and attitude) and produces on-demand estimation of the current delta position from 

launch. These properties match up well with those we described in Section 4.3.8.

7.7.2 P L D  interfacing

The original implementation of Nav is given in Appendix E. It provides public functions 

for accessing its internal tracking of recent sensor measurements (abstract variable 

Location_State) and sensor states (abstract variable Sensor_State). The Maintain 

polling routine calls the Handle_XX routines for Airspeed, Barometer, Compass and 

INS sensors; these routines check the named sensor’s current readings, and if the sensor 

has failed will attempt to use other sensor readings to estimate appropriate values. The 

Estim ate-H eight and Handle_Airspeed subprograms are shown in full form in the 

appendix; the others have been made separate for brevity.

The design decision was made to transform the package to have no intrinsic state, 

but instead use memory-mapped state variables to communicate with the PLD. The 

two existing abstract state variables were retained and their refinement components 

mapped onto PLD output pins, and a new abstract state variable FPGA_Inputs was
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added which was mapped onto PLD input pins. No synchronisation code was necessary 

since the PLD implementation is stateless and hence may be pipelined.

The existing public functions were left essentially the same, with only minor changes 

to memory-mapped variable accesses made due to SPARK rules. The Handle_XX 

subprograms were unnecessary due to being moved onto the PLD and were removed. 

The M aintain routine was changed to read each sensor’s state and write them directly 

out to the PLD input pins.

The resulting package body Nav_FPGA is listed in Appendix F. The correspondence 

with the original is quite clear. The most significant change is the addition of declara

tions for calculating type bit widths and mapping variables into memory. In fact, some 

of these bit width calculations will not actually compile under GNAT since they are not 

properly static; in practice, they would have to be replaced by actual numbers. They 

have been left in the code in order to show the derivation. Again, Estim ate_Height 

is given in full form and the other Estim ate routines are made separate.

7.7.3 Transform ation

The high-level structural steps of transformation of the selected Handle_XX subpro

grams of package Nav into VHDL were:

1. replace global variables in the subprogram declaration and body with the appro

priate PLD input and output vector names;

2. identify each subprogram’s in and out argument arid global data and create a 

VHDL architecture declaration for it;

3. add appropriate Clock and Reset inputs to the declaration;

4. connect the appropriate PLD input and output pins to the subprogram’s inputs 

and outputs;

5. create the VHDL implementation for the subprogram by declaring architectures 

for the major Ada control fiow elements;

6. add declarations for appropriate vectors to connect these architectures; and then
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7. add the required connections between blocks and architecture inputs and outputs.

At the level of translating subprogram body code from SPARK Ada to VHDL, no 

initial effort was made to enable fine-grain parallelism. Instead, SPARK Ada program 

constructs (principally alternation and assignment) were mapped into the most di

rectly corresponding VHDL representation (respectively, multiplexing from expression 

evaluation and data routing).

No compilation or simulation of the VHDL was done since it was a capability 

demonstration. A process for producing timing-robust VHDL from a SPARK design 

is clearly required for this transformation process to be practically useful.

7.7 .4  R esu lts

The transformation process produced the following discoveries:

Software im plem entation to  PLD interface

• Relatively little of the package specification changed. The abstract state variables 

gained SPARK modes, and one extra output abstract variable was required, but 

the global and derives annotations did not change greatly.

• Most of the work in the package body involved mapping concrete state variables 

onto the correct area of memory. External global data (from the sensors) was 

passed directly onto the PLD inputs.

• The transformation was not quite automatic, but was effected quickly and was 

amenable to manual inspection for correctness.

Software im plem entation to  PLD im plem entation

• The SPARK annotations were very helpful in characterising the inputs and out

puts quickly, making VHDL architecture declarations simple to write.

• Bit widths could be easily calculated manually, and minimised by use of pragma 

PackO and Ada representation clauses. There seems no reason why these widths 

could not be estimated by a relatively simple tool, given a SPARK syntax tree.
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• The guarantee of no expression overflow given by the Examiner -exp flag (and 

subsequent proof) would greatly simplify the process of writing VHDL to compute 

arithmetic expressions.

7.8 Conclusion

In this chapter we demonstrated that our Chapter 5 work on refining a carry look-ahead 

adder specification into an SRPT form could be mapped into a gate-level simulation 

of a generic PLD. We constructed a suitable simulator and used it to verify that the 

implementation met its specification.

We then wrote a controller program for a high-integrity embedded system, us

ing existing state-of-the-art software development tools and techniques, and simulated 

mapping a section of the program into a programmable logic device.

The main conclusions of this work are as follows:

7.8.1 R efined program  sim ulation

1. The refined program worked as expected in a gate-level simulated implementa

tion.

2. A gate-level simulator with a single clock is not hard to produce, and provides 

increased confidence in such programs.

3. The creation of large, parametrised designs by instantiating and composing smaller 

blocks can be easily expressed in an imperative language supporting inheritance.

7.8.2 SPA R K  program  developm ent

1. Writing a SPARK 95 program with information-fiow analysis can be done at a 

similar speed to writing conventional full Ada programs.

2. Maintenance of SPARK annotations during development does not take significant 

time.

3. Top-down program development with late compilation is quite feasible, with a 

properly-formed design.
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4. The time taken to run the SPARK Examiner and SPADE Simplifier on a sub

stantial program is not noticeable on a conventional 1.5GHz 1686 PC.

5. The recent addition of tasking to the current SPARK model is likely to be valuable 

in designing embedded controllers.

7.8.3 Targets

Of the targets in Chapter 3 we have addressed or partially addressed:

Target 1: The process we define must be rigorous.

We have based PLD program design in the rigorous and formally-specified SPARK 

Ada 95 language. We have shown how key program properties such as freedom from 

arithmetic overflow can be demonstrated. The transformation process from SPARK 

Ada to VHDL is currently manual and not rigorous, but we have demonstrated that 

the new interfacing code can be valid and meaningful SPARK.

Target 2: The process must help the developer to write unambiguous programs.

SPARK Ada is unambiguous by definition, removing all Ada language features that 

may introduce compiler-dependence.

Target 3: The process must allow the programs to have sections written in a

low-level language for speed and flexibility, but not allow these sections to compromise 

overall program reliability.

The use of VHDL enables the VHDL implementation of arbitrary blocks in the 

original SPARK program to be replaced with custom VHDL code while leaving their 

architecture (interface) unchanged. Verilog could be used similarly.

Target Jf.: The process must admit substantial static analysis to discover semantic 

program errors at or before compile time.

SPARK Ada can be analysed by the Examiner for a range of statically-verified 

properties, and verification conditions generated to admit proof of run-time properties.

Target 5: The program produced must be easy to test.

We have addressed SPARK program testing, but the testing of the VHDL compo

nent was not addressed.

The Perl PLD simulator has demonstrated that refined PLD programs are amenable 

to automatic test.
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Target 6: The program must he able to be compiled onto a range of existing and

anticipated PLDs.

We have used VHDL as a target language, compilers for which exist for most 

substantial PLDs.

Target 7; The process must reuse existing proven tools where feasible.

We have employed existing tools (the Examiner and Simplifier) without modifi

cation, but suggested areas such as bit width calculation where extra tools may be 

useful.

Target 9: The process should indicate what kinds of error may arise at each stage.

The static analysis results limited the errors that may be present in the SPARK. 

Errors in proven and tested SPARK programs are likely to be requirements-related 

rather than “accidental”.

Target 11: The process must admit justification to the project safety authority

that the programs output by the process are of an adequate integrity level.

The use of SPARK as a design tool for and interface to the PLD program provides 

traceability for the PLD program design and implementation. The PLD program may 

be manually inspected and reviewed against the original SPARK implementation to 

demonstrate coverage of requirements. SPARK has been used and accepted at SIL-4, 

although if only used as a design tool it is unlikely that a SIL-4 argument can be made 

for the resulting PLD program without substantial extra evidence.

Target 12: [00-54 8.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification 

complies with the safety requirements;

(a) any formal arguments that the functional design satisfies the formal specification;

(Hi) for non-functional properties with specified safety requirements, analysis of the 

achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques 

as diverse implementations.

(i) is addressed because the safety requirements may be expressed as post-conditions 

in the SPARK program and the code proven against them, (ii) is addressed because
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the SPARK analysis justifies the information flow annotations in the SPARK program, 

showing consistency and the level of coherency of the design; (iii) is not addressed 

since SPARK does not yet have any timing-related analysis; (iv) is addressed because 

the SPARK implementation could be used in parallel with the VHDL implementation, 

with a checking routine flagging deviations in the computed results. Only a limited 

amount of diversity is present, however.

Target 13: [00-54 12.1.2] The Design Plan shall define the life cycle that is to be 

followed in the development of the custom circuit, including a specification process, a 

development process and a verification process.

The SPARK development process is well-established in safety-critical projects. In

dividual projects place different emphasis on its components, but the core of the process 

(design - analyse - implement - analyse - test - fix - re-analyse) is common. The PLD 

program development is then headed by the SPARK development process, with PLD 

transformation and re-test at the end.

7.8 .4  Further research

The following research work would likely produce interesting and useful results:

1. a full description of the map from sequential SPARK 95 to VHDL;

2. production of SPARK and VHDL design patterns for common PLD-based func

tionality, and development of an algorithm or heuristic for selecting the design of 

the SPARK-PLD interface; and

3. a study of the information-fiow results of transforming a polling-loop single

process program into appropriate SPARK Ravenscar tasks.
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Chapter 8

Conclusions

In this final chapter we draw up the lessons we have learned in our progress through 

this thesis, show how they have clarified the problems of hardware-software co-design, 

and look at the avenues for future research which have opened up as a result.

8.1 Solving the Original Problem

Our original research problem statement in Chapter 3 was:

What methodology is suitable for developing a set of safety-critical system 

requirements into an implementation which executes partially in a conven

tional microprocessor and partly on a programmable logic device?

Such a methodology should be rigorous and formal enough to admit veri

fication and validation to the standards demanded by Def Stan 00-54 and 

RTCA DO-254 (electronic hardware), Def Stan 00-55 (software) and Def Stan 

00-56 (system safety) for SIL-3 and SIL-4 systems (RTCA DO-254 Level A 

and B).

We break this down into the following components; for each component we measure 

what progress we have made against the above goal. We also list the original targets 

from Chapter 3 which have been covered.
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8.1.1 P L D s in safety-critical system s

We have surveyed the existing major safety and software development standards rele

vant to PLDs in safety-critical systems. We have extracted the key points from these 

standards and applied them in an example development. Because we based this work 

on existing best-practice standards we are on solid ground for justifying the safety and 

correctness of this development to a safety authority.

Current expert opinion[Pri03] is that the existing PLD technologies do not permit 

SIL-3 or SIL-4 functionality to be incorporated in a PLD. The rigorous formal tech

niques proposed in this thesis appear to provide similar rigour to that required for 

SIL-3 software developments, therefore there is a reasonable case that with this work 

SIL-3 PLD functionality is now feasible for some systems.

The author’s experience is that PLD programs can be designed to satisfy the re

quirements of DO-254 Level A criticality, as long as formal methods (an optional part 

of Level A safety arguments) are not required. This thesis provides suitable rigorous 

techniques for specifying and analysing synchronous PLD programs, thus supporting 

DO-254 Level A development by making formal methods use practical.

Targets fulfilled:

Target 1: The process we define must be rigorous.

Target 2: The process must help the developer to write unambiguous programs.

Target 10: The process should provide flexibility so that it may be used in situa

tions not anticipated in its original design.

Target 11: The process must admit justification to the project safety authority

that the programs output by the process are of an adequate integrity level.

8.1.2 R igorous PL D  program m ing

We have combined the SRPT process algebra and Morgan’s refinement calculus to 

provide a synchronous timed refinement calculus for developing SRPT processes into 

Pebble programs. The calculus allows for reasoning about the behaviour of arbitrary 

SRPT processes incorporated into an otherwise formally developed system. As well as 

stepwise refinement of designs, the calculus admits trace-based proof of safety proper

ties of processes.
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We have demonstrated a practical refinement from a timed specification into a 

device-agnostic unambiguous implementation language (Pebble, with a semantics de

fined by SRPT), and demonstrated its accuracy via gate-level simulation. The simu

lation environment is available in an operating-system-neutral format for future use. 

Targets fulfilled:

Target 1: The process we define must he rigorous.

Target 2: The process must help the developer to write unambiguous programs.

Target 3: The process must allow the programs to have sections written in a

low-level language for speed and flexibility, but not allow these sections to compromise 

overall program reliability.

Target 5: The program produced must be easy to test.

Target 6: The program must be able to be compiled onto a range of existing and

anticipated PLDs.

Target T: The process must reuse existing proven tools where feasible.

Target 10: The process should provide flexibility so that it may be used in situa

tions not anticipated in its original design.

Target 12: [00-54 8.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification 

complies with the safety requirements;

(ii) any formal arguments that the functional design satisfies the formal specification;

(iii) for non-functional properties with specified safety requirements, analysis of the 

achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques 

as diverse implementations.

Target 14 ' [00-54 13.3.1] A Hardware Specification shall be produced which de

fines the SREH in terms of its behaviour and properties.

8.1 .3  M apping SPA R K  to  hardware

We have shown how the SPARK Ada critical systems programming language is well- 

suited to describing PLD programs, due to its formal definition and the analysis tools
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which support it. We have examined the problem of compiling SPARK program con

structs to hardware in three different ways.

We have shown how SPARK programs can be developed and proven against formal 

pre- and post-condition specifications using current tools and techniques. We have 

shown how these pre- and post- conditions can be used as the basis for developing an 

SRPT program that satisfies the specification, ignoring the actual SPARK code.

We have described how SPARK code can be compiled directly to circuits on PLDs, 

taking advantage of Ada’s type system to reduce datapath sizes and taking advantage 

of SPARK Ada program structure to simplify the compilation task. We examined the 

trade-offs between PLD gate count and program execution speed with particular regard 

to the implementation of data paths on the PLD.

We have provided a full SRPT specification for a (reduced) sequential SPARK 95 

interpreter which demonstrated that a) SRPT can be used to specify large systems and 

b) the information known at compile-time about SPARK programs contributes sub

stantially to effective implementation in hardware. The interpreter was not useful for 

high integrity programs, since high integrity programming requires compilation rather 

than interpretation of SPARK programs, but would be acceptable for low integrity 

programs and demonstrated the use of SRPT for PLD program design.

We have examined the problem of identifying and extracting a fragment from 

a SPARK Ada program for PLD execution, maintaining program correctness. We 

demonstrated the technique for an industrial-scale embedded program.

Because we used a generic PLD model for this work we avoided restricting this 

development to a particular class of PLD.

Targets fulfilled:

Target 1: The process we define must be rigorous.

Target 2: The process must help the developer to write unambiguous programs.

Target 4 ’. The process must admit substantial static analysis to discover semantic 

program errors at or before compile time.

Target 6: The program must be able to be compiled onto a range of existing and

anticipated PLDs.

Target 7; The process must reuse existing proven tools where feasible.

Target 8: The process must guide the developer in the appropriate use of each
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component.

Target 9: The process should indicate what kinds of error may arise at each stage.

Target 12: [00-54 8.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification 

complies with the safety requirements;

(ii) any formal arguments that the functional design satisfies the formal specification;

(iii) for non-functional properties with specified safety requirements, analysis of the 

achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques 

as diverse implementations.

8.1 .4  T he system  developm ent process

We have defined a rigorous development process for going from a formal specification 

to SPARK and PLD implementation. This development process involves:

• early identification of PLD and software components;

• use of existing software design methods and analysis tools to produce high- 

integrity SPARK code for the system;

• use of refinement techniques to produce a provably correct PLD program (such 

as the carry look-ahead adder);

• the ability to simulate PLD functionality without significant change to the SPARK 

program;

• the option to transform software components to PLD form at a late stage without 

compromising system design or safety;

• continuous production of evidence that the system is fit for purpose and fulfils 

its required safety properties; and

• the option to move the (formally defined) program components between software 

and PLD during future system upgrades.

297



Targets fulfilled:

Target 1 : The process we define must be rigorous.

Target 5: The program produced must be easy to test.

Target 8: The process must guide the developer in the appropriate use of each

component.

Target 9: The process should indicate what kinds of error may arise at each stage. 

Target 10: The process should provide fiexibility so that it may be used in situa

tions not anticipated in its original design.

Target 11: The process must admit justification to the project safety authority

that the programs output by the process are of an adequate integrity level.

Target 12: [00-54 8.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification 

complies with the safety requirements;

(ii) any formal arguments that the funetional design satisfies the formal specification;

(iii) for non-functional properties with specified safety requirements, analysis of the 

achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques 

as diverse implementations.

Target 13: [00-54 12.1.2] The Design Plan shall define the life cycle that is to be 

followed in the development of the custom circuit, including a specification process, a 

development process and a verification process.

8.1.5 R eliability  and practicability

In Section 3.11 we listed general questions about the development process which aimed 

to measure the process’s reliability and practicability. We now answer them.

How many distinct stages are there in the methodology?

Two extra stages have been introduced into the standard software development pro

cess: identifying parts of the specification to refine directly to hardware, and identifying 

parts of the SPARK Ada program to compile into hardware.
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The refinement process itself has four stages: rewrite the specification, refine it to 

SRPT, compile to Pebble/VHDL and test it.

The SPARK Ada program fragment extraction has five stages: rewrite the SPARK 

package body, update the package specification annotation, map the original SPARK 

body into VHDL, test the VHDL in isolation and then test the SPARK-PLD interac

tion.

What is the probability and effect of introducing an error at each stage?

We have not gathered numeric data on probabilities, but can estimate the effect of 

errors from experience in software development.

Incorrectly rewriting the specification for SRPT refinement is likely to make the 

entire refinement incorrect and, if detected, will probably require the refinement to be 

re-done. Whether it is detected will depend on the depth of system testing against the 

original system specification.

Making an error in SRPT refinement is likely, in our experience noted in Sec

tion 5.3.6, to be picked up during PLD program testing.

Making an error in extracting the SPARK Ada program fragment into a PLD is 

likely to be picked up in testing, especially if test results for the software implementation 

are compared against those for the PLD implementation.

What do the above imply for the reliability of the system as a whole?

The reliability of a system function refined into an SRPT program, where the 

refinement has been independently checked, is likely to be high. This does assume that 

the original specification was correct.

Extracting a SPARK Ada program fragment into PLD form is likely to make the 

program less reliable, but the alternatives (writing the PLD program in VHDL or a 

high-level language from scratch) remove the ability to compare diverse implementa

tions of the PLD program and are more error-prone than Ada implementation in the 

same way that assembly language or C program development is more error-prone than 

Ada program development.

What classes of error are specifically checked for in the development process?

Information-fiow, control-fiow and data-flow errors are checked for by the SPARK 

Examiner. Numeric overflow and proof condition violation are checked for by the 

SPADE Simplifier and manual inspection of VCs. Errors in the SRPT refinement
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process are checked for by independent inspection of the refinement steps. Errors in 

PLD program extraction are checked for by comparing all-software and software-PLD 

implementation results.

Is there adequate tool support for the developers of the target systems?

A qualified yes. The SPARK Examiner and SPADE toolset already exist and are 

mature. The York hardware compiler for Ada exists, although has not yet been shown 

to be effective at typical industrial system sizes. There is as yet no tool support for 

SRPT refinement.

What level of technical expertise, and how much time, is required for each develop

ment stage?

Refinement of a specification into an SRPT process requires a good understanding 

of logic in general, and technical expertise in refinement in particular.

SPARK Ada program development requires basic imperative programming skills. 

SPARK Ada proof work requires an understanding of first-order logic. Extracting a 

SPARK program fragment into a PLD program requires an understanding of VHDL 

and the ability to operate PLD compilation and simulation tools.

Given appropriate same-generation hardware, does the generic PLD implementation 

produced have significant performance advantages over an all-software implementation?

We have not produced performance figures which answer this question. It was 

established in Section 2.3.10 that PLD programs could significantly outperform micro

processor programs for some tasks, and we have shown that SRPT refinement allows 

a high-performance PLD program to be developed from a specification, but we have 

not shown whether Ada code compiled onto a PLD can run more quickly than on a 

contemporary microprocessor.

How well does the process allow late changes in requirements to he incorporated into 

the system?

If the requirements can be traced into the design, the data-flow and information 

flow annotations of SPARK Ada can bound the program units which must be examined 

to see if changes are necessary. The abstraction present throughout the system may 

reduce the impact of some requirements changes, but this is not certain. If refinement 

is used, requirements change may require some refinements to be redone from scratch 

which will be labour-intensive.
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8.2 Advancem ent of Knowledge

We outline the weaknesses of the current research, in what respects our research is 

original and how it improves on the current research.

8.2.1 Current w eaknesses

Section 2.6.1 described the weaknesses of the current research, which can be sum

marised as:

• there is no relation of high-level PLD programming languages to the requirements 

of DO-254 and Def Stan 00-54;

• there is no relation of synchronous parallel specification and analysis techniques 

to the requirements of DO-254 and Def Stan 00-54;

• Ada is the only high-level language suitable for programming high-integrity sys

tems, and the existing PLD compilers for it are immature and omit rigour; and

• there is a general lack of demonstration that PLD design and programming tech

niques for high-integrity will scale to be practical for typical modern systems.

8.2.2 O riginality

The main direction of research in this thesis is original because the problem of producing 

demonstrably correct PLD programs, suitable for use in high-integrity systems, has 

been specified (in Defence Standard 00-54[MoD99] and RTCA D0-254[RTCOO]) but 

has not been solved. There has been no published work that explicitly addresses the 

problems raised by conforming to 00-54 and DO-254 in PLD program development.

The work on specification and refinement of synchronous parallel systems (using 

SRPT) is not original in itself, as Barnes[Bar93] specified SRPT and demonstrated 

its use in system specification, and Morgan, Back and others[Mor94, BvW94] demon

strated rigorous calculi for refinement in synchronous systems. It is original in that 

it provides a full refinement calculus for SRPT, making SRPT practical for specifica

tion and refinement of PLD programs. It is original in relating the work explicitly to
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the requirements of 00-54 and DO-254 for high-criticality systems. It is also original 

in describing the practical translation of the refined program into a PLD-compilable 

form.

The work on compilation of SPARK Ada into PLDs is not original in itself, as 

Sheraga[She96] and Ward[WA01, WA02c] have investigated Ada and SPARK Ada com

pilation for PLDs. It is original in that it exploits the properties of SPARK Ada to 

increase confidence in the correctness of the compilation and optimise the PLD pro

gram for space and execution time. It is also original in relating the work explicitly to 

the requirements of 00-54 and DO-254 for high-criticality systems.

The PLD-software development process proposal is original in that it explicitly 

addresses the requirements of 00-54 and DO-254. It is also original in identifying the 

problems that arise throughout the software-PLD process and providing solutions to 

them. It expands the domain of applications for which the SPARK Ada programming 

language can be used. It is original in that it details an industrial-scale safety-critical 

embedded system and applies appropriate parts of the development process to move 

an identified part of the program into programmable hardware.

8.2.3 A dvances m ade

The research from thesis has been fed into the production of a practical guide to 

certifying PLD programs for safety-critical avionics[HilOSa]. As such, it has already 

made a practical contribution to the production of safety-critical PLD programs.

The advances made by this research are:

• a practical process for high-integrity programming of PLDs (Section 3.12);

• a refinement calculus for SRPT (Chapter 5);

• a mapping which permits SRPT programs to be compiled directly onto PLDs 

(Section 4.2.7);

• a publicly-available simulator to support simulation of programs generated by 

this mapping (Section 7.2);

• a design for mapping SPARK Ada programs onto PLDs (Section 7.7);
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• a design for a SPARK Ada interpreter to run on a PLD (Chapter 6); and

• a substantial example of a safety-critical program to be used in future hardware 

compilation work (Section 7.3).

Overall, this research has made feasible the production of programs that satisfy the 

requirements of Defence Standard 00-54 for SIL-3 and SIL-4 systems, which was not 

feasible before.

8.3 Self-Critique

We now consider the omissions and weaknesses of this research. We also consider how 

PLD program development would proceed if this research was not around, and how 

this research is an improvement.

8.3.1 O m issions

The major omissions from this work are:

1. the demonstration of the PLD programs we produced being compiled into netlists, 

simulated with commercial FPGA simulators and run on real PPG As;

2. the demonstration of a SPARK program communicating with a real FPGA;

3. the construction of a formal safety case for the case study including hazard iden

tification and fault tree analysis; and

4. relation of this work to information security standards such as the Common 

Criteria[Com99].

The first three omissions mean that the practicality of the techniques described 

in this research is not yet demonstrated. They also leave open the integration of the 

proposed process into a full safety-critical system development, and its assessment by an 

independent safety authority. Until this is done it is not possible to say with confidence 

that these techniques and this process are suitable for SIL-3 software development.
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The final omission is an area that is suitable for future research. SPARK Ada 

has already been demonstrated in high-security applications such as the MULTOS 

CA[AC02]. We consider this further in Section 8.4.4.

8.3.2 W eaknesses

The major weaknesses of the components of this work are that:

1. we have not considered how to take advantage of design features of existing PLDs 

(such as embedded processor cores);

2. our focus on SPARK has excluded the Ravenscar tasking profile, which appears 

to be helpful to construction of parallel SPARK programs; and

3. we have not established how the SRPT refinement system scales with increasing 

complexity of the specification.

The general issue of how well refinement techniques scale up is an open topic and 

is being examined in planned UK refinement research. We anticipate that useful in

formation relevant to SRPT refinement will arise from this research in the next 1-2 

years.

The omission of Ravenscar is, to some extent, the result of the timing of this 

research. SPARK Ravenscar has only just been officially released, and so it was difficult 

to make specific recommendations about using it in the context of PLD programming. 

Ravenscar will clearly become important in the construction of safety-critical parallel 

Ada systems in future years, particularly when Ada OY (the successor to Ada 95) is 

finalised.

8.3.3 H ow th e  sta te  o f th e  art w ould evolve w ithou t th is  re

search

We now consider how the state of the art of PLD programming for high-integrity 

systems would develop if this research had not been done or had not been published.
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Safety-critical PLD program developm ent

UK Interim Defence Standard 00-54 and RTCA DO-254 are already published, and 

so future safety-critical PLD programs would have to conform to them in any case. 

However, the formal methods recommendations in both standards have not been ad

dressed in current PLD program developments. Without a clear demonstration that 

formal specification and development of PLD programs is practical, and guidance on 

the use of specific methods, the incorporation of formal methods in industrial PLD 

developments is likely to be haphazard.

Notably, Def Stan 00-54 is only an interim standard and its contents will be amended 

when it becomes part of Issue 3 of Defence Standard 00-56 in 2004. If industrial devel

opers believe that the requirements for SIL-3 and SIL-4 PLD program development are 

impractical then they are likely to lobby for the SIL-3 and SIL-4 requirements to be 

ameliorated. This would be bad for system safety, and in the end is likely to increase 

the cost of systems; experience by major hardware developers such as Intel[Sch03] 

shows that formal verification for hardware can make economic sense.

R efinem ent for synchronous parallel system s

There is already a range of refinement calculi for synchronous parallel systems. How

ever, these have not been applied to practical PLD developments and so it is not yet 

possible to go from a formally refined system to a compiled PLD implementation and 

argue that semantics and correctness have been preserved. Without this assurance, 

the motivation for use of formal specification and refinement in PLD program design 

is significantly reduced.

PLD  high-level program m ing

Languages such as Handel-C are likely to be used increasingly in PLD program de

velopment in the coming years. Without a practical high-integrity competitor such as 

Ada, they are likely to start to be used for high-integrity PLD programming despite 

the manifest deficiencies of the C language in this respect.

The work by Ward and Audsley[WA01, WA02b] on hardware compilation of SPARK 

Ada and Ravenscar is promising but it remains to be seen whether it is practical for
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real systems and whether the correctness of the compilation process can be justified. 

Without better exploitation of the known information flow and semantics of SPARK 

Ada programs, this compilation will not be as effective as it could be.

8.4 Future Work

There are several major areas of work opened up by this thesis which remain unex

plored. We now state what they are and outline how one might start to address them.

8.4.1 Safety engineering w ith  P L D s

As noted in Section 8.3.2 it is necessary to obtain a safety engineering perspective on 

the processes described in this thesis. This requires the input of experienced safety 

engineers and safety assessors.

A useful start would be to produce a generic guidance document for incorporating 

PLDs into critical systems, along the lines of UK Defence Standard 00-54 but brought 

up to date with current PLD technologies.

There is an ongoing project by the UK defence establishment to produce a document 

similar to this, restricted to the problem of incorporating PLDs into Advanced Avionics 

Architectures (AAvA) compliant systems. The first release of this document [Hil03a] 

has been informed by the research in this thesis. Future releases of the document will 

incorporate the lessons learned from a suitable case study.

RTCA DO-254 is a useful support to safety-critical PLD programming work, but 

its Appendix B on high-integrity PLD programming would similarly benefit from such 

a guidance document.

8.4.2 R efinem ent

We have produced a rigorous basis for refinement in SRPT in Chapter 5. The refine

ment rules produced were adequate for our demonstration study but there is a clear 

need to extend them if other, more ambitious systems are to be refined.

We suggest the study and extension of the existing refinement rules for SRPT, build

ing up a parametrised library of useful processes. Generic arithmetic routines would be
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one class of such processes. This work should then be applied to the implementation 

of a substantial critical function on a PLD.

We have only considered SRPT refinement in isolation. As noted in Section 2.3.11, 

a hybrid formal specification language such as Circus may be appropriate for specifying 

a combined hardware-software system.

We suggest using Circus (or a receptive, synchronous variant of it) to specify a 

complete software-PLD system, refining it down into appropriate components. This 

work should use a combination of full refinement, proof of selected safety properties and 

static analysis. The aim should be to identify and address deficiencies in the existing 

notations and tool support.

8.4.3 SPA R K  to  PL D s

Our efforts in translating SPARK Ada subsections to PLDs have been demonstrative 

in nature and purely manual in practice. To make SPARK Ada usable as a PLD 

programming language, this translation should be mostly automatic and well-supported 

by tools.

We suggest producing an automatic or semi-automatic tool to translate SPARK 

Ada into a form suitable for compilation into a PLD. It should be tested out on a 

range of SPARK 95 code, measuring the size and complexity of the PLD programs 

produced. It may also be useful to study ways to optimise the PLD programs with 

respect to gate count and execution time.

The York hardware compiler described by Ward[WA02c] may be a suitable basis 

for this work but requires critical study in the light of the issues raised by this thesis. 

Ravenscar is a good deterministic tasking model, and its use should be integral to 

compiler development.

The SPARK interpreter specified in Chapter 6 has not been implemented in any 

way. Implementing a restricted version of the interpreter will test the practical usability 

of the SRPT specification, and should be used to measure metrics including:

• effort /  productivity payoff of interpreting versus compiling SPARK;

• PLD space usage and routability of the interpreter and directly compiled SPARK 

code; and
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• run-time performance of interpreted versus compiled SPARK code.

8.4 .4  Security applications

Our work has been done with reference to the requirements of RTCA DO-254 and 

Def Stan 00-54. This covers the domain of safety-critical systems, but many aspects of 

safety are mirrored in the requirements for high security applications.

The definitive information security standard is currently the Common Criteria[Com99]. 

A comparison of the criteria in this document against the Defence Standards and RTCA 

documents would be required to identify:

• how current PLD programming practice for security systems is deficient;

• how applicable are the methods illustrated in this thesis; and

• what additional analysis or programming techniques may be mandatory or helpful 

for the security domain.

8.5 Concluding Thought

The discipline of software engineering dates from around 1968, when the first NATO 

conference on software engineering was held [Nor68] and Dijkstra made his proposal 

about reducing the use of COTO [Dij68]. In the thirty five years that have followed, 

we have made steady progress to the point today where we have a wealth of languages, 

tools and techniques to support the discipline of producing sufficiently reliable, well- 

engineered software for execution on microprocessors.

This thesis aimed to translate these techniques into the emerging field of program

ming PLDs. We used unambiguous formal notations to specify PLD programs so 

that we knew what they should produce. Developing a refinement system allowed us 

to produce PLD programs that were provably correct. The high-integrity program

ming language SPARK Ada allowed us to produce a program design amenable to 

hardware-software partitioning. The properties of the language proved useful in map

ping program segments into a PLD-compatible form. We demonstrated that combined

308



hardware-software development at high integrity levels was practical for a substantial 

embedded system.

We conclude that existing software engineering practice does translate into PLD 

programming, and recommend that it is applied as soon as possible to critical PLD- 

based systems. We must not forget the lessons we have learned in the microprocessor 

field: thirty five years is too long to wait for highly reliable PLD programs.
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A ppendix A

Collated Refinem ent Rules

The following definition and rules are collated from Chapter 5.

A refinement frame P  in a program takes the form:

P  =  Vt e  N - : oT : [[pre]t,[post]f+J

representing the specification “for the process P  with input alphabet containing X  and 

output alphabet containing Y, at all times t, if pre is true at time t then at time 

t k p ost is true.” A; is a constant which will be determined by the timing needs of 

the program at specification time.

R efinem ent 1 Stateless 1-bit function

' i t e N - i X  : o{ y]  : [ tr u e , [ÿ]i+i =  /([%],)]

Ç CELLf[I\X][0\ {y}]

R efinem ent 2 Parallelism

V A e  N • tA : o( y  U A) : [ p r e , post i A post 2 ]

Ç iX  : oY : [p re , p ost 1 ] || tX  : oZ : [pre, p o s t 2 ] 
whenever:

y , Z  are non-empty and non-intersecting

V y 6 • post i[A\ y] = post 1

V ly  G • post 2 [y \iy ]  =  p ost 2 

where B^ is the set of n-ary boolean strings
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R efinem ent 3 Weaken precondition

If pre pre’ then: 

y t e N - i X  : oY  : [p re , post] QV  t e N  - iX  : oY  : [pre’ , post]

R efinem ent 4 Strengthen postcondition

If p o st’ => post then:

V t e N - c X  : oY  : [pre, post] Ç.V t G'N • lX  : oY  : [pre, p o s t’]

R efinem ent 5 Expand frame

V t G N - i X :  o Y  : [p re , post] Ç 

V t G N • l{X  U A) : o( y  U P) : [ p r e , post ]

where A n  Y  = ^ and P  n  A =  0.

R efinem ent 6 Contract frame

Let P = lX  : oY  : [p re , post]. If:

3 A Ç A • V5 G T n lP p  VP Ç A VA G N-

3 r  G TnlPlo- • (r[A] =  {s[t] \  A) U P) A {Vi /  t - r[i] = g[%])

i.e., we can change the occurrence of A input events at any timestep to some arbitrary 

subset P  without changing any of the subsequent output events (input variables A are 

irrelevant to the outputs), then:

l{X U A) : o y  : [p re , post] Ç i[X \  A) : o y  : [pre \  A, post \  A] 

i.e., we can remove the A events.
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R efinem ent 7 Introduce intermediate

If g, j , k ,  m id are timed predicates over subsets of events such that:

V disjoint A, F, A Ç E-

ff([y],+2, [X]*) 4» fc([y]i+2, [Z]e+i) Aj{[z]t+i, \x]t)

and j([X]t+i, [X]t m id

then:

tX  ■. oY : [ p r e ,5 ([y],+2,[X]()] =

(tX :o Z ;[p re ,j([Z ]i+ i,[X ],)l ||

tZ : o y :  [m id,fc([y],+2, [^U i)]) \ Z

i.e., we may split into two parts a process for which an “intermediate calculation” 

exists.

R efinem ent 8 Introduce delayed intermediate

IÎ g , j , k ,  m id are timed predicates over subsets of events, and d\, da > 1, such that:

V disjoint X , Y , Z  C S-

9{[^]t+di+d2J ^  k{[Y]t+di+d2: i^]t+di) [A]f)
and j  ( [Z] t+di, [A] f ^  m id

then:

lX  : oY  : [ p r e , p([y]f+di+d2 =

( , A : o A :  [p re ,;([%],+d„[A]()] ||

lZ  : oY  : [m id , k{[Y]t+di+d2 , [Z]t+di)]) \  Z

i.e., we may split into two parts a process for which an “intermediate calculation” exists 

at some time point between start and end of calculation.
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A ppendix B

1553 Bus Simulator

B us testing  program

—  Test harness for 1553 bus simulator
—  Not really SPARK, just looks like it.

with Bus;
with Rtl553,Bcl553;
with SystemTypes;
with Test,Test.checking;
use type SystemTypes.UnsignedS2;
— # inherit bus, rtl553, bcl553, test;
— # main_program 
procedure Test_Bus

— # global Bus.Inputs, Bus.Outputs, Test.State;
— # derives Bus.Inputs from *, Bus.Outputs &
— # Bus.Outputs from *, Bus.Inputs &
— # Test.State from *, Bus.Inputs, Bus.Outputs
— # ;

is
Msg : Bus.Message;
V,W : Bus.Word;
I : Bus.Word_Index;
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begin
—  Check for data being null
Test.SectionC'BC inputs are initially null"); 
for Lru in Be1553.Lru_Name loop

Bcl553.Read_Message(Src => Lru,
Subaddress_Idx => 1,
Data => Msg);

Test.Checking.bool(
S => Be1553.Lru_Name'Image(Lru) & " is stale", 
Expected => False,
Actual => Msg.Fresh); 

end loop;
Test.SectionC'RT inputs are initially null"); 
for Lru in Rtl553.Lru_Name loop 

Rt1553.Read_Message(Src => Lru,
Subaddress_Idx => 1,
Data => Msg);

Test.Checking.bool(
S => rtl553.Lru_Name'Image(Lru) & " is stale", 
Expected => False,
Actual => Msg.Fresh); 

end loop;
—  Get the BC to write out some data to each LRU
Test.SectionC'RT inputs are nul after write, before cycle"); 
W := 1;
I := 1;
for Lru in Bcl553.Lru_Name loop 

Bcl553.Write_Word(Data => W,
Idx => I,
Subaddress_Idx => 1,
Dest => Lru);

Test.Checking.bool(
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s => bcl553.Lru_Name^Image(Lru) & " is still stale". 
Expected => false.
Actual => Msg.fresh);

W := W + 3;
end loop;
—  Get each LRU to write out some data to the BC
Test.SectionC'BC inputs are nul after write, before cycle");
W := 3;
I := 1;
for Lru in Rtl553.Lru_Name loop 

Rt1553.Write_Word(Data => W,
Idx => I,
Subaddress_Idx => 1,
Src => Lru);

Test.Checking.bool(
S => rt1553.Lru_Name^Image(Lru) & " is stale". 
Expected => False,
Actual => Msg.Fresh);

W := W + 3;
end loop;
—  Now cycle and check the RT inputs
Bus.Cycle;
Test.SectionC'RT inputs are valid after cycle");
W := 1;
I := 1;
for Lru in rt1553.Lru_Name loop 

Rt1553.Read.Message(Src => Lru,
Subaddress_Idx =>1,
Data => Msg);

Test.Checking.bool(
S => Rt1553.Lru_Name^Image(Lru) & " is fresh". 
Expected => True,
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Actual => Msg.Fresh); 
rt1553.read_Word(Src => Lru,

Data => V,
Idx => I,
Subaddress_Idx => 1);

Test.Checking.unsignedl6(
S => rt1553.Lru_Name'Image(Lru) & " is " &
Bus.Word ̂ Image(W),
Expected => W,
Actual => W);

—  Acknowledge reading this message 
Rtl553.Acknowledge_Message(Src => Lru,

Subaddress_Idx => 1);
Rt1553.Read_Message(Src => Lru,

Subaddress_Idx => 1,
Data => Msg);

Test.Checking.bool(S => Rt1553.Lru_Name'Image(Lru) k

" not fresh after ack",
Expected => False,
Actual => Msg.Fresh);

W := W + 3; 
end loop;
—  Now check the BC inputs
Test.SectionC'BC inputs are valid after cycle");
W := 3;
I := 1;
for Lru in bcl553.Lru_Name loop 

bcl553.Read_Message(Src => Lru,
Subaddress_Idx => 1,
Data => Msg);

Test.Checking.bool(
S => be1553.Lru_Name^Image(Lru) & " is fresh",
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Expected => True,
Actual => Msg.Fresh); 

bcl553.Read_Word(Src => Lru,
Data => V,
Idx => I,
Subaddress_Idx => 1);

Test.Checking.unsignedl6(
S => be1553.Lru_Name'Image(Lru) & " is " &
Bus.Word'Image(W),
Expected => W,
Actual => v ) ;

—  Acknowledge reading this message 
bcl553.Acknowledge_Message(Src => Lru,

Subaddress_Idx => 1); 
bcl553.Read_Message(Src => Lru,

Subaddress_Idx => 1,
Data => Msg);

Test.Checking.bool(S => bcl553.Lru_Name'Image(Lru)
" not fresh after ack", 
Expected => False,
Actual => Msg.Fresh);

W := W + 3; 
end loop;

Test.Done; 
end Test.Bus;

Bus Controller interface

—  The 1553 bus interface for the Bus Controller (BC)

—  All other system components are on the bus as remote
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—  terminals (RTs).
—  R messages go BC -> RT
—  T messages go RT -> BC

with Bus;
with SystemTypes;
— # inherit SystemTypes,Bus ; 
package BC1553 
is

—  Symbolic names for the Lrus
type Lru_Name is

(Barometer,
Asi,
Ins,
Compass,
Fuel,
Fuze,
Radar,
Infrared,
Fins,
Motor,
Destruct,
Warhead 
) ;

—  Write out data to the RTs

procedure Set_Message_Valid(
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Dest : in Lru_Name);

— # global in out Bus.Outputs ;
— # derives Bus.Outputs from *, Subaddress_Idx, Dest;
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procedure Write_Word(
Data : in Bus.Word;
Idx : in Bus.Word_Index;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Dest : in Lru_Name);

— # global in out Bus.Outputs;
— # derives Bus.Outputs from *, Data,
— # Idx, Subaddress_Idx, Dest;

procedure Write_Message(
Data : in Bus.Message;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Dest : in Lru_Name);

— # global in out Bus.Outputs ;
— # derives Bus.Outputs from *, Data, Subaddress_Idx, Dest;

—  See if a message is fresh 
function Is_Fresh(Src : Lru_Name;

Subaddress_Idx : Bus.Lru_Subaddress_Index) 
return Boolean;

— # global in Bus.Inputs;

—  See if a message is valid 
function Is_Valid(Src : Lru_Name;

Subaddress_Idx : Bus.Lru_Subaddress_Index) 
return Boolean;

— # global in Bus.Inputs;

—  Read data sent to the BC 

procedure Read_Word(
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Src : in Lru_Name;
Idx : in Bus.Word_Index;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Data : out Bus.Word);

— # global in Bus.Inputs;
— # derives Data from Src, Idx, Subaddress_Idx, Bus.Inputs;

procedure Read_Message(
Src : in Lru_Name;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Data : out Bus.Message);

— # global in Bus.Inputs;
— # derives Data from Src, Subaddress_Idx, Bus.Inputs;

—  Acknowledge a message as fresh 
procedure Acknowledge_Message(

Src : in Lru_Name;
Subaddress_Idx : in Bus.Lru_Subaddress_Index);

— # global in out Bus.Inputs;
— # derives Bus.Inputs from *, Src, Subaddress_Idx; 

end BC1553;

R em ote Terminal interface

—  The 1553 bus interface for Remote Terminals (RT)

with Bus;
with SystemTypes;
— # inherit SystemTypes,Bus ; 
package RT1553
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IS

—  Symbolic names for the Lrus 
type Lru_Name is

(Barometer,
Asi,
Ins,
Compass,
Fuel,
Fuze,
Radar,
Infrared,
Fins,
Motor,
Destruct,
Warhead
) ;

—  Write out data to the BC 
procedure Set_Message_Valid(

Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Src : in Lru_Name);

— # global in out Bus.Inputs;
— # derives Bus.Inputs from *, Subaddress_Idx, Src;

procedure Write_Word(
Data : in Bus.Word;
Idx : in Bus.Word_Index;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Src : in Lru_Name);

— # global in out Bus.Inputs;
— # derives Bus.Inputs from *, Data, Idx,
— # Subaddress_Idx, Src;
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procedure Write_Message(
Data : in Bus.Message;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Src : in Lru_Name);

— # global in out Bus.Inputs;
— # derives Bus.Inputs from *, Data, Subaddress_Idx, Src;

—  Read data sent to the RT

procedure Read_Word(
Src : in Lru_Name;
Idx : in Bus.Word_Index;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Data : out Bus.Word);

— # global in Bus.Outputs;
— # derives Data from Src, Idx, Subaddress_Idx, Bus.Outputs;

procedure Read_Message(
Src : in Lru_Name;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Data : out Bus.Message);

— # global in Bus.Outputs ;
— # derives Data from Src, Subaddress_Idx, Bus.Outputs ;

procedure Acknowledge.Message(
Src : in Lru.Name;
Subaddress.Idx : in Bus.Lru_Subaddress_Index);

— # global in out Bus.Outputs;
— # derives Bus.Outputs from *, Src, Subaddress.Idx;

346



end RT1553;
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A ppendix C

Exam ple Test Scripts

This appendix contains the test script used to test the Barometer code with the main 

test harness, and the output that resulted. It is typical of the sensor testing scripts.

Barom eter script input

section Barometer initialisation 
clock reset 
barometer init 
barometer check altitude 0 
if_barometer init
if_barometer check altitude false 0

section After first bus cycle 
cycle
barometer set altitude 5000 3 
barometer check altitude 5000 
if_barometer check altitude false 0

section After second bus cycle 
cycle
barometer check altitude 5000
comment New altitude has not propagated yet
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if_barometer check altitude true 0

section After third bus cycle 
cycle
barometer check altitude 5000 
if.barometer check altitude true 5000

section After a few sections 
clock increment 3000 
cycle 
cycle
barometer check altitude 5009 
if.barometer check altitude true 5009

section BIT Test - aborted 
if.barometer check ibit.phase off 
if.barometer start.ibit 
cycle
if.barometer check ibit.phase request.start 
cycle
if.barometer check ibit.phase request.start 
cycle
if.barometer check ibit.phase in.progress

if.barometer stop.ibit
cycle
cycle
if.barometer check ibit.phase request.stop 
cycle
if.barometer check ibit.phase off

section BIT Test - fail (in 10 ticks)

350



if.barometer check ibit.phase off
barometer fail.next.ibit
cycle
if.barometer start.ibit 
cycle
if.barometer check ibit.phase request.start 
cycle
if.barometer check ibit.phase request.start
cycle
cycle
cycle
cycle
cycle
if.barometer check ibit.phase in.progress
cycle
cycle
if.barometer check ibit.phase fail
cycle
cycle

section BIT Test - pass (in 10 ticks) 
if.barometer check ibit.phase fail 
cycle
if.barometer start.ibit
if.barometer check ibit.phase request.start 
cycle
if.barometer check ibit.phase in.progress 
cycle
if.barometer check ibit.phase in.progress
cycle
cycle
cycle
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cycle
if.barometer check ibit.phase in.progress 
cycle
if.barometer check ibit.phase pass 
cycle

comment That's all, folks! 
done

Barom eter script output

Barometer initialisation 
Clock reset 
Barometer Init 
Barometer Check ALTITUDE
Barometer altitude PASS
If.Barometer Init
If.Barometer Check ALTITUDE
If.Barometer altitude valid PASS

After first bus cycle 
Barometer Set ALTITUDE 
Barometer Check ALTITUDE
Barometer altitude PASS
If.Barometer Check ALTITUDE
If.Barometer altitude valid PASS

After second bus cycle 
Barometer Check ALTITUDE
Barometer altitude PASS
New altitude has not propagated yet
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If.Barometer Check ALTITUDE
If.Barometer altitude valid PASS
If.Barometer altitude PASS

After third bus cycle 
Barometer Check ALTITUDE
Barometer altitude PASS
If.Barometer Check ALTITUDE 
If.Barometer altitude valid PASS
If.Barometer altitude PASS

After a few sections 
Clock increment 3000ms 
Barometer Check ALTITUDE
Barometer altitude PASS
If.Barometer Check ALTITUDE 
If.Barometer altitude valid PASS
If.Barometer altitude PASS

BIT Test - aborted 
If.Barometer Check IBIT.PHASE 
If.Barometer IBIT phase  ̂ PASS
If.Barometer start IBIT 
If.Barometer Check IBIT.PHASE 
If.Barometer IBIT phase PASS
If.Barometer Check IBIT.PHASE 
If.Barometer IBIT phase PASS
If.Barometer Check IBIT.PHASE 
If.Barometer IBIT phase PASS
If.Barometer stop IBIT 
If.Barometer Check IBIT.PHASE 
If.Barometer IBIT phase PASS
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If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS

BIT Test - fail (in 10 ticks)
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
Barometer Fail next Ibit
If.Barometer start IBIT
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS

BIT Test - pass (in 10 ticks)
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
If.Barometer start IBIT
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
If.Barometer Check IBIT.PHASE
If.Barometer IBIT phase PASS
That's all, folks!

354



DONE.
Passes: 30
Fails: 0
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A ppendix D

SPARK  Report File for Nav

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

Report of SPARK Examination 
SPARK95 Examiner with VC and RTC Generator Release 7.0 / 07.03 

Praxis Critical Systems, Bath, England 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

DATE : 08-SEP-2003 10:55:12.60

Options:
default switch file used
index.file=MISSILE.IDX
warning.f ile=MISSILE.WRN
notarget_compiler_data
config_file=GNAT.CFG
source_extension=ADA
1isting_extension=ls_
nodictionary
report.file=SPARK.REP
no.html
exp.checks
rtc
vcs
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nest
statistics 
fdl.identifiers 
f1ow.analysis=information 
ada95
annot at i on_ charact er=# 
profile=sequential

Selected files:
NAV.ADB

Index Filename(s) used were 
D:\USER\MISSILE.IDX

No Meta Files used

Summary warning reporting selected for: 
Pragmas: pack

Target configuration file:
Line

1 —  Auto-generated SPARK target configuration file
2 —  Target claims to be 'SYSTEM_NAME_GNAT'

[elided]
18 end Standard;

No summarised warnings
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Source Filename(s) used were: 
D:\USER\NAV.ADB 
D:\USER\NAV.ADS 
D :\USER\SYSTEMTYPES-MATHS.ADS 
D :\USER\SENSOR_HISTORY.ADS 
D :\USER\MEASURETYPES-ANGLE_OPS-TRIG.ADS 
D :\USER\MEASURETYPES-ANGLE_OPS.ADS 
D:\USER\CLOCK.ADS 
D :\USER\CARTESIAN.ADS 
D :\USER\SYSTEMTYPES.ADS 
D :\USER\MEASURETYPES.ADS 
D:\USER\IF_AIRSPEED.ADS 
D:\USER\IF_INS.ADS 
D :\USER\IF_COMPASS.ADS 
D :\USER\IF_BAROMETER.ADS 
D:\USER\BC1553.ADS 
D:\USER\IBIT.ADS 
D:\USER\BUS.ADS

Source Filename: D:\USER\NAV.ADS
No Listing File

Unit name : Nav
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings
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Source Filename : D :\USER\SYSTEMTYPES-MATHS.ADS
No Listing File

Unit name: Systemtypes.Maths
Unit type: package specification
Unit has been analysed, einy errors are listed below. 

No errors found 

No summarised warnings

Source Filename: D:\USER\SENSOR_HISTORY.ADS
No Listing File

Unit name : Sensor.History
Unit type: package specification
Unit has been analysed, any errors are listed below. 

No errors found 

No summarised warnings

Source Filename : D :\USER\MEASURETYPES-ANGLE_OPS-TRIG.ADS
No Listing File

Unit name: Measuretypes.Angle_Ops.Trig
Unit type: package specification
Unit has been analysed, any errors are listed below.
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No errors found

No summarised warnings

Source Filename : D :\USER\MEASURETYPES-ANGLE_OPS.ADS
No Listing File

Unit name : Measuretypes.Angle_Ops
Unit type: package specification
Unit has been analysed, any e r ro rs are listed below. 

No errors found 

No summarised warnings

Source Fileneime : D : \USER\CLOCK. ADS
No Listing File

Unit name : clock
Unit type: package specification
Unit has been analysed, any errors are listed below. 

No errors found 

No summarised warnings

Source Filename: D:\USER\CARTESIAN.ADS
No Listing File
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Unit name: cartesian
Unit type: package specification
Unit has been analysed, any errors are listed below, 

No errors found 

No summarised warnings

Source Filename : D :\USER\SYSTEMTYPES.ADS
No Listing File

Unit name : Systemtypes
Unit type: package specification
Unit has been analysed, any errors are listed below, 

No errors found 

No summarised warnings

Source Filename: D:\USER\MEASURETYPES.ADS
No Listing File

Unit name : Measuretypes
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings
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Source Filename : D :\USER\IF_AIRSPEED.ADS
No Listing File

Unit name : If.airspeed
Unit type: package specification
Unit has been analysed, any errors are listed below. 

No errors found 

No summarised warnings

Source Filename: D:\USER\IF_INS.ADS
No Listing File

Unit name: If.Ins
Unit type: package specification
Unit has been analysed, any errors are listed below. 

No errors found 

No summarised warnings

Source Filename : D :\USER\IF_COMPASS.ADS
No Listing File

Unit name : if.compass
Unit type: package specification
Unit has been analysed, ciny errors are listed below.
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No errors found

No summarised warnings

Source Filename : D :\USER\IF.BAROMETER.ADS
No Listing File

Unit name : if.barometer
Unit type: package specification
Unit has been analysed, any errors are listed below. 

No errors found 

No summarised warnings

Source Filename: D:\USER\BC1553.ADS
No Listing File

Unit name : bcl553
Unit type: package specification
Unit has been analysed, any errors are listed below. 

No errors found 

No summarised warnings

Source Filename: D:\USER\IBIT.ADS
No Listing File
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Unit name : ibit
Unit type: package specification
Unit has been analysed, any errors are listed below. 

No errors found 

No summarised warnings

Source Filename: D:\USER\BUS.ADS
No Listing File

Unit name : bus
Unit type: package specification
Unit has been analysed, any errors are listed below. 

No errors found 

No summarised warnings

Source Filename: D:\USER\NAV.ADB
Listing Filename: D:\USER\NAV.LSB

Unit name : Nav
Unit type: package body
Unit has been analysed, any errors are listed below.

No errors found

No summarised warnings
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Resource statistics

Table Units used Max Size % used
Relation Table 1294 50000 2
String Table 10839 1048576 1
Symbol Table 1976 10240 19
Syntax Tree 8162 262144 3
VCG Heap 4222 120000 3
Record components 7 250 2
Record errors 0 1000 0

— End of file-
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A ppendix E

Original N av B ody

—  Navigation tracking of missile 

with
If.Barometer, If.Compass,
If.Ins, If.Airspeed,
Measuretypes.Angle.Ops,
Measuretypes.Angle.Ops.Trig,
Sensor.History, Cartesian,
Systemtypes, Systemtypes.Maths ; 

package body Nav
— # own Location.State is
— # head.xy, head.yz, dx, dy, dz, airspeed &
— # Sensor.state is
— # barometer.ss, compass.ss, ins.ss, airspeed.ss;

is
subtype Integer32 is Systemtypes.Integer32;

type Sensor.Status is (Unknown, Valid, Failed, Restarted);

Dx, Dy, Dz, Head.Xy, Head.Yz, Airspeed :
Sensor.History.Measure.History :=

Sensor.History.Blank.History;

367



Barometer.ss : Sensor.Status := unknown;
Compass.SS
Ins.SS
Airspeed.ss

Sensor.Status := Unknown; 
Sensor.Status := unknown; 
Sensor.Status := unknown;

---------------  Sensor updates -----------------

—  Handle an airspeed update
procedure Handle.Airspeed(Restart : in Boolean)

— # global in if.airspeed.state;
— # in out airspeed.ss;
— # in out airspeed, clock.time;
—  [ derives elided ]

is
speed.Now : Meter.Per.sec; 
sensor.Valid : Boolean; 

begin
if Restart then

If.Airspeed.Get.Speed(Speed => Speed.Now,
Valid => sensor.Valid);

if sensor.Valid then 
airspeed.ss := valid;
Sensor.History.Update.Speed.Reading 

(Item => airspeed.
Data => speed.Now);

else
—  Not a valid sensor yet but restarting 
Airspeed.Ss := Restarted; 

end if;
elsif Airspeed.Ss = Valid or Airspeed.ss = restarted then 

If.airspeed.Get.speed(Speed => Speed.Now,
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Valid => sensor.Valid);
if sensor.Valid then

Sensor.History.Update.Speed.Reading 
(Item => airspeed.

Data => speed.Now);
else

—  Whoops, gone invalid 
airspeed.ss := Failed; 

end if; 
else

—  Not restarting, sensor not valid so ignore 
null; 

end if;
end Handle.airspeed;

procedure Handle.Barometer(Restart : in Boolean)
— # global in if.barometer.state;
— # in out barometer.ss;
— # in out dz, clock.time;
is separate;

—  Handle an INS update
procedure Handle.Ins(Restart : in Boolean)

— # global
— # in if.ins.state;
— # in out ins.ss;
— # in out dx, dy, dz, clock.time;
is separate;

—  Handle a compass update
procedure Handle.compass(Restart : in Boolean)

— # global
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— # in if.compass.state;
— # in out compass.ss;
— # in out head.xy, head.yz, clock.time;
is separate;

Public subroutines

procedure Estimate.Height(M : out Meter;
C : out confidence)

— # global in dz, barometer.ss, ins.ss;
— # derives m,c from barometer.ss, ins.ss, dz; 
is

T : Clock.Millisecond; 
begin

case Barometer.ss is
when Unknown I Failed I Restarted =>

—  Try a backup 
if Ins.Ss = Valid then

—  Secondary sensor valid
Sensor.History.Get.Recent.MeterCltem => Dz,

Recent => M, 
Timestamp => T);

if (T = 0) then
—  Invalid reading 
C := None; 

else
C := Low; 

end if; 
else

M := 0;
C := None ; 

end if ;
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when Valid =>
Sensor.History.Get.Recent.Meter(Item => Dz,

Recent => M, 
Timestamp => T);

—  Primary sensor valid 
if T = 0 then

—  invalid reading 
C := None; 

else
C := High; 

end if; 
end case ; 

end Estimate.Height;

procedure Estimate.Origin.Offset(M : out Meter;
C : out confidence)

— # global in dx, dy, ins.ss, compass.ss, airspeed.ss; 
— # derives m,c from dx, dy,
— # ins.ss, compass.ss, airspeed.ss;

is separate;

procedure Estimate.Heading(A : out Angle ;
C : out Confidence)

— # global in dx, dy, head.xy, compass.ss, ins.ss;
— # derives a,c from dx, dy, head.xy, compass.ss, ins.ss; 
is separate;

procedure Estimate.Speed(S : out Meter.Per.Sec;
C : out Confidence)

— # global in dx, dy, airspeed, airspeed.ss,
— # compass.ss, ins.ss; in out clock.time; 
is separate;
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procedure Maintain(Restart : in Boolean)
— # global 
— # in
— # if.barometer.State,
— # if.compass.state,
— # if.airspeed.state,
— # if.ins.state;
— # in out
— # dx, dy, dz, airspeed, head.xy, head.yz,
— # barometer.ss, ins.ss,
— # compass.ss, airspeed.ss,
— # clock.time;

is
begin

Handle.Airspeed(Restart);
Handle.Barometer(Restart);
Handle.Compass(Restart);
Handle.Ins(Restart); 

end Maintain;

—  Test point
procedure Command is separate; 

end Nav;
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A ppendix F

F P G A  N av B ody

—  Navigation tracking of missile
—  Version using an FPGA

with
Fpga,
if.barometer, if.compass.
If.Ins, If.airspeed,
Measuretypes.Angle.Ops,
Measuretypes.Angle.Ops.Trig,
Sensor.History,
Systemtypes, Systemtypes.Maths, 
cartesian; 

package body Nav.FPGA
— # own Location.State is
— # in head.xy, in head.yz, in dx,
— # in dy, in dz, in air.speed &
— # fpga.inputs is
— # out time.now, out is.restart,
— # out airspeed.speed, out airspeed.valid,
— # out barometer.height, out barometer.valid,
— # out compass.xy, out compass.yz,
— # out compass.valid,
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— # out ins_x, out ins_y, out ins_z,
— # out ins_valid ;

—  sensor_state has no refinement as it's just an array 
is

subtype Integer32 is Systemtypes.Integer32;

type Sensor_Status is (Unknown, Valid, Failed, Restarted); 
for Sensor_Status'Size use 2; 
for Sensor_Status use

(Unknown => 0, Valid => 1, Failed => 2, Restarted => 3);

—  How big are various types?
Dist_Record_Bytes : constant :=

(Sensor_History.Dist_History'Size + 7)/8;
—  = 185/8 = 23 bytes 
Angle_Record_Bytes : constant :=

(Sensor_History.Angle_History'Size + 7)/8;
—  = 141/8 = 17 bytes 
Speed_Record_Bytes : constant :=

(Sensor_History.Speed_History'Size + 7)/8;
—  = 161/8 = 20 bytes

—  The estimates are all output by the FPGA

—  LOCATION.STATE
Dx, Dy, Dz : Sensor_History.Dist_History;
for Dx'Address use Fpga.Base_Out.Address; 
for Dy'Address use

Fpga.Base.Out.Address + Dist.Record.Bytes*l; 
for Dz'Address use

Fpga.Base.Out.Address + Dist.Record.Bytes*2;
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Head.Xy, Head.Yz : Sensor.History.Angle.History; 
for Head.Xy'Address use

Fpga.Base.Out.Address + Dist.Record.Bytes*3; 
for Head.Yz’Address use 

Fpga.Base.Out.Address +
(Dist.Record.Bytes*3 + Augle.Record.Bytes);

Air.Speed : Sensor.History.Speed.History;
for Air.Speed'Address use 

Fpga.Base.Out.Address +
(Dist.Record.Bytes*3 + Augle.Record.Bytes*2);

—  As are the sensor statuses

—  SENSOR.STATE
Sensor.State.Base : constant :=

(Fpga.Base.Out.Address + 4) +
(Dist.Record.Bytes * 3 +

(Angle.Record.Bytes * 2 + Speed.Record.Bytes));
—  about 123 bytes plus 1 word for safety

type Sensors is (Airspeed, Barometer, Compass, Ins); 
for Sensors'Size use 2;

—  Size is 4 X 2 = 8 bits
type Sensor.State.Array is array(Sensors) of Sensor.Status; 
pragma Pack(Sensor.State.Array); 
for Sensor.State.Array'Size use 8;

Sensor.State : Sensor.State.Array;
for Sensor.State'Address use Sensor.State.Base;
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—  The sensor values are written to the FPGA

—  FPGA.INPUTS
Airspeed.Speed : Meter_Per_Sec; 
for Airspeed.Speed'Address use 

Base_In_Address;
Airspeed.Valid : Boolean; 
for Airspeed.Valid'Address use 

Base_In_Address + 4;

Barometer.Height : Meter; 
for Barometer.Height'Address use 

Base.In.Address + 5;
Barometer.Valid : Boolean; 
for Barometer.Valid'Address use 

Base.In.Address + 9;

Compass.Xy, Compass.yz : Angle; 
for Compass.Xy'Address use 

Base.In.Address + 10; 
for Compass.Yz'Address use 

Base.In.Address + 11;
Compass.Valid : Boolean; 
for Compass.Valid'Address use 

Base.In.Address + 12;

Ins.X, Ins.Y, Ins.Z : Meter; 
for Ins.X'Address use 

Base.In.Address + 13; 
for Ins.Y'Address use 

Base.In.Address + 17; 
for Ins.Z'Address use
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Base.In.Address +21;
Ins.Valid : Boolean; 
for Ins.Valid'Address use 

Base.In.Address + 25;

Time.Now : Clock.Millisecond;
for Time.Now'Address use Base.In.Address + 26;

Is.Restart : Boolean;
for Is.Restart'Address use Base.In.Address + 30;

Public subroutines

procedure Get.Recent.Meter
(Item : in Sensor.History.Dist.History;
Recent : out Meter;
Timestamp : out Clock.Millisecond)

— # derives recent,timestamp from item;
is

last.Idx : Sensor.History.History.Count; 
begin

last.Idx := Sensor.History.Previous.Item(Item.New.Idx); 
Recent := Item.Distance(Last.Idx);
Timestamp := Item.Times(Last.Idx); 

end Get.Recent.Meter;

procedure Get.Recent.angle
(Item : in Sensor.History.angle.History;
Recent : out angle;
Timestamp : out Clock.Millisecond)

— # derives recent,timestamp from item;
is
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last.Idx : Sensor.History.History.Count; 
begin

last.Idx := Sensor.History.Previous.Item(Item.New.Idx); 
Recent := Item.bearingCLast.Idx);
Timestamp := Item.Times(Last.Idx); 

end Get.Recent.angle;

procedure Get.Recent.speed
(Item : in Sensor.History.speed.History;
Recent : out Meter.Per.sec;
Timestamp : out Clock.Millisecond)

— # derives recent,timestamp from item;
is

last.Idx : Sensor.History.History.Count; 
begin

last.Idx := Sensor.History.Previous.Item(Ttem.New.Idx); 
Recent := Item.speed(Last.Idx);
Timestamp := Item.Times(Last.Idx); 

end Get.Recent.speed;

procedure Estimate.Height(M : out Meter;
C : out confidence)

— # global in dz, sensor.state;
— # derives m,c from sensor.state, dz; 
is

T : Clock.Millisecond;
Baro.State, Ins.state : Sensor.Status;
Tmp.dz : Sensor.History.Dist.History; 

begin
Baro.State := Sensor.State(Barometer); —  invalid rep OK 

Tmp.Dz := Dz; —  invalid rep ok 
case Baro.state is
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when Unknown I Failed I Restarted =>
—  Try a backup
Ins.State := Sensor.State(Ins); —  invalid rep ok 
if Ins.state = Valid then

—  Secondary sensor valid 
Get.Recent.Meter(Item => Tmp.Dz,

Recent => M,
Timestamp => T);

if (T = 0) then
—  Invalid reading 
C := None; 

else
C := Low; 

end if ; 
else

M := 0;
C := None; 

end if; 
when Valid =>

Get.Recent.Meter(Item => Tmp.Dz,
Recent => M,
Timestamp => T);

—  Primary sensor valid 
if T = 0 then

—  invalid reading 
C := None ;

else
C := High; 

end if; 
end case ; 

end Estimate.Height;
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procedure Estimate_Origin_Offset(M : out Meter;
C : out confidence)

— # global in dx, dy, sensor.state;
— # derives m,c from dx, dy, sensor.state; 

is separate;

procedure Estimate_Heading(A : out Angle;
C : out Confidence)

— # global in dx, dy, head.xy, sensor.state;
— # derives a,c from dx, dy, head.xy, sensor.state; 
is separate;

procedure Estimate_Speed(S : out Meter_Per_Sec;
C : out Confidence)

— # global in dx, dy, air_speed, sensor.state;
— # in out clock.time;
— # derives s,c from dx, dy, air.speed, sensor.state, 
— # clock.time &
— # clock.time from *, sensor.state; 

is separate;

procedure Maintain(Restart : in Boolean)
— # global 
— # in
— # if.barometer.State,
— # if.compass.state,
— # if.airspeed.state,
— # if.ins.state;
— # out
— # time.now, is.restart,
— # airspeed.speed, airspeed.valid,
— # compass.xy, compass.yz, compass.valid,
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— # ins_x, ins.y, ins.z, ins.valid,
— # barometer.height, barometer.valid;
— # in out 
— # clock.time;
— # derives
— # barometer.height, barometer.valid 
— # from if.barometer.state &
— # airspeed.speed, airspeed.valid 
— # from if.airspeed.state &
— # compass.xy, compass.yz, compass.valid 
— # from if.compass.state &
— # ins.x, ins.y, ins.z, ins.valid 
— # from if.ins.state &
— # is.restart from restart &
— # time.now from clock.time &
— # clock.time from 
— #  *;

is
P : Cartesian.Position;
D : Meter;
S : Meter.Per.Sec;
R : Measuretypes.Millirad;
VI,V2 : Boolean;
T : Clock.Millisecond; 

begin
—  Get airspeed
If.Airspeed.Get.Speed(Speed => S,

Valid => VI);
Airspeed.Speed := S;
Airspeed.Valid := VI;
—  Get height
If.Barometer.Get.Height(Height => D,
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Valid => VI);
Barometer.Height := D;
Barometer.Valid := VI;
—  Get headings
If.Compass.Get.Xy(Angle => r.

Valid => VI);
Compass.Xy := Measnretypes.Angle.Ops.Ronnd.Degree(R); 
If.Compass.Get.Yz(Angle => r.

Valid => V2);
Compass.Yz := Measnretypes.Angle.Ops.Round.Degree(R); 
Compass.Valid := VI and V2;
—  INS
If.Ins.Get.Location(Position => P,

Valid => VI);
Ins.x := P.X;
Ins.Y := P.Y;
Ins.z := P.z;
Ins.Valid := VI;
—  Get time 
Clock.Read(T => T,

Valid => VI);
if VI then

Time.Now := T; 
else

Time.Now := 0; 
end if;
—  Restarting?
Is.Restart := Restart; 

end Maintain;

procedure Command is separate; 
end Nav.fpga;
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Abstract

Programmable logic devices (PLDs) are increasing in complexity and speed, and 
are being used as important components in safety-critical systems. Methods for devel
oping high-integrity software for these systems are well-known, but this is not true for 
programmable logic.

We propose a process for developing a system incorporating software and PLDs, 
suitable for safety critical systems of the highest levels of integrity. This process in
corporates the use of Synchronous Receptive Process Theory as a semantic basis for 
specifying and proving properties of programs executing on PLDs, and extends the use 
of SPARK Ada from a programming language for safety-critical systems software to 
cover the interface between software and programmable logic.

We have validated this approach through the specification and development of a 
substantial safety-critical system incorporating both software and programmable logic 
components, and the development of tools to support this work.

This enables us to claim that the methods demonstrated are not only feasible but 
also scale up to realistic system sizes, allowing development of such safety-critical 
software-hardware systems to the levels required by current system safety standards.
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Chapter 1 

Introduction

This chapter sets the scene for the topics discussed in the thesis. It outlines the recent 
history of highly reliable software development, looks at the successes, failures and 
needs of software engineers, and describes how this thesis tackles one particular section 
of those needs.

1.1 The H istory of H ighly Reliable Software
Programming as we know it today was effectively invented in the early 1950s, when the 
first generation of post-war computers was frustrating the first generation of experts 
responsible for making the machines complete their assigned tasks. The discovery by 
Grace Hopper of a moth embedded in the circuits of one malfunctioning behemoth 
heralded future programmers’ frustration in trying to find errors in their programs 
which had no less obscure causes.

1.1.1 Program m ing vs. software engineering
Programming is simply the act of producing data (a program) designed to be executed 
by a computer. Software engineering is a wider ranging term. When considering the 
incorporation of software engineers as members, the IEEE defined the term to mean:

. . .  the application of a systematic, disciplined, quantifiable approach to the 
development, operation, and maintenance of software; that is, the applica
tion of engineering to software. [Com90]

The systematic study of software engineering is believed to have started at the 
NATO-funded conferences on the subject in 1968 and 1969 [Nor68, Nor69]. The pro
ceedings of these conferences show researchers and practitioners identifying many of 
the problems which we still see today.

In the past three decades, Herculean efforts made by both academe and indus
try have led to techniques, tools and languages which permit development of complex 
safety-critical software projects. The systems resulting from these projects are gen
erally as reliable as required by the user; while not perfect, they provide reasonable 
functionality and reliability. There is a substantial monetary price to pay for this 
reliability, but the reliability is generally delivered.
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1.1.2 H istorical failures
There have, of course, been numerous failures of software engineering. Some of them 
have been spectacular, such as the Ariane 5 flight control software numeric overflow 
which resulted in a hundred-million-pound flrework display over French Guyana[Lio96]. 
Others have been hardly noticed by the public, but nevertheless expensive. Repeated 
efforts to develop a next-generation air traffic control system for the United States 
have met with failure after expensive failure, and the current Standard Terminal Au
tomation Replacement System (STARS) has slipped by four years and incurred a 60% 
cost over-run so far. In the meantime, old software is operating far past its intended 
lifetime [Ins02].

The more serious failures involve human loss rather than flnancial loss. Remarkably, 
there are relatively few fatalities directly attributable to software failure. One of the 
earliest, and worst, of such accidents was the Therac 25 incident described in [Lev95].
A number of radiotherapy patients received massive radiation overexposure as a result 
of a race condition within the Therac-25 radiotherapy machine software. Notably, the 
fault was also present within an earlier model of machine, but a hardware interlock 
there prevented its manifestation.

1.1.3 W here th ings go wrong
The most common point of project failure is, surprisingly, in the earliest phase: re
quirements gathering. The Standish CHAOS report of 1995 [Sta95] and the later 
study by Taylor [TayOl] estimate that between 30% and 48% of IT projects fail due 
to requirements-related problems, even though the stage at which the projects fail is 
usually late in the development cycle.

A signiflcant fraction of safety-critical software projects start to go adrift less for 
technical reasons than for failures of process. The Ariane 5 explosion was traced back 
to a numeric overflow in the flight-control software, written in Ada. This was the cue 
for advocates of other languages and tools to leap in and say “if only you had been 
using X you would have detected this possible overflow.” However, this misses the 
point. The relevant section of the software was taken from the Ariane 4 programme.
It was not checked as it had been tested for Ariane 4, all known errors flxed, and had 
established a reliable track record. Ariane 5 flew a faster and tighter flight profile than 
Ariane 4, and so the numeric exception occurred where before the range of values was 
within the defined type range.

Using the best techniques, tools and language in the world is worth very little if 
your development process permits them to be circumvented, even if unintentionally. All 
the assertions about reliability contained in this thesis (and, indeed, elsewhere) should 
have a lengthy disclaimer attached, noting the need for a well-defined and reputable 
development process to be used, and to be enforced rigorously.

Leveson has analysed a series of aerospace accidents using an event chains model [LevOl]. 
Her analysis showed that accidents involving large-scale engineered systems usually 
have a complex series of causes, and blaming the accident on a perceived “proximal” 
cause is often an over-simplification:

The causes of accidents are frequently, if not almost always, rooted in orga
nizational culture, management and structure. These factors are all critical
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to the eventual safety of the engineered system. Oversimplifying the factors 
involved in accidents limits our ability to prevent them.[WLL"""01]

It is important to remember this when we make claims about reducing accident 
rates with purely technical fixes.

1.2 M odern Software Developm ent
Brooks [Bro95] wrote of the state of the software engineering art in 1975, and updated 
the 20th anniversary edition of his book with a review of the progress that the software 
engineering profession had made. Brooks’s original conjectures included:

1. that system development time does not scale in an inverse-linear relation to team 
size, and indeed that adding more manpower to a late project makes it later (the 
“mythical man-month”);

2. that there is no single development, in either technology or management tech
nique, which promises an order of magnitude improvement within a decade in 
productivity, reliability or simplicity (“no silver bullet”);

3. that after building one system successfully, the design and development of a 
follow-on system is prone to balloon out with pointless features and an elephantine 
design (the “second system effect”); and

4. a small number of documents, in a sea of project documentation, become the crit
ical pivots around which every project’s management revolves (“the documentary 
hypothesis”).

History appears to have borne out these conjectures, which have passed into every
day software engineering practice. Brooks’s forecast of “no silver bullet” in particular 
has proven accurate; no single technique has produced a tenfold increase in produc
tivity or reliability. Instead, good practice and good tools have slowly increased our 
confidence in building software that does increasingly complex tasks.

We assume that the system development process described in this thesis is planned 
and carried out with an eye to these laws, and we focus on the task of producing 
the system that the customer needs. We do not aim to reduce the time taken to 
develop a safety-critical system. Instead, we aim to avoid all the extra development 
time resulting from having to rework the finished system after the customer or safety 
auditor has rejected it.

1.3 Hardware /  Software Codesign
The bane of a software engineer’s life is when his code is required to interact with 
actual physical hardware, that is, hardware external to the computer itself; “stepping 
outside the sandbox”, as it is sometimes called. It is not for nothing that the writing 
of device drivers for an operating system is regarded as something of a black art. Why 
is this?
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1.3.1 T he I /O  problem
Taking the Universal Register Machine as the canonical computer, and ignoring for the 
moment the unlimited memory space that it provides, we might well believe on first 
inspection that the machine is useless. It has a list of memory “slots” , each of which 
can hold an arbitrary natural number. It has an instruction counter, initially set to 1. 
It operates on a numbered list of instructions, each of which is one of the following:

Z(M ) Zero the value in memory slot M

S(M ) Increment the value in memory slot M  by 1

T(M ,N ) Copy the value in slot M  into slot N

J(M ,I,J ) If the value in slot M  is zero, set the instruction counter to I; otherwise, set
it to J

For any of the first three instructions, once it is executed the machine will increment 
the instruction counter by 1. In any case, the next step of the machine will be to read 
and execute the instruction pointed to by the instruction counter. If this counter points 
beyond the end of the instruction list given, the machine stops.

From a black box point of view, the machine does nothing -  we have no inputs or 
outputs defined. To give its actions meaning we must be able to inspect the memory 
locations, control the starting of the machine and possibly also feed in new programs. 
This must be accomplished outside the machine’s normal operations.

It is a similar situation with embedded systems. A well-established processor -
typically one of the ARM or PowerPC families -  may be coupled via a bus and memory 
controller to a bank of RAM, and a program executed in the normal way. However, 
something must start program execution in some way after power-on, and the rest of 
the system under control (e.g. a water heating system) must be able to feed data to 
the processor and read control signals out of it.

Without heavy customisation of the processor, the simplest way is often memory- 
mapped I/O. This technique uses the memory management unit of the system to 
flag certain locations in the processor’s memory map as “special” ; the values in those 
locations may either represent data read from external sensors, or be control values 
read by and used to control external actuators.

1.3.2 W hy th e interfacing is hard
The problems posed by such an apparently simple arrangement are many and subtle. 
The most obvious is a change in the way that we reason about program correctness. In 
our normal programming model any control path which may write two values to a given 
variable in succession, without reading the first value back, is immediately suspected 
of being in error.

The second problem, more insiduous, is the lack of synchronisation between the 
software and hardware worlds. Events external to the processor may occur at any 
point, in any order. Inside the processor we can place bounds on the number of 
computational steps between two events, but introducing dependencies on external
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events complicates the problem of producing highly reliable software which is correct 
with respect to a specification.

These problems also occur in systems where there are multiple threads of control 
with a shared address space. Programming languages have had to develop features 
such as semaphores, monitors, protected objects and associated protocols to solve these 
problems.

1.4 Program m able Logic D evices
Programmable logic devices (PLDs), as a compromise between a general-purpose CPU 
and a single-function Application-Specific Integrated Circuit (ASIC), lie on the border 
between software and hardware. To make a PLD program highly reliable, it must be 
simple; however, PLDs (such as field-programmable gate arrays) are steadily growing 
in size and complexity and so are being used for increasingly complicated tasks.

To date, programming PLDs has been done at a relatively low level with little 
concern for verifiability or correctness. However, emerging standards for safety-critical 
systems development such as UK Defence Standard 00-54[MoD99] and RTCA DO- 
254 [RTCOO] have started to mandate formal analysis of PLD programs that are key to 
system safety. Existing technologies do not support PLD programming at the higher 
levels of integrity.

Many of the concepts in this thesis can apply equally well to ASICs since their 
circuits are designed in much the same way as many PLD circuits. ASICs are also used 
in safety-critical systems, and many safety problems are common to PLDs and ASICs. 
However, the scope of this thesis is restricted to PLDs.

1.5 Thesis Aim
This thesis aims to describe a method for developing a set of functional and safety 
requirements into a system incorporating PLDs and conventional software. At each 
stage of development we aim to maintain correctness according to the requirements, 
and facilitate verification of the final code. The development process must be able to 
produce evidence that the system is fit for use at a higher level of safety integrity than 
is currently possible.

In this work we incorporate existing technologies for development of software for 
conventional safety-critical systems. We also use an existing synchronous process alge
bra as the basis for a formal description and refinement of a PLD program. We show 
how part of a conventional software program in the SPARK Ada high-level language 
can be efficiently compiled into programmable logic. The techniques are demonstrated 
in a substantial case study development of a safety-critical system.

1.6 Thesis Structure
Chapter 2 is a survey of the current research in the area of programmable hardware, 
and of relevant research in the areas of software and safety engineering. It looks both 
at the development of formal techniques for reasoning about and producing programs
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for programmable hardware, and at the state of the art in industrial safety-critical 
software development.

Chapter 3 provides a statement of the problem which this thesis aims to address, 
and gives criteria by which the reader may judge whether the problem has been solved.

Chapter 4 introduces the technologies used in the rest of the thesis to address the 
problem. It describes Synchronous Receptive Process Theory (SRPT), the Pebble PLD 
programming language, a generic PLD model, and the SPARK subset of Ada.

Chapter 5 builds on the existing algebra of SRPT to construct a rigorous specifi
cation and refinement system. This system allows refinement from an abstract timed 
specification to provably correct implementation in Pebble. The chapter provides a 
worked example of a carry look-ahead adder refinement.

Chapter 6 develops an SRPT description of an interpreter for SPARK Ada byte
code, showing how SRPT can be used to design a substantial PLD program and how 
the known properties of a SPARK Ada program assist in its compilation into a PLD 
program.

Chapter 7 describes a practical gate-level simulation of the adder in Chapter 5. 
The chapter then draws together the techniques developed in the preceding chapters 
to develop a substantial high-integrity guidance system for a missile using a design 
which runs partly on a standard processor and partly in programmable hardware.

Chapter 8 summarises the topics discussed in the thesis, considers whether the 
problem statements in Chapter 3 have been addressed, and points towards further 
avenues of research which may follow from this work.
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Chapter 2 

Current Research

This chapter considers the use of programmable hardware in safety-critical systems.
We will:

• analyse current and emerging safety standards directly applicable to this field;

• describe the constraints placed on the design, production and testing of safety- 
critical system software, and how these may apply to PLDs;

• look at current tools and techniques used in the production of such systems, 
especially those related to formal methods and proof; and

• assess the effectiveness of these tools and techniques.

Since we want to use programmable logic devices (PLDs) in safety-critical systems, 
we will:

• describe the state-of-the-art in PLD design and production;

• examine the systems which represent the range of use of programmable hardware 
in industry;

• examine how PLDs are programmed in theory and practise; and

• critique the techniques and tools which claim to formalise the use of program
mable logic in systems.

Finally we bring together the areas of safety-critical systems and PLDs by examining 
the challenges posed by the use of programmable hardware in a safety-critical system. 
Our guiding aim is to identify the gaps in the current industrial practice and academic 
theory, and to identify an approach that is able to cover these gaps.

Section 2.1 describes the practice in safety-critical systems development. Section 2.2 
investigates current research in formal methods. Section 2.3 describes the range of 
PLD architectures. Section 2.4 investigates how PLDs are programmed. Section 2.5 
looks at how PLDs could be incorporated into safety-critical systems, and Section 2.6 
summarises the key points of the research survey.
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2.1 Safety-Critical System s
In [Lev95] pp 136-137, Leveson defines the term system to mean “a set of components 
that act together as a whole to achieve some common goal, objective or end” and safety 
as “freedom from accidents or losses”. The criticality of a system is defined by the 
consequences of its failure ( “inability of the system to perform its intended function”, 
[Lev95] pp 172), a definition which may extend down to individual components of the 
system. Combining these, we may draw the following working definition:

a safety-critical system is a collection of components acting together where 
interruption of the normal function of one or more components may cause 
injury or loss of life.

Such systems may be designed to fail safely in certain circumstances. A safe failure 
mode is a component or system failure which does not compromise system safety. One 
example might be a nuclear reactor control system where any interruption of power 
or control to the subsystem holding the control rods will cause the rods to drop into 
the core, effectively stopping the nuclear reaction. So the system is not keeping the 
reactor running (its intended function) but it is keeping the reactor free from accidents 
or losses (safety).

An unsafe failure mode, by contrast, is one which increases the likelihood of accident 
or loss. A fiy-by-wire system may not be able to fail safety, since any interruption of 
its normal function will cause the pilot to lose control of the aircraft.

There are other terms associated with causes of failure. A defect is taken to be an 
aspect of the design of a system which turns out to have undesired consequences; for 
instance, a defect of the language syntax of C is that association of single statements 
with conditions in a nested i f - e ls e  block is counterintuitive.

An error is an aspect of the implementation of a system which is incorrect; for 
instance, a subprogram implementation which may use one of its variables before that 
variable has been initialised.

A fault is the result of an error or defect, manifesting in undesired system behaviour; 
for instance, if an aircraft engine shut down (because of an error in the software) then 
the unexpected shutdown would be a fault. Faults may be caused by multiple errors; 
conversely, not all errors may cause faults.

2.1.1 Exam ples o f safety-critical system s
An example of a safety-critical system is an air traffic control system such as GDIS 
[Hal96a]. There are many components in the system including operator displays, radar 
and transponder devices, and communications links. It is safety-critical because if 
the communications links fail wholly or partially then the operators may be unable 
to communicate with aircraft and command course changes to avoid a collision; such 
a collision would be an accident and may involve loss of life or property. Hence, the 
system is safety-critical when used in an operational environment. If it were linked in 
to a simulator then it would not be safety-critical because there would be no severe 
consequences of its failure.

Other safety-critical systems may not be assessed as such, yet still cause substantial 
destruction or death on failure due to a denial-of-service effect. An example of this
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SIL -^fail (on-demand) ^fail(P®r-hour)

4 > 10“  ̂ to < IQ-"̂ > 10“  ̂ to < 10“®
3 > 10“  ̂ to < 10“® > 10“® to < 10“"̂
2 > 10“® to < 10“^ > 10“  ̂ to < 10“®
1 > 10“  ̂ to < 10“^ > 10“® to < 10“®

Table 2.1: Table of SIL probabilities from lEC 61508

was the failure of the London Ambulance Service dispatching system which failed in 
November 1992; the resulting events are described in [Tea93]. Although in this case 
there was no link established by a coroner between the system failure and resulting 
deaths due to delay in dispatching ambulances, there is a demonstrable mechanism 
for deaths to result from a failure in normal operation (successful revival from cardiac 
arrest is critically affected by the arrival of a defibrillator-equipped ambulance within 
10 minutes) and so the system was safety-critical even if it was not so specified.

2.1.2 A ssessing criticality
Such systems may be graded according to their potential to cause death, serious injury 
or large financial loss. The SIL convention used in the European functional safety 
standard lEC 61508 [lECOO] specifies four Safety Integrity Levels (SILs), with SIL-4 
systems having the greatest criticality and SIL-1 systems the least.

The SIL has two forms. For a low-demand mode of operation the SIL is calculated 
based on the required probability of failure for the system or component to perform 
its design function on demand. For high-demand or continuous operation, the SIL is 
calculated by the required probability of a dangerous failure per hour. The probability 
ranges used are shown in Table 2.1.

Example: a nuclear power station’s reactor control rod system is expected to operate 
for 30 years (263000 hours) with a probability of dangerous control rod failure during 
the station’s lifetime of < 10“ .̂ The required maximum probability of failure per hour 
is therefore p such that

( 1  -  p)2630oo >  (1  _  i q - 2 )  ( 2 .1 )

giving p = 3.8 X 10“®, a SIL-3 system. The calculated SIL may then be used to guide 
the amount and form of analysis and testing required for the system.

Other standards use similar principles of measurement, though with different nota
tions. RTCA/EUROCAE DO-178B[RTC92], for instance, specifies levels of criticality 
from E (not critical) through to A (high criticality). The different treatments of risk 
in these and other standards were analysed by Pygott in [Pyg99].

An example of a UK commercial SIL-4 system is the Royal Navy’s Ship Helicopter 
Operating Limits Information System [KHCP99] designed to assist landing of heli
copters on Royal Navy Type 23 frigates. Failure of this system could result in the 
death of helicopter pilots and passengers, loss of a helicopter and damage to the ship. 
This is unacceptable for normal operation, hence SIL-4 reliability is required to give
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sufficient confidence that such an accident will not happen during the in-service life
time of the system. Since SHOLIS is a relatively low-demand system, this indicates 
a required probability of failure to perform its function on demand between 10“  ̂ and 
10- ® .

2.1.3 Standards
Makers and users of safety-critical systems in the UK have a legal mandate to ensure 
that the risk of serious failure is as low as reasonably practicable (ALARP.) McGee- 
Osborne and Hall considered this as far as it relates to the rail transport sector in 
[MOH97]. The Health and Safety at Work Act 1974 (known as “HSWA” or “HA- 
SAWA”) imposes general duties on employers to protect the health and safety of em
ployees and non-employees, using the key phrase “to the extent reasonably practicable”. 
Thus any employer operating a safety-critical system owes a “duty of care” to those 
who may reasonably be affected by the system. Failure in this respect may result in 
any of the following:

• litigation by affected parties for damages caused;

• an enforcing order from the Health and Safety Executive requiring the removal 
of the system from operation or immediate modifications to the system; or

• criminal prosecution of individuals for negligence leading to harm of others.

It is notable that successful prosecution for such negligence is rare.
Since many safety-critical systems may affect public safety, governmental and asso

ciated oversight agencies have drawn up standards documents for the development of 
safety-critical systems. Some of the best-known standards documents are UK Defence 
Standards 00-55 and 00-56 [MoD97, MoD96], RTCA/EUROCAE DO-178B [RTC92], 
the CENELEC EN 50126, 50128, 50129 European rail standards [CEN99, CEN02b, 
CEN02a] and the aforementioned European lEC Standard 61508 [lECOO].

2.1.4 Safety-critical m arket sectors
We split the safety-critical systems market into five sectors. For each sector we describe 
one or more mainstream standards or guidance documents used in the United Kingdom 
or internationally, then summarise the main principles that have been established.

Each of these sectors has a regulatory regime which has driven the development 
and adoption of standards. Other market sectors such as the automotive and medical 
equipment industries have regulatory regimes but do not have specific standards for 
assessing software and programmable hardware.

In the UK medical equipment industry, for instance, the Medicines and Healthcase 
products Regulatory Agency (MHRA) applies UK and European law, principally the 
EC Medical Devices directives. These directives will require manufacturers to demon
strate that critical medical devices are appropriately safe, but does not specify a process 
or any specific criteria against which the equipment’s software or electronic hardware 
must be assessed.
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Within the automotive industry, the increasing problem with faulty software has 
driven the development of the MISRA-C subset for critical automotive software spec
ified in [MIR98]. However adoption of this subset is not mandatory, and indeed some 
of the MISRA-C rules are difficult to enforce.

Rail

The Railtrack “Yellow Book” [RaiOO] provides guidance on the safety management of 
changes to the UK rail network. It is detailed but not prescriptive; it allows projects to 
tailor its recommended approach, although the Railtrack Safety Approval Body must 
approve the approach taken.

The CENELEC standards are derived from lEC 61508. Standard EN 50128[CEN02b] 
relates to the safety-related software in railway systems, and EN 50129[CEN02a] to 
safety-related electronic control and protection equipment. Since they are based on 
lEC 61508, the comments below on this encompassing standard apply.

N uclear power generation

“Software for Computers in the Safety of Nuclear Power Stations” , lEC Standard 880 
[IEC86] is intended for safety-related software in computers forming part of nuclear 
reactor safety systems. It lays down in detail a recommended development process, 
guidance on choice of language and tools, and a suggested maintenance process. The 
report was written in 1986, and the language and concepts used display this, but it is 
not yet regarded as obsolete. The very prescriptive nature of this old standard should 
be contrasted with the more modern standards described in this section.

The Four Party Regulatory Consensus Report on the Safety Case for Computer- 
Based Systems in Nuclear Power Plants [Hea97] is a set of agreed principles for building 
a safety case from the nuclear regulatory authorities of the UK, USA, France and 
Canada. It is not a standard as such, but presents the elements of a safety case 
perceived as helpful in gaining regulatory approval.

Aerospace (m ilitary)

UK Defence Standard 00-54[MoD99] (hereafter abbreviated Def Stan 00-54) is a new in
terim standard for the use of safety-related electronic hardware (SREH) in UK defence 
equipment. It relates to systems developed under the Def Stan 00-56 safety systems 
document or an equivalent international standard, and is appropriate if an electronic 
element in the system is identified to have a safety integrity level of between SIL-1 and 
SIL-4. This standard is covered in more detail later.

Def Stan 00-55 (software) [MoD97] specifies the requirements and guidance for the 
development of safety-related software by or for the UK Ministry of Defence. There 
is very heavy emphasis on the development process and suitable documentation, but 
the actual requirements about the implementation method and language are few and 
general. There is emphasis on using formal methods wherever possible. The key 
message appears to be “do what is reasonable and safe, but show how your decisions 
were made and justify them.” This goal-based approach foreshadows the rewriting of 
CAP 670 SW01[Civ02], described below.

2 2



Def Stan 00-56 (system safety) [MoD96] is 00-55’s counterpart relating to system 
safety. It lays down how the safety management activities of a development program 
should work. A “risk class” is calculated according to how probable and severe are the 
system hazards, and governs how the safety activities are carried out on the program. 
It requires the production of a “safety case”, a well-organised and reasoned justification 
that the system is acceptably safe.

Def Stan 00-56 is undergoing a rewrite for Issue 3. The first public draft for com
ments [MoD03] was released on 18th July 2003. It shows that the new format will be 
for Part 2 (the Code of Practice) to contain volumes addressing specific issues: vol
ume 1 describes how to interpret Part 1 (the guidance), volume 2 describes the risk 
management process, and the revised forms of Defence Standards 00-55 and 00-54 will 
form volumes 3 and 4 respectively. The standard itself is due for publication at the 
end of March 2004 after public comment on parts 1 and 2.

Aerospace (civil)

Penny et al.[PEBB01] describe practical experience with a “goal-based” form of safety 
standard in the development of CAP 670 SW01[Civ02], part of the regulations for 
ground-based air traffic services in the UK. They split evidence into two forms: direct, 
which directly relates to the safety of the system (such as evidence that static analysis 
has been carried out and no dangerous faults found), and backing which shows that 
the direct evidence is credible and sound (such as test reports and error history of the 
static analysis tool used).

RTCA/EUROCAE DO-178B [RTC92] is intended to provide guidance on how to 
satisfy airworthiness requirements for software use on aircraft. It relies heavily on 
software testing to demonstrate reliability. However at the highest level of software 
integrity the amount of testing required is very expensive.

RTCA/EUROCAE DO-254[RTCOO] is the analogue of DO-178B for electronic hard
ware. It is a more recent document, released in reaction to the increasing complexity of 
electronic safety-critical hardware performing avionics functions. The Federal Aviation 
Authority is currently considering how DO-254 should be applied to the development 
of ASICs and PLD programs.

In a comparison of avionics standards, Pygott and Newton [Pyg99] compared the 
requirements of RTCA DO-178B with the requirements of Def Stan 00-55 and Def Stan 
00-56. They concluded that the main difference was that civil aviation standards pro
vided mostly recommendations, whereas the Defence Standard clauses were mandatory. 
The Defence Standard placed much more emphasis on the use of static analysis and 
formal methods, though both were mentioned in DO-178B. In addition there were 
mismatches between Development Assurance Levels (DALs) and SILs which made 
comparing standards difficult.

Pygott and Newton also noted that all of the standards reviewed did not say much 
about the use of commercial off-the-shelf software (COTS), which they regard as being 
a significant feature of new development programs.

Finance

Finance systems are rarely safety-critical, but are often business critical. There are 
some financial systems which have the potential to “create” money; these have sufficient
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potential impact on a country’s economy that their correctness is a matter of concern to 
the country’s government. In this situation the pressures are similar to those around 
safety-critical systems, and so it is worth examining how these critical systems are 
regulated and developed to compare and contrast the approach with those used by 
safety-critical systems.

In the UK, the government Communications Electronics Security Group defines six 
levels of IT security: levels ITSEC 1 through 6 where 6 denotes the most secure systems. 
The ITSEC criteria are described in [Com91]. These fed into the international Common 
Criteria[Com99]. Like safety-critical systems, security-critical systems are classed as 
high-assurance.

Hall, in [Hal02], describes the specification and development of a Certification Au
thority (C A) for the MULTOS smart cards. This development was notable for the 
application of safety-critical software development tools (static analysis and proof with 
the SPARK and SPADE toolsets) in the security domain. It turned out that these 
techniques translated well across the domains.

The specification and security proof of the associated smartcard operating system is 
described by Stepney and Cooper in [SCOO]. This demonstrated that formal proof tech
niques were mature enough to be applied to a real industrial application of substantial 
size, and well enough supported to be off the critical path of system development.

Cross-sector

lEC Standard 61508 [lECOO] is intended to apply across multiple industry sectors, set
ting out a generic safety management approach for systems with electrical, electronic 
or programmable electronic components. Part 2 in particular is the requirements for 
the electrical, electronic and programmable devices; part 3 deals with software require
ments.

Part 2 ranges over a wide range of aspects of hardware, giving guidance on errors 
to check. A number of specified hardware faults may need to be detected (e.g. stuck-at 
failures for registers, bus faults and welded-together contacts) as well as properties of 
the software (e.g. correct “watch-dog” operation, information redundancy) with the 
analysis list determined by the required diagnostic coverage, related in turn to the SIL 
and resulting safety calculations. Interestingly, the programmable part of the systems is 
not addressed in detail; there are requirements for aspects of the design to be analysed, 
but no real requirements for implementation language or related aspects. It may be 
that the authors assume implicitly that Part 3 of the standard (software requirements) 
is to be applied where appropriate.

lEC 61131-3 [IEC03] applies to programmable logic controllers. These are not 
true PLDs, but the document provides information on controller design that may be 
applicable to some classes of PLD program.

A relevant comment in the HSE report [Hea97] is no. 70: “The programmable 
logic controller (PLC) is one typical example of an off-the-shelf system, albeit that the 
applications program must be provided by the purchaser. It is not sufficient simply to 
show that the production of the applications program has met the full safety system or 
safety-related system requirements. Such equipment typically embodies a complex op
erating system with which the applications software is associated. The demonstration 
must relate to the full system.’̂ (my italics.) This clearly indicates that PLC (and, by
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extension, PLD) programs must be validated both stand-alone and as a component of 
a whole system.

2.1.5 C om m entary
Standards are normally divided into a number of different types of information; le
gal requirements, approved code of practice (ACOP) and guidance. It is rare that a 
developer will follow every single recommendation; in practice they will justify their 
omission of one or more recommended practices on grounds of practicality and cost. It 
is worth noting that the second issue of Def Stan 00-55 was noticeably less prescriptive 
than the first issue in the sense that many recommended procedures were changed to 
guidances; this gave each system developer more freedom to choose the development 
practices which were most appropriate to their particular system. There has been in
conclusive debate in the safety-critical systems community about whether the reduced 
level of prescription compromised safety. This has been echoed in the different lev
els of prescription between the UK Defence Standards and the RTCA /  EURO CAE 
documents discussed earlier.

If a procedure in the ACOP was not followed and an accident resulted then (under 
British law) the onus would be on the developer to prove that their differing approach 
was acceptably safe. Guidances may be taken merely as potentially useful suggestions 
for development practice.

2.1.6 Standards sum m ary
The approach of the above standards is very general, with the exception of the 14- 
year old lEC 880. They tend to outline approaches rather than prescribe detailed 
procedures.

It is usual for safety-critical systems developers to be required to show to the sys
tem’s customer or to a regulatory agency (such as the UK Health and Safety Ex
ecutive) that their development process has followed one or more specified standards 
documents. These documents typically address the development process, configuration 
management, implementation language, production of safety cases, testing and main
tenance issues. The system may require formal certification from a regulatory agency 
before it may be brought into service.

Standards evolution

UK Defence Standards undergo periodic rewriting: 00-55 and 00-56 are at issue 2 
already, and issue 3 is due to appear in 2004. The rewritings reflect both feedback from 
practical application of the previous standards and advances in the state-of-the-practice 
of system development. The changes from issue 1 to issue 2 of 00-55 reflect industrial 
comments that the approach prescribed in issue 1 was too hard to apply in general, 
although at least one project was successfully developed under issue 1[KHCP99].

If experts dispute such issues, and standards documents show that conflict, how 
do we find a generic development process applicable to all standards? How can we 
anticipate the requirements of future versions of existing standards? We cannot, but 
we can focus on the areas of agreement noted above: the standards aim to support the 
process of producing a system which is demonstrably safe at a quantifiable level.
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Correctness vs. safety

Demonstrable correctness is often important in a safety-critical system. Note that 
correctness is not the same thing as safety; a military aircraft stores management 
system which could never arm a bomb would clearly be acceptably safe, but not correct! 
Leveson’s experience with an aerospace firm’s torpedo was salutary:

And later, when they tested this torpedo, they told me, they called me up 
and said “Well you know, we took her out into this testing ground and we 
tested this torpedo and every time we tried to fire it, it came out of the 
torpedo tube and turned itself off and went down to the bottom and it just 
sort of lay there.” And I said, “Well, it’s safe.” And they said, “Well the 
Navy didn’t want to pay for this safe torpedo.” [LC96]

However correctness and safety are often linked in that correct operation of a system 
may be key to its safety; if a release sequence for the aforementioned stores management 
system is faulty then armed stores may be released at too small an interval and make 
aircraft-proximate detonation likely.

Correctness is only meaningful in the context of a specification; if we take System 1 
consisting of a single AND gate, and System 2 consisting of a single OR gate then both 
gates may operate perfectly and so both systems may naively be regarded as “correct”. 
However the environment of the system may be such that the system is required to 
signal on its output wire only when both input wires are high; in this case, only System 
1 would be correct.

For the above reasons we now look at how formal methods may be applied to assist 
us in the task of producing an acceptably safe system which is correct with respect to 
its specification.
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2.2 Application of Formal M ethods
“Formal methods” is a catch-all term for a collection of mathematical techniques used 
to reason formally about the behaviour of a system or component thereof. Most of 
these techniques are covered under two main system development activities:

verification which we define as providing evidence that a set of system requirements 
have been satisfied; and

validation which we define as checking that the supplied evidence is satisfactory in 
respect of the requirements.

Verification is therefore commonly associated with activities involving formal nota
tions and analysis, such as those presented later in this thesis. Validation is commonly 
associated with unit, functional, system and integration testing, although it may also 
cover manual or automatic inspection of proofs produced during verification.

The number of formal methods techniques in existence appears to increase at every 
Formal Methods conference; for instance, FM’99 published a paper introducing the 
VSPEC behavioural interface specification language for VHDL [ARB99] which may be 
used to check VHDL designs against requirements. This method, like many others, 
is well-defined and addresses a specific problem. However, proportionally very few 
methods have gained widespread acceptance in industrial software development. Why 
is this?

2.2.1 The benefits o f form al m ethods
Rushby [Rus93] wrote a seminal report on the application of formal methods to safety- 
critical systems. He summarises the main benefits as

• formal specification reduces or highlights design ambiguities;

• formal verification makes explicit assumptions, axioms and deductions used to 
conclude that a function is performed correctly, in addition to providing a sub
stantial confidence increase in its actual correctness;

• formal verification also has the effect of closely analysing the design and high
lighting implications of supposedly simple changes; and

• formal methods add an analytical component to manual reviews that may in
crease the effectiveness of such scrutiny.

However the report also indicates that formal methods have their flaws. Key among 
these include the possible disparity between the programmer’s mental model of the 
design and that which he or she specifies formally, especially because many formal 
specifications (e.g. Z [Spi92]) are hard to write or read correctly. Formal verification 
may also fall down in that real world properties are often hard to characterise formally.

Moreover if the verification process is partly automated then a great deal of faith is 
required in the software tools involved. Developing high-integrity tools is not easy, but 
has been demonstrated to be feasible. The development of a high-integrity compiler
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for the UK Atomic Weapons Establishment [Ste98] was done using a Z specification, 
recast into Prolog (the implementation language). The compiler was put through a 
validation test by experienced compiler-breakers, and only one error was discovered; 
this error was in an area of the compiler which had not yet been proven correct.

Rushby concludes that formal methods should at least be in the mind of software 
engineers, if only to increase the rigour with which they reason about their software. 
Industry should be encouraged to develop further and apply formal methods, but to 
know when they are appropriate and when not. The report also remarks that large- 
scale application of formal methods in airborne software (the author’s speciality) is 
impractical. It is instructive to note that this report appeared in 1993; the ten years 
following have brought significant new formal methods and techniques, notably the rise 
of the SPARK Ada language and broader use of static analysis tools in UK and USA 
aerospace software.

2.2.2 Formal m ethods in use
Common formal notations used in industrial projects include Z [Spi92], VDM-SL 
[Jon86] and B[Abr96] for set- or model-oriented specification. Variants of CCS[Mil90] 
or CSP [Hoa85] are used to specify and prove properties of interacting processes. Static 
analysis tools such as the SPARK Examiner[CC90] permit verification that programs 
satisfy a set of desired properties before they are run. In addition there are general- 
purpose proof tools such as PVS[ORS92], used for interactive semi-automated proof.

Z is a formal specification language based on sets. Z usage is supported by tools such as 
fUZZ [SpiOO] and Cadiz [Yor97] for type checking, typesetting and proving properties 
of Z specifications. Z has been applied successfully in a number of industrial projects, 
and extensions such as Object-Z have been applied to problem domains where basic Z 
is difficult to apply.

Z is a specification language, and was not designed with a particular method of 
implementation in mind. It permits proof of certain properties of and relations between 
specifications, but by itself does not admit a method of developing a specification to 
executable code; this must be done on a case-by-case basis. For example, Sennett has 
shown [Sen92] how Z can be used to specify a program and how then to demonstrate 
that an Ada program meets or does not meet that specification.

A common problem with Z is that its schemas are often written with a wide range of 
non-ASCII symbols which many people find intimidating and hard to read “naturally” . 
An ISO standard for Z was released in 2002 [iec02], but until then the Z Notation 
Reference Manual by Mike Spivey [Spi92] was used as a de facto standard and indeed 
not all Z practitioners have read the ISO standard in detail.

B and V D M

B, as a method for specifying, designing and coding software systems, is supported 
mainly by the B Toolkit [Ltd98]. This is an integrated set of tools to assist the developer 
using the B method to develop high-integrity systems. It is based on the concept 
of an abstract machine, which is an object that may have internal variables (giving
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state), invariants (making statements about the variables which must always hold) and 
operations (enabling other machines to operate on its state.) The B method permits 
refinement of machines from very abstract forms to a form suitable for implementation 
in a high-level language such as C, Ada or Modula. This refinement allows us to 
prove that the final implementation satisfies the initial specifications of the machine. 
The difficulty is that it implicitly assumes an equivalence between the implementation 
language and the language of the B method, Dijkstra’s language of guarded commands 
[Dij76]. Languages such as C and Ada do not have a well-defined semantics, and so 
certain assumptions must be made by the developer.

VDM-SL [Int96] is the specification language of the Vienna Development Method. 
It is model-oriented, unlike Z. It is not as widely used in general as Z, but does have a 
history of practical use in projects such as CDIS[Hal96a].

CSP and CCS

CSP [Hoa85, Hen88] is an algebra for describing communicating processes. Each pro
cess is given an alphabet of events, and a description of the sequences of these events 
in which it participates. Parallel processes must be able to agree at least one sequence 
of events in the intersection of their alphabets, or the processes fail (deadlock). In 
addition, if a process is free to engage in an unbounded number of events not in any 
other process’s alphabet, then that process is said to diverge. CSP is a useful way of 
describing interactions between separate systems and detecting common errors such 
as deadlock and diverge. Commercially its use is supported by the FDR tool [For97] 
which is a model-checking tool based on the theory of CSP. The developer determines 
whether a particular property holds for a system by writing a description of a transition 
system capturing this property; the tool then attempts to refine this transition system 
to the candidate machine and reports success (in which case the property holds) or 
failure (in which case the property may not hold). It can also check that a state ma
chine is deterministic; this is an important property in safety-critical systems. Finally, 
it can detect potential deadlock in a system. FDR was used by Inmos to develop and 
verify communications hardware in the T9000 transputer and C104 routing chip.

CCS, the Calculus of Communicating Systems, is similar in concept to CSP but is 
more abstract and algebraic in nature. It was devised by Robin Milner and has been 
used in designing industrial systems including the aforementioned CDIS[Hal96a].

LOTOS

LOTOS [Int93] is the Language Of Temporal Ordering Specification. It is a formal 
description technique, with roots from CCS and CSP, used as an unambiguous language 
in standards for expressing parallel activities. It has been used to describe systems such 
as bus architectures and embedded systems programs. As an lEC Standard (ISO/IEC 
8809) it has the strength of a well-formed public definition. Its syntax is reminiscent of 
CSP with alternation, input and output and parallel operators used to express parallel 
interacting processes. As such it shows no clear advantage for our purposes over CSP, 
with CSP at least backed by analysis tools.
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Static analysis

Static analysis is the process of deducing properties of programs via inspection, au
tomated or otherwise, of the program code before compilation. By contrast, dynamic 
analysis analyses program behaviour by actual or symbolic execution of the code. Tech
nically, manual review of program code against a predefined standard counts as static 
analysis, although in practice the term is usually used to refer to a process which is 
automated or semi-automated. The “lint” checking tool for C programs[Joh78] is a 
widely-used static analysis tool.

Programs such as the SPARK Examiner[GC90] take advantage of a rigorous defi
nition of their program verification criteria to perform deep static analysis checks such 
as well-formed program control flow, the absence of any reads of uninitialised mem
ory and conformance to a language subset; in this case, the SPARK subset of Ada 
95[FW99, Int95].

P roof tools

PVS, a product of the SRI Computer Science Laboratory, is a verification system com
posed of a specification language, support tools and an automated theorem prover. It 
has been in existence since 1992 and so can be considered reasonably mature as a tool. 
Rusu and Singerman, in [RS99], use PVS as a key tool to prove safety properties of 
reactive systems. This system uses PVS’s considerable automatic proving abilities to 
good effect; the user chooses the direction of his proof process, guided by the results 
of previous proofs, and lets the PVS theorem prover attempt to prove properties au
tonomously. Like any theorem prover, the key to successful PVS proofs is a supply of 
well-formed, relevant and precise rulesets; these are usually accumulated over time on 
a project, though of course they must be carefully reviewed to ensure their correctness 
otherwise whole proofs can be invalid.

Recently one of the designers of PVS, Natarajan Shankar, reviewed the FM in
dustry’s progress in producing big proving engines and their success across a range of 
domains [Sha02]. He argues that problem-driven techniques are likely to be more effec
tive than the uniform proof search procedures used at present. Since PVS is a classic 
example of the latter approach, Shankar’s arguments should be carefully considered 
since they appear to be based on substantial experience and evidence.

2.2.3 D irection  o f formal m ethods use
In [CW96], Clarke et al lay out a strategic direction for the advance of formal methods. 
They point out that the past view of formal methods as obscure, badly scaling and 
without adequate tools has now been changed and that successful industrial case studies 
have proven the essential practicality of formal methods. This view appears to be 
supported by the use of the aforementioned tools in substantial industrial applications.

Key elements of their suggested direction include reusable models and theories, 
combinations of mathematical theories to tackle hybrid safety-critical systems, and 
integration with the system development process. It will be instructive to assess existing 
techniques by these criteria, to bear in mind Rushby’s comments on the limitations of 
formal methods as well as their benefits, and to consider Shankar’s recommendations 
on proof strategies.
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2.2.4 Value o f form al m ethods
The issue of why formal methods are not currently in widespread use is tackled by 
Heitmeyer [Hei98]. She makes a number of interesting propositions, including the divi
sion of formal methods into “soft” , primarily passive techniques such as static analysis, 
and the “hard”, primarily active techniques such as interactive proof editors. This is 
useful because it is usually easier to persuade developers to take up a passive “soft” 
method requiring little training than it is to convince them to invest substantially in 
training and time to adopt an active “hard” method. If the formal methods community 
is to encourage wider adoption of the “hard” methods then they need to be able to 
demonstrate real and substantial benefits from them.

Example: GDIS

In [PH97] Pfleeger and Hatton discuss the issue of whether formal methods affect 
code quality, and if so then how. The project evaluated by the authors is the GDIS 
air traffic control information system [Hal96a] developed by Praxis pic. The formal 
methods used during development included VDM for formal specification of critical 
system elements, CCS to specify concurrency and finite state machines for specification 
of individual processes. The evaluation of Pfleeger and Hatton is that the project 
statistics on faults reported over time did not show qualitative evidence that code 
produced using formal design techniques was of higher quality than informally-designed 
code. However the formal specification process led to components that were relatively 
simple and independent, and the delivered system was measurably better than most 
other measured systems. The authors conclude that formal specification can be part 
of the solution to improving code quality but it is not the whole answer.

It is notable that the 10-year warranty period on GDIS recently expired. There was 
one warranty fix made during system testing at the start of the project; since then, 
none were required. Note also that this was achieved with the technology available in 
1990.

Example: SHOLIS

SHOLIS, described in Section 2.1.2, is a commercial safety-critical system where formal 
methods were used. It is described by King et al in [KHCP99]. The development effort 
built upon the experience from implementing the GDIS air traffic control system, as 
described above and in [Hal96a]. The system was partly developed to SIL 4 standards 
with the rest of the system roughly at SIL 3, and around 27,000 lines of Ada code. The 
techniques used were Z for system specification, the SPARK Examiner static analysis 
tool [Bar97], and proof of system properties using Z and the semi-automatic code proof 
system of the SPADE Simplifier and Proof Checker [Pra98].

The technological advances over the earlier GDIS work were mainly at the imple
mentation stage. The SPARK Ada 83 subset [Ame99] enforced by the SPARK Exam
iner is a significant advance on the GDIS implementation language (C); the well-defined 
semantics of the language permit formal proof of code properties, and the SPADE 
toolset partially automates such proof work to permit a higher proof productivity. In
deed, the combination of the Examiner and proof tools enabled the development team

31



to prove (to the standard required for system certification) the complete absence of 
any run-time exceptions in all of the SPARK Ada code.

The conclusions of King et al provide sharp contrast to the opinions expressed 
by Pfleeger and (to some extent) Rushby[PH97, Rus93]. Z proof was found to be 
significantly the most efficient phase at finding faults, and the ability to prove the 
absence of run-time errors adds extra confidence in the system. Whereas the GDIS 
effort was apparently unable to gain much from formal methods once the code was being 
written, such methods contributed to the SHOLIS effort throughout the development 
cycle.

Still, it is true that techniques such as proof in Z are nontrivial to use well and 
effectively, and require the development team to make a positive effort to undertake 
training and to use them properly. However they are easier to use than is commonly 
perceived, and the GDIS and SHOLIS projects have shown that they confer significant 
benefits in system reliability.

2.2.5 T he lim itations o f testin g
Testing is a vital part of system development. The main kinds of testing are:

• informal testing by developers that the feature they are developing works at least 
approximately as designed;

• unit testing to exercise each component of a program (typically by subprogram 
or module, depending on the implementation language);

• functional testing to check that all known requirements are covered; and

• system testing to verify that the entire system operates as designed without any 
errors.

However, we should not lose sight of what testing cannot achieve. Modern testing 
techniques are efficient and successful within a limited framework, but (as noted above) 
even the most stringent testing can miss an error that other techniques such as static 
analysis can detect.

Aim s and achievem ents o f testin g

Dijkstra said “Program testing can be used to show the presence of bugs, but never 
to show their absence!” [Dij70]. Functional testing aims to show that functional 
requirements are met, but at best can show that no errors occur while the function is 
being exercised in a range of common ways.

Unit testing aims to exercise each individual component (unit) in a program. There 
are formal notions of how thoroughly a unit has been tested -  statement coverage, 
branch coverage, MC/DC etc. -  but the limiting factor in unit testing is often the 
person writing the test. They should know the required result of each test before 
writing it. The temptation to derive the test result from the code is substantial, so 
unit test results should ideally be written before the unit is written. But then, the 
tests are unlikely to cover all of the unit.
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System testing can only realistically exercise a small section of the system’s state 
space. Detecting and counting errors during continuous system test can give an indi
cation of the number of detectable errors remaining in the system, but can never assure 
the developer, certification authority or customer that all the errors are gone.

U ntest able conditions

SIL-4, the highest level of safety integrity, requires no more than 1 failure per 10® 
hours. Since this is just over 114,150 years we can immediately see that system testing 
to demonstrate this level of reliability with any confidence will likely be impractical. 
These limitations have been discussed in more detail by Littlewood[LS93] who applied 
Bayesian statistical analysis to the problem of demonstrating reliability rates through 
testing.

There are also more specific aspects of program correctness which are difficult to 
achieve by testing. Absence of run-time errors can only be shown by testing if the test 
exercises every path in the entire program for all values of input data. This is normally 
computationally infeasible.

W hen to  test

If testing finds faults, as good testing should, those faults will normally need to be 
corrected and the system re-tested. The later in development that a fault is found, the 
more rework is likely to be required. As an example, if testing locates a fault with a 
system requirement then the system may need fixes to the requirements, design, im
plementation, and potentially many tests. This will be very expensive in development 
time.

Croxford and Sutton[SC95] described the economic benefits of using static analysis 
early in the development of the C-130J aircraft engine control software, allowing many 
errors to be found before testing took place and reducing the associated rework. Given 
this data point, it is clearly sensible to test system components as early as possible in 
the development process.

2.2.6 Sum m ary o f form al m ethods
Formal methods have been successfully used in the development of safety-critical sys
tems such as GDIS and SHOLIS to improve the reliability of the software in the system. 
They can provide assurance of reliability that conventional testing alone cannot. How
ever, the behaviour of the system hardware in conjunction with the software is harder 
to capture and reason about.

We will now look at one particular common component of a safety-critical system, 
programmable logic devices, to see how they are currently used and how we can increase 
confidence in their correct operation to specification at an acceptable level of safety.
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2.3 PLDs
PLDs were a development of the simple Programmable Logic Array (PLA) which has 
been available in electronics design since the early 1980s. The early history of field- 
programmable logic is reviewed by Moore in [ML91]. The most common (and interest
ing) form of PLD in use is a Field Programmable Gate Array (FPGA).

The key characteristics of an FPGA are as follows:

• “Field-Programmable” denotes their ability to have their program contents changed 
upon power-up, i.e. in the field;

• “Gate Array” indicates their structure of a regular array of logic gates;

• they provide a logic device of relatively low complexity;

• they compute some function of a set of digital inputs to produce a set of digital 
outputs;

• they have semi-permanent state in terms of programmed lookup tables, typically 
implemented as static random access memory (SRAM);

• they operate mainly in a highly-parallel manner;

they are programmed by the download of lookup table data from an external 
source;

• they differ from other programmable logic devices (PLAs, PROMs, CPLDs) by 
allowing a more complex flow of data through themselves; and

• they also differ from Application Speciflc Integrated Circuits (ASICs) by trading 
speciality of design for speed of development and economy of small-scale produc
tion.

In this section we will look at the concept of FPGAs and typical modern imple
mentations. We will examine how they are used in real systems, and critique different 
approaches for producing an FPGA implementation from a subsystem design. We will 
also look at how an FPGA can be given a semantics, and how the integration of FPGAs 
with other systems presents more problems for a system designer.

2.3.1 Introduction  to  F P G A s
FPGAs made their first appearance in 1984, manufactured by the company Xilinx 
[SWCL99]. They are a compromise between a software implementation of their function 
(easier to program but somewhat slower) and a custom-made chip (faster and more 
reliable, but expensive and requiring more time to design and fabricate). A diagram 
of a “generic” FPGA is shown in Figure 2.1. The key components are the input and 
output pins, the array of look-up tables (LUTs), the routing logic, the external control 
and configuration loading, and the interfaces to external RAM and ROM blocks.

As a result of this compromise, FPGAs are typically used in building a prototype 
system in place of a custom ASIC. It is significantly cheaper and quicker to use such

34
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Figure 2.1: Architecture of a generic FPGA

devices when the alternative is a minimum production run of 5000 ASICs in a different 
company’s fabrication plant ( “fab”). A small-scale single run of ASIC production can 
easily cost $750,000 and take months from submission of VHDL design information to 
the fab to the arrival of the silicon.

There can be significant commercial gain in using FPGAs rather than ASICs. Time- 
to-market is reduced, since there is not the delay in setting up and making the ASIC 
production run, and there is little overhead if an error is subsequently found in the 
device. There is also the potential for increased time-in-market, providing mid-life 
upgrades to the FPGA code without having to replace the hardware.

FPGAs are also found in end-user products. Their ability to take processing load 
off the main system processor (e.g. as a bus interface) means that they provide a cheap 
way of increasing a system’s speed without the complexity and expense added by an 
ASIC or second processor. Most PC sound, graphics and network cards will feature 
one or more FPGAs.

For very simple combinatorial logic functions, FPGAs can be too complex a solu
tion: devices such as Complex Programmable Logic Devices (CPLDs), or even PLAs 
may be appropriate.

The majority of PLDs are usually programmed in VHDL [IEE91] or Verilog[IEE95]. 
These Hardware Description Languages (HDLs) have substantial standard libraries, 
allowing a certain amount of code reuse. They model the PLD as interconnected 
blocks rather than providing higher-level functions such as one to operate on a data 
stream. Even if a higher-level language or design tool is used, it will normally compile 
its input into VHDL or Verilog.

FPGAs can play a useful role in system development and be an effective component 
in end-user systems.

35



2.3.2 D escription
An FPGA is characterised by a collection of cells, each of which has a number of single
bit inputs and outputs. It typically uses a single clock for the whole device; multiple 
clocks are usually possible but seriously complicate programming. At each clock tick, 
the cell uses an internal lookup table to compute a function of its inputs, and possibly 
some internal state value, resulting in a defined output and possibly a change of state. 
The output is routed to other cells in a predefined manner, and new inputs are read in 
preparation for the next cycle.

The FPGA’s interface to the outside world occurs at a set of pins, each of which 
is a single-bit input or output. Since the pins are normally electrically identical, each 
pin’s function will depend on the user-programmed routing inside the FPGA. These 
pins are linked to cell inputs or outputs respectively; the precise linkages will again 
depend on the user’s routing scheme.

The way that a user programs the FPGA will depend on the FPGA type. Some have 
SRAM cells which need to be reprogrammed whenever the device is powered up; others 
use Flash memory which retains data even when power to the device is removed. Both 
of these technologies may allow the user to reprogram the device mid-computation, with 
varying effects on the device’s state. Some may use once-only programming (such as 
antifuse technology) which again retains data across power cycling but which requires 
a new device if the programming is to be changed.

The reprogrammable aspect of an FPGA concerns the cell lookup tables, and also 
the routing tables in many FPGAs. Data for these tables are loaded using special 
control pins to supply a stream of bits to the FPGA. The FPGA will typically be 
configured in a period of tens of milliseconds.

More advanced FPGAs may include small banks of random access memory (RAM) 
or other specialised devices such as DSP units which interface to cells. We will ignore 
such complications in the rest of this survey since they do not affect the fundamental 
functionality of FPGAs, and could be viewed as devices separate from the main FPGA 
circuitry; they just happen to be on the same piece of silicon.

2.3.3 Variants o f PL D s
Moore, in [ML91], classifies programmable logic devices into the following categories. 

PLA s

The original PLD was the Programmable Logic Array (PLA), a device whose outputs 
compute logical “sums of products” of their inputs. The internal structure of this 
device holds an array of AND gates, each of which takes a subset of the device inputs. 
The outputs of these AND gates are in turn fed into a number of OR gates, the outputs 
of which form the outputs of the device. The user programs the device by feeding a 
high current through certain interconnections to break them, thus selecting precisely 
the required inputs to each AND and OR gate.

The PLA is good for relatively simple, quick logic calculations but lacks flexibility 
or internal state. Some devices have additions such as registered outputs or feedback 
of outputs to inputs, but the basic design is simple and hence very easy to program 
correctly.
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C PLDs

The CPLD was the logical next step from the PLA, retaining the same basic structure 
but with modifications to improve performance and flexibility. Larger arrays draw 
more power and are harder to design for a given clock speed, so the CPLD introduced 
an internal logic array which is structured hierarchically (blocks within blocks within 
blocks) and has more complex input/output logic, allowing buffering of inputs for 
example. The key difference from the PLA is that these devices each contain several 
PLAs whose outputs go into flip-flops, then are routed elsewhere in the device. These 
devices can support more complex calculations than PLAs, but it is still relatively easy 
to map designs into them; the internal data flow is not normally a design bottleneck, 
unlike in FPGAs.

Typical CPLDs such as the Altera MAX series [KF91] are configured using Flash 
memory or antifuse technology.

Systolic arrays

Systolic arrays are informally defined in [Meg94] as “an array of synchronised proces
sors (or cells) which process data in parallel by passing it from cell to cell in a regular 
rhythmic patterri^ (my italics). From this definition, an FPGA could certainly imple
ment a small systolic array; however in practice the systolic array is often operating on 
data in 16-bit or larger chunks, unlike the 2 or 4 bits common at the cell level inside an 
FPGA. Systolic chips may contain one or more processing elements (PEs), may have a 
limited amount of flexibility in the precise calculations performed, and are often used 
in sizeable numbers in a regular array.

An example of a commercial systolic array is the SAND neural processor [Ins97], 
used for pattern recognition and image processing, which contains four parallel proces
sor elements and runs at 50 MHz. It reads in data in 16-bit “weights” and “activities” 
streams, performs internal processing according to a 34 bit control word supplied by 
its sequencing chip (an FPGA in some configurations), and outputs streams of 16-bit 
data and addresses.

Compared to systolic arrays, FPGAs provide greater flexibility in the function of 
each cell and the wide range of routing possible, but their generality makes them less 
suitable for certain high-performance tasks such as those doing numerical calculations 
involving 16 or 32 bit data.

ASICs

The most complex programmable logic device is the ASIC, an integrated circuit de
signed for a speciflc task and mass-produced. While an ASIC will nearly always out
perform an FPGA, FPGAs are much cheaper than ASICs in small volumes. They are 
also easy to reconfigure on a minute-by-minute basis, allowing one chip to perform 
many different functions rather than requiring one chip for each. Therefore if there is 
any signiflcant chance that the function of a chip may change during the development 
and testing process then it is normally worth accepting the lowered system speed to 
replace an ASIC with an FPGA.

A FPGA draws significantly more power than the equivalent ASIC, and hence gen
erates more heat. In compact electronic devices this can be a signiflcant complication
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Microprocessor PLA FPGA Systolic ASIC
Speed 

Unit cost 
Batch cost 
Flexibility 

Power draw 
Program

Slow
Cheap
Cheap
High
Low
C, Ada

Medium
Cheap
Cheap
Low
Medium
Ladder logic

Medium
Medium
Medium
Medium
High
VEDL

Fast
Medium
Medium
Low
Medium
Custom

Fast
Expensive
Moderate
None
Medium
VHDL

Table 2.2: Trade-offs for software and hardware implementation

since the heat must be radiated away before other components are damaged; in battery- 
powered devices the extra power drain may have a significant effect on battery life. For 
these reason CPLDs or ASICs can sometimes be preferable.

Table 2.2 contrasts the effects of implementing a given algorithm in a range of device 
types. CPLDs are grouped with FPGAs since their differences for these purposes are 
not significant.

2.3.4 Specification
A FPGA’s topology can be represented as a directed graph where each node corre
sponds to a cell or pin, and the arcs represent the routing. Any node without outgoing 
arcs is an output pin, and any node without incoming arcs is an input pin. We ig
nore power and configuration pins of the device in this representation. Note that the 
graph need not be connected. Acyclic graphs are possible; they are easier to reason 
about since they compute a finite-step known-duration computation of the input data. 
Cyclic graphs, representing loop constructs, are common in the more complex FPGA 
routings.

An example may be an iterative square-root real number function which takes a 
16-bit positive integer representation as input X  and produces the integer part of this 
number’s positive square root as an 8-bit output T; the loop construct in this case 
may be a successive approximation calculation, ending in a unit which computes 
and ( F  -h 1)  ̂ and sets a “valid result” bit if F^ < A < ( F -f  1) .̂ If this calculation was 
non-iterative then its FPGA representation would require many more cells and each 
calculation of a root would take the same (i.e. worst-case) time; however, it may then 
be possible to pipeline calculations.

Each cell represents a function fc : S x I  S x P  where S  is the set of possible 
cell states, I  is the set of input values and P  the set of output values. The latter are 
normally represented by natural numbers between 0 and 2  ̂— 1 where k is the number 
of wires forming the input or output. This is because the relatively small calculations 
performed by FPGAs are normally numeric or logical in nature rather than string- or 
symbol-based.

The user programming defines each function /c, and if the particular FPGA permits 
user-defined routing then it selects a particular graph structure from a set defined by 
the FPGA’s design.



2.3.5 D evice features
A key factor in evaluating an FPGA device’s performance and usability is its “logic 
gate equivalence” , which is taken to be the total number of logic gates which it is 
possible to emulate at once. As an example, an FPGA with a 16 x 16 block structure, 
each block having four cells, and each cell having two inputs and four outputs, able 
to compute any function of the two inputs for each output, would have a logic gate 
equivalence of 256 x 4 x 4 =  4096.

Xilinx define one gate-counting method in their on-line Virtex FAQ list [Xil99c]. 
They state that each logic cell used as logic provides the equivalent of 12 system 
gates, or 64 system gates if used as distributed memory (4 gates per bit with a 16 
bit capacity.) They therefore will make an assessment of what fraction F  of cells 
in a device will typically be used as memory and state that the C cells will provide 
64FC -f 12(1 — F)C  system gates equivalent. Of course, there may not actually be 
that number of recognisable gates in the hardware; the above works on the principle of 
functional equivalence to a standard gate structure. Other devices such as digital delay 
locked loops (DLLs) contribute an arbitrary number of system gates to the count; each 
DLL counts as 7000 gates, for instance.

The above calculations also assume that data can be routed correctly between each 
cell to make each cell useful; in practice many cells will not be usable in a computation 
because the scarce routing resources around them have already been used. A circuit 
which is regular in design may not suffer from this problem, but less regular layouts will 
do; this is an inevitable result of the restricted size of an FPGA and the compromise 
between number of cells and routing resources. Therefore we should only regard “gate 
equivalence” as an indication of a device’s size and complexity, not its usability, and 
in any case treat it with a degree of caution when using it to compare capacities of 
competing FPGAs.

The difficulty of place-and-route is shown by Inuani and Saul in [IS97]. They 
describe a algorithm for place-and-route for heterogeneous FPGAs based on look-up 
tables, in particular the Xilinx 4000 series [Xil96]. For a range of benchmark programs 
their algorithm improves by 10-24% the logic block usage compared to two other sets 
of published results, while being significantly quicker in computation time. This shows 
that good packing algorithms are far from obvious, even for a relatively simple ar
rangement such as the Xilinx 4000 series under consideration. Placing and routing for 
modern, more complex devices, such as Virtex, will be harder to optimise.

Most FPGAs support read-back of the programming data. This is a simple but 
effective way of detecting corruption in the programming bitstream. There is also 
the JTAG standard (IEEE 1149.1[IEE01]) for test access and boundary-scan of such 
devices.

2.3.6 Current devices
The main manufacturers of programmable logic devices at the time of writing are 
Xilinx, Act el. Altera and Cypress Semiconductor. Their mainstream devices included 
the Virtex and XC6200 series (Xilinx), the ProASIC 500K and Stratix families (Actel), 
the FLEXlOK series (Altera) and the Delta39K (Cypress). We now look at 1999 and 
2003 snapshots of devices from some of these manufacturers.
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1999

The Virtex-E family have a gate equivalence of between fifty thousand and four million 
system gates by the above reckoning, corresponding to 1,728 and 73,008 logic cells 
respectively. The family is described in [XilQQb] and is intended principally for next- 
generation telecommunications systems. They are manufactured using a 0.18 micron 
process, and can run at internal clock speeds of up to 311 MHz. They have between 
30 and 344 differential pairs of user input and output pins running at interface speeds 
of up to 311 MHz and so could execute a theoretical 3 x 10® operations per second on 
32-bit data words. A military version of the family, the QPRO Virtex series [Xil99a], 
is produced using a 0.22 micron process and runs at speeds of up to 200 MHz with a 
third of the number of logic gates in Virtex-E. Note the lowering of peak performance 
and resources required to comply with military specification reliability under wide 
temperature ranges and high EM noise environments.

By comparison the Actel ProASIC family, described in [Cor99], can have between 
98000 and 1.1 million system gates depending on system configuration, manufactured 
at 0.25 microns. Unlike the SRAM-based Virtex devices ProASICs use Flash memory, 
so can be programmed once and retain that data through multiple power cycles. They 
also feature a “security bit” which prevents read-back of the programmed data; this 
can be commercially useful because manufacturers can distribute pre-programmed de
vices containing proprietary algorithms without having to worry about the algorithms 
becoming known (directly, at least). The ProASIC internal structure is a “sea of tiles” 
with each tile (up to 51,200 in the larger devices) forming a 3-input logic function or 
fiip-fiop. The tiles are interconnected by four levels of routing, an indicator of the 
perceived difficulty of place-and-route in modern FPGAs.

The Altera FLEXlOK series are SRAM-based CPLDs. An example of the series 
is the 10K130V part which has 6656 cells, each holding a 4-input lookup table plus 
flip-flop, and routing logic. These are grouped in blocks of 8 cells. Additionally there 
is 32Kb of memory on the device and there are 464 user I/O  cells.

2003

In 2003 the Xilinx Virtex family is still going, although the lead device is now the 
Virtex-H Pro (XC 2VP125) at 125,000 logic cells, with 42Mbits of config data and up 
to 1200 user I/O  pins. It incorporates up to 4 PowerPC processor cores and 556 18x18 
multipliers.

Altera have launched their Stratix architecture, described in [LB"""03]. The archi
tecture itself was evolved through a repeated posit-and-evaluate process where Altera 
engineers proposed designs; these were modelled and benchmark circuits compiled onto 
them. The aim was to produce a device that enabled circuits to be routed even when 
most of the logic cells were used up -  a notorious problem in the FPGA world. The 
lead Stratix devices have 114,000 logic cells, lOMbits of memory. The devices and 
associated tools support many high-speed I/O  standards since FPGAs are commonly 
used to pull data straight off a high-speed bus.

There has been no recent significant change in the forms of the designs of FPGAs 
marketed by the major FPGA manufacturers, though the Altera approach to producing 
a new architecture is interesting; they seem to be aiming to solve old problems better 
rather than looking for new problems.
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2.3.7 Perform ance
The maximum attainable clock speed of FPGAs has been increasing roughly in line 
with the decreasing process size. Note that the quoted speed of an FPGA is often an 
order of magnitude more than that actually achieved. This is because normal compiled 
system implementations require substantial cross-chip communication and so several 
iterations are required for the data to make its way across the chip. The Virtex series 
for instance has a general routing matrix (GRM) associated with each logic block, 
each of which routes to adjacent and 6-distant GRMs in north, south, west and east 
directions. There are 12 “Longlines” running the full length and width of the device 
for fast long-distance communication. In addition, the “VersaRing” routes between 
the I/O  pins and the logic blocks. These four different interconnection schemes make 
routing very flexible, but at the same time very hard to reason about compared to a 
homogeneous grid with only nearest-neighbour connections.

This communication feature is a major weakness of FPGAs. They require major 
effort to be put into placement and routing of designs in order to come close to their 
maximum efficiency. For this reason good comprehension of the information flow in 
a program is vital in producing an efficient FPGA implementation, hence allowing a 
smaller and cheaper device to be used. This is similar in some respects to the prob
lems involved in deriving an efficient data flow through a systolic array, in that the 
arrangement revolves around dependency information. The difference is that the sys
tolic array pipeline is normally replicated many times in order to increase performance 
across many devices, whereas in each piece of mass-produced equipment using FPGAs 
the number of FPGA devices is normally few in number.

The difference which an FPGA architecture makes to design algorithms and soft
ware is illustrated by Hartenstein et al in [HHG98]. The authors explore the difficulties 
posed by the architecture of the Xilinx XC6200. The main difference between this de
vice and other FPGAs is that the device has a 32-bit data bus which allows a coupled 
processor to read or write directly registers in the FPGA; in addition, routing resources 
of the device are limited. The authors conclude that the restrictions of the vendor tools 
for the device and its structure indicate that designs should be partitioned into a control 
part and a datapath. The key fact to emerge, however, is that the FPGA architecture 
affects the development process right from the point of synthesising the behavioural 
VHDL into the target’s primitive gates.

2.3.8 O ther architectures 
M ultiple-C ontexts

An additional feature for FPGAs was explored by MIT with the design and construction 
of their “Delta” Multi-context Programmable Gate Array (MPGA) [TEC'^95]. This 
has an additional pair of control pins which distribute a “context” value across the 
chip. Cells and routers may use this value to select one of a set of lookup tables. 
In practice this permits an MPGA to switch between several different functions in a 
couple of clock cycles, rather than requiring the tens of milliseconds normally required 
to reload lookup tables. Since the area of an FPGA chip increases much more quickly 
with number of cells and routing complexity than with cell size, this appears to be 
generally advantageous for FPGA design. For a given chip area, an MPGA design
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should be able to implement a more complex set of programs than an FPGA design.
In [FMA+97], Faura et al present a RAM-based FPGA with two configuration 

contexts. It has the important property of allowing reconfiguration of one context while 
the other is active; this allows a switch between dynamically-loaded configurations 
within a couple of clock cycles. This system, termed FIPSOC (Field Programmable 
System On-Chip) couples the FPGA cells with a microprocessor core. Tellingly, the 
main digital I/O of the chip is routed through the FPGA cells first rather than through 
the microprocessor, and the FPGA cell outputs are mapped onto the microprocessor 
memory space. The system has clearly been designed with fast throughput in mind, 
so the (negligible) cost of a context change will be important.

The other important fact to arise from [FMA"^97] is that the extra chip area taken 
up by an additional context is not prohibitive; the implementation of the Digital Macro 
Cells (DMC) uses around 56% of its space for context-related storage and processing, 
with a roughly 50-50 split between contexts, so the cost of the extra context can be 
estimated as a 30% increase in DMC area.

T ight B inding to  Processor

An alternative to a separate FPGA device is to bind it more tightly to the main 
system processor. This was the approach described by Hauser et al in [HW97] with 
their work on the Garp processor. Garp is a standard MIPS processor with a slave 
reconfigurable array incorporated on the same piece of silicon as the processor. The 
suggested method of use is for the main processor to handle normal execution itself, 
with programs handing off certain computationally-intensive tasks to the reconfigurable 
array. The reconfigurable array is programmed by feeding an array configuration into 
a “configurator” program which outputs a set of configuration bits; these are used 
to generate C code which is compiled into a standard program and executes at the 
appropriate point to write the bits into the reconfigurable array.

Garp was faster than an UltraSPARC 1/170 by factors of 24, 9 and 2 for their 
benchmark computations of DES, image dithering and array sorting respectively. These 
were reasonable, but this was a simulated run of a Garp, and the programs were no 
different from standard FPGA benchmarks. There was no clear indication given in 
[HW97] that a Garp chip was better than a standard processor interfacing to an FPGA 
over a PCI bus. The authors suggest that Garp would be more easily adopted than 
FPGA-only machines, but offer no evidence to support this claim, and do not address 
the FPGA-PCI configuration which seems to be in common use.

Donlin describes in [Don98] an architecture called “Flexible URISC” which breaks 
down a CPU into a bus on which sit arbitrary logic units; the controller of the archi
tecture has only one instruction, MOVE x y, which moves the contents of location x to 
location y. All more complicated processing is done by the logic units whose input and 
output registers are mapped into the processor memory space. Such an interface sits 
well with FPGA devices like the previously discussed Xilinx XC6200 series. In fact, a 
prototype core has been implemented using XC6200 devices. However, the performance 
gain of such an architecture is still not clear, and programming of the prototype must 
currently be done at the instruction level. It appears to be an interesting development, 
but lacks an obvious application, and none is suggested in [Don98].

Graham and Nelson, in [GN99], describe the simulated coupling of an Analog De-
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vices SHARC DSP with a Xilinx 4000-series FPGA architecture. Their reasoning for 
this coupling is that DSPs have a memory architecture permitting many independent 
memory ports to the programmable logic - a key to increased performance. The pro
grammable logic is seen as a way of performing the tasks to which DSPs are ill-suited 
such as bit-level data manipulation. While the performance increase vs. area increase 
figures are estimated rather than taken from actual trials, they estimate that increases 
in chip area by between 0 and 60% can typically speed up DSP benchmarks by factors 
of between 4 and 6. Of course, actually programming such a system is far from trivial.

System -on-C hip

The trend towards widespread use of small hand-held devices such as the PalmOS and 
PocketPC Personal Digital Assistants (PDAs) and the late-second generation cellular 
phones has driven a requirement for compact low-power microcircuitry with substantial 
computing power.

A typical cellular phone has five major components: the aerial, the screen, the key
pad, the battery and the circuitboard. The screen and keyboard sizes are determined 
by user interface issues such as eyesight and fingertip size, and the aerial by the need 
to be able to receive and transmit a signal to a network cell at a typical distance. 
Battery technology is improving, but innovations such as colour screens will continue 
to increase power requirements. Hence the obvious place to look for space and power 
saving is the circuit board.

One solution is to incorporate the maximum amount of logic on a single custom 
integrated circuit rather than placing a number of generic ICs on a circuit board. This 
is practicable in a cellular phone because of the large number of phones produced. This 
approach is called “System-on-Chip”, abbreviated ‘SoC’.

An example of SoC is the DReAM architecture, described by Becker et al in 
[BPGOO]. DReAM couples a number of reconfigurable processing units (RPUs), con
nected together directly and then interfacing to other components on the chip (DSP, 
memory, microcontroller) via dedicated I/O  units and a bridge. The authors have 
mapped a CDMA “rake” finger onto four RPUs, in a DReAM architecture running at 
lOOMHz. This is a classic off-loading of a computationally intensive operation from 
the DSP or CPU, and indeed the rake is an important part of the operation of third 
generation WCDMA mobile phones.

SoC can deliver increased performance in a system and reduce the component count, 
at the cost of increased silicon area and hence losing several of the financial benefits of 
using mass-market PLDs.

Non-silicon A rchitectures

The use of reconfigurability is not restricted to silicon. McCaskill and Wagler, in 
[MWOO], describe the design of a reconfigurable microfiuidic network where routing is 
controlled by magnetic or photonic activation. The actual processing elements can mix, 
separate, react, detect or simply transport different fiuids. These designs are not pro
duced on silicon, but rather in materials such as polymer. The actual reconfiguration 
would be handled by a digital mirror which refiected ultraviolet light onto appropriate 
parts of the network.
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Such devices would be expensive to fabricate, at least at first, and the obvious ques
tion is whether there is a need for them. McCaskill and Wagler suggest programmable 
biochemistry as one field which might find such devices useful. The programmable 
logic research community should track the future progress of this class of device to see 
whether it solves any technical problems of silicon-based PLDs.

2.3.9 D evelopm ent environm ent
An old but widely-used Xilinx device family is the XC6200 series [Xil97]. Xilinx pro
duced the XC6200DS Development System based around a device from this family, 
the XC6216. [NG97] describes this development system. It is aimed at developers who 
want to produce applications based around the XC6216 device (64 x 64 logic cells, 1 
register per cell). The key components of this system are:

• XC6216 device on a standard PCI board, coupled with up to 2 Mb of SRAM;

• extra PCI mezzanine slots on the board for custom hardware;

• XACTstep Series 6000 graphical design tool, reading EDIF format design input;

• Java and C/C-H+ run-time support software which interfaces to the board; and

• WehScope graphical debug interface to the XC6200 device.

The development process involves the user deciding what task the device is to 
perform, designing the XC6216 configuration using XACTstep, saving the resulting 
configuration data on the PC, then writing his or her control program which is linked 
with the supplied run-time support software. When run, the program will read the 
stored configuration data and upload it to the XC6216 device, then start the user’s 
task. At any point the user will be able to use WebScope to check the configuration 
and register state of the XC6216.

Analogue design

This process is adequate for systems which are experimental, but the hardware and 
software design processes are very different. The software design and development 
(in Java or C/C-f—{-) expresses the programmer’s intent at a relatively abstract level 
where the details of the target machine do not greatly affect the programmer. The 
hardware design is done at a much lower level, analogous to programming software at 
the machine code level; the machine is being told precisely how to do a task rather 
than what task needs to be done. Here the programmer is having to be his or her own 
compiler; since modern compilers such as gcc [FouOO] are regarded as reliable and very 
efficient in terms of size and speed of code produced, the programmer is likely to be 
poor in comparison.

We expect that many of the errors in a programmed system’s execution will arise 
at the hardware /  software interface; incorrect handshaking and erroneous mapping of 
FPGA outputs to software variables are the two most obvious classes of error. This is 
because we will generally express the requirements for a system at a high level, then 
decompose them as the system itself decomposes into hardware and software parts; the
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interface between hardware and software does not have any requirements to start with, 
but rather such requirements emerge as the system is implemented. This means that 
the requirements have to be applied retroactively to the parts of the system that were 
implemented before the requirement emerged, leading to parts of the system that are 
overlooked or are incorrectly changed.

For a safety-critical system, such a development process is clearly inadequate. The 
emphasis (as shown by the inclusion of WehScope) is on getting a program which com
piles and runs, then debugging the hardware and software components until sufficiently 
few errors are apparent for the program to be regarded as effective.

The contrasting processes

The requirements - design - implementation - unit test - integration test cycle typical 
of safety-critical projects conforming to Def Stan 00-55 and RTCA DO-178B[MoD97, 
RTC92] implies that we need to understand completely how the hardware and software 
parts interact before we start to implement them. While a certain amount of iteration 
through the cycle may be necessary due to changing requirements or unforeseen system 
limitations, the emphasis is on getting the system’s behaviour correct by design.

Sutton and Croxford [SC95] describe how this “correctness by construction” ap
proach was been shown to save time (and therefore money) in development of a new 
avionics system for the C130J Hercules II aircraft, while achieving a specified level of 
system reliability. We have previously discussed the limits of confidence that can be at
tained by testing. An analytical rather than empirical approach is to be recommended.

2.3.10 F P G A  usage in system s
FPGAs are used in many common electronics systems. They are used to implement 
“glue logic” and bus interface protocols such as PCI [AASR98]. In these systems 
their relatively small size and well-defined specifications enable testing to demonstrate 
quickly that they are adequately correct for the level of integrity required. However 
FPGAs have also been adopted for use in certain specialised computing machines, as 
described below.

Custom  M achines

SPLASH and SPLASH 2 represent a previous generation of FPGA technology (the 
Xilinx XC4000 series in the case of SPLASH 2, developed between 1991 and 1994). 
They were large architectures consisting of 16 or more FPGAs coupled with each other 
and with banks of RAM. We focus on SPLASH 2, detailed in [BAK96].

The design of SPLASH 2 had FPGAs as atomic processing elements, each coupled 
with 512 Kb of fast static memory. The FPGAs were connected by crossbar switches 
in groups of 16, each group forming one element of a linear array.

SPLASH 2 was used for several distinct tasks: a major one was searching genetic 
databases at a rate of 5-12 million characters per second, obtaining several orders 
of magnitude performance increase compared to its contemporary workstations, while 
priced in the $40,000-$60,000 range. It was also trialled for fingerprint matching, which 
was previously done by very expensive custom computing machines. This task involved 
image processing to extract the skeleton features of a fingerprint, a very different task
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to the text matching that the database search required. Again, the performance in
crease over a contemporary workstation (SPARCStation 10) was a factor of 1500. This 
increase would have scaled well if more processing boards had been added, speed being 
approximately proportional to the number of boards.

SPLASH 1 had been programmed at the logic gate level, but the difficulties that this 
posed to the programmers meant that the developers designed a higher-level software 
environment for SPLASH 2. The main development language was VHDL, coupled with 
automatic synthesis and simulation tools. The designers chose not to use a C subset, on 
the grounds that writing a C-to-hardware compiler would have taken effort away from 
the mainstream of SPLASH development. Arnold [Arn96] writing in [BAK96] notes 
that the developers believed that “the best model for custom computing machines is to 
develop higher-level programming languages that can be compiled into a form suitable 
for input to commercial CAD tools.” We examine this later in Section 4.3.10.

SPLASH 2 showed that a custom FPGA-based computing machine could signif
icantly outperform a workstation for certain tasks, and yet be flexible enough to do 
very different tasks equally well.

Specialised Processing Elem ents

A practical use of the characteristics of FPGAs is described by Robinson et al [RCD98]. 
Their RCA-2 board, incorporating three Altera 10K130V CPLDs, is designed to process 
blocks of signal data at rates of 100 Mbytes per second or greater. The CPLDs are 
given local and shared SRAM, and programmed with signal processing algorithms. 
This is a near-ideal application of programmable logic; the CPLDs give a flexibility 
unattainable by ASICs or systolic arrays, are sufficiently fast to process the data at 
the given speeds, and the circuit board is less complex than would be required to 
implement the processing with a dedicated microprocessor. The resulting data can be 
passed down low-bandwidth lines for more leisurely and detailed processing.

A different application obtaining similar benefits is cryptography. Charlwood and 
James-Roxby [CJR98], implement encipherings such as Blowflsh-16 [Sch94] in an XC6216 
device. A 20 MHz non-pipelined implementation attained 119 Kb/s throughput, which 
translated to an 8 Mb/s pipelined implementation. For comparison, a contemporary 
300 MHz Pentium II processor attained less than 25% of this performance. One ob
stacle was the number of cells required by a pipelined implementation: over 4000, 
as opposed to 603 for the non-pipelined version. We see from this that FPGAs can 
give significant performance gains over conventional microprocessors, at much lower 
clock rates. This gives us a motivation for incorporating FPGAs in high-performance 
systems.

The contenders in the recent Advanced Encryption Standard (AES) contest were 
specifically evaluated for their suitability for implementation in hardware. Chodowiec 
et al [CKGOl], described pipelined implementations of four of the contenders. The use 
of mixed inner- and outer-round pipelining enabled implementation of the contenders in 
a Virtex XCV3006 device, at throughputs of 7.5 to 16.8 Gbit/sec. Mixed architecture 
sharply increased CLB slice usage, by around an order of magnitude over inner-round 
pipelining. More recent work by Jarvinen et al [JTS03] has improved this to a prac
tical implementation at 17.8 Gbit/sec on an existing device using a fully pipelined 
memory less design.
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In contrast to the above performance gains, Shand [Sha97] examined the task of 
finding approximate solutions of over-constrained systems of equations over the Galois 
field GF(2). He compared the DEGPeRLe-1 FPGA co-processor [VBR+96] with a 150 
MHz Alpha 21064, which was the approximate contemporary of the DECPeRLe-1 in 
terms of technology. While the FPGA machine (16 Xilinx 3000-series devices) was 
faster by a factor of 60 in the search for a particular data set, the Alpha software can 
be optimised for a particular data set and recompiled in seconds to close the gap to a 
factor of 2 or 3. Recompiling the FPGA program data to be data-specific would take 
tens of minutes, losing any advantage. So for these kind of isolated problem solutions 
the FPGA is superior by far; for repeated solutions for different data sets, the FPGA 
recompilation overhead becomes significant.

These studies have shown that FPGAs can confer a significant speed advantage over 
conventional microprocessors ; however, the performance gain appears to be sensitive 
to the specific problem.

Plug-In Boards

Boards designed to be plugged into standard PCs are commonly used to research the 
programming and use of FPGAs. A typical research FPGA board is Riley-2, described 
in [MCLS97].

Riley-2 is a PCI board with four Xilinx XC6216 FPGAs, each coupled with 512 
Kb of fast memory. There is also a RISC core (Intel 1960JF) on board, and 16 Mb of 
shared memory. The XC6216s can be controlled directly by the i960 chip because their 
configuration bits are directly accessible in the i960’s address space. There is also a 
44-pin external I/O connector for external hardware such as video.

The FPGAs on Riley-2 are programmed in Cedar, an extension of C for parallel 
hardware similar in many ways to the Handel-C language described in Section 2.4.4; the 
i960 and the PC host software are normally written in C or G-I-+. It allows the use of 
multiple dynamically reconfigurable FPGAs rather than a single FPGA, experimenting 
with shared vs. private memory, and partitioning tasks over multiple FPGAs.

Em ulation

FPGAs are often designed into systems which also contain high-performance logic chips. 
These may be microprocessors, but may also be ASICs. In the design of these logic 
chips, emulation is an important step in validating the design before it is sent to be 
etched into silicon. Krupnova and Saucier, in [KSOO], survey the commercial emulation 
systems in existence which are based on FPGAs. Compared to custom chip emulators, 
these give the key characteristic of high performance, although require CPU-intensive 
compilation of the simulation programs. Krupnova and Saucier regard the FPGA pin 
count as the limiting factor in their use, although pin multiplexing can overcome this 
to some extent.

A modern FPGA-based machine for emulation is BEE[CKRB03]. BEE is a custom 
machine built with 20 large Virtex-E FPGAs and copious I/O, connected to a network 
by a commodity controller card. It makes practical the emulation of a 10-million- 
gate ASIC at 60MHz in real time, using up to 90Gbit/sec of data, running at over 
200Gops/sec.
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2.3.11 Sem antics o f P L D s
The incorporation of programmable logic devices into safety critical systems brings 
with it a need to be able to reason formally about safety and partial correctness in the 
context of programs executing on the device. Here we have three distinct needs for a 
semantics of FPGA operation. It will enable us to:

demonstrate that “programs” (data programmed into FPGA cell and routing 
look-up tables) satisfy their specifications;

• refine high-level designs into code while demonstrating semantic equivalence; and

• reason about behaviour at the interface between software and programmable 
logic.

The cell-and-router structure of an FPGA device leads us to consider a collection of 
small individual processes reacting to input signals to produce output signals, since this 
is essentially what is happening when cells are viewed as processes and their routing 
is viewed as describing which signals pass to which process. Since such FPGAs may 
normally be clocked by a single chip-wide low-skew clock signal to all logic blocks we 
can add the additional constraint that the system be synchronous, at least from the 
point of view of the cells; in reality, the interface between the FPGA and an IC such 
as SRAM may not run at the same clock rate.

A model which is simple but sufficient to describe synchronous FPGA programs, 
and which has a rigorous semantics, is Synchronous Receptive Process Theory. This 
is described in [Bar93] and was developed from Josephs’ Receptive Process Theory 
[Jos92]. It is similar in some ways to CSP, but better expresses the synchronous and 
fundamentally receptive nature of logic gates: CSP allows processes to refuse events 
(inputs) whereas actual gates cannot normally exercise any direct choice over the inputs 
that they receive from cycle to cycle. We explore this in much more detail in Chapter 5.

Another formal representations which could be used is Timed CSP [SD95]. Timed 
CSP is an improvement on standard CSP since it can express the concept of an event 
occurring within a specific time (e.g. a clock cycle) whereas CSP can only have a known 
event happening or not. Timed CSP uses the “maximal progress” mechanism where 
an event happens whenever all participants are ready to engage in them. Representing 
an FPGA program in Timed CSP would certainly be possible. However Timed CSP 
is more complex than SRPT, allowing as it does asynchronous events. We are looking 
for the simplest possible model which is sufficiently descriptive for our purposes.

Z has been mentioned before as useful in the specification of complex systems. We 
could attempt to use it to describe an FPGA program. It is certainly worth considering 
in terms of specifying the whole program, and perhaps even parts of the program, but 
we would like our specification to be easy to refine into an implementation in something 
like Pebble or VHDL. As previously noted, Z does not in itself provide mechanisms for 
refinement, and the task of developing such a rigorous refinement mechanism would be 
considerable.

A similar refinement-based objection can be raised for the B-Tool; it provides its 
own target language, but this language is imperative and provides no native support 
for parallelism.
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One promising unified theory is Circus [CSW02], an integration of the CSP process 
algebra and the Z specification language. This uses a Z schema to describe the state 
of each process and CSP-like action to describe the control behaviour of each process. 
Circus has well-defined refinement rules for transforming specifications from abstract 
to concrete form.

Circus is appropriate to a development process at a higher level than SRPT. It 
provides a way to refine down from an initial abstract specification to a collection of 
relatively independent processes, omitting specific timing descriptions as long as they 
are irrelevant.

Circus is as yet untested in an industrial-scale development; nevertheless, its frame
work and the rigour of its specification and refinement laws show promise for practical 
system specification.

2.3.12 Issues o f co-design
An FPGA is almost always only a computational component of a system. Other 
components may include one or more microprocessors executing software, a bus (such 
as PCI or the military-standard 1553) and other specialised devices on the bus. When 
designing the system architecture, an important question to resolve is “how shall we 
divide the work among the components?” This decision will affect the critical system 
properties of speed and reliability. The trade-offs to consider include timing constraints, 
cost, complexity, redundancy, component functionality and required reliability.

At the moment the decision on what work to allocate to FPGAs is relatively simple 
to make. Their small size means that very specialised tasks such as bus interface logic 
are ideal, and most other tasks do not suit their capabilities. FPGAs work best on 
processing large amounts of data in a simple way, which is not a common task in most 
safety-critical systems; where it is required, such devices as DSPs are currently used. 
However the increasing capacity of commercial FPGAs will enable them to undertake 
increasingly complex tasks, taking load off the main processors of the system.

Partitioning Software

The decision on how to split software between a conventional microprocessor and pro
grammable logic relates closely to the field of hardware-software codesign. There are 
three basic choices about when and how to partition the software:

• at design time, manually;

• at compilation time, semi-automatically; or

• dynamically during execution.

The first option is self explanatory. When the system is designed, the design team 
decides which functionality should be in programmable logic and codes it explicitly. 
As noted earlier, common implementation languages are VHDL and Verilog.

The second option has the software implemented in some high-level language. Dur
ing compilation sections of the software are selected for programmable logic according 
to some defined criteria, and extra “glue” logic is added to allow these sections to
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communicate with the other software sections. The manual effort in this selection and 
mapping can vary from none to total.

The final option has a set of software sections implemented in netlist format. There 
will be a system controller which dynamically loads the netlist data into reprogram
mable logic as required. This normally requires an FPGA capable of on-the-fiy re
configuration, since otherwise the device will have to be power-cycled and interrupt 
system execution. With current technology we must have constructed our library of 
programmable logic routines beforehand; the place-and-route overhead is usually too 
high to make any other approach practicable.

Note that the decision on when to partition is coupled with the choice of imple
mentation language. If we are to decide partition details at compile time or later then 
we need a language amenable to translation into a HDL or netlist (normally EDIF) 
format. The choice of language will depend on the compilation tools supplied by our 
device vendor.

2.3.13 Sum m ary o f PL D  technology
PLDs exist in a wide variety of designs and sizes. Their most common form for use is the 
FPGA. They are widely used as glue logic, and have been used for specialised processing 
tasks where an ASIC would be too expensive and a conventional microprocessor too 
slow or too complicated.

We will now look at how PLD programs may be designed.
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2.4 Program m ing PLDs
The implementation of a PLD-based system can be done in many ways. The target 
“object code” will be a vendor-specific “netlist” which specifies the data to be loaded 
into each cell and router of the device. To reach netlist form, several intermediate 
compilation steps are normally required.

2.4.1 N etlist specifics
EDIF ( “Electronic Design Interchange Format” ) [IntOOa, IntOOb] is a textual language 
designed to allow electronic design information transfer between different CAD systems. 
It is currently implemented for netlist and schematic circuit descriptions, although 
different tool vendors have significant differences in their implementations so it is not 
as portable as it could be. Netlists are often stored in EDIF.

A common step in most PLD programming methods is compilation from a HDL 
to the netlist; device vendors normally supply software to do this as part of the device 
toolkit. This compilation has the advantage that the source program structure is 
similar to the target structure since HDL designs are normally expressed in terms of 
procedural logic functions. These functions map naturally onto the FPGA cells-and- 
routers model. However for larger systems it is hard to ensure that a large and complex 
low-level design satisfies the system specification. Note, too, that HDL and the netlist 
have to deal with issues of clock signal distribution and skew across the chip, driving 
of inputs and outputs, and other VLSI-related issues; such complexities should ideally 
not appear in higher-level descriptions.

2.4.2 P rocess fiow
A typical PLD development process fiow is shown in Figure 2.2. It illustrates the key 
steps and decisions that need to be made. Note that the fiow may be changed because 
of different project needs. In a safety-critical system development there would be safety 
case work going on in parallel which would exert a substantial infiuence over design 
and implementation decisions.

Where the PLD is expected to interact with system software there would be inte
gration work to ensure that the two components worked correctly together.

2.4.3 H igh-level hardware design
Substantial effort was made in the 1980s and 1990s to develop a hardware design lan
guage that supported formal reasoning and abstraction, two features absent from HDLs 
such as VHDL and Verilog. The main exponent of this approach was ELLA[MC93], a 
non-proprietary language with a formal basis.

ELLA was not a strict competitor to VHDL and Verilog, but in practice it was 
treated as such. The relatively small size of hardware designs made design in existing 
HDLs feasible, if not optimal. It may be that, as hardware designs and PLD dies 
continue to grow in size, high-integrity requirements will make ELLA or similar design 
languages more necessary. This change was seen in software with the emergence of 
structured design methods as program sizes grew beyond what one developer could
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Figure 2.2: PLD development process flow

manage; it is reasonable that a similar effect will eventually be seen in programmable 
logic program design.

2.4.4 H igh-level language im plem entation
The use of a more abstract implementation language for PLD designs has received 
considerable attention and is emerging as practical for some industrial applications. 
The two-step compile (i.e. initially compiling to an intermediate language) is relatively 
easily achieved since a number of languages have been compiled into VHDL; of note 
are Ada (in [She96, WA02a]), Java (in [MK98]) and C (in [Swe98, She96]). Below we 
analyse the results of this work.

Fine-grain vs. coarse-grain parallelism

A key property of programmable logic systems (each system incorporating both the 
hardware and programming interface) is the granularity of the possible parallelism. 
Coarse-grain parallelism is represented by programs which have individual data spaces 
and communicate via specialised protocols. Fine-grain parallelism is represented by 
subprograms which share a single data space and rely on careful programming by the 
user to avoid race conditions.

The fine-grain model is a better representation of a typical PLD program, where the 
limited space on the device may be used most effectively by a large number of simple 
parallel computations which share data wherever possible; duplication of data storage 
(the way of coarse-grain parallelism) wastes device space. We believe that aiming for 
fine-grain parallelism from the outset holds the key for a significant general increase in 
the use and speed of PLDs.
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Java

The JVX Java prototyping system [MK98], for instance, compiles a single method in 
isolation to VHDL and uses a modified JVM interpreter to interface with any methods 
in reprogrammable logic. However, it appears that it is not currently possible to com
pile into hardware any method which calls another method. The automatic interfacing 
between the JVM and the FPGA is an interesting step from the point of view of par
titioning; the user need make no special changes to a method for it to become VHDL. 
However it is not clear that the Java language itself gives any significant benefit to the 
effort.

Snider et a l , in [SSCOl], map a generic object-oriented language (subsets of G4-4- 
and Java are given as examples) directly into device configuration data for Virtex 
devices. The general approach is to write classes that extend a Machine base class, 
taken to be the smallest unit of execution. Functions s tep O , input () and output () 
define the machine’s actions. The compilation relies on heavy optimisation in order 
to extract fine-grained parallelism from the user’s medium-grain specified parallelism. 
Low-level optimisation specific to the target is then performed; this section of the 
compiler would therefore have to be rewritten for each target device.

The interesting points about this approach are that the source language is essentially 
unmodified, and that the compilation does not go through VHDL or Verilog. However, 
the full range of the source language is not used.

Xilinx have recently released their FORGE design language which is Java-based, but 
it is immature and there is little public information about its structure and reliability.

Com posing hardware

An early compositional hardware language was Ruby [JS90]. Ruby was based on 
the idea that circuits are built from parts by a process of composition, which has 
mathematical properties similar to the composition of functions and relations. It was 
studied in the early years of FPGA use but fell out of use and study. However, its key 
ideas have been evident in more modern work.

A modern development of Ruby is the Lava project being undertaken by Xilinx. 
The project involves Mary Sheeran, one of Ruby’s original researchers. Lava[CSOO] is 
a prototype HDL, not supported by official Xilinx toolsets, but has been developed 
and is in use at Chalmers University in Sweden. It trades off the expressiveness of 
full VHDL or Verilog for compactness and simplicity of descriptions of common circuit 
layouts. Currently it is implemented by being embedded in the widely-used Haskell 
functional programming language. One proposed commercial use of Lava, cryptogra
phy, is described below.

O c c a m

Mpeller-Nielsen and Caprini proposed “occam on a chip” in [MNC95]; the universal 
system programming language was occam [Ltd84], some section of the software was se
lected to be implemented in hardware, and two communication channels were added to 
control handshaking between software and hardware. In this particular case the target 
hardware was a transputer-like chip, reducing the required amount of compilation of 
the Occam program, but occam is a good starting language if the hardware is PLD-like
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too. Occam’s bit-level variables, ease of expression of parallel computations and simple 
inter-process communication channels map well onto the architecture of PLDs.

The main problem with this approach is the opposite of that with a high-level lan
guage such as Java; programming the parallel hardware part is relatively easy, but the 
occam language has not proven suitable as a general-purpose programming language. 
The demise of the transputer after Inmos were absorbed by SGS Thomson meant that 
occam was no longer a practicable implementation language for the mainstream x86, 
ARM and PowerPC-based systems.

Oxford University’s Hardware Compilation Group have taken a number of ap
proaches to this problem. Their earlier approaches included Ruby (described above) 
and Handel [PS93], which was an occam-like innately parallel synchronous language. 
Handel was much more of a programming language than Ruby, allowing an elegant 
expression of the parallelism of a program, but required much more effort on place- 
and-route than Ruby’s compositional model.

Handel-C

The company Celoxica (formerly Embedded Solutions Ltd.), spun off from the Hard
ware Compilation group, is focused around use of the Handel-C language and the as
sociated DK Design Suite. The Handel-C language is described in [Cel02]. It extends 
ISO-C syntax in the following ways:

• variables specified in bit-width;

• macros for bit-manipulation; and

• explicit RAM/ROM hardware elements.

Its semantics, however, are closely related to those of occam (and hence, CSP). The 
language model includes:

a timing model, where each assignment or delay statement takes exactly one time 
step to complete;

• signals and channels for inter-thread communication; and

• a deterministic parallelism model.

An example of the use of Handel-C for a real application appears in [Swe97]. Handel- 
C is interesting both as a syntactic extension of a widely-used medium-level language 
and as a rewriting of the (implicit) sequential semantics of one language into explicit 
a timed parallel semantics. Nevertheless it falls short of the ideal language for our 
safety-critical systems, principally because C is an inherently unsuitable language for 
the implementation of highly reliable systems and because Handel-C borrows so much 
from C that it includes many of C’s defects.

C’s failings are described by Romanski in [Rom96]. The author is a recognised 
expert at making systems conform to the RTCA/EUROCAE DO-178B civil aviation 
safety standard. He makes the key comment “The [C] language attempts to hide 
the underlying machine so that programs become portable between different machines.

54



Unfortunately, the target characteristics show through.” The lack of strong typing, sub
stantial unspecified or implementation-dependent behaviour, and language constructs 
such as unbracketed single clauses and admissibility of assignment into conditions in 
C are viewed by Romanski as some of the chief deficiencies that make it unsuitable for 
inclusion in safety-critical systems, even if a “safe” subset is used. Additionally, if we 
wish to abstract away as much as possible of the details of the target hardware then 
the use of a low-level language such as C appears to be going in the wrong direction.

An example of the problems Handel-C faces is the par construct, allowing parallel 
execution of multiple statements. Strictly speaking, race conditions cannot arise be
tween threads because of the deterministic timing model. If thread 1 writes to variable 
A and thread 2 reads from variable A, whenever the program is run thread 2 will al
ways get the same value of A. However, changing the order of statements in thread 1 
may change the value of A read by thread 2. This instance of “law of the unintended 
consequence” would be a significant worry in building a safety-critical sub-system in 
Handel-C. The language also allows the use of types without explicit bit width, per
mitting their actual width to be inferred at compile time. This can only lower the 
predictability of such programs.

Handel-C may well prove useful in lower-integrity system development, and its use 
of fine-grain parallelism is intelligent, but it cannot seriously be considered for critical 
systems.

A da

The syntax of Ada is very similar to the syntax of VHDL, which leads to the natural 
question of whether it is feasible to map between the two underlying languages. This 
was initially addressed by Sheraga[She96], with more recent work by Ward and Audsley 
[WAOl, WA02b, WA02a] making progress towards a viable compiler.

Ada was designed as a language suitable for programming safety-critical systems, 
and includes facilities for precise definition of type ranges and parallel programming 
(“tasking”) which are required for many embedded systems programs. Ward and Auds
ley describe the construction of the York Hardware Compiler for sequential Ada[WA01] 
and its extension to the Ravenscar subset of Ada’s tasking facilities [WA02b]. It should 
be noted that they choose to use the SPARK Ada subset due to the structural re
strictions which it imposes on Ada, which improves analysability. The compilation 
produces a netlist implementation of the program which can be compiled directly to a 
target device.

The motivation for this compilation has been to improve worst-case execution time 
analysis; bounding execution time on a program executing on a real-time operating 
system is more difficult than for the same program executing alone on a PLD. However, 
no mention is made of bounding loop execution counts, which is fundamental to such 
calculation. Since SPARK Ada admits proof of selected program properties such as 
maintenance of loop invariants and strict monotonie decline of variants, this should 
have been exploited. Worst-case timing analysis of SPARK has been analysed in detail 
by Chapman[Cha94] but this work has not been referenced by Ward and Audsley.

There is little discussion of interfacing a PLD-compiled program to another program 
running in software, which is fundamental to making PLD programming effective for 
large systems. In [WA02c] the authors discuss practical improvements to the Ada
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language to make it easier to interface to PLDs and improve fine-grain parallelism of 
Ada programs, but fail to exploit the known data-fiow in SPARK programs for this 
purpose. The evidence of scalability in program size is very limited. Compilation 
of some small programs is demonstrated, but none incorporating subprogram calls or 
tasking constructs are shown. There is no discussion of optimising the compiler for 
time or space.

This approach is interesting, in that it shows that Ada compilation can be done 
in practice and that SPARK Ada and Ravenscar are useful subsets to adopt, but the 
approach not been shown to be effective and practical for programs similar to those 
used in actual development and has not exploited SPARK Ada’s features to the full.

Esterai

The synchronous programming language Esterel[BerOO] was used by Hammarberg et al 
[HNT03] to implement a demonstration hydraulic fluid detection system on an FPCA. 
Esterel is a language for programming reactive systems; we contrast it with the SRPT 
process algebra in Section 4.1.10. It can be compiled to VHDL or Verilog, which is 
how the fluid detection system was produced. It is certainly suitable for programming 
reactive systems on PLDs, and has a formal (synchronous) semantics, but there is 
as yet no public information about its use programming PLDs for real safety-critical 
reactive systems.

D om ain-specific languages

One high-level alternative to conventional programming languages is CoreFire, de
scribed in [McH02]. This is used to produce high performance applications to run on 
the Annapolis Wild FPGA boards. It uses a “sticks and bubbles” graphical interface 
to draw program data fiow. The main drawback with this system is the tie to the Wild 
board, whereas anything that compiles to VHDL will normally target a much wider 
range of commodity hardware. However, this has not deterred engineers at the Naval 
Research Laboratory (NRL) in Washington D.C., who are developing FPGA solutions 
for electronic warfare using CoreFire. It demonstrates that in restricted application 
domains there is a role for high-level design methods.

A more recent proposal has been made in the domain of cryptography. Launch- 
bury and Singh [LS03] propose the use of the declarative functional language Cryptol. 
This allows compact expression of common cryptographic transforms in a functional 
language syntax. It is currently supported by compilers targeting the C (imperative) 
and Haskell (declarative functional) languages. The authors propose a PLD-targeted 
tool chain, using the Lava language embedded within Haskell. This work is at proposal 
stage, and depends on immature tools, but its concepts appear to be sensible.

2.4.5 Low-level language im plem entation
Describing a PLD program in a high-level language may be inappropriate; indeed, for 
early PLDs it was not practicable because of the small size of the devices. Even with 
large modern FPGAs, certain programs may be better designed at the logic component 
level.
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In [ABOO] Abke and Barke describe CoMGen, a tool to render low-level component 
descriptions into look-up tables. The input descriptions are in Verilog macro and gate- 
level netlists. The generator is not tied to one FPGA; it has an interface to an external 
floorplanner for sizing components appropriately for the target device, and does its own 
place-and-route. Mapping the finished netlists to a form suitable for programming the 
target device is done externally.

This approach is of interest because it classifies the low-level compilation steps into 
general and target-specific classes. How low-level programming for a given application 
is actually done will depend on several factors. If multiple devices are to be used, 
reducing the device dependence by using a tool like CoMGen makes sense. If a single 
device is to be used, the decision will depend on the perceived quality and useability 
of the vendor’s tools.

2.4.6 Pebble
The “Pebble” language described in [LM98] is a more abstract representation of VHDL. 
The language is based upon the definition, instantiation and coupling of logical “blocks” 
which perform simple tasks synchronously. A Pebble representation of a half adder, 
for instance, is:

BLOCK halfadder [si,s2:Wire] [cout,sum:Wire]
BEGIN

xor2 [sl,s2] [sum]; 
and2 [sl,s2] [cout]

END;

This expresses the half-adder as a coupling of XOR and AND gates. The naming 
of the wires within the block relate input and output wires of blocks. Other Pebble 
constructs allow parametrisation of blocks by size, placement constraints and condi
tional compilation. The “primitive” blocks in Pebble are expressed as blocks with an 
empty body; these will be constructs which the target device can implement with a 
single cell.

Pebble appears to hold considerable promise as a target for higher-level languages. 
A compiler for Pebble into structural VHDL or a netlist for the “Rebecca” simulator 
has already been demonstrated and is also described in [LM98]. The structural VHDL 
produced can then be compiled into a specific device by the appropriate vendor tools.

Pebble is especially interesting in this context because it may be viewed as an 
abstract representation of a PLD program which may be directly reduced to a cell- 
level implementation. As an example take a carry-look ahead A-bit adder which can 
be composed recursively by half-sized CLA adders until the single-bit level is reached; 
at this point full adder blocks can be used to form the building blocks of the system. 
We express this in more detail in Section 5.3.

Once the PLD program has been reduced to wire-connected computational blocks, 
the unavoidable device-specific mapping occurs. In a Xilinx 6200-series device, for 
instance, a half adder can be built on one cell, but simpler devices with only one 
output per cell would require two or more of their cells to be configured and linked to 
produce the full adder functionality. Therefore Pebble is in some respects the lowest 
level device-independent step in a compilation. This is a strong indication that Pebble
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should be considered as a target for high-level compilers. We develop this approach in 
Section 4.2 and apply it in Section 7.2.

2.4 .7  Testing PLD  program s
Testing is a vital part of the development cycle of any significant system. It has three 
main aims;

1. to verify that the program loaded was the program intended;

2. to locate errors in the system software during development; and

3. to provides a level of assurance that the completed product fulfils its requirements.

Aim 1 is normally achieved by readback, as described in Section 2.3.5.
Aim 2 is normally achieved by what is commonly called unit testing; assuming that 

the software is divided into modules, the elements of each module are tested according 
to their design. Problems may arise here when the software design is very detailed; 
there is a temptation to derive tests from the code, which nullifies many of the benefits 
of testing. Ideally, the author of the tests would be independent of the author of the 
software, and would not have access to the implementation details of the source code 
for which he or she was writing the tests.

Aim 3 is achieved by running on the completed product a series of tests derived from 
the requirements (often called functional testing or integration testing, run in sections 
during development to check that modules work together properly), and showing that 
each test result is correct. The level of assurance provided will depend on a number of 
factors:

• the number and range of tests provided;

• the rigour with which the tests are derived from the requirements; and

• the proof that the system components tested are those in the final product.

The latter point is not trivial. Without good configuration management in the 
project, it is difficult to prove the required proof.

How should we test PLDs? Since they are a mixture of software and hardware 
engineering, we should examine testing techniques from both fields. We must also 
consider testing methods particular to the peculiar design of PLDs.

Requirem ents testing

The first set of tests will be requirements-based, checking that a given set of inputs 
produce the desired set of outputs within a specified time. Generating test cases from 
requirements is a well-understood problem, and there is little more to say here. The 
key is to make requirements independent of implementation techniques where possible, 
to avoid unnecessary restriction of the solution space to software or programmable 
hardware.

If a high-level language has been used to specify the PLD program then it may be 
useful to write unit tests for the PLD based on that high-level representation; this acts 
as a check that the potentially complex compilation and optimisation of the FPGA 
netlist has worked correctly.
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Hardware fault detection

The hardware aspects of the PLD require more thought. Renovell, in [RenOO], de
scribes a scheme for testing the interconnect, logic cells and RAM cells in a symmetric 
SRAM-based FPGA. These tests consider cases such as open and short between inter
connections, stuck-at cases for logic and RAM cells, transition faults, coupling faults 
and address decoder faults in RAM cells.

This testing is done by feeding in explicit test configurations into the FPGA before 
loading the actual system configuration. Hence, we have a reasonable likelihood of de
tecting faults inherent in the FPGA, but must also consider the possibility of spasmodic 
errors in the configuration data. Our testing here will be affected by the permanence 
of the FPGA configuration. An SRAM-based FPGA will have its configuration loaded 
at each power-on, and so will have a greater likelihood of configuration error than a 
Flash-based FPGA which may only be reprogrammed three or four times in its life
time. When drawing up a test plan for a system incorporating FPGAs, these factors 
must be considered. The developers will have to choose whether to ignore configuration 
errors, detect and report them (possibly shutting down the system subsequently), or 
taking measures to mitigate their risk such as using redundant hardware, exploiting 
PLD program readback or using a voting scheme.

An example of a triple-redundant PLD program design scheme including error de
tection and periodic program re-loading is described by Lima et al [LCR03].

Tim ing errors

Timing issues are a significant consideration in designing ASICs, and serious computa
tional effort is devoted towards simulating ASIC designs in order to catch timing issues. 
This simulation is not generally available for normal FPGA designs, but the problem 
of timing issues is still present. Krasniewski, in [KraOO], shows how delay faults can be 
detected in an FPGA. His approach is to modify the contents of look-up tables in such 
a way that the LUTs become much more vulnerable to path delay; random testing of 
the modified program is then carried out to attempt to detect such faults.

Crosstalk

“Crosstalk” is the phenomenon due to inter-wire capacitance whereby switching in one 
trace of the FPGA may change the voltage in another trace. The shrinking feature 
size of integrated circuits has made crosstalk an increasingly important consideration 
in place-and-route. Wilton, in [WilOl], describes a routing scheme which optimizes 
for delay in the presence of crosstalk, and which demonstrated a 7.1% improvement 
in routing delay over its parent routing scheme. This indicates how important the 
consideration of crosstalk can be for system performance. It is also another complexity 
in the design of routers, especially in safety-critical systems when all potential crosstalk 
effects must be eliminated.

2.4.8 Sum m ary o f program m ing PL D s
PLDs are generally programmed at the HDL level, in Verilog or VHDL. There is a 
move towards programming in subsets of C and Java, adapted to take advantage of the
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PLD’s parallelism. However, these programming languages appear to be inadequate for 
programming components of high-integrity systems. The occam fine-grained parallel 
model appears to be a useful base for language design. The use of Ada is promising 
but remains to be shown to be practical.

There are mechanisms for testing PLDs, but their reconfigurability means that a 
class of reconfiguration errors must be explicitly tested for, over and above the normal 
software and hardware tests.

The hardware nature of PLDs introduces extra potential faults, such as crosstalk 
and timing issues, which require trapping and testing over and above that used for 
conventional software.

Given these issues, we will now look at the suitability of PLDs for use in safety- 
critical systems. We will also examine the state of the practice for such use.
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2.5 Safety-Critical PLDs

2.5.1 Research d irections
Any new work on incorporating PLDs into safety-critical systems should represent 
an advance in concurrency research. Before we investigate this problem, we should 
bear in mind the conclusions of Cleaveland et al [CS*̂ 96] in their recommendations on 
concurrency research. They isolate the following relevant topics for which challenges 
exist:

A lgorithm ic support to develop methods which can cope with the state-space ex
plosion problem inherent in concurrent system design and verification, perhaps 
by a decomposition and refinement process;

Tool support to make tools portable and scalable, and better integrated into the 
software engineering lifecycle;

Technology transfer to expose existing design and verification technology to real life 
industrial and defence applications, to improve the technologies and to encourage 
their uptake by example; and

Program m ing languages to design usable, safe and secure languages incorporating 
a well-understood concurrency model.

We will incorporate these aspects in our problem statement in Section 3.5.
In this section we look at the emerging UK Defence Standard 00-54 and the RTCA 

standard DO-254, relevant to PLDs in safety critical systems. We see how a system 
safety analysis should incorporate any programmable logic in the system, and discuss 
how we might improve a PLD program to increase safety and reliability. Finally we 
summarise the key needs for the system developers who build programmable logic into 
their systems.

2.5.2 Safety o f PL D s
Placing a programmable logic device into a safety critical system should result in an 
immediate assessment of the impact of the device’s behaviour on the rest of the system. 
This enables the system designers to establish whether the addition of the device has 
made the system less safe. A “white box” safety analysis procedure, such as described 
by Simpson and Ainsworth in [SA99], will trace the output data of the device through 
the system and determine whether it can contribute to any predetermined system 
hazard.

An example might be an FPGA built to compute a customised Fast Fourier Trans
form of some data. If this data is determined to be safety-critical, for example as an 
input to an aircraft’s fly-by-wire control system, then the safety analysis must show 
that the data produced has an adequate probability of being correct. Suppose that a 
10~® chance of an aircraft being lost on a typical mission due to system failure was 
deemed acceptable. The onus would then be on the safety team to prove that the prob
ability of dangerous data being generated by the FPGA on such a mission, multiplied 
by the probability of such data causing aircraft loss, was less than 10“®.
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The system designers typically face a dilemma; should they ensure that the device’s 
functionality is limited to prevent it contributing to a hazard, or should they attempt 
to demonstrate its correctness? The former may require a major system redesign; the 
latter requires a solid formal basis from which to argue.

White box safety allows us to analyse the errors that might occur in the FFT 
computation. If we can show, for instance, that the expected results of an erroneous 
calculation are distributed evenly across the result space, and that a simple sanity-check 
can detect 90% of such errors, then we could perhaps formulate an argument that only a 
10“  ̂probability of calculation error is required. However, things are seldom so simple!

Gibbons and Ames, in [GA99], describe the experience of using an FPGA as a key 
element in the circuitry of a pyrotechnic release for the NASA Wide Field Infrared 
Explorer (WIRE) satellite experiment. The telescope cover was prematurely opened, 
causing hydrogen venting from the spacecraft and consequent high torque rates, venting 
all the solid-hydrogen cryogen within hours and rendering the instrument unusable for 
its intended mission. The premature opening was due to undefined behaviour of the 
FPGA (an Actel 1020) during power-up that permitted a 14 millisecond power spike 
on the outputs. Spacecraft hardware testing did not detect this problem.

A PLD program could be proven to be completely correct against its specification. 
However, correctness cannot avoid failures triggered by phenomena which can occur 
even before the program starts its execution, such as in the case of the WIRE satellite. 
In general, proof of correctness only guarantees that the program will be able to address 
conditions explicitly considered in the formal specification; nothing else is guaranteed.

2.5.3 Safety standard: D efence Standard 00-54
The UK Defence Standard 00-54 [MoD99] specifies requirements for electronic hardware 
in military systems. It is considered to be appropriate if an electronic element of the sys
tem affects the system’s safety. As with other UK Defence Standards [MoD97, MoD96] 
it is split into two parts; Requirements and Guidance. The techniques described in the 
document are to be used to analyse complex electronic designs for systematic failures; 
dealing with random failures is discussed in Defence Standard 00-42 [MoD94]. All of 
00-54’s recommended procedures are to take place under the umbrella of the safety 
management standard Def Stan 00-56 [MoD96].

Relevant quotations

The standard’s recommendations which are of particular interest to us are in sections 
12.2.1, 13.4.1 and 13.4.4. To quote:

§12.2.1: A formally defined language which supports mathematically based reasoning 
and the proof of safety properties shall be used to specify a custom design.

§13.4.1: Safety requirements shall be incorporated explicitly into the Hardware Spec
ification using a formal representation.

§13.4.4: Correspondence between the Hardware Specification and the design imple
mentation shall be demonstrated by analytical means, subject to assumptions 
about physical properties of the implementation.
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where “custom design” refers to the particular electronic component in question and 
in particular to a PLD’s program data.

M otivation

The standard’s guidances provide more information about the motivation behind the 
standard. To quote: “The principal concern which has caused this Interim Standard to 
be produced is that electronic hardware designs used in critical applications have been 
getting steadily more complicated [... ] Therefore the focus of this Interim Standard 
is on analysis and proof to supplement test.” It also notes that widely used standard 
HDLs without formal semantics, such as VHDL and Verilog, present compliance prob
lems if used as a design capture language. Examples given of suitable languages are Z 
and VDM.

Standards evolution

The standard is only interim, and its contents will almost certainly change when it is 
incorporated into Issue 3 of Def Stan 00-56 in early 2004. Nevertheless, the concerns 
which it expresses about existing practices and its suggestions for process improvements 
are worth careful scrutiny. A language which supports formal reasoning about PLD 
behaviour is what is required for compliance with this standard.

There is an on-going program in the UK Ministry of Defence relating to the de
velopment of guidance for the design and procurement of systems conforming to the 
Advanced Avionics Architecture (AAvA) for military aircraft systems. There is a spe
cific guide about the use of PLDs in such systems which has been released in preliminary 
form as [HilOSa]. This in turn is expected to inform the re-write of 00-54. This guide 
encourages the goal-oriented approach to generating safety evidence demonstrated in 
the rewrite of the SWOl regulatory impact assessment for the CAP 670 Air Traffic 
Safety requirements [Civ02]. It seems reasonable that most parts of Issue 3 of 00-56 
will adopt this form.

The previously noted increase in PLD capacity and speed, enabling them to perform 
more complex and time-critical tasks, in turn increases the likelihood that they will be 
a critical component in a safety-critical system. Without a generally applicable method 
of reasoning about their correctness to the standard that SIL-4 requires, such a system 
is unlikely to gain regulatory approval.

2.5.4 Safety standard: R TCA D O -254
RTCA DO-254[RTCOO] is the programmable hardware counterpart of RTCA DO- 
178B[RTC92]. It was approved by the FAA in 2003 for use in aviation systems de
velopment. The author of this thesis has had experience in applying it in practice to a 
hardware development, and therefore has a well-founded perspective on its practicality.

Like its software counterpart DO-178B, DO-254 defines a set of required integrity 
levels A to D, with Level A being the highest integrity. The emphasis in DO-254 is 
on providing a practical guide to the development process for the PLD program and 
associated documentation. The advice is normally generic for the integrity level, with 
Appendix B describing particular techniques that may be appropriate for high integrity 
systems which DO-254 defines as Levels A and B. It is not normally prescriptive, leaving
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it to the developers to choose (and justify) the advanced analysis methods to use in 
high-integrity systems.

The key to producing high-integrity systems conforming to DO-254 is to do func
tional failure path analysis (FFPA) as described in Appendix B section 2.0 of DO-254 
to identify system hazards, deduce where the system may cause them, and justify how 
in each case the hazard is mitigated. Arguments may include manual analysis of the 
HDL or net list, formal analysis techniques, mitigation through features of the system 
architecture, and in-service experience. Interestingly, it makes practical recommenda
tions on qualifying hardware compilers for high-integrity work.

Where Defence Standard 00-55 and RTCA DO-178B are distinctly different in con
tent, with 00-55 emphasising rigour over DO-178B’s extensive testing. Defence Stan
dard 00-54 and DO-254 are more complementary. DO-254 provides practical advice 
without forfeiting the requirement of a rigorous approach where appropriate; 00-54 
provides the detail of appropriate rigorous approaches.

2.5.5 PLD  correctness
We have already noted the difference between safety and correctness. How should we 
go about demonstrating that a PLD’s behaviour is correct?

There are two choices for a strategy here. The more common is “show that the 
implementation does what the requirements say.” This tends to rely on model-checking 
with a theorem-proving tool. The second strategy is often initially harder: “develop 
the requirements into an implementation” which is known as refinement.

M odel-checking

The essentially synchronous property of a PLD’s circuits may help the model-checking 
problem. Pierre, in [Pie95] describes the use of the Boyer-Moore Theorem Prover 
to verify synchronous circuits. He uses a 4-bit binary-coded decimal (BCD) checker 
and an iterative integer factorial generator as examples. The verification process was 
automatic for the first example, but required several man hours for the second, more 
abstract example.

Here we see the key weakness of such an approach: model checking is hard, interac
tive, and usually will only be able to tell you whether your system is correct, not what 
is required to fix it. Tracing the cause of and correcting a failure is a separate process. 
In addition, if care is not taken then the size of the model can easily grow to the point 
where it is computationally infeasible to model-check it completely. Often it will be 
better to prove correct the critical subset of the PLD logic.

Model-checking has been used successfully in verification of specialised processors. 
Srivas and Miller describe in [SM95] the verification of the Rockwell AAMP5 micropro
cessor. The verification was carried out at instruction-set and register-transfer levels. 
This was possible even though the AAMP5 microprocessor was not designed for formal 
verification, illustrating the strength of model-checking as a retrospective technique. 
However, AAMP5 was not a general-purpose microprocessor and was not available 
directly for public use.

The use of model-checking to identify undesirable properties in complex commercial 
hardware has recently been demonstrated by Intel[SchOS] in their verification of the
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Pentium 4 processor. Following a 3-4 fold increase of pre-silicon logic errors in each 
generation of the IA-32 architecture, Intel applied model checkers to verify the critical 
properties of non-floating point arithmetic of the Pentium 4 at the netlist RTL level. 
The floating-point arithmetic required the addition of a theorem prover to formally 
verify correctness, model-checking alone being impractical.

For a very small or very structured PLD program, manual inspection of the netlist 
may suffice. This must be judged on a case-by-case basis, and it may be necessary to 
use techniques such as fault injection to estimate the reliability of the inspection.

Refinem ent

As with the first strategy, rigidly defined requirements and an implementation language 
with properly defined semantics are necessary for the approach to be meaningful. Re
finement of requirements to a PLD implementation is usually done in a series of small 
steps. Each step’s induction from the previous one relies on the correct use of a set 
of predefined refinement rules. There is a gradual progression from the high level lan
guage of the requirements to a low-level language which may be implemented on the 
target device.

This second approach requires more “up-front” investment of time and effort. A 
working implementation may not appear until late in the development process as it 
is produced by the very last step of refinement. However, the correctness of the im
plementation is guaranteed, excepting the possibility of human error in the refinement 
steps. These refinement steps are normally amenable to individual verification by man
ual inspection. The main disadvantage of refinement compared to the model-checking 
is that a late change in requirements may require much of the refinement process to be 
repeated.

For a high-integrity or safety-critical system of substantial size, the above consid
erations suggest that the second strategy be the approach of preference. The main 
difllculties in using it will be in the choice of a suitable low-level language with well- 
defined semantics, and in the early and correct elicitation of requirements. For the 
latter task, there are well-established requirements engineering tools such as Cradle 
[Str98] and methods such as REVEAL [Vic98].

2.5.6 Verification
We have already covered the issue of how PLD programs are tested in Section 2.4.7. 
For high-integrity systems we must also consider verification of PLD programs.

Robinson and Lysaght [RLOO] examined the problem peculiar to FPGAs of verify
ing dynamically reconfigurable logic. They extended the Dynamic Circuit Switching 
framework to track the status of dynamic tasks, and monitor these statuses to detect 
certain classes of error. However, this testing is dynamic and so acts more as a run-time 
self-test than as a method to exclude the possibility of error in the first place.

Bartzick et al [BHKWOO] presented a design of FPGA which is intended to detect 
simple faults within itself and hence be fault-tolerant. The test of the FPGA is executed 
after programming, and occurs in 32 clock cycles so is not significant in terms of total 
program execution time. Each block has three normal cells plus a fourth “X” cell which 
takes over if any one of the cells is determined to be faulty. This approach is worth 
considering in designing an FPGA for use in high-integrity systems.

65



Sawitzki et al [SSSSOO] described how they verified the data path of a microprocessor 
including a reconfigurable processing unit. This was done according to a specification 
in hardware description notation, describing the change in state of the processor for 
each instruction. They used the Stanford Validity Checker [BDL96] proof tool. The 16 
hardwired instructions took an average of 80 minutes each to verify; the 9 reconfigurable 
instructions took over ten times that time each. However, they did not describe in detail 
why the reconfigurable instructions took so much longer to verify.

2.5.7 Self-testing
A technique in current use for PLDs is the use of self-testing and fault detection. Lima 
et al [LCR03] described a modification to the existing practice of triple-redundant 
circuits on FPGAs prone to disruption from charged particles. The use of delay in 
circuits, voting on outputs and regular re-programming of the FPGA (“scrubbing”). 
This allows 100% detection of single-event upsets in the FPGA, and approximately 
90% elimination of the errors.

This is not a replacement for more formal techniques, but provides a useful brute- 
force method of reducing the impact of common problems.

2.5.8 Em ulation o f PLD s
During development of a system, it may be that the developers need to integrate 
their software modules with the programmable logic. Here we run up against the 
practicalities of system manufacture. It is unlikely that the system hardware will be 
built until relatively late in the development process. How then should developers do 
this integration?

One option is for developers to fit their PCs with a standard PLD development card 
which are available from the device manufacturers. These boards, such as the XS40 
[XES99] from XESS Corporation, can fit in a standard PCI slot or parallel port on the 
PC, and provide an FPGA which can be accessed by software on the PC. This is an 
extra expense, but is unlikely to be significant in a large project. The difficulty is that 
the program for the PLD may not yet be written, or at least still be in a state of fiux.

If a high-level language is being used to program the PLD with a program D, and 
can be compiled into the main software program P, this makes life easier. The initial 
integration testing can take place using D, then the program can be changed to access 
the PLD proper as it becomes available. This also has the advantage that, if a module 
functions properly with D but fails systematically when the actual device is used, this 
may indicate a failure in the hardware compilation process; the implementation (PLD) 
does not do what the specification (D) does.

For purposes of realism, there will need to be some form of wrapper W () around D 
when it is compiled into P  since interfacing with a PLD adds complexities which the 
wrapper must emulate, notably:

• the PLD runs in parallel with P, with no natural synchronisation;

• communication with the PLD must be done in a hardware-specific manner, pos
sibly also in a compiler-specific manner; and
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• communication must normally be assumed to be asynchronous.

The way that such a wrapper will be implemented will vary significantly according 
to the high-level language and PLD chosen. Ideally W{P) will encapsulate the details 
and present an interface which is very similar to that for interfacing with the real PLD.

2.5.9 Im plem entation  too ls
The state of the art in languages and tools used in safety-critical systems tends to lag 
behind the leading edge of industry by several years. It is instructive to examine why, 
as the reasons have significant implications for the choice of techniques to program 
systems involving PLDs.

The foremost reason is reliability. A compiler, microprocessor or design tool is 
typically shipped with a number of errors, some known at shipping time or shortly 
thereafter (e.g. the infamous Pentium FDIV bug), but other more subtle problems 
may take months or even years to become evident. For this reason, implementors of 
safety-critical software tend to choose a compiler that has been stable for at least a 
year and then work around the known errors. Newer versions of the compiler may have 
these known errors fixed but there is no guarantee that new unknown errors have not 
been introduced.

This was particularly evident when the Ada 95 compilers started to be released; 
for a while safety-critical systems customers were still choosing the Ada 83 compiler 
because it was a known quantity, even though the Ada 95 language was far better 
in general functionality and had fixed long-standing problems of Ada 83 such as the 
inability to read output-only parameters in subprograms. The author is personally 
aware that Ada 83 compiler licenses were still being sold by vendors such as Rational, 
and Ada 83 programs being written from scratch, in early 2003.

As far as hardware is concerned, the usual choice for a complex IC in a safety critical 
system is a chip which is one or more years behind the state-of-the-art at the time of 
system design. This is because any design defects in the IC should have become evident 
by then, and related software tools (such as netlist compilers in the case of FPGAs) 
will have had a similar period of use to uncover errors. Also, since many safety-critical 
systems have a long development and production cycle, by the time of release the 
system’s hardware may be several years behind the leading edge.

For these reasons, if we are looking to incorporate PLDs running a compiled lan
guage into a safety-critical system then we ought to choose a well-established compiler 
and a device which is not leading-edge in technology. As a consequence, devising an 
all-new language for programming our safety-critical PLD runs the risk that no devel
oper will use it until someone else has tried to do so and has discovered most of the 
compiler and language errors; by this logic, no safety-critical developer would take the 
risk of being the first to use the technique in a real system.

2.5.10 K ey directions
Taking the preceding data into consideration, we can summarise the following require
ments for PLDs to be incorporated into a safety-critical system;

• a specification or design language to codify formally the system requirements;
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• inclusion of the PLD program within the safety analysis of the system;

• a well-defined semantics of the target device to permit full or partial proof of 
correctness of the system;

• a formally defined refinement process for developing specifications to PLD imple
mentations;

• a suitable high-integrity high-level language for implementation of the software 
component of the system;

• an appropriate generalised and adaptable testing process to test PLD programs 
in isolation and within the system; and

• a method for interfacing system software with either the PLD or a software 
emulation of it, as transparently as possible.
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2.6 Conclusions
PLDs in their current state provide sufficient performance and size to perform substan
tive (if relatively simple) tasks. With their increasing complexity comes the likelihood 
that they will be incorporated into more and more safety-critical systems as critical 
components, yet to date there is no satisfactory or widely-used method of reasoning 
about their functional correctness at either the component or system level. Without 
this they are a point of failure waiting to fail, with potentially catastrophic conse
quences, and new safety-critical electronics standards such as Def Stan 00-54 or RTCA 
DO-254 may prevent their incorporation as critical system components.

2.6.1 W eaknesses o f current research
The main weaknesses of the existing research are:

• high-level PLD programming languages are not related to the requirements of 
DefStan 00-54[MoD99] and RTCA DO-254 [RTCOO];

• the formal specification and analysis techniques used for synchronous parallel 
systems are not related to the development of practical and useful hardware- 
software systems under DefStan 00-54 and RTCA DO-254;

• the existing high-level programming languages which can be compiled into PLDs, 
with the exception of Ada, are not suitable for programming critical systems;

• the existing compilation techniques for Ada do not take full advantage of the 
SPARK Ada subset and have not demonstrated scalability to practical program 
sizes and designs;

• the existing compilation techniques for Ada do not address the development of 
an Ada program partly in software and partly in hardware; and

• there is a general deficiency in demonstrating techniques to be practical at the 
scale of a typical modern embedded control system.

This thesis must address as many of these needs as possible. In Section 8.2 we will 
re-visit these weaknesses to see which of them we have covered and to what degree.

2.6.2 R esearch needs
The greatest need in this field is for a generalised model of a PLD with a well-defined 
semantics, and a low-level device-independent language (with similarly rigid semantics) 
such as Pebble to act as a target for high-level languages. Without it, any attempt 
to reason formally about PLD correctness will depend too much upon the particular 
properties of the device under examination.

Such a model would permit research into high-level languages and techniques for 
safety-critical system implementation without the concern that the results of such 
research would be tied to a particular implementation, and provide a sound formal 
basis for proving safety properties of the PLD and the system in general.

In the next chapter we provide a detailed statement of the problem arising from 
the above information, and set out criteria for judging whether it has been solved.
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Chapter 3 

Statem ent of Problem

This chapter identifies the problem which this thesis aims to address and sets out 
criteria for deciding whether and how the problem has been solved.

The purpose of this chapter is to provide a direction for the rest of the thesis. We 
summarise the current state of research in the fields of programmable logic and safety- 
critical systems, as detailed in the previous chapter, state the problem we intend to 
solve, and identify the areas in which this research will make advances. We then specify 
the advances we intend to make.

At the end of this thesis we will need to determine whether its contents have pro
vided a substantial addition to knowledge in the use of programmable logic devices in 
safety-critical systems. To this end we lay down a series of targets for our research, 
and for each of them list criteria for deciding whether that target has been met.

Finally we list the targets addressed by each of the future thesis chapters.

3.1 Current State of The Art
The literature survey has established the following facts relevant to this thesis. The 
list below includes appropriate references in Chapter 2.

1. current commercial PLDs are of sufficient size and complexity to perform sig
nificant computational tasks useful to modern software-hardware systems (Sec
tion 2.3.10);

2. programmable logic has a place in the development of systems where software 
alone does not provide adequate computational power (Section 2.3.1);

3. programmable logic allows much faster development turn-around than use of 
ASICs which must be fabricated (Section 2.3.1);

4. programming PLDs with a high-level language is feasible, and a number of lan
guages and tools for this purpose exist (Section 2.4);

5. PLDs are currently used in safety-critical systems (Section 2.5);

6. several national and international safety standards bodies have made specific 
recommendations about the development of safety-critical systems incorporating 
safety-related electronic hardware (Section 2.5.3);
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7. when seeking to advance the field of formal methods, we should aim for reusable 
models and theories, combinations of mathematical theories to tackle hybrid 
safety-critical systems, and integration with the system development process (Sec
tion 2.2.3);

8. when seeking to advance the field of concurrent programming we should aim to 
provide algorithmic support, tool support, suitable programming languages and 
appropriate technology transfer (Section 2.5.1);

9. no existing development techniques for programmable logic software appear to 
satisfy these recommendations (Section 2.4, Section 2.5.9);

10. developing software for safety-critical systems is a problem which is well under
stood and supported by a range of tools and techniques (Section 2.1); and hence

11. the use of PLDs in safety-critical systems is an emerging problem in need of a 
solution.

3.2 Scope of Analysis
In the research work described previously we have taken an international view. For the 
remainder of this thesis we will focus on the standards applicable for defense-related 
equipment in the United Kingdom, as a domain with which the author is familiar and 
for which a well-defined set of standards exist.

Within this domain, we will in practice concentrate on avionics systems although 
the techniques will generally be applicable across the whole domain of defence sys
tems; such systems tend to be embedded, real-time, safety-related and developed to 
similar (prescriptive) standards. Additionally they are procured by a single organisa
tion, the Defence Procurement Agency (DPA), so will undergo a standardised process 
of acquisition and certification.

When we come across problems with existing PLD development practice, we shall 
first look (when sensible) for solutions from the field of software engineering.

3.3 Target Level of Criticality
Private discussion[Pri03] with one of the authors of Interim Defence Standard 00-54 
and domain experts responsible for certification of systems to Defence Standards 00-54, 
00-55 and 00-56 confirmed our conjecture (Section 2.5.9) that current technology and 
tools do not support the development of systems incorporating PLDs with SIL-3 or 
SIL-4 functionality. Indeed, there is debate about whether even SIL-2 functionality is 
feasible.

As a result, the development of tools and techniques to support development of 
PLDs with SIL-3 functionality matching the requirements of 00-54 will represent a 
clear advance in the current state of industrial practice.
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3.4 Levels of Rigour
Before discussing the issues of rigorous development and proof, it will be useful to
codify a common understanding of the levels of rigour we will use in this thesis.

ad-hoc a handwaving argument which may appeal to previous experience or statistics.

system atic use of analysis tools and/or a thorough testing strategy.

rigorous providing a specification in an unambiguous notation along with a sketch 
proof of satisfaction.

form al providing a specification in an unambiguous notation and a proof in a system 
with axioms and deduction rules.

These definitions are somewhat arbitrary but do admit some degree of classification
and comparison between levels of rigour.

3.5 Statem ent
The problem we intend to solve is:

What methodology is suitable for developing a set of safety-critical system 
requirements into an implementation which executes partially in a conven
tional microprocessor and partly on a programmable logic device?
Such a methodology should be rigorous and formal enough to admit veri
fication and validation to the standards demanded by DefStan 00-54 and 
RTCA DO-254 (electronic hardware), DefStan 00-55 (software) and DefStan 
00-56 (system safety) for SIL-3 and SIL-4 systems (RTCA DO-254 Level A 
and B).

The problem has the following characteristics:

• use of existing proven methods for producing a system design;

• partitioning of the design into hardware and software components;

• development of the software component using existing proven methods suitable 
for the integrity demanded;

• provision of a formal model to describe the semantics of a program executing on 
a PLD;

• provision of a process and tools to develop part of a system design into a program 
for a generic PLD;

• provision of a process and tools to develop a program for a generic PLD into a 
netlist or HDL suitable for execution on a specific device;

• identification of criteria for making general design or implementation decisions 
during development; and
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• provision of suitable evidence of acceptable safety and correctness with respect 
to a specification for construction of a safety case for the system.

As noted above, we shall aim to use best practice from software engineering to solve 
these problems, where possible.

3.6 Target Aim s
In the remainder of this chapter we list a number of target aims. Each target has a 
unique identifier, used in later chapters to cross-reference back to the target. In this 
way the reader can track whether the chapter is covering the issues that it is intended 
to cover.

These aims set out our vision for a safety-critical PLD development process; we 
will not necessarily meet all of them completely, but will strive to achieve this. Failing 
to meet some of the aims may reduce the level of integrity which we can claim for our 
process.

Following each target aim is a list of criteria which will be used in the covering 
chapter to judge whether the target has been met.

Each target aim will be augmented by definitions of terms to clarify its meaning, 
as necessary.

3.7 Research Programm e
In the remainder of this thesis we aim to develop a process to produce a hardware /  
software safety-critical system incorporating a SIL-3 programmable logic component, 
satisfying the current UK Defence standards.

3.7.1 Identified deficiencies
As discussed in Section 2.5, the existing tools and techniques for PLD program devel
opment appear deficient in the following areas:

Rigor -  there is no way of showing that a given program satisfies a given specification 
without exhaustive testing.

A m biguity -  the higher-level programming languages used, such as Handel-C, do not 
have a well-defined semantics; the developer depends on the compiler writer’s 
interpretation of the language specification. The requirements and guidance in 
Defence Standards 00-54 and 00-55 [MoD97, MoD99] repeatedly aim to remove 
ambiguity in requirements, design and implementation.

High level design -  the benefits of programming in HDLs such as VHDL or Verilog 
are analogous to the benefits of writing software in assembly language. Compared 
to high-level languages, these languages remove ambiguity and allow much greater 
programmer control at the cost of increased development and maintenance time. 
Writing a program in EDIF is analogous to writing software in machine code.
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V ulnerability  -  the later an error shows up in a development process, the more ex
pensive it is in time and resources to fix, as discussed in Section 2.2.5 where 
we contrasted late system testing with the correctness-by-construction approach. 
Static analysis of a program aims to detect semantic errors missed by the syn
tactic checks of a compiler. No static analysis tools for programmable hardware 
languages are known, and in any case they require a rigorous language definition 
to be effective.

We aim to show an advance in all these areas. To ensure that this is the case, we 
introduce the following target areas for subsequent validation.

Target 1 The process we define must be rigorous.

C riterion  1.1 there must be checkpoints where the system in development must be 
evaluated manually or by automatic tools, so that inadequate systems can be rejected.

C riterion  1.2 all transformation steps in the process must, in theory, be able to be 
shown to be mathematically sound.

Definition: a transformation step is where a specification or program is wholly or 
partially changed to be less abstract than before.

Target 2 The process must help the developer to write unambiguous programs.

Definition: an ambiguous program is one where different compilers, both conforming 
to the language specification, may produce object code programs that have observably 
different behaviour.

C riterion  2.1 ambiguous programs must be rejected by the compiler or rendered im
possible by constriction of the language definition.

Target 3 The process must allow the programs to have sections written in a low-level 
language for speed and flexibility, but not allow these sections to compromise overall 
program reliability.

C riterion  3.1 the developer must be able to mark out a section of the high-level lan
guage program and transform it to a low-level implementation.

C riterion  3.2 such an implementation must allow the developer to take advantage of 
aspects of programmable logic architecture abstracted away by the high-level language.

C riterion  3.3 it must be feasible to show that the compiled version of the original 
section is equivalent to the low-level implementation, using appropriate behavioural 
models for the two machines that execute the programs.

Target 4 The process must admit substantial static analysis to discover semantic pro
gram errors at or before compile time.

C riterion  4.1 each implementation language used should have a strict syntactic defi
nition which is easily enforceable.

C riterion  4.2 each implementation language used should have a semantic definition 
to supplement the syntactic definition.

C riterion  4.3 each semantic definition should define an set of rules which can be 
machine-checked in polynomial time, to determine whether a given source program is 
semantically well-formed.

74



3.7.2 M aintaining ex istin g  benefits
We must not throw away the existing benefits of incorporating programs into program
mable logic

Target 5 The program produced must be easy to test.

Criterion 5.1 the specifications for the program must be of a form suitable for pro
ducing a test plan.

Criterion 5.2 it should be feasible to instrument the compiled version of the original 
program so that the developer can observe relevant data flow within the program.

Criterion 5.3 there must be a working and verified software simulator for the compiled 
program.

Criterion 5.4 the test plan produced from the specification should be suitable for the 
production of test vectors for the simulator.

Target 6 The program must be able to be compiled onto a range of existing and an
ticipated PLDs.

Criterion 6.1 given a program which performs a non-trivial computation, it must be 
developed using the specified process into a form where it may be compiled and run 
using some existing programmable logic device and toolset.

Criterion 6.2 the compilation chain must target one of the VHDL[IEE91], Verilog[IEE95] 
or EDIFflntOOb] languages at some point.

Target 7 The process must reuse existing proven tools where feasible.

Criterion 7.1 at every point where the process requires a new tool, the process must 
justify why existing tools are inadequate and how the new tool overcomes those inade
quacies.

Criterion 7.2 at each point where an existing tool is used, the process must show how 
the tool supports the programmable logic environment and the required system integrity 
level.

3.8 Com ponents
Given these target aims, we can already deduce much about the form of the process. 
For instance, we can begin to look inside at the components that will make up the 
process. These will include:

• a specification and proof system suitable for the programmable logic architecture;

• a set of refinement rules suitable and adequate for refining a specification to an 
entity in the proof system;
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• a mapping process from a subset of entities in the proof system to a form accept
able as input to a compiler with an HDL program as target output;

• a high-level language suitable for writing relevant realistic programs as parts of 
a safety-critical system;

• an mapping process for subsections of these programs to equivalent programs in 
a chosen HDL; and

• a compiler for mapping programs from the HDL to actual PLDs.

Note that the last item is provided for each specific PLD by their manufacturer, so 
we can assume that this exists if the HDL is Verilog, VHDL, EDIF or a subset of these 
languages.

3.9 Process
Moreover, the following target aims determine the relationship between the above com
ponents, and the necessary characteristics that the process must have to make it suit
able for safety-critical system development;

Target 8 The process must guide the developer in the appropriate use of each compo
nent.

Criterion 8.1 for each component there should he clear guidelines about what forms 
of input are suitable and what form of output is required.

Target 9 The process should indicate what kinds of error may arise at each stage.

Criterion 9.1 for each process stage there should be guidance on the likely sources of 
error, their consequences, and an estimation of the probability that they will occur.

Target 10 The process should provide flexibility so that it may be used in situations 
not anticipated in its original design.

Criterion 10.1 it should indicate which steps in the process may be adapted to differ
ent needs.

Target 11 The process must admit justification to the project safety authority that the 
programs output by the process are of an adequate integrity level.

Criterion 11.1 it should cross-reference apposite sections of relevant safety standards.

Criterion 11.2 it must specify the maximum safety integrity level of software produced 
by the process.

Criterion 11.3 it should justify each process step against the relevant safety standard 
requirements.

Criterion 11.4 it should support suitable unit, functional and system testing at each 
development stage.
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3.10 Existing Standards
To be able to produce a system which can be certified as acceptably safe, we must also 
conform to current safety standards. The following criteria, specifically appropriate to 
our phases of the development process, are taken from DefStan 00-54. They must be 
satisfied for the process to be suitable from the safety point of view.

A requirement is “relevant” if it pertains to the development of software for safety- 
related electronic hardware (SREH) at SILs 3 and 4, since this indicates that it relates 
to best practice in producing high-integrity systems. From DefStan 00-54 (Require
ments) we extract the following relevant requirements.

Choosing and testing the characteristics of the physical device and its vendor- 
supplied compiler is outside the scope of the process. So is external validation of 
the development process, except in so far as our process must provide evidence to 
support this validation.

For each requirement we indicate (in square brackets) where it is covered in the 
above targets and criteria. Note that some of them are covered by the work in this 
chapter. Where necessary we introduce new targets and criteria.

7.3.1 (d) The development of SREH shall include ...safety analysis of the SREH 
development process . . .  ; [Target 9, Target 11]

8.2.2 The safety case shall justify the claimed safety integrity level of the SREH by 
means of:

(b) evidence that the methods and processes used in hardware development are 
appropriate; [summarised in Section 3.1]

(c) safety arguments justifying the safety integrity of the design of any custom 
items. [Target 11]

8.4.1 A safety analysis of the SREH development process shall be carried out to 
demonstrate how the development process will deliver SREH which meets the 
safety requirements. [Target 11, C riterion  11.3]

8.5.1 The safety arguments for the integrity of the design of a hardware item shall 
include both analytical arguments and arguments from test. [Criterion 1.2, 
C riterion  3.3, C riterion  11.4, Target 5]

Definition: an analytical argument is an argument which is presented as a set of 
statements written in one or more formal notations. These statements are then related 
and justified by the application of deduction rules from a logic system defined over the 
formal notations.

Target 12 [00-54 8.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification 
complies with the safety requirements;

(ii) any formal arguments that the functional design satisfies the formal specification;

77



(ni) for non-functional properties with specified safety requirements, analysis of the 
achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques 
as diverse implementations.

C riterion  12.1 The process shall use a formal specification language which is amenable 
to analysis to specify its input [parts (i),(ii)[.

C riterion  12.2 At each stage of the process, there shall be a formal argument that the 
output of the stage refines the input of the stage [part (ii)[.

C riterion  12.3 The specification language used shall be able to capture some non
functional system properties such as performance and timing [part (Hi)].

C riterion  12.4 Each stage of process development shall indicate the forms of errors 
which it can mitigate [part (iv)[.

Target 13 [00-54 ^2.1.2] The Design Plan shall define the life cycle that is to be 
followed in the development of the custom circuit, including a specification process, a 
development process and a verification process.

C riterion  13.1 there shall be an unambiguous and clear description of the system 
program development process;

C riterion  13.2 the description shall show clearly the relations between the process 
stages;

C riterion  13.3 the tools and techniques used at each stage shall be clearly described.

12.2.1 A formally defined language which supports mathematically based reasoning 
and the proof of safety properties shall be used to specify a custom design, unless 
it is agreed with the MOD PM (Ministry of Defence project manager) that this 
is inappropriate. [Criterion 12.1]

12.2.2 The choice of specification language shall be justified in the safety programme 
plan. [Criterion 12.1]

12.2.3 Tools used to compile, analyse, animate and transform formal language shall 
be .. .justified in the safety programme plan. [Target 7]

12.4.3 A simulation plan, with input vectors and expected output vectors shall be 
defined as part of the Design Plan. [Target 5]

12.7.2 Appropriate safeguards shall be put into place as a defence against identified 
hazards in the development process in such a way that the complete SREH de
velopment process achieves the required safety assurance. [Target 9]

13.1 The activities performed in custom circuit development shall include all of the 
following:
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(c) formal analysis of the design; [Target 4]
(d) simulation and physical test. [Target 5]

Target 14 [00-54 13.3.1] A Hardware Specification shall be produced which defines the 
SREH in terms of its behaviour and properties.

C riterion  14.1 there shall be a formal model of a generic programmable logic device 
which may be directly mapped onto a range of actual programmable logic devices;

C riterion  14.2 the formal model must incorporate a useful (though not necessarily 
complete) range of common components of a programmable logic device.

C riterion  14.3 [00-54 13.4-1]: Safety requirements [that have expression in function
ality] shall be incorporated explicitly into the Hardware Specification using a formal 
representation.

Note: there may be non-functional safety requirements, such as liveness, that cannot 
easily be incorporated into the Hardware Specification. These will have to be addressed 
at a higher level of design or assurance in the system.

13.4.2 The consistency and unambiguity of the Hardware Specification shall be veri
fied using analytic methods. [C riterion 14.1, C riterion  2.1, C riterion  1.2]

13.4.3 The safety functions and safety properties of the Hardware Specification shall 
be shown to fulfil the safety requirements. [Criterion 14.3, C riterion  1.2]

13.4.4 Correspondence between the Hardware Specification and the design implemen
tation shall be demonstrated by analytical means, subject to assumptions about 
physical properties of the implementation.
[Criterion 1.2]

13.4.5 Static analysis shall be used to demonstrate freedom from classes of error de
fined in the safety programme plan. [Target 4]

13.5.1 A representative set of simulation results shall be obtained at all levels of the 
design, illustrating that the SREH operates as expected, based on a white box 
understanding of the internal construction of the custom circuit. [C riterion 5.3, 
C riterion  5.4]

3.11 General Questions
As well as these targets and satisfaction criteria, there are more general questions which 
should be asked to help gauge whether the process is sufficiently reliable and practical. 
These questions have arisen from practical experience in software engineering for real 
safety-critical systems. The questions will be answered, where possible, in Chapter 8.
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3.11.1 R eliability
1. How many distinct stages are there in the methodology?

2. What is the probability and effect of introducing an error at each stage?

3. What do 1 and 2 imply for the reliability of the system as a whole?

4. What classes of error are specifically checked for in the development process?

3.11.2 P racticality
1. Is there adequate tool support for the developers of the target systems?

2. What level of technical expertise, and how much time, is required for each devel
opment stage?

3. Given appropriate same-generation hardware, does the generic PLD implemen
tation produced have significant performance advantages over an all-software 
implementation?

4. How well does the process allow late changes in requirements to be incorporated 
into the system?

3.12 Overall Process
In the following chapters we shall describe the components of the development process 
shown in Figure 3.1. This process is taken to start when safety engineering activities 
have identified the system hazards, accidents and resulting safety requirements. The 
process end is when the high-level specifications have been developed into a mix of 
SPARK Ada and Pebble code that together implement the system and demonstrably 
satisfy the safety requirements.

3.13 Future Chapters
Chapter 4 aims to adapt existing technologies to match our requirements. We will 
demonstrate a proof system based on Synchronous Receptive Process Theory, show 
that processes from this system may be transformed into implementations in the Peb
ble language, and demonstrate that SPARK Ada has suitable features for SPARK 
programs to be compilable into programmable logic devices. We will describe the de
velopment process as a whole. The targets addressed in Chapter 4 are 1, 2, 3, 4, 6, 7, 
10, 11, 12, 14.

Chapter 5 provides a rigorous proof system for refining specifications into equivalent 
SRPT processes. Taking the Chapter 4 work mapping between SRPT and Pebble, this 
allows us to refine a specification into a full implementation on a commercial PLD. The 
targets addressed in Chapter 5 are 1, 2, 5, 6, 9, 10, 12.

Chapter 6 builds on the Chapter 4 SPARK Ada work to show how SPARK programs 
can be run on an interpreter running on a PLD. The targets addressed in Chapter 6 
are 1, 2, 3, 4, 10.
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Chapter 7 is a practical validation of the process, building a safety-critical system 
by following the process. The targets addressed in Chapter 7 are 1, 2, 3, 4, 5, 6, 7, 9, 
11, 12, 13.

Finally, Chapter 8 evaluates the material in Chapters 4 to 7 against the aims given 
in this chapter. Chapter 8 addresses Target 8 and also addresses the more general 
questions in Section 3.11 above.
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Chapter 4 

Developm ent technologies

This chapter describes the technologies used in the development process which we detail 
later in this thesis.

Section 4.1 introduces Synchronous Receptive Process Theory (SRPT), a process 
algebra which we will use to model the execution of a program within a PLD. We 
demonstrate how to specify requirements about SRPT processes and how to prove 
that an SRPT process satisfies a requirement.

Section 4.2 introduces Pebble, a simple programming language for synchronous 
PLDs which can be compiled into VHDL or directly into netlists for particular PLDs. 
We establish a formal connection between Pebble and SRPT, and provide a formal 
definition of how we expect Pebble programs to execute. Pebble abstracts away target 
device details so we will imagine Pebble as executing on a “generic” PLD.

Finally, Section 4.3 examines SPARK Ada, an imperative programming language 
intended for programming safety-critical systems. We describe those characteristics 
relevant to our work and lay the groundwork for compiling a subset of a SPARK 
programs into an SRPT system description executing on our generic PLD model.
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4.1 Synchronous R eceptive Process Theory
Synchronous Receptive Process Theory (SRPT) is a process algebra described by 
Barnes in [Bar93].

4.1.1 Introduction
The process algebra CSP [Hoa85] has been used successfully to demonstrate partial 
correctness of protocols and industrial parallel systems. Supporting tools such as FDR 
[For97] allow semi-automatic analysis of relatively large and complex parallel systems, 
proving them free from deadlock and livelock. However, CSP is not suitable for de
scribing all aspects of PLDs. In particular its asynchronous nature requires that traces 
consist of a sequence of single event names ( “interleaving concurrency” ) meaning that 
distinct events cannot happen at the same time, and it is not receptive since CSP pro
cesses can refuse events, which complicates the modelling of digital logic. As noted in 
Section 2.3.11, Timed CSP is a development of CSP which is adequate for digital logic 
modelling but is a more complex system than we need for a single clock system.

SR P T  in a  nutshell

Synchronous Receptive Process Theory (SRPT) was developed by Barnes by combining 
Receptive Process Theory [Jos92] and CSP [Hoa85]. It is a process algebra i.e., an 
algebraic theory to formalize the notion of concurrent computation. As a process 
algebra it consists of a syntax for describing process terms and their composition, 
and a notion of behaviour. In contrast to CSP it is synchronous: like SCCS [Mil83], 
events happen only at integer time intervals, and it is receptive: SRPT processes may 
not refuse events if their environment offers them. Barnes[Bar93] provides a rigorous 
definition of SRPT, and demonstrates its applicability to clocked digital circuits.

The use of algebra to specify digital logic circuits is not new. Such specification has 
been done using a wide range of formalisms, for instance CSP [Hoa85] and its timed 
and synchronous variants. We discuss alternatives to SRPT in Section 4.1.10.

Aims and objectives

In this section we describe a deterministic subset of SRPT, show how it may be used to 
describe digital circuits, and demonstrate specification and partial proof of determin
istic SRPT processes. We also lay the foundations for the SRPT refinement system in 
Chapter 5.

The definition work which follows aims to establish that deterministic SRPT is a 
valid closed subset of SRPT. We require a solid formal basis from which to construct 
our proof and refinement systems. We build on the work done by Barnes[Bar93] in 
defining and exploring SRPT, rather than re-creating it.

4.1.2 D eterm in istic SR P T
An SRPT system description has an alphabet E of events. There are a countable (if 
not necessarily finite) number of processes V  = {Pjt}, for which each process P G V  
has an input alphabet lP ÇT, and output alphabet oP Ç S. For each P, lP  and oP
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must be disjoint, finite, and their union must be non-empty. lP  consists of the events 
to which process P  may react, and oP the events which the process controls. There is 
a set Var of process variables, each of which will range over V.

Processes in our deterministic subset are defined using the following grammar:

P ::= X process variable
I \\0 ?X ^  Px] output prefix 
I P  II P  parallel composition 
I P \ 0  hiding
I P[S] renaming

The grammar we use differs from that of Barnes in the following ways:

• it omits the non-deterministic constructs because our interest is solely in deter
ministic circuits for the purposes of this study; and

• we incorporate the recursion operator defined for full SRPT into the output prefix 
model, hence restricting recursion in our SRPT subset to guarded recursion. This 
means that the recursive definition always leads to a single process. The details 
of recursion in full SRPT are in Barnes[Bar93] §5.1.2.

In the above definition, 0  denotes a subset of the output alphabet oP, X  denotes a 
subset of the input alphabet iP  and S  is an automorphism over E (a bijection E —> E). 
Each P  G P  is then a function

P  : ¥{lP) X P(oP) V

where each function Q G ran P  is such that lQ = cP, oQ Ç oP.
Px oP ^  V  represents a curried process such that P%(T) =  P(X , T).
The operators of SRPT are defined in [Bar93] pp. 76-80; intuitively, in comparison 

with CSP for instance, only the output prefix will appear unfamiliar. Since we will use 
the output prefix form extensively, it is worth providing an informal definition here. 
[! 0  IX  —> Px] specifies a process that will immediately output all events in 0  and 
receive from the environment some set of events X  Ç. lP in its input alphabet. Prom 
the next timestep onwards it behaves as process P%, i.e. P  parametrised by X  as 
explained above.

The definition of a process P  is in terms of a reaction to input events (a subset of 
iP). Unlike in CSP, an SRPT process cannot refuse an event which is in iP\ it simply 
observes such events happening. What it can do is react to those events by signalling 
events in its output alphabet. The nature of SRPT means that processes may receive 
and output any number of events at once.

Barnes [Bar93] defines a set of axioms and derives laws for algebraic combination 
of terms from this grammar. For example:

a-10 : [ \ B l X - ^ P x ]  jj Qy] =
\ \ { B U  C ) ? Z  P { Z \ j c ) r \ L P  I I  Q { z u B ) n L o \

This states that when combining two output-prefixed processes, we initially see the 
combined output of both processes, which we would naturally expect. From then on
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Time 0 1 2 3 4 5 6 . . .

Input a, b a, — 3 a, b a, b - b a, b • • •

Result — c — — c c — 0 > • •

Table 4.1: Example run for AND

P ’s behaviour may additionally be affected if its input alphabet includes one or more 
events from the output alphabet of Q, and vice versa.

As an example of an SRPT system definition, in the following subsection we will 
describe a 1-cycle 2-input AND gate with the SRPT algebra.

4.1.3 Exam ple — A N D  G ate
An AND gate has no control over its two inputs; it exerts control over its output 
according to the values of the inputs in the previous timestep. It cannot provide an 
output at time t which relates to inputs received at time t] there is always a delay 
before the reaction is visible.

We define the main process in the SRPT system as

lAND = {a, &} 
oAND =  {c}

AND{R) = [!P ?A -^  if{a,& }C  AthenAJVD({c})eIseAiVD(0)]
AND = AJVD(0)

Two points on notation are worth making. We may use functional application 
instead of subscripting for processes, which has advantages of clarity when the subscript 
text is complex. The if . . .  th e n  . . .  else construct is valid because it defines a process 
map parameterised by events in the input alphabet, and each process in the range of 
that map has identical input and output alphabets to AND{R).

In the above definition of AND, the occurrence of an event at one tick of the clock 
corresponds to the presence of a high value on the wire named by that event at that 
time. So if a is present in one element of a trace of AND  then this means that the 
gate has received a high voltage on the a input wire at that point. If a is absent, this 
is interpreted as a low voltage on a. a and b are taken to be the two input wires, and 
c the single output wire. This will be the convention used throughout this thesis.

The process definition states that AND  initially makes no output, then subsequently 
it will raise the c event at time  ̂-f 1 if and only if both a and b were present at time 
t. The \R IX  part of the process description means “output all events in R  and let X  
be the set of inputs which we have received in this timestep.”

Note that our process definition parametrises process AND  to tell it what to output. 
This effectively encodes state within the process, though in this example state at time 
t never affects the process after time t 4-1.

An example “run” for AJVD(0) could be as shown in Table 4.1. Note that the 
environment controls when a and b appear; only the c event is controlled by the 
process.
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4.1.4 C om position
Composition is a key tool to allow us to build complex systems out of more simple 
processes. SRPT allows us to compose processes to form larger ones, in serial (for 
sequential composition) or in parallel.

Parallel composition is done with the || operator, but the most useful composition 
is normally serial since this allows us to break down a calculation into multiple stages. 
Serial composition is effected by renaming process alphabets so that output events in 
one process are input events in another process.

The different forms of composition are analysed by Hall[Hal96b] where the struc
tures imposed by CCS and CSP on a parallel system (synchronisation trees and traces, 
respectively) are compared against an algebra for high-level Petri Nets.

4.1.5 D enotational sem antics
To be able to make rigorous analytical arguments about what does or does not happen 
in an SRPT system, to the level required by standards such as Defence Standard 00-54 
[MoD99] for the most safety-critical of systems we must consider SRPT’s meaning for 
the behaviour of a system. Barnes defines the meaning of a system in SRPT in terms 
of process traces.

In a given system, each process P  with input alphabet /  and output alphabet O 
has a semantics defined in terms of its set of traces RTj^o-

RT;,o =  (P(/U O ))*

Unlike CSP, but similar to Discrete Time CSP[Jef91], SRPT defines a trace t G 
RTj^o as a sequence of sets of events: t : seqP(7 U 0). Each element of the sequence 
corresponds to a (non-negative integer) time value of the global clock, and gives the 
events in 7 and 0  for that process which happen at that time. Discrete Time CSP 
uses bags rather than sets.

Trace axioms

As is usual in process algebras with traces, traces are prefix-closed and the empty zero- 
length trace () is valid. There is an additional constraint that the environment can 
offer any subset of input events at a given step, and the output at that step must be 
independent of the input of that step; this means that processes cannot react instantly 
to an input, corresponding to the delay in a logic gate output reacting to its inputs, 
and must be able to “handle” any combination of possible inputs. Formally, for a set 
of traces T  :

g ^  (A ) G T A y  Ç 7 => g ^  ((% n  O) U y )  G T

i.e., suppose T  Ç RT} o, then T  represents the trace set of a process with input 7 and 
output 0. Here s and r  are traces, ( and ) delimit a trace element and is the trace 
concatenator.

Sem antic function

The full derivation of semantic functions is given in Barnes[Bar93] §5.4; again, we 
summarise.
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RM  is the set of all triples (/, 0 , T ) ,  where T is a trace set satisfying the conditions 
above and I  and 0  are input and output alphabets satisfying the restrictions given in 
Section 4.1.2. The binding function BINDr maps from a set Var of process variables 
to RM. This is what the user is effectively defining when he or she writes the process 
definitions and decides on the names of the process variables.

The semantic function A4n maps each process term to an element of RM. The 
associated function Tn maps process terms to RM t (the set of all sets of traces for 
processes), and l, o map process terms to their input and output alphabets Ç PE. 
Hence where a represents an element of BINDr we have:

M n l P h  =  {4P ja ,  ojPja, TnlP^a)

This can be read as “Given the user definition a oî P  and associated SRPT pro
cesses, M-tz maps P  onto its input alphabet, output alphabet, and the set of all traces 
valid for it.”

All that then remains is to define l, o and for each of the process terms. The 
interested reader is referred to Barnes[Bar93] §5.4 (Definitions 5.3 and 5.4) for details 
of these definitions; here we present the definitions for the output prefix construct as 
an example.

If R Ç o|[P{}]]<7 and

V c  Ç 4 P {}h  ■ 4 P c h  =  4P{}1(^ A =  0 [?{}]! 0-

then
t m i X ^ P x \ h  = 
o l \ ! .B lX ^ P x \ \a  =

and in all cases the traces are defined:

TnWB IX  Px\i(T =  {()} U {{B U 7 )^ 5  \ Y Ç I ^ s e  rn iP yicj}

where I  = 4\\B  IX  —>

Equivalence and congruence
P  and Q are observationally congruent, according to Milner[Mil89], if F{P)  is obser- 
vationally equivalent to F{Q)  for any environment F. In SRPT, this environment 
corresponds to a sequence of sets of process input events.

It will not be unexpected to the reader familiar with process algebraic theory that, 
because of the removal of non-deterministic process constructs, process equivalence 
(defined as the processes possessing identical trace sets) and process congruence (as 
defined above) are coincident. In particular, suppose P  and Q are equivalent. It is easy 
to see that they must have the same input alphabets, since by the trace well-formedness 
rules any event in the input alphabet may be offered at any step. By assumption, they 
have the same traces.

To show that congruence is implied by trace equivalence we must show that F{P)  
and F{Q) are observationally equivalent. To see this we appeal to the absence of 
non-determinism; an environment offering F  =  {F\, F2 , . ..) to P  will, because of de
terminism, elicit a single behaviour Sp =  (si, S2> • • •) say, where SiC\ iP = Fi. As P



and Q share traces, Q must also have this behaviour, and since Q is deterministic Sp 
must also be Q’s response to this environmental offering. Hence F{P)  and F{Q)  are 
the same for each environmental offering F. The argument is symmetric in P  and Q.
□

Note that because P  and Q can differ on their output alphabets (therefore being 
different processes according to the SRPT definition of equality) process equality im
plies trace equivalence but is not implied by it. P  and Q may be equivalent, and hence 
observationally congruent, but not equal.

Establishing this relationship between congruence and equality demonstrates the 
amenability of deterministic SRPT to algebraic proofs about its properties, and marks 
a clear algebraic difference between deterministic and non-deterministic SRPT.

4.1.6 Specification and proof
Barnes’s rigorous definition of SRPT, and our definition of the deterministic subset of 
SRPT, will allow us to reason formally about SRPT processes. In designing a system 
in which we wish to prove partial correctness (i.e., may not terminate, but correct if 
it does terminate) we need to be able to make concise and precise specifications of the 
legal and illegal actions of the system, and prove their presence or absence formally 
without too much effort.

In this subsection we will prove a useful property of a class of SRPT processes 
relevant to modelling an FPGA. To provide specifications for the actions of a process, 
we make statements about its traces. Given A, B  and Z  pairwise disjoint subsets of 
E where A and B are of size n and Z  has an arbitrary finite size, we will define a 
system of SRPT processes to model an FPGA cell with 2n inputs CELLnj point wise 
computing a logic function /  : PA x PR —> ¥Z. We define this system as follows:

iCELLnj =  A U R =  /
0 CELLnf = Z  

CELLnj iR)  =  [ \ R ? X - ^ C E L L n , f { f { X n A , X n B ) ) ]
CELLnj = CELLnj m

We form the specification for CELLnj  by constructing a set comprehension with a 
boolean satisfaction expression quantified over all elements of each valid trace. This is 
an approach demonstrated in Hoare[Hoa85], sections 1.8 and 1.9. We use t[i] to refer 
to the ith element of the trace t, indexing starting at 0. The specification must be true 
for any trace of the process CELLnj,  and is as follows:

TjilCELLnj^cr = {t I > 0 t[0] n  Z  = (/}) A y  1 < i < ■
t[i\ n z  = f{t[i  - 1] n  A ,t[i - 1 ]  n R )}  (4.1)

This can be read as “if the trace at step i — 1 has input events C  from set A and 
D  from set R then the output events in the trace at step i must represent the result of 
f { C , D y \  We constrain the initial output set to make the satisfying process unique. 
The cr in the specification represents the translation of the abstract event sets A, B , Z  
in the process definition of CELLnj  into real events from the system event set E.

We abbreviate this specification on a trace t t o  S{t). To show that V ̂  G 7^[[CELL„j]]cr- 
S{t),  we first show that the process is deterministic in its initial value:
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Lem m a 1

y  E Ç Z -  TTzlCELLn,f{E)P =  {( | # ( >  0 => Z[0] D Z = E}

[i.e., the output set E  passed as a parameter to CELLnj will always appear as the first 
output.]

For a process [\E IX  —> Px] with input alphabet I, Barnes’s definition for output 
prefix is:

T n m - l X  ^  P x\\a  =
{()} U { { E u X ) ^ s \ X C l A s € T n . l P x h }

To prove Lemma 1:

TnlC E LLnj{E )P  = Tnl^.E IX  CELLnj]i(J =
{(>} U { { EUX)  ^ s \ X  (ZI A

g G 7 ;^ |[C E L L » X /(^ ^ A ,X n R ))W  (4.2)

by definition. As X Ç I, X  and Z  are disjoint. Therefore the output events in the 
first element of any non-null trace must be exactly E.  □

We now show that the correct values continue to be output by the process as the 
trace grows:

Lem m a 2

VR Ç R. 
t e Tn lCE LL nj {E ) l a  ^  

t = { { X C I ) U E ) ^ r  => r e r n l C E L L n j { f { X n A , X n B ) ) } a

[i.e., after the first step of CELLnj {E) , the subsequent trace r is the trace of CELLnj {Y)  
for some Y  as a function of the environment’s input.]

This follows directly from Equation 4.2 and the definition of CELLnj.
Combining Lemmas 1 and 2 gives us the proof that all the traces of CELLnj  satisfy 

the two parts of the specification S in Equation 4.1:

t[o] n z  =  0

This comes from Lemma 1: CELLnj  is defined to be CELLnj(0)  so R =  0.

y i  < i < ftt • t[i] n z  =  f{t[i  — 1] n  A , t[i — i] n  R )

This comes from Lemmas 1 and 2: let X  Ç (A U R) be the set of input events at 
time  ̂ — 1, let R =  / ( X n A , X n R ) ,  then Lemma 2 says that the trace of t from 
time i onwards is r  =  T^[[CRLL„j(R)]](7. Lemma 1 says that r[0] f] Z  = E. Since 
r\j] = t[i-\-j], the result is proven. □

This result is applicable to all stateless one-cycle cells (i.e. those cells where output 
at time t - f l  is solely dependent on input at time t), and is a useful foundation for proof 
at a higher level of abstraction. We give an example of this in the following section.

The exact method of proof is not particularly important; what it does show is that 
such proof is feasible and details one way that it can be done.
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4.1 .7  Safety m onitor exam ple  
System definition

For an example, we take a military aircraft stores management system (SMS) which is 
designed to control the arming and release of ordnance from designated “hardpoints” 
(pylons containing hydraulic and electrical release equipment) on the aircraft. This kind 
of system is clearly safety-critical because malfunction could easily lead to premature 
release or detonation of ordnance; see below for an expansion of this argument.

An SMS will often contain several PLDs implementing simple (though perhaps 
critical) functionality. As noted in Section 2.3.1, such a low-volume production benefits 
from the low fabrication cost and quick turnaround of a PLD as opposed to an ASIC.

System hazards

The hazards of an aircraft stores management system include:

1. release and subsequent detonation of a store while the aircraft is on the ground;

2. release of a store while the aircraft is in an inappropriate attitude (e.g. turn
ing and descending in such a direction that the released store may impact the 
aircraft); and

3. arming and release of a store over “friendly” territory such as a town near the 
aircraft’s home airfield.

Other hazards (such as arming and fusing a store which may detonate on the wing) 
are normally mitigated by the store rather than the SMS. An air-launched torpedo, for 
instance, might only arm itself on contact with salt water.

System safety

The safety features of this system will include:

• a hardware watchdog timer which must be reset every 25ms or the watchdog will 
shut down the system (to stop or restart a hung system); and

• the use of keywords to command dangerous actions.

A keyword is a unique data value which enables a dangerous action. The use of 
a keyword is an application of probability theory; a keyword is usually 4-16 bytes 
long and chosen such that no value matching the keyword is normally present in the 
processor’s address space. The chance of the keyword arising accidentally is unlikely; 
the chance of a single bit in a control word being set erroneously is orders of magnitude 
more likely.

The functionality required to implement these operations is well within the ability 
of a PLD (if we ignore the aforementioned concerns about PLD safety) since they 
are simple in design, and benefit from being outside the direct address space of the 
microprocessor once they are implemented in the PLD.

To implement these operations within a safety-critical system we must specify them 
and show that the specifications are satisfied, and it is this that we illustrate with an 
example here.
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Watchdog timer specification

The Watchdog Timer has a single input, which is toggled to reset the timer, and a single 
output which is typically used to raise a high-priority interrupt and trigger a system 
shutdown. We will define an SRPT process WATCHk with the following behaviour.

We assume that there is a single input w to the watchdog timer and a single output 
d. We will produce a timer specification with parametrised delay since the PLD timer 
delay will be expressed in PLD clock ticks, and we may not know the actual PLD clock 
frequency until later in the development cycle.

The specification of the watchdog WATCHk which shuts down after k 1 steps 
without an input toggle, for each trace t, is as follows. First, we define the events we 
are reasoning about:

iWATCHk = {w} 
oWATCHk = {d}

where w and d represent high voltages on the corresponding input and output wires, 
following the convention described in Section 4.1.3.

For convenience, we define a function to pick up points at which an event’s status 
changes within a trace. For a trace t and event x, let breaks {t, x) G seq #  be such 
that:

y i < i < j -  breaks ( ,̂ rr)[z] < breaks ( ,̂ a:)[;] 
ran ( breaks {t, x)) = {i | {i =  0) V ({a;} D i [z ]  ^  { a : }  1])}

This is an example of a syntactic abbreviation that is applicable to (although not 
necessarily useful in) all SRPT processes. Here, 7^ and S refer to all possible SRPT 
trace and event sets.

The specification S{k){t) for t G T^jWATCH^Jcr is then:

S{k)(t) =
{Vi < j  : d ^  ([:]) A {'ii > j  : d G ([;]) 

where: B =  breaks (t,w)
a = min m : B[m +  1] — B[m] > {k -j-1)
j  = B[a] k

Here a is the number of the earliest break point after which the same value is
received along the input wire too many times in succession, j  is the trace index
following this break point where the failure signal d starts to appear.

Watchdog process derivation

We now define specifications for processes WOk{x) and Wlk{x).  The WOk{x) process 
describes a watchdog where the last input toggle was to 0 (low voltage) and there are x 
steps left until shutdown trigger. Wlk{x)  is the same except that the last input toggle 
was to 1 (high voltage).

Specification So,k{x){t) is true iff  ̂G 7^[[W0fc(2;)Jcr:
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So,k{x){t) =
{ y O < i < x - d ^  [̂z]) A
{ y o < i < x - w ^  t[i] => y  j  > X • d e t\j]) a  

(a ;> lA w G i[0 ]  Si^k{k){t[l...])) A 
{ x > l A w ^ t [ 0 ]  => Ro.fcCa: -  1)(^[1...]))

Si,k{^)(4 is defined similarly, reversing membership tests of w and swapping in
stances of Si and Sq.

For a; =  0 the processes satisfying these specifications are trivial:

WOt(O) =  [!{d}?X-.W O t(0)]
W i , ( 0) =  [ ! { d } ? X - >  Wlfc(O)]

For all a: > 1 we use a recursive definition of the required processes. Assuming that 
WOk{x — 1) and Wlk{x  — 1) have been defined and satisfy So,k{x — 1)(), Si^k{x — 1)(), 
we can define processes for value x as:

WOk{x) =  \ } S ? X i i { w  e X ) t h e n W l k { k ) e l s e W O k { x - l ) ]
Wlk{x) =  [ !0 ? X ^  if(wG X)thenW Ifc(a;-l)elseW O fc(Â ;)]

The structure of these processes is sufficiently similar to the structure of the speci
fications for specification satisfaction to be clear.

W atchdog specification satisfaction

It remains only to show that SQ^k{k){t) corresponds to our original specification S{k) 
for WOk{k). We can then state that the SRPT description of WATCHk is WOk{k), 
and we will have satisfaction of the specification. We will not aim for a full formal 
proof, but instead show the main derivation steps required.

Our proof is two-stage. First we show that the specifications agree that d either 
never appears, or that there is some index j  where d starts to appear in the trace and 
will always appear from then on.

For S{k){t), this is clear from the specification:

yy i < j  : d ^  t[i]) A (y  i > j  : d e t[i])

For So^k{k){t) this follows since the following is part of all So and Si specifications, 
with the w membership test inverted for Si:

{ y O < i < X ' d ^  [̂z]) A
{ y o < i < x - w ^  [̂z] => y  j  > X - d e  t\j])

We now show that the value of that index j  is the same in the two specifications.
For S{k){t), j  is defined by:

B  =  breaks {t, w)
a = min m : B [ m 1] — B[m] > { k 1)
j  = B[a] 4- k
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Time 1 2 3 4 5 6
Process W0&(2) WOk{l) WIk(3) WI&(2) Wlk{l) WI&(0)

Input - w w w w -

Output - - - - - d

Table 4.2: Example of a trace of the watchdog

For So^k{k){t), we make an inductive argument on the “crucial” break number a. 
IÎ a = 1, j  = k since B[l] = 0 by definition of b reaks. This corresponds to the 
case where the event w does not appear for k successive points in the trace. The 5b 
specification part

{ \ / 0 < i < k - d ^  t[i]) 
( y O < i < k - w ^  t[i]

A
y j  > k  - d e  t\j])

corresponds to this case.
If a > 1, we need to show that all preceding breaks with index below a do not trigger 

a d sequence. It is clear from the preceding part of the proof that a d sequence, if it 
starts at all, must start at index k from the start of a process specified by SN,k{k){t). 
We need only show that the breaks correspond to the start of 5iv,fc(^)(0 specifications. 
This comes from the second part of the specification for So^k{k){t):

{k > 1  A w  G t[0] 
{k > 1  A w  ^  [̂0]

5i,k(A;)# . . . ]) )A
So,k{x — 1)( [̂1 • • •]))

Since Sq only applies to traces where w is currently absent, the appearance of w 
indicates a break point and hence a switch to Si^k{k){s) for the remainder of the trace 
s. A mirror argument holds for 5%. This gives us that S{k){t) = So,k(k){t). □

W atchdog trace  exam ple

An example of w being “stuck-on” for A: =  3 is shown in Table 4.2.

Keyword checker specification

A keyword checker is a process which takes as input a w-bit keyword along with a lines 
which denote the actuator to activate. No more than one of the actuator lines may be 
raised at any one time.

We will define an SRPT process KEYWw,a with the following behaviour. When 
an actuator line is raised, the keyword checker validates the given keyword against the 
actuator line selected: the result is one of on, off or bad. If on then the checker raises 
the appropriate actuator output line. If off or bad then it lowers the line, and if bad 
or more than one input actuator line is raised then it sets a “failure” output for one 
timestep.

We assume that o n ^  off ^  bad.
This is a more complex example of the specification and SRPT description of a 

process. Again, we define the events of the system KEYWw,a first:
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p  — { p i  . . • P a }  1 Q  — { ç i  • • • Q.w}J P  — { r i  • • • ^o}

I  = lK E Y W = P \J Q 
0 = o K E Y W ^ ,. =  R U {/}

P  events are actuator selection, Q events form keywords, and R  events are actuator 
controls. {/} is the failure signal.

We define the internal event set K  to represent keyword evaluation:

K  = {on, off, bad}

The keyword evaluation is given by function w ev , mapping a set of keyword events 
and actuator number to an action word:

wev : ¥Q  x N —> X

The specification S{t) of each trace t G TnlKEYWw^aia is as follows:

S{t) = V zG N -V j G 1 ...Q - 
# (R  n a[z]) =  0 => t[i -f 2] n  0  =  {t[i +1] n 0 ) \ { f }

{P n A[z]) =  }pj} — on) 44" {vj G t[i +  2])
A {z =  bad) 44" ( /  G t[i +  2])
A {z =  off) ^  {rj,f ^t [i -^2])

][{P n  t[i]) > 2 =4" t [ i 2 ] n  0  = {f }

where z =  wev (Q D t[i],j).
This requires that:

• zero commands will maintain the status quo except that a failure will cease to 
be flagged;

• exactly one actuator command will cause the actuator to turn on (if on), off (if 
off) or flag an error (if bad); and

• more than one actuator command at once will cause a failure and turn all output 
controls off.

Note that this system has a 2-cycle delay rather than the 1-cycle delay of the previ
ous example. This is because the eventual implementation is in terms of two processes 
processing in sequence, hence at least two cycles are required for this implementation 
to be feasible.

We define internal event set M  to represent the actuator chosen to be activated:

M = {mo . . .  ma}.

The process description is a parallel composition with hidden events, as follows: 

KEYW^,a = (KW^,a(0) II F IL T E R a m \{M  U K)
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where K W  evaluates the keywords and FILTER acts on the output of K W  to select 
the outputs. Note that the hiding operation applies to K W  and FILTER rather than 
KEYW] this distinction is important as hiding is defined in terms of a subset of a 
process’s output alphabet, and K E Y W  does not contain K  oi M.

We will specify KWw,a first. Given alphabets

iKWyj^a = PU Q, oKWyj^a = M U K  

the specification K{t) of each trace t G Pn^KW-w^ala is: 

K{t) = y  o < i  • 
A (A[z] n  P) =  0 => {t[i +  1] n  oKW) =  0 

A (A[z] n P) =  {pj} =4- (t[i + l ]n  oKW) = {k,7rij} 
where k = wev(A[z] D Q, j )  

# { t [ i ] n P ) > 2  => { t[ i -^ l]n o K W ) = {bad}

A suitable process satisfying this specification follows:

KW«,,a(P) =  [!P ?X ^  if  # (X  n P) >  2 KW^,a({bad}) 
elsif 3 j  : {X n P )  = {pj} KWyj^a{{k, mj}) 
else KW^a,a(0)]

where k = wev {X  fl Q,j)

As an implementation detail, note that the case where exactly one element of P  is
present in the input need not search all the elements of P  in sequence; instead, the pj
inputs would be linked to the mj outputs with an intervening AND gate to check that 
all other elements of P  are low. As the size of P  grows, this becomes less likely to be 
feasible within the single clock cycle specified unless the target device provides AND 
gates with many inputs.

We now specify process FILTERa. Given alphabets:

iFILTERa = I  = M U K, oFILTERa = 0  = RU { f}

the specification F(t) of each trace t G TtiIFILTERo^o- is:

F{t) =  VO < z • 
bad G t[i] =4> {t[i +  1] n 0 ) =  {/}

A {t[i] n  M) =  0 =4" {t[i +  1] n 0 ) =  {t[i] n  O) \  {/}
A 3 j  : ( A [ z ]  n /)  =  {on, mj} =4- {t[i +  1] n  0 ) =  {rj}

A otherwise =4 {t[i +  1] D 0) =  0

A suitable process satisfying this specification is:

FILTERaiS) =  [!5 ? r  if bad G Y  FILTERa{{f})
elsif r  n M =  0 FILTERa{S\{f})
elsif 3 j  : Y  = {on,mj} FILTERa{{rj}) 
else FILTERai^)]
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A proof of correctness here would be repetitive given the earlier satisfaction ar
gument for Watchdog, but the principle strategy is to observe that K W  outputs 
events that control the output of FILTER, but not vice versa. Therefore we define 
R = (KW^,a(0) II FILTERai^)) and since

by definition, we expand the definition of K  by evaluating how the RHS of the clauses 
of K  maps onto the LHS of the clauses of F , hence rewriting the RHS of K  in terms 
of the output alphabet of FILTER. This is then compared with the definition of S  to 
show that y  u G R ■ F{u) A K{u) =4 S{u).

This example has shown how parallel composition can be used to form processes 
with internal events providing communication between them.

4.1.8 N on-rigorous com ponents
The refinement model also allows us to incorporate “black box” processes into our 
overall design. As long as we can specify the inputs and outputs of a black-box process 
B  in terms of events in E, we can reason about its interaction with the other processes 
for which we have more rigorous specifications.

For instance, edge areas of an FPGA may be given over to an I/O  pad implementing 
an interface protocol such as the PC peripheral connector standard PCI. Mak[Mak03] 
discusses the thorny problems involved in placing these I/O  pads when multiple I/O 
standards (and hence varying voltages) are present in the device. We need not be con
cerned about the specific implementation details of the I/O pad, and it need not even 
run at the same clock as the rest of our FPGA model as long as there are intervening 
gates outside our model but with the same clock, buffering the I/O  voltages. As long 
as we can make some statements about the transitions of the outputs from the I/O 
pad, and establish minimum-switch times for the inputs, it need not affect our ability 
to reason about the behaviour of the rest of the device.

4.1.9 C om m entary
We have taken two typical components of a safety-critical system which have the po
tential to be implemented using PLDs, have provided SRPT-based specifications and 
implementations for them and proven that the behaviour of the implementations sat
isfies the specifications.

We have seen that carefully-chosen syntactic abbreviations can express the SRPT 
trace-based specifications in a few lines and yet make rigorous and useful statements 
about the required properties of a process. The previous section has shown how it is 
possible to prove rigorously that a SRPT process description satisfies a specification, 
though clearly there is some way to go until this proof mechanism is easy enough to 
use effectively in a commercial project.

Note that there is a clear gap between the SRPT description of a process and its 
final implementation as a set of programmed cells in a LUT-based FPGA. It is however 
relatively simple to map such SRPT descriptions as given here into equivalent VHDL, 
Pebble or netlist formats. We expand on this in Section 4.2.7.
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We have used SRPT as a compromise between the high-level specification languages, 
such as Z, and the low-level implementation languages such as EDIF and VHDL. The 
tradeoff we make is in ease of specification against simplicity of compiling to our target 
format.

According to the definitions in Section 3.4 we can classify this work as rigorous 
since formal specifications and sketch proofs were provided.

4.1.10 A lternatives to  SR P T
SRPT is far from the only method of describing reactive systems. In this subsection 
we present some established alternative methods.

Language details

In [BerOO], Berry presents the basics of the Esterel language, and reviews a number of 
other synchronous languages. He distinguishes between “reactive” systems, where the 
computer reacts to external events, and “interactive” systems where the computer’s 
clients request services from the computer. The latter requires attention to avoid dead
lock and unfairness, and the former requires correct and timely operation. According 
to these definitions, SRPT describes reactive systems.

Languages such as Signal and Lustre use a data-fiow programming style, routing 
data through “fixed” operation nodes. In hardware terms this is similar to program
ming a DSP chip or FPGA rather than a conventional microprocessor. Variables in 
the language consist of a sequence of values at a set of times, e.g. X  = {X\, X2, ...} . 
Nodes combine values of different variables. The flow of data in the system occurs 
at each (integer) time steps. Some variables may be over-sampled or under-sampled, 
flowing at whole time multiples faster or slower than the “master” flow.

The data-flow model corresponds well with our intuitive understanding of how data 
flows through an FPGA. The problems with this model would come with a variable 
depending on more than one time index of another variable, e.g. =  Fi 4- 2 * Yt-i. 
This would complicate the placement and routing of such programs within a PLD.

Berry terms the programming model of Esterel “imperative”, which is an extension 
of one common definition of imperative languages as sequential modifications to a 
state but does capture the intent of defining how the result is to be produced instead 
of what properties the result exhibits [IP 96]. In this model the basic structure is a 
module. A module has a defined set of input and output events, and a “body” in 
which a conventional imperative program executes. The imperative program is able 
to do blocking waits ( “await”) on input events and cause (“emit”) output events. 
Statements can be combined in parallel, so that a module can wait for a disjunction 
or conjunction of events, and there are language operators to support pre-emption 
and exception raising. Body statements execute instantaneous except where delay is 
required by the purpose of the statement, e.g. the “await” operator.

Esterel provides more powerful abstract operators than SRPT, but at the price of 
a semantic gap between the Esterel program and the corresponding FPGA netlist.
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Language evaluation

These approaches to programming languages could conceivably be used to program 
PLDs. Indeed, there are commercial tools such as “Esterel Studio” (from Virtual 
Prototypes Inc.) which allow such programming. The reason why we have chosen 
SRPT as our representative language is that the process-event structure of an SRPT 
system maps naturally onto the block-wire combinatorial logic and routing model of 
most PLDs.

Esterel’s semantic gap with respect to FPGAs is its key weakness. Signal and 
Lustre’s data-flow model is an interesting expression of a class of programs, and closer 
to the FPGA model, but has the placement problems noted above.

Our choice

These languages are possible alternatives to SRPT, but they do not have an obvious 
advantage to SRPT for our purposes. Indeed, we have identified deficiencies in their 
support for targeting FPGAs.

Preliminary work by the author in establishing the suitability of SRPT for compi
lation to PLDs showed that SRPT’s semantics was suitably rich to support rigorous 
definition of programs and mapped well onto the PLD program model. In our work 
to date there have been no serious shortcomings of SRPT that have indicated that 
CCS-based or other algebras are superior for synchronous PLD programming.

4.1.11 C onclusions
In this section we have shown how SRPT can be used to model non-trivial FPGA 
programs and prove certain safety properties in a rigorous way. We have also seen that 
it provides a precise way of specifying the requirements for an FPGA program, which 
makes it easier to define correctness tests.

Of the targets in Chapter 3 we have addressed or partially addressed:
Target 1: The process we define must be rigorous.
We have established a formal specification system for SRPT processes and demon

strated rigorous justification that processes match their specifications.
Target 2: The process must help the developer to write unambiguous programs. 
The trace-based specification of SRPT processes is an unambiguous notation, and 

our deterministic subset of SRPT described in Section 4.1.2 makes SRPT programs 
unambiguous.

Target 3: The process must allow the programs to have sections written in a
low-level language for speed and flexibility, but not allow these sections to compromise 
overall program reliability.

We have explicitly considered non-rigorous components in Section 4.1.8.
Target 12: [OO-Sf 8.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification 
complies with the safety requirements;

(ii) any formal arguments that the functional design satisfies the formal specification;
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(ni) for non-functional properties with specified safety requirements, analysis of the 
achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques 
as diverse implementations.

(i) is achieved by use of an unambiguous notation for specification. We demon
strated the proof system required by (ii) in the watchdog timer example. Timing 
requirements can be addressed by specifications about relative positions of events in 
traces, addressing (iii). We have not addressed (iv).

In the next section we will explore the relationship between SRPT and the Pebble 
synchronous programmable logic programming language.
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4.2 Pebble

4.2.1 Introduction
In Section 2.4.6, we described the Pebble language for low-level programming of syn
chronous FPGAs. In this section we expand on this to give a more complete definition 
of Pebble, and show how SRPT processes can be mapped onto Pebble programs.

The version of Pebble described here is Pebble 3.0, as described in Appendix A of 
[Luk99]. Our comments on Pebble in this section are likely, but not certain, to apply 
to future versions of the Pebble language.

4.2.2 Target device issues
Pebble may be compiled onto a number of different PLDs. These devices may differ 
substantially in which “primitive” cells they support. For instance, one device’s cell 
may support any logic function of 3 inputs; another device’s cell may provide any 
function of 2 inputs on one output wire, and the inverted result of that function on 
the output wire. The primitives for a given device are typically stored in a prelude file 
that is supplied to the compiler.

A complete Pebble program will consist of a number of these primitive cells with a 
certain interlinking. Each cell will be one of a (likely small) set of types, e.g. 3-input 
AND, half-adder, single-input NOT. Normally these primitives will be chosen so that 
each of them can complete in one clock tick on the target device. However, it may 
be that some of the primitives require two or more ticks to complete whereas others 
only require one tick. In this case a naive compilation to the target device will have 
to add delays to each type of cell so that they all take the same time to complete 
calculation. In practice, it is likely that the circuit can be partitioned and optimised 
so that relatively few of the partitions need to operate at the maximum delay.

4.2.3 Language elem ents
A Pebble program consists of a set B  of block instantiations, with links between blocks 
provided by a set W  of wires. There is a set D  of block declarations which can be 
considered as function signatures with named formal parameters from a set P. A 
block {d G D, f i , f o )  G B  represents an agglomeration of logic function computational 
cells on the target device. The formal parameters of d are renamed to elements of W  by 
the functions f j , fo  : P  W ior input and output wires respectively. In conventional 
imperative language terms, the block declarations are subprogram declaration and the 
wires are global program variables. The blocks correspond to actual subprogram calls.

Each block declaration d G D  contains named formal parameter lists Fj  and Fq  
which are sequences of input and output wire names respectively. The block declara
tion includes a (potentially null) list of width parameters G to allow instantiation of 
the block in a range of bit-widths. These parameters may be specified in the block 
declaration, or left open for when the block is later instantiated. The block declaration 
also includes a (potentially null) list of internal wires L.

A block declaration’s internal structure consists of a series (which may be null) of 
block instantiations. Note that these instantiations are not necessarily elements of B,
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since they may have wires from the block declaration’s parameters. In addition there 
is a series of direct connections between wires.

Block instantiations consist of block declaration names with the formal parameters 
renamed to the names of wires in scope, i.e. chosen from the union of Fj, Fq  and L. 
If the block instantiated has any unspecified width parameters (in G) then these must 
be set at the instantiation.

Block instantiation can also be done in groups using the GENERATE FOR mechanism, 
specifying an “instantiation loop” where the characteristics of each block instantiated 
inside the loop may depend on the loop variable.

4.2 .4  Exam ple
Taking the example of a combinational incrementer implemented from half adders, as 
described in the Pebble 3.0 manual [Luk99], Appendix A, section 8;

BLOCK main [c : WIRE; e : VECTOR (n-1..0) OF WIRE]
[d : WIRE; f : VECTOR (n-1..0) OF WIRE];

BLOCK main [fcin : WIRE; fdin : VECTOR (n-1..0) OF WIRE]
[fcout : WIRE; fdout : VECTOR (n-1..0) OF WIRE]

VAR i;
CONST n : GENERIC := 3;
VAR Ic : VECTOR(n..0) OF WIRE 

BEGIN
lc(0) <- fcin;
GENERATE FOR i = 0 .. (n-1)
BEGIN

hadd[lc(i),fdin(i)][lc(i+l),fdout(i)]
END;
fcout <- lc(n)

END;

The first BLOCK statement is an instantiation of block main, and the binding of 
actual parameters to its formal parameter list given in the following BLOCK declaration. 
The wires c, d, e ( 0 . . .n-1) and f (0. . .n-1) are actual wires in the system, and the 
Pebble simulator would be able to control the values of the input wires and measure 
the values of the output wires.

The declaration of main comes next. After listing the formal parameters, the next 
set of declarations are variables and wires whose scope is local to the BLOCK declaration, 
i  is simply a loop variable, n is a generic width parameter; the declaration fixes it at 
3, but it could as easily have been left unassigned and instead set at instantiation. 
l c ( 0 . . .n) are internal wires, used to propagate the carry values along the chain of 
half-adders (hadd).

The body of the declaration first connects internal wire Ic (0) to formal parameter 
fc in . The next statement is a multiple instantiation, the number of instantiations 
governed by the generic width parameter n. Each instantiation is of the half adder 
hadd, with connections governed by the instantiation number. The final statement 
connects formal parameter fcout to internal wire lc (n ).
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fdinroi fdinhl fdinIn-1]

Figure 4.1: Combinational incrementer

Figure 4.1 shows a pictorial illustration of the declaration of main. The parameter 
n has been left unspecified. If n were 3, as specified in the block, there would be
three HADD blocks in the diagram. The figure illustrates clearly that Pebble is mainly
about defining relationships between predefined blocks by using shared wires. This 
is analogous to the way that SRPT defines relationships between processes by using 
shared events. In the next section we will explore this analogy in more detail.

4.2.5 Formal description
Following the earlier notation:

D =  {main, hadd}
B =  {(main,//,/o)}
W =  {c, d, e(0. . .n-1), f  (0. . .n-1)}

where

fi = (c, e(0. . .n-1))
fo = (d,f (0. . .n -D )

For block hadd we define the formal parameters, internal wires and generic parameters 
as:

F i=  (fil,fi2)
Fo = (fs, fc)

L = 0
G =  0

and for block main:

Fj = (fcin, fdin(0... n-1))
Fq = (fcout, fdout(0... n-1))

L = {lc(0... n)}
G =  {n =  3}
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Note that the hadd block, since it has no internal wires, is assumed to be a primitive 
of whatever target device it is instantiated on. It cannot be constructed out of other
primitives in series since this would require internal wires to connect the primitives. It
could be constructed out of primitives in parallel.

The instantiations of hadd in the declaration of main are as follows:

(hadd , (fil =  lc(0),fi2  =  fd in (0 ),fs  =  fdout(0),fc  =  l e d ) ) )
(hadd , (fil =  lc ( l) ,f i2  =  fd in ( l) ,f s  =  fd o u t( l) ,fc  =  lc (2 )))
(hadd , (fil =  lc(2),fl2  =  fd in (2 ),fs  =  fdout(2),fc  =  lc (3 )))

with the direct connections lc (0 ) <- fc in  and fcou t <- lc (3 ).
Applying the renaming functions f i , fo  of the main instantiation then produces 

the following fundamental instantiations where every block instantiated is a primitive 
component for the target device:

(hadd , (fil =  lc(0),fi2  =  e(0),fs =  f(0 ),fc  =  lc (D )
(hadd , (fil =  lc ( l) ,f i2  =  e ( l) ,f s  =  f ( l ) , f c  =  lc (2 ))
(hadd , (fil =  lc(2),fi2  =  e(2),fs =  f  (2),fc =  lc (3 ))

with direct connections lc (0 ) <- c and d <- lc (3 ).
Note that although no formal parameters are left as wires there are local wires in 

these declarations such as lc (0 ).
Having established this model, how does it react to data? Partly this will depend 

on the implementation of hadd in the target device; we assume that it is a conventional 
half-adder that outputs the carry on the first output and the sum on the second output. 
To have any meaningful basis for arguing about program correctness we must have 
verifiable functional and timing information about target device primitives.

The data flow through the model is modelled by a function wire : IF x N ^  B 
which is true for (w, t) iff wire w has a high voltage at time step t. Wires are considered 
bi-state (high or low voltage). We may ignore the possibilities of transients since the 
Pebble compiler manages these details; a “wire” in Pebble has delay and switching 
properties unlike a physical wire in electronic devices. The rule is that if wire Wi is 
connected directly to wire Wj then:

V n ^  0 : wire{wi, t) = wire{wj, A 4-1)

With wires connected directly in this fashion we describe wire W{ as the source of 
Wj, and similarly wire wj as a destination oi Wi.

Primitive gates such as the half-adder are defined by a function mapping sequences 
of input parameter values to sequences of output parameters. Sequences are represented 
in the expressions below by strings of binary digits, highest bit first. For hadd:

hadd : seqB seqB
hadd =  {0 0 -^0 0 ,0 1 -> 0 1 ,1 0 -> 0 1 ,11-» 10}

The rule for values flowing through an instantiation (hadd,//,/o) is:

fl  — \w\, . . . , Wri\ A fo — {t l̂, ; Xfn} =4
V A > 0 :
{wire{vi, A 4 -1 ),...,  wire{vm, A 4-1)) =
hadd(Wre(wi, t ) , . . . , wire{wn, t))
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Note that this assumes that the instantiation of a device primitive computes all its 
outputs in one cycle and is stateless. The target may have other components such as 
RAM stores, which have state, or ROM stores which may take several time cycles to 
produce output. The target data supplied to the Pebble simulator will have to provide 
this information to allow accurate simulation.

4.2.6 C om pleteness o f definition
Given the above description, it is useful to know whether the system is completely 
defined. It may be, for instance, that an instantiated gate has one input wire which is 
not a destination wire of any other gate, nor the destination of any other wire. Such a 
gate can be regarded as floating with no defined values at any time step.

Similarly, if a wire is the destination of more than one gate or wire, it is regarded 
as shorting these sources, and again has no defined value at any time step.

Floating wires are useful because they provide the ability to input data to the 
system. In the above instantiation in Equation 4.3, we see that wires c, eo, ei, 62 fioat. 
No wires are shorted, which should be normal policy.

We now take the formalism developed so far and translate it into SRPT terms.

4.2 .7  SR P T  representation
Using the notation given above, we map each of the wires in W  onto a unique event 
in E. A block declaration d G D corresponds to a process description P^.

A block instantiation (d, f i , fo)  G B  corresponds to the equivalent process Pd being 
renamed with events in E. // and fo  produce the input and output alphabets of the 
process.

The SRPT process CT[x, y\s, d] connects wire s to wire d, equivalent to having 
the input of source s appear one cycle later on in destination d:

lCT  = {x} 
oCT = {y}
CTx = [!X ? y  if rr G X th e n  C Ty  else CT^y]

If a system Z  consists of the instantiated processes P%, . . . ,  P^ then the floating 
wires are those in

FLOATz =  (U t i  i - P i )  \  (U)=i o P , )

and the shorted wires are those s G SHORTz such that

3 i j  : {i f  j )  A{s G oPi) A { s G oPj)

We have already provided the SRPT definitions for a gate computing an arbitrary 
n-bit function /  in Section 4.1.6 as CELLnj. Here we provide SRPT definitions for 
some other useful logic constructs, ROM and RAM. Within a typical safety-critical 
system, ROM is used to store constant look-up tables (e.g. for bomb aiming data with 
varying wind speed and direction), and RAM for holding PLD program state that is 
too large to store in the available collections of registers.
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These definitions must capture the behaviour of typical real implementations of 
these constructs, so will be more complex than the gate-based examples from earlier. 
If high-SIL subsystems are based on these definitions then we must rigorously test 
the real implementations with test data based on the behaviour of these definitions, 
and demonstrate that the real behaviour refines the definitions’ behaviour. These 
definitions illustrate that real-world components can be modelled in SRPT, and provide 
a measure of their complexity in SRPT terms.

ROM

ROM provides a read-only store of data grouped in words, using an input address to 
index a given individual word and then putting the word data onto its output.

A ROM table has 2”̂  entries of n bits. We assume that lookup is done in t steps 
and that the lookup is not pipelined (so that the inputs must remain stable for t steps 
for the output to be valid). A 1-step ROM table (the lowest feasible value of t), if 
given address input data at time index i, will output word data at time index z + 1. 
If the (distinct) address bits are represented by set A = {a i , . . . ,  am}, the data bits by 
D = {di , . . . ,  dn} and the internal data is modelled by the function d : PA —> FD then 
the SRPT definition of ROM  for fixed m ,n , t ,d  is:

lROM = A 
o R O M  =  D 

R O M  =  R O M y j j j y  

ROMx,<,z =  [ ! X ? y ^
i i i  =  t A Z  = Y  then ROM d{z) , t , z  

elsif Z  = Y  then ROMx , i + i , z  

else ROMx ,i,y]

This implementation provides deterministic behaviour in the case where the specifi
cation does not define it, i.e. the case of a read address being changed before the output 
has been sent. It will start off a new read in this case, dropping the previous request. 
In all cases, the output will stay the same from cycle to cycle until a read-output cycle 
has been computed.

Because this process carries significant internal state it is not equivalent to a simple 
combination of CELLnj  functions. To incorporate it in a safety-critical system we 
would have to make formal specifications of its behaviour and show that they are met.

RAM

A RAM table is more complex. It has two modes: read and write. In real RAM blocks 
reading is often quicker than writing. We assume that the inputs must remain stable for 
u steps for the write to be effective, whereas reading occurs in t steps as in the ROM 
block. There is no explicit indication of when the outputs are valid; users of RAM 
blocks must know the timing properties of their blocks and design the surrounding 
circuits accordingly.

We take the m-element address and rz-element data sets A and D  from the ROM 
definition above. The RAM block internal function d : FA —> FD will, unlike the
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ROM block, change during operation as writes are made. The extra input w controls 
whether a write is being commanded, and the n extra inputs E  supply data for input. 
For fixed m, n, t, u:

E  =  {e i,...,en }  
lRAM  =  { w } u A u E  
oRAM = D
RAM  = RAMR{yjjyj'PA^{}}

We define a pair of process sets, one for reading operations and one for writing 
operations. The reading operation is RAMR:

if  z =  1 A ( y  \  R)  =  ZthenRAMRd(xnA),i,z,d 
elsif z > l A ( y \ R )  =  Z then  RAMRx,i-i,z,d 
elsif w e Y  th.enRAMWx,u,Y,d 
else RAMRx,t,YnA,d]

and the writing operation is R A M W :

RAMWx,̂ ,z,d = [!X?y-^
if z =  1 A y =  Z then RAMWq(znE),i,z,d' 
elsif z > 1 A y  =  ZthenRAM W x,i-i,^,d 
elsif w ^  Y  then RAMRx,t,YnA,d 
else R A M W x ,u ,Y ,d ]  

where di G X  4=4 e* G q{X)
and d =  d 0  (Z n  A i—> 5'(Z n  R))

Section 6.4.3 and Section 6.2.3 in a later chapter will demonstrate the use of ROM 
and RAM blocks in a complex PLD program.

4.2.8 SR P T  to  Pebble
Having shown how Pebble constructs can be mapped into SRPT, we now examine how 
SRPT processes can be refined into Pebble.

Constructors

The correspondence between Pebble wires and SRPT events has already been noted. 
For an SRPT process P  with alphabets lP  and oP,  we declare a Pebble block Pb_P 
with formal parameters matching the union of the alphabets of P.

As previously noted, SRPT has a set of basic constructors. We deal with each of 
them in turn.

• Process variable x corresponds to an instantiation of a declared block Pb_x.

• P  II Q is a Pebble block which contains the instantiations of Pb_P and Pb_Q.
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• p  \  o  is a Pebble block where the wires in O are removed from the formal 
parameters list and instead made internal wires by adding them to the Pebble 
block’s internal wires list L.

• P[5] is an instantiation of a declared block Pb_P with formal parameters replaced 
by actual wires as defined by the renaming function 5 : P  —> W.

More complex is P  =  [!0 ?X —> Px]. The way that we define P  in Pebble will 
depend on P.

Stateless processes
We assume first of all that we can define a Pebble block equivalent to any “stateless” 
SRPT process, i.e. if we define the group of Pebble processes

Pf {Y)  = V . Y 7 X ^ P , ( f { X ) ) ]

where /  ; FtPf —> PoPy, then there is an equivalent Pebble block Pb_Pf. This should 
be feasible as long as the primitive gates provided in the Pebble library include NAND  
since any logic function can be constructed from these gates. As noted in Section 4.1.3, 
the if-then-else construction represents a straight map from input events to output 
events.

A significant problem is that there is no external control over the output of any 
Pebble block on the first tick of the clock, whereas we can specify this output in 
SRPT. In practice it is conventional for blocks to assume the output corresponding to 
low voltages on all inputs; an OR gate would then output a low voltage on the first 
clock tick, whereas a NAND gate would output a high voltage.

Therefore we allow the SRPT processes { Pf { Y)  | Y  Ç oP/} as above, but make 
the restriction that when any such process is instantiated, the first output events must 
be /({}). This must be manually checked for each SRPT process definition in our 
system.

Processes with state
If the process has state, we write the process description as

PfAy)  =  PfMxAfi^.  «))]

where q g N and g : FiP x N —> N. This is harder to represent. We need a way for the 
Pebble blocks to track the current state. In this case we would have to define a Pebble 
block Pb_Pg which computed the state transform function g, as well as a block Pb_Pf 
which computed / ,  and connect them so Pb_Pg fed into the state inputs of Pb_Pf as 
well as to its own inputs. Figure 4.2 shows such a layout.

Note that Pb_Pf and Pb_Pg have enabling inputs ey, eg which must be high for their 
output to change; this prevents incorrect outputs occurring during the computation 

The progress of state throughout these blocks is illustrated in Table 4.3. Starting 
in a stable state, a change of input from xq to xi propagates through to a state change 
and output in two ticks. Note that the new state propagates through to Pb_Pf the 
clock tick after Pb_Pf is giving the correct output; it is only then that another change 
of X  will pass through the state block correctly.
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P a s s ( 2 )

e  p g

Figure 4.2: Pebble blocks tracking state

Time A e s s' Y
0 Xo 0 So So f{xo,So)
1 Xl 1 So So f{xo,So)
2 Xi 0 So g{xi,so) f{xi,so)
3 Xi 0 g{xi,so) g{xi,so) fî l̂ So)

Table 4.3: State changing process

SRPT processes with more than one numerical state index can be transformed 
into single-number index forms by an appropriate diagonalisation function. Note that 
we may not make the right hand function depend on Y  explicitly, according to this 
classification.

We now give an example of translating SRPT to Pebble.

4.2.9 Exam ple: S R P T  to  Pebble
A common data structure is a stack, modelling the First-In, First-Out (FIFO) data 
flow. The basic operations on a stack are Push (insert a datum onto the top of the 
stack) and Pop (remove the datum on top of the stack). This example is a stack 
modelled in Pebble.

We define a stack as follows. We assume that it has a capacity of 2”̂  entries, each 
of n bits. We note that the behaviour of a fixed-depth stack is that of a RAM block; 
we assume (for simplicity) that this RAM block is single-tick read/write. Our stack’s 
behaviour is to output continuously the number last input.

We take our previous RAM block definition and simplify it accordingly to give an 
SRPT description of the RAM block component of our stack.

iSRAM  =  {w} \J A{J E  
oSRAM = D 
SRAM = SRAM{)x)

SRAMx,d =  [ I X? Y- ^  
i î { w  ^ Y) then SRAMd{YnA),d
else SRAMq(^Yr\E),d']
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where d' = d ® {Y  C\ A q{Y H E)).
The stack has an input data stream, and a pair of controls which specify whether 

the input data is to be pushed (push) or popped {pop). When a pop signal is received, 
the data next output will be the input data last-pushed-but-one.

Another part of the stack process will control the interface to the RAM block. The 
RAM block will output the value of the top element on the stack, so a push will have 
to increment the address value and a pop will have to decrement the address value. In 
addition, it controls the write bit of the RAM block so that a pushed value is written 
in.

lSCTRL  = {push, pop} 
oSCTRL = { w } u A  

SCTRL = SCTRLqa 
SCTRLx,k = [ !A ? y -^  

if {push e  Y  A k  < 2"̂  -  l)thenSCTRLa{k+i)u{w},k+i 
elsif {pop e  Y  A k  > 0) th en  SCTRLa(k-i),k-i 
else SCTRLxr\A,k]

where a : N —> PA encodes a numerical address into the appropriate bits. We have 
refined our informal description of the stack to define unspecified behaviour, specifi
cally the actions for full and empty stacks and for both commands occurring at once 
{push has priority). This corresponds to the implementation decisions made during 
conventional coding.

Another process we will need is PASSn which is an n-bit wide single-delay pass 
gate.

The definition of STACK is now a direct composition of processes with appropriate 
event renaming:

^  — {/17 • • • j /n }

lSTACK  = F U {push, pop} 
oSTACK = D 

STACK = {SRAM  || PASS„[F][F;] || SCTRL) 
\ { E U { w } U A )

Note that the process has a two-cycle delay. At the end of the first cycle SCTRL  
has set the correct bits for entering the address, and the new data has gone through 
the pass block. At the end of the second cycle, SRAM  has updated itself accordingly 
and has output the new top stack data.

With regard to the SRPT, readers should note that the || operator is associative 
according to Law 2 in Barnes[Bar93] §5.1.1. Explicit bracketing is therefore not re
quired.

A diagram of this circuit is shown in Figure 4.3.
Translating STACK to Pebble, we see that there are several process instantiations 

combined with a hiding operator; we must therefore define {f i , . . .  ,fn, o i , . . . ,  On,w} 
as internal wires. The parameters of Pb_STACK are taken straight from the process 
alphabet. The translations of processes SCTRL, PASSn and SRAM  blocks to Pebble 
are straightforward block instantiations as described below.
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PASS

SCTRL

SRAM

Figure 4.3: A simple stack

If Pb_PASSn does not already exist then it is simple to define, as it merely connects 
each input to a corresponding output with a one cycle delay. Pb_SRAM is a RAM block, 
which we assume to be primitive to our chosen target. If it is not a primitive then we 
will have to compose other primitives to build it, increasing its delay (and hence the 
delay of the stack block) by many cycles.

Pb_SCTRL is an output prefix process with state parameter k. We therefore use 
the previously-described design of an internal state generator block, instantiated along 
with the normal decision block. The state generator consists of one path generating 
the successor state, a second path generating the predecessor state, and a multiplexer 
to choose between them.

All this yields the following Pebble declaration:

/* Declarations for our target.
* Assume that all these blocks are single-cycle.
* /

BLOCK ram(kl,k2 : GENERIC) [w : wire;
a : VECTOR (kl..l) OF WIRE; 
e : VECTOR(k2..1) OF WIRE]
[d : VECTOR (k2..1) OF WIRE];

/* Incrementer; increments a by 1, 
unless a is all Is already */

BLOCK inc(k : GENERIC)[a : VECTOR (k..1) OF WIRE]
[b : VECTOR (k..1) OF WIRE]

BLOCK passCk : GENERIC)[a : VECTOR (k..1) OF WIRE]
[b : VECTOR (k..1) OF WIRE]

/* Decrementor; decrements a by 1, unless a is 0 already */ 
BLOCK dec(k : GENERIC)[a : VECTOR (k..1) OF WIRE]

[b : VECTOR (k..l) OF WIRE]
/* 3-way multiplexer; select one of a, b or c as output d */ 
BLOCK mux3(k : GENERIC)[cl : WIRE; c2 : WIRE;

VECTOR (k.a
b
c
[d

1) OF WIRE; 
VECTOR (k..1) OF WIRE; 
VECTOR (k..1) OF WIRE] 
VECTOR (k..1) OF WIRE]
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/* Output if X and not y */
BLOCK xandnoty[x : WIRE; y : WIRE] [z : WIRE]

/* Our own declarations */

/* SCTRL state generator; 2-cycle duration */

BLOCK sgen_sctrl (m : GENERIC)
[push : WIRE; pop : WIRE; 
k : VECTOR(m..1) OF WIRE]
[n : VECTOR(m

VAR i 
VAR u 
VAR d

1) OF WIRE]
VECTORCm..1) OF WIRE 
VECTOR(m..1) OF WIRE;
VECTORCm..1) OF WIRE;

VAR iw : WIRE;
VAR dw : WIRE;

BEGIN
/* k can either increment, decrement or stay 

the same */ 
inc (m) [k] [i] ; 
pass(m) [k] [u] ; 
dec(m) [k] [d] ;
/* A multiplexer decides */ 
mux3(m)[iw,dw,u,i,d][n];
/* And the multiplex choice is determined by: */ 
xandnoty[push,pop][iw]; 
xandnoty[pop,push][dw];

END;

/* SCTRL itself */

BLOCK sctrl (m : GENERIC)
[push : WIRE; pop : WIRE]
[w : WIRE; a : VECTORCm..1) OF WIRE]

VAR n : VECTORCm..1)
VAR p : WIRE;

BEGIN
/* Note the output-input loopback connection ^a’ */ 
sgen_sctrlCm)[push,pop,a][a];
/* sgen_sctrl is 2-cycle so need a delay here */ 
xandnoty[push,[pop][p]; 
pass Cl) [p] [w] ;

END;

/* And now STACK. Note that we’ve had to add an extra
* PASS block because sctrl is 2-cycle.
* This means that STACK is now 3-cycle Cassuming
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* ram blocks are 1-cycle).
* /

BLOCK stack (m,n : GENERIC)
[push : WIRE; pop : WIRE; 
f : VECTOR(n..1) OF WIRE]
[d : VECTOR(n..l) OF WIRE] 

el : VECTORCn..1) OF WIRE; 
e2 : VECTORCn..1) OF WIRE; 
a : VECTORCm..1) OF WIRE; 
w : WIRE;

BEGIN
ram(m,n) [w,a,e2] [d] ; 
sctrl(m)[push,pop][w,a]; 
pass(n)[f] [el]; 
pass(n)[el] [e2];

END;
It is important to note that mapping into Pebble has not been straightforward. We 

should have written the SCTRL description using a formal generator function from 
the outset. In addition, target device restrictions (needing two cycles to calculate the 
generator function) have meant the insertion of extra delays in order for all the data to 
match up. In later work in Chapter 5, when we look at refining SRPT processes and 
implementing them in Pebble, we will have to remember that timing issues are likely 
to appear in the Pebble mapping.

However, the above Pebble file appears to be an accurate description of a stack and 
is parametrised by data width (n) and logarithmic stack size (m). Its reliability will 
still have to be established by testing appropriate to its required reliability in systems.

4.2.10 Sum m ary
In this section we have examined the Pebble language, summarising its main constructs 
and showing how these can be translated to and from similar SRPT constructs. This 
has established SRPT as a practical synchronous calculus in which to work, and has 
highlighted those SRPT constructs which should not be used in our future work.

Of the targets in Chapter 3 we have addressed or partially addressed:
Target 1: The process we define must be rigorous.
We have provided a systematic method for translating SRPT constructs into Peb

ble, although we have not produced rigorous demonstration that the semantics of the 
constructs are equivalent or refined.

Target 3: The process must allow the programs to have sections written in a
low-level language for speed and flexihility, but not allow these sections to compromise 
overall program reliability.

We have allowed SRPT process declarations but not definitions, and shown how 
Pebble itself permits the description and incorporation of primitive blocks whose op
eration is undefined.

Target 6: The program must be able to be compiled onto a range of existing and
anticipated PLDs.
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Pebble can be translated into VHDL, and hence onto most PLDs (with the usual 
requirements for space).

Target 7: The process must reuse existing proven tools where feasible.
The Pebble-to-VHDL compiler already exists. An SRPT-to-Pebble compiler which 

needs to be created does not yet exist; it is necessary to bridge the gap between the 
abstract state of SRPT processes and the restricted state handling in Pebble.

Target 10: The process should provide flexibility so that it may be used in situa
tions not anticipated in its original design.

This is addressed by the previously described facility to incorporate non-Pebble 
blocks into a Pebble program.

Target 14 ' [00-54 13.3.1] A Hardware Specification shall be produced which de
fines the SREH in terms of its behaviour and properties.

Pebble works by assuming uniform device-independent behaviour of the VHDL 
into which it is compiled. A step towards compilation of the Hardware Specification is 
verification of the behaviour of this VHDL subset.

In the next section we examine the SPARK Ada safety-critical systems development 
language. Our eventual aim will be to transform a SPARK Ada program fragment into 
an SRPT system, and from that form into an equivalent Pebble program. The following 
chapter with therefore evaluate SPARK Ada with that goal in mind.
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4.3 SPARK Ada

4.3.1 Introduction  to  SPA R K  A da
SPARK Ada is an annotated subset of the Ada language, as defined in the Ada 83 
and 95 Language Reference Manuals[U.S83, Int95]. Its target market is safety-critical 
subsystems, which are often embedded. It supports substantial static analysis of pro
grams including proof of absence of run-time exceptions, data and information flow 
analysis, and proof of correctness in the form of pre- and post-conditions on subpro
grams. Enforcement of the SPARK Ada subset and static analysis is done by the 
SPARK Examiner, a tool produced by Praxis Critical Systems Ltd. Proof of correct
ness and of absence of exceptions is aided by the SPADE Simplifier and Proof Checker, 
also Praxis tools.

For the purposes of this report we shall concentrate on the Ada 95 version of SPARK 
Ada, henceforth referred to as SPARK^ for brevity. The syntax of the SPARK language 
is defined in the SPARK Report [FW99]. A more detailed description of and tutorial 
in SPARK Ada is given in the book “High Integrity Software -  The SPARK Approach 
to Safety and Security” [Bar03] to which the reader is referred for more detail.

As an Ada subset, SPARK code can be compiled with existing industrial compilers 
and tools. For this reason it has been more successful than languages designed to 
bring more rigour into the software engineering development process, such as RSRE’s 
NewSpeak[Cur84]. Annex H of the Ada 95 Language Reference Manual[Int95] makes 
recommendations for restricting use of the full Ada language in Safety and Security 
applications, and SPARK’s language restrictions support these recommendations.

This section aims to demonstrate the suitability of SPARK Ada as a high-level lan
guage for implementing a design in a software /  programmable hardware combination. 
We examine the features of the SPARK Ada language, and of its supporting tools to 
see how they support reliability and verifiability. We also see how they could be used 
to provide supplemental information to a compiler.

We then look at how SPARK Ada programs might be transformed into equiva
lent HDL or SRPT processes. This lays the foundations for the refinement work in 
Chapter 5 where we will aim to prove formally this equivalence, and the case study 
in Chapter 7 where we do a case study on extracting a fragment from a SPARK Ada 
program into an HDL form.

4.3.2 Safety-critical system  developm ent process
Our goal in producing a safety-critical system is to start with a well-defined set of 
requirements, produce a high-level design for the system, refine this into a program 
in a suitable high-level language, compile this into machine code and use the code to 
program a suitable processor-memory combination in the hardware of the system being 
produced. Section 2.1 examined current practice in this area.

Coupled with a rigorous development process, a design methodology well-matched 
to the language chosen and to the system being developed should be chosen. Al
though the choice of such a process will be dictated by the agency in charge of de-

^Note: The SPARK programming language is not sponsored by or affiliated with SPARC Interna
tional Inc. and is not based on the SPARC™ architecture.
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velopment, and may use a diverse range of design tools (e.g. Rational Rose[EK99] or 
other tools based on UML) one methodology particularly well-suited to SPARK Ada 
is “INFORMED” [AmeOO] which produces a top-down design that can be translated 
into efficient SPARK. The examples developed in this thesis will use the INFORMED 
approach.

The tools for SPARK Ada development are the SPARK Examiner[Cha01] and 
the SPADE Simplifier and Proof Checker [Pra95, Pra98]. The Examiner enforces the 
SPARK language restrictions, and produces proof conditions on program properties 
which may be proven (or disproven) via the other two tools. More detail on these tools 
is given in Section 4.3.4.

The top-down development of INFORMED relies on early and frequent use of the 
SPARK Examiner to ensure that the program maintains a consistent structure. This 
contrasts with the traditional bottom-up development in C or Ada where the compiler 
validates the code, hence the code analysed must form a compilation closure. IN
FORMED design can proceed from the top downwards, when much of the lower-level 
code is incomplete, because the SPARK language allows the developer to express their 
intentions for unwritten code with annotations. In Section 4.3.3 we describe what 
annotations are, and how they are used.

4.3.3 G eneral language properties
As a general programming language, SPARK’s level of abstraction is approximately 
that of Ada, more abstract than standard C. Its type system is more detailed than the 
C type system and more strongly enforced than either the Ada or C type systems, at 
the cost of such operations as string checking or alteration requiring numerous type 
declarations and careful type conversions.

Com pilation

SPARK, being a subset of Ada, will be compiled by any standard Ada 95 compiler, 
including the validated compilers being used in the industry such as GNAT Pro (Ada 
Core Technologies), Object Ada (Aonix) and CM ART (Green Hills). Indeed, the intent 
of the language restrictions is that SPARK programs cannot be “erroneous” in the Ada 
sense of producing different results with different compilers; for instance, the aliasing 
rules make the semantics of pass-by-reference and copy-in-out compilers equivalent 
for all SPARK programs. An added benefit is that since the SPARK subset throws 
out many of the more complex Ada constructs such as generics, it tends to tread the 
well-trodden (and hence well-tested) paths in the compiler.

Ada 83 and 95 have fairly good syntactic and semantic definitions in their respec
tive Language Reference Manuals[U.S83, Int95], and SPARK builds on that with the 
SPARK Report [FW99], stating how the Ada 83 and 95 LRMs map on to SPARK 
Ada. As regards a formal definition, one has been written[Ltd94a, Ltd94b] by Pro
gram Validation Limited with support from the UK Defence Research Agency. This 
consists of the static and dynamic semantics of a subset of SPARK Ada, given in the 
Z language[Spi92]. The defined semantics has been used within Praxis but is insuffi
cient to specify the current language subset because of two points: the language has 
since moved on (e.g. embracing Ada 95, allowing individual record fields as procedure
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parameters, allowing read-only and write-only variables) and the subset fully defined 
omits some aspects of the language such as type ranges and named aggregates which 
are now common in SPARK programs.

R un-tim e

After compilation Ada programs are normally linked in with a compiler-specific run
time which provides the services associated with the more complex language properties 
such as tasking. Certain Ada language profiles such as GNORT (Ada Core Technolo
gies), CM ART (Green Hills) and Raven (Aonix) are designed to eliminate or minimise 
the size of this run-time for reliability and space reasons. The SPARK subset requires 
minimal run-time support and works with these profiles.

Typing

Ada’s strong type system provides better visibility and enforcement of the numeric 
range of a variable than languages such as C afford. Ada’s run-time C onstrain t_E rror 
exception indicates that a variable’s value has gone outside its defined type. Taking this 
idea further, the SPARK Examiner run-time checker generates verification conditions 
that aim to show that the code is free from run-time exceptions e.g., due to arithmetic 
overfiow or to a variable’s value falling out of type.

SPARK includes a subset of Ada 95 modular types, which is useful for arithmetic 
using arbitrary bit widths. It also includes the ability to declare types of arbitrary 
numerical range. This will enable us to perform calculations confident that a variable is 
within a restricted range of values, and the run-time checks generated would determine 
whether the result of the calculation will also fit in a restricted range.

Control flow

SPARK includes most of Ada’s control flow constructs, except the goto statement. 
The restrictions it places on control flow relate to control flow graphs being well- 
formed according to the Semi-Structured Flow Graph grammar [FKZ75]. For instance, 
the exit points of a loop must always be at the “edge” of the loop, not inside compound 
statements within the loop. This ensures that each exit check is traversed once during 
a full loop.

The control flow restrictions allow information flow analysis as described by Carré 
and Bergeretti [CB85]. This is key to SPARK’s ability to detect ineffective statements 
and use of potentially uninitialised variables.

Program  structure

As a subset of Ada, SPARK has many features typical of high-level imperative lan
guages, including a module hierarchy. The Ada language, and SPARK, provide two 
structural components for programs: packages and subprograms. A package comes in 
two parts: a specification which declares the types, variables and subprograms which it 
exports, and a body which contains the private data of the package as well as the imple
mentations of all declared subprograms. Packages may contain state variables whose
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values persist while the packages are in scope; for packages that are not embedded 
within a procedure, this state persists for the duration of the program.

The top level of an Ada program consists of a single main_program subprogram, 
commonly called Main, with any number of separate packages. Execution works 
through Main until the end of that subprogram. In practice, many embedded sys
tems (irrespective of programming language) tend to run in an infinite loop after some 
initialisation calculations.

Packages and subprograms may be embedded in package bodies and in the local 
variable declaration area of subprograms. So, for instance, in the body of package Q 
might be a subprogram Parse, which relies on operations provided by a package Stack 
within it. Stack itself may have an internal subprogram Pop. Using the Ada dotted 
notation of nesting, a subprogram within Parse would refer to the Pop subprogram as 
Stack.Pop and the main subprogram would refer to Pop as Q .Parse.Stack.Pop. In 
practice, Ada visibility rules make this second reference illegal.

Ada 95 introduced child packages which, among other features, enable developers 
to split a single package specification into subunits, each of which has direct visibility 
of the basic types and subprograms declared by the parent package. SPARK supports 
these with additional restrictions on visibility.

A nnotations

SPARK adds annotations to the subset of Ada that it uses. These are Ada comments 
(denoted by two dashes in sequence) followed by a third character, typically a hash. 
As a comment, an annotation has no effect on compiled code but is visible to the 
Examiner.

Annotations are used primarily to declare information that the Examiner must 
check on first inspection, then later may use to check items further up the package and 
subprogram hierarchy. They allow checks such as “no mutual recursion” to be made 
in linear time since SPARK visibility and declaration rules mean that a procedure P 
cannot call procedure Q if P comes before Q. Examples of these annotations are —# 
own X (declare package state X) and —# derives X from Y (expresses information 
fiow of a subprogram operating on variables X and Y).

V isibility

Ada requires that packages explicitly list any other packages whose types, subprograms 
or variables they reference directly. This listing is done using the Ada with context 
clause. SPARK additionally requires that indirectly referenced packages are also listed, 
using the —# in h e r it  annotation.

For instance, if package P contains state variable V which is changed by subprogram 
P.X, and procedure Q.Y in package Q calls subprogram P.X, then Ada would require 
that package Q list P as a referent. If subprogram R.Zin package R calls Q.Y then Ada 
would only require that R list Q as a referent in its —# in h e r it  annotation; SPARK 
would however require that P also be listed.

These visibility rules allow the SPARK Examiner to prevent any circular references, 
which includes banning simple and mutual recursion in subprograms. The subprogram 
dependency directed acyclic graph allows the Examiner to define an examination order 
which has the following properties:
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• each package specification is examined before its body; and

• each subprogram declaration is examined before any subprogram body containing 
a call to that subprogram is examined.

Banning recursion enables static calculation of the maximum depth of the stack 
during program execution, allowing the programmer to demonstrate that the stack will 
never overfiow. This is of particular importance in embedded systems where programs 
are required to have a high mean time between resets.

State

A package may have any number of state variables. These come into scope and are 
given initial values (if specified) when the package is elaborated; for a top-level package 
this occurs at the start of the program execution. Package elaboration order is a 
significant issue in Ada, but the visibility rules in SPARK allow developers to ignore 
it.

A subprogram may declare any number of local variables. These, in addition to 
the subprogram parameters, are only in scope and retain data for the duration of 
the subprogram. This is also true for the state variables of any packages or other 
subprograms embedded in the subprogram.

Ada subprogram parameters are given modes which describe whether the parameter 
is an input (in), output (out) or both (in  out). It is illegal to write to a mode in  
parameter, though it is legal to read an out parameter.

SPARK additionally requires that subprograms list in a —# global annotation all 
the state variables which they use, along with their modes. In the earlier example, 
subprogram R.Z would have to list variable P.V -  even though P.V may well not be 
visible to it under Ada rules! Through the SPARK annotation, all the side effects of a 
subprogram can be known at analysis time, allowing precise flow analysis.

SPARK requires that the state variables in a package be declared in an —# own 
variable annotation in the package specification. Any variables declared in the body 
may be aggregated into a single abstract state variable. This enables encapsulation of 
the package state inter-dependencies in the body, reducing the complexity of annota
tions for any subprograms calling subprograms in the package specification.

Flow analysis

Data flow analysis[CB85] of a subprogram S validates that the variables imported and 
exported by the subprogram correspond to those specified by the user in the declaration 
and in the declarations of all subprograms called by S.

SPARK has the option of allowing information flow analysis as well. This goes 
further, allowing the developer to specify how the exported variables depend on the 
imported variables and checking that the program information flow matches the devel
oper’s design intent. This is done by computing the products and transitive closures 
of Boolean matrices representing the variable dependency information of individual 
subprogram statements.
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Tasking

A significant omission in current SPARK, as compared to Ada, is Ada’s notion of 
tasking. Tasking was omitted from the SPARK subset because it can be extremely 
complex and difficult to reason about.

Because the Ada 95 tasking model has improved on the Ada 83 tasking model, 
it has become possible to define subsets of the tasking constructs with desirable de- 
terminacy and performance properties. The Ravenscar tasking profile[BDR98] is the 
a deterministic scheduling subset of Ada 95 which will be adopted formally in the 
Ada OY language; in the meantime, it has been incorporated into release 7 of SPARK 
Ada[Cha03].

M em ory-m apped I /O

Previous use of SPARK in embedded systems such as SHOLIS [KHCP99] using memory- 
mapped 10 pointed to a problem in the way it treats variable initialisation. Suppose 
that we have a design that uses page zero of memory to communicate with a PLD or 
other piece of hardware across a bus. Ada (and, indeed, SPARK) allows us to define 
a variable supplemented with a “use clause” that specifies the exact memory location 
and /  or data format to be used. We might define two 8-bit registers X and Y for input 
and output respectively thus:

BASE_ADDR : co n stan t ;= 0;
type Byte i s  mod 256;
fo r  Byte^Size use 8;
X : Byte;
fo r  X’Address use (BASE_ADDR + 16#010#);
Y : Byte;
fo r  Y’Address use (BASE_ADDR + 16#014#);

This maps X to location hex 010 and Y to location hex 014. Typical use would be 
to write a value to Y to transfer the data to a PLD, and to read from X to read data 
from the same PLD.

We might produce some control code which looks like:

Y := START.PROCESSING;
w hile (X /= ENDED_PRGCESSING) loop 

U t i l i t i e s . S leep (S );
end loop ;
Y := RESET.REGISTERS;

The intention of this is to start some processing in the PLD, then every 5 millisec
onds poll the PLD for a “completed” flag. Once this is done we reset the PLD registers 
in preparation for a new calculation.

Naively, the SPARK Examiner would not accept this code. From its point of view, 
Y is being written to twice without being read, hence the first assignment is ineffective. 
And in the loop, X is not an export of procedure U t i l i t i e s  .Sleep so the loop will 
either not happen at all, or will be infinite.
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However, the SPARK language now permits specification of variables as read-only 
or write-only, and the Examiner can correctly flow-analyse code which uses them. X 
and Y would be declared as package own variables where they would be given modes in  
and out respectively. The release note for the SPARK Examiner 6.0 [ChaOl] describes 
this concept in detail in Appendix A; there are some complexities involving mixed 
mode state in package refinements that can trip up the unwary developer.

Since Ada programs are likely to use memory-mapped I/O  to communicate with 
external devices such as PLDs it is important that we have a model in SPARK for how 
this communication occurs.

4.3 .4  S tatic analysis and provability
SPARK is designed to perform static analysis as defined in Section 2.2.2. Using the 
Examiner for information flow analysis picks up not only common errors such as use 
of uninitialised variables, infinite loops and potential aliasing, but also reveals quite 
detailed information about the structure of the program in terms of data coupling 
between packages.

The user can also choose to employ more detailed methods for selected procedures. 
The Examiner contains a Verification Condition (VC) Generator that can be used to 
attempt to prove correct a subprogram in terms of the pre- and post-condition model 
on which Z is based, and which we will use in Chapter 5. Using the run-time exception 
and overfiow checks option, discussed above, also enables the user to show absence of 
run-time exceptions.

From a given subprogram, a set of Verification Conditions (VCs) is generated for 
each path through the subprogram. The VC set for a given path consists of a list of 
hypotheses which are true for that path, and one or more conclusions which need to 
be deduced from the hypotheses for the path to be well-formed.

The extra complexity of these options arises because the Examiner itself simply 
generates files describing the sematics of the subprograms concerned, along with the 
user’s requests (e.g. that no variable goes outside its type range.) Use of two other 
tools is then required. The SPADE Simplifier[Pra95] processes these files to eliminate 
irrelevant and redundant information, and performs some automatic simplification of 
hypotheses and conclusions. It is possible that these simplifications will be sufficient 
to discharge the VCs. If not, the user may either to prove the remaining assertions by 
hand or use the SPADE Proof Checker[Pra98].

In Chapter 7 we generate run-time exception checks with overfiow for a substantial 
SPARK program to demonstrate that it is a practical technique for software develop
ment.

4.3.5 Sum m ary o f SPA R K
For the purpose of this work, SPARK Ada’s strengths as a language for hardware /  
software co-design of safety-critical systems are in its formal definition, the information 
it provides about variable data types and flow, compatibility with industry-strength 
validated compilers and the existence of tools to support detailed analysis and proof 
of programs written in SPARK Ada.

121



Its main weaknesses are the gaps in its formal semantics and omission of some use
ful Ada constructs which would be amenable to analysis e.g. simple generic package 
declaration and instantiation. However, despite these weaknesses the language is fun
damentally strong enough and well-defined enough for us to use and reason about its 
behaviour.

4.3.6 SPA R K  interfaces
Now that we understand the main properties of SPARK, we examine how to interface 
SPARK to programmable logic. The architecture that we are assuming for the system 
discussed in the remainder of this section is a conventional microprocessor and memory 
on a bus, executing a compiled SPARK program, with a PLD also interfaced to the 
bus.

Suppose that we have a set of operations, and maybe some state, that are held 
within a PLD, to be controlled by a SPARK Ada program. The rest of the system 
is intended to run in software on the microprocessor. We will now consider how to 
interface beween the PLD and the Ada software. This section aims to establish that 
Ada programs can communicate with PLDs and be annotated in such a way that the 
SPARK Examiner accepts the Ada code and correctly models the actual information 
flow in this interface.

M em ory-m apped I /O

We will need to be able to access the input and output pins of a PLD from Ada. As 
explained in Section 4.3.3, memory-mapped I/O  can be set up so that, for instance, 
one page of addressable memory is mapped to the PLD input and output pins, via 
the memory management hardware of the system, and variable X (respectively Y) is 
mapped to the input (respectively output) pin area of the page. Assigning a value to 
X will effectively input to the PLD pins; reading from Y will effectively read from the 
output pins.

The variables X and Y will be state variables of some package P, so according to 
SPARK rules X and Y must be declared as —# own variables of P. However, since X 
and Y are memory-mapped then the developer must specify whether they are mapped 
as an input (mode in) or output (mode out) in order that the Examiner not complain 
that the variable is never assigned to (for mode in) or never read (for mode out).

Library interfaces

An alternative is to control writing to and reading from the PLD with a software 
library which is not written in Ada; C is a common choice by device or COTS operating 
system vendors. However, there needs to be some interface at the Ada level. To do 
this, the Ada language requires the developer to provide a package body incorporating 
subprogram declarations marked by a pragma In te rface  statement, denoting a library 
interface call. Ada calls to these subprograms are translated by the compiler to calls 
to the library subroutines.

The package specification will declare SPARK-compliant subprograms that wrap 
each interfaced routine. SPARK requires this package specification so that it can 
perform an analysis of the program where calls to this package are made; the developer
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is therefore required to add SPARK annotations that represent the actions of the 
library for each call. It is usual to give the package specification a single —# own 
(state) variable representing the state of the logic device, and have the state change 
at each operation. The package body is typically excluded from SPARK analysis since 
local types may need to be declared that are not SPARK-compliant.

It is important for the correct information fiow analysis of the rest of the program 
that the developer’s annotations be a faithful representation of the PLD’s operations. 
For example, if the PLD’s state changes as the result of an operation K, but the anno
tation for K does not reveal this state change, then any safety or security arguments 
which rely on the PLD not changing state between two points cannot usefully appeal 
to the information flow analysis done by the Examiner; all the possible paths between 
the points would have to be checked for calls to K.

4.3 .7  Partial com pilation
It is conceivable that a developer would have an existing SPARK program which runs 
entirely in software, and wish to compile some of it into programmable logic. This 
could occur if:

1. the software as it stands cannot meet performance requirements;

2. the PLD hardware is planned to arrive late in the project schedule and the
program must be unit- and system-tested before it arrives; or

3. an emerging system hazard has indicated the need to move some functionality
out of the program’s direct address space (e.g. a safety monitor).

Assume that the software to be compiled is some package P of the program. How 
should we go about this?

First, we should establish that the software to compile is true SPARK; this is easily 
done by running the Examiner on P’s specification, body and subprograms. Second, 
we should show that the software is free from run-time exceptions, by generating VCs 
with the Examiner and proving them via the Simplifier and Proof Checker or manual 
proof review. At this point we should consider whether adding proof statements to 
some of P’s subprograms would be helpful to the compiler; if so, these will need to be 
proven as well.

Next, we need to consider whether we wish to make the use of a PLD explicit in the 
program. If we do, we can use either the library interface package scheme to make PLD 
library calls, or write directly to registers with an MMIO scheme, replacing existing 
code in subprograms. We must then change our annotations to reflect the new state 
variables and rerun the Examiner on the subprograms.

The disadvantage of these approaches is that any new state or subprogram in
formation fiow changes will “bubble up” through the program, causing any package 
depending on our compiled package to change its annotations. This is tedious, espe
cially since operations pushed out to programmable logic tend to be at the leaves of 
the program calling tree, and so much of the program may be affected.

Better would be to leave the original package annotations intact. But how can 
we be sure that they are accurate? This will depend on the reliability of the compile 
transformation.
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If we can ensure that the compiled PLD code and the original SPARK are refine
ments of the same original specification, this gives us the advantage of being able to 
develop and test the software independent of the hardware, removing a dependency 
tie from the system development plan. Certainly there will eventually have to be tests 
to check that the PLD program integrates properly with the software with particular 
attention paid to timing issues, but these can be run quite late in the development pro
cess since timing-related changes should be localised in the program and not change 
the results of much of the unit, system and functional coverage tests.

With this in mind, we now look at how to partition a SPARK program into hardware 
and software components.

4.3.8 P artition ing
A SPARK program provides significantly more information relevant to partitioning 
than an Ada program. For each subprogram we know exactly the variables which it 
requires as imports and exports, the numeric ranges of these variables, and we can even 
add extra constraints on imported variable values and show whether they are satisfied 
at every point in the program where the subroutine is called.

Information flow annotations additionally describe how the subprogram imports 
depend on the exports, which may give us a starting point for a decomposition of the 
subprogram.

If increasing (or, indeed, maintaining) overall program execution speed is important, 
we must establish that the increased calculation speed provided by the PLD offsets 
the cost of I/O between software and PLD; the imported variables are copied to the 
memory-map inputs, then the program waits for the output values to be flagged as 
ready and copies them back to the exported variables. Therefore a selected subprogram 
should have a software execution time significantly greater than this two-way copy and 
transmit operation.

The bit width of imports and exports should be calculated, and “narrow” subpro
grams be favoured over “wide” ones. The developer should bear in mind the bandwidth 
and routing problems that affect most PLDs.

Finally, we should aim to encapsulate changes. Therefore, if the PLD-migrated 
subprogram S calls subprogram T, then both S and T need to go into hardware; if T is 
not called from any other part of the software then all the better, since it will effectively 
become an embedded subprogram of S. Essentially, we are aiming to create a package 
with the minimum of public subprograms where a compilation closure of a subset of 
the package body is in hardware.

4.3.9 C om pilation - a first cut
Suppose we have selected subprogram S to be compiled into hardware, with imports 
fi, . . . ,  im and exports j i , . .. ,jn- We shall ignore the case where a variable is both 
imported and exported since the input and output pins are physically separate on the 
PLD and so there is no issue with the newly calculated PLD outputs interfering with 
the original PLD inputs. For each variable we have a known data range, which we will 
translate into a bit width. At the moment we will assume that all these widths are
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small as this allows us to assume simple bit-parallel communication of variable data 
which completes in one clock tick.

The information flow annotations of S describe variable dependency. For each 
export we know exactly which imports it depends on. We can therefore produce a 
design where each export is the single output of a block, whose inputs are the imports 
that the export depends on.

The subprogram that computes each export can be derived from the original sub
program as follows:

1. delete all imports that do not affect our selected export, and all exports apart 
from the selected one;

2. delete every statement in the subprogram that uses any deleted import, or assigns 
to any export other than the one we want;

3. rerun the SPARK Examiner, and delete all the assignments which it reports as 
ineffective;

4. if any ineffective assignments were reported, go back to step 1.

This can be shown to be semantically equivalent to the original by arguing that:

1. the Examiner correctly identifies the information fiow in any subprogram;

2. we create a subprogram for every export, and therefore our argument reduces to 
showing that the algorithm works for any given export;

3. there is a finite number of assignments in the subprogram and therefore our 
algorithm terminates;

4. in any statement except a procedure call with more than one export, all imports 
of that statement affect the statement export;

5. we have already recursively applied this algorithm down the subprogram tree to 
such change procedure calls to sequential calls to reduced procedures computing 
single exports; and

6. if there were a statement which affected our export and which we had deleted, 
it must have either used a deleted import (in which case the import must have 
affected our export and hence could not have been deleted) or been reported as 
ineffective (in which case it could not have affected our export at all).

Now we are left with a subprogram that computes one export. How do we compile 
it to a form suitable for execution in a PLD?
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4.3.10 C om pilation o f SPA R K  code
We examine the general problem of mapping SPARK code from inside a subprogram 
directly onto a typical PLD. We do not consider the specific (and substantial) prob
lems involved in producing a safety-critical PLD implementation, e.g. making the 
transformation suitable for arguments about preservation of program semantics.

We examine three possible paths from SPARK to PLD:

1. to develop, for each SPARK construct, a bespoke PLD “interpretation” which 
can be composed together;

2. to formally transform source code to PLD through formal refinement, based on 
the previously-provided semantics; or

3. the development of a SPARK “interpreter” on a PLD.

The first is the hardest to implement, it being difficult to show that the transfor
mations induced are sound with respect to our semantics. For illustration of these 
difl[iculties, we describe the transformations envisaged as necessary, isolating the parts 
that would introduce real difficulties.

The second leaves the developer with work to do every time that the refinement is 
needed. The benefits are that the semantics that justifies the transformation already 
exists, and it can work at various levels of criticality -  from a handwaving justification 
that a predicate is true through to a 10-page proof that a given refinement step is valid.

The third has the benefit that, once the transformation is proven correct, its subse
quent use produces valid hardware that is suitable for safety-critical use whenever the 
original SPARK code was suitable. Of course, as Stepney has shown[Ste98] the steps 
involved in high-integrity transformation are difficult to get right. It is unlikely that 
such a PLD-based interpreter could be certified as appropriate for the higher levels of 
integrity. We do not attempt to produce these transformations in this work.

We begin with the first option, the development of PLD representations of each 
SPARK language construct.

Syntax

Sequential SPARK subprogram body code consists of a sequence of the following classes 
of code:

• assignment of an expression

• fo r  loop

• i f  -  e l s i f  -  e lse  -  end i f  block

• while loop

• simple loop

• procedure call

• case block
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There are two forms of in-statement evaluation: an expression (as found on the 
RHS of an assignment) and a condition (as found following i f  or e ls i f ) .  Note that, 
unlike C or full Ada, conditions and expressions may not have side effects; they change 
no variables themselves. Expressions and conditions may involve calls to functions but 
these functions do not have side effects.

Sequential com position

For each item in the sequence, the SPARK flow analyser will tell us its imports and ex
ports. Any subprogram local variables are included in the flow analysis, and eventually 
removed for the purpose of calculating the whole subprogram flow analysis. Iterative 
constructs such as while loops have their information flow calculated using the algo
rithm described by Barnes[BarOS] §10.8. If we can produce a block for each sequence 
item, we can connect inputs and outputs in the appropriate sequence to produce a full 
computation.

Note that some items in the sequence may produce an output that is not needed by 
their successor. In that case the output can be connected directly to the first successor 
that needs it. If consecutive items P,Q are such that no export of P is an import of 
Q then P and Q can be placed in parallel. They must, however, be synchronised in 
some way so that the computations that follow will process P and Q only when both 
are ready.

To manage this, and the more general issue of “computation complete” for the 
subprogram we implement a simple protocol with input and output control bits. Each 
hierarchical block B in the program has one input and one output bit, with each output 
bit connected to the inputs of one or more other blocks that use the data from B. At 
program start each input bit is low and each output bit is low.

When the PLD receives data from the SPARK program, the input bit for the entire 
subprogram block will be set high to signal valid input data. The PLD computation 
then starts, with the high input bit travelling across the PLD to track the computation 
progress. When each block’s computation is complete the output bit is set high and the 
block waits for the input bit to go low. The blocks to which the output bit is routed will 
then copy over the block’s output data and signal back that this has happened; once 
all child blocks have signalled back, the block pulls its output bit back to low and is 
left waiting for its input to go high again. The entire subprogram block will eventually 
have its output bit go high, at which point it writes data back to the SPARK program.

Figure 4.4 shows an example of data being passed from block A to block B to block 
C, with the computation complete signal travelling the same path later on.

Code constructs

SPARK assignment will be represented in the PLD by a set of lookup tables which 
compute the RHS expression in stages. This is not hard unless a function forms part 
of the expression; in this case we will have to produce a block for that function and 
wire it into the computation.

A fo r  loop provides a loop variable which its enclosed block takes as an additional 
input. Short loops with static iteration ranges could be unrolled altogether; however, in 
the general case it would be necessary for the loop’s block to route its outputs back to 
its inputs, and to have control logic that raises a flag once the computation is complete.
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Figure 4.4: Handshaking across blocks

Conditionals such as i f  and case blocks have code blocks which are placed in par
allel, and a multiplexer which selects inputs depending on the conditional statements. 
Note that each block in these statements must have the same exports, so must import 
any exports which they don’t change.

while loops and simple loops work like fo r  loops but without the loop variable. 
Any use of the e x it statement will set the “output valid” control, as will the main 
loop test for the while condition. The SPARK restrictions on control flow (following 
a semi-structured flow graph) help in this respect as the exit points are always on the 
outermost part of the calculation.

Subprogram (procedure) calls are inlined by inserting the block representing that 
subprogram. The enforced ban on circular or recursive subprogram calls ensures that 
the inlining will eventually terminate at a set of “leaf” subprograms that do not contain 
any further subprogram calls. Note that this method would be inefficient in space usage 
if a particular subprogram was called at several points within the compiled program.

Packages w ith  state

Suppose a package has internal state, invisible to other packages by Ada rules. This 
state will be stored in the PLD, so will change the aforementioned layout by adding a 
RAM block to store the state, routing the RAM output into the sequence items like 
a normal import, and, in the case of a write, routing the exported data back to the 
RAM store with a write bit set.

B it serial versus bit parallel

All the above has assumed that we are working in bit parallel form. However, there 
are many cases where input data may be very wide, for instance in the case of an 
array with a wide range or a record with many fields. Passing this into the PLD in bit 
parallel form would quickly use up routing resource, especially if the entire variable is 
routed between several statement items. Is there an alternative?
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For records, it is not hard to slim down the data. The Examiner does flow analysis of 
subprograms at the record component level, so although the entire variable is imported 
the Examiner knows which flelds will be imported and exported at each stage. It is a 
relatively simple matter to treat the record as a list of distinct variables.

Arrays are more difficult. Array indexing is, in general, dynamic and hence not 
susceptible to static analysis. In the worst case it is computationally infeasible to 
determine which array elements may be used at a given stage of computation. However, 
there are optimisations which may be used in some cases at the possible expense of the 
clarity of correspondence between the PLD and SPARK representations.

Often, entire arrays (or subranges of them) are changed with a for loop. If a rela
tively small subrange is used, the Examiner would be able to check that any reference 
to an array element is made with an index with a given subrange, reducing the amount 
of array data that needs to be exported or imported. This would require a modification 
to the Examiner to maintain a “defined” flag bit for each element of any non-imported 
array with a range below a set limit.

Alternatively, we could find that the only references to an array are within a fo r 
loop, with array indices corresponding to a 1-1 function of the loop variable (and of no 
other variables). As long as the RHS of any assignment to the array is not dependent 
directly or indirectly on the loop variable, the entire function can be replicated any 
number of times to calculate the array value over arbitrary subranges. In addition, the 
SPARK code could supply the subrange parameters and so use a number of calls to 
the hardware to compute the entire array change in sections. This gives the developer 
an ideal opportunity to trade execution speed against PLD area.

These techniques are intended as an example of the trade-offs that can be made in 
compilation. They show how the extra information obtained by the SPARK Examiner 
can be used to have confidence that such optimisations preserve the correctness of the 
code.

Justification o f equivalence

The dynamic semantics of SPARK Ada[Ltd94b] are defined for each construct in terms 
of modifications to a collection of variable state information. In order to reason about 
the correctness of transformations into PLD form we need to be able to relate the 
semantics of a SPARK statement P to the semantics of a PLD block Q which is intended 
to represent P.

We must define the semantics of the PLD block Q in terms of its transformations of 
data between its input control bit being set high and the block setting its output control 
bit high. Our SPARK-to-PLD transformation has defined some functions Q7, QO : 
V  X N —> P W from the legal values of each imported (respectively, exported) SPARK 
variable from the variable set F  =  V/ U Ko to appropriate representations of the data 
by high voltages on a combination of wires Ç W  going in to (respectively, coming 
out of) the block. We represent the distinct values of a variable by natural numbers; 
that this is adequate follows from an argument appealing to the behaviour of a correct 
compiler which must represent each value of any variable by a bit pattern within a 
flxed-length field in memory. The inverse functions QI~^, Q0~^ describe the variable 
values represented by a given combination of wire high-voltage states.

Any given statement in the SPARK program P updates the variable store a to
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represent its action on variable values. The simple assignment of an expression ev to 
a local variable fullname^ for instance, is expressed by a deduction rule AsgnDl (on 
page 109 of [Ltd94b]) which updates a by:

a 0  {fullname ev}

The corresponding definition on Q will be in terms of the traces of the SRPT process 
representing Q. If ci is the input control bit and co is the output control bit then an 
equivalent statement for the assignment block A in Q would be:

V/ >Q .
[ci ^ t[i] A ci e  t[i +  1]) => {3k > 0 : co E t[i-h I /?])

A Q0~^{fullname, t[i + 1 -i-k]) = 
ev{QI~^{t[i-\-l]))

Clearly, the semantic mapping outlined above would have to be expanded and 
formalised if this hierarchical translation method was to be developed formally. The 
weakest precondition semantics of each SPARK construct would have to be refined by 
the PLD implementation.

4.3.11 R efinem ent
A second approach is to produce a formal specification of the function performed by 
a SPARK subprogram, and refine this to a custom implementation in hardware. This 
throws away the SPARK implementation, taking advantage of the parallel computa
tional model presented by the PLD. How do we ensure that the SPARK implementation 
is therefore equivalent?

SPARK enables the developer to specify pre- and post- conditions for subprograms, 
and prove the correctness of postconditions given preconditions by generating and 
proving verification conditions. Therefore we can have confidence that our SPARK 
implementation does what is specified. Alternative approaches are model-checking and 
animation, both of which are used by the P r o B tool which supports programs written 
in the B language [Abr96].

The implementation difficulty is going to be showing that our custom implementa
tion satisfies the VCs as well. This is something we address in Chapter 5. The separate 
difficulty of providing an accurate specification is a well-known software engineering 
problem[DvLF93, Vic98, HRHOl] which lies outside the scope of this thesis.

4.3.12 SPA R K  interpreter
The third alternative to the approach of transforming an isolated package into PLD 
form is to produce a SPARK “interpreter” that runs on an PLD. Such an interpreter 
would be able to operate on any number of SPARK packages, running a computa
tionally intensive program without any need to synchronise control with conventional 
SPARK code. It would also have the advantage that its operation need only be proven 
correct once; any SPARK program would be represented as data within it.

In Chapter 6 we describe one possible interpreter, with a number of customisable 
parameters. Different designs are certainly possible; this is only one example.
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We do not attempt to reason in any way about the correctness of this particular 
design. An analytic proof (such as would be required by standards such as Defence 
Standard 00-54[MoD99] for system functions at SIL 3 or SIL 4) would be much more dif
ficult than that for the refinement or hierarchical implementation approaches described 
above, since the ability to map between relatively small SPARK and PLD constructs 
would be lost; the proof would not be that a particular program was executed correctly, 
but rather than any valid SPARK program was executed correctly.

Conventional Ada 95 compilers are validated against the ISO standard ISO/IEC- 
18009:1999[cJ99] using the publicly-available test suite “ACATS” which contains over 
3600 programs. At the minimum, validation of a SPARK interpreter would have to 
include running each SPARK-compliant AC ATS program and verification of the results. 
This may be adequate to qualify the use of the interpreter for system functions of 
limited criticality, although each project using the interpreter would have to justify its 
use in the project safety case.

High integrity Ada compilers such as GNAT Pro High-Integrity (Ada Core Tech
nologies) and Object Ada (Aonix) go through additional verification activities and 
provide documentation of these activities to end-users; for safety-critical implementa
tions they use restricted subsets of Ada 95, such as GNAT NO RunTime (GNORT), 
C-SMART and RAVEN. The verification for a SPARK interpreter at high levels of 
integrity would include at minimum the proof of key interpreter properties (liveness, 
preservation of data ordering, freedom from race conditions), but the list of verification 
activities required for a particular safety integrity level and application domain would 
emerge from a detailed safety assessment.

4.3.13 Sum m ary
In this section we have described the SPARK Ada 95 subset, shown how its properties 
are helpful in the task of compiling it into a form suitable for execution on a PLD, and 
described two possible compilation forms as well as more general considerations for the 
SPARK-PLD interface.

Of the targets in Chapter 3 we have addressed or partially addressed:
Target 2 : The process must help the developer to write unambiguous programs.
We are programming in SPARK Ada 95, an annotated Ada subset with compiler- 

independent semantics.
Target 3: The process must allow the programs to have sections written in a

low-level language for speed and flexibility, but not allow these sections to compromise 
overall program reliability.

SPARK shadows and hide annotations allow the insertion of arbitrary Ada code, 
which may include assembly language.

Target 4 : The process must admit substantial static analysis to discover semantic 
program errors at or before compile time.

The SPARK subset is enforced by the SPARK Examiner, which also performs 
information- and data- flow analysis to verify the program against design information.

Target 6 : The program must be able to be compiled onto a range of existing and
anticipated PLDs.

We have made no assumptions about the target PLD other than that it is large 
enough to contain the SPARK program (or interpreter) being transformed.
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Target 7; The process must reuse existing proven tools where feasible.
The SPARK Examiner tool already exists, and we have noted where it may be 

extended in small ways to support transformation activities. The information held 
by the tool after the analysis phase strongly supports PLD-targeted transformation 
activities.

Target 10: The process should provide flexibility so that it may be used in situa
tions not anticipated in its original design.

We have presented three approaches to transforming SPARK programs, aimed at 
code of differing integrity levels.

Target 11: The process must admit justification to the project safety authority
that the programs output by the process are of an adequate integrity level.

We have shown in Section 4.3.10 how the hierarchical transformation process might 
be validated against the existing semantics for SPARK, and how the refinement ap
proach changes the validation required to the proof that an SRPT process refines a 
specification.

Chapter 5 will demonstrate how to produce a custom PLD implementation from a 
formal subprogram specification, allowing us to produce SPARK and PLD implemen
tations which are formally equivalent but markedly different in form. This supports 
the second approach discussed in Section 4.3.11, of transformation-by-rehnement.

Chapter 6 will break down this section’s overview of a SPARK interpreter into 
a detailed implementation, showing how the conflicts discussed in Section 4.3.12 are 
resolved and aiming for demonstrable reliability.

The case study in Chapter 7 will demonstrate construction of an example safety- 
critical system in SPARK Ada and mapping part of it into a PLD while preserving its 
functionality.
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Chapter 5 

Refining To SR PT

Refinement is one of the building blocks of formal methods. It is a way of going 
from a relatively abstract statement of a problem to a system which can be built with 
no further intelligent, human involvement, and which can be shown mathematically 
to solve the problem stated. Much research has established formal refinement as of 
appropriate rigour for safety critical systems development ([ORS96] is a pre-eminent 
example, distinguished by its completeness).

In this chapter we describe a formal refinement calculus for high-integrity software 
running on a PLD. Through the refinement calculus, we will be able to address the 
concerns of rigour.

5.1 The Refinement M odel
There are many approaches to refinement; for instance, see Back [BvW94] and Morgan 
[Mor94]. Of particular relevance to our approach in being based on reactive action 
systems is the refinement of Back. There, refinement is defined in terms of traces. We 
follow a broadly similar form in our semantics, although the deterministic nature of 
our SRPT subset means that we avoid some of the complications encountered by Back.

Action systems describe the behaviour of a parallel system in terms of the atomic 
actions that can take place during the execution of the system. Back’s approach to trace 
refinement uses simulations between action systems to construct an abstract behaviour 
that approximates a given concrete behaviour. By contrast, the deterministic SRPT 
subset that we use allows us to refine traces directly.

The syntax of our abstract specification is similar to that used by Morgan. This 
describes a system:

w : [ p r e , post ]

where w is a set of free (changeable) variables in the system, p re  is a predicate speci
fying the precondition on states that can be assumed for the system, and p ost is the 
predicate on w which the program produced by the system must satisfy.

This model is based on the predicate calculus. The pre-conditions and post
conditions are predicate calculus formulae. The conditions define a contract for a 
program to fulfil, as described by Morgan. We now give an overview of the refinement 
process in Morgan’s model as an example of what we are aiming to achieve.
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5.1.1 O verview  o f a refinem ent process
Within Morgan’s model, each system being developed is refined through a series of 
well-defined transformations based on proven sound refinement laws to a program ex
pressed in a simple machine-independent language. The language used by Morgan as 
“code” (the executable form of a program) is a language of guarded commands, which 
has alternation, iteration and subprogram call control structures similar to those found 
in most modern imperative programming languages. Commands are composed sequen
tially within subprograms. This language is augmented with Morgan’s program speci
fication syntax to express parts of the program which have not yet been developed to 
code. The semantic basis of the refinement is Dijkstra’s weakest precondition calculus 
[Dij75].

The theoretical basis o f refinem ent

Refinement itself occurs in a system defined by pointwise extension of a partially ordered 
set (“poset”) which itself is equivalent to a lattice. The poset comprises a set L of 
elements (predicates) and a binary ordering operator (the partial order) for elements 
of L denoted <. Partially ordered sets are described in more detail by Miller and 
Dushnik[DM41].

The programs in Morgan’s model are predicate transformers, transforming predi
cates according to weakest precondition semantics. Given a program P = w : [ p r e , post ] 
and a predicate q, ii q => pre then P{q) =  q' where q' is q transformed by post 
according to weakest precondition semantics. The refinement relation Ç between pro
grams corresponds to the ordering of the predicates on which they are based. More 
detail is given by Back[BvW94].

The symbol =  in the context of refinement means “refines in both directions” . If 
X  = Y  then X  Q Y  and Y  Ç. X .

Exam ple o f refinem ent

In Morgan’s system, denotes the simultaneous substitution of E  for each
instance of w in expression X .  Law 1.3 (p.9) states that if

pre => post [w\E]

then

w, X : [p re , post] Q w  E

where Ç is read “refines to” and : = denotes the assignment operation in the language 
of guarded commands. The variable x is unaffected by the simultaneous substitution of 
E  and in fact vanishes after the refinement; since w and x are independent, an intuitive 
interpretation of this is that the true or false value of post was unaffected by x.

According to this law, the program statement w : = 5 is a refinement of the speci
fication

w : [ tr u e , w =  5 V w =  6]

since true (5 =  5) V (5 =  6).
Other code constructors include alternation, sequential composition iteration and 

procedures, and there exist laws for introducing these from certain specifications.
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Pathological specifications

Some specifications cannot be refined to code, and are termed “infeasible” . Other 
specifications can be satisfied by almost any code. Pathological examples of these 
forms of specification include:

w : [false, tru e ] “abort” 
w : [ tru e , tru e ] “choose w”
w : [ t r u e , false ] “magic”

ab o rt is never guaranteed to terminate and may do anything to its variables, choose 
w terminates and changes w to an arbitrary value. The program statement skip is a 
special case of choose where no variable w is supplied, magic always terminates and 
establishes the impossible condition false ; no program can satisfy this specification.

R etrenchm ent

There also is an issue of feasibility regarding the types of variables permitted. For 
instance, assignments involving set operations are permitted, though conventional im
perative languages do not implement such operations natively. Exact arithmetic with 
irrational numbers is also allowed, in contrast to the imprecise fioating point arithmetic 
model used in common imperative languages such as C, Perl and Ada.

This problem is a known issue in the development of software for high-integrity
systems. A common solution is to specify real-number calculations using error bounds 
(often denoted e) so that a specification of an implementation F  of a real-number 
calculation might be:

I F{x, y) -  -h 3%̂ ) |< e

This may be an acceptable approach for individual equations, but for a system 
which depends on sequential real-number calculations this approach can quickly make 
specifications hard to read accurately.

Large-scale formal reasoning about moving from exact to imprecise calculations may 
require the use of re/renc/imen/[BP98]. This is in many ways the opposite approach 
to refinement, allowing strengthening of the specification precondition and weakening 
of the precondition to reason about the program correctness in the context of loss 
of accuracy in the data type transformation. Since PLDs are often used for numeric 
calculations, retrenchment or related techniques may prove useful when specifying and 
refining programs to run on them.

5.1.2 Suitability  o f m odel
Morgan’s refinement model starts with a specification at an arbitrary level of abstrac
tion, and allows step-by-step refinement of that specification to a program form which 
is executable. The developer needs to define the program statements which he regards 
as directly executable. Each refinement step is done according to a law in the refine
ment calculus, and may be independently verified by presentation of the specification 
before and after refinement and a statement of the refinement law that was applied.
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Characteristic Morgan SRPT
Specification domain 
Language 
Data fiow forms 
Calculations at: 
State model 
Implementation

Predicates 
Guarded imperative 
Serial, subprogram 

Assignment : = 
Variable-value function 

Ada, C, Pascal

Timed predicates 
Processes 

Serial, parallel 
Primitive blocks 
Events in traces 

Pebble

Table 5.1: Contrast of Morgan and SRPT refinement processes

We noted in Section 4.3 that a similar pre-post specification notation is used in the 
SPARK Ada language proof tools. We presented three main options for developing 
a SPARK Ada subprogram into a PLD implementation, and one of them was to rely 
solely on the subprogram specification. Since Morgan’s refinement model (and hence 
the SRPT model that we will develop later in this chapter) only requires a specifi
cation in [ p r e , post ] form, we have sufficient information to start refinement of the 
subprogram.

The refinement process we wish to use will start with a specification at the level 
of process events (corresponding to voltage highs on the input wires to a PLD) and 
be refined to a set of SRPT processes. Section 4.2 has described a systematic, if 
not yet rigorous, method to translate SRPT into an equivalent Pebble program and 
hence compile it into a PLD. Table 5.1 contrasts Morgan’s refinement process with the 
refinement process we desire.

The approach that refinement provides is therefore appropriate to our needs. Mor
gan’s specification notation matches with the specification notation that SPARK sub
programs use. However, because of the differences between the semantic bases of 
Morgan and our trace-based approach we will consider a modified version of Back’s 
refinement process.

5.2 Refinem ent for SR PT

5.2.1 A im s for refinem ent
With our system derived from the above models we aim to replace the notion of an 
imperative program as a final result to a process expressed in Barnes’ Synchronous 
Receptive Process Theory. Specifications may also be expressed in conjunction with a 
non-negative integer time at which they are true.

The building blocks of our new system, i.e. the components corresponding to as
signment statements in Table 5.1, will be processes describing logic constructs similar 
to FPGA cells. For the moment these cells shall be stateless, and their outputs at time 
/ 4-1 shall be purely functions of their inputs at time t.

5.2.2 R efinem ent frames
A refinement frame is a new construct which we will incorporate into the SRPT nota
tion, allowing us to express parts of an SRPT system in specification form. A refinement
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X

post(Y)

Figure 5.1: SRPT frame structure 

frame (shortly, “frame” ) P  in a program takes the form:

P = y  t e N  ■ lX  : oY  : [[pre]^, [post]f+fc] (5.1)

representing the specification “for the process P  with input alphabet containing X  and 
output alphabet containing Y, at all times t, if pre is true at time t then at time 
t 3 - k post is true.” A; is a constant which will be determined by the timing needs of 
the program at specification time.

Figure 5.1 illustrates frame P  as an SRPT process.
Back[BvW94] does not use these refinement frames; instead, the start and points 

for refinement are action systems operating on state spaces; refinement moves from ab
stract state spaces to concrete ones with the individual actions of the systems changing 
as required to handle the decreasing abstraction of the state. An action system refine
ment can be regarded as complete when its state space is sufficiently concrete to be 
implemented on whatever computing system is available.

Process sem antics

If a frame is to represent an SRPT process, as do the other components in the SRPT 
algebra, it must have a set of traces obeying the SRPT trace axioms discussed in 
Section 4.1.5. Concerning the underlying SRPT process P, the frame in Equation 5.1 
specifies that:

Vs e  T^jPjcrV t e N  ' p re  {s[t..]) => post (s[/..])

i.e. that in every trace of P  the frame’s postcondition holds at all points where the 
precondition holds.

pre (s) is a shorthand for a substitution; the timed event predicate p re  can be 
seen as a Boolean function of subsets of timed event occurrences p re  : P(S x N) —> B. 
Since the trace s is a sequence of time steps at which each event in the alphabets of P  
either occurs or does not occur, it defines a similar function s r  : {iP fl oP) x N — B. 
Therefore p re  (s) is equivalent to:

V Z Ç P(E X N) • p re  {Z) => {{z, t )  E Z ^  s r { z ,  t ) )

The SRPT trace axioms require that for the refinement frame in Equation 5.1:
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1. the empty (zero-length) trace is in T^KPjcr;

2. T^jPjcr is prefix-closed; and

3. any input events may be offered at any step, and the output events at that step 
must be independent of those input events.

Axiom 1 follows since the quantification of t is over a null set. Axiom 2 follows 
because the quantification of t is unbounded, so if Si is a prefix of % G then
the specification must hold for all of si. The justification of Axiom 3 is more lengthy, 
and is given in Section 5.2.3 below.

N otation

In the frame P, the presence of an event x at time t is depicted by [x]t. This value 
corresponds to the presence or absence of x at time index i in a trace of P. We also 
introduce the shorthand \f{x,y)  =  c]t for f([x]t,[y]t) = [c]t where / i s  a constant 
function within a predicate.

t and k are necessary because an SRPT process computes in a “pipelined” (systolic 
or overlapping) manner; t marks a point where a computation starts and k expresses 
the length of the pipeline which produces the result. The V t G N is usually omitted 
for brevity.

Where variables are involved in arithmetic expressions the values true and false 
are taken to correspond to the integers 1 and 0 respectively.

Purpose o f a specification

As described above, the specification described by a frame defines a set of traces and 
so can be considered an SRPT process (if an abstract one!).

The aim of the refinement is to synthesise a concrete SRPT process that has traces 
that are “the same or better” than the specification. As we will see below, this trans
lates to a subset ordering on the set of traces.

Rules of a specification

We define the following rules for the frame contents in order to exclude some infeasible 
specifications. The phrase “A related to T ” in a predicate refers to the situation where 
the truth of the predicate depends on a logical relation between variables X  and Y . 
In all of the following, x is taken to be a single event in the input event set i X  and y 
is a single event in the output event set oY.

1. Predicate pre may only refer to variables in the input event set X.

2. the postcondition post may only refer to variables in the input event set X  and 
output event set Y .

3. the highest time index t of any variable in pre must be less than the lowest time 
index of any output variable (from T) in p o s t .

4. where variables [x] t+i  and [y] t+j  are related in p o s t , i < j.
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Rules 3 and 4 are “anti-oracle” rules, excluding specifications that cannot be imple
mented by an SRPT process since they would have traces that violated the “delayed 
reaction to input” SRPT trace axiom.

The purpose of Rule 3 is to restrict the production of preconditions requiring knowl
edge of the future, e.g.

Vt e  N • iA : o 7  : [[a;]f+i, [y]t]

where the program clearly has no way of knowing what [a;]f+i will be, so the obvious 
action for the developer in this case is to weaken the precondition to true (a valid 
refinement as we will see in Section 5.2.5).

The purpose of Rule 4 is to restrict the production of infeasible postconditions, e.g.

\ f t  e N -  lX  : oY  : [p re , [x]t = [y]t\

where the program clearly cannot know [a;]* in time to output [y]t.

Exam ple specification

A 1-cycle AND gate with input events A =  {xi^xq}  and output events Y  = {y} would 
have refinement frame

lX  : oY  : [tr u e , [xi A X2]t = [y]t+i]

The possible traces (each of which will be a trace prefix) of this process include:

(fe } , k ,  %}, y}), ({â i, %}, X2 , y}, {%}) and ()

An example of an incorrect trace prefix is ({a:i},{a^,y}).

5.2.3 R efinem ent relation
Definition: For SRPT processes P and Q we say that P is refined by Q whenever

Informally, P  is refined by Q if any trace of Q is a valid trace of P. Our notion of 
refinement is a specialisation of that of Back[BvW94] to the case when P  and Q are 
deterministic processes. As noted above. Back uses simulation between action systems 
whereas SRPT provides a denotational semantics for the traces model.

It may at first appear that a process R  with a minimal trace set, consisting (say) 
of the empty trace will refine any other process. However, this is not the case.
Because of SRPT trace axiom 3, which requires that any input events may be offered 
at any step, process R  must define output events in response to each possible input 
event set combination at each time. The only time when a strict subsetting is possible 
would be when P  offers two or more possible responses to a given set of inputs (non- 
deterministic behaviour).

Whenever P  is a valid deterministic SRPT process, P will only ever offer one 
response to a given set of inputs, so the refinement relation is direct equivalence of 
trace sets.

Given a specification S = uX : oY : [[pre]^, [post we define its traces 7%[[P]|<7
as:
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/  G T n l S ^ a ^ y O  < t < { # f  -  k) ■ [pre(/)]f [p o s t(/)](+& (5.2)
If we are to refine S  into processes then we need to show that 7 ^ [Pier satisfies the 

SRPT trace axioms. In Section 5.2.2 we demonstrated that Axioms 1 and 2 were met. 
It remains to show Axiom 3, that at any step the process represented by 7%[P|cr can 
accept any input, and the input cannot affect the output at that step.

To demonstrate that the process represented by 7^[P |(j can accept any input at any 
step without affecting that step, let /  =  5 ^  {Z) G 7^[P|cr. Then, from Equation 5.2:

/  G T n l S p  VO <  ̂ < ( # /  -  A:) • [pre (/)]* => [post {f)]t+k

Now we must show that

y U C X - r  = s ^ { V U U )  r e T n lS ^ a
where V = {Z Y)

because this shows that every process r identical to /  except for input events is in 
rnPla.

Since s prefixes / ,  we know that s G 7^[P|cr from SRPT Axiom 2. We need then 
only show that:

[pre(r)]#^_(A:+i) => [post (r)]#^_i

i.e., the pre-post relationship holds for the last element of trace r.
The rules on pre- and post-condition time indices restrict post from specifying 

outputs at A, or from t-\- k onwards, and similarly restrict p re  from specifying inputs 
from t-\-k — l  onwards. Hence any events in U (at time index — 1) cannot affect the 
precondition. By construction, the output events V do not change from / t o r ,  hence 
the postcondition is similarly unaffected, and therefore the third closure condition is 
met.

This allows us to treat process refinement frames as SRPT processes in the following 
refinement rules.

5.2.4 R efinem ent
A half-adder could be specified as follows:

VA G N • i{a, 6} : o{c, s} : [ t r u e , [2c + s]f+i = [a+ b]t] (5.3)

We have already seen in Section 4.1.6 the definition of the SRPT process CELLf 
which computes the function /  in one step. We make our first refinement law:

Refinem ent 1 Stateless 1 -bit function

V t 6 N • tX : o{y} : [ t r u e , [j/],+i =  /([X]i)[
Ç CELL, l I \X][0\ {y} ]

This is justified by inspection of traces: the definition of the [ p r e , p ost ] form of 
refinement frame in Section 5.2.2 defines the traces of this frame S  to be:

s G TtiIS^œ => VA G N - ( tru e  [y]t+i =  /([%]<))
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which corresponds to the traces of CELLf with the appropriate event renaming. Vari
ants of CELL are the basic constructors of combinatorial logic as they are a represen
tation of primitive blocks in Pebble.

We could use this to define cells that calculated either c o r a i n  our half-adder, but 
not both. We need a way of expressing parallelism. This is our second refinement law:

Refinem ent 2 Parallelism

VA G N - 6% : o (y  U Z) : [p re , post i A p o s t2]
Ç iX  : oY  : [p re , post 1] || iX  : oZ : [p re , p o s t2] 

whenever:

y , Z  are non-empty and non-intersecting
V y  G • post 1 [Z\ V] = post 1
V W G • p o s t 2 [ y \ W ]  =  post 2  

where B^ is the set of n-ary boolean strings

Informally, this says that if there are two parts of the output of a process, post 1 
and post 2, which have a null intersection of output events then the process can be 
split into two, each computing one of the parts. Note that it is trivial to extend this 
refinement to any finite number of parallel components since || is associative according 
to Law 2 in Barnes[Bar93] §5.1.1.

The justification of this refinement law is again by traces; we show that the trace 
set of the original frame is equal to the parallel combination of the traces of the two 
new frames, using the semantics of the || operator from Barnes[Bar93] §5.1.

Returning to our original specification Equation 5.3, we can apply refinement law 2 
and the logic arithmetic definition:

a P b = 2(<2 A 6) (fl ©2 6)

where ©2 denotes addition modulo 2, to produce:
V A G N • i{a, b} : o{c, 5} : [ t r u e , [2c +  s]t+i =  [a +  6]f]

Ç i{a, b} : o{c} : [ t r u e , [c]t+i =  [a A b]t] (5.2.4.1)
II i{a, b} : o{s} : [ t r u e , [s]t+i = [a ©2 b]t] (5.2.4.2)

We apply refinement law 1 to (5.2.4.1), with function a n d , noting that A is equiv
alent to a n d , to produce:

(5.2.4.1) Ç CELL^^^[I\{a,b}][0\{c}]

and similarly to (5.2.4.2), with function x o r, noting that ©2 is equivalent to x o r , to 
produce:

(5.2.4.2) Ç CELL^or[I\{a,  6}][0\{s}]

and we have refined our original specification into two parallel 2-input 1-output cells: 

CELLa„d[/\{a,6}][0\{c}] || CELLxor[/\{a, 6}][0\{5>]
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5.2.5 A dditional refinem ent rules
We now introduce supplementary refinement rules. We start with counterparts of laws 
given by Morgan [Mor94], whose justifications come from predicate calculus and are 
not given here because our refinement of frames is also expressed in terms of predicate 
calculus.

Refinem ent 3 Weaken precondition 

If p re  =4> p re ’ then: 

y t e N - i X  : oY  : [p re , post] Ç  V A  G N • : oY  : [p re ’ , post]

Refinem ent 4 Strengthen postcondition 

If p o s t’ => post then:

V A  G N • iA : oF  : [p re , post] □ V A  G N • iX : oT : [p re , p o s t’]

Refinem ent 5 Expand frame

V A  G N • iA : oY  : [ p re , post] Ç
V A  G N • i {X U A) : o{Y U B) : [ p r e , p o s t ]

where A fi F  =  0 and B D A =  0.

Refinem ent 6 Contract frame

Let P = iX  \ oY  : [p re , post]. If:

3 A Ç  A - ^ I s e T n l P h  V B Ç  A VAGN-
G T'r\P \o’ • ( r [ A ]  =  [s[t] \ A ) U B )  A ( V A  ^  A - r[i] = s[«])

i.e., we can change the occurrence of A input events at any timestep to some arbitrary 
subset B without changing any of the subsequent output events (input variables A are 
irrelevant to the outputs), then:

i {X U A) : oY  : [p re , post] Ç l {X \  A) : oY  : [pre \  A, post \  A]

i.e., we can remove the A events. This refinement can be justified by observing that 
removing the A input events from the precondition will weaken it, and the condition 
for this refinement means that the output events are unaltered.

Now we introduce rules peculiar to our timed parallel model, along with justifica
tions.

Refinem ent 7 Introduce intermediate
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If g j , k ,  m id are timed predicates over subsets of events such that:

V disjoint X , Y , Z  Ç. S-
g{[Y]t+2 , m  ^  k { [Y U 2 , [Z]t+i) A j{[Z]t+u[X]t) 
and j([Z]t+i, \X\t =¥ m id

then:

tX  : oY  : [ p re , ^^([F]f+2, [A]f)] =
{lX  : oZ : [p re , j([^]f+i, [X]t)] ||

lZ  : oY  : [m id , A;([F]f+2, [^]m )]) \  ^

i.e., we may split into two parts a process for which an “intermediate calculation” 
exists.

The natural interpretation of this law is an intermediate calculation on the inputs
X ,  using the spare time slot between each input and corresponding output to produce
intermediate results Z, and the final results Y .

As an example, let the predicates be:

#({&, 6,c,d},{e}) = e = a A b A c A d  
;({o, 6, c,d}, {/,&}) =  f  = ( aAb)  A h = { cAd)

&({/,&}, {e}) =  e = f A h
m id =  tru e

which allows refinement of a two-delay four-input AND gate into two parallel 2-1 
AND gates feeding into a third 2-1 AND gate.

We justify this law in terms of the SRPT processes G, K  and J  represented by the 
three frames. The refinement rule requires that:

GIX,Y] = {J[X,Z] \\K[Z, Y])\Z

and so we must show that the traces of the left and right hand side are equivalent. We 
specify the most general traces possible for each side, and aim to show their equivalence.

A new notation we introduce is the use of a horizonal bar % to represent groups of 
events from a set X.

We first construct the traces of the right-hand side. Given s G

s =  (xi,a{xi) U %,&(%) U % , . . . )  
where p re  (a) => {j(b, a) 4=̂ b = a{a))

The process J  can then be specified in SRPT notation as:

=  [!A ?M ^  Ja{M)]

Similarly, for u G 7^[[Ajcr:

where m id (o) (A;(&, a) ^  b = (3{a)

The process K  can then be specified in SRPT notation as:
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K b = [!H 7N ^

We apply law a-10 from Barnes[Bar93] pp. 78 to get:

Ja I I  Kb = [!(A U B)7Q  ^  '^{qub)dlJq I I  ^{qua)diKq^

We know from the disjoint process input and output alphabets that this simplifies
to:

[\{AU B)7Q  ^  JQnx || K q^z]

This establishes that, at any point in any of its traces, the tail of process J  || K is 
always equivalent to J  a \\ K b for some A and B.

Given this parallel construct, process J  guarantees that Zt+i = a{xt). Process 
K  guarantees that ÿt+ 2  = P{zt+i) = j3{a{xt)). From the earlier definitions then, 
k{ÿt+2 , 0 '{^))-

Similarly, p re  {xt) => j{zt+i, Xt) =  Zt+\ =  a{xt). We can join these two to get:

p re  (xt) k{ÿt+2 ,zt+i) Aj{zt+i,xt)

which, from the precondition in this refinement law, is equivalent to:

pre{xt) g{ÿt+2 ,xt)

This matches the original frame specification in the refinement law definition, show
ing that the left and right hand sides are indeed equivalent, and we have proven the 
refinement law. □

Refinem ent 8 Introduce delayed intermediate

If g,j^ k, m id are timed predicates over subsets of events, and di, > 1, such that: 

V disjoint X , Y , Z C  S-
9{[^]t+di+d2: [K]t) <=> k{[Y]t+di+d2  ̂l^]t+di) 7\j{[Z]t+di^ 
and j{[Z]t+di: [A ]f m id

then:

lX  : oY  : [pre , g{[Y]t+di+d2 AK]t)] =
{iX : oZ : [pre, j{[Z]t+d^, [A ]f)] ||

iZ  : oY  : [ m i d  ,k{[Y]t+di+d2,[^]t+di)]) \  Z

i.e., we may split into two parts a process for which an “intermediate calculation” exists 
at some time point between start and end of calculation.

This law is justified by repeated application of refinement law 7.
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Figure 5.2: Carry look-ahead adder structure 

5.2.6 Feasibility
We construct the maximal trace set m ax of two event sets X , Y  by:

0 G m ax(X , y )  

t G m a x{X , Y) \ / A C X , B C  y .
{t ^  {A\J B)) G m a x {X, Y)

i.e., the well-formed trace set with all combinations of input and events possible at 
each time step.

The specification P = \ / 1  E N • lX  : oY  : [[pre]*, [post]f+fc] is feasible if it is 
well-formed according to the refinement frame rules listed in Section 5.2.2, and:

3 5 G m ax {X, y )  : V^ G N • p re  {s[t]) post {s[t - f  k])

i.e. there is some well-formed trace which, at every time point, satisfies the postcondi
tion as long as the precondition is true.

5.3 Case Study: Carry Look-ahead Adder
A carry look-ahead adder is an adder whose design is optimised towards minimal exe
cution time rather than towards minimal area. It works by splitting an addition into 
two halves (high and low bits), and carrying out two parallel calculations for the high 
half sum -  one for if a carry is received, one for if it isn’t. A multiplexer then selects the 
correct high bits calculation based on the carry-out bit of the lower half calculation. 
Figure 5.2 shows the structure of one of these devices.

We will now specify this adder and refine it.

5.3.1 Specification
For an n =  2  ̂ bit adder, CLAAk'.

l{A U B ) : oC:  [ t r u e , [N(C)],+i+, =  [N(A) -h n{B)]t]

145



where N(X) maps the subsets of X  onto the natural number given by the binary 
representation of the events. A and B  must contain n events, C must contain n -}-1.

We will in fact find it useful to specify and refine the processes CLAAk(x) for all 
X e N < k ,  where [N(C')]f+i+A; =  [N(A) +  N(5) +  x]t.

Note that the specification requires that the computation complete in 1 +  /: time 
steps. A simple ripple-carry adder could not in general satisfy this specification since 
it takes time linear in 2  ̂ to complete; each bit of the sum is computed sequentially 
with the lowest bit first.

5.3.2 Basic gates
If we set k to 0, and hence n to 1, we get a half adder:

HADD = i{a, b} : o{c, s} : [ t r u e , [2c +  s]t+i =  [a +  b]t]

which we already know how to construct, from Section 5.2.4. We note that this takes 
two of our 2-input, 1-output cells. We assume that the only cells available for construc
tion are 2-input, 1-output and 3-input, 1-output. This will restrict what we regard as 
“final code” in our refinement.

We will also want a pass gate (for delays) and a 1-bit choice gate. These have the 
following specifications:

PASS = : o{y} : [ tru e , [y]f+i =  [a;]̂ ]
MUX = i{a, b, c} : o{y} : [ t r u e , [y]t+i = [(& A c) V (a A ->c)]f]

We can have the 1-input, 1-output PASS gate because it can be embedded into a 
2-input, 1-output cell where the second input is taken from ground (i.e. a permanent 
low value).

5.3.3 R efinem ent
We proceed by induction on k. The base case for A: =  0 requires an implementation of 
the specification of the half adder above. It is possible that the half-adder is a primitive 
gate on the target device. If not, we apply refinement law 2 to refine the HADD process 
into:

HADD = LO II HI where
LO = i{a, 6} : o{s} : [ t r u e , [s]f+i =  [axor 6]f]
HI =  t{a, b} : o{c} : [ tru e , [c]f+i =  [aand  b]t]

and we will take LO, HI to be primitive gates since they are equivalent to XOR and 
AND gates respectively.

We therefore assume as the induction hypothesis that we have complete implemen
tations for all processes CLAAk{y) for all y < k. We aim to prove the hypothesis for 
k 1 .

Let n = 2^. Then 2n is the number of bits for each of the two input numbers to 
CLAAk+i{y). Let A = A iU  A 2 where Ai = {%, . . . ,  a„} and A2 = {fln+i, • • • ? 02n}-
Define Ri, Rg, Q  similarly and C2 = {c^+i,. . . ,  C2n+i}- From now on, for convenience
we will omit the N in the arithmetic by referring to direct addition of event sets.
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We start with the process specification of CLAAk+i{x):

l{A U B) : oC :
[ t r u e ,

[C]t+2+k =  [ A B -{■ x]t ]

then expand the input and output set definitions:

i(^Ai U A 2  U B \ U B 2 ) : a(Ci U C2 ) :
[ t r u e ,

[Ci]t+2+k =  ([Ai + Bi~{- a:]f) m od 2 A
[C2]t+2+fc =  ([Ai +  +  x]t) div 2 +  [A2 +  B2]t ]

Applying refinement law 8 (Introduce delayed intermediate) we introduce the inter
mediate event set (Ri U R2 U R3 U {c}), the components of which have respective sizes 
n, n -f 1, n 4-1 and 1. We also introduce the set union abbreviation notation Xa,b for 
XaU Xb. We may rewrite this as:

(  ^ ( A i , 2  U  ^ 1,2 )  : o ( R i ^2,3 U  { c } )  :

[ t r u e ,
[Ri]t+i+k = ([Ai Bi x]t) m od 2 A
[R2]t+l+k =  IA2 +  B2]t A
[Rslt+i+k =  1 +  [A2 +  B2]t A
[c]f+i+fc =  ([Ai +  +  x]t) div 2 ] (1)

II ^(-^1,2,3 U {c}) : oCi,2 :
[ t r u e ,

[Ci]t+i =  [Ri]f A
[QÎf+i =  [(-Rs A c) V (R2 A -ic)]( ] (2)

) \  (Ri ,2,3 U {c})

To show that this refinement law has been applied correctly, we need to define the
predicate functions g , j , k ,  p r e , m id and the delays di, as specified in the refinement
law precondition. These are as follows:

9 — [Ci]f+2+fc =  ([Ai-f -}-a;]f) m od 2 A
[C2]t+2+k = ([Ai +  +  x]t) div 2 -f [A2 +  B2]t

j  =  [Ai]f+i+it =  ([Ai +  Bi x]t) m od 2 A
[R2]t+l+k =  [A2 +  B2]t A
[Rslt+i+k =  1 +  [A2 +  B2]t A
[c]f+i+fc =  ([Ai Bi +  div 2 

k =  [Ci]i+2+fc ~  [Rl]f+1+A: A
[C2]t+2+k =  [(^3 A c) V (R2 A ->c)]f+i+jfc 

d\ = 1 -{- Â:
di = 1

pre  =  tru e  
m id =  tru e

To show that j ,  k combined are equivalent to 5̂ , we must show that the values for
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C\ and C2 in the composition of j  and k are equivalent to their values in g:

[C\]t+i =  [Ri]t
[Aijf+1+A: =  ([Ai +  Ri +  m od 2 
[Cijf+2+fc =  ([Ai +  +  a:]f) m od 2
[C2]t+1 =  [(^3 A c) V (i?2 A -ic)]t 
[R2]t+l+k = [A2 + B2]t
[ • ^ 3 ] f + l + f c  =  1  +  [A2 +  B2]t
[c]f+i+A; =  ([Ai +  Ri -f- x]t) div 2
[C2]f+2+jfc =  [A2 +  B2]t +  ([Ai +  +  x]t) div 2

which is as required.
We take each of the refined processes in turn for further refinement.

(1) Ç via refinement law 2 {Parallelism) :
^(Ai,2 U ^ 1,2) : o{Ri U {c}) :

[ t r u e ,
[Ri]t+i+k = ([Ai +  +  x]t) m od 2 A
[c]t+i+k =  ([Ai +  Ri +  x]t) div 2 ] (3)

II ^(Ai,2 U ^1,2) : 0 R2 :
[ t r u e , [R2]t+i+k = [A2 +  B2]t ] (4)
II <'(Ai,2 U ^1,2) : 0R3 :
[ t r u e , [Rsjf+i+fc =  1 +  [A2 +  B2]t ] (5)

We apply refinement law 6 {Contract frame) to remove A i,B i  from (4), (5) and 
A2,B2 from (3), giving:

i{Ai U Bi) : o{Ri U {c}) :
[ t r u e ,

[Ri]f+i+fc =  ([Ai +  Ri 4- x]t) m od 2 A
[cji+i+A; =  ([Ai 4- Ri 4- x]t) div 2 ] (3a)

II f'{A2 U B2) : 0R2 :
[ t r u e , [R2]t+i+k = [A2 4- B2]t ] (4a)

II i{A2 U B2) : 0R3 :
[ t r u e , [R3]t+i+k =  14- [A2 4- B2]t ] (5a)

Here, (3a), (4a) and (5a) are equivalent to the specifications of processes CLAAk{x), 
CLAAk{0) and CLAAk{l) respectively, with input and output wires renamed appro
priately. Since each specification has a well-defined trace set, and equality of trace sets 
means equivalence of processes, we can substitute in the renamed CLAAk processes. 

The second part of the refinement proceeds as follows.

( 2 )  =  1 '{R i ,2,3 U  { c } )  : o C i , 2  :

[ t r u e ,
[Ci]t+i = [Ri]f A
[C2]f+1 =  [(-̂ 3 A c) V (i?2 A->c)]f ]
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Ç via refinement law 2 {Parallelism) :
4^1,2 ,3 U {c}) : oCi :
[true,[C i]f+i =  [Ri]t ] (6)

I I  4 ^ 1 , 2 , 3  U  { c } )  :  0 C2 :
[ t r u e , [C2]t+i =  [(^3 A c) V {R2 A ic )]t ] (7)

We apply refinement law 6 ( Contract frame) to remove R2 3 from (6) and Ri from
(7):

i{Ri U {c}) : oCi :
[true,[(7i]t+i =  [i?i]f ] (6a)

I I  i{R2,3 U {c}) : 0 C2 :
[ t r u e , [C2]t+i = [(^3 A c) V {R2 A ->c)]f ] (7a)

(6a) is equivalent to n parallel PASS processes between Ri and Q ; we apply 
refinement law 2 {Parallelism) and substitute the renamed PASS processes as noted 
above.

(7a) is equivalent to n +  1 parallel MUX  cells, choosing from R2 and R3 using 
c, sending to (%. Again, we apply refinement law 2 and substitute renamed MUX 
processes.

We can now collate the refinement to produce: 
l{A UB)  : oC : [t r u e , [C]t+2 +k =  [A +  B x]t]

C
CLAAk{x)[Ai,  Bi][Ri,  c] (3)
CLAA&(0)[A2,B2][R2] (4)
CLAAk{l)[A2,B2][R3] (5)
PASSln][ci] (6)
MUX , r2n-\-i J (7)

)  \  ( R i ,2 , 3  U  { c } )

\i=lin+1
li=l

With a relatively short formal derivation we have produced a full implementation 
for a family of arithmetic functions, parametrised by size, and demonstrated that the 
calculations complete in the specified time. This has been done using a predefined set 
of simple gates HADD, PASS and MUX.

5.3.4 Space and tim e
The specification tells us that the computation completes in 1 +  A: time steps, and since 
it is true for all values of  ̂ G N it tells us that a new calculation result is delivered at 
every timestep from t = 1 + k onwards, i.e. the calculation is pipelined.

As far as space is concerned, we define a function C{k) which gives the number 
of cells used by CLAAk and which comes from the final (recursive) definition of the 
process:

C{k) = S C { k - l )  + P(2^-i) +  M{1,2^-1)

where P{b) is the number of cells for an n-bit PASS block and M{a, b) is the number 
of cells for an a-bit choice, 6-bit output multiplexer. P{b) =  b and M{l ,b)  = b in this 
case, so:
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C{k) = Z C { k - l )  + 2^

for Â; > 0, and C(0) =  2. This gives (7(1) =  8, (7(2) =  28 and so on. This indicates 
that cell usage varies as (7(3^) where n is the size in bits of each argument. A 32-bit 
adder, producing a 33-bit answer, would require (7(5) =  908 cells.

Note that a simple ripple-carry adder would not satisfy the specification in general 
because its computation time is linear in its argument length. If the timing require
ments were relaxed, ripple-carry adders could be inserted instead of carry-lookahead 
adders in some layers. This would not, however, save cells; the requirement to have the 
entire result come out at one time point means that the adder needs a large number of 
PASS cells.

5.3.5 Scalability
The above approach has illustrated a number of key concepts. An important one is the 
use of previously defined processes in development. We saw this where smaller CL A A  
blocks were used in the construct of a larger one.

If this refinement method were used in the creation of a substantial PLD program 
then it would be useful to build up a library of specifications and the processes that 
satisfy them. Note that several processes may meet one specification, and the developer 
may choose one based on available cell configurations, computation time and cell usage.

The Introduce intermediate refinement law is a powerful one because it encapsulates 
an activity, hiding the internal events which are needed to make the calculation. This 
enables the effective top-down design and implementation of a complex programmable 
logic program. The design will refine the initial specification into a number of parallel 
sub-specifications, which will either match existing library components or which can 
be handed to individual developers to implement. The specification carries inside it 
the interface and timing information needed by the developer.

Blocks on the PLD which perform a fixed function can have a specification written 
for them retroactively. This enables them to be part of a refined system and interface 
to other refined components. The difficulty is in writing their specifications correctly.

5.3.6 P roof m eans no testing?
Bearing in mind Knuth’s famous quote “Beware of bugs in the above code; I have only 
proved it correct, not tried it” [Knu77] we implemented the above structure in a simple 
Pebble simulator written in Perl and tested it with random input data.

Knuth was proven prudent. In the original refinement, (3) had mistakenly been 
asserted equivalent to CLAAk{0) rather than CLAAk{x). The tests detected this, it 
was corrected, and the tests rerun. No errors were found in the corrected version for 
values of k from 0 to 5. The simulator was later expanded and rewritten, with the 
results given in Section 7.2.

This is more a comment on the methodology that we used to arrive at our start
ing point rather than the subsequent refinement. In essence, no matter how good 
a refinement, it can only be as good as the starting specification from which it was 
derived. To validate that a system fits its purpose requires testing of the system in 
conditions as close as possible to the intended operational environment, as no single 
formal verification procedure can be sufficient.
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There is clearly value in independent inspection of refinement to pick up problems 
such as these. In order to measure the reliability of the inspection, it may be useful to 
inject a number of faults into the proof before inspection.

5.4 Summary
In this chapter we have presented a refinement calculus with a specification notation 
based on Morgan’s notation for refinement, using SRPT as the implementation lan
guage and adding an integer time aspect to the variables. We have shown how existing 
refinement laws can be adapted to suit the new calculus, introduced a new law specific 
to the parallel process model and shown how it can be proven.

We have demonstrated the specification and complete refinement of a carry look
ahead adder. The refinement was not lengthy or particularly complex, and few im
plementation decisions were required. One mistake occurred during refinement, which 
was detected and corrected during testing. This indicates that the refinement model 
is practical, at least for one class of specifications, but is not a panacea.

This refinement calculus is open for further development by adding new refinement 
laws, for instance concerning iteration or alternation.

The refinement rules and notation described in this chapter are summarised in 
Appendix A.

5.4.1 A lternative approaches
A complementary approach to parallel refinement was presented by Sanders and Lai in 
[LS97]. The approach is also based on Morgan’s stepwise refinement model, extending 
it to refine into a parallel communicating programming language with a syntax similar 
to Occam[Ltd84] rather than Dijkstra’s language of guarded commands.

This approach diverges from our approach principally in that the system modelled 
does not operate on a synchronous discrete clock but rather in the asynchronous model 
familiar from CSP. It is useful however to observe that the refinement laws established 
by Sanders and Lai (e.g. strengthen postcondition, weaken precondition, sequential 
composition, parallel composition) are similar in intent to those we defined in Sec
tion 5.2. The authors identify the same weaknesses in their system with respect to 
scalability that we have found. It represents a comrade rather than competitor system 
for our SRPT refinement process.

5.4.2 Targets
Of the targets in Chapter 3 we have addressed or partially addressed:

Target 1 : The process we define must he rigorous.
We have extended a subset of the rigorous process algebra SRPT, described in Sec

tion 4.1, to include a “refinement frame” syntactic construct. We have also developed 
a refinement calculus to support refinement between constructs in this notation, and 
hence between trace sets in SRPT. This work has been supported with formal proof of 
relevant assertions and refinement laws.

Target 2: The process must help the developer to write unambiguous programs.
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The use of the refinement calculus produces programs that demonstrably meet their 
specification.

Target 5: The program produced must be easy to test.
Test cases may be generated from the program specification.
Target 6 : The program must be able to be compiled onto a range of existing and

anticipated PLDs.
The mapping between SRPT and Pebble, as described in Section 4.2, is PLD- 

independent.
Target 9: The process should indicate what kinds of error may arise at each stage.
We have seen how the manual refinement process may introduce errors, and indi

cated how manual review may address this.
Target 1 0: The process should provide flexibility so that it may be used in situa

tions not anticipated in its original design.
SRPT allows incorporation of processes that may act in an arbitrary way; our proof 

system allows us to incorporate them in a system and reason formally about the effect 
they may have on the rest of the system.

Target 12: [00-54 8.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification 
complies with the safety requirements;

(a) any formal arguments that the functional design satisfies the formal specification;

(in) for non-functional properties with specified safety requirements, analysis of the 
achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques 
as diverse implementations.

(i) is addressed because the safety requirements may be expressed as post-conditions 
in a process specification, (ii) is addressed because the refinement process produces 
an evidence trail, amenable to manual review, that the SRPT process satisfies its 
specification, (iii) is addressed because the timed specification process allows timing 
requirements to be stated explicitly and shown to be met. (iv) is not addressed.
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Chapter 6 

A PLD Interpreter o f SPARK

In Chapter 5 we specified a process for refining high-level specifications into SRPT 
processes, and hence transforming them into implementations in Pebble. This is an 
effective method for relatively simple specifications, but a. iX  : o Y  : [p re , post] 
refinement frame which described a substantial program would normally be unwieldy 
and difficult to manage.

Section 4.3.12 outlined a possible design for an interpreter for SPARK Ada, running 
on one or more PLDs. This interpreter would be difficult to verify to the degree 
required for high-integrity PLD programs, but may be appropriate for running PLD 
programs at lower levels of required integrity. In this chapter we expand this outline 
to build a SPARK interpreter out of SRPT processes, using refinement to build small 
computational units in the interpreter and defining a higher-level protocol to manage 
execution of the SPARK “bytecode”.

We will describe the interpreter architecture, then break down its structure to 
examine how individual units of SPARK code are executed within it. We will also 
see how our techniques of refining specifications from Chapter 5 are useful in making 
custom combinational logic sequences.

Target aims

This chapter chiefly addresses Target 2 (the process must force the developer to write 
unambiguous programs) and Target 4 (it must enable as much static analysis as 
possible). We aim to achieve this by allowing developers to write programs in the 
SPARK language which already satisfies these requirements.

Our aim is to produce a design for a SPARK interpreter which runs on a generic 
PLD. The interpreter should:

1. be amenable to arguments that it correctly executes SPARK;

2. interpret as large a subset of SPARK Ada 95 as possible;

3. not depend on any feature of a specific PLD;

4. make relatively efficient use of available PLD resources; and

5. scale in performance with increased resources.
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The design must be practical, since in Chapter 7 we will have to produce a working 
implementation of the interpreter as part of the case study.

There is a secondary aim, related to the SRPT specification and refinement work 
in Chapter 5. We will specify a number of SRPT processes in our description of the 
interpreter, which will be a test of the usability of the specification form. We aim 
to use these tests to measure whether our SRPT specification scheme is suitable for 
specifying significant complex systems with a range of functions.

Scope

The SPARK constructs recognised by the interpreter are restricted in that no constructs 
particular to the Ravenscar tasking profile are permitted. This is to simplify the 
interpreter’s architecture.

The interpreter is intended to be a proof-of-concept, not an optimised design.
No particular assumptions are made about limiting features of PLD design e.g. 

available cells or routing resources. For this reason we refer to the target PLD as the 
“virtual” PLD.

Structure

Section 6.1 presents an overview of the interpreter design. Section 6.2 describes the 
mechanism for communicating between the CPU and the PLD. Section 6.3 describes 
the mechanism for communicating between package units upon the PLD. Section 6.4 
details the structure of the package units. Section 6.5 describes how SPARK programs 
are transformed into a form suitable for execution on the interpreter. Section 6.6 
discusses how SPARK software interacts with the PLD program.

Finally, Section 6.7 discusses optimisations to the interpreter and Section 6.8 draws 
conclusions from the chapter.

6.1 Interpreter Overview
We now describe the design of the interpreter to give the reader a context for the rest 
of the chapter.

6.1.1 A rchitecture
The interpreter is designed to contain a SPARK package P and any other packages 
on which P depends, directly or indirectly. It will be controlled at the top level from 
software; in the SPARK program compiled for the normal CPU there will be a shadow 
package for P which will manage sending data to and from the interpreter. P is hence
forth referred to as the root package.

Each package is implemented as one contiguous unit on the virtual PLD, with data 
connections between packages corresponding to subprogram calls. There is a connection 
from package P to package Q if and only if there is a call from a subprogram of P to a 
subprogram of Q. The SPARK rules on inheritance order guarantee that there cannot 
then be a call from Q to P.
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CPU

RAM

ROM
PLD

BUS

Figure 6.1: Interpreter architecture

The top-level architecture is shown in Figure 6.1. This example shows root package 
P with direct dependencies on A and B, and indirect dependencies on C and D.

There are then three major components to the interpreter; the I/O  between CPU 
and PLD, the I/O between packages and the internal workings of the package itself. 
This is the taxonomy we will use in the rest of this chapter.

Note that place-and-route issues may break a contiguous design unit over several 
parts of an actual PLD.

6.1.2 P artitioning issues
The performance of the interpreter, in terms of execution speed and PLD cell usage, 
will depend on the packages selected for compilation. There are rules and guidance on 
package selection as follows.

A note on terminology: a package with state is one that contains at least one state 
variable, either directly in its spec or body, or in an embedded or child package. This 
correspond to the package having at least one own variable in SPARK terms.

Rules

1. No package with state may be present in both the software and programmable 
logic programs. This is to prevent multiple copies of a global package variable.

2. The packages compiled into programmable logic must form a valid SPARK pro
gram and a complete Ada program closure. This is essential for the integrity of 
the compilation process.

3. This program must have run-time checks performed on it by a tool such as the 
SPARK Examiner (using the -exp switch), which must show that it is free from 
any potential run-time overflows.

4. Packages may not be embedded in subprograms. This is to reduce the complexity 
of the compiler’s task.
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Guidance

1. Packages should contain as few variables and as little code as possible.

2. The user should aim to minimise data transfer between packages.

3. Variables should be typed with as small a range as possible in order to reduce 
storage space and transmission time.

6.2 C PU -PLD  I /o
The key point in CPU-PLD I/O is that, in general, there is no clock synchronisation
between the two components. The I/O  must take account of this, and hence be more
complex than the inter-package I/O  discussed below.

We assume that the access to the PLD from the software is via memory-mapped 
I/O, and that within the SPARK program the interface is accessed via a copy of the 
specification of the root package. Given this, there are four stages of the data’s journey 
to the PLD and back again:

1. between the software and the bus, via MMIO (both ways);

2. from the bus to the PLD’s bus interface;

3. from inside the PLD to the PLD’s bus interface; and

4. from the PLD’s bus interface to the bus.

The apparent asymmetry in stages 2 and 3 is due to the way that the PLD buffers its 
input information from the bus, turning it into discrete packets, then after computation 
aggregates packets until a complete frame of data may be transmitted back to the bus.

6.2.1 Software-bus M M IO
The PLD access process starts when a subprogram in the software component makes 
a call to a subprogram in the root package. As well as the original package specifica
tion, there will be a package body where each subprogram from the specification has 
an implementation. These implementations will be responsible for the data transfer 
process.

There will also be set of variables, declared using Ada’s fo r  X’Address use A 
mechanism to map a variable to a specific location in memory. In this case they will 
be mapped to the input and output pins of the PLD. There will be four canonical 
variables:

TX Transmit byte. Initially zero, increases as the data is copied across.

TD Transmit data, of type Word.

RX Receive byte. Set by the PLD to indicate the progress of copy-back of data.

RD Receive data, of type Word. Set by the PLD.
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Transmit

The transmit algorithm is as follows. We assume that the input data is held in an 
array A : a rray  (1..M) of Word.

TX := 0;
— Wait fo r  the RX byte to  c le a r , showing a ready PLD 
while (RX /= 0) loop

delay( 1 . 0); 
end loop;
fo r idx in  range 1..M loop 

TD := A (idx); TX := idx;
— Wait fo r  PLD to  increment i t s  counter, showing ready 
while (RX < idx) loop

delay (1 . 0); 
end loop;
—# a s se r t  (RX = Idx) and (TX = Id x ) ; 

end loop;
TX := 0;

Conventionally the receive code would follow directly. However, the processing of 
the data might well take a while. For a program which has a main loop running every 
20ms or so the implementer may choose to implement a polling structure and associated 
state machine. Note that the use of tasking constructs would simplify this significantly.

Receive

The receive algorithm is as follows. We assume that the output data is held in B :
array  (1..N) of Word.

— Wait fo r  the PLD to  s ig n a l ready
while (RX = 0) loop

delay(1 . 0); 
end loop;
fo r idx in  range 1..N loop 

B(idx) := RD; TX := idx;
— Wait fo r  PLD to  increment i t s  counter, showing ready 
while (RX = idx) loop

delay(1 . 0); 
end loop;
—# a s se r t  (RX > Id x ); 

end loop;
TX := 0;

This has implemented an asynchronous copy to and from the PLD’s pins. We now 
look at how the PLD buffers the data.
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Bits Meaning
00
01
10
11

No message /  end of message 
Ignore this packet, message continues 
Message body 
Message start

Table 6.1: Packet meaning encoding

Variable Bits
TX U =  {wi,. • }
TD R = {ri , .. • 5 ^m}
RX V = {vi,.
RD S = {si,.. • 7 7̂1}

Table 6.2: Memory-mapped variable representations

6.2.2 PLD  buffering
The above transmit algorithm maps a chunk of data to the input pins of an PLD and 
waits for acknowledgement before writing the next chunk. We now need to turn this 
data stream into the form used to communicate between packages. This means that we 
can compile the root package in the same form as other packages, with a standardised 
way of receiving data.

Packages receive data as a stream of packets. Each packet has two marker bits to 
describe the data coming in, as shown in Table 6.1.

The packet width must then be at least 3 bits. The 01 packets are intended to deal 
with delays in the message chunks arriving at the input pins.

Event representations

We represent the memory-mapped variables with the event sets shown in Table 6.2 and 
the input bits of the packet pipeline with P = {p i,. . .  ,pjb} and Q = {^1,^2} where 
m = X X k. This enables us to guarantee that each set of input data from TD can be 
transmitted in exactly x packets. We define functions u , r , v , s  to map the event sets 
onto representations in N.

Specification for B U F F E R

The BUFFER process must satisfy the specification given in Equation 6.1. The speci
fication captures the key correctness criteria:

1. RX is reset to 0 when TX is reset to 0;

2. RX increments by exactly 1 each time;

3. RX is only ever 0 or 1 lower than TX;

4. the message header bits coming out of Q form a legal message; and
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5. the message data bits coming out of P  exactly represent the data arriving through 
TD with each change of TX.

We define the function : N seqB to translate a natural number into 
its A;—digit binary representation, least significant bit first. We define the function 
concat (S) to translate a sequence of sequences S into a single joined sequence:

concat (S) = (^[«[y]] I 0 < i  < #5[i] | 0 < z < # 5 )

We additionally define the following abbreviations for predicates and operations on 
a trace t:

breaks { t , f  
resets {t,u 

p a rtitio n  {t,S  
stepping  {t,u 
follows {t ,v ,u  

validhdr {t,q,k  
validftr {t,q,k  
validm sg {t,q 
h i t s e q { t j , g  

uisgseq{t,p ,q

(  ̂ +  1 I l / ] i  7̂  l f ] i+l )
(% +  1 I [w]i 7̂  0 A [w]î+i =  0)
{t[S[k]. . .  5 [A; +  1] -  1] I 0 <  A; < # 5 )
VO <  i • [w]i =  [u]i+i V [w]i +  1 =  [w]i+i
VO <  « <  • [u]i =  [v]i V [u]i =  M i +  1
(VO <  z <  A: • [q]i =  0) A [q]k =  3
3 m - ( V A : < i < m - l <  [q]i <  2) A (Vj >  m  • [q]j =  0)
3 k • validhdr {t, q, k) A validftr {t, q, k)
concat { {Bm{ [f ] i )  I * G breaks (i, p)))
concat ((5A:([p]i) I {[q]i =  3 V [q]i =  2) A i G 0 . . .  #A))

The specification is then:

yt e Tn^BUFFERp  
stepping  (/, w)

V I G partition {t, resets (A, w)) •
=> 3 A: • resets (/, v) =  {k)
A stepping (/[A:...], ?;)
A follows (/[A;. . . ] , -y, w)
A validm sg (/, g)
A b itseq  { l [ k . . . ] ,  r ,  w )  =  m sgseq (/, p ,  q) (6 .1)

Design for B U F F E R

We define a set of SRPT processes to handle the input. SPOT checks the TX value for 
changes and signals event n to SIGNAL; event z is signalled instead if TX has changed 
back to zero, indicating end of data. SIGNAL breaks the TD value into packets and 
sends them off, sending 01 packets and signalling d to ACK  if it runs out of data. ACK  
sends the correct RX back to the software client once it gets the signal from SIGNAL, 
and listens for the z event from SPOT. RD is unused for this part of the communication.

Figure 6.2 shows the processes and connections.
The SRPT specifications of the buffering processes are then as follows. They are 

parametrised by possible delays in calculations. Some delays (e.g. e =  0) may be 
infeasible for certain PLD architectures.
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PIPELINE

TDTX RD RX

SPOT ACK

SIGNAL

Figure 6.2: PLD input buffer

S P O T , tU : o{n, z} : 
t r u e ,

0) [^]t+2+eiW]t 7̂  [^]t+l ^  0) [^]t+2+e
[^]i+l — 0) 4^ [z]f+2+e

1
ACKf =

A

L{d,  z }  : oV : 
t r u e ,
{{[z]t  A 3 i  : [-^d]t...t+i) { [v]t+i+f . . . t+i+f+i  =  0 ))

{{[d]t  A 3 i :  [~^d]t+i...t+i)

( M f  +  1 =  [v] t+f+l  A  [v] t+f+2 . . . t+f+i+l =  M f4 - /+ l) )

(6 .2)

The SIGNAL process can be split further into HDR and DATA which send out 
the header bits and data bits for each packet simultaneously. Note the precondition, 
which states that new data signals must not arrive until there has been time to send 
out packets for all the current data.

SIGNAL = HDR \\ DATA
HDR = i { n , z }  : o{QU { d } )  :

I W i  => b ( n V  z)]t+i. . . t+x,

{[n]t A 3 y > x :  [-^(n V z) ]t+i . . . t+y)

([Çi A q2]t+i  A  [q2 A ^ q i ] t + 2 ...t+x A  

[qi A ~'q2]t+x+l. . . t+y) A  

([~’d]f+l...t+o; A [d]f4-a;+l A [~~>d]t^x+2...t+y) 

A {[z]t  A 3  y  : [-^n]t+i...t+y) 44

V Ç2 V d)]t+i . . . t+y+i

(6 .3 )

D A TA  = l{R U {n}) : oP : 
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[ Wf  [-'n]t+i...t+x,
VI  <  z <  fc- 
VI  < j  <  T-

N i  ^  {[Pi]t+j =  [ r ( j - i ) k+i ] t +j - i )

The set of traces of these processes in parallel, with all events other than P  and Q 
hidden, define a sequence of messages:

BUFFER = l{ U U R ) : o{ P U Q U V ) :
( S P O T ,  II ACKf II HDR || DATA) \  {n,  z, d}

In Section 6.3 we examine the format of these messages in more detail.

6.2.3 PLD  readout
We assume that the root package has made the appropriate computations and updated 
its internal state as required, and is now ready to send back the data to its caller. We 
further assume that the data is at a fixed location in the package’s local RAM store 
and is of a known length w words. The RAM store must be capable of a multi-word 
serial read, started with signal s and outputting the word data D =  { d i , . . . ,  dk}  for 
the subsequent w cycles.

We name the bus interface signals P  and Q for data and header bits respectively, 
as above. Since there are two header bits, Q =  {qi,  q2}- If the “start output” signal is 
g then the two processes IHDR^ and IDATA will manage between them:

IHDR^ =  i { g }  : o { s ,  qi,  %} :
[  [ 9 ] t ^  [~yg]t+i...t+w+3,

[gjt ^  
[s A  ^{qi,2)]t+i  A  [ - < s ] ( + 2. . . t + w +3 A  
[~̂ qi,2]t+2 A  [qi,2]t+3 A  [q2 A  ->qi]t+4...t+w+2 A  

[  * ^ 1, 2]  f + i ü + S
] (6.4)

JDATA =  lD : oP  :
[ tru e , VI < i < k -  ([d̂ ]̂  44 N ]m )]

Note that IDATA  is a simple PASSk  process.
This will send the root package return data along the standard bus to the MMIO 

writeback processes.

6.2 .4  W riteback to  bus
The final task is to map the return data onto RD in chunks, signalling with RX to the 
software routine that the new data is available and checking TX for acknowledgements 
that each data chunk has been received.
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The key difficulty here is that the output data has to be buffered in a local RAM 
store since the software can wait an arbitrarily long time to acknowledge each data 
chunk. The write-back buffer has to incorporate a store large enough to hold the entire 
return message.

D esign

The strategy is to set up one group of processes to parse the incoming packets and 
write them serially into RAM, a second group to count when sufficient data has been 
written into RAM for the next data chunk to be written out, and a third group to 
handle the protocol of communicating with the software.

Note that the RAM has varying bit widths on its ports, k data bits will come off 
the input bus each cycle, so the input write port will be k bits wide. If the maximum 
length of a return message is 2  ̂ words of k bits then the input write address port will 
be y bits wide. The output MMIO register RD is an arbitrary n bits wide, so the input 
read address port will be I = [log2(2^fc/n)] bits wide.

Parsing

The first group of processes contains PASS which relays the P = {p i , . . .  ,pk} packet 
data bits to the RAM data input pins D =  {di , . . . ,  d^}, PASS to pass event Ç2 through 
to the serial write start pin w of RAM, and CTRL  which increments the RAM write 
address register bits A = {ai , . . . ,  ay} by one each time, starting from zero when a 
message start packet comes in.

Let a map the events of A onto N, then the CTRL process can be specified:

CTRL = lQ : oA :
[ [qi,2]t ^  3 Z ' [^2 A ^ q i ] t + i . . . t + i  A [->gi,2]i+i+i,

[qi,2 ]t <=> ([a ]m  =  0) A (Vj <  z : [a]t+2+j =  1 +  [a]z+i+j)

Counting

The second group assesses when the next write is ready according to two criteria. 
Sufficient data must have been written to RAM, and the previously sent TD data must 
have been acknowledged.

We can re-use process SPOT  to observe changes on TX, signalling event n. We can 
use an AND gate on the Q events so that the output signal z signals the start of a new 
message sending. In addition we introduce a new process RADDR  which outputs the 
RAM read address with event set B = {&i,. . . ,  6/}. RADDR need not know whether 
the correct data has yet been written into the RAM slots being read as long as the 
third group ensures that RX is not incremented until sufficient data is in.

If b maps the events of B  onto N then RADDR  can be specified as follows. Note 
that 0 / denotes addition modulo 1.

RADDR = l { z ,  n} : oB :
[ tr u e ,

{[z]t [6]t+i =  0) A
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{[n A -^z]t A h ( n  V z)]t+i,„t+i) 
[b]t+i...t+i+i =  1 0 / [b]t

C om m unicating

The third group must count the incoming packets to determine when sufficient data 
has been input for the RAM output to be valid. It must also check that the software 
has acknowledged the last send.

TAP will take events Q (the packet header bits) and event n out of SPOT as 
input. It will output the maximum value of RX permissible given this range of valid 
RAM contents.

First we need a process EVERYk which outputs signal b once for every k times 
that the input a is high. We also need a “semaphore” process SEM which maintains 
an internal counter of b events and checks for n events. SEM will send out a d signal 
to allow transmission once a n event has been received and the b counter is non-zero. 
When the d signal is sent it will clear its n signal receipt and decrement its b counter by 
one. This has the effect of signalling d only when a transmission has been acknowledged 
and sufficient data has been read.

Note that an initial n event must be supplied when the message sending starts, 
since the PLD must take the initiative in the return data protocol. For this reason the 
n input into SEM should be O R ed with the message start event z = qi AN D  q2 to 
produce event m.

Finally, we reuse process ACK  from Equation 6.2 to write incrementing values onto 
RX. It takes events z and d as input.

TAP is then EVERYi[a\q2] || SEM || ACK  || OR[a, 6, c\n, z, m].
To specify EVERYk  we need to define a counter state function c() where ra n  c =

0. . .  ^ — 1, and similarly for SEM we need a counter s() where ran  s = —1.. .2^ where 
2  ̂ is the maximum number of data packets in a return message. There will be a multi
cycle delay for most values of k in most architectures so we need to specify this with 
parameters v,w > 0 îov EVERY  and SEM  respectively:

EVERYk,v =  &{&}: o{b} :
[ [c]o =  0,

[u]f ^  ([c]f+v — [cjf+u—1 0& 1)

A ([fl]/ A [c]f = {k — 1))

SEM^

A
A
A

i{m^ b} : o{d} :
[s]o =  0 A V i : {[s]t < 0) =>
[m A ^b]t (M/+W =  1 +  [s]/+u;-i A [~̂ d]t+w) 
[m A b]t ^  ([s]/+«, =  [s]t+«,-i A 
[b A -im]f =  [s](+w-i -  1 A [~̂ d]t+v})
[~>(6 V V7î)]f 4=̂  ['Sji+u;—1 A
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Figure 6.4: MMIO writeback design

EVERY 2 can be constructed using a toggle switch TOG where holding the input 
high over a clock cycle toggles its internal state bit and holding the input low maintains 
the state:

EVERY 2 = AND[a, c][b] II TOG[a][c]

EVERY 2k can then be constructed by serial composition of EVERY 2 and EVERY 2k-i. 
For values of I which are not exact powers of 2 more complicated arrangements are 
required, such as ring counters.

The MMIO writeback processes are shown in Figure 6.4, with TAP  blown up into 
its components in Figure 6.3.

6.3 Package I /O
Data is passed between packages in the form of packets as described above. There is 
one significant simplification possible compared to the input buffering; the data to be
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sent will be immediately available for writing and immediately able to be received, so 
there is no general need for the 01 padding packets. The complication is that several 
packages A, B, C may be sending data to package D simultaneously, requiring arbitration.

When package A needs to send a message to package D we assume that the main 
package process in A has formatted the message correctly as a sequence of words in the 
package internal RAM. The main package process A^MAIN  will signal to the “talk 
to D” process A-COMM-D  that it may start communicating. It will then expect an 
acknowledgement signal from A ^ C O M M ^  which may either indicate “data sent” or 
“data sent and answer received”.

The scope of this section is the communication between A ^ C O M M ^  and package
D.

6.3.1 A rbitration
For each destination package D there is an arbitration process A R B d which controls 
access to D from all packages that may communicate with it. Each of the n client 
packages has an access-request signal in A =  {r i , . . . ,  Tn} and an access-granted signal 
in G =  {^1, . . . ,  There is also a set of junction routing signals 5 =  {si , . . . ,  Sn-i}- 
The function 5 : (1. . .  n) then describes the set of junction control signals that
correctly route each client’s data.

The key criteria are that no more than one client may be granted access at once, 
and that access, once granted, continues until the client stops requesting it.

A R B d =  lR : o(G U S) :
[ t r u e ,

[rilt.-.t+j = ^ 3 k > l -  

(,[~^9i\t+l...t+k-l A [p A s(z)]f+fc...i+ i+l)

A [Qi a  gj]t =  j )

6.3.2 Inter-package routing
The routing of data between packages is managed as shown in Figure 6.5. This has 
packages A, B, C and D routing data to descendant package E. Each junction routing 
signal goes to a junction package Ji which multiplexes data from the client packages 
onwards to the destination package, and demuxes the return data to the client package.

For the client-destination data flow we name the input data sets Wi, W2 and the 
output data set X.  For the destination-to-client data flow we name the input data set 
Y  and the output data sets Zi,Z2 . Event s is the routing switch: when off it routes 
W\,Zi through and when on it routes W2, Z2 through.

The process, for ^-bit wide data sets, is then specified by:

6(Wi,2U y u { g } ) : o ( X U ^ i , 2 ) :  
tr u e ,

< i < k  •

1)

Ji

V i  ^  ^  /c '

([(wu A -.s) V {W2 i A  s ) ] t ^  N m ]
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ARB

Figure 6.5: Inter-package routing 

A {[y i] t  ^  [{z i i  A ->5) V (z 2 i A s)]t+i)

6.3.3 Package output
The process A-COMM-D  will read in data from RAM, packetise it and send it out 
onto the bus in a similar manner to process SIGNAL described in Equation 6.3. The 
difference is that the data will be read by requesting a serial copy from RAM, with the 
port data width set at design time to match the bus data width, hence no buffering or 
change signalling is needed.

A-COMM-D  is split into the following processes:

WAIT  Waits for the start signal from the package, requests the granted signal from 
ARB, then keeps the request active until the result has been received from the 
package.

IHDRw Waits for the granted signal from ARB,  then kicks off the serial read from 
RAM and writes out the correct header bits to the bus. Parameter w is the 
number of packets of output data.

IDATA Continually copies data across from the RAM port to the data bits of the bus.

OHDR Keeps a watch on the header bits coming back from the destination package, 
starts a serial write to RAM, and once concluded signals the finish pack to the 
package.

ODATA Continually copies data across from the data bits of the bus to the RAM 
port.

Let the RAM read interface be input event s\ to start a read, output set Di = 
{dll , . . . ,  dik} of data. We ignore any signal that the read is complete since we already 
know the message size at compile time.
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Figure 6.6: Package output

The RAM write interface similarly is input event % to start a write, input set 
D2 = {(hi, ■ ■ ■ 1 (hk} of data and input event /  to signal that the write is complete.

For the outside arbitration, let r be the arbitration request (which needs to be 
held high during the request, writing and returning read) and ^ be the access granting 
event.

For the bus output, let Qi =  {qn,qi2 } be the packet marker bits and Pi = 
{ P i i ,  • ■ • , P i k }  be the packet data bits. Similarly the bus input is Q2 =  {^ 2 1 ,^ 22}  
for the packet marker bits and P 2 =  {P 2 1 , • • • ? P2k}  for the packet data bits.

The interface to the rest of the package is input signal s for the “start a broadcast” 
request and an output signal /  for the “communication finished” acknowledgement.

These processes are illustrated in Figure 6.6. IDATA and ODATA are simply PASSk 
processes. IHDRyj has already been defined in Equation 6.4. The other two processes 
are specified as follows:

WAIT = t { s , f }  : o{r} :
[ tr u e ,

{[s]t A 3 z : [-.(5 V f)]t+i...t+i A \f]t+i+i) <=>

]
OHDR = i{qi,q2} ’ o{s2,f} :

[ [qi,2]t => 3% : V I < ;  <  % - 

([% A -^qi]t-\-i. ..t+i A [- iqi^2] t+ i+ i ) ,

{[qi ,2]t A 3 Î : [q2] t+ i. . . t+ i A <=>
[s2 A -^f]t+i A [->(S2 V f)]t+i...t+i+i A 
[/ A -iS2]t+i+2
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Figure 6.7: Package RAM layout

6.3.4 Package input
The input in destination package D uses a mirror of the above structure to receive the 
packeted data and write it into RAM.

In addition, it will need a START  process to set the initial PC value according 
to the start ID that heads the data stream, and then monitor the PC store for when 
the last PC value is popped off the stack indicating subprogram termination. It must 
then kick off the return transmission of the data from the area of RAM storing the 
subprogram mode out parameters.

6.4 Package Structure
We have described in detail the mechanism for sending data between packages, 
now look at the details of the implementation of the package units.

We

6.4.1 Storage
Key to the operation of each package P  are the internal ROM and RAM stores. The 
ROM contains the compiled SPARK from the original package subprograms. The RAM 
contains all the constant data used in the package (initialised when the PLD program 
is loaded), areas for data to send to and receive from inherited packages, areas for data 
to receive from and send to packages that inherit P, all the package global variables, 
and all variables declared in all subprograms of the package. The last group includes 
the subprogram parameters and function return values.

Figure 6.7 is an example of RAM layout for a package P  that inherits A and B  and 
is inherited by Q and R.

RAM has two main parameters: the bit width of each word in it, and the number of 
words held in RAM. These can be determined at the interpreter’s compile time and will 
depend on the variables in the SPARK package. Wide words will speed up transfer of
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large amounts of data at the cost of wasted RAM space when many sub-word variables 
(e.g. booleans) are stored.

6.4.2 Storage operations
The RAM blocks must be able to implement serial reads and writes of data as well as 
individual reads and writes. For the package I/O  work we have already seen the serial 
interfaces required for effective communication.

CPU access to RAM will be managed by a RAM controller RCTRL.  This must be 
able to implement the following operations:

1. serial read of N  words starting to read from address A;

2. serial write of N  words starting to write at address R; and

3. internal copy of N  words, starting to read at address A and starting to write at 
address B.

The reason for the final operation is that both subprogram calls and plain assign
ments (i.e. with a variable or constant as the rvalue rather than an expression) are 
effectively copy requests. In our I/O model, subprogram calls require mode in  vari
ables to be copied into the RAM slot representing the subprogram parameter, whether 
in this package or in an inherited package, and mode out variables to be copied back 
out. Doing this copying as a basic RAM operation is an efficiency measure.

With the following event namings, RAM width I, RAM word count 2  ̂ and RAM 
state functions 5̂  : N FR, Sw : N ^  PW  we can specify RCTRLk^i. We use the 
abbreviation that [A]t means “the subset of A events present at time

A = {ai , . . . ,  ttk}, a : F A N
B = {bi, . . .  ,bk},b : F B N
N = {t2i, . . . ,  n̂ ;}, n : PA ^  N
R =  { r i , . . . , n }

W = {wi,...,W(}
C =  {ci, C2}

RCTRLk,i = i { A u B U N U W U C ) :  o{RU{d}):
[ ([ci V C2]( A 3 i => [->ci^2\t+i...t+i,

[ci]t VO <  j < [n]t •
iWt +j+2  =  [Sr{j +  [^]t)]t+j)  A  ([s]t+j+2 =  W O  

A [C2 A -iCi]t <=> VO <  j  <  [n]f -

Wf+i+i =  ® ((i +  [-^10 ^  [^]t+j))
A [ci,2]t ^  y  0 <  j  <  [n]t '

[s]t+j+2  =  W<+i+i ® (Ü +  [-^10 [^0 +
A [ci V C2]t {[-^d]t+i..A+[n]t-l A [d]t+[n]t)
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Bits
ÔÔ“
01
10
11

Meaning 
Do nothing
Push the PC value on N  onto the top of the PC stack
Pop the top item off the PC stack
Change the top item on the PC stack to the value of N

Table 6.3: PC action encodings

C are the control bits selecting the operation. ci represents a serial read, C2 rep
resents a serial write and the two C events together represent a copy. The above 
specification, by delaying read output by one cycle, allows for an extra step whereby 
the implementation may treat a copy like a read and a write in parallel, but internally 
route the read output into the RAM write data port instead of routing the W  events.

d is the “operation complete” bit. The precondition states that, once a command 
is given, no further commands are given until the “operation complete” is signalled.

6.4.3 Program  storage
There are three components to manage program storage. The ROM itself stores the 
compiled SPARK code in fixed-width words. Data is read out by the program counter 
process PCfc. This maintains a current PC value, but can also store up to k other PC 
values in a stack for use when there are internal subroutine calls. The stack size can be 
bounded at compile time because SPARK’s ban on recursion means that the longest 
subprogram chain can be statically determined and in any case is no longer than the 
total number of subprograms.

PCk outputs the PC to ROM with events P  =  {pi, . . .  ,pk}- It has input events for 
a new PC value N  = {%, . . . ,  %}, PC increment request i, and control input events 
(7 =  {ci, C2} with the encodings shown in Table 6.3.

SNIP waits for event r  to command a read. It then checks the instructions coming 
out of the ROM, signalling i each time to get the next piece of data, and when the 
end of an instruction arrives stops signalling i. The data is output using the event set 
Q =  { qi, ■ "  ■) Qy} where y is the standard instruction set data item width. Since event 
d is the negation of i, d will then be signalled back to the CPU.

We specify PCk as follows. We will hold over the definition of SNIP until Sec
tion 6.4.5 when we specify the instruction set. We define functions n() and p{) to 
translate the input and output counters into N. We also define state functions c : N 
and function pc : N h->- N so that pc{j) gives the program counter at location j  in the 
stack, with the top of the stack at location c.

PCk = 6({%} U N u C ) : o P :
[ [ci V C2]t

h ( c i  V C2)]t <=>

([c]f+i =  [c]t) A ([pc]i+i =  [pc]t)
A [ci A ->C2]t ^

([c]f+i =  [c]t +  1) A ([pc]f+i =  [pc]t © {[c]t+i ^  [n]t))
A [c2 A -'Cijt
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Figure 6.8: ROM and PC store

([c]i+i =  [c]t -  1) A i[pc]t+i = [pc]t)
A [ci,2]i

([c]f+i =  [c]t) A {[pc]t+i = [pc]t © ([c]t [n]i))
A [%]; <=>

([c]f+i = [c]t) A ([pc]t+i = [pc]t © {[c]t 1 + [pc{c)]t))

1
Figure 6.8 shows the relations between the program storage components.

6.4.4 Expression evaluation
Expression evaluation is managed by custom expression blocks. These take a stream 
of data bits as input and produce a stream of data bits as output. There may be any 
number of expression blocks in a package.

Control of the process is managed by the write-data signal w and the process-data 
signal g. w sets the data in RAM to the input D. This data is output in the next step 
to the event set A. A multiplexer MUX  routes the w and A events to the expression 
block selected by the events E  from the CPU.

The expression blocks themselves take a “start” signal gi and input data set Ai as 
inputs, and give out a “finished” signal hi and output data set Bi. Their implementation 
will depend on the particular expression. The developer may choose to design them by 
hand in order to take advantage of PLD features.

Once the expression block has finished, it signals hi and outputs its data on Bi. 
This is routed to the output RAM via DMUX,  again controlled by E.

Note that the other components are constructs which we have come across be
fore and do not require specification. Figure 6.9 shows how the expression evaluation 
components fit together.

6.4.5 C P U  instructions
The instructions from the ROM, previously referred to, are fed by the program store 
to the CPU. They are key to the control path of the package.
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Bits Meaning
00
01
10
11

End of instruction (no-op)
Continuation of instruction sub-component 
Start of instruction sub-component 
Opcode

Table 6.4: Word type encodings

An instruction consists of a sequence of y-hit words, fed to the CPU from the 
program store with event set Q. The sequence will always start with an opcode, which 
may then be followed by any number of sub-components such as addresses and data. 

This section breaks down the decoding and execution process of the instructions.

Encoding scheme
Each word in ROM uses its top two bits to indicate the type of the data in it, according 
to Table 6.4.

The end of each complete instruction is signalled by a word with zero headers bits. 
We can now specify the SNIP process from Section 6.4.3. It need only check the 

top two bits of the data coming through. As long as they are not both 0 it will continue 
to raise event i, incrementing the PC to get the next part of the instruction. As soon 
as they are both 0 it will cease to signal i.

SNIP = i { Q U { r } ) : o { i } :
[ true, ([r], V V qi]t)
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Opcode Arguments Meaning
NOP - Do nothing
DEPON id : E Instruction depends on id
COPY I : D, s ,d  : A Copy I words from s to d
LOGIC op: E, { Œi} Evaluate logic operator
CMP op : E, a, b : A, 

I
id : E

Compare a and b of length I

SUBEXT Subprogram id call
LOOP - New loop marker
LPEXIT a : P Exit current loop, skip PC to a
LPRET - Return to loop start
IFELSE { Oil A, pii  P } if-then-elsif
EXEVAL id : E Evaluate expression id
EXWRT I : D,s : A Copy I words from s in RAM to expres

sion input block
EXREAD I : D,d  : A Copy I words from the expression out

put block to d in RAM
SUBJMP a : P Jump to local subroutine at a in ROM
SUBRET - Return from subroutine, restoring PC
IDXRD s : A, i : A, t j  : 

d : A
Indexed read from s to d

IDXWRT s : A, i : A  ̂ : 
D, d : A

Indexed write from s to d

Table 6.5: CPU Opcodes

Instruction O pcodes

Table 6.5 lists the possible opcodes for the ROM instructions. The ROM output must 
be wide enough for each instruction to be identified uniquely in one word, including 
the aforementioned two header bits.

In the table, A denotes an address in RAM, P  a program counter value, E  an 
enumeration and D a data chunk. { X } denotes one or more instances of X.

Each opcode has a condition flag bit C. If set, the opcode is only executed if the 
current CPU condition fiag is set.

Not all these opcodes need be implemented. At compile time, if an opcode is not 
present in the compiled program then it and its associated components need not be 
put into the package.

D ependencies

The first opcode of a message may be DEPON. The following word gives the ID of an 
instruction which must complete before the current instruction can start. This is useful 
for starting a long operation (e.g. external subprogram call), processing data in the 
meantime, but having the facility to block when the long operation’s data is required

173



but unavailable. Any number of instances of this opcode and its data may be present 
at the head of a instruction.

The set of dependency IDs are mapped to the different operation blocks in the CPU 
core, therefore correspond to an instruction’s opcode.

If the main opcode has its conditional bit set then the conditional bit in DEPON 
must be set too. This will have the effect of throwing away the entire instruction before 
any dependencies are checked.

The DEPON opcodes and their data are followed immediately by a normal instruc
tion and its data.

O pcode D escriptions

COPY is a direct command to the RAM to copy I words from address s to address d. 
We have already seen that our RAM components implement this directly.

LOGIC takes an operand identifier op, which selects an n-ary logic operator, and 
applies it in sequence to the data at the specified RAM addresses. The result ( t rue  
or false ) is assigned to the CPU conditional flag.

CMP takes an operand identifier op which selects one of the six numeric comparators 
= , /=, <, <=> >> >=, two addresses a,b identifying variables and a word count I. 
The variables are evaluated against each other as if they were unsigned integers of the 
appropriate length. The result is assigned to the CPU conditional flag.

SUBEXT calls a subprogram external to the package, id identifies the destination 
package and the necessary message header data

LOOP identifies the start of a new loop. It pushes the current program counter 
onto the PC stack, leaving the stack topped with duplicate values v. v will then be 
the PC address of the first instruction in the loop.

LPEXIT jumps out of the loop by popping the top value off the PC stack and then 
setting the current PC value to a.

LPRET returns to the top of the loop by popping the top value off the PC stack, 
reading the next PC value, and pushing it back onto the PC stack to have duplicate 
values as in LOOP.

IFELSE takes a string of RAM and PC addresses. If the value at ai is non-zero then 
the PC jumps to pi. Otherwise the value at 02 is examined, and so on. A catch-all else 
can be implemented by specifying the last as the address of a non-zero constant.

EXEVAL uses id to select routing to the expression blocks as described in Sec
tion 6.4.4, then signals the expression block to evaluate the current set data.

EXWRT reads I words from address s in RAM and writes them into the expression 
input RAM block.

EXREAD reads the expression output RAM block and writes the I words into address 
d in RAM.

SUBJMP is an internal subroutine jump. It pushes the specified PC value a onto 
the PC stack, making the CPU execute instructions from a onwards.

SUBRTN returns from the internal subroutine by popping the top value off the PC 
stack.

IDXRD reads the number from address i, multiplies by t words and adds to s before 
reading I words from the resulting address and copying them to d.
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IDXRD reads I words from s then reads the number from address i, multiplies by t 
words and adds to d before copying the read words to the resulting address.

6.4.6 Instruction  decoder
The first stage of the pipeline coming out of the ROM store carrying the instruc
tions handles dependency stalls and opcode selection. At the end of this stage of the 
pipeline the instruction’s dependencies have been met, conditional instructions have 
been checked and dropped if the condition is not met, and the instruction’s data (if 
any) multiplexed to the correct control unit with an activation signal.

For clarity we define a “valid instruction form” function [m{A)]t..,t+i. This is read 
as “the message formed by the events in A from time t through time Z +  %isa valid 
instruction according to the restrictions in this section”. There are corresponding func
tions m'O and m"() which respectively describe messages without leading dependency 
lists and with a dependency ID moved to the back.

The conditionals are checked first. COND takes lines Z out of the ROM store and 
CPU conditional status line v  out of the CPU core as inputs. If v  is clear (meaning 
“last CPU condition evaluated to false”) and an opcode pattern in Z is conditional 
then the rest of the instruction is thrown away, up to the first word with header bits
00. Additionally signal u is sent to the CPU core, meaning “conditional instruction 
not executed” so that the core can request the next instruction from ROM.

The specification of COND assumes that the conditional bit of an opcode is bit c.

COND =  i{Z  U { v } )  : o{A U {%}) :
[ [m{Z)]t...t+i,

c]t A [-iv]i) {[u]t+i A hao,i]m...t+i+i)
A ([%]; V ->[2b,i,c]f) =>

[m{A)]t+i...t+i+i A V1 < j  < (z 4-1) •
[{ûQ) • • ■ 5 ~  • • • 5 ■2'n— 1

The decoder takes the lines A out of COND, where oo,i are the header bits, and 
processes the dependency stalls in DEPCODE. This outputs unstalled data to DECID 
along lines B. Any required dependency is queried along lines P, and signal p is received 
once the dependency is satisfied.

The new decoding processes are specified as follows. We define the function opcodeA,p{X) 
to map the subset A of A to the equivalent opcode encoding in P, ignoring the condi
tional fiag.

DEPCODE is parametrised by the length of an internal buffer which it uses to 
store a blocked message. The precondition of DEPCODE/^ states that there is some 
number A; > 0 of dependencies in front of each message, and the message less its 
dependencies is still a valid message.

The postcondition states that if there are no dependencies then it is passed straight 
through in N+1 steps; if there are dependencies then it must signal the first dependency 
ID, then a p event must occur before any message can be passed through.

DEPCODEm =  l(A U {p}) : o{B U P) :
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[ [m{A)]t...t+i A 3 k  :yO < j  < k  : [m{A)]t+2j...t+i,

([flo,i]t A opcode A,p {[A] t )  =  DEPON)
[opcodeA,p{[A] t+i )] t+N+i  A

i h p \ t+ N . . . t+ N + d  A [p]t+N+d+l)  =>

V  s  ([??2^(R)]g A s ]> (a +  A ) )  =4* (s >  i  +  A  +  d +  l )

A “ >([oo,i]i A opcodeA,p{[A]t)  =  DEPON) =4> 

[m'{B)]t+N+i. . . t+N+i+i  A

[{^Oj • • • j ^n—l} ]t+ i\r + l...f+ A T + l+ i —

•  • • 5

]

DECID registers the dependency id, then passes the instruction along C to the 
opcode decode OP.

DECID = lB : o{C U D ):
[ l‘m'{B)]t.. .t+i,

[bo,i]t ^  [opcodeB,D{[B]t )] t+i  

A (“ '[&o,i]f) <=> [o p c o d e s , D W ] t + i

A [ { ^ 5  • • • 7 ^n—l } ] f + l  [{^Oj • • • 5 ^n—l } ] f

A [m" {C)]t+i. . . t+i+i

OP produces the control lines E  and data lines P U { s }  routed into the multiplexer. 
The s event is the “operation start” signal. The multiplexer then routes the data along 
the correct route O* to the operation’s particular processing block.

The OP process has a relatively simple specification. The condition on [co,i]f is not 
strictly needed as it is implied by the precondition of a well-formed message, but it 
aids clarity. Here we specify OPk with a delay A: > 1.

OPk = iC  : o{E U P  U {s}) :

[co,i]t ^  [s]t+k

A • • • 3 Cn—3,y]t+k.. .t+i+k ~  [{^2, • . ■ , l } ] f

A [{ /0 3  • • • 3/l}]f+fc =  {O3 0}
A V 1 <  j  <  i  :

[{.^3 • • •  ̂fn—iy\ t+ j+k  — [{Q33 ' ' • 3 n̂—l} ] t+ i

Process REG acts as a dependency register. Input lines D are used to note that an 
instruction with ID di has gone through. Input lines H  are used to note that CPU block 
hi has completed. REG has the internal state function & : N —> B identifying whether 
each instruction ID has gone through and not been acknowledged. State variable I : N 
stores the last dependency ID query received through P.
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Figure 6.10: First stage of CPU pipeline

REGk is parameterised by its delay A: > 1.

REGk =  t{P U H U D) : o{p}  :
t r u e ,

V i  :

A

Hit

Hit

=  [s ©  [ i  ^  t r u e ) ] f  A

Figure 6.10 shows the decoder pipeline flow.

6.4.7 C P U  im plem entation
Specifying each component of the CPU core here would be a laborious process. We 
have already made formal speciflcations for the key components with which they com
municate. In this section we outline the generic method of operation.

A core component receives data from the decoder multiplexer. Start of data is sig
nalled by a high on start wire d. The data itself comes in standard packets (with header 
bits 10 for start of item and 01 for item continuation) on wires G = {g'o, • • •, 5'n-i}-

The input data will typically be stored in one or more small blocks of RAM or in 
flip-flops, as required. As each part of the instruction is received the component will 
change state to route the next instruction part appropriately. The actual computation 
may involve communication with RAM, the ROM store, the PC store or external 
package interfaces.

The dependency analysis in the compiler and decoder guarantees that the compo
nent will not be in the middle of computation when the new data arrives. It does 
require that the component signal on output h once the computation is complete and 
all output data has been sent to the appropriate destination. This signal h will end up 
at the REG process.
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Figure 6.11: CPU core component

Figure 6.11 illustrates a generic CPU core component. State machine S T  receives 
the start signal and controls the routing of MUX  to direct the instruction packets to 
the appropriate destinations. Block A l  builds up an address and does a read request 
of external block FI,  which might for instance be RAM or the PC store. Data is 
eventually returned into Y,  which processes it and passes to X,  where it is used as 
the address for a write to external block F2 of the data built up in D2. Completion is 
signalled once S T  has seen the end of the message and block F2 has signalled success.

6.4.8 O pcode sum m ary
With the preceding work we have produced a substantial and detailed design for a inter
preter of the instructions defined in Section 6.4.5. The interpreter contains mechanisms 
for asynchronous communication with client software and for synchronous communi
cation between component packages. The design has a range of parameters relating 
to processing delay and bit width of communication channels, and allows removal of 
components which are not needed for a particular program.

We assert that this interpreter is suitable for running a compiled version of a se
quential SPARK 95 program. To demonstrate this, in Section 6.5 we detail how the 
SPARK Ada constructs are mapped to sequences of interpreter instruction codes. We 
also show how the control- and data-flow properties of a SPARK program validate a 
range of assumptions made in the interpreter design.

6.5 The Program M odel
In Section 4.3 we described the SPARK Ada language and the SPARK Examiner 
enforcing tool. We now describe how to map valid SPARK programs into the interpreter 
that we have defined.

For the rest of this chapter, “a SPARK program” should be taken to mean “a 
sequential Ada 95 program which conforms to the SPARK language definition and 
which is free of exceptions.” In practice this normally means a program which passes 
the SPARK 95 Examiner checks, and for which the run-time checks generated by the 
Examiner (using the -exp switch) are all proven free of exceptions.
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There are legal SPARK programs not allowed by the Examiner, and also illegal 
SPARK programs allowed by the Examiner. Clearly, the latter are potentially serions 
if part of a safety-critical system, since the Examiner’s acceptance may lead to undue 
trust of the program. However, the known cases of this problem over the years of 
commercial Examiner use have been relatively small in number. Each project’s safety 
authority will have to make their own judgement on the reliability of the Examiner.

6.5.1 Types
Basic SPARK types are subsets of integers, fixed-point or floating point numbers, 
and characters. Enumerated types can be viewed as integers where no arithmetic is 
normally performed.

Compound SPARK types use the array constructor, with integers or enumerated 
types as indices and any other types as the element type, or the record constructor, 
with field names as indices.

The interpreter has one form of type: a sequence of a fixed number of words. Word 
size is fixed within a package. The sequence length depends on the original SPARK 
type, and in the case of compound types will normally be the sum of the lengths of 
the components of the component types. Basic types will be stored in a non-negative 
integer number of words within a package.

As an example, the SPARK basic types:

type N i s  range 1 ..300; 
type E i s  (Red, Amber, Green);

are represented in a package with word length of four bits by sequences of three and 
one words respectively.

The SPARK compound types:

type R is  record 
A : N;
B : E;

end record;
type A is  array(N,E) of R;

have sequences of 4 and (300 x 3) x 4 =  3600 words respectively. A “slice” of the array 
A, selected by the first index only, would be 3 x 4 =  12 words.

The remaining difficulty is in indexing into a compound type. Indexing into a record 
is easy since all record fields and sizes are known at compile time, so the offset and 
length of the component are known. Indexing into an array is more difficult since the 
index is not generally determined at compile time.

The interpreter IDXRD and IDXWRT instructions are designed to allow this. Mul
tiple indices require multiple uses of the instructions.

As an example, if the variables X : A ; Y : N ; Z : E were stored at locations Oo,a\,cu2

in RAM, then the assignment W := X(Y,Z) ; would be accomplished by the following
sequence:

IDXRD aO a l 12 4 a4 # s to re  X(Y) in  T
IDXRD a4 a2 3 4 aS # s to re  T(Z) in  W
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where W was stored at location % and «4 held a temporary variable of size array  (E) 
of R.

Given this, we see that we have the mechanism for determining type size in package 
words at compile time. Differing word sizes between packages are irrelevant since 
the inter-package pipeline transports data at a packet size independent of source and 
destination word sizes.

6.5.2 S tate
SPARK program variables are made visible either when a package is elaborated, or 
when a subprogram is called. Each variable is associated with a named type (see 
above) and may have an initialised value. Each variable has a unique fully-qualified 
name.

Variables in the interpreter have a fixed location in the RAM of their containing 
package. All of their locations and word sequence lengths are determined at compile 
time. The safest strategy makes all variables disjoint. SPARK’s ban on recursion 
removes the need for a dynamic variable stack.

However, it is possible to optimise RAM usage by allowing certain subprogram 
variables to overlap. Variables from subprograms P and Q can overlap if there is no 
subprogram calling sequence which allows Q to be called directly or indirectly from P 
or vice versa.

All package variables are initialised at interpreter programming time, to 0 unless 
an explicit initialisation is given in the SPARK. The SPARK Ada rules remove the 
elaboration order problems with Ada and allow package variable initial values to be 
determined during static analysis.

Subprogram variables which are initialised at declaration must be explicitly ini
tialised at the start of the compiled version of the subprogram. Space must also be 
allocated for subprogram parameters, both in  and out.

Constants are treated as variables but placed in the section of RAM which is read
only to the package core.

6.5.3 Expressions
A SPARK expression combines variables, function calls and literals to produce an 
output of a type that is known at static analysis time. Expressions are either static 
(can be determined at compile time) or non-static. We shall ignore static expressions 
since they will be reduced to literals at compile time.

Expressions may occur in the following places:

1. on the right hand side of an assignment or declaration;

2. as an input parameter in a subprogram call;

3. as an index in a component reference (e.g. an array);

4. as the selector in a case statement;

5. after the re tu rn  at the end of a function;
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6. within a type conversion; or

7. after an i f  or e l s i f , as a boolean condition.

The simplest expression is a numeric literal. This will be stored in RAM in the same 
way as a declared constant. Note that the type of the literal is known at compile time, 
so 5 : range 0 ..  7 and 5 : range 0 . .  9999 will be stored in different locations
since they are “different 5s”.

Another simple expression is a single variable or constant name, possibly with record 
selectors following. This can be handled entirely within RAM by the COPY instruction 
since the variables’ addresses and length are known immediately.

A more complicated expression is a variable or constant with one or more array 
selectors. In Section 6.5.2 we saw that the IDXRD could be used to emulate this. 
Similarly IDXWRT can be used to emulate assigning to an array-selected component 
of a variable.

Boolean expressions (such as those after i f  statements) consist of one or more 
boolean sub-expressions separated by logic operators. The LOGIC instruction provides 
a shortcut to evaluating n-ary boolean logic, and additionally sets or clears the CPU 
conditional flag which we will later find useful.

Numeric comparisons are done with CMP which works in a similar way to LOGIC. 
It can also meaningfully compare two variables (of the same type) for equality or non
equality.

Type conversions are not trivial, since they may move data between word sizes. 
s p a r k ’s run-time exception checks ensure that the conversion is always valid (5 can 
never be converted to a variable of range 0 . . .  4, for example), but the conversion itself 
is an arithmetic problem.

Expressions may incorporate function calls, but the SPARK rules mean that there 
are no side effects (the functions do not change the values of any variables) and all 
variables used by the function, directly or indirectly, are known. These expressions 
will be rearranged by the compiler so that the function call occurs first, saving data to 
a temporary variable, then that variable replaces the function in the expression.

Expressions within subprogram calls will need to be saved to the variable corre
sponding to the appropriate subprogram parameter.

Arithmetic expressions are difficult. The general solution is the use of expression 
evaluation blocks within the CPU; each arithmetic expression in a package subprogram 
will normally need its own block. The EXxxxx instructions allow writing to, execution 
of and reading from these blocks.

The logic for an expression block may be produced automatically by the compiler; 
the normal Ada arithmetic and logical operations will have a library of blocks pre
defined, parametrised by argument type size. We have already seen an adder; other 
arithmetic blocks can be produced using well-understood programmable logic designs.

Alternatively the developer may choose to produce a manual design, refining the 
required specification in the process described in Chapter 5. This may confer perfor
mance and space benefits, at the cost of increased development time and chance of 
error in the refinement.
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6.5 .4  A lternation
There are two SPARK forms of iteration: i f - th e n - e ls i f - e l s e  and case. The latter 
can be treated as a special case of the former.

The IFELSE instruction is the key to emulating alternation. It contains a list of 
boolean variable addresses paired with PC values to jump to. A terminating “else” 
can be emulated with the address of a constant Boolean true. The set-up to IFELSE 
will normally be a series of expression and boolean evaluations matching the various 
conditions.

6.5.5 Iteration
The interpreter supports loops with the LOOP, LPEXIT and LPRTN instructions. 

SPARK loops come three main forms:

1. fo r  loops iterate an index variable through a sequence of values; these are equiv
alent to a conditional loop preceded by an initialisation of the index variable with 
the first statement of each loop being an index variable.

2. while loops have a boolean condition which is checked at the start of each loop 
iteration, and which if met will cause immediate loop termination.

3. plain loops have no condition and nominally loop forever.

Loops may also have e x it statements within them, which may or may not be 
conditional. These exit out of the immediately-enclosing loop.

LOOP sets up a loop in the program counter by marking a PC value as the start of 
the loop. LPRTN returns control to the start of the loop, and will therefore be the last 
statement in the compiled loop block. LPEXIT will break out of the loop. Together 
then these allow emulation of the SPARK looping constructs.

6.5.6 Subprogram  calls
Internal subprogram calls are made by writing the parameter data to the mode in  sub
program parameter addresses in RAM, then calling SUBJMP to push the subprogram’s 
start address on the PC stack. At the end of the subprogram SUBRTN will restore 
the PC, and the new mode out parameter values will be read from the subprogram 
parameter addresses.

External subprogram calls are made by writing parameter values into the appropri
ate area of (write-only) RAM and then using SUBEXT to identify the external package 
and subprogram to call. The details of I/O  to other packages were given in Section 6.3.

6.5 .7  Order o f execution
A sequence of statements in a SPARK program are executed strictly in order by a con
ventional Ada compiler. In fact, this need not be the case. The data flow information 
gathered by the SPARK Examiner allows the compiler to determine that one or more 
statements may be executed simultaneously.
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The instruction dependency features of the interpreter can be used conservatively 
to make each instruction dependent on its predecessor, and this is the recommended 
process when testing the newly-compiled software. Out-of-order computations must 
be carefully calculated.

Two sequential instructions I i , I2 cannot be executed in parallel if:

1. I\ affects the conditional flag and I2 is conditional;

2. Il and I2 both write to the same package resource;

3. I\ reads from a resource that I2 writes to, or vice versa; or

4. Il and I2 are handled by the same core component.

All these conditions can be checked by the compiler, but add complexity and hence 
increase the chance of a compiler error. The interpreter is deterministic, so at least 
errors should be repeatable and hence not so hard to track down. Still, it is better to 
avoid errors in the first place.

6.6 System  Interface
As noted in Section 6.2, Ada provides methods for communicating with entities out
side the conventional CPU and memory model. It would be reasonable to allow the 
interpreter to communicate directly with these entities rather than having to let the 
CPU do the direct communication and pass data between them.

One solution is to use the package input mechanism given in Section 6.3.4, but 
couple it to custom logic that controls the device’s input and output pins directly. This 
has the benefit of being encapsulated by the normal interpreter package mechanism, 
but does mean that it cannot interrupt the normal program control flow. Instead there 
has to be an explicit call to the package for the main program to have access to any 
data that is gathered. However, the data gathering can run in parallel with the rest of 
the program.

Another solution could involve an extra expression block in a conventional package, 
hiding the external interface. This removes the inter-package connection overhead at 
the cost of potential unconventional CPU core component behaviour.

The exact solution for a particular project is a project design decision.

6.7 O ptim isations
The above model is relatively slow and unoptimised. Compared with a conventional 
compiler/CPU combination its potential advantages are the out-of-order execution and 
parallel computations. It will suffer from the overhead of being in programmable 
logic rather than an ASIC, and likely to run at perhaps one twentieth the speed of a 
conventional CPU for a relatively narrow bus width.

The key to performance gain is to use what the model is good at. Writing data to 
the PLD, and reading data back from it, can be done at a relatively high burst speed 
(depending on the system bus). The PLD can process this data while the main CPU
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executes the rest of its program, polling the PLD to see when the processed data is 
ready. This takes load off the main CPU, increasing system performance.

Section 6.6 showed how part of an PLD program could be customised to monitor 
off-PLD signals. This too can reduce CPU load.

Designing the system architecture is necessary early in the system development 
process. The designer needs to decide what tasks PLD programs should take from 
the CPU. Once this is done, the PLD implementation can vary without the main 
program design needing to change. This is important since it is not yet apparent how 
one can predict overall system performance with confidence without a mostly-working 
implementation.

Optimisations of a particular implementation will normally include removal of re
dundant components and adjusting word and bus widths. The latter appears to be 
more of an empirical process than an analytic one. At the moment we have no heuristics 
for identifying implementation bottlenecks. This area is open for further research.

6.8 Conclusions
This chapter has seen a design and outline implementation of a sequential SPARK 
95 interpreter running on a generic PLD, intended for running PLD programs of low 
criticality.

6.8.1 A chievem ents
We placed no artificial limits on the set of SPARK 95 programs that the interpreter 
could execute. The limitation of no nested packages was for clarity of exposition, 
and could be removed by careful management of the name spaces while compiling the 
top-level package.

We showed that the control and data flow within SPARK could be emulated by a 
relatively small set of primitive instructions. We produced a detailed mechanism for 
asynchronous transfer of data between a software SPARK program and the SPARK 
interpreter. We also produced a mechanism for synchronous transfer of data between 
package blocks on the PLD.

We made no detailed estimates of the practicality of implementing the design, or 
of the compilation errors that could plausibly occur.

6.8.2 Evaluation o f SPA R K
We found the following SPARK features, enforced by the Examiner, key to our design:

1. recursion banned;

2. package ordering in a directed acyclic graph;

3. known data flow of subroutines;

4. exits from loops only possible in immediately-enclosing loop;

5. compile-time knowledge of type sizes; and

6. ability to show freedom of programs from run time exceptions.
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6.8.3 Evaluation o f S R P T
The SRPT notation proved useful in specifying the input and output events of pro
cesses and their relationships. The pre- and post-condition specifications varied in their 
clarity. There is scope for improved notation and conventions to reduce the size and 
complexity of the specifications without reducing their precision.

The key test of the notation will be when processes are implemented from their 
specification. In Section 7.2 we translate the relatively simple stateless processes of 
the Carry Look-Ahead Adder into gates, but the more complex state-holding processes 
of the SPARK interpreter are an entirely different problem. This is an area open for 
further research.

6.8.4 Satisfaction o f target aim s
Of the targets in Chapter 3 we have addressed or partially addressed:

Target 1: The process we define must he rigorous.
This is partly addressed; SPARK programming is a rigorous process, and the in

terpreter design has been given in an unambiguous notation (SRPT). However, we 
have not produced any rigorous demonstration that the interpreter correctly executes 
SPARK, and indeed have stated that the attainable integrity of the interpreter is not 
sufficient for critical applications.

Target 2: The process must help the developer to write unambiguous programs.
This approach allows PLD programming in SPARK, and SPARK programs are 

unambiguous. The SRPT specification of the interpreter is unambiguous, and so an 
interpreter implementation which satisfies the specification will likewise run programs 
deterministically.

Target 3: The process must allow the programs to have sections written in a
low-level language for speed and flexibility, but not allow these sections to compromise 
overall program reliability.

The interpreter design allows arbitrary connection to other PLD components as 
long as they implement the same I/O  interface as the interpreter modules.

Target 4- The process must admit substantial static analysis to discover semantic 
program errors at or before compile time.

SPARK programs may be subjected to static analysis via the use of the SPARK 
Examiner.

Target 10: The process should provide flexibility so that it may be used in situa
tions not anticipated in its original design.

The interpreter design provided is parameterised and modular, allowing individual 
modular designs to be modified as and when necessary and desirable (within limits 
imposed by communication protocols and PLD architecture.)

6.8.5 Follow-on
This chapter has not gone into great depth for each of the interpreter components for 
reason of space and chapter focus. The key measure of feasibility is whether such an 
interpreter can actually be implemented, and whether its performance is comparable 
to a conventional CPU. This requires further work, and hence this study is listed as a 
possible future item of research in Section 8.4.3.
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Chapter 7 

Case Study

This chapter brings together the work of the preceding chapters and shows how it can 
be used to solve a simple yet realistic problem.

There are two phases to the study. The first phase is a validation of the SRPT 
specification work. Based on the high-level SRPT specification in Chapter 5 we develop 
and validate “building-block” processes, then implement the Carry Look-Ahead Adder 
design. We implement this design in Perl, measure its size and assess its performance.

The task of the second phase is to produce an embedded system to control a ballistic 
missile interceptor. As far as possible, we use development and analysis techniques 
described as suitable for SIL-3 systems by MoD Defence Standards 00-55 and 00-54 
[MoD97, MoD99].

7.1 Target Aim s
We address the following targets from Chapter 3:

Target 5 The program produced must be easy to test.

Target 6 It must be able to be compiled onto a range of existing and anticipated logic 
devices.

Target 7 It must reuse existing proven tools where feasible.

In addition we consider the question of the practicality of development of significantly- 
sized systems.

186



7.2 Carry Look-Ahead Adder
In this section we present the construction of a general-purpose simulator for a generic 
single-clock synchronous PLD. We then show how it was used to implement the design 
of a carry look-ahead adder (CL A A) from Section 5.3.

We do not aim to make the simulator implementation conform to SIL-3 or SIL-4 
software standards. Instead, we treat it as a testing tool; we require confidence that 
it fulfils its requirements accurately, and that it has been constructed in such a way 
as to highlight errors in its design and implementation. It should provide an overall 
increase in confidence in the circuits it simulates, but will not provide the sole evidence 
of correctness of the circuit.

7.2.1 Sim ulation environm ent
The environment used was the Perl programming language. This was chosen for its 
ease of use, cross-platform compatibility and support of 0 0  inheritance. Java was an 
alternative choice but the author had more experience of Perl.

Structure

The base Perl modules used by the simulator were:

Blocks.pm Generic blocks

Gates.pm Logic gates (single-cycle, stateless)

Utils.pm General utilities for conversion between data types 

Functions.pm Logical functions for logic gates

The first two modules in the list implement object instantiation in the standard 
Perl way. The other two export functions for use by other modules, and are stateless. 
All of them raise no errors under the Perl -w and use s t r i c t  syntax checks.

Program m ing interface

The Blocks module implements the following methods: 

new(specs) Initialise a new block with the given specs 

gate_count() Count the number of gates in the block 

copy (old) Copy an existing block old

set_in_map(map) Set the mapping of input pins to inputs inside the block 

set_out_map (map) Set the mapping of outputs inside the block to output pins 

se t_ ro u te  (route) Set the routing between internal blocks 

map_in() Map input pin values onto the relevant inputs
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map_out() Map output values onto the relevant output pins 

s e t_ in p u t( id x ,b it)  Set input pin idx to b i t  

get_outpu t(idx) Get the value of output pin idx 

get_delay() Get a block’s computational delay 

evalO  Evaluate internal blocks and gates 

route 0  Route data between internal blocks and gates 

add_object (obj) Add a block or gate obj to the block contents 

cycle () Cycle a block (map_in() ;ev a l() ;map_out() ; route ())

Testing

The modules’ code has been tested by comparing the results of computations with 
results worked out by hand in a range of blocks. This would clearly be inadequate for 
a tool intended to support SIL-3 software development, where such techniques such 
as white-box testing, regression testing and independent code review might be used. 
General testing and validation strategy is discussed further in Section 7.2.5.

7.2.2 B uild ing blocks
The first step towards allowing module building was to define a range of logic gates in 
the Gates and Functions modules. Each of these was taken to complete its calculations 
in 1 cycle. Most gates had 1, 2 or 3 inputs. The exceptions were n-ary a n d , o r , pass 
and xor gates in the Functions module.

The Gates module allows the user to define the maximum number of inputs permis
sible on these gates, causing a runtime error at the instantiation of any gate with more 
than the permissible number of inputs. This corresponds to specifying the maximum 
inputs and outputs on each cell in a particular PLD.

The user can now build their modules out of these gates. These modules subclass 
module FPGA::Blocks. A module’s block is formed by Perl functions which instantiate 
a container block and then instantiate and connect a series of other blocks and gates in 
the container. All such modules are placed in the Useful include directory as standard.

7.2.3 A dder block
The CLAA was implemented in the module FPGA::Useful::Adder in the manner de
scribed above.

This class’s new() method requires parameters NAME for the name of the adder, 
WIDTH for the bit-width of each adder input and ADDON for the number to add on to 
the basic sum; this would typically be 0 or 1.

The main task of the module was to declare a block containing the three sub-adders 
and other gates according to the design developed in Section 5.3. These were given 
widths according to the user-input width for the containing adder.

If the WIDTH parameter was 1, the module built a simple half-adder block from an 
X OR and AND gate.
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Bit width w Gates g Delay d [log2(w -  1)J
1 2 1 -

2 9 2 0
3 25 3 1
4 31 3 1
5 64 4 2
6 80 4 2
7 93 4 2
8 100 4 2
9 171 5 3

Table 7.1: Adder size and delay properties

7.2.4 Testing
A c la s s_ te s t  Perl script and Makefile system provided a generic facility to test a 
given FPGA::Blocks subclass. The script was a wrapper around use of the subclass 
s e lf _ te s t( )  method. Typically, this method iterated through a range of block size 
parameters (WIDTH in the case of the CLAA). In each case it created a suitable instance 
of the block, extracted test data from the te s t_ c a se s ()  method and tested the block 
against the expected output.

The te s t_ c a se s ()  method implemented random checking of a CLAA, generat
ing random input data and checking that the sum of the random data emerged in a 
pipelined fashion after the block’s declared output delay.

Testing revealed no functional errors, and produced concrete statistics about the 
implementation. Table 7.1 shows the properties of the Adder for a range of bit widths. 
The delay is measured in PLD clock cycles.

The delay was indeed logarithmic in bit width, matching our performance specifi
cation. For width w > 1, delay d = 2 + [log2(w — 1)J as the table shows. Gate size 
leapt, and delay increased by one, at each 1 +  2  ̂ for integer A: as we would expect.

The testing of larger devices revealed an omission in the simulation environment. 
Since basic gates were limited to 3 inputs, when a 4-gate PASS gate was requested 
the Gates module raised an error. This was overcome by extending the module’s new() 
method to instantiate a block with as many smaller pass gates as needed. Re-running 
the fixed simulation produced the correct results.

7.2.5 Sim ulation environm ent reliability
The simulation environment is a key component in the argument for correctness of 
our programmable logic system, since inadequate or incorrect simulation may lead to 
construction of a system which simulates correctly but behaves incorrectly in real life. 
This creates a debate about the required level integrity of simulation and analysis tools 
in a safety-critical system.

Perl is clearly an unsuitable language in which to implement a safety-critical system. 
The key reasons are:

1. it is an interpreted language, causing a significant performance penalty compared
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to compiled languages;

2. the Perl interpreter is large and thus difficult to verify in any meaningful way;

3. the interpreter does periodic garbage collection, making program execution effec
tively non-deterministic;

4. the language is purposefully very weakly typed;

5. Perl is not a “static” language; rather, it develops steadily over time and language 
constructs may change their meaning; and

6. Perl itself has a number of language concepts (such as default variables) which 
obscure the meaning of program statements and are prone to cause error.

Comparing these properties with the requirements for selection of programming 
language in Section 28 of DefStan 00-55 [MoD97], we see that the weak typing, lack of 
formal syntax and lack of predictable program execution clearly make it an unsuitable 
programming language.

However, the Praxis Critical Systems Perl Coding Standard [LeeOO] provides guid
ance on developing Perl programs designed for reliability. Using this, with indepen
dent verification of programs against this standard. Praxis have justified the use of 
Perl tools in support of a safety-critical system development. Performance issues are 
negated since programs are not required to run in real-time, the standard requires the 
use of a “well-trodden” subset of the main language, and coding rules combined with 
manual inspection of the code reduce the risks posed by weak typing.

7.2.6 C onclusion
Although not conclusive proof that the CLAA refined design was perfect, or indeed that 
the simulation was error-free, this simulation and testing leads to increased confidence 
in the design. This fulfils the main requirement for the simulator which we expressed 
at the start of this section. The simulation also demonstrates that development of the 
CLAA is easy to test (target 5) according to its criteria from Section 3.7.2:

5.1 amenable to production of a test plan from the specification;

5.2 amenable to instrumentation of the compiled program so that relevant data flow
can be observed;

5.3 with a working, verified simulator; and

5.4 test vectors for the simulator can easily be produced from the test plan.

Target 6 is met according to its criteria from Section 3.7.2:

6.1 a non-trivial program being developed into a form for compilation and running 
using an existing PLD and toolset

since a simple gate-level description is trivially mapped into VHDL, Verilog or netlist 
format.

In the next section we will construct a program and test harness for a real-time 
safety-critical system, using the techniques described in the preceding chapters.
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7.3 M issile Guidance System  — Overview
This case study addresses the problem of incorporating a programmable logic compo
nent into an existing safety-critical system which was not originally designed for it. 
This is not the ideal way to construct a safety-critical system, but it is a reflection of 
current practice and has the bonus of providing a stringent test of our techniques.

We first implement the system in conventional software, written in the high-integrity 
SPARK subset of Ada 95, using state-of-the art analysis tools to prove safety-related 
properties of our software. We then select a subsection of the code to be implemented in 
programmable hardware, and transform the code to a form suitable for communicating 
with a PLD.

We aim to identify the main difficulties in this re-engineering process, and (where 
possible) propose and demonstrate solutions. A secondary aim is to identify which 
features of the SPARK Ada subset are less amenable to transformation into PLD form 
and propose transformation strategies for them.

7.3.1 R elated  work
Demonstration software systems have been used for studies before. Napier et al 
[NMH99] described the implementation of on-line diagnostics for safety-critical sys
tems, using a boiler water control system implemented in Ada as part of an earlier 
study by the UK Health and Safety Executive. This system had 70 Ada packages, and 
communicated with a GUI over a serial link.

The advantage of a publicly-available software system (and associated test harness) 
is that it provides common ground for future studies. It also permits some degree of 
direct comparison between studies. For this reason, the software and test harness for 
this system will be made publicly available.

7.3.2 System  requirem ents
The system is the main control unit (MCU) for an endo-atmospheric interceptor mis
sile, armed with a low-yield fission warhead. This system is clearly safety-critical; a 
detonation of the warhead at the launch site is a definite hazard to life. Of course, 
there are mission-critical requirements as well; if the warhead were never to go off, the 
missile targeted for interception would probably get through to its destination and be 
likewise a hazard.

We assume that the live warhead is only connected on a production missile in the 
operational environment, and hence there are no special safety considerations during 
development and testing of the system.

7.3.3 Safety
The main hazard of the system will be detonation of the on-board warhead at an unsafe 
location (i.e., close to the launch point, or below a certain altitude). This dictates safety 
considerations such as having confidence in the estimated distance from launch point.

We assume that the overall system has been assessed as SIL-4, but the program
mable part has been assessed as SIL-3. In a real project this reduction would be
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justified by non-programmable measures taken to mitigate the main system hazard, 
e.g. an analogue timer and accelerometer in series with the software warhead deto
nator wire, designed to only enable transmission on the wire after a certain time and 
after the missile has maintained a certain acceleration for a certain amount of time.

According to Defence Standards 00-54 and 00-55, SIL-3 indicates the use of some 
formal notations (e.g. for specification) and semi-formal analysis techniques. It does 
not require proof of object code.

7.3.4 Im plem entation  lim its
Since we lack appropriate hardware, we can only implement this system in pure soft
ware. We must therefore produce appropriate simulation and test software in order to 
have any justifiable confidence that the system does what is required. We have already 
discussed (in Section 7.2) the reliability requirements for such software.

In this particular system simulator we will apply some SIL-3 development techniques 
to the test harness software, implementing it in SPARK Ada where possible and plain 
Ada where required. We will not measure the system’s real-time performance.

The time taken to implement and test the full system will likely be in the order of 
the square of the number of interacting components. For this reason, we will test only 
a subset of the total system’s functionality, ensuring only that the existing components 
work well enough to support the functioning of the missile’s safety-critical functionality.

7.3.5 Im plem entation  technologies
The system (and most of the accompanying simulation and test code) was written 
in the SPARK subset of Ada 95. The standard switches used for analysis are shown 
below:

-i= m issile  -exp -lis tin g _ ex ten sio n = ls_  -config=gnat - s t

They indicate, respectively:

• use of the SPARK index file m iss ile .id x ;

• generation of full exception checks including arithmetic overflow;

• listing output to . Is s  and . Isb for Ada specifications and bodies respectively;

• use of file g n a t. cf g to specify the target-specific ranges of the base Ada types; 
and

• generation of statistics on Examiner table usage.

The compiler used was GNAT 3.2 on 1686 Linux, although the system was also 
compiled and checked on GNAT for Windows 2000 and Solaris. Note that if a differ
ent compiler was used e.g. to cross-compile to a PowerPC target, then the compiler 
configuration file given to SPARK must represent the target compiler.

The overflow checks generate verification condition (VC) files for each package body 
analysed. These conditions must be shown to be true in order for the developer to be 
confident that the system is free of all run-time exceptions. The strategy used was
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to use the Simplifier tool to discharge the maximum number of VCs automatically, 
and then justify key remaining VCs using manual inspection, recording results in proof 
review (.prv) files. This strategy avoids the extra effort needed for semi-automatic 
proof of the VCs with the Proof Checker tool, at the risk of manual justification of 
VCs being incorrect.

7.4 System  Com ponents
The system has the following components. For each requirement we list the operational 
(functional) and safety (non-functional) requirements. The safety requirements are 
those that would be produced as a result of the system hazard analysis.

7.4.1 S ystem  clock
1. Measures time since system power-on.

2. Time measured in milliseconds with an accuracy of 0.002% (under 2 seconds in 
24 hours).

The clock was constructed with package clock. The simulation body was imple
mented with a clock that incremented by 1 millisecond after every read, and had an 
external interface to allow simulator adjustment of the clock value.

Additional functions to operate on clock times were supplied in package c lo ck _ u tils .

7.4.2 1553 bus
1. Allows communication between the MCU and the other LRUs.

2. The MCU is the bus controller.

3. The “bus catalogue” is a list of pages; each page relates to the interaction between 
the MCU and an LRU.

4. A bus catalogue page has a list of Rx (MCU to LRU) and Tx (LRU to MCU) 
16-bit words used to communicate, assigning meaning to the bits in each word.

5. Each word is marked with a “fresh” bit by the sender when it is to be sent. The 
receiver can inspect any of the sent words at any time, and can see the “fresh” 
bit along with a “valid” bit controlled by the bus.

6. Maximum time lag between the sender marking a word as fresh and the receiver 
seeing the fresh data is 15ms +  1 system cycle.

Safety requirements:

1. A bus failure indication (no-data condition) for any Tx word for more than 2 
seconds is taken to indicate total failure of the sending LRU.

2. The bus must report a valid self-test on start-up.
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The bus was constructed with packages bus, bcl553 and rtl553 . These provide 
a simulation of a standard 1553 bus, and interfaces to the simulation for a Bus Con
troller and Remote Terminal. The bus simulator was tested with program test_bus 
to demonstrate basic functionality.

Copies of the test program and interface package specifications are given in Ap
pendix B. The test program in particular shows how the Test package is used during 
testing.

7.4.3 W atchdog tim er
This is a standard component for safety-critical systems, used to detect system failures 
such as program run-away. When such failures occur it will either reset the system (if 
it can be safely reset), or take more drastic action such as self-destruction.

Properties:

1. Provides a reset interface to the MCU.

2. After a reset, the timer will count out 750ms. If not reset within this time, the 
timer will go off.

3. If the timer goes off, the watchdog will immediately command a missile self- 
destruct.

Operational requirements:

1. The timer must be reset within 600ms of a previous reset during normal system 
operation.

Safety requirements:

1. The watchdog timer may only be reset at one point within the program.

2. The watchdog timer reset command must be so placed in the program as to 
detect as many kinds of system failure as possible.

3. The program must not send a timer reset if any system failure is detected.

The watchdog timer was constructed with package watchdog. The simulation body 
interfaced to the clock to check for timeout when commanded.

7.4.4 B arom etric sensor
This sensor detects altitude above mean sea level using barometric pressure. 

Properties:

1. Measures current altitude above sea level.

2. Accuracy is ±5% at sea level, up to ±10% at 20 000m.

3. Above 20 000m barometric readings will read as if at 20 000m.
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4. Must be calibrated with current altitude at system start.

5. Polling frequency is 200ms.

The barometer emulator was constructed with package barometer. The MCU 
interface to the barometer bus messages was constructed with package if-barom eter. 
These packages were tested using the main test harness with test script barom eter.in  
which is listed in Appendix C along with its output.

7.4.5 A irspeed indicator
This sensor measures the speed of the missile relative to the air it passes through. As 
the altitude increases, the sensor’s accuracy will decrease.

Properties:

1. Measures current speed relative to still air, in meters per second.

2. Accuracy is ±1% at sea level, up to ±10% at 20 000m.

3. Above 20 000m, airspeed readings should be regarded as random.

4. Maximum airspeed measured is 2550 m/sec

The airspeed emulator was constructed with package airspeed. The MCU interface 
to the airspeed bus messages was constructed with package if-a irsp e e d .

7.4.6 Inertial navigation system
This sensor measures the missile’s displacement from its starting point using a ring 
laser gyro set to measure relative movement.

Properties:

1. Accuracy is ±0.3% at speeds above lOOm/s, ±1% below that.

2. The co-ordinate system places the origin at the initial centre-of-gravity of the 
missile.

3. A left-handed axis set is used.

4. The Y axis runs along the long axis of the missile’s initial attitude.

5. The X axis runs in the direction of the number 0 steering fin.

6. The Z axis runs in the direction of the number 1 steering fin.

7. Polling rate is 50ms

The INS emulator was constructed with package ins. The MCU interface to the 
INS bus messages was constructed with package i f - in s .
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7.4.7 Solid sta te  com pass
This sensor is a solid-state compass which detects missile attitude relative to the Earth’s 
magnetic field.

Properties:

1. Must be initialised at start-up with the local normal vector to Earth’s surface.

2. Accuracy is within a 0.04 radian cone at sea level, decreasing linearly to a 0.2 
radian cone at 40,000m.

The compass emulator was constructed with package compass. The MCU interface 
to the compass bus messages was constructed with package i f  _compass.

7.4.8 Fuel tank sensor
This sensor reads the amount of fuel in the missile motor’s tank.

Properties:

1. Measures fuel remaining in kilos, from a maximum 100kg fuel load.

2. Accuracy is ± lkg  down to the measurement of a 5kg fuel load, below which the 
reading must be assumed to be a random value between 0 and 6kg.

The fuel tank emulator was constructed with package fue l. The MCU interface to 
the fuel tank bus messages was constructed with package i f  _fuel.

7.4.9 P roxim ity fuse
This sensor is a rapidly nutating (rotating) UV laser proximity fuse.

Properties:

1. Will only detect a refiection off a valid target within 1000m of the target.

2. Refiection is not guaranteed as the detection area is limited by an angle of ±1 
radian from the normal to the sensor window.

The fuse emulator was constructed with package fuze. The MCU interface to the 
fuse bus messages was constructed with package if_ fuze.

7.4.10 M illim etre radar sensor
This sensor is a phased-array millimetre-wave radar in the nose of the missile. 

Properties:

1. Will detect a valid target within a cone of 0.8 radian width off the missile’s long 
axis towards the nose.

2. Maximum guaranteed detection distance of a valid target is 10 000m.

3. Accuracy of location is ±0.02 radians and ±10m range.
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4. Doppler processing will read the speed of the target relative to the missile in the 
direction of detection with accuracy of ±3%.

The radar emulator was constructed with package radar. The MCU interface to 
the radar bus messages was constructed with package if_ rad ar.

7.4.11 Staring infra-red sensor
This sensor is an array of infra-red sensing cells in the nose of the missile.

Properties:

1. Will detect a valid target within a cone of 1.2 radian width off the missile’s long 
axis towards the nose.

2. Maximum guaranteed detection distance of a valid target is 30 000m.

3. Accuracy of location is ±0.1 radians.

4. Approximate range information is given by expected target temperature, and will 
be accurate to ±30% for a valid target.

The IR sensor emulator was constructed with package i r .  The MCU interface to 
the IR sensor bus messages was constructed with package i f  _ ir .

7.4.12 Fins
The missile has four independent steering fins, spaced equally around the missile body. 

Properties:

1. Each fin has a possible deflection (position) of between -1 and +1 radians from 
neutral.

2. Extreme rotation of a fin in a high atmospheric drag environment (high speed /  
low altitude) can lead to fin mechanical failure.

3. Maximum response time from position command to position achieved is 800ms. 

Operational requirements:

1. Avoid “chatter” (a rapid sequence of positive and negative values) in fin steering 
commands in order to reduce the probability of fin mechanical failure.

2. Lock the fins in neutral position at system start.

Safety requirements:

1. Fins must report valid self-test at startup.

The fins emulator was constructed with package s tee r. The MCU interface to the 
fins bus messages was constructed with package if_ s te e r .
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7.4.13 M otor
The missile has a liquid-fuel rocket motor to provide thrust along its long axis. 

Properties:

1. Variable thrust between 5 and 35 kN.

2. Optimal fuel consumption is at 21.5 kN thrust.

3. Thrust efficiency decreases by a small amount with increased altitude due to
reduced atmospheric oxygen partial pressure and hence a leaner fuel mix.

4. Maximum thrust at zero atmospheric oxygen is 29kN.

Operational requirements:

1. Avoid chatter in thrust level commands in order to reduce the probability of 
thrust chamber mechanical failure.

2. Avoid repeated thrust ramp-up and ramp-down in order to conserve fuel and 
reduce the probability of thermal cracking in the thrust chamber.

3. Ramp-up to 30% of maximum thrust at system ignition.

4. Do not change this thrust level until missile has travelled over 100m vertically.

Safety requirements:

1. Motor must report valid self-test at system start-up.

The motor emulator was constructed with package motor. The MCU interface to 
the motor bus messages was constructed with package i f  _motor.

7.4.14 Self-destruct
For safety, the missile must be able to destroy itself safely. There are four separate 
charges placed throughout the missile body.

Properties:

1. Detonation will fragment the missile body and destroy the warhead without caus
ing warhead detonation.

2. Self-destruct with a full fuel load at low altitude will cause an explosion with 
blast effects approximately equivalent to a conventional blast-effect 250kg bomb.

3. Self-destruct requires a timed sequence of keywords to be sent to the self-destruct 
bus unit. There is no acknowledgement back from the unit.

Operational requirements:

1. Self-destruct must not be initiated if the missile is still capable of flying its des
ignated mission safely.
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Safety requirements:

1. Self-destruct must be initiated before the missile impacts the ground.

2. Self-destruct must be initiated whenever any sensor or actuator failure occurs that 
significantly increases the probability of warhead detonation outside detonation 
parameters.

3. Self-destruct must not be initiated within 1000m of the launch point.

4. Self-destruct must report valid self-test at system start-up.

The self-destruct emulator was constructed with package d estru c t. The MCU 
interface to the self-destruct bus messages was constructed with package if -d e s tru c t .

7.4.15 W arhead
The missile has a 12kT fission warhead as payload.

Properties:

1. Detonation requires a timed sequence of keywords and a challenge-response au
thentication between the command unit and the warhead unit.

Operational requirements:

1. A valid target for the warhead is an object travelling at over 400m/s whose 10- 
second historic track places or will place it within a 10 000m sphere with origin 
equal to the launch point.

2. Optimal detonation distance is 800m from a valid target.

Safety requirements:

1. The warhead must not be detonated within 10 000m of the ground.

2. The warhead must not be detonated within 20 000m of the launch point.

3. The warhead may only be detonated within 2 000m of a valid target.

4. The warhead must report valid self-test at system start-up.

The warhead emulator was constructed with package warhead. The MCU interface 
to the warhead bus messages was constructed with package i f —warhead.

7.5 Design
The software system was designed using the INFORMED [AmeOO] design method. The 
package hierarchy was extracted from the above system components, augmented with 
basic types packages and interface packages.
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7.5.1 D esign  decisions
Significant design decisions included:

• two SPARK boundaries, one for the main missile controller and one for the 
emulator code, overlapping lower in the inheritance hierarchy;

• top-down design as per INFORMED, ensuring each specification was written and 
valid SPARK before implementing the corresponding body;

• supplementing each state package with a non-SPARK test procedure;

• implementing as much of the simulator as possible in valid SPARK; and

• using a script-based test harness above the main program.

7.5.2 Package structure
Figure 7.1 shows the design of the system with the SPARK and simulation boundaries. 
Each significant package is shown; a red circle indicates the presence of state within a 
package. The arrows show the direct with (package hierarchy) relations. A represen
tative subset of the component packages are shown, for reasons of diagram space and 
clarity.

7.5.3 C ode structure
The top-level system program in design unit Main is a simple polling loop, calling a 
sequence of embedded subprograms to deal with each system component.

7.5.4 D esign  lim itations
The current lack of tasking (coarse-grain parallel processing) in SPARK Ada was keenly 
felt. The main program broke down naturally into a small set of loosely-coupled tasks 
managing functions such as location tracking, target tracking and self-test. In se
quential Ada these had to happen in an artificial order in a polling loop, introducing 
artificial dependency relations between their states.

The addition of the Ravenscar tasking profile [BDR98] to SPARK 95 should make 
such programs easier to express.

7.6 Im plem entation
The implementation was done in the following main phases:

1. construction of basic types packages;

2. design, build and test of the bus interfaces and emulator;

3. construction of the simulator and interface for the Barometer package;

4. construction of the basic test harness;
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Figure 7.1; Missile system design
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5. testing of the Barometer code and subsequent fixes to the code and test harness;

6. addition of one sensor at a time, extending harness code and adding types pack
ages where required;

7. construction of the Nav package for position estimation; and then

8. construction of the main M issile  package.

7.6.1 D evelopm ent
The development methodology for each package was:

1. writing of the specification;

2. SPARK of the specification, fixing identified errors;

3. writing of the body;

4. SPARK of the body, fixing identified errors and updating the specification anno
tations where needed;

5. Simplifying of VCs for the package and fixing code fiagged by any obviously false 
VCs;

6. writing of the Command testing subprogram for the package;

7. compilation of the package;

8. creation of the test script for the package; and then

9. testing of the package, fixing code and amending the test script where required.

This late use of the compiler was effective in that very few compilation errors 
were reported on the first compile; those that occurred were normally in the Command 
non-SPARK routine. The VC inspection was a relatively effective method of locating 
potential program errors for a small investment of manual inspection, especially for 
numeric overfiow errors for the results of calculations.

The SPARK report for the analysis of the Nav package body is given in Appendix D. 
It shows the SPARK Examiner options used, the packages that needed to be analysed 
due to dependency by Nav on them, and the fraction of the Examiner tables used.

The final code count was 504K of Ada files, with 16 800 lines. Of these, 2 500 lines 
were annotations, 2 900 were comments, 1 300 were blank, and the remaining 10 000 
(forming 330K) were Ada code. 20K of this Ada was test-related code. There were 75 
packages and public child packages, with 9 of those packages related to testing. This 
verifies that the system is not trivial in size.
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7.6.2 Testing
The testing was done with a script-driven test harness, written in Ada but not using 
the SPARK subset. Each significant module has a Command subroutine which reads 
data from standard input and acts upon test script commands relevant to that routine. 
The subroutine is made separate from the package body and marked as —# derives 
n u ll so that the Examiner will not examine it and will assume that it has no effect on 
the “interesting” (annotated) part of the system.

The test routines call package Test whenever they perform a check; successful 
checks increment the Pass count, and unsuccessful checks increment the F a il  count. 
The results of each test are shown on standard output. Test scripts can change aspects 
of the simulated packages (e.g. the current time or the current estimated height) and 
display comments about what is being tested. At the end of a test run, the harness 
shows the total number of pass and fails.

An example test script for testing the basic functionality of package Barometer is 
shown in Appendix C.

7.6.3 Conclusions
The development produced the following lessons and statistics related to SPARK and 
Ada development:

A developer will have to do things properly eventually, such as provide I/O  and 
check functions for all major types, and no time will be gained by trying to short 
cut this.

• The -exp switch is effective at locating overfiow errors when combined with 
Simplifier usage.

• The public child packages provided in Ada 95 and SPARK 95 are a great aid 
to testing since they can easily be excluded from a SPARK analysis yet provide 
direct visibility to their parent package for I/O  and check functions.

• The use of a Makefile makes project management much easier, especially with 
regard to keeping testing up to date.

• The Examiner processed a large system in acceptable time (8.163 seconds of 
real time to SPARK everything SPARK-able with the standard switches, on a 
1.35GHz Athlon XP processor).

• Of the 3085 VCs produced for this project, 32% were discharged by the Examiner 
(version 6.2) and 58% by the Simplifier (demonstration version) leaving 8% to 
prove manually. Simplification of the entire system took 364 seconds on the 
aforementioned PC. Trial use of version 7.0 of the Examiner discharged 35% of 
the VCs directly.
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7.7 Introduction of A PLD
With the system passing SPARK analysis, compilation and testing, it was then nec
essary to choose some system functionality to incorporate into a PLD. We aimed to 
produce a new program, with minimal changes to the original program annotations.

The three phases of this work were:

1. identify a suitable subsection for transformation;

2. replacing the existing code with calls to a PLD interface; and

3. transform the replaced code into a VHDL implementation;

7.7.1 Subsection identification
The code chosen for transformation was the Nav package, which tracks estimated missile 
position. It is suitable for transformation because it requires relatively infrequent 
updates from the main software (periodic updates on time and estimated missile speed 
and attitude) and produces on-demand estimation of the current delta position from 
launch. These properties match up well with those we described in Section 4.3.8.

7.7.2 PLD interfacing
The original implementation of Nav is given in Appendix E. It provides public functions 
for accessing its internal tracking of recent sensor measurements (abstract variable 
Location_State) and sensor states (abstract variable Sensor_State). The M aintain 
polling routine calls the Handle_XX routines for Airspeed, Barometer, Compass and 
INS sensors; these routines check the named sensor’s current readings, and if the sensor 
has failed will attempt to use other sensor readings to estimate appropriate values. The 
Estimate_Height and Handle_Airspeed subprograms are shown in full form in the 
appendix; the others have been made separate for brevity.

The design decision was made to transform the package to have no intrinsic state, 
but instead use memory-mapped state variables to communicate with the PLD. The 
two existing abstract state variables were retained and their refinement components 
mapped onto PLD output pins, and a new abstract state variable FPGA_Inputs was 
added which was mapped onto PLD input pins. No synchronisation code was necessary 
since the PLD implementation is stateless and hence may be pipelined.

The existing public functions were left essentially the same, with only minor changes 
to memory-mapped variable accesses made due to SPARK rules. The Handle_XX 
subprograms were unnecessary due to being moved onto the PLD and were removed. 
The Maintain routine was changed to read each sensor’s state and write them directly 
out to the PLD input pins.

The resulting package body Nav_FPGA is listed in Appendix F. The correspondence 
with the original is quite clear. The most significant change is the addition of declara
tions for calculating type bit widths and mapping variables into memory. In fact, some 
of these bit width calculations will not actually compile under GNAT since they are not 
properly static; in practice, they would have to be replaced by actual numbers. They 
have been left in the code in order to show the derivation. Again, Estimate_Height 
is given in full form and the other Estim ate routines are made separate.
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7.7.3 Transform ation
The high-level structural steps of transformation of the selected Handle_XX subpro
grams of package Nav into VHDL were:

1. replace global variables in the subprogram declaration and body with the appro
priate PLD input and output vector names;

2. identify each subprogram’s in and out argument and global data and create a 
VHDL architecture declaration for it;

3. add appropriate Clock and Reset inputs to the declaration;

4. connect the appropriate PLD input and output pins to the subprogram’s inputs 
and outputs;

5. create the VHDL implementation for the subprogram by declaring architectures 
for the major Ada control flow elements;

6. add declarations for appropriate vectors to connect these architectures; and then

7. add the required connections between blocks and architecture inputs and outputs.

At the level of translating subprogram body code from SPARK Ada to VHDL, no 
initial effort was made to enable hne-grain parallelism. Instead, SPARK Ada program 
constructs (principally alternation and assignment) were mapped into the most di
rectly corresponding VHDL representation (respectively, multiplexing from expression 
evaluation and data routing).

No compilation or simulation of the VHDL was done since it was a capability 
demonstration. A process for producing timing-robust VHDL from a SPARK design 
is clearly required for this transformation process to be practically useful.

7.7.4 R esu lts
The transformation process produced the following discoveries:

Software im plem entation to  PLD interface

• Relatively little of the package specification changed. The abstract state variables 
gained SPARK modes, and one extra output abstract variable was required, but 
the global and derives annotations did not change greatly.

• Most of the work in the package body involved mapping concrete state variables 
onto the correct area of memory. External global data (from the sensors) was 
passed directly onto the PLD inputs.

• The transformation was not quite automatic, but was effected quickly and was 
amenable to manual inspection for correctness.

205



Software im plem entation to  PLD im plem entation

• The SPARK annotations were very helpful in characterising the inputs and out
puts quickly, making VHDL architecture declarations simple to write.

• Bit widths could be easily calculated manually, and minimised by use of pragma 
PackO and Ada representation clauses. There seems no reason why these widths 
could not be estimated by a relatively simple tool, given a SPARK syntax tree.

• The guarantee of no expression overflow given by the Examiner -exp flag (and 
subsequent proof) would greatly simplify the process of writing VHDL to compute 
arithmetic expressions.

7.8 Conclusion
In this chapter we demonstrated that our Chapter 5 work on refining a carry look-ahead 
adder specification into an SRPT form could be mapped into a gate-level simulation 
of a generic PLD. We constructed a suitable simulator and used it to verify that the 
implementation met its specification.

We then wrote a controller program for a high-integrity embedded system, us
ing existing state-of-the-art software development tools and techniques, and simulated 
mapping a section of the program into a programmable logic device.

The main conclusions of this work are as follows:

7.8.1 R efined program  sim ulation
1. The refined program worked as expected in a gate-level simulated implementa

tion.

2. A gate-level simulator with a single clock is not hard to produce, and provides 
increased confidence in such programs.

3. The creation of large, parametrised designs by instantiating and composing smaller 
blocks can be easily expressed in an imperative language supporting inheritance.

7.8.2 SPA R K  program  developm ent
1. Writing a SPARK 95 program with information-fiow analysis can be done at a 

similar speed to writing conventional full Ada programs.

2. Maintenance of SPARK annotations during development does not take significant 
time.

3. Top-down program development with late compilation is quite feasible, with a 
properly-formed design.

4. The time taken to run the SPARK Examiner and SPADE Simplifier on a sub
stantial program is not noticeable on a conventional 1.5GHz 1686 PG.

5. The recent addition of tasking to the current SPARK model is likely to be valuable 
in designing embedded controllers.
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7.8.3 Targets
Of the targets in Chapter 3 we have addressed or partially addressed:

Target 1: The process we define must be rigorous.
We have based PLD program design in the rigorous and formally-specified SPARK 

Ada 95 language. We have shown how key program properties such as freedom from 
arithmetic overfiow can be demonstrated. The transformation process from SPARK 
Ada to VHDL is currently manual and not rigorous, but we have demonstrated that 
the new interfacing code can be valid and meaningful SPARK.

Target 2: The process must help the developer to write unambiguous programs.
SPARK Ada is unambiguous by definition, removing all Ada language features that 

may introduce compiler-dependence.
Target 3: The process must allow the programs to have sections written in a

low-level language for speed and flexibility, but not allow these sections to compromise 
overall program reliability.

The use of VHDL enables the VHDL implementation of arbitrary blocks in the 
original SPARK program to be replaced with custom VHDL code while leaving their 
architecture (interface) unchanged. Verilog could be used similarly.

Target 4 ' The process must admit substantial static analysis to discover semantic 
program errors at or before compile time.

SPARK Ada can be analysed by the Examiner for a range of statically-verified 
properties, and verification conditions generated to admit proof of run-time properties.

Target 5: The program produced must be easy to test.
We have addressed SPARK program testing, but the testing of the VHDL compo

nent was not addressed.
The Perl PLD simulator has demonstrated that refined PLD programs are amenable 

to automatic test.
Target 6: The program must be able to be compiled onto a range of existing and

anticipated PLDs.
We have used VHDL as a target language, compilers for which exist for most 

substantial PLDs.
Target 7; The process must reuse existing proven tools where feasible.
We have employed existing tools (the Examiner and Simplifier) without modifi

cation, but suggested areas such as bit width calculation where extra tools may be 
useful.

Target 9: The process should indicate what kinds of error may arise at each stage.
The static analysis results limited the errors that may be present in the SPARK. 

Errors in proven and tested SPARK programs are likely to be requirements-related 
rather than “accidental”.

Target 11: The process must admit justification to the project safety authority
that the programs output by the process are of an adequate integrity level.

The use of SPARK as a design tool for and interface to the PLD program provides 
traceability for the PLD program design and implementation. The PLD program may 
be manually inspected and reviewed against the original SPARK implementation to 
demonstrate coverage of requirements. SPARK has been used and accepted at SIL-4, 
although if only used as a design tool it is unlikely that a SIL-4 argument can be made 
for the resulting PLD program without substantial extra evidence.
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Target 12: [00-54 8.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification 
complies with the safety requirements;

(a) any formal arguments that the functional design satisfies the formal specification;

(in) for non-functional properties with specified safety requirements, analysis of the 
achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques 
as diverse implementations.

(i) is addressed because the safety requirements may be expressed as post-conditions 
in the SPARK program and the code proven against them, (ii) is addressed because 
the SPARK analysis justifies the information flow annotations in the SPARK program, 
showing consistency and the level of coherency of the design; (iii) is not addressed 
since SPARK does not yet have any timing-related analysis; (iv) is addressed because 
the SPARK implementation could be used in parallel with the VHDL implementation, 
with a checking routine flagging deviations in the computed results. Only a limited 
amount of diversity is present, however.

Target 13: [00-54 12.1.2] The Design Plan shall define the life cycle that is to be 
followed in the development of the custom circuit, including a specification process, a 
development process and a verification process.

The SPARK development process is well-established in safety-critical projects. In
dividual projects place different emphasis on its components, but the core of the process 
(design - analyse - implement - analyse - test - fix - re-analyse) is common. The PLD 
program development is then headed by the SPARK development process, with PLD 
transformation and re-test at the end.

7.8.4 Further research
The following research work would likely produce interesting and useful results:

1. a full description of the map from sequential SPARK 95 to VHDL;

2. production of SPARK and VHDL design patterns for common PLD-based func
tionality, and development of an algorithm or heuristic for selecting the design of 
the SPARK-PLD interface; and

3. a study of the information-fiow results of transforming a polling-loop single
process program into appropriate SPARK Ravenscar tasks.
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Chapter 8 

Conclusions

In this final chapter we draw up the lessons we have learned in our progress through 
this thesis, show how they have clarified the problems of hardware-software co-design, 
and look at the avenues for future research which have opened up as a result.

8.1 Solving the Original Problem
Our original research problem statement in Chapter 3 was:

What methodology is suitable for developing a set of safety-critical system 
requirements into an implementation which executes partially in a conven
tional microprocessor and partly on a programmable logic device?
Such a methodology should be rigorous and formal enough to admit veri
fication and validation to the standards demanded by DefStan 00-54 and 
RTCA DO-254 (electronic hardware), DefStan 00-55 (software) and DefStan 
00-56 (system safety) for SIL-3 and SIL-4 systems (RTCA DO-254 Level A 
and B).

We break this down into the following components; for each component we measure 
what progress we have made against the above goal. We also list the original targets 
from Chapter 3 which have been covered.

8.1.1 PL D s in safety-critical system s
We have surveyed the existing major safety and software development standards rele
vant to PLDs in safety-critical systems. We have extracted the key points from these 
standards and applied them in an example development. Because we based this work 
on existing best-practice standards we are on solid ground for justifying the safety and 
correctness of this development to a safety authority.

Current expert opinion[Pri03] is that the existing PLD technologies do not permit 
SIL-3 or SIL-4 functionality to be incorporated in a PLD. The rigorous formal tech
niques proposed in this thesis appear to provide similar rigour to that required for 
SIL-3 software developments, therefore there is a reasonable case that with this work 
SIL-3 PLD functionality is now feasible for some systems.

The author’s experience is that PLD programs can be designed to satisfy the re
quirements of DO-254 Level A criticality, as long as formal methods (an optional part
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of Level A safety arguments) are not required. This thesis provides suitable rigorous 
techniques for specifying and analysing synchronous PLD programs, thus supporting 
DO-254 Level A development by making formal methods use practical.

Targets fulfilled:
Target 1: The process we define must be rigorous.
Target 2: The process must help the developer to write unambiguous programs. 
Target 10: The process should provide flexibility so that it may be used in situa

tions not anticipated in its original design.
Target 11: The process must admit justification to the project safety authority

that the programs output by the process are of an adequate integrity level.

8.1.2 R igorous PLD  program m ing
We have combined the SRPT process algebra and Morgan’s refinement calculus to 
provide a synchronous timed refinement calculus for developing SRPT processes into 
Pebble programs. The calculus allows for reasoning about the behaviour of arbitrary 
SRPT processes incorporated into an otherwise formally developed system. As well as 
stepwise refinement of designs, the calculus admits trace-based proof of safety proper
ties of processes.

We have demonstrated a practical refinement from a timed specification into a 
device-agnostic unambiguous implementation language (Pebble, with a semantics de
fined by SRPT), and demonstrated its accuracy via gate-level simulation. The simu
lation environment is available in an operating-system-neutral format for future use. 

Targets fulfilled:
Target 1: The process we define must be rigorous.
Target 2: The process must help the developer to write unambiguous programs. 
Target 3: The process must allow the programs to have sections written in a

low-level language for speed and flexibility, but not allow these sections to compromise 
overall program reliability.

Target 5: The program produced must be easy to test.
Target 6: The program must be able to be compiled onto a range of existing and

anticipated PLDs.
Target 7; The process must reuse existing proven tools where feasible.
Target 10: The process should provide flexibility so that it may be used in situa

tions not anticipated in its original design.
Target 12: [00-54 8.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification 
complies with the safety requirements;

(ii) any formal arguments that the functional design satisfies the formal specification;

(iii) for non-functional properties with specified safety requirements, analysis of the 
achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques 
as diverse implementations.

Target 14 ' [00-54 13.3.1] A Hardware Specification shall be produced which de
fines the SREH in terms of its behaviour and properties.
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8.1.3 M apping SPA R K  to  hardware
We have shown how the SPARK Ada critical systems programming language is well- 
suited to describing PLD programs, due to its formal definition and the analysis tools 
which support it. We have examined the problem of compiling SPARK program con
structs to hardware in three different ways.

We have shown how SPARK programs can be developed and proven against formal 
pre- and post-condition specifications using current tools and techniques. We have 
shown how these pre- and post- conditions can be used as the basis for developing an 
SRPT program that satisfies the specification, ignoring the actual SPARK code.

We have described how SPARK code can be compiled directly to circuits on PLDs, 
taking advantage of Ada’s type system to reduce datapath sizes and taking advantage 
of SPARK Ada program structure to simplify the compilation task. We examined the 
trade-offs between PLD gate count and program execution speed with particular regard 
to the implementation of data paths on the PLD.

We have provided a full SRPT specification for a (reduced) sequential SPARK 95 
interpreter which demonstrated that a) SRPT can be used to specify large systems and 
b) the information known at compile-time about SPARK programs contributes sub
stantially to effective implementation in hardware. The interpreter was not useful for 
high integrity programs, since high integrity programming requires compilation rather 
than interpretation of SPARK programs, but would be acceptable for low integrity 
programs and demonstrated the use of SRPT for PLD program design.

We have examined the problem of identifying and extracting a fragment from 
a SPARK Ada program for PLD execution, maintaining program correctness. We 
demonstrated the technique for an industrial-scale embedded program.

Because we used a generic PLD model for this work we avoided restricting this 
development to a particular class of PLD.

Targets fulfilled:
Target 1: The process we define must be rigorous.
Target 2: The process must help the developer to write unambiguous programs.
Target 4- The process must admit substantial static analysis to discover semantic 

program errors at or before compile time.
Target 6: The program must be able to be compiled onto a range of existing and

anticipated PLDs.
Target 7; The process must reuse existing proven tools where feasible.
Target 8: The process must guide the developer in the appropriate use of each

component.
Target 9: The process should indicate what kinds of error may arise at each stage.
Target 12: [00-54 8.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification 
complies with the safety requirements;

(ii) any formal arguments that the functional design satisfies the formal specification;

(iii) for non-functional properties with specified safety requirements, analysis of the 
achieved behaviour, e.g.: performance, timing etc.;
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(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques 
as diverse implementations.

8.1.4 T he system  developm ent process
We have defined a rigorous development process for going from a formal specification 
to SPARK and PLD implementation. This development process involves:

• early identification of PLD and software components;

• use of existing software design methods and analysis tools to produce high- 
integrity SPARK code for the system;

• use of refinement techniques to produce a provably correct PLD program (such 
as the carry look-ahead adder);

• the ability to simulate PLD functionality without significant change to the SPARK 
program;

• the option to transform software components to PLD form at a late stage without 
compromising system design or safety;

• continuous production of evidence that the system is fit for purpose and fulfils 
its required safety properties; and

• the option to move the (formally defined) program components between software 
and PLD during future system upgrades.

Targets fulfilled:
Target 1: The process we define must he rigorous.
Target 5: The program produced must he easy to test.
Target 8: The process must guide the developer in the appropriate use of each

component.
Target 9: The process should indicate what kinds of error may arise at each stage.
Target 10: The process should provide flexihility so that it may be used in situa

tions not anticipated in its original design.
Target 11: The process must admit justification to the project safety authority

that the programs output by the process are of an adequate integrity level.
Target 12: [00-54 8.5.2] The analytical arguments provided shall include:

(i) any formal arguments used in validation to show that the formal specification 
complies with the safety requirements;

(ii) any formal arguments that the functional design satisfies the formal specification;

(iii) for non-functional properties with specified safety requirements, analysis of the 
achieved behaviour, e.g.: performance, timing etc.;

(iv) analysis of the effectiveness of fault mitigation, for example use of such techniques 
as diverse implementations.

Target 13: [00-54 12.1.2] The Design Plan shall define the life cycle that is to be 
followed in the development of the custom circuit, including a specification process, a 
development process and a verification process.
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8.1.5 R eliability  and practicability
In Section 3.11 we listed general questions about the development process which aimed 
to measure the process’s reliability and practicability. We now answer them.

How many distinct stages are there in the methodology?
Two extra stages have been introduced into the standard software development pro

cess: identifying parts of the specification to refine directly to hardware, and identifying 
parts of the SPARK Ada program to compile into hardware.

The refinement process itself has four stages: rewrite the specification, refine it to 
SRPT, compile to Pebble/VHDL and test it.

The SPARK Ada program fragment extraction has five stages: rewrite the SPARK 
package body, update the package specification annotation, map the original SPARK 
body into VHDL, test the VHDL in isolation and then test the SPARK-PLD interac
tion.

What is the probability and effect of introducing an error at each stage?
We have not gathered numeric data on probabilities, but can estimate the effect of 

errors from experience in software development.
Incorrectly rewriting the specification for SRPT refinement is likely to make the 

entire refinement incorrect and, if detected, will probably require the refinement to be 
re-done. Whether it is detected will depend on the depth of system testing against the 
original system specification.

Making an error in SRPT refinement is likely, in our experience noted in Sec
tion 5.3.6, to be picked up during PLD program testing.

Making an error in extracting the SPARK Ada program fragment into a PLD is 
likely to be picked up in testing, especially if test results for the software implementation 
are compared against those for the PLD implementation.

What do the above imply for the reliability of the system as a whole?
The reliability of a system function refined into an SRPT program, where the 

refinement has been independently checked, is likely to be high. This does assume that 
the original specification was correct.

Extracting a SPARK Ada program fragment into PLD form is likely to make the 
program less reliable, but the alternatives (writing the PLD program in VHDL or a 
high-level language from scratch) remove the ability to compare diverse implementa
tions of the PLD program and are more error-prone than Ada implementation in the 
same way that assembly language or C program development is more error-prone than 
Ada program development.

What classes of error are specifically checked for in the development process?
Information-fiow, control-fiow and data-flow errors are checked for by the SPARK 

Examiner. Numeric overflow and proof condition violation are checked for by the 
SPADE Simplifier and manual inspection of VCs. Errors in the SRPT refinement 
process are checked for by independent inspection of the refinement steps. Errors in 
PLD program extraction are checked for by comparing all-software and software-PLD 
implementation results.

Is there adequate tool support for the developers of the target systems?
A qualified yes. The SPARK Examiner and SPADE toolset already exist and are 

mature. The York hardware compiler for Ada exists, although has not yet been shown 
to be effective at typical industrial system sizes. There is as yet no tool support for
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SRPT refinement.
What level of technical expertise, and how much time, is required for each develop

ment stage?
Refinement of a specification into an SRPT process requires a good understanding 

of logic in general, and technical expertise in refinement in particular.
SPARK Ada program development requires basic imperative programming skills. 

SPARK Ada proof work requires an understanding of first-order logic. Extracting a 
SPARK program fragment into a PLD program requires an understanding of VHDL 
and the ability to operate PLD compilation and simulation tools.

Given appropriate same-generation hardware, does the generic PLD implementation 
produced have significant performance advantages over an all-software implementation?

We have not produced performance figures which answer this question. It was 
established in Section 2.3.10 that PLD programs could significantly outperform micro
processor programs for some tasks, and we have shown that SRPT refinement allows 
a high-performance PLD program to be developed from a specification, but we have 
not shown whether Ada code compiled onto a PLD can run more quickly than on a 
contemporary microprocessor.

How well does the process allow late changes in requirements to he incorporated into 
the system?

If the requirements can be traced into the design, the data-fiow and information 
fiow annotations of SPARK Ada can bound the program units which must be examined 
to see if changes are necessary. The abstraction present throughout the system may 
reduce the impact of some requirements changes, but this is not certain. If refinement 
is used, requirements change may require some refinements to be redone from scratch 
which will be labour-intensive.

8.2 Advancem ent of Knowledge
We outline the weaknesses of the current research, in what respects our research is 
original and how it improves on the current research.

8.2.1 Current weaknesses
Section 2.6.1 described the weaknesses of the current research, which can be sum
marised as:

• there is no relation of high-level PLD programming languages to the requirements 
of DO-254 and Def Stan 00-54;

• there is no relation of synchronous parallel specification and analysis techniques 
to the requirements of DO-254 and Def Stan 00-54;

• Ada is the only high-level language suitable for programming high-integrity sys
tems, and the existing PLD compilers for it are immature and omit rigour; and

• there is a general lack of demonstration that PLD design and programming tech
niques for high-integrity will scale to be practical for typical modern systems.
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8.2.2 O riginality
The main direction of research in this thesis is original because the problem of producing 
demonstrably correct PLD programs, suitable for use in high-integrity systems, has 
been specified (in Defence Standard 00-54[MoD99] and RTCA DO-254[RTCOO]) but 
has not been solved. There has been no published work that explicitly addresses the 
problems raised by conforming to 00-54 and DO-254 in PLD program development.

The work on specification and refinement of synchronous parallel systems (using 
SRPT) is not original in itself, as Barnes[Bar93] specified SRPT and demonstrated 
its use in system specification, and Morgan, Back and others[Mor94, BvW94] demon
strated rigorous calculi for refinement in synchronous systems. It is original in that 
it provides a full refinement calculus for SRPT, making SRPT practical for specifica
tion and refinement of PLD programs. It is original in relating the work explicitly to 
the requirements of 00-54 and DO-254 for high-criticality systems. It is also original 
in describing the practical translation of the refined program into a PLD-compilable 
form.

The work on compilation of SPARK Ada into PLDs is not original in itself, as 
Sheraga[She96] and Ward[WA01, WA02c] have investigated Ada and SPARK Ada com
pilation for PLDs. It is original in that it exploits the properties of SPARK Ada to 
increase confidence in the correctness of the compilation and optimise the PLD pro
gram for space and execution time. It is also original in relating the work explicitly to 
the requirements of 00-54 and DO-254 for high-criticality systems.

The PLD-software development process proposal is original in that it explicitly 
addresses the requirements of 00-54 and DO-254. It is also original in identifying the 
problems that arise throughout the software-PLD process and providing solutions to 
them. It expands the domain of applications for which the SPARK Ada programming 
language can be used. It is original in that it details an industrial-scale safety-critical 
embedded system and applies appropriate parts of the development process to move 
an identified part of the program into programmable hardware.

8.2.3 A dvances m ade
The research from thesis has been fed into the production of a practical guide to 
certifying PLD programs for safety-critical avionics [Hil03a]. As such, it has already 
made a practical contribution to the production of safety-critical PLD programs.

The advances made by this research are:

• a practical process for high-integrity programming of PLDs (Section 3.12);

• a refinement calculus for SRPT (Chapter 5);

• a mapping which permits SRPT programs to be compiled directly onto PLDs 
(Section 4.2.7);

• a publicly-available simulator to support simulation of programs generated by 
this mapping (Section 7.2);

• a design for mapping SPARK Ada programs onto PLDs (Section 7.7);

• a design for a SPARK Ada interpreter to run on a PLD (Chapter 6); and
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• a substantial example of a safety-critical program to be used in future hardware 
compilation work (Section 7.3).

Overall, this research has made feasible the production of programs that satisfy the 
requirements of Defence Standard 00-54 for SIL-3 and SIL-4 systems, which was not 
feasible before.

8.3 Self-Critique
We now consider the omissions and weaknesses of this research. We also consider how 
PLD program development would proceed if this research was not around, and how 
this research is an improvement.

8.3.1 O m issions
The major omissions from this work are:

1. the demonstration of the PLD programs we produced being compiled into netlists, 
simulated with commercial FPGA simulators and run on real FPGAs;

2. the demonstration of a SPARK program communicating with a real FPGA;

3. the construction of a formal safety case for the case study including hazard iden
tification and fault tree analysis; and

4. relation of this work to information security standards such as the Common 
Criteria[Com99].

The first three omissions mean that the practicality of the techniques described 
in this research is not yet demonstrated. They also leave open the integration of the 
proposed process into a full safety-critical system development, and its assessment by an 
independent safety authority. Until this is done it is not possible to say with confidence 
that these techniques and this process are suitable for SIL-3 software development.

The final omission is an area that is suitable for future research. SPARK Ada 
has already been demonstrated in high-security applications such as the MULTOS 
CA[AC02]. We consider this further in Section 8.4.4.

8.3.2 W eaknesses
The major weaknesses of the components of this work are that:

1. we have not considered how to take advantage of design features of existing PLDs 
(such as embedded processor cores);

2. our focus on SPARK has excluded the Ravenscar tasking profile, which appears 
to be helpful to construction of parallel SPARK programs; and

3. we have not established how the SRPT refinement system scales with increasing 
complexity of the specification.
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The general issue of how well refinement techniques scale up is an open topic and 
is being examined in planned UK refinement research. We anticipate that useful in
formation relevant to SRPT refinement will arise from this research in the next 1-2 
years.

The omission of Ravenscar is, to some extent, the result of the timing of this 
research. SPARK Ravenscar has only just been officially released, and so it was difficult 
to make specific recommendations about using it in the context of PLD programming. 
Ravenscar will clearly become important in the construction of safety-critical parallel 
Ada systems in future years, particularly when Ada OY (the successor to Ada 95) is 
finalised.

8.3.3 How th e sta te  o f th e  art would evolve w ithout th is re
search

We now consider how the state of the art of PLD programming for high-integrity 
systems would develop if this research had not been done or had not been published.

Safety-critical PLD program developm ent

UK Interim Defence Standard 00-54 and RTCA DO-254 are already published, and 
so future safety-critical PLD programs would have to conform to them in any case. 
However, the formal methods recommendations in both standards have not been ad
dressed in current PLD program developments. Without a clear demonstration that 
formal specification and development of PLD programs is practical, and guidance on 
the use of specific methods, the incorporation of formal methods in industrial PLD 
developments is likely to be haphazard.

Notably, Def Stan 00-54 is only an interim standard and its contents will be amended 
when it becomes part of Issue 3 of Defence Standard 00-56 in 2004. If industrial devel
opers believe that the requirements for SIL-3 and SIL-4 PLD program development are 
impractical then they are likely to lobby for the SIL-3 and SIL-4 requirements to be 
ameliorated. This would be bad for system safety, and in the end is likely to increase 
the cost of systems; experience by major hardware developers such as Intel[Sch03] 
shows that formal verification for hardware can make economic sense.

Refinem ent for synchronous parallel system s

There is already a range of refinement calculi for synchronous parallel systems. How
ever, these have not been applied to practical PLD developments and so it is not yet 
possible to go from a formally refined system to a compiled PLD implementation and 
argue that semantics and correctness have been preserved. Without this assurance, 
the motivation for use of formal specification and refinement in PLD program design 
is significantly reduced.

PLD high-level programming

Languages such as Handel-C are likely to be used increasingly in PLD program de
velopment in the coming years. Without a practical high-integrity competitor such as
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Ada, they are likely to start to be used for high-integrity PLD programming despite 
the manifest deficiencies of the C language in this respect.

The work by Ward and Audsley[WA01, WA02b] on hardware compilation of SPARK 
Ada and Ravenscar is promising but it remains to be seen whether it is practical for 
real systems and whether the correctness of the compilation process can be justified. 
Without better exploitation of the known information fiow and semantics of SPARK 
Ada programs, this compilation will not be as effective as it could be.

8.4 Future Work
There are several major areas of work opened up by this thesis which remain unex
plored. We now state what they are and outline how one might start to address them.

8.4.1 Safety engineering w ith  PL D s
As noted in Section 8.3.2 it is necessary to obtain a safety engineering perspective on 
the processes described in this thesis. This requires the input of experienced safety 
engineers and safety assessors.

A useful start would be to produce a generic guidance document for incorporating 
PLDs into critical systems, along the lines of UK Defence Standard 00-54 but brought 
up to date with current PLD technologies.

There is an ongoing project by the UK defence establishment to produce a document 
similar to this, restricted to the problem of incorporating PLDs into Advanced Avionics 
Architectures (AAvA) compliant systems. The first release of this document[Hil03a] 
has been informed by the research in this thesis. Future releases of the document will 
incorporate the lessons learned from a suitable case study.

RTCA DO-254 is a useful support to safety-critical PLD programming work, but 
its Appendix B on high-integrity PLD programming would similarly benefit from such 
a guidance document.

8.4.2 R efinem ent
We have produced a rigorous basis for refinement in SRPT in Chapter 5. The refine
ment rules produced were adequate for our demonstration study but there is a clear 
need to extend them if other, more ambitious systems are to be refined.

We suggest the study and extension of the existing refinement rules for SRPT, build
ing up a parametrised library of useful processes. Generic arithmetic routines would be 
one class of such processes. This work should then be applied to the implementation 
of a substantial critical function on a PLD.

We have only considered SRPT refinement in isolation. As noted in Section 2.3.11, 
a hybrid formal specification language such as Circus may be appropriate for specifying 
a combined hardware-software system.

We suggest using Circus (or a receptive, synchronous variant of it) to specify a 
complete software-PLD system, refining it down into appropriate components. This 
work should use a combination of full refinement, proof of selected safety properties and 
static analysis. The aim should be to identify and address deficiencies in the existing 
notations and tool support.
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8.4.3 SPA R K  to  PL D s
Our efforts in translating SPARK Ada subsections to PLDs have been demonstrative 
in nature and purely manual in practice. To make SPARK Ada usable as a PLD 
programming language, this translation should be mostly automatic and well-supported 
by tools.

We suggest producing an automatic or semi-automatic tool to translate SPARK 
Ada into a form suitable for compilation into a PLD. It should be tested out on a 
range of SPARK 95 code, measuring the size and complexity of the PLD programs 
produced. It may also be useful to study ways to optimise the PLD programs with 
respect to gate count and execution time.

The York hardware compiler described by Ward[WA02c] may be a suitable basis 
for this work but requires critical study in the light of the issues raised by this thesis. 
Ravenscar is a good deterministic tasking model, and its use should be integral to 
compiler development.

The SPARK interpreter specified in Chapter 6 has not been implemented in any 
way. Implementing a restricted version of the interpreter will test the practical usability 
of the SRPT specification, and should be used to measure metrics including:

• effort /  productivity payoff of interpreting versus compiling SPARK;

• PLD space usage and routability of the interpreter and directly compiled SPARK 
code; and

• run-time performance of interpreted versus compiled SPARK code.

8.4.4 Security applications
Our work has been done with reference to the requirements of RTCA DO-254 and 
Def Stan 00-54. This covers the domain of safety-critical systems, but many aspects of 
safety are mirrored in the requirements for high security applications.

The definitive information security standard is currently the Common Criteria[Com99]. 
A comparison of the criteria in this document against the Defence Standards and RTCA 
documents would be required to identify:

• how current PLD programming practice for security systems is deficient;

• how applicable are the methods illustrated in this thesis; and

• what additional analysis or programming techniques may be mandatory or helpful 
for the security domain.

8.5 Concluding Thought
The discipline of software engineering dates from around 1968, when the first NATO 
conference on software engineering was held [Nor68] and Dijkstra made his proposal 
about reducing the use of COTO [Dij68]. In the thirty five years that have followed, 
we have made steady progress to the point today where we have a wealth of languages.
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tools and techniques to support the discipline of producing sufficiently reliable, well- 
engineered software for execution on microprocessors.

This thesis aimed to translate these techniques into the emerging field of program
ming PLDs. We used unambiguous formal notations to specify PLD programs so 
that we knew what they should produce. Developing a refinement system allowed us 
to produce PLD programs that were provably correct. The high-integrity program
ming language SPARK Ada allowed us to produce a program design amenable to 
hardware-software partitioning. The properties of the language proved useful in map
ping program segments into a PLD-compatible form. We demonstrated that combined 
hardware-software development at high integrity levels was practical for a substantial 
embedded system.

We conclude that existing software engineering practice does translate into PLD 
programming, and recommend that it is applied as soon as possible to critical PLD- 
based systems. We must not forget the lessons we have learned in the microprocessor 
field: thirty five years is too long to wait for highly reliable PLD programs.
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A ppendix A  

Collated Refinem ent Rules

The following definition and rules are collated from Chapter 5.
A refinement frame F  in a program takes the form:

P = y t  e N -  lX  : oY  : [[pre]*, [post]f+jt]

representing the specification “for the process P  with input alphabet containing X  and 
output alphabet containing Y , at all times t, if pre is true at time t then at time 
t k post is true.” k is a constant which will be determined by the timing needs of 
the program at specification time.

Refinement 1 Stateless 1-bit function

V i € N • iX  : o{y} ; [ tru e , [y](+i =  /{[X ]()]
E CELL,[I\X][0\{y}]

Refinement 2 Parallelism

V t e N - lX  : o{Y U Z) : [pre, post % A post 2]
□ iX  : oY  : [p re , post 1) || lX  : oZ : [p re , post2 ] 

whenever:

Y , Z  are non-empty and non-intersecting
V F  G • post 1 [Z\ V] = post 1
V kF G • p o s t  2[ y \  W] =  p o s t  2 
where B^ is the set of n-ary boolean strings
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R efinem ent 3 Weaken precondition 

If p re  p re ’ then: 

y  t e N  ’ iX  : oY  : [ p r e , post ] C.\/1 e N  - lX  : oY  :[ p re ’ , p ost ]

Refinem ent 4 Strengthen postcondition 

If p o s t’ => post then: 

y t e N - i X  : oY  : [p re , post] t e N  - iX  : oY  : [ p re , p o s t’]

Refinem ent 5 Expand frame

y  t e N  • iX  : oY  : [p re , post] Ç 
y  t e N  ' l{X U A) : o{ Y  U B) : [ p r e , post ]

where A n  Y  = ^ and B n % =  0.

Refinem ent 6 Contract frame

Let P = lX  : oY  : [p r e , p o s t]. If:

3 A C X ‘ y s e T n l P p  y p c A y t e N -  
3 r  e  TtzIP}(t • {r[t] =  [s[t] \ A ) U B )  A {y i ^  t ■ r[i] = 5[«])

i.e., we can change the occurrence of A input events at any timestep to some arbitrary 
subset B without changing any of the subsequent output events (input variables A are 
irrelevant to the outputs), then:

l{X U A) : oY  : [p re , post] Ç i {X \  A) : oY  : [pre \  A, post \  A]

i.e., we can remove the A events.

238



Refinement 7 Introduce intermediate

\ i  mid are timed predicates over subsets of events such that;

V disjoint X ^ Y  ,Z  Ç.T,-
k { [ Y ] , + 2 ,  [Z]t+i)Aj{[Z]t+i, [X],) 

and j{[Z]t+i,[X]t =#- mid

then:

l X  : oY : [p re ,^^([y]<+2, [X] )̂] =
{ iX : oZ  : [pre j ( [% ]f+ i, [%]()] ||

lZ : oY  : [mid,  k{[Y]t+2 AZWi)]) \ Z

i.e., we may split into two parts a process for which an “intermediate calculation” 
exists.

Refinement 8 Introduce delayed intermediate

If j ,  A:, mid are timed predicates over subsets of events, and di, > 1, such that:

V disjoint X, F, Z Ç S-
9{[^]t+di+d2^ [X]t) ^  ^{[^]t+di+d2: i^]t+di) I^j{[^]t+di, [^10
and j{[Z]t+di, [X]t=^ mid

then:

l X  : oY  : [pre , g{[Y]t+di+d2 ,[^]t)] =
( ,X :o^:[prej([^ ],+d„[X ],)]  ||

lZ : oY  : [mid ,k{[Y]t+di+d2 ,[Z]t+di)]) \  Z

i.e., we may split into two parts a process for which an “intermediate calculation” exists 
at some time point between start and end of calculation.
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A ppendix B  

1553 Bus Simulator

Bus testing program
—  Test harness for 1553 bus simulator
—  Not really SPARK, just looks like it.

with Bus;
with Rtl553,Bcl553;
with SystemTypes;
with Test,Test.checking;
use type SystemTypes.Unsigned32;
— # inherit bus, rtl553, bcl553, test;
— # main_program 
procedure Test_Bus

— # global Bus.Inputs, Bus.Outputs, Test.State;
— # derives Bus.Inputs from *, Bus.Outputs &
— # Bus.Outputs from *, Bus.Inputs &
— # Test.State from *, Bus.Inputs, Bus.Outputs
— # ;

is
Msg : Bus.Message;
V,W : Bus.Word;
I : Bus.Word_Index; 

begin
—  Check for data being null
Test.SectionC'BC inputs are initially null");
for Lru in Bcl553.Lru_Name loop

Bcl553.Read_Message(Src => Lru,
Subaddress.Idx =>1,
Data => Msg);

Test.Checking.bool(
S => Bcl553.Lru_Name'Image(Lru) & " is stale", 
Expected => False,
Actual => Msg.Fresh); 

end loop;
Test.SectionC'RT inputs are initially null");
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for Lru in Rtl553.Lru_Name loop 
Rtl553.Read_Message(Src => Lru,

Subaddress_Idx => 1,
Data => Msg);

Test.Checking.bool(
S => rt1553.Lru_Name’Image(Lru) & " is stale".
Expected => False,
Actual => Msg.Fresh); 

end loop;
—  Get the BC to write out some data to each LRU
Test.SectionC'RT inputs are nul after write, before cycle"); 
W := 1;
I := 1;
for Lru in Bcl553.Lru_Name loop 

Bcl553.Write_Word(Data => W,
Idx => I,
Subaddress_Idx => 1,
Dest => Lru);

Test.Checking.boolC
S => be1553.Lru_Name^Image(Lru) & " is still stale". 
Expected => false.
Actual => Msg.fresh);

W := W + 3; 
end loop;
—  Get each LRU to write out some data to the BC
Test.SectionC'BC inputs are nul after write, before cycle"); 
W := 3;
I := 1;
for Lru in Rtl553.Lru_Name loop 

Rt1553.Write_Word(Data => W,
Idx => I,
Subaddress_Idx => 1,
Src => Lru);

Test.Checking.bool(
S => rtl553.Lru_Name'Image(Lru) & " is stale".
Expected => False,
Actual => Msg.Fresh);

W := W + 3; 
end loop;
—  Now cycle and check the RT inputs 
Bus.Cycle;
Test.SectionC'RT inputs are valid after cycle");
W := 1;
I := 1;
for Lru in rtl553.Lru_Name loop 

Rt1553.Read_Message(Src => Lru,
Subaddress_Idx =>1,

241



Data => Msg);
Test.Checking.bool(

S => Rtl553. Lru_Naine’Image (Lru) & " is fresh". 
Expected => True,
Actual => Msg.Fresh);

rtl553.read_Word(Src => Lru,
Data => V,
Idx => I,
Subaddress_Idx => 1);

Test.Checking.unsignedlG(
S => rtl553.Lru_Name’Image(Lru) & " is " &
Bus.Word'Image(W),
Expected => W,
Actual => W);

—  Acknowledge reading this message
Rtl553.Acknowledge_Message(Src => Lru,

Subaddress_Idx => 1);
Rt1553.Read_Message(Src => Lru,

Subaddress_Idx => 1,
Data => Msg);

Test.Checking.bool(S => Rt1553.Lru_Name’Image(Lru) &
" not fresh after ack".
Expected => False,
Actual => Msg.Fresh);

W := W + 3;
end loop;
—  Now check the BC inputs
Test.SectionC'BC inputs are valid after cycle");
W := 3;
I := 1;
for Lru in bcl553.Lru_Name loop

bcl553.Read_Message(Src => Lru,
Subaddress_Idx => 1,
Data => Msg);

Test.Checking.bool(
S => be1553.Lru_Name’Image(Lru) & " is fresh". 
Expected => True,
Actual => Msg.Fresh);

bcl553.Read_Word(Src => Lru,
Data => V,
Idx => I,
Subaddress_Idx => 1);

Test.Checking.unsignedlG(
S => be1553.Lru_Name’Image(Lru) & " is " &
Bus.Word'Image(W),
Expected => W,
Actual => v);

242



—  Acknowledge reading this message 
bcl553.Acknowledge_Message(Src => Lru,

Subaddress_Idx => 1); 
bcl553.Read_Message(Src => Lru,

Subaddress_Idx => 1,
Data => Msg);

Test.Checking.bool(S => bcl553.Lru_Name’Image(Lru)
" not fresh after ack",
Expected => False,
Actual => Msg.Fresh);

W := W + 3; 
end loop;

Test.Done; 
end Test_Bus;

Bus Controller interface
—  The 1553 bus interface for the Bus Controller (BC)

—  All other system components are on the bus as remote
—  terminals (RTs).
—  R messages go BC -> RT
—  T messages go RT -> BC

with Bus;
with SystemTypes;
— # inherit SystemTypes,Bus; 
package BC1553 
is

—  Symbolic names for the Lrus 
type Lru_Name is

(Barometer,
Asi,
Ins,
Compass,
Fuel,
Fuze,
Radar,
Infrared,
Fins,
Motor,
Destruct,
Warhead
);

—  Write out data to the RTs
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procedure Set_Message_Valid(
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Dest : in Lru_Name);

— # global in out Bus.Outputs;
— # derives Bus.Outputs from *, Subaddress_Idx, Dest;

procedure Write_Word(
Data : in Bus.Word;
Idx : in Bus.Word_Index;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Dest : in Lru_Name);

— # global in out Bus.Outputs;
— # derives Bus.Outputs from *, Data,
— # Idx, Subaddress_Idx, Dest;

procedure Write_Message(
Data : in Bus.Message;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Dest : in Lru_Name);

— # global in out Bus.Outputs;
— # derives Bus.Outputs from *, Data, Subaddress_Idx, Dest;

—  See if a message is fresh 
function Is_Fresh(Src : Lru_Name;

Subaddress_Idx : Bus.Lru_Subaddress_Index) 
return Boolean;

— # global in Bus.Inputs;

—  See if a message is valid 
function Is_Valid(Src : Lru_Name;

Subaddress_Idx : Bus.Lru_Subaddress_Index) 
return Boolean;

— # global in Bus.Inputs;

—  Read data sent to the BC

procedure Read_Word(
Src : in Lru_Name;
Idx : in Bus.Word_Index;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Data : out Bus.Word);

— # global in Bus.Inputs;
— # derives Data from Src, Idx, Subaddress_Idx, Bus.Inputs;

procedure Read_Message(
Src : in Lru_Name;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
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Data : out Bus.Message);
— # global in Bus.Inputs;
— # derives Data from Src, Subaddress_Idx, Bus.Inputs;

—  Acknowledge a message as fresh 
procedure Acknowledge_Message(

Src : in Lru_Name;
Subaddress_Idx : in Bus.Lru_Subaddress_Index);

— # global in out Bus.Inputs;
— # derives Bus.Inputs from *, Src, Subaddress_Idx; 

end BC1553;

R em ote Terminal interface
—  The 1553 bus interface for Remote Terminals (RT)

with Bus;
with SystemTypes;
— # inherit SystemTypes,Bus; 
package RT1553 
is

—  Symbolic names for the Lrus 
type Lru_Name is

(Barometer,
Asi,
Ins,
Compass,
Fuel,
Fuze,
Radar,
Infrared,
Fins,
Motor,
Destruct,
Warhead
);

—  Write out data to the BC 
procedure Set_Message_Valid(

Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Src : in Lru_Name);

— # global in out Bus.Inputs;
— # derives Bus.Inputs from *, Subaddress_Idx, Src; 

procedure Write_Word(
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Data : in Bus.Word;
Idx : in Bus.Word_Index;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Src : in Lru_Name);

— # global in out Bus.Inputs;
— # derives Bus.Inputs from *, Data, Idx,
— # Subaddress_Idx, Src;

procedure Write_Message(
Data : in Bus.Message;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Src : in Lru_Name);

— # global in out Bus.Inputs;
— # derives Bus.Inputs from *, Data, Subaddress_Idx, Src;

—  Read data sent to the RT

procedure Read_Word(
Src : in Lru_Name;
Idx : in Bus.Word_Index;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Data : out Bus.Word);

— # global in Bus.Outputs;
— # derives Data from Src, Idx, Subaddress_Idx, Bus.Outputs;

procedure Read_Message(
Src : in Lru_Name;
Subaddress_Idx : in Bus.Lru_Subaddress_Index;
Data : out Bus.Message);

— # global in Bus.Outputs;
— # derives Data from Src, Subaddress_Idx, Bus.Outputs;

procedure Acknowledge.Message(
Src : in Lru.Name;
Subaddress.Idx : in Bus.Lru_Subaddress_Index);

— # global in out Bus.Outputs;
— # derives Bus.Outputs from *, Src, Subaddress.Idx; 

end RT1553;
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A ppendix C 

Exam ple Test Scripts

This appendix contains the test script used to test the Barometer code with the main 
test harness, and the output that resulted. It is typical of the sensor testing scripts.

Barom eter script input
section Barometer initialisation 
clock reset 
barometer init 
barometer check altitude 0 
if.barometer init
if.barometer check altitude false 0

section After first bus cycle 
cycle
barometer set altitude 5000 3 
barometer check altitude 5000 
if.barometer check altitude false 0

section After second bus cycle 
cycle
barometer check altitude 5000
comment New altitude has not propagated yet
if.barometer check altitude true 0

section After third bus cycle 
cycle
barometer check altitude 5000
if.barometer check altitude true 5000

section After a few sections 
clock increment 3000 
cycle 
cycle
barometer check altitude 5009
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if.barometer check altitude true 5009

section BIT Test - aborted
if.barometer check ibit.phase off
if.barometer start.ibit
cycle
if.barometer check ibit.phase request.start 
cycle
if.barometer check ibit.phase request.start 
cycle
if.barometer check ibit.phase in.progress

if.barometer stop.ibit
cycle
cycle
if.barometer check ibit.phase request.stop 
cycle
if.barometer check ibit.phase off

section BIT Test - fail (in 10 ticks) 
if.barometer check ibit.phase off 
barometer fail.next.ibit 
cycle
if.barometer start.ibit 
cycle
if.barometer check ibit.phase request.start 
cycle
if.barometer check ibit.phase request.start
cycle
cycle
cycle
cycle
cycle
if.barometer check ibit.phase in.progress
cycle
cycle
if.barometer check ibit.phase fail
cycle
cycle

section BIT Test - pass (in 10 ticks) 
if.barometer check ibit.phase fail 
cycle
if.barometer start.ibit
if.barometer check ibit.phase request.start 
cycle
if.barometer check ibit.phase in.progress
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cycle
if.barometer check ibit.phase in.progress
cycle
cycle
cycle
cycle
if.barometer check ibit.phase in.progress 
cycle
if.barometer check ibit.phase pass 
cycle

comment That's all, folks! 
done

Barom eter script output

Barometer initialisation 
Clock reset 
Barometer Init 
Barometer Check ALTITUDE
Barometer altitude PASS
If.Barometer Init
If.Barometer Check ALTITUDE
If.Barometer altitude valid PASS

After first bus cycle 
Barometer Set ALTITUDE 
Barometer Check ALTITUDE
Barometer altitude PASS
If.Barometer Check ALTITUDE
If.Barometer altitude valid PASS

After second bus cycle 
Barometer Check ALTITUDE
Barometer altitude PASS
New altitude has not propagated yet 
If.Barometer Check ALTITUDE 
If.Barometer altitude valid PASS
If.Barometer altitude PASS

After third bus cycle 
Barometer Check ALTITUDE
Barometer altitude PASS
If.Barometer Check ALTITUDE 
If.Barometer altitude valid PASS
If Barometer altitude PASS
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After a few sections 
Clock increment 3000ms 
Barometer Check ALTITUDE 
Barometer altitude 
If.Barometer Check ALTITUDE 
If.Barometer altitude valid 
If Barometer altitude

PASS

PASS
PASS

BIT Test - aborted 
If.Barometer Check IBIT.PHASE 
If.Barometer IBIT phase 
If.Barometer start IBIT 
If.Barometer Check IBIT.PHASE 
If.Barometer IBIT phase 
If.Barometer Check IBIT.PHASE 
If.Barometer IBIT phase 
If.Barometer Check IBIT.PHASE 
If.Barometer IBIT phase 
If.Barometer stop IBIT 
If.Barometer Check IBIT.PHASE 
If.Barometer IBIT phase 
If.Barometer Check IBIT.PHASE 
If.Barometer IBIT phase

BIT Test - fail (in 10 ticks) 
If.Barometer Check IBIT.PHASE 
If.Barometer IBIT phase 
Barometer Fail next Ibit 
If.Barometer start IBIT 
If.Barometer Check IBIT.PHASE 
If.Barometer IBIT phase 
If.Barometer Check IBIT.PHASE 
If.Barometer IBIT phase 
If.Barometer Check IBIT.PHASE 
If.Barometer IBIT phase 
If.Barometer Check IBIT.PHASE 
If.Barometer IBIT phase

BIT Test - pass (in 10 ticks) 
If.Barometer Check IBIT.PHASE 
If.Barometer IBIT phase 
If.Barometer start IBIT 
If.Barometer Check IBIT.PHASE 
If.Barometer IBIT phase 
If.Barometer Check IBIT.PHASE 
If.Barometer IBIT phase

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS
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If.Barometer Check IBIT.PHASE 
If.Barometer IBIT phase PASS
If.Barometer Check IBIT.PHASE 
If.Barometer IBIT phase PASS
If.Barometer Check IBIT.PHASE 
If.Barometer IBIT phase PASS
That's all, folks!

DONE.
Passes : 30
Fails: 0
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A ppendix D  

SPARK  Report File for Nav

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

Report of SPARK Examination 
SPARK95 Examiner with VC and RTC Generator Release 7.0 / 07.03 

Praxis Critical Systems, Bath, England 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

DATE : 08-SEP-2003 10:55:12.60

Options :
default switch file used
index.file=MISSILE.IDX
warning.f ile=MISSILE.WRN
notarget_compiler_data
config_file=GNAT.CFG
source_extension=ADA
listing_extension=ls_
nodictionary
report.file=SPARK.REP
no.html
exp.checks
rtc
vcs
nest
statistics 
fdl.identifiers 
flow_analysis=information 
ada95
annotation_character=# 
profile=sequential

Selected files:
NAV.ADB

Index Filename(s) used were:
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D:\USER\MISSILE.IDX

No Meta Files used

Summary warning reporting selected for: 
Pragmas: pack

Target configuration file:
Line

1 —  Auto-generated SPARK target configuration file
2 —  Target claims to be 'SYSTEM_NAME_GNAT'

[elided]
18 end Standard;

No summarised warnings

Source Filename(s) used were: 
D:\USER\NAV.ADB 
D:\USER\NAV.ADS 
D :\USER\SYSTEMTYPES-MATHS.ADS 
D :\USER\SENSOR_HISTORY.ADS 
D :\USER\MEASURETYPES-ANGLE_OPS-TRIG.ADS 
D :\USER\MEASURETYPES-ANGLE_OPS.ADS 
D:\USER\CLOCK.ADS 
D :\USER\CARTESIAN.ADS 
D :\USER\SYSTEMTYPES.ADS 
D :\USER\MEASURETYPES.ADS 
D :\USER\IF_AIRSPEED.ADS 
D:\USER\IF_INS.ADS 
D :\USER\IF_COMPASS.ADS 
D :\USER\IF_BAROMETER.ADS 
D:\USER\BC1553.ADS 
D:\USER\IBIT.ADS 
D:\USER\BUS.ADS

Source Filename: D:\USER\NAV.ADS
No Listing File

Unit name : Nav
Unit type : package specification
Unit has been analysed, any errors are listed below.
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No errors found

No summarised warnings

Source Filename : D :\USER\SYSTEMTYPES-MATHS.ADS
No Listing File

Unit name : Systemtypes.Maths
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found 

No summarised warnings

Source Filename : D :\USER\SENSOR_HISTORY.ADS
No Listing File

Unit name: Sensor.History 
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found 

No summarised warnings

Source Filename : D :\USER\MEASURETYPES-ANGLE.OPS-TRIG.ADS
No Listing File

Unit name: Measuretypes.Angle.Ops.Trig
Unit type: package specification
Unit has been analysed, any errors are listed below.

No errors found 

No summarised warnings

Source Filename : D :\USER\MEASURETYPES-ANGLE.OPS.ADS
No Listing File

Unit name: Measuretypes.Angle.Ops
Unit type: package specification
Unit has been analysed, any errors are listed below.
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No errors found

No summarised warnings

Source Filename: D:\USER\CLOCK.ADS
No Listing File

Unit name : clock
Unit type: package specification
Unit has been analysed, any errors are listed below. 

No errors found 

No summarised warnings

Source Filename: D:\USER\CARTESIAN.ADS
No Listing File

Unit name : cartesian
Unit type : package specification
Unit has been analysed, any errors are listed below. 

No errors found 

No summarised warnings

Source Filename: D:\USER\SYSTEMTYPES.ADS
No Listing File

Unit name : Systemtypes
Unit type: package specification
Unit has been analysed, any errors are listed below. 

No errors found 

No summarised warnings

Source Filename : D :\USER\MEASURETYPES.ADS
No Listing File

Unit name: Measuretypes
Unit type: package specification
Unit has been analysed, any errors are listed below.
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No errors found

No summarised warnings

Source Filename: D:\USER\IF_AIRSPEED.ADS
No Listing File

Unit name : If.airspeed
Unit type: package specification
Unit has been analysed, any errors are listed below. 

No errors found 

No summarised warnings

Source Filename: D:\USER\IF.INS.ADS
No Listing File

Unit name : If.Ins
Unit type: package specification
Unit has been analysed, any errors are listed below. 

No errors found 

No summarised warnings

Source Filename : D :\USER\IF.COMPASS.ADS
No Listing File

Unit name : if.compass
Unit type: package specification
Unit has been analysed, any errors are listed below. 

No errors found 

No summarised warnings

Source Filename : D :\USER\IF.BAROMETER.ADS
No Listing File

Unit name: if.barometer
Unit type: package specification
Unit has been analysed, any errors are listed below.
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No errors found

No summarised warnings

Source Filename: D:\USER\BC1553.ADS
No Listing File

Unit name : be1553
Unit type: package specification
Unit has been analysed, any errors are listed below. 

No errors found 

No summarised warnings

Source Filename: D:\USER\IBIT.ADS
No Listing File

Unit name : ibit
Unit type: package specification
Unit has been analysed, any errors are listed below. 

No errors found 

No summarised warnings

Source Filename: D:\USER\BUS.ADS
No Listing File

Unit name : bus
Unit type: package specification
Unit has been analysed, any errors are listed below. 

No errors found 

No summarised warnings

Source Filename: D:\USER\NAV.ADB
Listing Filename: D:\USER\NAV.LSB

Unit name : Nav
Unit type: package body
Unit has been analysed, any errors are listed below.
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No errors found

No summarised warnings

Resource statistics

Table Units used Max Size % used
Relation Table 1294 50000 2
String Table 10839 1048576 1
Symbol Table 1976 10240 19
Syntax Tree 8162 262144 3
VCG Heap 4222 120000 3
Record components 7 250 2
Record errors 0 1000 0

— End of file-
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A ppendix E 

Original N av B ody

—  Navigation tracking of missile 

with
If.Barometer, If.Compass,
If.Ins, If.Airspeed,
Measuretypes,Angle.Ops,
Measuretypes.Angle.Ops.Trig,
Sensor.History, Cartesian,
Systemtypes, Systemtypes.Maths ; 

package body Nav
— # own Location.State is
— # head.xy, head.yz, dx, dy, dz, airspeed &
— # Sensor.state is
— # barometer.ss, compass.ss, ins.ss, airspeed.ss;

is
subtype Integer32 is Systemtypes.Integer32;

type Sensor.Status is (Unknown, Valid, Failed, Restarted);

Dx, Dy, Dz, Head.Xy, Head.Yz, Airspeed :
Sensor.History.Measure.History :=

Sensor.History.Blank.History;

Barometer.SS : Sensor.Status
Compass.SS : Sensor.Status
Ins.SS : Sensor.Status
Airspeed.ss : Sensor.Status

= unknown; 
= Unknown; 
= unknown; 
= unknown;

---------------  Sensor updates --------------

—  Handle an airspeed update
procedure Handle.Airspeed(Restart : in Boolean) 

— # global in if.airspeed.state;
— # in out airspeed.ss;
— # in out airspeed, clock.time;
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—  [ derives elided ]
i s  ___

speed.Now : Meter_Per_sec; 
sensor.Valid : Boolean; 

begin
if Restart then

If.Airspeed.Get_Speed(Speed => Speed.Now,
Valid => sensor.Valid);

if sensor.Valid then 
airspeed.ss := valid;
Sensor.History.Update.Speed.Reading 

(Item => airspeed,
Data => speed.Now);

else
—  Not a valid sensor yet but restarting 
Airspeed.Ss := Restarted;

end if;
elsif Airspeed.Ss = Valid or Airspeed.ss = restarted then 

If.airspeed.Get.speed(Speed => Speed.Now,
Valid => sensor.Valid);

if sensor.Valid then
Sensor.History.Update.Speed.Reading 

(Item => airspeed.
Data => speed.Now);

else
—  Whoops, gone invalid 
airspeed.Ss := Failed;

end if; 
else

—  Not restarting, sensor not valid so ignore 
null; 

end if ; 
end Handle.airspeed;

procedure Handle.Barometer(Restart : in Boolean)
— # global in if.barometer.state;
— # in out barometer.ss;
— # in out dz, clock.time;
is separate;

—  Handle an INS update
procedure Handle.Ins(Restart : in Boolean)

— # global
— # in if.ins.state;
— # in out ins.ss;
— # in out dx, dy, dz, clock.time;
is separate;
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—  Handle a compass update
procedure Handle.compass(Restart : in Boolean) 

— # global
— # in if.compass.state;
— # in out compass.ss;
— # in out head.xy, head.yz, clock.time;
is separate;

------------------  Public subroutines -------

procedure Estimate.Height(M : out Meter;
C : out confidence)

— # global in dz, barometer.ss, ins.ss;
— # derives m,c from barometer.ss, ins.ss, dz; 
is

T : Clock.Millisecond; 
begin

case Barometer.Ss is
when Unknown | Failed I Restarted =>

—  Try a backup
if Ins.Ss = Valid then

—  Secondary sensor valid
Sensor.History.Get.Recent.Meter(Item => Dz,

Recent => M, 
Timestamp => T);

if (T = 0) then
—  Invalid reading 
C := None ; 

else
C := Low; 

end if; 
else

M := 0;
C := None; 

end if; 
when Valid =>

Sensor.History.Get.Recent.Meter(Item => Dz,
Recent => M, 
Timestamp => T);

—  Primary sensor valid 
if T = 0 then

—  invalid reading 
C := None;

else
C := High; 

end if; 
end case ;
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end Estimate.Height;

procedure Estimate_Origin_Offset(M : out Meter;
C : out confidence)

— # global in dx, dy, ins.ss, compass.ss, airspeed.ss; 
— # derives m,c from dx, dy,
— # ins.ss, compass.ss, airspeed.ss;

is separate;

procedure Estimate.Heading(A : out Angle;
C : out Confidence)

— # global in dx, dy, head.xy, compass.ss, ins.ss;
— # derives a,c from dx, dy, head.xy, compass.ss, ins.ss; 
is separate;

procedure Estimate.Speed(S : out Meter.Per.Sec;
C : out Confidence)

— # global in dx, dy, airspeed, airspeed.ss,
— # compass.ss, ins.ss; in out clock.time;
is separate;

procedure Maintain(Restart : in Boolean)
— # global
— # in
— # if.barometer.State,
— # if.compass.state,
— # if.airspeed.state,
— # if.ins.state;
— # in out
— # dx, dy, dz, airspeed, head.
— # barometer.ss, ins.ss.
— # compass.ss, airspeed.ss.
— # clock.time;

is
begin

H an d le .A irsp eed (R esta rt); 
H an d le .B arom eter(R esta rt); 
H andle.C om pass(R eStart); 
H a n d le .In s (R e s ta r t) ; 

end M aintain;

— Test p o in t
procedure Command i s  sep a ra te ; 

end Nav;
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A ppendix F 

FPG A  N av Body

—  Navigation tracking of missile
—  Version using an FPGA

with
Fpga,
if.barometer, if.compass,
If.Ins, If.airspeed,
Measuretypes.Angle.Ops,
Measuretypes. Angle.Ops.Trig,
Sensor.History,
Systemtypes, Systemtypes.Maths, 
cartesian; 

package body Nav.FPGA
— # own Location.State is
— # in head.xy, in head.yz, in dx,
— # in dy, in dz, in air.speed &
— # fpga.inputs is
— # out time.now, out is.restart,
— # out airspeed.speed, out airspeed.valid,
— # out barometer.height, out barometer.valid,
— # out compass.xy, out compass.yz,
— # out compass.valid,
— # out ins.x, out ins.y, out ins.z,
— # out ins.valid ;

—  sensor.state has no refinement as it’s just an array 
is

subtype Integer32 is Systemtypes.Integer32;

type Sensor.Status is (Unknown, Valid, Failed, Restarted); 
for Sensor.Status’Size use 2; 
for Sensor.Status use

(Unknown => 0, Valid => 1, Failed => 2, Restarted => 3);

—  How big are various types?
Dist.Record.Bytes : constant :=
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(Sensor_History.Dist_History’Size + 7)/8;
—  = 185/8 = 23 bytes 
Angle_Record_Bytes : constant :=

(Sensor_History.Angle_History’Size + 7)/8;
—  = 141/8 = 17 bytes 
Speed_Record_Bytes : constant :=

(Sensor_History.Speed_History’Size + 7)/8;
—  = 161/8 = 20 bytes

—  The estimates are all output by the FPGA

—  LOCATION.STATE
Dx, Dy, Dz : Sensor.History.Dist.History;
for Dx’Address use Fpga.Base_Out_Address; 
for Dy’Address use

Fpga.Base.Out.Address + Dist.Record.Bytes*l; 
for Dz’Address use

Fpga.Base.Out.Address + Dist.Record.Bytes*2;

Head.Xy, Head.Yz : Sensor.History.Angle.History; 
for Head.Xy’Address use

Fpga.Base.Out.Address + Dist.Record.Bytes*3; 
for Head.Yz’Address use 

Fpga.Base.Out.Address +
(Dist.Record.Bytes*3 + Angle.Record.Bytes);

Air.Speed : Sensor.History.Speed.History;
for Air.Speed’Address use 

Fpga.Base.Out.Address +
(Dist.Record.Bytes*3 + Angle.Record.Bytes*2);

—  As are the sensor statuses

—  SENSOR.STATE
Sensor.State.Base : constant :=

(Fpga.Base.Out.Address + 4) +
(Dist.Record.Bytes * 3 +

(Angle.Record.Bytes * 2 + Speed.Record.Bytes));
—  about 123 bytes plus 1 word for safety

type Sensors is (Airspeed, Barometer, Compass, Ins); 
for Sensors’Size use 2;

—  Size is 4 X 2 = 8 bits
type Sensor.State.Array is array(Sensors) of Sensor.Status; 
pragma Pack(Sensor.State.Array); 
for Sensor.State.Array’Size use 8;
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Sensor.State : Sensor_State_Array;
for Sensor.State’Address use Sensor_State_Base;

—  The sensor values are written to the FPGA

—  FPGA.INPUTS
Airspeed.Speed : Meter_Per_Sec; 
for Airspeed.Speed’Address use 

Base.In_Address ;
Airspeed.Valid : Boolean; 
for Airspeed.valid’Address use 

Base.In.Address + 4;

Barometer.Height : Meter; 
for Barometer.Height’Address use 

Base.In.Address + 5;
Barometer.valid : Boolean; 
for Barometer.valid’Address use 

Base.In.Address +9;

Compass.Xy, Compass.yz : Angle; 
for Compass.Xy’Address use 

Base.In.Address + 10; 
for Compass.Yz’Address use 

Base.In.Address + 11;
Compass.Valid : Boolean; 
for Compass.Valid’Address use 

Base.In.Address + 12;

Ins.x, Ins.Y, Ins.Z : Meter; 
for Ins.x’Address use 

Base.In.Address + 13; 
for Ins.Y’Address use 

Base.In.Address + 17 
for Ins.z’Address use 

Base.In.Address + 21 
Ins.Valid : Boolean; 
for Ins.Valid’Address use 

Base.In.Address + 25;

Time.Now : Clock.Millisecond;
for Time.Now’Address use Base.In.Address + 26;

Is.Restart : Boolean;
for Is.Restart’Address use Base.In.Address + 30;

Public subroutines 
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procedure Get_Recent_Meter
(Item : in Sensor.History.Dist.History;
Recent : out Meter;
Timestamp : out Clock.Millisecond)

— # derives recent,timestamp from item;
is

last.Idx : Sensor_History.History_Count; 
begin

last.Idx := Sensor.History.Previous_Item(Item.New_Idx); 
Recent ;= Item.Distance(Last.Idx);
Timestamp := Item.Times(Last.Idx); 

end Get.Recent.Meter;

procedure Get.Recent.angle
(Item : in Sensor.History.angle.History;
Recent : out angle;
Timestamp : out Clock.Millisecond)

— # derives recent,timestamp from item;
is

last.Idx : Sensor.History.History.Count; 
begin

last.Idx := Sensor.History.Previous.Item(Item.New.Idx); 
Recent := Item.bearing(Last.Idx);
Timestamp := Item.Times(Last.Idx); 

end Get.Recent.angle;

procedure Get.Recent.speed
(Item : in Sensor.History.speed.History;
Recent : out Meter.Per.sec;
Timestamp : out Clock.Millisecond)

— # derives recent,timestamp from item;
is

last.Idx : Sensor.History.History.Count; 
begin

last.Idx := Sensor.History.Previous.Item(Item.New.Idx); 
Recent := Item.speed(Last.Idx);
Timestamp := Item.Times(Last.Idx); 

end Get.Recent.speed;

procedure Estimate.Height(M : out Meter;
C : out confidence)

— # global in dz, sensor.state;
— # derives m,c from sensor.state, dz; 
is

T : Clock.Millisecond;
Baro.State, Ins.state : Sensor.Status;
Tmp.dz : Sensor.History.Dist.History;
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begin
Baro.State := Sensor.State(Barometer); —  invalid rep OK 
Tmp.Dz := Dz; —  invalid rep ok 
case Baro.state is

when Unknown I Failed | Restarted =>
—  Try a backup
Ins.State := Sensor_State(Ins); —  invalid rep ok 
if Ins.state = Valid then

—  Secondary sensor valid 
Get.Recent.Meter(Item => Tmp.Dz,

Recent => M,
Timestamp => T);

if (T = 0) then
—  Invalid reading 
C := None; 

else
C := Low; 

end if; 
else

M := 0;
C := None; 

end if ; 
when Valid =>

Get.Recent.Meter(Item => Tmp.Dz,
Recent => M,
Timestamp => T);

—  Primary sensor valid 
if T = 0 then

—  invalid reading 
C := None;

else
C := High; 

end if; 
end case; 

end Estimate.Height;

procedure Estimate.Origin.Offset(M : out Meter;
C : out confidence)

— # global in dx, dy, sensor.state;
— # derives m,c from dx, dy, sensor.state; 

is separate;

procedure Estimate.Heading(A : out Angle;
C : out Confidence)

— # global in dx, dy, head.xy, sensor.state;
— # derives a,c from dx, dy, head.xy, sensor.state; 
is separate;
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procedure Estimate_Speed(S : out Meter_Per_Sec;
C : out Confidence)

— # global in dx, dy, air.speed, sensor.state;
— # in out clock.time;
— # derives s,c from dx, dy, air.speed, sensor.state, 
— # clock.time &
— # clock.time from *, sensor.state; 

is separate;

procedure Maintain(Restart : in Boolean)
— # global 
— # in
•— # if.barometer.State,
— # if.compass.state,
— # if.airspeed.state,
— # if.ins.state;
— # out
— # time.now, is.restart,
— # airspeed.speed, airspeed.valid,
— # compass.xy, compass.yz, compass.valid,
— # ins.x, ins.y, ins.z, ins.valid,
— # barometer.height, barometer.valid;
— # in out 
— # clock.time;
— # derives
— # barometer.height, barometer.valid 
— # from if.barometer.state &
— # airspeed.speed, airspeed.valid 
— # from if.airspeed.state &
— # compass.xy, compass.yz, compass.valid 
— # from if.compass.state &
— # ins.x, ins.y, ins.z, ins.valid 
— # from if.ins.state &
— # is.restart from restart &
— # time.now from clock.time &
— # clock.time from 
— # *;

is
P : Cartesian.Position;
D : Meter;
S : Meter.Per.Sec;
R : Measuretypes.Millirad;
VI,V2 : Boolean;
T : Clock.Millisecond; 

begin
—  Get airspeed
If.Airspeed.Get.Speed(Speed => S,
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Valid => VI);
Airspeed.Speed := S;
Airspeed.valid := VI;
—  Get height
If.Barometer.Get.Height(Height => D,

Valid => VI);
Barometer.Height := D;
Barometer.valid := VI;
—  Get headings
If.Compass.Get.Xy(Angle => r.

Valid => VI);
Compass.Xy := Measuretypes.Angle.Ops.Round.Degree(R); 
If.Compass.Get.Yz(Angle => r,

Valid => V2);
Compass.Yz := Measuretypes.Angle.Ops.Round.Degree(R); 
Compass.Valid := VI and V2;
—  INS
If.Ins.Get_Location(Position => P,

Valid => VI);
Ins.x := P.X;
Ins.Y := P.Y;
Ins.z := P.z;
Ins.Valid := VI;
—  Get time 
Clock.Read(T => T,

Valid => VI);
if VI then

Time.Now := T; 
else

Time.Now := 0; 
end if;
—  Restarting?
Is.Restart := Restart; 

end Maintain;

procedure Command is separate; 
end Nav.fpga;
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