
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

9-1-2002

Congruent Weak Conformance Congruent Weak Conformance

Ronald W. Brower

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Hardware Systems Commons

Recommended Citation Recommended Citation
Brower, Ronald W., "Congruent Weak Conformance" (2002). Theses and Dissertations. 4353.
https://scholar.afit.edu/etd/4353

This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4353&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=scholar.afit.edu%2Fetd%2F4353&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4353?utm_source=scholar.afit.edu%2Fetd%2F4353&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

CONGRUENT

WEAK CONFORMANCE

DISSERTATION

Ronald W. Brower, Civilian, USAF

AFIT/DS/ENG/02-04

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Report Documentation Page

Report Date
Sep 02

Report Type
Final

Dates Covered (from... to)
Dec 97 - Aug 02

Title and Subtitle
Congruent Weak Conformance

Contract Number

Grant Number

Program Element Number

Author(s)
Mr. Ronald Brower, DR-II, USAF

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Address(es)
Air Force Institute of Technology Graduate School of
Engineering and Management (AFIT/EN) 2950 P Street,
Bldg 640 WPAFB OH 45433-7765

Performing Organization Report Number
AFIT/DS/ENG/02-04

Sponsoring/Monitoring Agency Name(s) and
Address(es)

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract
This research addresses the problem of verifying implementations against specifications through an
innovative logic approach. Congruent weak conformance, a formal relationship between agents and
specifications, has been developed and proven to be a congruent partial order. This property arises from a set
of relations called weak conformations. The largest, called weak conformance, is analogous to Milners
observational equivalence. Weak conformance is not an equivalence, however, but rather an ordering relation
among processes. Weak conformance allows behaviors in the implementation that are unreachable in the
specification. Furthermore, it exploits output concurrencies and allows interleaving of extraneous output
actions in the implementation. Finally, reasonable restrictions in CCS syntax strengthen weak conformance to
a congruence, called congruent weak conformance. At present, congruent weak conformance is the best
known formal relation for verifying implementations against specifications. This precongruence derives
maximal flexibility and embodies all weaknesses in input, output, and no-connect signals while retaining a
fully replaceable conformance to the specification. Congruent weak conformance has additional utility in
verifying transformations between systems of incompatible semantics. This dissertation describes a
hypothetical translator from the informal simulation semantics of VHDL to the bisimulation semantics of
CCS. A second translator is described from VHDL to a broadcast-communication version of CCS. By
showing that they preserve congruent weak conformance, both translators are verified.

Subject Terms
Asynchronous Systems, Automata, Bisimulation, CCS, Concurrency, Congruence, Digital Systems, Formal
Methods, Precongruence, Preorder, Process Algebra, Semantics, Simulation, Specifications, Verification,
VHDL.

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
UU

Number of Pages
199

�����������
	���
�������
�����
������������������
������
�������������������������
�����������
�����������������
�����
�
�����������������
���
�
���������
 �������������������������������!��������
��"#���
���
�$�����%&�����
�
'�(��
���
����)*�
��������(��
���
�����
'�����������!��������
�
"#���
���
�+������
����)*�
���-,

AFIT/DS/ENG/02-04

CONGRUENT WEAK CONFORMANCE

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

Ronald W. Brower, BS, MS

Civilian, USAF

September 2002

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

���

��������	
������

����� ���
	
���
���	�������������
����� � �
�������
����
��������
�
�
!��
"$#%���
������&���
�
����	
��� � �
!���' � ������
���

(
��!�� �*)
� � � ' � ���+��� � ������
	
���
) ��� � '
!������	&�
���,������� � ���� .-0/��
�����
"1� � 2�� � �) � � ���
!��#���
���
�
�
���

�������
!����	3��� � #���� �4� �������5�� � ��� �4� �
��
��'%�� � �
"$���
"6 (�����87:9�� (���
���) �� (� � � '
�����
��!���"$�5��

�
���
������2����� � �
� � 	
�
����� � �
	&"$�
��	 � �
�����
�.�
�������
����#�� � ' � �
!���'
���
���������
���;-

��������<�
� � !�!)=� (�
�
!�	>!���?
�&��>� � �
? � #5�
����"$��� � !.�� � ��� �4� �) /��@-;A����
�
��� �B=����
���
�) ���
�

���C���
� � !�� � �
!�� � �������� � �
��� � �
	����
�
�
�!������&
�
�
���&�
�������
��� () (
���� D
�����
�
����
�
��	D��D'
���
�
��	
�

���
��� � ������ � �
�
���
"C��5E�����"$�
�.-GFH#1�������
�
	5�� � ��� �4� �) /��@-�/��
�CI���!��
��)J� !����C	
���������
���K������	
��

���
�L"$���
���
" � �3� � !�� � �
!��3"$�
��	 � �
���3	
�
�����
"H�
�3' � ���
���
!) � � ��!������L' � ����
� � #D������� � ���� .- �����

����'
����� � !�!�#L"$� � ������
!M�� � #L'
���������
M�� � ��� �4� �) /��@-NI � ��#LO ��� �
�
) (
�&����
��? (��� � ���
�
���!2�
�

���
	.-P/��@-QO ��� �
�
SRT� � 	
�
����� � �
	U���
���
�
� � "$� � ���
5
��!�'
��	 � � �4� ���
 � ��� � # � �
���� � ����
�
V

(���
�
�
 (
���� � (�
�
!�	&�
�
2 � �
�������
����
��	&�
���,������� � ���� .-

��
���
�
��� � � � �
�����K�
� � #L��� �4� ������� � !����&	
���������
��������	
��S- � � � �
?&/��@-Q����
� ��W �
�
	

�
�X�
�LF � �
� �4� �������/���' � �� � ���
Y���
�X�����
��� (���
" � # (�
��? � �
	4'
���
�
��	
���
"5�������� 4'
������'
��������
���;-

�� � �
?
�L"$� � !����3��3/��@-JZ0�
�
����X[(���
")<� �
	3O<S-J\0�
!S-J] ��� ���LO<�
�) (
�%"$� � �������
!�!�# � "$������	%��

^S�
��� � #���� �4� ������� � � ����! � ����
��!�#�! � ���	 � ��)
� �
	 (
�&" � �
��� � !�� � �
!������
����"$
�� � � (��!�!S-

FH#_���
� � ���`� � '
!��
#;���) �
�a�
� (+�	
�����
�
��b/��������
���a[�!���������
�
�����cB=�
'
'
!�#P\0���
����

d�/�[�B=\0e) "$���� � #4� � �
?
�����
� � !�!�� (���
" � �&�� � �����
	 � #4'
����!�� � ��� � ��#5���
�
����� (�
��?����
!�!�+��� � �8-

�4��� ����'
����� � !�!�#f"$� � ������
!1�� � #f!��
�
"$+��� � �g���
'
�����
�����
� � 1/�[�B=\) FH�@-h/ � ������!�!19���!�!) (
�

���
'
'
�
�����	 � �f��� � !�! � #b���
	
� � �
�
��� � �
	 (
�) ���U�
�f���
) " � �
� � �f���
����#;�
���
" � ���
���

����i
�
�������	.-

�

� (�
�
!�	 � !���� !���?
�c�� � � �
? � # '
���������
g� � '
!��
#;���) �
� ����� ���
����� Z0����� � ����

O � �
�
� � ��
��#) ���
������1�
����"$��� � !h��'
�
�
���
����
��' �
���
���1������� � ����) ���
������1����� � �
��� � !h���
'
'
�
��h���
���
�

� �����
��� � ���	&�� � �
��!)
� �
	&���
�."$���
���
" � ���
���� � ���
����	
��	&��&��� � '
!�������
��������� � ���� .-

����� � !�!�#)<� (�
�
!�	3!���?
�4��3� � �
?3�
�4/ � #;��
�%����� � I�� � 	
� � ��5B=��
	
����� � �
�������
��) (
����

'
���
�
��	
��	&���
�
����	
��� � �
!�����
������
�&���
'
'
�
��S-

Z0�
� � !�	 W - � ��� (���

vi

Table of Contents

Page

List of Figures ... ix

List of Tables .. x

List of Symbols .. xi

Abstract .. xiii

I. Introduction ... 1-1

 1.1 Background.. 1-2
 1.1.1 Language-based Life Cycle Activities... 1-3
 1.1.2 Life Cycle Terminology... 1-4
 1.1.3 Specification Models ... 1-6
 1.1.4 Implementation Models ... 1-9
 1.1.5 Compliance to Specification.. 1-10
 1.2 Problem Statement ... 1-12
 1.3 Organization of the Dissertation .. 1-13

II. Prior Art ... 2-1

 2.1 Simulation .. 2-2
 2.2 Formal Verification.. 2-3
 2.3 Process Algebras.. 2-4
 2.4 Hardware Equivalences ... 2-9
 2.4.1 Trace equivalence .. 2-11
 2.4.2 Strong equivalence... 2-11
 2.4.3 Observational equivalence... 2-12
 2.4.4 Observational congruence.. 2-13
 2.5 Modal and temporal logic .. 2-15
 2.5.1 Hennessy-Milner Logic ... 2-16
 2.5.2 Fixed Points ... 2-16
 2.5.3 Temporal Logic.. 2-18
 2.6 Coinduction and Transition Induction ... 2-19
 2.7 Applying Formal Methods to VHDL... 2-21
 2.7.1 Extraction... 2-21
 2.7.1.1 Logic Extraction with VHDL 2-22
 2.7.1.2 Temporal Extraction ... 2-23
 2.7.2 Semantic-based Approaches .. 2-24
 2.8 Hardware Order Relations and Conformances 2-28
 2.9 Summary .. 2-31

vii

III. Weak Conformations .. 3-1

 3.1 Compliance Example ... 3-1
 3.2 Notation ... 3-6
 3.3 Weak Confluence and Maxoctsets... 3-7
 3.4 Weak Conformations ... 3-10
 3.5 Summary .. 3-19

IV. Weak Conformance and Congruent Weak Conformance... 4-1

 4.1 Weak Conformance ... 4-1
 4.2 Weak Conformation up to Weak Conformance....................................... 4-3
 4.3 Congruent Weak Conformance.. 4-5
 4.4 Summary .. 4-14

V. VHDL-to-CCS Translation .. 5-1

5.1 Introduction.. 5-1
 5.1.1 Simulation and Bisimulation Semantics 5-1
 5.1.2 Time .. 5-2
 5.1.3 Abstraction... 5-2
 5.1.4 Communication.. 5-2
 5.1.5 Level Signals and Transitional Semantics 5-4
 5.1.6 Simultaneity versus Concurrency .. 5-4
 5.2 Translation Rationale... 5-5
 5.3 Translation Models .. 5-6
 5.4 VHDL to CCS Translation Rules .. 5-25
 5.5 Preservation of Congruent Weak Conformance 5-30
 5.5.1 Congruent Weak Conformance for VHDL Models................... 5-31
 5.5.2 Compliance Example Revisited... 5-32
 5.5.3 Proof that fw is Preserved.. 5-33
 5.6 Translation to Broadcast CCS.. 5-39
 5.6 Conclusion .. 5-42

VI. Conclusion .. 6-1

 6.1 Summary .. 6-1
 6.2 Contributions ... 6-3
 6.2.1 Local Confluence ... 6-3
 6.2.2 Maxoctsets ... 6-4
 6.2.3 Weak Conformations ... 6-4
 6.2.4 Relative Stability.. 6-4
 6.2.5 Model Construction Restrictions ... 6-4
 6.2.6 Congruent Weak Conformance.. 6-4
 6.2.7 Transformation Verification Methodology.................................. 6-5
 6.3 Recommendations for Future Work... 6-5
 6.3.1 Axiomatization of fw ... 6-5

viii

 6.3.2 Automated fw tool ... 6-6
 6.3.3 Implemented VHDL-to-CCS translator....................................... 6-8
 6.3.4 Verification of translators .. 6-8
 6.3.5 Verification of synthesis tools ... 6-8
 6.4 Concluding Remarks.. 6-9

Appendix A: Strong Conformation... A-1

Appendix B: Lengthy Proofs...B-1

Appendix C: CCS Transition Rules ..C-1

Appendix D: S, I and J Initial Models .. D-1

Appendix E: S , I and J Target Models ..E-1

References..R-1

Vita.. V-1

� �

��� ���	��
��� ���������

��������� � !#"$���

%�&'%)(+*�,.-�/ ��"$0�1$� *�2�3+4�*�576869%�&'%�%

:�&'%);=<>*�& ! / "1�?��@A��B 686C:�& D

:�& : ��� /�/FE>G�G �$� 686C:�& :�:

H�&'%)IKJ�%�LNM � , ��O 686CH�& H

H�& : B>� 4�- � 4F(+* 0�1$��� � �$0�1$P M ��" ,.* 0 GQ686CH�& I

R &'%)(+* 0 2 * � , "$0�1$�?S 4 � ��1 4 ��� � 2 * � 4�T �?U+� 2 �$� �$0�1$�?V *�G � /K686 R & W

�

��� �����
	�������
���

��������� �������

 �!#"%$�&('���)�*,+�-�).-�/�02143536 �!#"87

 �!:9;$�&('���)�*,+�-�).-�/�0=<�3536 �!#"8

 �!:7>3?$�&('���)�*,+�-�).-�/�02@A3536 �!#"8B

 �!:C>3?$�&('���)�*,+�-�).-�/�D�DE1A3536 �!#"8F

 �!: >3?$�&('���)�*,+�-�).-�/�D�DG<H3536 �!#"8F

���

��� ���
	����������	�� �
�����

� � �� � ��!�"$#&%�!�#�'�(�)+*-,+.&'�*0/-,+1$1 �&243�5) 3 .&6
� 798$:&;+< => � ?�� <&@+: '�*
A�B�CDCD%�# < ��!E 7 % 8 %�F&F : FG� ��C�HI��" < # < ��!�J�,+K&1$'ML+' 3 L+N�*-*-) 3 L+OD'�P0,+L+. � ' 3 1Q/ �&3 P-'�* 5 ,+K&K&OR6E S 7 % 8 %�F&F : FG� ��!UT+B�! @ # < ��!V/XW 8 ��%�Y @ %�"$# ����� ' 3 K&OR6Z [: "$# 8$<&@ # < ��!\U]_^ [: F&%�` : F < !ba% ,+L+. � ' 3 /-K&'�cD)+*0L+,+1$) 3 , 5)+6d J
e % L+'�,+L+. � ' 3 /-'�f�)+*-g�,+*-*-)+hM'�*0. � L+i�)+hMK&'�cD)+*0L+,+1$) 3 , 5)+6
j k�� h�h�) 3 '�*01 � K&) 3 .l,+L+. � ' 3m , 2) 3 .l'�*0(�*-'�L+)+1$1Q/ � ,+(� .&,+K �&n)+h�6o�p-q , 2) 3 .lL+,+(�,+g�K&)9'�P 3 'M,+L+. � ' 3 1

r L+. � ' 3 1Q, 3 hMsG*-, 3 1 � . � ' 3 1tbu K � .&)+*-,+Kl.&*-, 3 1 � . � ' 3vw .&*-, 3 1 � . � ' 3 c � . kxj ,+g�1$.&*-,+L+.&)+h0y
z)+{�N � f�,+K&) 3 .l.&'M/�|~}�6�����U� ,+.&' 5�� L9,+L+. � ' 3 1$)+.l/-,+K&Kl,+L+. � ' 3 1$J�L+'�,+L+. � ' 3 1$J�, 3 h j 6� �&3 (�N�. r L+. � ' 3 1$)+.� '�N�.&(�N�. r L+. � ' 3 1$)+.� f � 1 � g�K&)9K&,+g�)+Kl1$)+. ��� ��� �
� / 7 6-J � / 7 6-J�)+.&L�y�L+'�*-*-)+1$(�' 3 h �&3�2 1$)+.l(�)+L+N�K � ,+*0.&'M, 2) 3 . 7������� / p JXA�6) � .&*-, 3)+'�N�1 �&3 (�N�.&1Q'�P p '�f�)+*
A������� / p JXA�6) � .&*-, 3)+'�N�1Q'�N�.&(�N�.&1Q'�P p '�f�)+*
A
���~� � / pV� A�6 � h�K&)9'�N�.&(�N�.l,+L+. � ' 3 1Q'�P p c � . k *-)+1$(�)+L+.l.&'�AVN 3 h�)+* � y
� � (�*-'b�~)+L+. � ' 3 '�P
"�' 3 .&' � /-*-) 5 '�f�)+1Q,+K&K j % @ # < ��!�"�P-*-' 5 "�6
�) 5 (�.&OD1$)+{�N�) 3 L+)) � L+)+1$1Q'�P] '�f�)+*]� S�¡�¢b£ L+' 3 P-K&N�) 3 L+)9)+{�N � f�,+K&) 3 L+)¤ (�*-'b�~)+L+. � ' 3
j�¥ *-)+K&,+. � f�) j

¦ *-'�L+)+1$1Q§G{�N � f�,+K&) 3 L+)+1
¨ª© .&*-,+L+)9)+{�N � f�,+K&) 3 L+)
« '�g�1$)+*-f�,+. � ' 3 ,+Kl)+{�N � f�,+K&) 3 L+)� '�g�1$)+*-f�,+. � ' 3 ,+KlL+' 3�2 *-N�) 3 L+)
¨ 1$.&*-' 3�2)+{�N � f�,+K&) 3 L+)

���&�

� *-h�)+* �&3�2��)+K&,+. � ' 3 1
� �) 3)+*-,+Kl'�*-h�)+* �&3�2 *-)+K&,+. � ' 3
� � � ' 24� L9L+' 3 P-'�* 5 , 3 L+)�	��
 cD)+,+iML+' 3 P-'�* 5 ,+. � ' 3 /-L+,+(� .&,+K �&n)+h� ' 3 '�.&OR(�) � '�*-1 � f�,9K&)+.&.&)+*-1$6
� � �)+,+iML+' 3 P-'�* 5 , 3 L+)
� � � ' 3�2 *-N�) 3 .lcD)+,+iML+' 3 P-'�* 5 , 3 L+)

� '�h�,+Kl, 3 hMsG) 5 (�'�*-,+K � ' 24� L
�� � 1$,+. � 1$P-,+L+. � ' 3\ % ^ 3)+L+)+1$1 � .&O
� % � (�'�1$1 � g � K � .&O
� *-, 3�2)+1Q'�f�)+*0) 3 . � *-)9,+L+. � ' 3 1$)+.� r K&cD,+OR1� ¦ '�1$1 � g�K&)��� §Gf�) 3 .&N�,+K&K&O
� �) � .C < !�/���� � /�� 6-6 5��&3��&5 N 5 P �&�)+hM(�' �&3 .l'�P�� � � /�� 6
CD% = /���� � /�� 6-6 5 , ���&5 N 5 P �&�)+hM(�' �&3 .l'�P�� � � /�� 6

� . k)+*
 *-)+K&,+. � ' 3 ,+KlL+' 5 (�'�1 � . � ' 3
!#"%$ (�*-'�L+)+1$1 � h�) 3 . � .&O

xiii

AFIT/DS/ENG/02-04

Abstract

This research addresses the problem of verifying implementations against

specifications through an innovative logic approach. Congruent weak conformance, a

formal relationship between agents and specifications, has been developed and proven to

be a congruent partial order. This property, symbolized fw, arises from a set of relations

called weak conformations. The largest, called weak conformance, is analogous to

Milner’s observational equivalence. Unlike observational equivalence, however, weak

conformance is not an equivalence, but rather an ordering relation among processes.

Like the previous property of logic conformance, weak conformance allows behaviors in

the implementation that are unreachable in the specification. Unlike logic conformance,

however, weak conformance exploits output concurrencies and allows interleaving of

extraneous output actions in the implementation. Finally, reasonable restrictions in

design models strengthen weak conformance to a congruence. Being both congruent and

a partial order, it merits the customary term precongruence. At this writing, fw is the

best known formal relation for verifying implementations against specifications. This

precongruence derives maximal flexibility and embodies all weaknesses in input, output,

and no-connect signals while retaining a fully replaceable conformance to the

specification. This desirable relation is described in four transitional laws with five

constructional restrictions.

Congruent weak conformance has additional utility in verifying transformations

between systems of incompatible semantics such as found in circuit development,

xiv

security system design, and software engineering. This dissertation describes a

hypothetical translator from the informal simulation semantics of VHDL to the

bisimulation semantics of CCS. A second translator is described from VHDL to a

broadcast-communication version of CCS. By showing that they preserve congruent

weak conformance, both translators are verified.

1-1

CONGRUENT WEAK CONFORMANCE

I. Introduction

 Engineers are continually challenged to produce electronic designs that meet

specification; and logisticians are forever seeking replacements for obsolete, non-

procurable microcircuits. Thus there is a general need to find circuits and circuit models

that are “equivalent” either to a specification model or to some obsolete part that needs to

be replaced. However a moment’s reflection reveals that equivalence is a stronger notion

than what is really needed or desired.

 First of all, equivalent speed is not necessary. One can often replace an obsolete

circuit with a faster circuit of equivalent functionality. This approach springs from the

rationalization that the faster part can certainly keep pace with the system demands, while

any tight timing constraints simply become less stringent. However, introducing a

speedier component can uncover race conditions and hazards that were safeguarded by

the delays inherent in the original component. In fact, practitioners often deliberately

introduce delays to recover timing safeguards when faster parts are used.

 Secondly, excess or redundant circuitry in the implementation can often be

tolerated. The extra circuitry can simply sit idle, with pins either unconnected or

grounded. Also, unneeded behaviors at connected pins can often be ignored during

certain phases of the execution.

 Thirdly, options allowed by output concurrency can be exploited. If the

specification calls for the production of two concurrent outputs x and y, then both output

1-2

interleavings: x followed by y, and y followed by x, are admissible. The original

implementing device may consistently produce one interleaving with the replacement

device producing the other interleaving. One would never consider the two devices

“equivalent,” yet each may serve equally well within a specific application.

 This dissertation introduces a new property called congruent weak conformance

to capture the desired relationship between a specification and a compliant

implementation. Congruent weak conformance is not a true equivalence, but rather a

partial order that formally embodies intuitive notions of compliance. This

precongruence is the least constraining formal relation known, as of this writing, for

verifying implementations against specifications. It derives maximal flexibility and

embodies all weaknesses in input, output, and no-connect signals while retaining a fully

replaceable conformance to the specification. This desirable relation is described in four

transitional laws with five constructional restrictions.

 Congruent weak conformance also provides a link between formalisms of

differing semantics. Whenever transformations are proposed for translating from one

representation to another, congruent weak conformance must be preserved by such

transformations, even when other semantic information is lost. In particular,

transformations from the informal simulation semantics of hardware description

languages such as VHDL (IEEE, 1993) to process algebras such as the Calculus of

Communicating Systems (CCS) (Milner, 1989) can be validated, allowing stricter

verifications of VHDL models based on the bisimulation semantics of CCS.

1.1 Background

 The design of digital very-large-scale integrated (VLSI) circuits will be greatly

aided if formal, high-level languages support all life cycle activities, including:

1-3

specification, simulation, synthesis, verification, documentation, testing, procurement,

replacement and reengineering. Such languages provide the opportunity to automate

many, if not all, of these activities. Such automation in turn decreases expense, shortens

delivery time, and increases the likelihood that delivered parts meet the user’s needs.

 1.1.1 Language-based Life Cycle Activities. An example of such a high-level

language is the VHSIC Hardware Description Language (VHDL), a standardized

language managed by the Institute of Electrical and Electronic Engineers (IEEE). The

United States Department of Defense (DoD) has, in the past, required VHDL for

microcircuit documentation (DoD, 1992).

 The semantics of VHDL is presented informally in the VHDL Language

Reference Manual as simulation semantics (IEEE, 1993). Having such semantics, VHDL

is widely used as the input language for the simulation of digital electronic components

and systems. Designers use simulation to predict the behavior of their designs before

implementation. During simulation, a behavioral VHDL model, which represents a set

of requirements (specification), and a structural VHDL model, which represents a

physical design, are compared by being subjected to the same set of input stimuli known

as a VHDL test bench. Thus the language has an up-front role in the design process by

expressing specification requirements and by aiding in the debugging of new designs.

Another major use of VHDL is as the input language for the automatic synthesis of a

design directly from a specification.

 VHDL’s support for microcircuit testing is solidified through ongoing work on

the WAVES standard (IEEE, 1991). WAVES is a standardized subset of VHDL used for

the description of test vectors. Adherence to the WAVES standard will assure that the

same vectors used to check out a hardware design can be used to test the physical

hardware as well.

1-4

 Having supported other life cycle activities, if VHDL can now support formal

verification as well, it will have a strengthened role as the lingua franca of electronic

design.

 1.1.2 Life Cycle Terminology. To alleviate confusion that may result from vague

and overlapping usage of certain common terms that refer to various aspects of the

integrated circuit life cycle, the following usage will apply in the ensuing discussion:

 System. The term system refers to the end item, box, appliance, or printed

circuit board that uses integrated circuits as components. The system design effort is a

separate and higher level function than component design, yet intimate knowledge of

component behavior is used in the system design process.

 Component. A component is a single, monolithic integrated circuit. The

terms part or device may also be used to designate a component.

 Implementation. This is the physical realization of a component.

 Design. The term design, when used alone, refers specifically to the

design of a component and not the design of a system (which is explicitly called a system

design). A design is thus some representation of an envisioned implementation for some

component. Since an implementation can often be mechanically generated from a

completed design, the terms design and implementation will often be interchangeable.

 Designer. Similarly, a designer is specifically a component designer. A

system designer will always be qualified with the word system.

 Environment. For each of its components, the system provides an

environment. The environment is the complete set of signals by which the component

communicates with the system. Yet it is more than a simple listing of such signals, for

such signals are often preprocessed or “cleaned up” by the system. Thus, guarantees or

1-5

restrictions on such signals are also considered part of the environment. From the point

of view of a component, environment and system are synonymous.

 An analogy with software may be enlightening. A system tasked to perform

calculations using the days of the year as input might contain twelve component modules

which service each month. Erroneous dates such as October 35, April 0, and February

30 must be rejected. The system designer may decide that dates less than 1 or greater

than 31 shall be rejected at the top level, but month-specific problems such as February

30 shall be handled by each specific month. Thus the environment guarantees to each

month module that only dates in the range 1 to 31 will be passed on. The February

module designer will incorporate checks to reject February 30 and 31. He will not

incorporate code for negative dates because the system guarantees the module will not

see them. In fact, the prudent module designer will exploit this fact to optimize his code.

It is quite acceptable for the February module to produce all kinds of outlandish or

“unspecified” behavior in the region that the system guarantees it will never reach.

 Behavior. Behavior denotes what a component does or is required to do.

When speaking in terms of behavior, one should avoid reference to any particular

implementation of that component. Behavior has two aspects: function and timing.

 Function. Function denotes the action of a component that transforms

inputs into outputs. The speed at which this occurs is not considered part of the function.

 Timing. Timing refers to the speed of a component, together with any

ordering of events that may have to be enforced.

 Supplier. The supplier is the institution that is legally responsible for the

performance of a component. Normally, the supplier is the physical manufacturer. The

component designer is usually an employee of the supplier, but not always.

1-6

 Customer. The customers are those who procure and apply ICs that go

into systems. This includes not only those who design and manufacture the original

system, but also those who perform maintenance on such systems. Logistics agencies

that procure spare and replacement parts are also customers.

 1.1.3 Specification Models. In 1992, MIL-STD-454L, Requirement 64 (DoD,

1992), was amended to require that VHDL behavioral and structural models be delivered

to the DoD for all newly procured military integrated circuits. In that same year, the

Defense Electronics Supply Center (DESC) received funding from the Air Force’s

Producibility, Reliability, Availability and Maintainability (PRAM) office to develop a

repository for these VHDL models (Noh, 1994). Such a role is the natural extension of

DESC’s traditional role of

 (1) producing hard-copy specifications of military ICs, and

 (2) maintaining design documents of devices supplied as “compliant” to these

specifications.

 The Defense Supply Center Columbus (DSCC) assumed the DESC mission after

the two centers merged in 1996. In the language-based life cycle environment DSCC can

expect to receive two kinds of VHDL models:

 (1) Behavioral models and test benches to serve as specifications.

 (2) Structural models to document compliant implementations.

Upon receipt of the models it is necessary for DSCC to approve or disapprove them on

behalf of the government in some way, as DESC has done in the past with hard-copy

documents. Of course DSCC is not the only organization to face such challenges.

1-7

 Not everyone relies on military specifications. In fact, the DoD itself has ceased

relying on formal military specifications (Perry, 1994). Those who do not rely on

military specifications still need some vehicle to serve as a contract between customer

and supplier. With the complexity of modern integrated circuits, the means of

determining compliance to that contract must be formalized and automated as much as

possible.

 This discussion assumes for simplicity that the system designer issues a

specification for each system component. Suppliers then seek to implement each

specification. This does not mean that the system designer actually writes each

specification. For “off-the-shelf” parts an adequate specification may already exist. For

new parts, or for poorly specified parts, the designer may develop the specification

himself. Nor will suppliers always blindly accept a specification. One can also think of a

specification as a contract between a component and its environment (Stevens,

1994:126). Like any contract, the specification is often an object of negotiation.

 VHDL behavioral models can be used for procurement, replacing hard-copy

specifications. Thus, behavioral specification models will be used to verify the structural

models that document implementations. One major goal of language-based design is to

develop a formal specification that is faithful (in behavior and properties) to the original

informal idea of the system designer. A second goal is to assure that the specification is

“loose,” expressing only the required properties of a device without unduly constraining

the component design and manufacturing processes.

 Many properties can appear in a specification model. These may include fan-in,

fan-out, power consumption, physical size, pin arrangement, etc. Foremost in the mind

of most designers and users, however, is the digital behavior (both function and timing)

1-8

of the device. The behavioral aspect is so dominant that most devices, such as “16-bit

Adder” or “500 MHz Microprocessor,” are overtly named accordingly to their behavior.

 A VHDL model used for a specification is called a behavioral model because it

uses the “behavioral” and not the “structural” constructs of the language. However, it

must be understood that a specification model that expresses only the overt surface

behavior of a device will be incomplete. Certain invariant properties—those expected to

remain constant as execution proceeds—may be just as critical. As humans we tend to

focus on the transformations or changes wrought by a device. Invariant properties may

not be the focus of the initial specification and design effort, and thus may be overlooked.

Webster’s Ninth Collegiate Dictionary defines invariant as “unaffected by the group of

mathematical operations under consideration.” Examples of such invariant properties are

safety, liveness, fairness, and deadlock.

 Safety. Safety denotes the property that a device will not be presented

with any inputs it is incapable of handling. As a constraint on the environment, safety is

more often an obligation of the system than of the device.

 Liveness. Whereas the “safety property claims that ‘something bad’ does

not happen,” the liveness property assures “that ‘something good’ eventually happens.”

(Manna and Pnueli, 1992:302). “Liveness properties deal with eventualities—events

which must occur at some finite but unbounded time.” (McMillan, 1993:5) In other

words, liveness assures that the overt behavior we desire can be relied upon to complete

within a finite time.

 Fairness. The fairness property ensures “that a process, once initiated,

will—sooner or later—get the opportunity to complete its actions” (Dijkstra, 1968).

Another way to state this is that when a device needs some resource, it will eventually get

1-9

that resource. Thus, in a fair system, every system component or procedure will get a

chance to execute. None will be “starved.”

 Deadlock. One also desires freedom from deadlock. A deadlocked

system is one that reaches a state from which it can do no further transactions. In the

common idiom, the system has “died” or “crashed.” This can result, for example, from

an “after you” situation, where two communicating components are each awaiting some

action or acknowledgment from the other.

 Function and timing are habitually included in a specification, but invariant

properties may be overlooked. This is not surprising. Consider the property of deadlock.

When hard-copy specifications were used, and the designer had to manually interpret

those specifications, it was intuitively obvious that the customer did not want

deadlocking parts. However, modern practice uses an electronic model for a

specification, and an automatic synthesizer does the “interpretation.” What if the

specification model itself inadvertently deadlocks? The synthesis tool may faithfully

implement that deadlock. The customer will have no legal recourse because deadlock

was a property of the specification he supplied. Verification tools will not protect him,

either, for they will simply report that the design and specification are “equivalent” or

that the design “complies” with the specification.

 Formal verification can be looked upon as the process of proving that invariant

properties always hold. In fact, the desired behavioral transformation of a device, even

though it expresses change, can be modified into an invariant form. This modified

invariant form expresses the idea: “it is always true that we will get what we expect.”

 1.1.4 Implementation Models. A customer may or may not require design and

construction documentation from the device supplier. Such documentation describes the

design and construction of the supplied device in enough detail such that an alternate

1-10

supplier can readily remanufacture it. Commercial customers normally do not need such

detailed documentation, and cannot get it anyway since many design and manufacturing

techniques are considered proprietary. However the DoD, which must keep critical

military systems running during dire emergencies, often requires the delivery of design

and construction documentation for the purpose of remanufacturing in case the original

supplier goes out of business.

 Due to the complexity of modern microcircuits, customers will require design and

construction documentation in the form of a structural model—a model that describes the

device as a hierarchy of building blocks or modules, with only the leaf-level modules

described behaviorally. Such a model is often an output of automatic synthesis

techniques, where a device is built from a library of available subcomponents. Although

a structural model has behavior, its behavior is not explicitly stated, but is the product of

the combined behavior of its interacting subcomponents.

 1.1.5 Compliance to Specification. With machine-readable models for both

specification and implementation, one can use automatic methods to assure that an

implementation is compliant to its specification. What does it mean for a component to

comply to a specification? One way to achieve compliance is to require equivalence.

The notion of hardware equivalence is not a trivial one. Examples of hardware

equivalences abound (Bloom and Meyer, 1988; Brookes and others, 1984; De Nicola and

Hennessy, 1984; Groote and Vaandrager, 1988; Hennessy and Milner.1985; Hoare, 1980;

Milner, 1983 and 1989; Olderog and Hoare, 1986; Park, 1981; Phillips, 1987; Rounds

and Brookes, 1981). Van Glabbeek has identified at least 14 distinct equivalence

formalisms (van Glabbeek, 1990; 1990a). Total equivalence between component and

specification is not desirable anyway because it is too restrictive. A good specification

lays down no more restrictions than the system absolutely requires. It forms a behavioral

1-11

envelope within which the design must perform. The behavior of a good design will be

“guard-banded” within that envelope. A compliant design will be capable of all the

behaviors required by the specification, and none of the behaviors forbidden by the

specification. However, additional behaviors, and even additional outputs, are

permissible. In fact, deviations are even desirable, since the exploitation of “don’t-care”

states can improve the cost and efficiency of the design.

 In the most general case, the implementation does not imply the specification, nor

vice versa. In the space of possible behaviors, neither set of behaviors will contain the

other. To illustrate, consider the Venn diagram of Figure 1-1.

Universe of Behaviors

I S
← Forbidden →

← Don’t Care →

←Options→

←Required→ ← Don’t Care →

Figure 1-1. Compliance of I to S

 The intersection of the specification S and the implementation I contains within it

all the behaviors of S that are required. The area of S outside of the required behavior

indicates behavioral options that the implementation can select from. An example of

1-12

such an option is an output interleaving—when the specification allows two or more

signals to be generated in any order, but the implementation uses just one ordering.

Outside of S and I will lie behaviors that are forbidden. Between S and the forbidden

behaviors lie “don’t-care” behaviors. The area of I outside of S represents additional

behaviors that the implementation takes on in order to achieve efficiency.

1.2 Problem Statement

 Equivalence is a mathematical notion that avails itself of such tools as deductive

logic and rigorous proof. Thus, the tools of mathematics can be marshaled to determine

the equivalence of digital circuits. With the advent of modern computers, these checks

can be partially or totally automated—thereby eliminating human error and speeding up

the process of microcircuit verification. However, the notion of compliance to

specification is not an equivalence, as Figure 1-1 shows. The modern electronic design

life cycle will benefit if the notion of hardware compliance can be placed on the same

formal footing as equivalences. This will allow formal tools to evaluate the compliance

of devices to specification models, and provide a means to validate the many

transformations used during the design process. Such transformations ought to preserve

a formal compliance property even when losing other properties. Therefore, the goals of

this research are five-fold:

 1. Determine the characteristics of a compliant device with respect to its

specification. Study the expected behavior of an implementation in response to

specified input, output and hidden action. Conversely, note any reverse

obligations of the specification to implemented input, output and hidden action.

1-13

 2. Incorporate this intuition into the formally-defined property of congruent weak

conformance as a binary relation over processes. Make this formal property as

“loose” as possible such that it admits all appropriate implementations and

allows the most design flexibility.

 3. Derive formal results for congruent weak conformance and related properties.

Prove that congruent weak conformance is a partial order. Prove also that

congruent weak conformance is fully substitutable in all contexts, is a valid

model of safe substitution, and is indeed a congruence.

 4. Outline the transformations necessary to create a semantic link from VHDL to

CCS.

 5. Show that such transformations are valid by proof that they preserve congruent

weak conformance, thus allowing the more powerful verifications of CCS to

accrue to VHDL models.

1.3 Organization of the Dissertation

 Chapter 2 presents the prior art, describing process algebras (in particular CCS),

modal and temporal logics, various equivalences, fixed points, and the techniques of

coinduction and transition induction. Other process orders, preorders and partial orders

from the literature are presented as potential competitors to congruent weak

conformance. These ordering relations are discussed and their shortcomings noted.

 Chapter 3 investigates the example of a binary-coded decimal (BCD) converter as

a vehicle for extracting intuitive notions of device compliant. These notions are then

1-14

formalized by four transition rules, yielding a family of process relations called weak

conformations. Weak conformations are precursor relations that will be refined in

subsequent chapters. Formal results governing weak conformations will be presented as

a series of propositions and proofs.

 Chapter 4 presents weak conformance fw (single underline) as the largest of the

weak conformations. Further formal results governing fw are proven in an effort to show

it as fully substitutable, that is, a congruence. That attempt stalls pending additional

refinement of fw to a stronger property. Five constructional restrictions are then

presented as requirements governing the building of specification and implementation

models. These restrictions are shown to be reasonable constraints that do nothing more

than codify good design intent. Congruent weak conformance fw is then defined as the

fw relation as refined by these restrictions. Additional results are proven, culminating in

the demonstration that fw is both a partial order and a congruence, meriting the term

precongruence. This establishes fw as a correct model of safe substitution.

 Chapter 5 presents a VHDL to CCS translation scenario. It starts with simple

circuits of sufficient complexity to exhibit the semantics of VHDL while displaying the

salient features of fw. By comparing corresponding VHDL and CCS models,

transformation rules are derived. Loss of information such as the explicit timing data of

VHDL is noted. These transformations are then validated by proof that they preserve fw.

Thus safe substitution is preserved by these transformations despite the loss of other

information.

 Chapter 6 then presents conclusions and recommendations for future work.

 For completeness, Appendix A gives a definition of strong conformation to

contrast the weak conformation concept of Chapter 3. Strong conformation lacks the

utility of weak conformation, and is not developed further.

1-15

 Appendix B contains the longer proofs that would otherwise interrupt the flow of

the dissertation, and Appendix C gives the transition laws for the process algebra CCS.

Appendix D gives the “initial” VHDL models for the BCD-converter agents S, I and J

given in Chapter 3. Appendix E gives the translated, or “target” VHDL model for the

BCD-converter agent S.

2-1

II. Prior Art

 This chapter discusses previous research and knowledge leading up to the present

research. Section 2.1 presents the technique of simulation, both exhaustive logic

simulation and its cousin symbolic simulation. Formal verification and its two main

traditions: theorem proving and model checking, is the subject of Section 2.2. Process

algebras, the languages used to model concurrent hardware, follow in Section 2.3. This

dissertation employs the process algebra known as the Calculus of Communicating

Systems (CCS) (Milner, 1989). CCS is used to introduce the idea of equivalence of two

process algebraic models (i.e. circuits) in Section 2.4. Of the many hardware

equivalences, four appear here. The last, observational congruence, is the appropriate

equivalence that captures the notion of safe substitution.

 Section 2.5 introduces the modal and temporal logics, which have the power to

identify equivalences and other properties of process agents. These logics are then

extended, by means of the fixed-point notation, into the modal µ calculus. The

Concurrency Workbench (Cleaveland and others, 1989; Cleaveland and Parrow, 1993) is

introduced as a tool whose notation greatly simplifies the ungainly notation of the

modal µ calculus, and allows one to investigate properties of CCS agents using the power

of bisimulation (Park, 1981), a semantics capable of stricter verifications than the

simulation semantics of VHDL.

 Proofs of process algebraic propositions often require the technique of transition

induction (Milner, 1989:58, 100). Transition induction is a variation of coinduction

(A. Gordon, 1995; Rutten, 1996; Jacobs and Rutten, 1997; Wegner and Goldin, 1999).

Coinduction is not as well known as mathematical induction. Therefore the general

techniques of coinduction and transition induction are introduced in Section 2.6.

2-2

 Sections 2.7 and 2.8 review the work of researches whose aims appear similar to

those of the present research. These contributions fall into two camps. Section 2.7

reviews those efforts that link languages such as VHDL into formal methods. Section 2.8

reviews various process ordering, preordering and partial ordering relationships.

2.1 Simulation

 The VHDL Language Reference Manual refers to an event-based simulation cycle

to define its constructs (IEEE, 1993). Thus, a set of informal simulation semantics is

assumed for VHDL (van Tassel, 1994). This is consistent with the current practice that

verifies designs by computationally simulating the operation of the design. Simulation

involves the submission of test stimuli to the device model while observing the

responses. Ideally, the designer will simulate both the design model and the specification

model, checking that they yield the same results under simulation.

 A VHDL language-based design environment will represent the original

requirements (specification) using two models: (1) a VHDL behavioral device model,

and (2) a VHDL test bench. The first represents the specified device as a finite set of

behaviors. It describes the transformation of inputs to outputs, the ordering of events,

and speed requirements. Ideally, this model should use only the behavioral constructs of

the language. It should not suggest an internal structure that may unduly limit possible

implementations. The test bench is a VHDL model used to exercise the device model

during simulation. It contains the behavioral device model as a component. The test

bench includes a set of test vectors that represent input stimuli and the expected output

responses. During simulation, the test bench submits the input portion of each test vector

to the device model and compares the resulting output with the expected output. The

behavioral device model must be able to pass this simulation before a specification can

be released.

2-3

 Later, when the design of a potential implementation arrives, a structural VHDL

model that represents the submitted design replaces the behavioral device model. Ideally,

this model is synthesized from the design by automatic means. The simulation is then

repeated on the implementation model. If this model also passes the simulation, then the

design has been validated to be a correct implementation of the specification.

 For simulation to be totally effective, it needs to embody all possible behaviors.

In other words, the test vector set must be exhaustive both in all legal timing variations as

well as behavioral variations. Unfortunately, the complexity of modern integrated

circuits militates against an exhaustive test vector set. The number of possible test

vectors is exponential on the number of inputs. Exhaustive simulation is intractable for

modern designs. Actual simulations rely on a limited set of test vectors and thus do not

give complete verification assurance.

 Symbolic simulation is related to logic simulation (McMillan, 1993:126). In

ordinary logic simulation the test vectors consist only of the binary constants 0 and 1. In

symbolic simulation a vector can consist of Boolean variables and functions as well as

constants. Thus, multiple specific instances of behavior can be abstracted away and

verified as a class.

2.2 Formal Verification

 As an alternative to simulation, researchers have investigated the use of formal

methods to verify hardware. Formal verification seeks to establish the correctness of

designs by means of mathematical proof (McMillan, 1993:1).

 There are two common formal verification traditions, theorem proving and model

checking (McMillan, 1993:2). The theorem proving approach models the device and its

specification in a formal logic. The device model constitutes the “axioms” of a formal

system. This approach then seeks to construct a proof leading from the axioms to the

2-4

specification. In other words, the device model should logically imply the specification.

Unfortunately, these proofs can be lengthy, and the process is not fully automated.

 The model checking approach is also a proof based approach, but it is restricted

so that full automation can be achieved. During model-checking, the device is modeled

specifically as a finite state machine, and specifications are written as logical assertions

to be proved about that specific finite state machine.

 Formal verification by model checking and VHDL validation through simulation

share a similarity. Both approaches use a two-part specification. The first part is a model

of the proposed device as a finite set of behaviors. Requirements for the device model to

meet appear separately. For a VHDL simulation-based environment, requirements are

embodied in the test bench as a voluminous set of test vectors. In the model-checking

environment, requirements are expressed more concisely as a set of logical assertions.

2.3 Process Algebras

 The subtle properties of liveness, fairness, and deadlock become issues when

dealing with the parallelism and concurrency inherent in structural models. Consider that

a truly non-parallel uniprocessor would have no means of deadlocking unless it were

designed with an explicit HALT instruction. Unfortunately, such a processor is only an

abstraction. Digital electronic hardware, being made up of physical components that

operate in real time, is inherently concurrent and parallel, and thus deadlock is a

possibility.

 Process algebras such as the Calculus of Communicating Systems (CCS)

(Milner, 1989) and Communicating Sequential Processes (CSP) (Dijkstra, 1968; Hoare,

1985) are used to model concurrency and thus are useful for modeling digital electronic

2-5

hardware.1 CCS, for example, is a very concise, but highly expressive language. It has

mechanisms for both behavioral and structural modeling. Especially important are its

mechanisms for expressing non-deterministic choice and hidden internal action.

Processing elements are known as agents, and are often recursive.

 Consider the asynchronous communication device called the C element (Shams

and others, 1998). The C element awaits the arrival of two concurrent inputs a and b.

Once both have been received, an output c is produced. Equation 2-1 is the CCS model

of the C element’s behavior:

CcabCcbaC def += (2-1)

Being concurrent, the input signals a and b may arrive in either order. This allowance is

indicated by alternative execution branches separated by ‘+’. No matter which branch is

selected, the output c is emitted after inputs a and b are received. Following the output,

the agent returns to the initial state C, ready to receive more inputs.

 CCS processes (or agents) appear in upper case. Lower case names serve as

transition labels, with output transitions bearing an overbar.2 There are six CCS

combinators or operators:

• The Constant operator, ‘
def
= ’, which assigns an agent name to a behavior.

• Prefix, denoted by the period, to indicate one action following another.

• Choice or Summation, denoted by ‘+’, to indicate a fork in the execution path.

1 Process algebras are also commonly called process logics, but this dissertation maintains a distinction.
“Process algebra” is reserved for languages that represent closed systems of processes and operations that
transform them. “Process logics” are systems that manipulate predicates defined over process algebras.
2 When an overbar is typographically difficult it is customary to use a leading “tic” mark: 'c.

2-6

• Parallel Composition, denoted by ‘(A | B)’ to indicate agents A and B operating

concurrently.

• Relabeling. The notation ‘E[x/y]’ indicates that transition x has been renamed to y in

the agent E.

• Restriction, denoted by the backslash character ‘\’.

 To accomplish behavioral modeling in CCS, the first three combinators:

Constant, Prefix and Choice,3 suffice. Furthermore, the Choice operator can also be used

to express non-deterministic behavior. Consider the agent:

COIN
def
= flip. heads .COIN + flip. tails .COIN (2-2)

 Here the environment can exert no control over the outcome, since the input flip

occurs in both branches. Once a flip arrives, the COIN agent non-deterministically

selects one branch, and produces an output accordingly. In this instance + involves an

internal, or non-deterministic Choice. However, + is not always the harbinger of non-

determinism. The external Choice expressed in the C element specification (Equation

2-1) is perfectly predictable due to the environment’s ability to control the input sequence

and select which branch is executed.

 Like the C element and the COIN agent, most useful CCS agents are recursive in

their behavioral description. Real hardware agents do not simply compute some result

and terminate. They more closely resemble what Manna and Pnueli call reactive

programs (Manna and Pnueli, 1992:vii). Rather than halting, they forever await inputs

from their environment, respond, and then wait again.

3 Consistent with Milner’s usage, combinator names are capitalized to distinguish them from their common
English meanings.

2-7

 The last three combinators: Parallel Composition, Relabeling and Restriction, add

the ability to perform structural modeling. As an example, consider the behavior of a

simple one place buffer or FIFO:

FIFO
def
= in. out .FIFO (2-3)

One can build a two-place FIFO by connecting two one-place FIFOs in series, as shown

in Figure 2-1.

in 'out in 'out

FIFO FIFO

mid'mid

Figure 2-1. Two-place FIFO

 This composite construction FIFO2 is modeled in CCS as follows:

FIFO2
def
= (FIFO[mid/out] | FIFO[mid/in])\{mid} (2-4)

The Parallel Composition (FIFO…| FIFO…) denotes the building of a composite model

from two submodels—in this case two identical FIFOs. The Relabeling functions

[mid/out] and [mid/in] then rename two of the ports to mid and mid. This forms an

implicit internal connection. Any communication between the components of a Parallel

Composition is accomplished when actions and co-actions share the same label, differing

only by the overbar. In the parlance of hardware description languages, Relabeling

expresses the “named association” of an actual signal mid to internal signals in and out.

2-8

 The Restriction mechanism \{mid} in turn hides the internal signal mid from the

external environment. The signal ceases to be a port to the outside world. In that sense

the Restriction operator models abstraction by hiding a lower-level detail. This hiding of

internal signals, which is implicit in hardware description languages such as VHDL, must

be stated explicitly in CCS by means of the Restriction mechanism.

 In its treatment of internal action, CCS differs significantly from languages such

as VHDL where internal action is not represented at higher levels of abstraction. In CCS,

such hidden action is denoted by the symbol τ. All silent actions are abstracted into this

single symbol. Practitioners will sometimes use a subscript such as τmid to track the

origin of these actions, but the subscript is semantically meaningless within the context of

CCS.

 After expanding each FIFO and Relabeling their ports, one can rewrite FIFO2 as

 }{\)..|..(2 midFIFOoutmidFIFOmidinFIFO def
= (2-5)

where ≡ is syntactic identity. Using a single-shaft labeled arrow to denote atomic

transitions one writes

→ }{\)..|.(2 midFIFOoutmidFIFOmidFIFO in (2-6)

At this point the renamed signals mid and mid can communicate or synchronize, and the

next transition is a τ.

 → }{\).|(}{\)..|.(midFIFOoutFIFOmidFIFOoutmidFIFOmid τ (2-7)

2-9

The compound agent conducts a silent action by transferring a datum from the first to the

second FIFO. Though unseen, this hidden action does indeed affect the behavior of the

compound agent. The evolving FIFO2 cannot accept a second in action until this

internal transfer occurs.

 Because the composite agent FIFO2 has a depth of two, the user will expect it to

accept two inputs before an output is issued. Or, if an output is issued after one input,

one will expect that FIFO2 is now empty and can accept two more inputs. Therefore,

one behavior the user expects is ... outinin He does not expect to be delayed at all if he

wishes to send two symbols in in succession. Yet since the agent FIFO2 cannot accept a

second in until the internal action has transpired, the behavior he actually gets is

.... outininτ

 Some might argue that the τ interruption is inconsequential. In real hardware

such internal actions occur readily enough and for practical purposes they can be ignored.

Others might argue that unless one knows the target technology and how the circuit will

be laid out, it is wiser to assume no more than necessary about any delay associated with

internal actions. Designers of synchronous circuits, in particular, eliminate the need to

consider internal action by calculating worst-case delays and then slowing down the

system clock to insure no internal actions are pending when the clock advances.

Asynchronous designers however, who use no clock, must take note of internal action in

some way. For them, the τ mechanism in CCS is very powerful.

 Differences in opinion about how to handle internal actions (and the conditions

under which they must be respected or ignored) give rise to various hardware

equivalences—covered in the next section.

2.4 Hardware Equivalences

 An equivalence relation divides a set into equivalence classes. Within each

2-10

equivalence class all members are equivalent and between equivalence classes all

members are distinct. The weakest possible equivalence relation simply declares all

members of a set P to be equivalent. The strongest possible equivalence, on the other

hand, distinguishes every member of P, placing each into its own (singleton) equivalence

class. Equivalence relations in process algebras can also be characterized by their

strength with the stronger making finer distinctions among agents and the weaker

identifying more agents. Modeling accuracy favors stronger equivalences, whereas

design flexibility favors weaker equivalences.

 Van Glabbeek has listed eight semantic criteria that characterize various hardware

equivalences [vG90a]. The four main criteria are:

• Linear time versus branching time. Linear time semantics distinguishes

processes based on the content of their observable runs, whereas branching time

semantics maintains information where different courses of action diverge.

• Interleaving semantics versus partial-ordering semantics. This distinction relates

to the expression of concurrency. In interleaving semantics there is only

“liveness on a symbol.” CCS is an example of interleaving semantics. Since

symbols are only issued one at a time the concurrency between two symbols must

be expressed by explicitly giving the interleavings, for example, a.b + b.a. In

partial order semantics, also known as “true concurrency,” there is “liveness on

symbols and transitions.” Van Glabbeek lists the Petri Net discipline as an

example of true concurrency. When a transition is live it can fire and release

multiple tokens without specifying the interleavings among those tokens.

• Abstraction of internal action. When equating agents, internal actions can be

totally ignored, or taken into account in various ways.

2-11

• Treatment of infinite processes.

Van Glabbeek has identified 14 equivalences (van Glabbeek, 1990; 1990a). Four such

equivalences are presented here: trace equivalence, strong equivalence, observational

equivalence, and observational congruence.

 2.4.1 Trace equivalence. Two agents, P and Q, are trace equivalent when every

sequence of visible actions produced by P is producible by Q, and vice versa (Milner,

1989:204).

Definition 2-1. Process agents P and Q are trace equivalent, written P ~t Q, if ∀s ∈ L*,

P⇒s iff Q⇒s .

This is a common sense version of equivalence, but is often too weak for many purposes.

Consider the agents:

)...(NILcNILbaY
def

+= (2-8)

 NILcaNILbaV
def

.... += 4 (2-9)

The two agents Y and V are indeed trace equivalent, sharing the trace set {a, a.b, a.c}.

However their observable behaviors are not the same. The agent Y, after performing an a

action, still has the option to perform either b or c. For the V agent however, this choice

is taken away. Upon receipt of the a, the V agent non-deterministically chooses a branch,

evolving to either b.NIL or c.NIL, after which it will reject either c or b, respectively.

 2.4.2 Strong equivalence. The notion of strong bisimilarity addresses this

difference in observable behavior between trace equivalent agents (Milner, 1989:88).

Two agents, P and Q, are said to be strongly bisimilar if each can perform all the actions

4 NIL is a special CCS agent that can do no actions, and can be considered a HALT.

2-12

of the other and, after every such action α, the immediate successor agents (α-

derivatives), P' and Q' are themselves strongly bisimilar. Strong bisimulation is thus a

binary relation among agents. Formally, a strong bisimulation, S, satisfies the so-called

“back-and-forth” property:

Definition 2-2. A binary relation S among processes is a strong bisimulation if ∀action

α

 (i) Whenever P →α P' then ∃Q' such that Q→α Q' and P' S Q'.

 (ii) Whenever Q→α Q' then ∃P' such that P→α P' and P' S Q'.

Many relations satisfy Definition 2-2, including the empty relation. However the empty

relation is not useful, since it equates no agents. One normally wishes to equate as many

agents as practical. Therefore, one prefers the largest strong bisimulation ~, which is

called strong equivalence. Strongly equivalent agents each match the actions of the

other, including the internal action τ. The two agents V and Y given above, though trace

equivalent, are not strongly equivalent. Agent V has two a-derivatives, b.NIL and c.NIL.

Neither of these can perform all the actions of the single a-derivative of Y, b.NIL +

c.NIL, which can perform both b and c.

 2.4.3 Observational equivalence. The notion of strong equivalence is too strong

for many purposes. For example, strong equivalence distinguishes between the agents

a.NIL and a.τ.NIL:

a.NIL /~ a.τ.NIL (2-10)

However such a distinction normally makes little difference to users. After receiving the

a action, both agents eventually evolve to NIL and halt anyway.

2-13

 Therefore, the notion of strong bisimilarity is weakened to weak bisimilarity

(often called simply bisimilarity), which abstracts away τ actions (Milner, 1989:108).

Weak bisimulation also obeys a “back-and-forth” property in a manner analogous to

strong bisimulation:

Definition 2-3. A binary relation B among processes is a weak bisimulation, if ∀action α

 (i) Whenever P→α P' then ∃Q' such that Q ⇒$α Q' and P' B Q'.

 (ii) Whenever Q →α Q' then ∃P' such that P ⇒$α P' and P' B Q'.

The hat embellishment ^ above an action or an action sequence removes τ actions from

that sequence. Since α above represents single, or atomic actions, the hat notation

changes a τ action to the empty sequence, ε. All other actions are unchanged. The

double-shafted arrow ⇒, on the other hand, allows insertion of any number of τ actions

necessary to complete a transition. Thus, weak bisimulation differs from strong

bisimulation in that any one agent can match the τ actions of the other with zero or more

τ actions. As was true with strong bisimulation, there are also many weak bisimulation

relations. Again, the largest weak bisimulation ≈, called observational equivalence, is

the most interesting. Note that α.τ.NIL ≈ α.NIL. These two agents are not

distinguished under ≈, as they are under ~.

 2.4.4 Observational congruence. A motivation for finding equivalent hardware

agents is to safely substitute one for the other. This safe substitution property is known

as congruence. A congruence is a relation that is preserved by every operation of the

underlying algebra. Alternately, one can say that a congruence is preserved by all

contexts. Consider the Prefix operation. If P ≈ Q then one hopes that a.P ≈ a.Q. In other

words, the Prefix operator ought to preserve ≈. This is one congruence law. Under CCS

there are six congruence laws, one for each CCS operator. Unfortunately, observational

2-14

equivalence ≈ fulfills only five of the six laws. It is not preserved by Summation. For

example:

 τ.a.NIL ≈ a.NIL (2-11)

 b.NIL ≈ b.NIL (2-12)

yet,

 τ.a.NIL + b.NIL /≈ a.NIL + b.NIL (2-13)

because the initial τ action of the left hand agent can preempt the choice allowed by ‘+’.

The left-hand agent is therefore unstable (Milner, 1989:112). When the τ occurs, the

left-hand agent’s ability to perform a spontaneously evaporates, without the occurrence

of a visible action. Meanwhile the right-hand agent can still perform either a or b.

Clearly, there is a difference between the “safe” τ appearing in a.τ.NIL versus the

preemptive τ appearing in Equation 2-13. That difference is guardedness (Milner,

1989:65).

Definition 2-4. X is guarded in an expression E if each occurrence of X within E lies

within some subexpression l.F of E, where l is a visible action. l ≠ τ.

Only visible actions can serve as guards. X is therefore guarded whenever some visible

Prefixed action must always be encountered before the execution can proceed to X.

Thus, the τ in a.τ.Nil (which can safely be ignored) is seen to be guarded. The

unguarded τ in Equation 2-13, however, creates an instability and destroys the

congruence of ≈ under Summation. Hence, the property of observational equivalence is

modified to that of observational congruence (Milner, 1989:153). Observational

2-15

congruence obeys a “back-and-forth” property similar to weak bisimulation, with the hats

removed from the action symbol α.

Definition 2-5. Process agents P and Q are observationally congruent, written P = Q, if

∀action α:

 (i) Whenever P→α P' then ∃Q' such that Q⇒α Q' and P' ≈ Q'.

 (ii) Whenever Q→α Q' then ∃P' such that P⇒α P' and P' ≈ Q'.

 Observational congruence is also called equality, and denoted P = Q. Under

observational congruence, initial, unguarded τ actions must be matched τ for τ.

However, Definition 2-5 does not demand the α-derivatives P' and Q' in turn to be =,

merely ≈. Otherwise guarded τ actions would eventually pop out and be evaluated as

unguarded. Thus, observational congruence continues to abstract away guarded τ actions

in the same manner as ≈, while respecting unguarded τ actions. Milner shows that = is a

slightly stronger equivalence than ≈, which can be derived by restricting ≈ to initially

stable agents (Milner, 1989:Proposition 5-9).

2.5 Modal and temporal logic

 The Edinburgh Concurrency Workbench, or CWB (Cleaveland and others, 1989;

Cleaveland and Parrow, 1993) accepts agents described in CCS and test them against

various equivalences. Thus, one can present a specification as a behaviorally described

CCS agent. A candidate implementation can be presented by assembling its components

using the Parallel Composition operator. Specifications and implementations are

compared for equivalence. However, such verifications can take a very long time if the

agents have many states. In many instances, it is more convenient to check agents to see

if they satisfy certain defined logical properties.

2-16

 2.5.1 Hennessy-Milner Logic. The CWB can also check assertions written in the

Hennessy-Milner Logic (HML) (Stirling, 1992). Since it deals with assertions about

processes, HML can be called a process logic. Being a logic, it includes the standard

Boolean connectors ¬, ∧, ∨, ⇒, T and F. The notation P ==| A means that CCS agent P

satisfies the HML assertion A.

 HML is also a modal logic, able to express assertions that are possibly true or

necessarily true. It includes modal quantifiers. Angle brackets denote possibility and

square brackets denote necessity. These brackets enclose actions or sets of actions. Thus

the notation P ==| [a]A means that for every a action that agent P can perform, the

successor agent P' ==| A. Note that if P cannot perform such an a action then P ==| [a]A

is vacuously true. P ==| <a>A means that there is at least one a-action that P can do such

that the successor P' ==| A. The special identifier ‘-’ denotes the entire set of actions.

Thus P ==| [-]A means that every action performable by P results in an agent satisfying A.

 HML gives the ability to define and check properties of agents on the CWB. First

note that all agents satisfy the trivial assertion T (truth). One can construct the assertion

E ==| <->T which says that there is some action that agent E can perform and evolve to

something. In other words, E can perform some action and is therefore live. Conversely,

E ==| [-]F says that E cannot do any action and is therefore deadlocked. Thus the CWB

provides a means of defining and checking properties such as deadlock and liveness.

 2.5.2 Fixed Points. For the modeling of digital hardware one generally desires

reactive agents that operate indefinitely, continually returning to a “ready” state. In other

words, the most interesting agents are recursive. Thus, interesting propositions about

such agents will also be recursive. To handle such recursive propositions, HML is

augmented with the ability to handle fixed points. The result is the modal µ calculus

(Stirling, 1992). Consider again the recursive C element:

2-17

 CcabCcbaC
def

...... += (2-14)

A property one might suspect for the C element is that any output action c is preceded

by exactly two input actions. Thus:

 C ==| <-><->< c >T

 C ==| <-><->< c ><-><->< c >T

 C ==| <-><->< c ><-><->< c ><-><->< c >T

 C ==| <-><->< c ><-><->< c ><-><->< c ><-><->< c >T (2-

15)

and so on. This sequence suggests a more compact, single assertion:

 X ==| <-><->< c >X (2-16)

Such a formula is a recursion of the form X = F(X). A set of system states X that can

satisfy this recursive assertion is called a fixed point solution because it is unaffected by

repeated applications of F. There may very well be more than one set of states that

qualifies as a fixed point solution. These solution sets are partially ordered under the

subset relation ⊆. The smallest such set is called the minimum fixed point. It contains

only those states for which the assertion is necessarily true. The largest such set, the

maximum fixed point, includes all states except those for which the assertion is

necessarily false. The minimum and maximum fixed points of the formula X = F(X) are

denoted min(X.F(X)) and max(X.F(X)), respectively.

2-18

 2.5.3 Temporal Logic. A class of logics called temporal logics “defines

predicates over infinite sequences of states” of systems as they evolve over time (Manna

and Pnueli, 1992:179). The modal µ calculus qualifies as a temporal logic. However,

the complicated fixed point notation of the modal µ calculus can be very difficult to

follow. A refinement to the calculus defines certain temporal operators which amount to

a shorthand for more extensive modal µ fixed point formulas. These operators have

simple English interpretations. The operator � can be read as “always.” It precedes an

assertion that is guaranteed to hold at all future times, regardless of how the behavior

may branch. P ==| �E means that E holds for all future successors to agent P. Read as

“always E,” �E is easier to interpret than the more ungainly max(X = E ∧ [-]X). The

diamond operator, ◊, denotes possibility. P ==| ◊E means that there is some execution

sequence for which at least one successor satisfies E. The operator EV denotes

eventuality. P ==| EV E means that along all execution branches, sooner or later, a

successor agent will be encountered which satisfies E.

 These convenient operators can be defined as macros in the CWB. Conventional

usage defines the macros: BOX, POSS, and EV to denote the operators: �, ◊, and EV,

respectively. Liu has shown how this calculus can be used to check for specification

properties on the CWB (Liu, 1992). The C element, for example, should satisfy the

property that, after both inputs a and b have been received the only possible move is an

output c . Liu has built a macro called ONLY'c defined as meaning < c > & [- c]F

(“You can always perform c but nothing else is possible”). Applied to the C element,

Liu derives the specification

 (� [a][b] ONLY'c) & (�[b][a] ONLY'c) (2-17)

2-19

which literally says that it is always the case that every time a is followed by b, or b by a,

the only possible action is an output c .

2.6 Coinduction and Transition Induction

 Since recursive CCS agents never halt, such agents produce action streams that

are infinite in extent. These streams can be observed from one end by unwinding the

agent definition. However, one could never proceed to construct such a stream from the

empty sequence ε. The fixed point approach presented above allows one to reason about

these infinite streams. Modal and temporal logics which incorporate fixed point

reasoning can be automated by tools such as the Concurrency Workbench to reason about

recursive agents.

 For manual proofs, a technique called coinduction is employed to reason about

infinite streams and recursive processes (A. Gordon, 1995; Rutten, 1996; Jacobs and

Rutten, 1997; Wegner and Goldin, 1999). Coinduction is the dual of the more familiar

induction technique. Both techniques can be used both to conduct proofs and to provide

definitions. The differences between the two techniques can best be highlighted by

examining how (co)inductive definitions are pursued.

 An inductive definition consists of three general parts, with the third so obvious

that it is usually not stated. The three parts of an induction are: (1) the basis, (2) the set

of constructors, and (3) the principle of minimality. The basis is a starting point from

which to build the set being defined. For the natural numbers N the basis is the number

0. Constructors are means to build other members of the defined set. A single

constructor + (or alternately the successor function S(x) = x + 1) suffices for N. The

principle of minimality asserts that nothing else fills the definition except what can be

constructed from the basis via the constructors. One can informally state the inductive

definition of N as

2-20

 Basis. “0 is a natural number.”

 Construction. “Successors of natural numbers are natural numbers.”

 Minimality. “Nothing else is a natural number.”

 Coinduction consists of two parts instead of three, since it lacks an analog for the

basis. In place of constructors, coinduction uses observers—means of observing the

behavior of the item being defined. One is generally unaware of the structure of the

entity that produces said behavior; only the behavior itself is accessible. In place of

minimality, coinduction uses a principle of maximality. Whereas minimality forbids

everything that cannot be constructed, maximality allows everything that is not forbidden

by the observations.

 Consider, once again, the C element. The attempt to define a C element

inductively will fail. One might propose the NIL agent as a basis and use the CCS

operators as constructors; but one cannot build a recursive agent from NIL. Similarly,

one cannot build the associated infinite action streams a, b and c by construction from ε.

Rather, one has only the recursive behavior of C: C
def
= a.b. c .C + b.a. c .C. An

appropriate observer then is a rule that accesses the head of the behavior and defers the

evaluation of the rest. An observer function may look something like this: behavior(α.X)

= α.behavior(X). Observers can be applied arbitrarily many times to unwind more and

more behavior, but the end of the behavioral streams can never be reached. The

coinductive definition of the C element can be informally stated as

 Observation. “The C element can perform all action streams that unwind from

C
def
= a.b. c .C + b.a. c .C.”

 Maximality. “Everything consistent with this observation is a C element.”

2-21

 Coinductive proof can appear circular and unsatisfying due to its lack of a basis

step. For a coinductive proof it suffices to shown that a single unwinding of each

observer function preserves the property in question. For CCS agents, the CCS transition

rules (Milner 1989:45, 57) serve as observers, and proofs of properties over CCS agents

are often coinductions employing these observers. Milner calls such coinductive proof

transition induction (Milner, 1989:58, 100) and reaches conclusions “by induction.”

Transition coinduction might be a more appropriate term, but Milner’s usage predates the

general recognition of coinduction as a technique distinct from induction.

2.7 Applying Formal Methods to VHDL

 This section presents the efforts of researchers who have studied, more

specifically, the formal verification of VHDL models. These efforts fall into two general

camps. First are the extraction techniques that seek to recover higher-order function

from low level or “flat” models. Extraction includes both logic extraction, in which

high-order structural blocks are substituted in flat structural models, and temporal

extraction, where a more general model of behavior is substituted for a collection of

simpler behaviors. The second camp seeks to translate between VHDL and other

languages or tools so that the power of those tools will accrue to VHDL models. In the

second camp, an understanding and defining of VHDL semantics is essential.

 2.7.1 Extraction. The extraction process is one of iterative substitution using

templates. The extractor repeatedly examines a flat design for subunits that match some

template. Whenever such a match is found, those subunits are deleted and replaced with

a single, equivalent, higher-level unit as dictated by the template. For example, one

knows (or at least believes) that three NAND and two XOR gates, when connected as

shown in Figure 2-2, will create a one-bit full adder. Similarly, eight full adders in

cascade will form a byte-wide adder. By such repeated substitution, one may find that a

2-22

network of interconnected gates can be transformed, say, to a 32-bit ALU. Extraction

thus serves as a verification that the original flat design is “equivalent” to the 32-bit

ALU. Extraction presumes that the equivalence notion used to govern the substitutions is

in fact a congruence.

 2.7.1.1 Logic Extraction with VHDL. Dukes applied the process of logic

extraction to VHDL models in the development of his Generalized Extraction System

(GES) (Dukes, 1993). The extraction process itself is only as accurate as the templates

used. Dukes realized that in a controlled VHDL-based design environment where the

design library itself was developed and documented with VHDL, there was no need to

produce these templates manually. Rather, extraction templates, or extraction rules could

be automatically derived from VHDL structural models of library components. His GES

system, written in Prolog, would first derive appropriate extraction rules from VHDL

models or the technology design library, and then apply those rules to perform

extractions on circuits designed in that technology.

 One limitation of Dukes’ technique, and indeed of logic extraction in general, is

the strict dependence on structural templates. It does not seek to establish the behavioral

equivalence of models. Even when, as with GES, the extraction rules are derived from a

Figure 2-2. Full Adder

2-23

design library, the extraction system takes for granted the library designer’s claim that,

for example, “these five gates are equivalent to one full adder.” It assumes a behavioral

equivalence between the gates and their purported function. Hopefully, library units will

have been independently and exhaustively verified. For a component as simple as a five

gate device, this is probably true. However, one’s confidence becomes less certain as

when moving up in complexity.

 Dukes’ tool reacts only to structural VHDL constructs. Any behavioral

constructs, such as a process statement or an assert, is ignored. Thus, GES and logic

extraction in general, will not verify a design against some purely behavioral device

model, nor will it verify that logical conditions are met.

 2.7.1.2 Temporal Extraction. Fujita developed a Prolog-based temporal

extractor (Fujita and others, 1983; 1983a). This tool extracts and verifies temporal

formulas using the “temporal logic decision procedure” developed by Wolper

(Wolper, 1981). Thus, Fujita’s tool is a behavioral extractor, in contrast to Dukes’

structural extraction system. Fujita aimed to verify that a collection of behaviors of

some circuit would satisfy some desired “protocol” (in other words: “higher-level

behavior”).

 Fujita notes that, in general, the satisfiability of temporal formulas is undecidable.

However, he draws on Wolper’s method, which uses rewrite rules based on a right-linear

grammar. Wolper had 14 such rules, which tend to transform other temporal operators

into next operators, ‘ ’, and then migrate these operators to the left of the formula. At

any instant in time Wolper needed only to deal with ‘ ’ since any other temporal

operator would be embedded within the formula, to eventually pop out as ‘ ’ anyway.

Thus, instead of dealing with the undecidability associated with infinite sequences of

states, Wolper’s method looked forever at only the “next” state or event. Note how this

quite naturally mimics the VHDL simulation engine, wherein the simulator focuses on

2-24

the next scheduled event, ignoring any other transactions until they in turn become the

“next event.”

 Fujita’s reliance on the Wolper procedure means that his method, when applied to

VHDL, only captures its simulation semantics. Furthermore, just as logic extraction

compares only structural models, Fujita’s temporal extraction technique compares only

behavioral models. Needed is a method of verifying a structural model against a

behavioral model.

 2.7.2 Semantic-based Approaches. Extraction is a clever tool for manipulating

models. However, this template-based approach relies on syntactic substitutions. When

applied to VHDL models, it makes no use of what the VHDL language actually means in

terms of the performance of real hardware. To perform verifications between behavioral

and structural models, one needs a formalization of the semantics of VHDL. These

semantics need to be based on some logic to allow rigorous verification by formal proof.

 Auletta devised a translation from a restricted subset of the process algebra CSP

to VHDL (Auletta, 1991). In performing the translation, he strove for synthesizable

VHDL, meaning models of finite state machines in the register transfer logic (RTL) style.

One semantic mismatch he noted was that while CSP allowed the expression of non-

determinism, VHDL did not. To cope with this non-determinism when translating to

VHDL he used a “scheduling mechanism.” This insight into how VHDL might model

indeterminism is enlightening. However, for this dissertation, the reverse translation, i.e.,

from VHDL to CSP (or similar algebra) is viewed as the more interesting. CCS makes a

better target algebra anyway. CSP is inadequate for dealing with many concurrency

issues, due to its inability to express internal action. CSP requires mutual simultaneous

agreement between processes for communication to occur. Whereas problems such as

deadlock occur when there is no such agreement, a deadlocking process waits forever on

data that will never be sent.

2-25

 Van Tassell (van Tassel, 1994) defined a formal semantics for a limited subset of

VHDL using the language Higher Order Logic (HOL) (M. Gordon, 1987; 1992). His

“nano-VHDL” is a very restricted subset of VHDL that captures the basic VHDL

semantics. Using HOL, van Tassell wrote abstract syntax to formally define the

semantics of a limited number of VHDL constructs. He then used the HOL proof

assistant to perform symbolic simulations on the resulting HOL models. Limitations of

van Tassel’s work are: (1) the subset is extremely small, (2) the translation from VHDL

to HOL is manual, and (3) he formalizes the simulation engine of the VHDL LRM, such

that his semantics are insensitive to internal action and cannot embody the properties

desired to establish safe substitution and to detect deadlock and other invariants.

 Jamsik and Bickford used a logic-based approach to formalizing the semantics of

VHDL (Jamsik and Bickford, 1994). This model checking approach uses a family of

formal specification tools and languages referred to collectively as Larch (Guttag and

Horning, 1993). In this approach, VHDL entities are modeled (quite naturally) in VHDL.

Requirements or specifications are written in a special requirements language called a

Larch Interface Language, or LIL. A different LIL is generated for each target language.

VHDL-LIL statements are embedded as comments called annotations in the VHDL code.

This results in judgments, which are logical statements to the effect that an entity E

satisfies a requirement ϕ. These judgments are then proven with the aid of a set of

axioms and inference rules governing judgments.

 Jamsik and Bickford separate out requirements as annotations from the behavioral

model, the VHDL top-level behavioral model itself. Their work expresses a general

logic-based semantics not limited to a simple formalization of the simulation semantics.

However, their annotations appear to be limited to properties incumbent on named

signals. It is not apparent how certain concurrency properties not tied to a specific signal,

such as freedom from deadlock, can be expressed, if indeed they can.

2-26

 Hua and Zhang (Hua and Zhang, 1993) translated VHDL into a formal logic and

used theorem proving for verification. Their tool, VAT (VHDL to Algebraic

Translator), turns VHDL into RRL (Rewrite Rule Laboratory) syntax. The VAT

translator maps structural VHDL into RRL axioms and maps behavioral VHDL into RRL

theorems. Hence VAT creates an axiomatic system based on the hardware

implementation, and the specification is thus a set of theorems to be proved about the

hardware.

 The VAT approach is very similar to one goal of the present research, i.e., to

forge a semantic link between VHDL and some logic. However, the work is limited to a

“significant subset” of VHDL, and the hardware verified must be in the synchronous

design style. Of course, the synchronous design style is very widely-used, but

asynchronous design is more fundamental, and concurrency issues are more likely to

arise in asynchronous designs. Furthermore, Hua and Zhang’s “significant subset” is not

a proper subset of VHDL. They invent additional VHDL syntax for the convenience of

the VAT tool. They add the symbol <<= to denote connections which involve feedback,

and the keyword algebraic to denote the expression of a requirement. Any such

decoration of VHDL code before verification ought to be avoided due to the possible

introduction of errors.

 Read and Edwards (Read and Edwards, 1994) translated VHDL to Boyer-Moore

logic. Boyer-Moore Logic is a quantifier-free first order logic with equality. Its syntax is

similar to LISP. Their translation to VHDL works in two stages:

 (1) VHDL syntax is mapped to Boyer-Moore expressions.

 (2) “Stage 2 is an operational definition of a VHDL simulation kernel.”

 Stage (1) has the happy result of reducing the great number of VHDL constructs

to the much smaller catalog of Boyer-Moore functions. Stage (2) creates a “formal

2-27

simulator for VHDL.” These researchers too have formalized the simulation semantics,

rather than expressed higher semantics.

Limitations of Read and Edwards’ technique are many. First, the associated

theorem prover, NQTHM, is ungainly. It is not fully automated, and must be guided. As

a result, these researchers were essentially without results. They attempted one small

example, but then stated “the equivalence theorem …remains unproved.” They also note

that their technique “loses instance names.” Multiple architectures of a single entity are

known by the entity name. The architecture name is thrown away. They defend this

practice by stating that this lack of differentiation “maintains the association between

them.” This attitude seems very naive. Just because a human designer creates two

architectures which he believes to represent the same entity does not mean they actually

are equivalence, congruent, conformant or anything. This is why one verifies designs in

the first place.

 Finally, Read and Edwards treat variables like signals, that is, their tool deletes

any indication of which is which. Hence when assignments are made to variables, their

values are updated, not immediately, but only after the simulation clock advances. This

is a serious violation of the VHDL semantics!

 Examples of commercial formal verification tools for VHDL are Abstract

Hardware’s CheckOff-M and CheckOff-E (Musgrave and others, 1997). CheckOff-E is a

formal equivalence checker, and CheckOff-M is a model checker. Both provide links

from VHDL to CIL, a restricted form of the temporal logic CTL (Burch, 1989).

CheckOff-M in particular will check temporal properties of behavioral, RTL, or

structural VHDL models. The literature provided also claims that concurrency issues

such as deadlock and race can be detected. However, the toolset is limited to the

evaluation of deterministic automata. Therefore, higher equivalence semantics such as

bisimulation are indistinguishable from trace equivalence.

2-28

 Many modern “formal verification” tools for VHDL were displayed at the 2001

Design Automation Conference. These providers generally add the VHDL assert

statement to models to force the gathering of statistics during simulation. The

characterization of this technique as “formal verification” is a misnomer.

2.8 Hardware Order Relations and Conformances

 A major goal of this dissertation is to establish a formal conformance relation that

accurately captures intuitive notions of when a device adheres to a specification model,

or when a part of unequal capability can be substituted for another part. This relation, to

be called congruent weak conformance, is a partial ordering among hardware agents.

This section explores other such asymmetric process ordering relations presented in the

literature, known variously as preorders, partial orders and conformances. Rather than

introduce the special notation for each, ‘≥’ will be used as a general ordering symbol.

 Arun-Kumar presents an efficiency preorder (Arun-Kumar and Hennessy; 1992;

Arun-Kumar and Natajaran, 1995). An efficiency preorder P ≥ Q requires that P ≈ Q

with P being “faster than” or “more efficient than” Q. This speed or efficiency is

measured by the amount of internal computation required. In essence an efficiency

preorder counts τ actions. Thus, if P ⇒a by way of a direct →a whereas Q⇒a via →τ →a

then P is faster than Q. One limitation of the efficiency preorder is the assumption that

all τ actions have unit weight. This rough measure of efficiency is often not realistic.

Secondly, the efficiency preorder establishes an ordering within each ≈-equivalence

class. There is no preorder between processes that are not observationally equivalent.

Hence the efficiency preorder does not model the compliance of an implementation to a

specification, where the observable behaviors can differ.

 A related concept is the divergence preorder (Ingólfsdóttir and Schalk, 1995). A

divergence is an unending chain of internal computation, such as in D
def
= τ.D + a .D,

2-29

where τ can execute indefinitely and starve .a D. For the divergence preorder, P ≥ Q

when P ≈ Q but Q may diverge more than P. Like the efficiency preorder, the divergence

preorder requires observational equivalence, and the desired implementation-

specification relation is not modeled.

 A faster-than preorder uses an extended CCS that associates worst-case execution

times with actions (Lüttgen and Vogler, 2001). Thus agents can possess execution times

resembling real operation. The faster-than preorder is again an ordering among

≈-equivalent agents and does not capture the desired compliance ordering among

specifications and implementations.

 Some researchers take note that the transition graph of a process creates an

ordering among its derivatives (Godefroid, 1995; Alur and others, 1997; Corradini and

others, 1997; Degano and Priami, 1999). Thus if a transition P⇒s Q exists then P ≥ Q.

This can be called a causal of derivational preorder. Intuitively, these processes are

understood to be ordered by priority of occurrence. Again, this causal preorder does not

capture the desired implementation-to-specification relationship, where I ≥ S should

apply at instants of time.

 Segala presents a quiescent preorder over processes (Segala, 1994). It compares

only quiescent states—those that only accept inputs—and is undefined over the many

intermediate states capable of output or internal action. Segala shows that the quiescent

preorder is substitutable, and therefore a congruence. However, since only quiescent

states are compared, he side-steps the issue of initial instability, which can affect

congruence (Milner, 1989:112). The “greater” (left-hand) process can possess

unspecified output pins. This dissertation calls such excess pins extraneous. The

quiescent preorder handles extraneous outputs by hiding them prior to any attempt to

compare agents. This simplifies the analysis, but loses the fact that the extraneous action

set can change depending on which two models are compared. Finally, all required

2-30

outputs must be “yielded” by the implementation, so the quiescent pre-order does not

exploit output concurrency.

 Preorders have also been defined based on testing semantics (Hennessy,

1988:Chapter 2). A test is a sequence of input and output actions where the inputs

become stimuli for the device under test, and the outputs denote expected responses. If

the expected responses are achieved, the device or model passes the test. Possible non-

deterministic execution is allowed via may and must testing. A process P may pass test e

if P has an execution path that passes e. Other paths that fail e are allowed. P must pass

e when there are no executions for which it would fail. The may and must preorders are

defined in terms of test set containment. Hence P ≤may Q if {e : P may satisfy e} ⊆ {e : Q

may satisfy e} with a similar definition for ≤must.

 Consider whether testing preorders can be used to express compliance. Let S
def
=

a.(po. + op.). S has an output concurrency permitting o and p to occur in either

order. Let I
def
= poa .. . I complies with S by having selected one output interleaving.

The set of tests that S may pass is { poa .. , opa .. }. For I, that set is { poa .. }, so I ≤may S.

The set of tests that S must pass is empty, whereas the must pass set for I is { poa .. }.

Hence S ≤must I. One might suppose that I ≤may S ≤must I denotes the proper compliance

relationship. Yet NIL ≤may S ≤must NIL and NIL is not compliant to S. One concludes that

the testing preorders, as defined, do not support the expression of compliance.

 Conformances are asymmetrical relations with the specification appearing on the

right and the implementation on the left. Stevens studied conformances and developed a

new property called logic conformance (Stevens, 1994:136-44).

2-31

Definition 2-6. (Stevens, 1994: Definition 30). Implementation I logically conforms to

specification S, written I f S, iff ∀α ∈ Act, ∀β ∈ A ∪{τ} and ∀γ ∈ A

(1) Whenever S→α S' then for some I' : I α̂⇒ I' and I' f S'

(2) Whenever I→β I' then for some S' : S β̂⇒ S' and I' f S'

(3) Whenever I→γ I' and S⇒γ then for some S' : S γ⇒ S' and I' f S'

Logic conformance respects preemptive internal actions and abstract away all others. It

is sensitive to the branching structure of agents. It detects deadlock, and requires that

deadlocks in the implementation must match deadlocks in the specification. Part (1)

contains the basic demand that all specified behaviors be implemented. Part (2) demands

that every implemented output correspond to a specified output event. In part (3), the

additional premise S
γ⇒ allows the implementation to accept unspecified inputs.

 Conformances treat input and output distinctly. Hence, for conformance

relations, the overbar is identified specifically with output. This departs from previous

usage, where the overbar is used merely for synchronization, and the association with

either input or output is arbitrary. The association of the overbar strictly with output is

enforced throughout the remainder of this dissertation.

 Logic conformance has shortcomings that need remedy. First of all, part (1) is

overly restrictive with respect to outputs. It requires I to implement every specified

output action, even when there is output concurrency. Secondly, part (2) makes no

allowance for the implementation to generate output signals outside of the specification.

2.9 Summary

 This chapter discussed various verification methods, introduced the concept of

process algebra, and outlined the process algebra CCS. CCS was then used as a tool to

discuss the differentiation of various hardware equivalences, of which four were

2-32

presented. Modal and temporal logics were presented as a means to assert requirements

on hardware models written in some process algebra.

 Section 2.7 then considered how formal verification methods have been applied in

the past to VHDL models. Extraction techniques, which are purely syntactic, were first

presented, followed by several semantic-based approaches. Limitations of past

techniques include:

 (1) Inability to compare structure to behavior.

 (2) Formalization of the VHDL simulation semantics only.

 (3) Severely limited VHDL subset.

 (4) Artificially created additional VHDL syntax.

 (5) Requirement to manually edit or annotate VHDL code prior to verification.

 (6) Oversimplification of the semantics. (For example, treating variables and

signals as the same.)

 Section 2.8 presented various ordering relationships that are potential competitors

to congruent weak conformance. Limitations of these techniques include:

 (1) The ordering is not based on compliance, but some other measure.

 (2) The ordering is applied within ≈-equivalence classes only.

 (3) The ordering is not defined for all states.

 (4) The ordering does not allow output concurrency options.

 Subsequent chapters will describe the output of the present research which seeks

to alleviate some of the above limitations.

3-1

III. Weak Conformations

This chapter develops the precursor relations called weak conformations. First, a

simple example is given, using the representational power of CCS to exhibit a

specification and a compliant implementation. The example yields intuition from which

the four transitional laws governing weak conformations are derived. Extensive formal

results are derived for these precursor properties.

3.1 Compliance Example

 Consider a circuit specified to convert binary-coded-decimal (BCD) to pure

decimal. It takes four bits to encode a decimal digit, so the converter will have four

inputs, one for each of the encoding bits. Call the inputs a, b, c and d. The ten outputs

will be labeled ō0, ō1,…, ō9, one for each decimal digit detected. One can think of the

outputs as ten indicator lights. In a CCS model of the specification, each time there is

change on an input bit, one of the output lights turns on and another is extinguished.

Since CCS models transitions and not level signals, there will be two output transitions

concurrently, but it will not be readily apparent which is turning on and which is turning

off. Assume the parent system does not care if momentarily two are lit, or none. The

specification will allow either. The specification model will have ten named states

corresponding to each decimal digit.1 The specification model is identified with the root

state, corresponding to decimal zero:

1 It is convenient to name 10 of the states, but the model has many more intermediate states. There is a
state after the occurrence of each atomic action.

3-2

 S
def
= S0

def
= a.(ō0.ō1.S1 + ō1.ō0.S1)

 + b.(ō0.ō2.S2 + ō2.ō0.S2)

 + c.(ō0.ō4.S4 + ō4.ō0.S4)

 + d.(ō0.ō8.S8 + ō8.ō0.S8) (3-1)

Similar definitions exist for states S1 through S9. However the code is ungainly because

two terms have to be presented each time there is concurrency on two outputs. The

shorthand notation (ō0 | ō1) can now be used to express the concurrency of output signals

while economizing on the code.2

 S0
def
= a.(ō0 | ō1).S1 + b.(ō0 | ō2).S2 + c.(ō0 | ō4).S4 + d.(ō0 | ō8).S8

 S1
def
= a.(ō1 | ō0).S0 + b.(ō1 | ō3).S3 + c.(ō1 | ō5).S5 + d.(ō1 | ō9).S9

 S2
def
= a.(ō2 | ō3).S3 + b.(ō2 | ō0).S0 + c.(ō2 | ō6).S6

 S3
def
= a.(ō3 | ō2).S2 + b.(ō3 | ō1).S1 + c.(ō3 | ō7).S7

 S4
def
= a.(ō4 | ō5).S5 + b.(ō4 | ō6).S6 + c.(ō4 | ō0).S0

 S5
def
= a.(ō5 | ō4).S4 + b.(ō5 | ō7).S7 + c.(ō5 | ō1).S1

 S6
def
= a.(ō6 | ō7).S7 + b.(ō6 | ō4).S4 + c.(ō6 | ō2).S2

 S7
def
= a.(ō7 | ō6).S6 + b.(ō7 | ō5).S5 + c.(ō7 | ō3).S3

 S8
def
= a.(ō8 | ō9).S9 + d.(ō8 | ō0).S0

 S9
def
= a.(ō9 | ō8).S8 + d.(ō9 | ō1).S1 (3-2)

Only states S0 and S1 respond to all four inputs because combinations above 1001 are

illegal under the BCD code. Omitting these transitions in S2 to S9 constitutes the

specification’s guarantee that the illegal input combinations will not be received.

2 This shorthand, which one can think of as a “parallelism of actions,” is not part of the CCS formal
syntax.

3-3

 Given the above specification S, what sort of circuit would make a conforming

implementation? A 4:16 demux, as shown in Figure 3-1, is an obvious choice. The

inputs a, b, c, and d form the four select lines of the demux. Of the 16 outputs, only 10

are used, and six are left unconnected. A fifth input pin represents the multiplexed input.

In this application that pin is tied to ‘1’. Note therefore that a compliant implementation

must have a pin for every I/O pin called out by the specification, though it may have

more.

 A “first cut” CCS model for this demux could read just like the specification

model but with the missing input transitions added and the extra outputs generated.

I
def
= I0

def
= a.(ō0 | ō1).I1 + b.(ō0 | ō2).I2 + c.(ō0 | ō4).I4 + d.(ō0 | ō8).I8

 I1
def
= a.(ō1 | ō0).I + b.(ō1 | ō3).I3 + c.(ō1 | ō5).I5 + d.(ō1 | ō9).I9

 …

 I9
def
= a.(ō9 | ō8).I8 + b.(ō9 | ō11).I11 + c.(ō9 | ō13) I13 + d.(ō9 | ō1).I1 (3-3)

a b
c d

1

o 9

F ig u re 3 -1 . 4 :1 6 D em u x

o 0

x
x
x
x
x
x

3-4

 This implementation has more states than the specification due to its ability to

execute illegal sequences. Indeed, this is allowable since the specification guarantees

that these additional states are unreachable. One might hastily conclude that

implementations must duplicate all the states of the specification, with additional states

allowed. Yet this is not the case. Though the example implementation I gratuitously

generates all the possible output interleavings allowed by S, in reality it would be both

difficult and counterproductive to create such a device. A real, physical layout results in

finite delays along various paths. Most likely, the same interleaving appears every time

in a physical implementation, especially when the delays are due solely to passive

components.

 Consider a diagram of the transitions from S1 to S2 (Figure 3-2). Concurrency of

outputs is represented by a characteristic diamond shape. Clearly, the implementation

need only navigate one path through this diamond, or through any such output “burst.”

The same is not true for inputs. When an input concurrency is present, as in the case of

the C element (Equation 2-1), the implementation must remain poised to accept any

possible interleaving that may come and therefore must be able navigate all paths through

a specified input burst.

Figure 3-2. Output Concurrency Diamond

S1

S2

a

'o1

'o1

'o2

'o2

3-5

 To exploit this allowance to chose among output interleavings, a “second cut”

implementation J chooses specific output interleavings where possible. This

implementation might look something like this:

 J
def
= J0

def
= a.ō0.ō1.J1 + b.ō0.ō2.J2 + c.ō4.ō0.J4 + d.ō0. ō8.J8

 … (3-5)

and so forth. One specific interleaving is chosen at each output concurrency.

 Thus when presented with an output concurrency, the implementation can

implement any or all the paths, as long as at least one path is implemented. If one

considers the possible paths to form a set, then the implementation must select some non-

empty subset. This idea will be captured later by the notion of maxoctset.

 Consider now the question of behaviors or sequences of actions. I and J do

accept more input behaviors than S specifies due to their ability to decode illegal, non-

BCD inputs. However, they could be faulty for codes ‘11’ through ‘15’ and still function

as BCD converters. These behaviors are irrelevant. Designers will exploit this “don’t

care” region of behavior to produce more efficient designs.

 In this example neither S nor its implementations I and J contain internal action τ.

These models are strictly behavioral, and hidden actions usually arise in structural

models, where there can be communication between internal signals. Unlike I and J,

most implementation models, in practice, will be structural; and a structural model with

no internal communication is a rarity. Therefore, τ actions in the implementation are

virtually inevitable.

 Furthermore, τ actions in the specification are likely as well. Some practitioners

advocate that complex specification models be presented structurally (Stevens and others,

1993). For complex behavior, a purely “flat” specification model will have an

overwhelming number of states. Breaking the model into a few parallel models can

3-6

greatly simplify the expression of the specification, though they can introduce τ in the

specification.

 The BCD decoder example shows how a compliant implementation can exceed

the specification in the number of I/O pins, and can also generate illegal behavior in the

unreachable state space. In general the implementation can possess more behaviors than

the specification, though it can get by with fewer output behaviors. In the next section,

the intuition derived from this example will be developed formally, yielding a set of

properties called weak conformations. Weak conformations are precursor properties to

the target relation to be called congruent weak conformance.

3.2 Notation

To transform intuitive ideas on compliance into formal properties, additional

symbolism is needed.

 First of all, the notion of sort used here differs from Milner’s usage. Milner uses

syntactic sorts where here semantic sorts are more useful. To derive a syntactic sort, one

simply catalogs the symbols appearing in the expression of an agent and its derivatives.

Some of these symbols may in fact be unreachable from the root state. Since they will

never be encountered, they are excluded from the semantic sort. The efficiency of

deriving semantic sorts is not an immediate concern since the initial intended use of

congruent weak conformance does not require the actual generation of sorts by an

automated tool.

 Thus L(P) denotes the visible semantic sort of P. Similarly, A(P) and A (P) are

the semantic input and output sorts of P, respectively, with Act(P) being the semantic

action set. Note that A(P) ∪ A (P) = L(P) ⊆ Act(P) and that although Act(P) may

include τ; L(P), A(P) and A (P) never do.

 The forward slash ‘/’ denotes “excess of…over…” for strings (Milner,

1989:Definition 11.6). Informally, r/s is the string r where the symbols it shares with s

3-7

have been removed. This removal occurs from left to right and takes note of the

multiplicity of symbols within s. Thus, if the symbol a appears twice within s then no

more than two occurrences of a are removed from r. As examples: a.b.c/a.c = b,

a.b.a.b/a = b.a.b, and a.b.c/a.a = b.c.

 ‘½’ denotes the projection operation and normally applies to the projection of an

action string onto a set. Thus t½A(S) is the string t with all actions removed except those

in A(S).

 A new notation denotes the additional pins of an implementation that exceed

those of the specification. These are called extraneous pins. rExt (I,S) is the set of

extraneous output of I with respect to S, and Extr(I,S) the extraneous input set.

Definition 3-1. Let I and S be process agents:

 (1) Extr (I,S) ≡ A(I) − A(S) is the extraneous input sort of I with respect to S.

 (2) rExt (I,S) ≡ A (I) − A (S) is the extraneous output sort of I with respect to S.

3.3 Weak Confluence and Maxoctsets

 Weak conformations use the notion of confluence, a restricted form of

determinism. There are both strong and weak versions of confluence, with weak being

the more interesting. One of Milner’s results will serve as a working definition of weak

confluence (Milner 1989, Proposition 11.11). Shown diagrammatically,

Definition 3-2. If P is weakly confluent then

r

P ⇒ P'

s ⇓ ⇓s/r

P''⇒ ≈
r/s

3-8

The diagram is interpreted such that the top and left transitions imply the bottom and

right transitions. The anonymous successors of P' and P'' are weakly bisimilar and

denoted with ‘≈’, that being the largest weak bisimulation that all weakly bisimilar states

must enjoy. In arriving at the lower right via different paths, the same visible actions are

encountered the same number of times, albeit the order of the actions may be different.

No visible action is preempted from occurring its appointed number of times, and the

strings r.s/r and s.r/s, though different, have the same net effect. Strings such as these,

which are equivalent up to permutation, are called confluence equivalent.

Definition 3-3. ∀r,s ∈ L* , r and s are confluence equivalent sequences, written

r =conf s, if r/s = ε = s/r.

In the presence of confluence, such sequences always terminate at the same state up to ≈.

 A new property called local confluence applies to agents wherein isolated

portions of their transition graphs can exhibit confluence, even if the root agent does not.

Milner’s confluence is a global property, insisting that all exiting sequences preserve the

confluence. Local confluence, by contrast, is content with a portion of the transition

graph that resembles the confluence diagram. Other transitions which destroy global

confluence are ignored.

Definition 3-4. Let s ∈ L*. Agent P is locally confluent with respect to s if P⇒s and

∀r =conf s, whenever P ⇒s P' and P⇒r P'' then P' ≈ P''.

 When local confluence occurs, all exiting confluence-equivalent sequences

terminate at states within the same ≈-equivalence. One often gives these ≈-equivalent

states anonymity and writes P⇒r ≈ P' for all such r. Note that P can be said to be locally

confluent with respect to any of the sequences r. All such sequences form a set:

3-9

Definition 3-5. Let P be locally confluent with respect to s. The set { r =conf s : P⇒r } is

the confluent transition set (CT set) of P with respect to s.

 The CT set does not contain all permutations of s. It contains only those of which

P is capable. Though local confluence applies to both inputs and outputs, it is the local

confluence among outputs that can be exploited by an implementation. CT sets

composed only of outputs are called octsets.

Definition 3-6. Let X be a CT set of P with respect to s. X is an output confluent

transition set (octset) of P with respect to s if s ∈ A +.

 For octsets, member sequences must be of non-zero length (s ∈ A +). This avoids

the burden of a trivial octset {ε} which lends no flexibility in design anyway. In fact,

since only a single member sequence needs to be implemented, the desire will be to have

large octsets, composed of lengthy sequences, for these will give the greatest flexibility

in design. Thus, the “lengthiest” octsets that can be built are called maxoctsets.

Definition 3-7. Let X be an octset of P with respect to s. X is a maxoctset of P if

∃/ t ∈ A (P)+ such that P has an octset with respect to st.

In the extreme case, when no flexibility in design is offered, a maxoctset is a singleton set

whose lone output sequence must be implemented. Every output transition →a

participates in some maxoctset, though it may be as trivial as {a}. Thus the laws

governing the implementation of output can be defined over the maxoctsets of a

specification, and not over the individual output actions themselves.

3-10

3.4 Weak Conformations

 A family of properties called weak conformations is now introduced. Of these,

weak conformance will be defined later as the largest weak conformation. Weak

conformations are asymmetric relations with the specification agent on the right and the

implementation on the left.

Definition 3-8. A binary relation on processes, W ⊆ P × P, is a weak conformation if

∀α ∈ A(S) ∪ {τ}, ∀β ∈ A (I) ∪ {τ}, ∀γ ∈ A(S) , I W S implies the following four laws:

Law of Specified Input or Tau (LSIT)

Whenever S α→ S' then ∃t ∈ (A(S) ∪ rExt (I,S))* such that

 (1) I t⇒ I'

 (2) t½A(S) = α̂

 (3) I' W S'

Law of Specified Output (LSO)

Let X be a maxoctset of S. ∃s ∈ X and ∃t ∈ A (I)+ such that

 (1) S s⇒ S'

 (2) I t⇒ I'

 (3) t½ A (S) = s

 (4) I' W S'

Law of Implemented Input (LII)

Whenever I γ→ I' and S γ
⇒ then

 (1) S γ
⇒ S'

 (2) I' W S'

3-11

Law of Implemented Output or Tau (LIOT)

Whenever I β→ I' and δ ≡ β½ A (S) then

 (1) S δ⇒ S'

 (2) I' W S'

 LSIT describes the obligation of the implementation when the specification

requires an input or τ. The implementation answers by performing a string t. Both

agents then evolve to derivatives I' and S' that also share the relation W. String t contains

one occurrence of an input when α is visible and none when α = τ. The remainder of t

contains extraneous outputs that can occur without harm because they are unknown to the

specification. In the statement of LSIT, these extraneous outputs are filtered by the

projection onto A(S). Other than a lone ,α̂ t can contain no other inputs. Even those

inputs in Extr(I,S) are prohibited. If t did contain such unspecified input actions, the

implementation would wait forever on those inputs, and would thus be blocked.

 LSO describes how an implementation answers specified output activity. At

least one sequence s, though possibly more, from each maxoctset must be “matched” by

the implementation. The implementation matches s with t. String t contains all the

actions of s, in the same sequence that they appear in s. As before, t can further

incorporate any number of extraneous outputs without harm. One will often say that t

implements s, or alternately, that t implements X, since s is the representative of the entire

maxoctset X.

 LII is a reuse of Definition 2-6 (2). It addresses the care that must be taken when

the implementation performs an input action within the specification sort. If the

specification is not immediately capable of such action, there is no harm done because

that action will not be forthcoming anyway. If the specification is immediately capable

(S γ
⇒) then of course the implementation must match that action in accordance with

LSIT. However, LII goes beyond that to state that I is prohibited from any other use of

3-12

specified input symbols, except those arising by LSIT. Otherwise, the implementation

could stray into illegal behavior triggered by a legal input.

 LIOT addresses the occurrence of taus and specified outputs in the

implementation. Although the implementation can freely engage in extraneous outputs,

LIOT requires that any use of specified output symbols in the implementation be limited

to those that arise by legal application of LSO. This prevents the implementation from

issuing illegal behavior at pins that are observed by the containing system.

 Weak conformations are “weak” because, like weak bisimulations, they abstract

away τ actions. For completeness, a definition of strong conformation appears in

Appendix A, but no attempt is made to develop strong conformation theory or to pursue

it toward a congruent strong conformance relation. As always, it is the weak case that is

more interesting and useful, and merits further development.

 For convenience in executing proofs, corollary laws to the weak conformation

definition can be derived:

Corollary 3-1. Whenever I W S for weak conformation W, the following laws hold:

Law of Input Coverage (LIC). A(S) ⊆ A(I)

Law of Output Coverage (LOC). A (S) ⊆ A (I)

Law of Specified Epsilon (LSE). Whenever S⇒S' then ∃t ∈ Extr (I,S)* such that

 (1) I ⇒t I'

 (2) I' W S'

Law of Specified Abstracted Input (LSAI).

∀α ∈ A(S): whenever S⇒α S' then ∃t ∈ (A(S) ∪ Extr (I,S))+ such that

 (1) I ⇒t I'

 (2) t½A(S) = α

3-13

 (3) I' W S'

Law of Specified Input Strings (LSIS).

∀s ∈ A(S)+: whenever S⇒s S' then ∃t ∈ (A(S) ∪ Extr (I,S))+ such that

 (1) I ⇒t I'

 (2) t½A(S) = s

 (3) I' W S'

Law of Implemented Epsilon (LIE). Whenever I ⇒ I' then

 (1) S ⇒ S'

 (2) I' W S'

Law of Implemented Abstracted Input (LIAI). ∀γ ∈ A(I): whenever I ⇒
γ

I' then

 (1) S ⇒
γ

S'

 (2) I' W S'

Law of Implemented Input Strings (LIIS). ∀s ∈ A(S)+: whenever I ⇒s I' and S ⇒s then

 (1) S⇒s S'

 (2) I' W S'

Law of Implemented Abstracted Output (LIAO). ∀β ∈ A (I): whenever I β⇒ I' and

δ ≡ β ↑ A (S) then

 (1) S ⇒δ S'

 (2) I' W S'

Law of Implemented Output Strings (LIOS). ∀s ∈ A (I)+: whenever I ⇒s I' then

 (1) S ⇒s S'

 (2) I' W S'

3-14

Proof: LIC and LOC follow directly from LSIT and LSO. LSE, LIE, LSIS, LIIS and

LIAO yield to induction. LSAI, LIAI and LIAO are shown by replacing ‘ ⇒x ’ with

‘⇒ x→ ⇒’.

The next two propositions follow readily from Definition 3-8:

Proposition 3-2. The process identity relation Idp is a weak conformation.

Proof: Substitute P for both I and S, and P' for both I' and S'.

Proposition 3-3. The union of weak conformations is a weak conformation.

Proof: V ∪ W satisfies each law on the strength of V or W acting alone.

 Milner developed observational equivalence ≈ as the largest of the weak

bisimulations, and then strengthened it to a congruence by requiring initially stable

agents (Milner, 1989:112). Since weak conformations are based on bisimulation

semantics, this dissertation seeks to do the same, i.e., to identify the largest weak

conformation and then strengthen it to a congruence over CCS. The necessary proofs

that follow make frequent use of the composition o of weak conformations, relying on

such compositions to also be weak conformations.3 Hence, the demonstration that o

preserves weak conformation is essential. This requires that the preservation of each

weak conformation law must be shown in turn.

 To show the preservation of LSO, a critical result concerns the string t that

implements a specified maxoctset. String t must in turn define a maxoctset in the

implementation. Assurance is needed that t is neither lost within some maxoctset that

3 o will be called relational composition to distinguish it from the Parallel Composition of CCS processes.

3-15

exceeds it, nor that t outspans maxoctsets in the implementation due to a premature

interruption of confluence. Lemma 3-4 assures the former, and 3-5 the latter.

Lemma 3-4. Let IW S for some weak conformation W, and let X be a maxoctset of S.

Let t be an implementation, by I, of s ∈ X. There is no maxoctset Y of I with respect to

some t.t' unless t'½ A (S) = ε.

Proof: By contradiction.

• Trial Hypothesis. Assume t'½ A (S) = s' ≠ ε.

• By LSO, ∃I', S' such that

 S⇒s S', I ⇒t I', t½ A (S) = s, I' W S'.

• Since t.t' ∈ Y, then I ⇒t I' t′⇒ ≈I''.

• ∀y ∈ Y, I y
⇒ ≈I'' and y =conf t.y' by the definition of “octset.”

• Since I' W S' then LIO demands that

 S' s′⇒ S'', I'' W S''.

• However, ∀x ∈ X, S x⇒ S' s′⇒ S''.

• ∴{x.s' : x ∈ X} is an octset of S, and X cannot be a maxoctset.

⇒⇐

Lemma 3-5. Under the same assumptions as Lemma 3-4, there is no maxoctset Y of I

with respect to some proper prefix t' of t (that is, t = t'.t'' with t'½ A (S) = s' ≠ ε) unless

t''½ A (S) = ε.

Proof: By contradiction.

• Trial Hypothesis. Assume t''½ A (S) = s'' ≠ ε.

• By LSO, ∃I', I'', S', S'' such that

 I t′⇒ I' t ′′⇒ I'', S s′⇒ S' s ′′⇒ S'', t'.t''½ A (S) = s'.s'' = s, I'' W S''.

• ∀y ∈ Y, I y
⇒ ≈I' with y =conf t' by the definition of “octset.”

3-16

• Since I' t ′′⇒ I'' then ∀y, I y
⇒ ≈I' t ′′⇒ I''.

• ∴{y.t'' : y ∈ Y} is an octset, and Y cannot be a maxoctset.

⇒⇐

Proposition 3-6. For weak conformations, an implementing string for a maxoctset of

the specification defines a maxoctset in the implementation.

Proof: Lemmas 3-4 and 3-5.

Proposition 3-7. Relational composition preserves LSO.

Proof:

• Let P V Q W R and let X be a maxoctset of R.

• By LSO ∃s ∈ X such that R s⇒ R' and Q t⇒ Q' W R' for appropriate t.

• By Proposition 3-6, Q has a maxoctset Y with respect to t. P must implement Y,

though it may indeed not implement t itself but some other y =conf t.

• Thus P u⇒ P'' V Q'' where y = u½ A (Q) and Q y⇒ Q'' ≈ Q'. Hence P u⇒ P'' ≈W R'.

This is almost, but not quite, the desired derivative relationship.

• However, with respect to Q W R, y is an implemented output string, so LIOS

applies and R x⇒ R'' where y½ A (R) = x and Q'' W R''.

• Since y =conf t then its projection is x =conf s. Hence, x ∈ X and P u⇒ P'' WV R''. P

has implemented some x ∈ X, as desired.

3-17

Proposition 3-8. Relational composition preserves LIOT.

Proof: For P V Q W R let P β→ P' where β ∈ A (P) ∪ {τ}.

• If β = τ then P→τ P' and by LIOT, Q⇒Q' with P' V Q'. Applying LIE to Q⇒Q'

yields R⇒R' with Q' W R'. Hence P' VW R'.

• If β ∈ A (P) then applying LIOT to P V Q yields

 Q δ⇒ Q', δ = β½ A (Q), P' V Q'.

• There are two cases for δ: (1) δ = ε and (2) δ = β.

• Case 1. Apply LIE to Q W R yielding R ⇒ R', Q' W R' and hence P' VW R'.

• Case 2. Apply LIAO to Q W R yielding R 'δ⇒ R' where δ' = β½ A (R), Q' W R'

and hence P' VW R'.

Proposition 3-9. Relational composition preserves LSIT.

Proof: See Appendix B.

 The logical next step is to prove that the remaining law, LII, is preserved by

relational composition. Unfortunately, the preservation of LII cannot be proven under

the present assumptions, and the reason harks back to the instability issue faced by ≈.

The observational congruence property = solved this nicely by identifying the role of

unguarded τ actions and requiring such actions to be matched in the initial agents.

Milner then showed that when P ≈ Q and both were stable, then P = Q follows (Milner,

1989:Proposition 7.10).

 Within the context of weak conformations, however, the issue of instability is

more complex. The preservation of LII across P V Q W R fails because there is no

obligation for the middle agent Q to perform an immediate⇒
γ

. LSO permits Q to

perform extraneous outputs first. From the standpoint of the specification R, such outputs

3-18

are just as spontaneous and uncontrollable as τ actions. Thus, an output x that is

extraneous to both A and B creates an instability in BAx +. . The spontaneous

occurrence of x can preempt the Choice of B. Hence no weak conformation exists

between BAx +. and A + B. An otherwise stable implementation can be relatively

unstable with respect to the specification when an extraneous output plays the role of τ.

The relative tau symbol τS will denote such actions where the subscript S is the

specification agent’s name. Thus τS will admit both literal τ actions as well as output

actions beyond the semantic sort of S.4 Relative stability is now defined.

Definition 3-9. P is relatively stable with respect to Q if P has no τQ derivatives.

 Now, to prove that LII is preserved by relational composition, it will be necessary

to allow only initially stable agents with initial implementations relatively stable.

Definition 3-10. The agent pair (I, S) meets the conformational stability (CS)

assumption if S is stable and I is relatively stable with respect to S.

Lemma 3-10. Relational composition preserves LII for weak conformations under the

CS assumption.

Proof: Write P V Q W R for weak conformations V and W. One must establish

∀γ ∈ A(R) that whenever P→γ P' and R⇒
γ

 then R⇒
γ

R' with P' VW R'.

• Since Q is relatively stable with respect to R, LSAI requires that Q⇒
γ

immediately.

• ∴Q ⇒
γ

 Q' with P' V Q' by LII.

• In turn, R ⇒
γ

 R' with Q' W R' by LIAI.

4 The potential ambiguity with τs (the synchronization of s and s) is avoided since the relative τ subscript
is an agent name (capital letter) instead of an action label (lower case letter).

3-19

• Hence P' VW R'.

Proposition 3-11. Relational composition preserves weak conformation under the CS

assumption.

Proof: Propositions 3-7, 3-8, 3-9 and 3-10.

3.5 Summary

This chapter presented the weak conformations as a set of properties derived from

intuitive notions of compliance. Proposition 3-11 demonstrated that relational

composition o preserves weak conformation, but not without cost. The CS assumption—

more general than Milner’s initial stability condition—had to be invoked.

 Definition 3-8 is coinductive, referring recursively to I' W S' in each law, with no

primordial pair offered as a basis. As such, many relations qualify as weak

conformations, including the empty relation. The largest, weak conformance, is

introduced in next chapter.

4-1

IV. Weak Conformance and Congruent Weak Conformance

This chapter presents the largest of the weak conformations, called weak conformance, or

fw, and develops formal results for weak conformance. Progress is begun toward

showing weak conformation to be a congruence, but the attempt stalls pending further

restrictions to CCS models. Weak conformance is thus refined to congruent weak

conformance fw by placing reasonable design restrictions on CCS models. Far from

being severe, these restrictions are shown to be quite consistent with good design intent,

prohibiting dubious practices. Congruent weak conformance is then proven to be both a

partial order and a congruence. Partial orders that are congruent are commonly called

precongruences. As a precongruence, fw serves as a correct model of safe substitution.

4.1 Weak Conformance

Just as ≈ is the largest weak bisimulation, weak conformance is the largest weak

conformation.

Definition 4-1. Weak conformance fw ≡ ∪{W : W is a weak conformation}.

Proposition 4-1. fw is a weak conformation.

Proof: Union preserves weak conformation.

Proposition 4-2. fw is the largest weak conformation.

Proof: Any weak conformation W ⊆ fw as a result of Definition 4-1.

Proposition 4-3. fw is reflexive.

Proof: As a weak conformation, Idp ⊆ fw and hence P fw P for all P.

4-2

Proposition 4-4. Under the CS assumption, fw is partial order.1

Proof:

• Reflexivity. Proposition 4-3.

• Transitivity. Given P fw Q fw R, P fw R follows immediately since the relational

composition fwfw is a weak conformation and ∴ fw fw ⊆ fw.

• Antisymmetry. Given P fw Q and Q fw P, observe that both P and Q are stable

under the CS condition, and that no extraneous actions are possible.

 For inputs and τ, if P→a P' then Q ⇒a Q' fw P by LSIT.

 For outputs, if P →a P' then Q a⇒ Q' fw P by LIOT.

 Hence Q simulates P.

 Similarly, P simulates Q and a weak bisimulation exists between the two.

 Thus P ≈ Q and, since both are stable, P=Q.

 The unmodified weak conformance is not a partial order—the CS condition must

be invoked. Nor is the unmodified weak conformance a congruence. However,

appropriate restrictions to CCS models will repair this deficiency, such that congruence

can be established. The refined property will be called congruent weak conformance.

1 The CS assumption must be invoked for any proposition that relies on, or inherits a reliance on,
the relational composition of weak conformations.

4-3

4.2 Weak Conformation up to Weak Conformance

A special type of relation called weak conformation up to weak conformance will

prove to be a useful proof tool. The intuition behind this concept involves the use of fw

to populate a sparse process relation.

For example, suppose a relation X contains only a single pair (P, Q). If one

believes that X expresses some sort of compliance relationship, and there are other

processes R fw P, then one may suppose that these processes also share that same

compliance notion with Q. One might wish to add the pairs (R, Q) to X. In fact,

(R, Q) ∈ fwX. Furthermore, since P fw P, (P, Q) ∈ fwX as well. Hence fwX has the

effect of adding pairs to X where any R fw P replaces P. Though R is not itself X-

compliant to Q, one can say R is X-compliant “within a fw,” or “up to fw.” Similarly,

one can continue to augment the relationship with pairs created by replacing Q with any

S such that Q fw S. The resulting relation, fwX fw, in effect “builds up” X by the

transitive closure of fw. If fwXfw forms a weak conformation, then X is the seed of that

weak conformation, and X is called a weak conformation up to fw.

Weak conformations up to fw are useful because they are contained within fw,

and this fact makes an important proof tool. Occasionally, it is easier to show that two

processes share a weak conformation up to fw instead of fw directly. Nevertheless fw

follows immediately.

Definition 4-2. Relation W is a weak conformation up to weak conformance if

∀α ∈ A(S) ∪ {τ}, ∀β ∈ A (I) ∪ {τ}, ∀γ ∈ A (S), I W S implies the following four laws:

LSIT'. Whenever S→α S' then ∃t ∈ (A(S) ∪ rExt (I,S))* such that

 (1) I ⇒t I’

 (2) t½A(S) = α̂

 (3) I' fwW fw S'

4-4

LSO'. Whenever X is a maxoctset of S, ∃s ∈ X and ∃t ∈ A (I)+ such that

 (1) S⇒s S'

 (2) I ⇒t I'

 (3) t½ A (S) = s

 (4) I' fwW fw S'

LII'. Whenever I→γ I' then

 (1) S ⇒
γ

S'

 (2) I' fwW fw S'

LIOT'. Whenever I →β I' and δ ≡ β½ A (S) then

 (1) S δ⇒ S'

 (2) I' fwW fw S'

These “up to” laws differ from the weak conformation laws only in the

relationship of the derivative states—that relationship being ‘fwW fw’ instead of ‘W ’.

The “primed” designation highlights this similarity, which is exploited to quickly execute

proofs.

Proposition 4-5. All weak conformations are weak conformations up to fw.

Proof: Each “unprimed” law N ∈ {LSIT, LSO, LII, LIOT} has a conclusion I' W S'.

Rewrite it as I' Idp W Idp S'. Since Idp ⊆ fw one derives I' fwW fw S' thus establishing

the corresponding law N'.

Proposition 4-6. If W is a weak conformation up to fw then fwWfw is a weak

conformation under the CS assumption.

4-5

Proof: Show that I fwWfw S satisfies the weak conformation laws. For each

“unprimed” law N ∈ {LSIT, LSO, LII, LIOT}:

• Write I fw P W Q fw S.

• Apply Law N to each fw and Law N' to W.

• The resulting derivative relationships are: I' fw P', P' fwWfw Q', and Q' fw S'.

• By composition I' fwfwWfw fw S', which reduces to I' fwW fw S'.

• Hence fwWfw satisfies Law N.

Proposition 4-7. If W is a weak conformation up to fw then W ⊆ fw under the CS

assumption.

Proof: W = Idp W Idp ⊆ fwW fw ⊆ fw

 Proposition 4-7 is the result that will serve as a useful proof tool. To show that

I fw S it suffices to show that a weak conformation up to fw exists between I and S.

Proposition 4-8. All bisimulations (including ≈ and ~) are weak conformations (and by

Proposition 4-5, they are weak conformations up to fw also).

Proof: There are no extraneous actions between bisimilar processes; and the back and

forth laws of bisimulation are stricter than the weak conformation laws. Thus the proof

of each weak conformation law is straightforward.

4.3 Congruent Weak Conformance

 Milner found that ≈ is not a congruence over the unmodified CCS, so he

constructed the slightly finer = to serve as a congruence. Similarly, fw is not a

4-6

congruence over CCS, and a slightly finer conformation is needed. Thus a congruent

weak conformance (to be symbolized as ‘fw’) is desired.

 One restriction has already been imposed—the CS assumption—to assure the

relational composition of weak conformations. The CS assumption disposes of initial

instability, a difficulty faced by ≈ as well.

 An additional difficulty stems from the possibility of extraneous actions being

“promoted” to specified actions during the construction of compound agents. This is not

an issue for equivalences, where there are no extraneous actions. To achieve a congruent

weak conformance over CCS constructions, one must prevent extraneous actions from

being promoted during the course of the construction. Extraneous actions prior to the

construction must remain extraneous after the construction, unless they disappear entirely

from the sort of the composite implementation. Suppose one has S
def
= b.NIL and

I
def
= b.c.NIL + d.NIL. A weak conformation exists between specification S and

implementation I. The CS assumption holds, and c and d are allowable extraneous

actions. Clearly, however, c.I does not conform to c.S nor does d.I conform to d.S. The

Prefix operation has “promoted” extraneous actions c and d[RWB1].

 All the CCS constructors (except Restriction) can create problems by unwittingly

promoting extraneous actions to specified actions. Therefore, to obtain a congruent weak

conformance relation, CCS constructions need to be constrained to disallow such

promotion. This prohibition is not an unworkable limitations. Rather, it is consistent

with good design sense. Indeed, the behavior of an extraneous pin is, by its very nature,

a “don’t care” issue. To suddenly levy requirements on the “don’t care” pin at a higher

level of abstraction represents a questionable change in designer intent.

Definition 4-3. Let (,~I S~) be an indexed system of agents such that Ii Wi Si for weak

conformation Wi. Let }~{XE be a CCS expression on multiple agents denoted by indexed

4-7

variable .~X }~{XE can employ all constructors except Restriction and Relabeling. }~{XE

meets the Preservation of Extraneous Action (PEA) condition if:

(1) Extr(Ii, Si) ⊆ Extr })~{},~{(SEIE for all indices i.

(2) rtxE (Ii, Si) ⊆ rtxE })~{},~{(SEIE for all i.

PEA guarantees that all extraneous actions remain extraneous after the construction

}~{XE so that unreachable paths are not inadvertently activated.

In addition to PEA, one needs assurance that no coactions are introduced that can

synchronize with extraneous actions. Such synchronization can activate unreachable

paths via the silent action τ. This necessitates yet another design constraint:

Definition 4-4. Under the same assumptions as Definition 4-3, if, for all Parallel

Compositions })~{|}~{(XEXE 21 within }~{XE :

(1) ∀a ∈ A(E1{ S~ }), a ∉ rtxE (E2{ I~ },E2{ S~ })

(2) ∀ a ∈ A (E1{ S~ }), a ∉ Extr(E2{ I~ },E2{ S~ })

(3) ∀a ∈ A(E2{ S~ }), α ∉ rtxE (E1{ I~ },E1{ S~ })

(4) ∀ a ∈ A (E2{ S~ }), a ∉ Extr(E1{ I~ },E1{ S~ })

then }~{XE meets the Extraneous Synchronization Prohibition (ESP) with respect to

(,~I S~).

 Given the design constraints (CS, PEA and ESP) introduced thus far, one now

proceeds to prove that each combinator preserves fw, given the constraints. The

propositions are stated as generally as possible, invoking only the necessary condition(s),

and applying to general weak conformations when possible, and to fw alone only when

necessary.

4-8

Proposition 4-9. A weak conformation W is preserved by the Prefix combinator under

the PEA restriction.

Proof: Given I W S, show that ∀α ∈ Act : α.I W α.S. Observe that α is the only

immediate action that α.I and α.S can perform, and PEA assures that

α ∉ (rtxE (I,S) ∪ Extr(I,S)). Thus α lies within both L(I) and L(S), or neither.

• LSIT. α ∈ A(S)∪{τ}. α.S→α S , α.I t⇒ I using t = α̂ . The target states are I W S.

• LII and LIOT. Similar.

• LSO. α ∈ A (S). Let X be a maxoctset of S.

Y ≡ {α.s : s ∈ X} is a maxoctset of α.S.

By LSO, ∃r ∈ A (I)+ such that r implements some x ∈ X where

I r⇒ I', S x⇒ S', r½ A (S) = x, I' W S'.

Now α.I α→ r⇒ I' and α.S α→ x⇒ S' with α.x ∈ Y.

If α ∉ r then r½ A (α.S) = r½ A (S) = x.

If α ∈ r then by PEO a ∉ rtxE (I,S) and ∴α ∈ A (S) = A (α.S). Again,

r½ A (S) = x.

Since r½ A (S) = x independent of whether α ∈ r then α.r½ A (α.S) = α.x.

Now α.x ∈ Y and ∴ α.r is an implementation of α.x ∈ Y .

 To show that Summation or Choice preserves a weak conformation, one must

know how the maxoctsets of the Summation are formed from the maxoctsets of the

components. Hence the next lemma:

Lemma 4-10. Let M be a maxoctset of R = S + T. Let M = MS ∪ MT where

MS = {s ∈ M : S s⇒ } and MT = {s ∈ M : T s⇒ }. MS and MT are maxoctsets of S and T,

respectively.

4-9

Proof: By contradiction.

• ∀x, y ∈ M : R⇒x ≈ R', R⇒y ≈ R' and x =conf y since M is a maxoctset.

• ∀x, y ∈ MS : R⇒x ≈ R', R⇒y ≈ R' and x =conf y since MS ⊆ M.

• Since x, y belong to S, S⇒x ≈ R', S⇒y ≈ R'

• Thus MS is at least an octset of S. Similarly, MT is an octset of T.

• Trial Hypothesis. Assume one is not a maxoctset. W.l.o.g. let it be MS .

• Then S must have some maxoctset MS' with respect to some s.s' where s' ≠ ε.

• ∀x' ∈ MS' : let x' = y.z, where y ∈ MS and z =conf s'.

• Let S⇒y S' ⇒z S".

• ∀x ∈ M : S + T ⇒x ≈ R' .

• Since y ∈ M, one must have R' ≈ S'.

• Since S' ⇒z S" then R' ⇒z R" ≈ S".

• ∴ R = S + T has an octset with respect to x.z and M cannot be a maxoctset of R.

⇒⇐

Proposition 4-11. A weak conformation W is preserved by Summation under the PEA

assumption.

Proof: Given I W S and J W T, show that I + J W S + T, assuming w.l.o.g. that any

transition out of S + T has S as its source.

• LSIT. S + Τ α→ S' for α ∈ A ∪ {τ}.

By LSIT, I t⇒ I' W S'. Yet if I t⇒ I' then I + J t⇒ I'.

To show that t½A(S + T) = α̂ , assume otherwise:

∃ a ∈ t such that a ∈ A (T) while a ∉ A (S).

This violates PEA.

 ⇒⇐

4-10

• LII and LIOT. Similar.

• LSO. Apply Lemma 4-10. Any maxoctset of S + T is of the form M = MS ∪ MT.

MS and MT are maxoctsets of S and T, respectively.

MS and MT each must contain at least one implemented string.

∴M must contain at least two implemented strings.

If s ∈ MS is implemented by I, then I t⇒ I' W S'.

∴I + J t⇒ I' for S + T s⇒ S' thus I + J implements s.

The argument for s ∈ MT is similar.

 To show that Parallel Composition preserves weak conformation, one must know

how maxoctsets of a Parallel Composition are formed from the maxoctsets of the

components. Hence Lemma 4-12 is given to aid Proposition 4-13.

Lemma 4-12. Let Y1…Yn be all the maxoctsets of S and let Z1…Zm be the all the

maxoctsets of T. Let s1…sn be defining sequences for Y1…Yn, respectively. Similarly, let

t1…tm be defining sequences for Z1…Zm. The maxoctsets of (S | T) are precisely the nm

octsets with respect to si.tj, for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Proof: See Appendix B.

Proposition 4-13. A weak conformation W is preserved by Parallel Composition under

the PEA and ESP conditions.

Proof: See Appendix B.

Next, consider Restriction and, in particular, Restriction of inputs. One can safely

Restrict specified inputs, since their removal does not affect the ability of the

4-11

implementation to obey LSIT and LII with respect to the remaining inputs. Extraneous

inputs can also be safely Restricted. Naturally, one can also Restrict any input symbols

external to both the specification and implementation, since such Restriction does not

modify the base agents at all. In conclusion: there is no limitation on Restricting inputs.

Now consider the Restriction of outputs. First note that specified outputs can be

safely Restricted. In the case of the LSO law, Restricting a single specified output action

will remove from consideration every maxoctset in which it participates, since that action

must appear in every string of that maxoctset. The Restriction of outputs external to both

sorts is moot, as was the case for inputs. However, one must take care when Restricting

extraneous outputs, for they can appear within implementing strings, and their

Restriction will block these strings. The only extraneous output actions that can be safely

be Restricted are those whose only occurrences lie along unreachable paths. This special

type of extraneous output is called an idle output action:

Definition 4-5. a ∈ rtxE (I,S) is an idle output action of I W S if for every derivative I'

of I, whenever I' →a , ∃/ S' a derivative of S such that I' W S'.

Definition 4-6. eldI (I W S) ≡ { a : a is an idle output action of I W S. }.

 One can now define the conditions required to achieve congruence for weak

conformations under Restriction.

Definition 4-7. The label set L ∈ L meets the Congruent Output Restriction (COR)

condition with respect to a weak conformation I W S if ∀a ∈ L, aa, ∉ rtxE (I,S) −

eldI (I W S).

4-12

The COR condition forbids the Restriction of extraneous outputs, unless they are

idle. Thus three kinds of outputs may be safely restricted: (1) specified outputs, (2) idle

outputs and (3) outputs external to both A (I) and A (S), whose restriction is moot.

Proposition 4-14. Restriction preserves a weak conformation when the COR condition

is met.

Proof: See Appendix B.

 Finally, consider Relabeling. This operator can cause congruence failure if the

Relabeling function assigns the same name to previously distinct symbols. Therefore,

one must require that the Relabeling function be one-to-one, in other words, an injection.

Also, those signals not explicitly renamed are implicitly renamed to their “old” names,

which of course must not collide with any “new” names, so the function must in fact be a

bijection.

Definition 4-8. A Relabeling function meets the bijective relabeling (BR) condition if it

is a bijection.

Proposition 4-15. Relabeling preserves weak conformation under the BR condition.

Proof: Similar to Proposition 4-14.

 It remains to show that congruent weak conformance is preserved under recursive

definition. This cannot be shown for general weak conformations, or even for fw. It can

however be demonstrated for fw when the CS, PEA, ESP, COR and BR conditions apply.

Proposition 4-16. If Ã def
= P~ then Ã fw P~ .

4-13

Proof: A~ def
= P~ implies A~ ~ P~ (Milner, 1989:Propostion 12.11). Since ~ is a weak

conformation then ~ ⊆ fw. A~ fw P~ follows.

Proposition 4-16 allows one to conduct the proof of Proposition 4-17 with respect

to a single variable. It is understood that Proposition 4-17 will be easily extended to the

multivariate case. The proof of Proposition 4-17 is by transition induction (Milner,

1989:58, 100), a form of coinduction (Wegner and Goldin, 1999).

Proposition 4-17. Let E fw F where expressions E and F contain at most the single

variable X. Under the CS, PEA, ESP, COR and BR conditions, whenever I def
= E{I/X} and

S def
= F{S/X} then I fw S.

Proof: See Appendix B.

 Though fw itself is not a congruence, the previous propositions show that fw is

preserved by each combinator, if the five design restrictions apply. Hence, a weak

conformation exits, slightly finer than fw, which is a congruence. This desired relation is

called congruent weak conformance fw.

Definition 4-8. Let I fw S. Furthermore assume that the CS, PEA, ESP, COR and BR

conditions apply. Then I and S enjoy the congruent weak conformance relation, written

I fw S.

Proposition 4-18. fw is a congruence.

Proof: Propositions 4-9, 4-11,4-13, 4-14, 4-15, 4-17.

4-14

 Proposition 4-18 is a major result, establishing fw as a correct model for safe

substitution. It now remains to justify the earlier conjecture that fw is a partial order.

Now fw is already known to be a partial order under the CS assumption. As a refinement

of weak conformance that includes CS among other conditions, it follows that fw is a

partial order.

Proposition 4-19. fw is a partial order.

Proof: Proposition 4-4.

4.4 Summary

In the last chapter a set of properties called weak conformations were established

under four laws that embody intuitive notions of hardware compliance. In this chapter,

the largest of the weak conformations was designated weak conformance and given the

symbol fw. To serve as a model for safe substitution of hardware, fw had to be shown to

be a congruence, i.e., that it be preserved by all CCS operators. To achieve this goal, it

was necessary to limit CCS constructions by the five conditions: CS, PEA, ESP, COR

and BR. Happily, these conditions are consistent good design intent. Weak

conformance, when refined by these five conditions, yields the property of congruent

weak conformance fw.

 Congruent weak conformance fw was developed and proven to be a congruent

partial order, or precongruence. This precongruence derives maximal flexibility and

embodies all weaknesses in input, output, and no-connect signals via the four transitional

laws of weak conformation. Five construction restrictions assure that fw is a fully

replaceable model of conformance to specification. This is the best formal relation

known for verifying implementations against specifications.

4-15

 In the next chapter, a hypothetical VHDL-to-CCS translator is validated using

congruent weak conformance.

5-1

V. VHDL-to-CCS Translation

5.1 Introduction

In the previous chapter, the property of congruent weak conformance fw was

proven to be a precongruence, and therefore a correct model of safe substitution. The

present chapter applies fw to a practical problem: the translation of VHDL code to CCS.

The two languages have different semantics, so the translation problem is challenging.

 VHDL has informal simulation semantics, which are defined in the VHDL

Language Reference Manual (IEEE, 1992). The semantics of CCS are given by its

transition rules (Milner, 1989: 45, 57). Fundamental differences between VHDL and

CCS semantics are: (1) simulation versus bisimulation semantics, (2) quantitative versus

indefinite time, (3) complete hiding of internal action versus abstraction of hidden action

to τ, (4) broadcast versus handshake communication, (5) level-signal versus transitional

semantics and (6) simultaneity versus interleaving concurrency.

5.1.1 Simulation and Bisimulation Semantics. The VHDL simulation cycle is a

three part repeating sequence that (1) responds to current events, (2) posts future events

as transactions1 onto the drivers (event lists) that correspond to each signal, and then (3)

advances the simulation clock to the next scheduled transaction (Lipsett and others, 1989:

12-13). The Language Reference Manual defines the meaning of each VHDL construct

by how an event-based simulator interprets and executes it. Since the simulation cycle is

so central to VHDL semantics, formal models of VHDL code often include a formal

model of a simulation engine (Fujita and others, 1983; 1983a; Read and Edwards, 1994;

van Tassel, 1994).

CCS, on the other hand, supports bisimulation semantics in which processes are

differentiated by the actions they can potentially perform.

1 An event is a signal transition that has actually been accomplished by the simulator. Transactions, on the
other hand, represent potential future events. The simulator removes transactions from the signal drivers
and creates events.

5-2

5.1.2 Time. For VHDL, events are separated in quantitative time by a simulation

clock, and the duration between events can be precisely calculated. An infinitesimal

quantity of time called delta is also supported (Bhasker, 1999: 74). Delta is tied to the

simulation cycle, and corresponds to the minimum advance of the simulation clock.

When a transaction is first posted to a signal driver, and no delay is specified, the

simulation cycle must nevertheless complete a repetition in order to react to it and

produce an event. Each advance of one delta corresponds to one repetition of the

simulation cycle when the simulation clock itself does not advance. Thus, events can be

separated by one or more deltas while occurring at the same simulation time. Deltas

enforce a strict ordering among otherwise simultaneous events or transactions. A

transaction scheduled two deltas after the present is considered to be strictly later than

one scheduled one delta later. However, no number of deltas can exceed the smallest

finite delay time.

Although CCS can express the ordering of actions, duration between actions is

indeterminate since time is not quantified. Pending actions simply occur at some

indefinite future time.

5.1.3 Abstraction. When hierarchical models are built in VHDL, internal signals

between components disappear entirely from the port list of the composite. Thenceforth,

such internal actions can neither be manipulated nor observed by the environment.

For CCS, internal action, though hidden, remains expressed at the top level as τ.

A τ cannot be manipulated or directly observed, but it does have an effect on observed

behavior due to its ability to preempt potential actions.

5.1.4 Communication. VHDL allows broadcast communications. Several wires

can connect to a single node. Thus, multiple processes or components can read the value

of a single signal. That signal need not be explicitly split to service each process or

component individually. The ability of a single output signal to drive multiple processes

5-3

is commonly is called fanout. Similarly, two or more processes can drive a single node

in VHDL if the designer provides a resolution function (Bhasker, 1999: 111).

CCS, on the other hand, uses handshake communication. Such communication is

strictly one-to-one and occurs when one agent offers and action and another the

corresponding coaction. If two receivers attempt to handshake on the same action, one of

them fails to communicate. Thus, a lone signal cannot directly drive multiple devices.

Multiple fanout must be modeled indirectly by providing a FORK agent to explicitly

provide multiple copies of an action to communicate with all offered coactions. Yet the

FORK still fails to accurately model the broadcast communication of VHDL. For

VHDL, a single event along a multiply connected node is simultaneous along all

branches. For the CCS FORK, occurrences along each branch must be ordered, and the

time separation between them is undetermined.

By requiring FORKs, pure CCS supports the delay-insensitive hazard model of

asynchronous design (Seitz, 1980: 246). The many branches of a wire node are modeled

as operating independently. VHDL communication, on the other hand, matches the

speed-independent hazard model, where the delays along the various branches of a node

are presumed so close as to be negligible (Seitz 1980: 250). A single signal passes

through the various branches at essentially the same time.

A modified version of CCS adds operators to achieve the ability to model

broadcast communication (Stevens, 1994: 180-5). In particular, this version adds a

conjunction operator |c to model broadcast communication among parallel agents. The

conjunction operator is similar to the || operator of CSP (Hoare, 1985).

The delay-insensitive model is very strict. The designs that can be produced

under its regimen are very few. Thus, the broadcast version of CCS thus makes a more

practical translation target. In this chapter, the consequences of translation to both

versions of CCS are explored.

5-4

5.1.5 Level Signals and Transitional Semantics. VHDL assigns explicit level

values to its signals and does not simply direct them to “change.” Most assignment

statements are explicit in this, such as “X <= 1”.

In contrast, CCS models transitions without specifying what the level values are.

Thus when FIFOoutinFIFO
def

..= one can surmise that in and out start at ‘0’ and after

one iteration they transition to ‘1’, back to ‘0’ after two iterations, and so forth. An

equally valid interpretation starts them at opposite values ‘0’ and ‘1’, and they forever

transition in opposite directions. In CCS, level values are simply undefined since they

are irrelevant to the transitional semantics.

Now VHDL code can take on the appearance of transitional instead of level-

signal semantics. Assignment statements such as “X <= not X” are quite legal.

Nevertheless the resulting transaction must be to a level value. Thus, the present value of

X must be noted, and an assignment to the opposite value posted to the driver. One

cannot merely schedule X to “switch value.” Even though VHDL code can appear

transitional, the underlying simulation semantics does not support it.

Interestingly enough, a VHDL transaction can be ineffective in creating a real

transition. For example, if a transaction is scheduled to drive X to ‘1’, yet, due to

previous events, X is already at ‘1’, then no real transition occurs.

5.1.6 Simultaneity versus Concurrency. VHDL allows simultaneous events, since

transactions can bear the same time stamp. Microscopic ordering by delta delays is not

even required. Transactions can indeed be scheduled to occur on the same delta cycle.

CCS however, engages in interleaving concurrency. CCS does not recognize

absolute simultaneity, taking the view that a fine enough division of time will unveil an

ordering among seemingly simultaneous actions. CCS actions can, however, be

considered concurrent. Concurrent actions are not necessarily simultaneous. Rather,

their relative order is simply indeterminate. Therefore, one writes x.y + y.x or, more

compactly, (x|y) to indicate this uncertainty.

5-5

5.2 Translation Rationale

Due to semantic mismatches such as those given in section 5.1, translation from

one semantic system to another, by its very nature, cannot preserve all meaning. Some

information must necessarily be lost, whether it be explicit simulation time, the ability to

model simultaneity, the ability to discriminate based on bisimulation, etc.

If information is lost, then why perform such a translation at all? One reason is

this: the designer may wish to reuse off-the-shelf component models, and they may not

all be available in a single language. Secondly, the designer may wish to exploit the

verifications that another system can offer. These verifications may be more accurate,

more efficient, or use a stricter semantics than is possible in the source language.

Yet if transformed models are not semantically equivalent to their originals, how

can post-transformational verifications be deemed valid? Such verifications are valid if

the translation process preserves an appropriate property. Since the ultimate goal of a

designer is to “substitute” his design for a specification, then safe substitution (or

congruence) is the property that must be preserved by the translation. As the loosest

known congruence modeling device compliance, fw is thus the property that must be

preserved by inter-semantic translation.

This chapter shows how fw can be used to validate such transformations. First,

some very basic agents are identified. The agents are detailed enough to represent the

salient features of the CCS and VHDL semantics, and will be used to illustrate the

translation process. Both VHDL and CCS models will be proposed for these agents. By

comparing these models, the characteristics of a VHDL-to-CCS translator will be

derived. The translation rules discovered during the course of this exercise will then be

enumerated. These transformations will then be shown to preserve fw.

The VHDL-to-CCS translator discussed in this chapter is not an implemented

translator. The purpose of this chapter is to infer the general characteristics of such a

5-6

translator. This serves two purposes: (1) to demonstrate the feasibility of such a

translator and (2) to show that such a translator with these characteristics preserves fw.

5.3 Translation Models

Consider three buffer specifications F, G, and H. Each is a one-token buffer. F is

the same as the familiar one-place FIFO (Equation 2-3). G and H are contrived examples

created to provide instances of extraneous input and output. G is like F except that G

produces duplicate outputs concurrently, rather than a single output. Hence G has a

maxoctset { oppo .,. }. H has two input lines as well as two output lines. One input

requests F-like behavior, i.e., one output. The other input requests G’s behavior, i.e., two

outputs. Unlike G however, H produces a specific interleaving of the dual outputs, not

both alternatives. Thus H is an implementation of G that takes a single path through the

maxoctset in accordance with LSO.

The models for these buffers appear in this section in three distinct groups:

(1) reference models, (2) initial models and (3) target models.

The reference models appear first. These models merely document the behavior

under discussion. For brevity, the reference models are given in CCS. However they are

not the subject of translation, since the intent is to study VHDL-to-CCS translation, and

not the reverse.

 The initial models then are VHDL models inspired by, but not necessarily

faithful to, the reference models. Semantic differences will necessarily limit the fidelity

of the initial models to the reference models.

The target models are CCS models derived from the initial models by the

application of translation rules. Again, semantic differences will limit the fidelity of the

target models to the initial models. However, whereas the initial models derive from the

reference models by inspiration, the target models derive from the initial models by a

5-7

disciplined approach. One should not expect the translation process to recover the

reference models.

Here are the basic reference models for agents F, G and H:

 FoiF
def

..= (5-1)

 GpoiG
def

).|.(= (5-2)

HojHpoiH
def

..... += (5-3)

 One can also make two-token buffers using the same protocol. Here are two-

token reference models FF and GG that are analogous to F and G respectively:

 FF1iFF
def

.=

FF1oiFFoFF1
def

... += (5-4)

 GG1iGG
def

.=

1).|.().|.(1 GGpoiGGpojGG
def

+= (5-5)

 A two-token buffer HH corresponding to H could also be defined. Such a buffer

would need to differentiate i and j and remember their arrival sequence to generate o and

o . p appropriately. That model is relatively complex and does not contribute to the

present discussion.

 One can also build the two-token buffers structurally from the one-token buffers

using Parallel Composition. Call these composites FPF, GPG.2

2 Think of ‘P’ as representing “parallel.”

5-8

 mimFomFFPF
def

\])/[]|/[(= (5-6)

 mimGpmoxGGPG
def

\])/[]|/,/[(= (5-7)

 Note that the seven reference models F, G, H, GG, FF, FPF and GPG can be

assembled into a structure that is ordered upon the congruent weak conformance

relationship, where the arrows point from implementation to specification. First of all,

one has G fw F because G’s output p is extraneous to F. For the same reason,

GG fw FF. Now H fw G because input j is extraneous to G and because the lone

sequence po. is a sufficient implementation the maxoctset of G’s maxoctset { po. ,

op. }. Furthermore, FF fw F and GG fw G because the additional states of FF and GG

that accept a second token are unreachable by F and G. Also GPG fw GG. Two of the

models are in fact observationally congruent: FPF = FF. For them, the fw relationship is

bi-directional.

By the transitivity of fw one can follow the arrows and infer all pairs that share

the fw relationship. Thus all the agents are seen to conform to F and thus F is a greatest

lower bound or least specification. However the diagram is not a lattice and there is no

greatest implementation. In the absence of H, however, GPG would fulfill that role.

 GPG → GG → FF = FPF

 ↓ ↓

H → G → F

Figure 5-1. Conformance Structure for the Reference Models

 These seven reference models now inspire the initial models. The initial models

are VHDL state machines. One starts with the entity declaration for F:

5-9

 entity F is
 (I : in bit; O : out bit)
 end F;

For simplicity, all signals are of type bit. These signals will become lower case action

labels after translation, with those of mode out receiving an overbar or leading

apostrophe. However, an unaccompanied entity declaration is incomplete and gives only

the sort of an agent. One needs an entity-architecture-configuration triple to extract a full

agent definition. Such a triple is called a VHDL design unit.

-- Initial Model for One-token Buffer F

entity F is

 (I : in bit; O : out bit)
 end F;

 architecture BEHAVIOR of F is
 begin
 process(I)
 begin
 O <= not O;
 end process;
 end BEHAVIOR;

 configuration CFG_F of F is
 for BEHAVIOR
 end for;
 end CFG_F;

The configuration body tells the VHDL analyzer what design units to use for the

subcomponents of an architecture. However, purely behavioral models such as this one

have no subcomponents, and their configuration is trivial. In such cases the designer is

not required to supply a configuration—the VHDL analyzer will create a default

configuration. Default configurations will be assumed for the remaining behavioral

models.

5-10

Like most CCS agents, VHDL processes are reactive. The behavior in

process (I) above accepts an input I, generates an output O, then evolves to repeat this

cycle forever.

Since the output transition occurs strictly later (by one delta) than the input, the

behavior of F readily translates to a CCS target model:

F
def
= i. o .F (5-8)

A pattern can be discerned already. A signal on a process sensitivity list, which

must be an input, translates into the “leadoff” action of a sequential CCS term.

Assignments within the body of a process create output actions that are appended to that

term. The end process statement then denotes the point at which the behavior evolves

back to the root agent.

 Now consider the initial model for G:

-- Initial Model for One-token Buffer G

entity G is
 (I : in bit; O,P : out bit)

 end G;

 architecture BEHAVIOR of G is
 begin
 process(I)
 begin
 O <= not O;
 P <= not P;
 end process;
 end BEHAVIOR;

 The transactions on O and P are scheduled at the same simulation time, one delta

after the present. In fact, they are simultaneous. Simultaneity cannot be expressed in

CCS so concurrency will have to suffice. Thus, the process unfolds into the target model

5-11

G
def
= i.(o | p).G (5-9)

The translator must detect when VHDL transactions are scheduled at the same time, and

translate them as a concurrent (o | p) and not a sequential ..po

The buffer G forms an excellent example of how the differing semantics result in

imperfect translation. The concurrency of the CCS model says only that the order of

actions is indeterminate. The CCS model is thus looser than the VHDL model, which

specifies that the events are simultaneous.

 Here is the initial model for H.

-- Initial Model for One-token Buffer H

 entity H is
 (I,J: in bit; O,P : out bit)
 end H;

 architecture BEHAVIOR of H is
 begin
 process(I,J)
 begin
 if event'I then
 O <= not O;
 P <= not P after delta;
 else if event'J then
 O <= not O;
 end if;
 end process;
 end BEHAVIOR;

 Here the assignment to P is delayed an additional delta to insure it occurs strictly

later than the assignment to O. Thus the O transaction is scheduled one delta after the

present, and the P transaction two deltas later.

The modeling of the inputs of H exhibits another difficulty in matching the

semantics of CCS and VHDL. In the CCS reference model the inputs block each other.

5-12

The first input to arrive forces a commitment to one branch of behavior, and the other

input cannot be received. If the two inputs arrive simultaneously then one input is

arbitrarily accepted and the other blocked. In VHDL, when events occur on both I and J

at the same time, both can be accepted, and each can then trigger output transactions. In

fact, one course of action can be denoted for I, a second course of action for J, and a third

course of action (not simply a combination of the first two) can be denoted when I and J

arrive together. However, the idea that I and J arriving together can trigger behavior

completely different is not natural for hardware, especially for asynchronous hardware.

Though unlikely to occur, such behavior is nonetheless expressible in VHDL, though not

in CCS. A CCS tool may be able to detect a blocked input and raise an exception, but the

language itself does not allow simultaneous activation of both branches. Thus, here is a

rare feature that cannot be translated. In the initial (VHDL) code for H, the designer has

avoided such difficulty by favoring J over I, allowing only one branch of behavior even if

both inputs arrive. This still departs from the intent of the CCS reference model, where i

is equally likely to be favored over j.

 The failure to capture in VHDL all the nuances of the CCS reference models is

not surprising, given the semantic differences. For the present study however, translation

in this direction is not an issue. The question is this: given a VHDL model, can a CCS

model be constructed that preserves enough information such that meaningful

verifications can be performed? The focus now is how to extract CCS behavior from

the initial VHDL models given thus far.

The ability to extract state machine behavior from a VHDL process is critical to

the translation. Once a process is recast as a state machine, it can be directly mapped to a

CCS agent. The state machine extraction algorithm follows:

(1) Start at the root state.

(2) Consider all possible input events, as well as the possibility of no input.

5-13

(3) Update the output drivers with any new transactions.

(4) Advance the clock to the next transaction.

(5) Conduct the appropriate output events. Simultaneous outputs are translated as

concurrent rather than simultaneous.

(6) Remove the transpired transactions from the drivers.

(7) Characterize the new state by the residual transactions on the drivers.

(8) Return to (2) and repeat until the entire behavior is expanded.

The algorithm mimics the VHDL simulation cycle, collecting the sequence of

states and events as it does so. By so mimicking the simulation cycle, it faithfully

captures the relative order of events intended by the VHDL model—except that

simultaneous events are translated as merely concurrent. Since existing VHDL

simulators can manage the states, events and transactions of the simulation cycle, it is

clearly feasible to assume the same capability can be incorporated into a VHDL-to-CCS

translator.

The algorithm characterizes states by the content of the signal drivers. The root

state is quiescent, having no transactions scheduled. Applied to the VHDL model of the

process within H, the results of this algorithm appear in the following Tables:

Table 5-1. Expansion of H0

state H0
O(0)
P(0)

input i j
update drivers O(0,1@1∆)

P(0,1@2∆)
O(0,1@1∆)

P(0)
advance clock ∆ ∆

output o o
new state H1

O(1)
P(0,1@1∆)

H0
O(1)
P(0)

5-14

Starting at the root state, here called H0, the outputs are given arbitrary starting

values of ‘0’. Though the transitional semantics of CCS does not assign level values, the

algorithm must track level values to properly maintain the drivers of O and P. Two

branches of input behavior exit state H, the left-hand branch for the arrival of i and the

right-hand branch for j. The possibility of no input need not be considered for a

quiescent state such as H. The arrival of i and j simultaneously is also not considered.

Since CCS cannot model this simultaneous arrival of inputs, one accepts this as a

limitation of the translator.

For each behavioral branch, the drivers are updated and expressed in the

following format:

<name>(<current value>, <transaction>, <transaction>, …)

where each transaction is of the form

<new value>@<time>

 After the drivers are updated the clock then advances to the next scheduled

transaction. In both branches this increment is one delta, and the resulting event is on O

in both cases, so an output o occurs. The residual drivers then characterize the new

states. The right-hand branch has no transactions remaining, and it is recognized to be

the root state H0. The fact that O now has current value of ‘1’ instead of ‘0’ is

immaterial to the CCS transitional semantics, so this branch of behavior need not be

further expanded.3 For the left-hand branch, the pending transaction on P is brought one

delta nearer in time, and the resulting state called H1 is characterized by the one

transaction on P scheduled for the next delta.

3 This is only true when all the assignments are in the pseudo-transitional style. In general the translator
will need to expand behavior until both the level values as well as the drivers match some previous state.

5-15

The CCS behavior of state H0 can now be derived directly from this table, where

the actions in parallel columns are connected by Choice, and the actions flowing down a

single column are connected sequentially:

H0
def
= i. o .H1 + j. o .H0 (5-10)

State H1 merits further expansion:

Table 5-2. Expansion of H1

state H1
O(1)

P(0,1@1∆)

input i j none
update drivers O(1,0@1∆)

P(0,1@1∆,1@2∆)
O(1,0@1∆)
P(0,1@1∆)

O(1)
P(0,1@1∆)

advance time ∆ ∆ ∆
output (o | p) (o | p) p

new state H2
O(0)

P(1,1@1∆)

H0
O(0)
P(1)

H0
O(1)
P(1)

State H1 is not quiescent. Having one pending transaction on P, the possibility of

an event on P ahead of further inputs must also be considered. Hence there are three

branches to consider. For the left-hand branch, transactions to both O and P are posted.

The updated driver for P has two transactions to the same value, but at different times (1∆

and 2∆). According to the VHDL semantics for inertial signals, when two transactions

on a signal are to the same level value, both remain on the driver (Bhasker, 1999:98).

The second transaction may be ineffective in producing a real signal change in P. Such

transactions must be maintained, however, in case an intervening event changes the value

of P. When the clock advances one delta, transactions for both O and P are encountered,

and the simultaneous events are translated as the concurrent output (o | p). One residual

5-16

transaction remains on P’s driver, and the new state is called H2. For the center branch,

(o | p) is again generated, and the resulting state matches H0 under transitional

semantics. The right hand branch, receiving no inputs by the time the clock advances,

simply emits the p and arrives at the quiescent state H. The CCS model for H1 is thus

H1
def
= i.(o | p).H2 + j.(o | p).H0 + p .H0 (5-11)

H2 is now expanded:

Table 5-3. Expansion of H2

state H2
O(0)

P(1,1@1∆)

input i j none
update drivers O(0,1@1∆)

P(1,1@1∆,0@2∆)
O(0,1@1∆)
P(1,1@1∆)

O(0)
P(1,1@1∆)

advance time ∆ ∆ ∆
output o o none

new state H1
O(1)

P(1,0@1∆)

H0
O(1)
P(1)

H0
O(1)
 P(1)

The analysis for H2 is straightforward in the center branch. The left-hand branch,

however, has a curiosity. Here again P has transactions posted at one delta and two

deltas. This time the transactions conflict. When the assignment is to a different level

value, the first transaction is deleted, per the semantics of inertial signals (Bhasker,

1999:97). Hence, when o is emitted, the center branch arrives at a state with one

transaction pending on P. This state is recognized to be identical to H1 under transitional

semantics. The right hand branch also shows a curiosity. When no inputs are received,

the transaction on P transpires, but the event driving P to ‘1’ is ineffective since P is

5-17

already at ‘1’. No actual transition occurs, and H2 decays to H without receipt of input

or generation of output.

H2
def
= i. o .H1 + j. o .H0 + H0 (5-12)

Once the process rooted at H0 has been completely expanded the algorithm

terminates. Since the initial model H had but one process, the target model H is

identified with this one process: H
def
= H0.

In summary, one now has is a mechanical means to produce a CCS state machine

(target model) from a VHDL process. This algorithm expanded the single process within

H rather quickly since all the output delays are deltas. It could become extremely busy if

one of the delays were finite, say, 1 nanosecond. One might have to entertain the

possibility of new inputs arriving every delta, of which there are an infinite number in the

space of a nanosecond. Such intractability forces the designer to consider whether inputs

will realistically arrive every delta, and, if not, to properly annotate his VHDL with assert

statements, tests, etc., to properly limit the code in accordance with the system it purports

to model.

Consider now initial models for the behavioral two-token buffers FF and GG.

The reference models for these buffers admit nondeterminism due to the race between the

generation of the first output and the receipt of the second input. The environment

controls the arrival of the input, but the model controls the emission of the output. CCS

is indefinite about output emission, allowing it to occur anytime in the near or distant

future. One can model such indefinite emission in VHDL by implementing a random

number generator to assign delays, but it is unnatural and contrived to do so. Normally,

the VHDL model uses typical or worst case delays. These delays, arising from solid-

state circuitry, are certainly orders of magnitude less than the decades or centuries that

the CCS model allows. Thus for the initial models, fixed delays will suffice.

5-18

Now a two-token buffer can accept two inputs without generating an output, but

not three. In the following VHDL initial model the third output will be disallowed with

an assert statement in the body of the main process.

-- Initial Model for Two-token Behavioral Buffer FF

entity FF is

 (I : in bit; O : out bit)
 end FF;

 architecture BEHAVIOR of FF is
 constant DELAY1, DELAY2 : time;
 signal STATE : (EMPTY_0, HALF_0, FULL_0,

 EMPTY_1, HALF_1, FULL_1) := EMPTY_0;
 begin
 process(I)
 begin
 assert (not(STATE = EMPTY_0 or STATE = EMPTY_1)

 and I'event
);

 case STATE is
 when EMPTY_0 =>
 O <= 1 after DELAY1;
 STATE <= HALF_0, EMPTY_1 after DELAY1;
 when HALF_0 =>
 O <= 1 after DELAY2;
 STATE <= FULL_0, HALF_1 after DELAY2;
 when EMPTY_1 =>
 O <= 0 after DELAY1;
 STATE <= HALF_1, EMPTY_0 after DELAY1;
 when HALF_1 =>
 O <= 0 after DELAY2;
 STATE <= FULL_1, HALF_0 after DELAY2;
 end case;
 end process;
 end BEHAVIOR;

 DELAY1 and DELAY2 are constants of type time. Their values are not given

here, but would be specified by the designer. An internally declared STATE signal

tracks state information. STATE must be a VHDL signal, and not a variable, because a

state change must be a scheduled future transaction that can be retracted.

5-19

 This time, for variety, explicit level-signal assignments are used instead of the

pseudo-transitional assignments of the single-token models. A STATE signal is also

used. STATE takes on six possible values. Normally, one expects a two-token buffer to

have three states: empty, half-full and full. With O receiving level assignments, the two

possible values for O double the state possibilities.

The state machine extraction algorithm executes just as well with level

assignments:

Table 5-4. Expansion of FF0

state FF0

STATE(EMPTY_0)
O(0)

input i
update drivers STATE(EMPTY_0,HALF_0@∆,EMPTY_1@DELAY1)

O(0, 1@DELAY1)
advance clock ∆

output none
new state FF1

STATE(HALF_0,EMPTY_1@DELAY1)
O(0, 1@DELAY1)

Table 5-5. Expansion of FF1

state FF1

STATE(HALF_0,EMPTY_1@DELAY1)
O(0, 1@DELAY1)

input I none
update
drivers

STATE(HALF_0,FULL_0@∆,HALF_1@DELAY2
)

O(0, 1@DELAY2)

STATE(HALF_0,EMPTY_1@DELAY1)
O(0, 1@DELAY1)

adv.
clock

∆ DELAY1

output None o
new
state

FF2
STATE(FULL_0,HALF_1@DELAY2)

O(0, 1@DELAY2)

FF3
STATE(EMPTY_1)

O(1)

5-20

 The state machine behavior can continue to be expanded. Since the signal

STATE contains all necessary state information, the system-generated state labels FF_x

are unneeded, and the six possible values of STATE can be used for state labels. This

yields the following target model:

FF
def
= EMPTY_0

def
= i.HALF_0

 HALF_0
def
= i.FULL_0 + o .EMPTY_1

 FULL_0
def
= o .HALF_1

 EMPTY_1
def
= i.HALF_1

 HALF_1
def
= i.FULL_1 + o .EMPTY_0

 FULL_1
def
= o .HALF_0 (5-13)

 The initial and target models for GG are similar to those of FF with transitions on

P simultaneous with those on O (in the initial model) and concurrent (in the target

model):

 -- Initial Model for Two-token Behavioral Buffer GG

entity GG is
 (I : in bit; O, P : out bit)
 end FF;

 architecture BEHAVIOR of GG is
 constant DELAY1, DELAY2 : time;
 signal STATE : (EMPTY_0, HALF_0, FULL_0,

 EMPTY_1, HALF_1, FULL_1) := EMPTY_0;
begin

 process(I)
 begin
 assert (not(STATE = EMPTY_0 or STATE = EMPTY_1)

 and I'event);
 case STATE is
 when EMPTY_0 =>
 O <= 1 after DELAY1;
 P <= 1 after DELAY1;

 STATE <= HALF_0, EMPTY_1 after DELAY1;

5-21

 when HALF_0 =>
 O <= 1 after DELAY2;
 P <= 1 after DELAY2;
 STATE <= FULL_0, HALF_1 after DELAY2;
 when EMPTY_1 =>
 O <= 0 after DELAY1;
 P <= 0 after DELAY1;
 STATE <= HALF_1, EMPTY_0 after DELAY1;
 when HALF_1 =>
 O <= 0 after DELAY2;
 P <= 0 after DELAY2;
 STATE <= FULL_1, HALF_0 after DELAY2;
 end case;
 end process;
 end BEHAVIOR;

GG
def
= EMPTY_0

def
= i.HALF_0

 HALF_0
def
= i.FULL_0 + (o | p).EMPTY_1

 FULL_0
def
= (o | p).HALF_1

 EMPTY_1
def
= i.HALF_1

 HALF_1
def
= i.FULL_1 + (o | p).EMPTY_0

 FULL_1
def
= (o | p).HALF_0 (5-14)

In general, the algorithm translates one VHDL process into one CCS agent. The

initial models given thus far have used single-process behavioral architectures. Indeed,

there can be two or more processes within a behavioral architecture. When that happens

a state machine is generated for each separately, and Parallel Composition connects them,

since coexisting processes are considered parallel occurrences in VHDL. If such

processes are totally independent, having no common input in their sensitivity lists, then

the simple Parallel Composition suffices. If processes share a common sensitive signal,

this cannot be directly modeled in CCS since multiple connections to a single port are not

allowed. As discussed above, this limitation is imperfectly overcome by using a FORK

element to split the signal.

5-22

FORK
def
= i. o . p .FORK (5-15)

Now using the notation [[V]] to denote “the CCS translation of VHDL construct V,” one

has that

 process(I,J)

…

 end process;

 process(I,K)

…

 end process;

translates to

 (FORK[m1/o,m2/p] | [[process(I,J)…;]][m1/j]

 | [[process(I,K)…;]][m2/k])\{m1,m2} (5-16)

Now structural VHDL models contain components, and those components will be

treated just like multiple processes, i.e., they are concurrent and, upon translation, are

connected by Parallel Composition. Consider the initial models for the structural two-

place buffers. First, consider FPF:

 -- Initial Model for Two-token Structural Buffer FPF

entity FPF is
 port(I: in bit; O: out bit);
 end FPF;

 architecture STRUCTURE of FPF is

5-23

 component F
 port(I : in bit; O : out bit);
 end component;
 signal M : bit;
 begin
 U1:F port map(I=>I, O =>M);
 U2:F port map(I=>M, O=>O);
 end STRUCTURE;

 configuration CFG_FPF of FPF is
 for STRUCTURAL

 for all: F use configuration WORK.F.BEHAVIOR;
 end for;

 end for;
 end CFG_FPF;

Being a structural VHDL model, the initial model for FPF must contain an

explicit configuration body to import models for the subcomponents F. Note how this

configuration calls out the default configuration for F, which is known as

“WORK.F.behavior” in this implementation.

 This model also contains an internal signal M. M is not a state signal, but an

internal node to which component pins are attached. The components within the model

are concurrent and connected by Parallel Composition upon translation. The port maps

for the U1, U2 components translate directly into Relabeling functions in CCS. Any

internally declared signal, such as M here, is restricted upon translation. Thus, the target

model for FPF is

FPF
def
= F[m/o] | F[m/i] \ {m} (5-17)

 The initial model for GPG is similar to FPF:

 -- Initial Model for Two-token Structural Buffer GPG

entity GPG is
 port(I: in bit; O,P: out bit);
 end GPG;

5-24

 architecture STRUCTURE of GPG is
 component G
 port(I : in bit; O,P : out bit);
 end component;
 signal M : bit;
 begin
 U1:G port map(I =>I, O=>open, P=>M);
 U2:G port map(I=>M, O=>O, P=>P);
 end STRUCTURE;

 configuration CFG_GPG of GPG is
 for STRUCTURAL

 for all: G use configuration WORK.G.behavior;
 end for;

 end for;
 end CFG_GPG;

 Within GPG resides an open port assignment for U1. This unconnected pin is

destined to become an extraneous output upon translation. Unlike the VHDL model,

which hides this unconnected pin, the CCS model maintains it as an explicit, though

extraneous, output action.

 GPG
def
= (G[x/o, m/p] | G[m/i])\{m} (5-18)

 The time has now arrived to capture VHDL-to-CCS translation rules that target

the “pure” version of CCS (with interleaving concurrency). The VHDL subset supported

by the hypothetical translator is quite broad, since all the capability of a VHDL simulator

is presumed for the state machine extractor. Indeed, a reasonable way to build such a

translator would use modify an existing VHDL analyzer and simulator as a front end.

Thus, explicit and implicit processes are supported. Implicit and literal sensitivity lists

are supported, as well as other process initiation schemes such as the wait statement.

Both inertial and transport delay are supported, as well as both transitional and level

5-25

value assignments. All control structures such as case, if … then …else, block and so

forth are supported.

In the discussion, all signals were of either of type bit, or are of enumerated type.

This suffices since more complex structures can be built from assemblies of bits. Modes

in and out are the only modes supported by the translation. Other modes, such as inout

and buffer, can be recast as in and out with a little effort. The generate statement,

packages, and a host of other features are not directly supported, but these constructs are

typically pre-elaborated and result in constructs that are supported.

5.4 VHDL to CCS Translation Rules

 Ten rules governing VHDL-to-CCS translation are now presented. Of these, the

most significant rule is the state machine extraction algorithm, Rule 9.

(1) Each VHDL design unit (entity-architecture-configuration triple) is translated into

a unique, capitalized name according to the scheme:

Design Unit Name ::= <Entity Name>_<Architecture Name>_<Configuration Name>

This naming convention is possible because all three items are required to have a

design unit. Lone entities do not convey enough information for translation. In

cases where the VHDL analyzer would normally supply a default configuration,

that configuration is literally called “Default” within the CCS name.4

(2) Each process within a design unit is translated into a unique capitalized CCS

agent name according to the scheme:

4 The automated naming schemes given here tend to yield verbose names. For brevity, these schemes were
not followed in the examples. For example, H0 in Table 5-1 would, under these rules, have received the
more cumbersome designation of H_Behavior_Default_0.

5-26

Process Name ::= <Design Unit Name>_Process<sequence number>

For a lone process within a design unit, the “_Process<sequence number>”

appendage is omitted.

(3) Each VHDL signal is translated into a unique lower-case CCS action name, with

the design unit information appended to assure uniqueness:

signal name ::= [']<design unit name (lower case)>_<vhdl signal name>

A leading apostrophe is added for signals of mode out. Any apostrophe

appearing in VHDL names is translated literally as “_tick_” to avoid confusion

with the CCS apostrophe.

(4) Locally declared signals used behaviorally (not connected to component ports) are

recognized as state signals and are translated into multiple CCS agents—one

agent for each state value used. The naming scheme is

State Name ::= <Design Unit Name>_<VHDL Local Signal Name>_<State Value>

(5) State signals created by the state machine extraction algorithm (Rule 5) are given

names according to the scheme:

State Name ::= <Process Name>_<sequence number>

5-27

(6) Locally declared signals appearing in structural models are internal signals

recognized because they connect to component ports. Their translation is to

actions. The naming convention for the action is

local action name ::= <design unit name(lower case)>_<vhdl local signal name>

When multiply connected, they are modeled as FORKs, with the FORK outputs

receiving an “_<sequence number>” appendage added to the local action name.

Upon translation, these names are added to the Restriction set of the translated

structural agent that contains the FORK.

(7) Port maps translate into Relabeling functions. Thus I => M becomes [m/i].

(8) A port assignment to open indicates an unconnected pin. The pin becomes an

extraneous output and gets relabeled in CCS to avoid collision. It does not get

hidden as it does in the VHDL model. The translator is again presumed to have

an unlimited supply of spare names to handle these cases. The format of this

name is a lower case output name with a prefixed apostrophe:

'<design unit name>_<translator-supplied symbol>

where the translator-supplied symbol is different than any other user-defined

symbol in the design unit.

(9) Processes are translated to CCS state machines by means of the state machine

extraction algorithm.

5-28

(1) Start at the root state.

(2) Consider all possible input events, as well as the possibility of no input.

(3) Update the output drivers with any new transactions.

(4) Advance the clock to the next transaction.

(5) Conduct the appropriate output events. Any simultaneous outputs are

translated as concurrent.

(6) Remove the transpired transactions from the drivers.

(7) Characterize the new state by the residual transactions on the drivers.

(8) Return to (2) and repeat until the entire behavior is expanded.

(10a) Multiple processes within a design unit that have no sensitive signals in

common become concurrent CCS agents joined by Parallel Composition.

process(I)
begin
 …
end process;

process(J)
begin
 …
end process;

translates into:

[[process(I)…;]] | [[process(J)…;]]

(10b) When multiple processes within a design unit share the same sensitive signals,

they are translated into a Parallel Composition with FORK agents added to split

the input for separate communication with each agent. The translation of

5-29

process(I,J)
begin
 process body 1>
end process;

process(I,K)
begin
 <process body 2>
end process;

is

 ([[process(I,J)…;]][mid1/i]
 | [[process(I,K)]][mid2/j]
 | FORK[mid1/o,mid2/p]
)\{midl, mid2}

where mid1 and mid2 are drawn from an unlimited supply of extra names that the

translator is presumed to have.

(10c) The units or components instantiated in a structural model are combined by

Parallel Composition upon translation. When such components share a common

input signal, that signal is modeled as a FORK in the same manner as the

multiply-sensitive signals in Rule 9.

Rules 10a, 10b and 10c are really special cases of a more general rule that can be applied

to models that employ a mixed behavioral/structural style. Hence they are combined as

Rule 10:

(10) A design unit is translated by identifying its CCS name with the Parallel

Composition of its contained processes and components. To wit,

<Design Unit Name>
def
=

 ([[process1]][f1] | [[process2]][f2] | … | [[processk]][fk]

5-30

 | [[component1]][g1] | [[component2]][g2] | … | [[componentm]][gm]

 | FORK1 | FORK2 | … | FORKn

)\{internal signals and their FORKed branches}

The FORKs are created and inserted as necessary to split multiply-connected internal

nodes. The Relabeling functions fi and gi reassign sensitive signal names (for

processes) and port names (for components) to receive the FORK outputs. All

internal signals are then restricted.

 The translation of components represents a recursive application of Rule 10, since

components are in turn design units themselves. The recursion terminates when purely

behavioral design units (containing only processes) are encountered.

 In summary, the first eight rules govern the translation of names. Rule 9 shows

how to translate processes. Rule 10 shows how to translate structures recursively, until

only processes are encountered.

 Note how Rule 10 is be exceedingly liberal in its use of FORKs to support the

pure CCS semantics. The resulting CCS code is ungainly and probably impractical for

all but the simplest verifications. However, this necessity emphasizes the semantic

distance between CCS and VHDL, and the “pure” CCS translator serves as a more telling

example of how fw can be used to verify a translator, which is shown in the next section.

Following that, a translator targeting the broadcast version of CCS, which is semantically

less distant from VHDL, will be introduced.

5.5 Preservation of Congruent Weak Conformance

 Does the translator outlined in the previous section preserve congruent weak

conformance? That is, given two VHDL design units E and F, where E fw F, can one

5-31

say that [[E]] fw [[F]]? The question is interesting, because the issue of fw among VHDL

design units has not been specifically addressed or defined. VHDL modelers do not

normally think of design units as being compliant to one another. Rather, a design unit is

considered compliant to the test bench that exercises it. The test bench is little more than

a behavioral model that provides a set of stimuli and checks for appropriate responses.

The test bench thus models the environment. If two design units pass the same test bench

then they are considered interchangeable within the environment modeled, but not

necessarily compliant to each other.

5.5.1 Congruent Weak Conformance for VHDL Models. For the purpose of

verifying the translator, fw between VHDL models will mean the same as it does for

CCS models, i.e., that the four transitional laws and the five construction restrictions are

satisfied. Therefore, the various symbols and concepts employed must have meaning

within the context of VHDL.

Plainly, VHDL design units have both input and output sorts. They are given

explicitly in the entity declaration. From these, the extraneous input and output sorts can

be easily determined.

Furthermore, translation Rule 9 shows that VHDL code has a state machine

interpretation. One can speak of labeled transitions such as →aE when the possibility

exists that the next simulated transition is on a.

As for τ transitions, VHDL has none. Yet the various internal signals of a

structural VHDL model, though hidden at the top level, are tracked and managed by the

simulator. Therefore, one can assert that →τE when a transition on one of these

internal signals is immediately pending.

The notion of maxoctset must be modified somewhat for VHDL models. Since

simultaneity is allowed, VHDL maxoctsets may include paths with simultaneous output

transitions. In that event, the implementation is permitted to either duplicate the

simultaneity, or perform the actions in some sequence. Thus, if O and P have

5-32

simultaneous output events, then the derived maxoctset is {O.P, P.O, O&P} where ‘.’ is

borrowed from CCS to indicate sequential occurrence and where ‘&’ denotes

simultaneous occurrence.

5.5.2 Compliance Example Revisited. Thus fw can be defined over VHDL just as

it was for CCS agents. To illustrate, return to the BCD decoder example of Chapter 3.

The BCD decoder had specification S had two implementations I and J. Possible VHDL

models for these three agents appear in Appendix D in the level-signal modeling style.

The specification model S begins with an assertion that some input combinations

are illegal. A large case statement then responds to the content of the inputs and posts

transactions on all output drivers. Most of these transactions do not result in real

transitions, since eight of the outputs will retain the same value from the previous state.

Like the CCS model for S, only two of the outputs will experience a real transition.

Since no explicit delay is specified, both transitions occur at the next delta. They are

simultaneous, not simply concurrent. Thus, S has within its derivation tree, ten

maxoctsets of the form {O.P, P.O, O&P}.

Not surprisingly, implementation I resembles S except for the addition of six

outputs, and the lack of an assertion that bans certain input combinations. Once again,

no delay is specified, and I implements the maxoctsets of S with the simultaneous option

of the form O&P. The set {O10, O11, O12, O13, O14, O15} constitutes the extraneous

output sort Extr (I,S), and transitions at these additional pins are tolerated. These

transitions constitute relative taus, but produce no instability since they are guarded by

input transitions.

J, on the other hand, has explicit delays associated with its output transactions.

As in a real circuit, these delays are all different, and true simultaneity will not occur.

Thus, for each maxoctset of S, J implements one of the sequential options and never the

simultaneous option.

5-33

One can apply the translation rules to the VHDL models for S, I and J. Now the

VHDL code is very “busy” in that it posts transactions to every output driver upon every

change of input. Most of these transactions do not survive the translation, however.

Since Rule 9 mimics the VHDL simulation engine, only the true transitions appear in the

CCS target model. Thus, the CCS target models will be identical to the models given in

Chapter 3, except that the names will be much more verbose. The agent corresponding to

S will be called S_Behavior_Default and its states will be called S_Behavior_Default_0,

S_Behavior_Default_1, and so forth. The action labels will be s_behavior_default_a,

's_behavior_default_o1, and so forth. Manual translations of the S, I and J design units

appear in Appendix E.

In passing, it must be stated that the direct production of a CCS pair [[S]] fw [[I]]

from a VHDL pair I fw S is an ideal that will be imperfectly realized. CCS supports full

encapsulation of specification requirements as a state machine, with forbidden sequences

simply omitted. Models are directly compared for conformance in a manner analogous to

equivalence checking. VHDL must use asserts to prohibit certain sequences and, more

likely, specification asserts will decorate the implementation model itself— there will be

no separate specification model. This practice resembles the model checking approach.

Of course, VHDL test benches are models that do check specification requirements, but

they are not specification models in the same sense, just simple conduits for test vectors.

One does not use a test bench as a placeholder in a system model, to be replaced by an

implementation model. So the presentation of two VHDL models that share fw will be

rare.

5.5.3 Proof that fw is Preserved. One is now assured that fw has meaning when

applied to VHDL models. One must now prove that whenever E fw F then [[E]] fw [[F]]

necessarily follows. To establish this implication, one must prove two things: (1) that

the translation rules preserve the five construction laws CS, PEA, ESP, COR and BR, and

5-34

(2) that the translated models are weakly conformant, i.e., [[E]] fw [[F]] (single

underline).

Proposition 5-1. The translator’s renaming function for VHDL design units and signals

(Rules 1, 3, 6 and 8) is an injection.

Proof. Each VHDL design unit is identified with a unique entity-architecture-

configuration triple. This unique information is carried forward in the translation, so the

renaming of VHDL design units to CCS agents is injective. Signal names, whether

internal or external, can be reused by different design units, but their scope is limited to

that design unit. The VHDL analyzer must maintain such scoping information, so, in

effect, each signal has a design unit tag that insures uniqueness. The <design unit name>

prefix added in Rules 3 and 6 maintains that uniqueness in the target models. The

renamed open port assignment of Rule 8 is unique by the assumption that the translator

has an unlimited supply of spare names to secure this uniqueness.

 Since the renaming function is an injection, it is bijective with its own image.

Therefore one can speak of the reverse translation [[X]]-1 of CCS agents and actions, as

long as the reverse translation is not applied to the additional signals (Rules 6 and 8) and

agents (Rules 2, 5 and 9) that the translation generates.

 Proposition 5-2 establishes that actions whose order of occurrence is fixed in the

VHDL model will be sequential in the CCS model. Actions whose order of occurrence is

either ambiguous or simultaneous on the VHDL side is concurrent in the CCS translation.

Proposition 5-2. The translator preserves any absolute ordering of actions.

Proof.

5-35

• Rules 1 through 8. These rules affect only the assignment of names. They do not

redefine sequence of actions.

• Rule 9. As a faithful mimic of the VHDL simulation cycle, the state machine

extraction algorithm preserves the same ordering and concurrency of events

expressed in the VHDL code. Simultaneous events become ambiguously ordered

(i.e., concurrent), but any event occurring strictly before or after a simultaneity

occurs strictly before or after the corresponding concurrency after translation.

• Rule (10). There are two cases to consider: (1) independence (no common

inputs) and (2) dependence on common input signals.

Case 1. Processes and components that share no common inputs can proceed

independently. Thus, they are concurrent. Any interleaving of the

events of each process can occur that is consistent with the behavior of

each process individually. The Parallel Composition in the target

model mirrors that concurrency.

Case 2. When a group of processes and components share common, sensitive

inputs, they progress independently except at points where they await a

common input. After receipt of that input, they proceed independently

to the next common input. CCS cannot activate two agents at the same

time as VHDL does. However, insertion of the FORK agent causes the

components or processes to wait at the same point for the common

sensitive signal, after which they can continue independently.

Proposition 5-3. The translation rules preserve the CS assumption.

Proof. Since, by assumption, CS holds for the pre-translated VHDL models—there can

be no unguarded relative taus in the initial models. One must consider whether, as a

5-36

result of translation, (1) guarded relative taus can move to unguarded positions, (2) an

unguarded action can become an extraneous output action by renaming and (3) the

extraneous action created by Rule 8 can become unguarded.

• Case 1. Proposition 5-2 guarantees that absolute orderings among events are

preserved, so such moves are not possible.

• Case 2. The renaming function of design units and signals is injective by

Proposition 5-1, so the membership of signals(actions) in the sorts of design units

(agents) does not change. Hence their extraneous or non-extraneous nature

cannot change.

• Case 3. The component output left open constitutes a hidden action in the VHDL

model, which becomes an extraneous output upon translation. Again, the CS

assumption insures that the VHDL hidden action is guarded; and Proposition 5-2

prevents the resulting extraneous output in the CCS model from migrating to an

unguarded position.

Proposition 5-4. The translator preserves the PEA, ESP and COR conditions.

Proof. The renaming of actions, as an injection, preserves the ⊆ and ∈ relationships

within the definitions of PEA, ESP and COR.

Proposition 5-5. The translator preserves the BR condition.

Proof. All relabelings (port maps) on the VHDL side are bijective by assumption. The

translator renaming function is bijective to its own image. Hence the Relabelings

resulting from translated port maps are bijective, since the bijection of a bijection is

bijective. It remains to show that Relabelings introduced by the Rule 10 preserve BR.

5-37

These functions rename process and component inputs to communicate with the branches

of the introduced FORKs. Yet these branches bear new and unique names per the

naming scheme of Rule 6, so BR is preserved.

Proposition 5-6. The translator preserves the fw construction laws.

Proof. Propositions 5-3, 5-4 and 5-5.

 Having shown that the translator preserves the construction laws, one must now

establish that [[E]] fw [[F]]. This can be shown by coinductive proof that the relation

S ≡ { ([[E]], [[F]]) : E fw F } is a weak conformation up to fw. First, one must show that

the translator preserves ≈ and also preserves all maxoctsets. One must also show that the

reverse translation [[…]]-1, when it exists, preserves these properties.

Proposition 5-7. The translator and its inverse preserve observational equivalence ≈.

Proof:

• Translator. Show that S ≡ { ([[P]], [[Q]]) : P ≈ Q } is a bisimulation up to ≈.

 Whenever [[P]] α⇒ R' then P κ⇒ P' where [[κ]] = α and [[P']] = R'.

 Since P ≈ Q then Q κ⇒ Q' ≈ P'.

 Hence [[Q]] α⇒ [[Q']] and clearly, ([[P']], [[Q']]) ∈ S.

• Inverse translator. Define S ≡ { (P, Q) : [[P]] ≈ [[Q]] }. The proof is similar.

Proposition 5-8. The translator and its inverse preserve maxoctsets.

Proof:

• Translator.

5-38

Let M be a maxoctset of F converging at F'. That is, ∀m ∈ M, F m⇒ ≈ F'.

 Hence ∀[[m]] ∈ [[M]], [[F]]]][[m⇒ ≈ [[F']] since the translator preserves ≈.

 Thus [[M]] is at least an octset of [[F]], converging on [[F']].

 Trial Hypothesis. Assume [[M]] is not a maxoctset.

 Then [[F]] has maxoctset N where

 N = {[[m]].n : m ∈ M, n ∈ A ([[F]])+ and [[F']] n⇒ S''}.

 Yet if [[F']] n⇒ ≈ S'' then F'
1]][[−

⇒n ≈ F'' since [[…]]-1 preserves ≈.

 Hence F m⇒ 1]] [[−
⇒ n ≈ F'' ∀[[m]].n ∈ N.

 Hence [[N]]-1 is an octset of F and M cannot be a maxoctset.

 ⇒⇐

 Thus [[M]] is a maxoctset of [[F]] converging at [[F']].

• Inverse translator. Similar.

Proposition 5-9. S ≡ { ([[E]], [[F]]) : E fw F } is a weak conformation up to fw.

Proof:

• LSIT'. Let [[F]]→α S'. Then F→σ F' where [[σ]] = α and [[F']] = S'.

 By LSIT, E⇒t E' fw F'.

 Since absolute order among actions is preserved (Proposition 5-2), then

 [[E]] u⇒ [[E']] where u = [[t]].

 Since E' fw F' then clearly, [[E']] S [[F']].

• LSO'. Let [[F]] have a maxoctset N converging at S'.

 Then F has maxoctset [[N]]-1 converging at some F', where F' = [[S']].

 E implements [[N]]-1 with t:

 E⇒t E' fw F' with t½A(F) = n ∈ N.

 Thus

5-39

 [[E]]]][[t⇒ [[E']], [[t]]½A([[F]]) = [[n]] ∈ [[N]]

 and clearly, [[E']] S [[F']].

• LII', LIOT'. Similar to LSIT'.

Proposition 5-10. fw is preserved by the translator.

Proof: Propositions 5-6 and 5-9.

 Thus, the translator defined by Rules 1 to 10 preserves congruent weak

conformance, and the translator is validated.

5.6 Translation to Broadcast CCS

 The translator was able to bridge the semantic gap between VHDL and CCS

while preserving fw in the process. Since pure CCS does not support multiple fan-out,

the translator had to insert FORK agents into the target code. This necessity to use

FORKs to mimic broadcast communication is a major contributor to the semantic gap

between VHDL and CCS. Furthermore, the resulting target code is very limited in the

types of verifications it can support. Using FORKs to model interconnect corresponds to

the delay-insensitive asynchronous design model, where the delay associated with

interconnect is completely unspecified. Designs verified under the delay-insensitive

assumption are very robust, but achieving a working design under delay-insensitive

constraints is very hard. Only a very limited number of circuits can be designed using

delay-insensitive techniques.

 More practical asynchronous designs use the speed-independent model.

Interconnect wiring is assumed to have minuscule delay compared to the delay of

components. Thus a signal propagates essentially simultaneously along the branches of

5-40

any multiply connected node. This is fairly consistent with VHDL modeling, where wire

alone has no delay, though inconsistent with pure CCS modeling.

 To model speed-independent designs, Stevens added transition rules to CCS for

supporting broadcast communication (Stevens, 1994: 180-5). The conjunction operator,

|c, is a modification of Parallel Composition, and allows a single output to handshake with

more than one input action. Five transition rules give the semantics of |c. Of particular

interest is Conj4:

'|'|

''
4 FEFE

FFEEConj
c

l
c

ll

→
→→

where l is understood to be an output. Compare this with Milner’s Com3:

→ →

→ '|'|

''
3

FEFE

FFEE
Com

cc

ll

τ

For Milner’s rule, an action/coaction pair collapses to τ, so no other agents can

synchronize on it. Stevens rule collapses it to the output l , ready to communicate with

additional input actions. Thus, a single output can drive multiple inputs, thereby

modeling broadcast communication.

 Though Stevens did not name this modified CCS, here it will be called BCCS

(Broadcast CCS) here to distinguish it from Milner’s.

 A VHDL-to-BCCS translator need not resort to the insertion of FORKs. Thus the

revised translator is simpler. Rules 6 and 10 are modified to eliminate the insertion of

FORKs.

5-41

(6') Locally declared signals appearing in structural models are internal signals

recognized because they connect to component ports. Their translation is to

actions. The naming convention for the action is

local action name ::= <design unit name(lower case)>_<vhdl local signal name>

A local action can connect one input to multiple outputs without FORKs.

(10') A design unit is translated by identifying its CCS name with the Conjunction of

its contained processes and components. To wit,

<Design Unit Name>
def
=

 ([[process1]] | [[process2]] | … | [[processk]]

 | [[component1]] | [[component2]] | … | [[componentm]]

)\{internal signals }

 Thus the VHDL-to-BCCS translator is somewhat simpler. Does this translator

also preserve fw?

Proposition 5-11. fw is preserved by the VHDL-to-BCCS translator.

Proof: Examine Proposition 5-1 through 5-10 as they apply to the new translator.

Proposition 5-1 still holds as stated. The proof of 5-2 is simpler since it is uncomplicated

by FORKs. The proofs of the remaining propositions, which depend on 5-1 and 5-2, are

unmodified, so the VHDL-to-BCCS preserves fw as well.

5-42

5.7 Conclusion

 This chapter addressed the use of congruent weak conformance fw to verify a set

of transformations from one modeling language to another. The verification of such

transformations is particularly challenging when the underlying semantics of the two

languages differ. Loss of information is inevitable in such translation. However fw,

which models the designer’s desire for safe substitution, needs to be preserved in the

course of a useful translation.

 In this chapter, VHDL-to-CCS translation was examined under the light of fw.

First, the various semantic differences between VHDL and CCS were duly noted. Next,

some small, but interesting agent models were presented to elucidate those differences

and to serve as a basis for further study of the translation process. These models were

selected to exhibit the salient feature of fw by incorporating examples of extraneous

actions, hidden actions, and maxoctsets.

 The models were presented in three groups. First, the reference models served

simply to present the behavior under discussion. Though given in CCS, the reference

models were not intended to be translated or to be the result of translation. Instead, the

true objects of translation were the initial models, given in VHDL. The initial models

were inspired by, but not formally derived from, the reference models. The target

models, however, were CCS models mechanically derived from the initial models by a

hypothetical translator.

 The translator consisted of ten rules. The most important rule mapped the VHDL

process construct to a CCS agent. Parallel Composition then combined agents that

represented parallel-acting processes and components in the VHDL models. Other rules

defined the assignment of agent and action names upon translation. In section 5.4, the

translator was then shown to preserve fw during the course of translation. Thus, the

translator preserved safe substitution, and therefore the translator was verified.

5-43

 A second translator that targeted the more practical Broadcast CCS was also

discussed. Since Broadcast CCS has a communication semantics closer to VHDL, the

second translator is less complex. This translator was also verified by proof that it

preserves fw.

 In summary, this chapter demonstrated the use of fw to verify transformations

between systems of unlike semantics. Language translators are but one example of such

transformations. Synthesis and extraction tools such as those used in integrated circuit

design are also transformation systems, and should be amenable to verification by fw.

6-1

VI. Conclusion

 This chapter summarizes the dissertation, lists the original contributions of the

present research, and provides recommendations for future research.

6.1 Summary

 This dissertation started with intuitive, informal notions of compliance. In the

end, a property called congruent weak conformance that captured these intuitive notions

was defined, formally developed, and used to verify translations between incompatible

semantic systems.

 Chapter 1 gave a brief introduction to the problem of compliance, and ended with

a diagram (Figure 1-1) showing that the desired property is probably not an equivalence.

 Chapter 2 presented the prior art. In particular, Chapter 2 presented various

formal equivalences that have been defined over the process algebra CCS. However,

since a conforming implementation can exhibit behaviors in excess of its specification,

equivalences were seen to be insufficient to the task. Therefore, various process-ordering

relations from the literature were also presented, with their shortcoming noted as well.

 To extract all the intuitive aspects of conformance, Chapter 3 provided a simple

example of a specification (a BCD converter) and a conforming implementation (an

appropriately wired demultiplexor). The intuition gained from the example was then

formalized into four transition rules. These rules defined a family of relations called

weak conformations. Some formal results were proven for weak conformations.

However, the weak conformations were only precursor relations, and needed refinement

to produce the ultimate desired property.

 These refinements were presented in Chapter 4. The first refinement, weak

conformance (fw), was presented as the largest of the weak conformations. Formal

6-2

results governing fw were proven, and the property held promise. Yet it was not possible

to show that fw is fully substitutable, i.e. it is not a congruence. Hence, additional

refinement was needed. This refinement consisted of five constructional restrictions that

govern the building of specification and implementation models. These restrictions were

shown to be very reasonable constraints that do nothing more than codify good design

intent. Congruent weak conformance fw was then defined as fw with the additional

refinement that the five design restrictions must be observed. Congruent weak

conformance was then proven to be a congruent partial order, or precongruence. This

established fw as the final desired property: the loosest known model of conformance

that provides for safe substitution.

 To apply fw to a practical problem, Chapter 5 investigated a hypothetical VHDL-

to-CCS translator. This type of translator is challenging to build because the VHDL and

CCS semantics are incompatible, and information must necessarily be lost in the course

of the translation. For verifications upon translated models to be valid, some appropriate

property must be preserved by the translator. Since the designer’s art can be

characterized as the search for an implementation to substitute for a specification, then

safe substitution (i.e. fw) is the property that must be preserved.

 The hypothetical translator was summarized as a set of ten transformations. Each

transformation was then shown to preserve fw. This in effect verified the VHDL-to-CCS

translator. A translator from VHDL to a more practical Broadcast CCS was also

verified.

 The objects of this research were five-fold:

 1. Determine the characteristics of a compliant device with respect to its

specification. Study the expected behavior of an implementation in response to

specified input, output and hidden action. Conversely, note any reverse

6-3

obligations of the specification to implemented input, output and hidden

action.

 2. Incorporate this intuition into the formally defined property of congruent weak

conformance as a binary relation over processes. Make this formal property as

“loose” as possible such that it admits all appropriate implementations and

allows maximum design flexibility.

 3. Derive formal results for congruent weak conformance and related properties.

Prove that congruent weak conformance is partial order. Prove also that

congruent weak conformance is fully substitutable in all contexts, is a valid

model of safe substitution, and is indeed a congruence.

 4. Outline the transformations necessary to create a semantic link from VHDL to

CCS.

5. Show that such transformations are valid by proof that they preserve

congruent weak conformance, thus allowing the more powerful verifications

of CCS to accrue to VHDL models.

 These objects have been accomplished.

6.2 Contributions

 This research has yielded several original contributions: (1) local confluence,

(2) the concept of a maxoctset, (3) the transitional laws that define the weak

conformations, (4) relative stability, (5) the five model-construction restrictions, (6) the

relation fw, and (7) a methodology for verifying transformations between systems of

unlike semantics.

 6.2.1 Local confluence. Local confluence is a looser notion than the classical

confluence. Local confluence identifies areas of a transition graph that exhibit confluent-

6-4

like behavior in the absence of a global confluence. With local confluence, one can

identify and exploit behavioral options offered by a specification model.

 6.2.2 Maxoctsets. The maxoctset denotes local confluence among outputs and

hence represents output options offered by the specification. Maxoctsets are the largest

such areas that can be identified. Being the largest, they represent the least restriction

possible restriction on the designer in implementing specified output actions.

 6.2.3 Weak conformations. Four transitional laws characterize the weak

conformations. These laws provide the greatest flexibility in implementation by

(1) abstracting hidden action in a manner similar to weak bisimulation.

(2) allowing the implementation to engage in unspecified behavior in the

unreachable state space in a manner similar to logic conformance,

(3) providing for additional I/O pins in the implementation that do not block

specified behavior,

(4) allowing maximum exploitation of output concurrency through the use of

maxoctsets

 As the largest weak conformation, weak conformance, fw, unites every pair of

process agents that share the transitional laws.

 6.2.4 Relative stability. The notion of stability has been generalized to relative

stability in recognition that unguarded extraneous outputs can play the same destabilizing

role as unguarded taus in creating unstable models.

 6.2.5 Model construction restrictions. Five design restrictions pertinent to the

construction of models have been identified. These restrictions are an embodiment of

consistent design intent. Adherence to these restrictions is a prerequisite to achieving

safe substitution.

 6.2.6 Congruent weak conformance. The congruent weak conformance property

6-5

fw is the final process relation derived in this research. As a refinement of fw, it enjoys

the design flexibility of the weak conformations. By incorporating the five model

construction restrictions, it also models safe substitution . Hence, fw is a congruence,

and this has been shown by extensive proof.

 6.2.7 Transformation verification methodology. If translation or other

transformations between systems with incompatible semantics is attempted, then safe

substitution (i.e. congruence) must be preserved, even when other information is lost. As

the loosest known precongruence, fw thus forms a useful tool to verify such

transformations. Such usage has been illustrated by the verification of two hypothetical

VHDL-to-CCS translators.

6.3 Recommendations for Future Work

 More work can always be done. In the course of the present research, several

interesting topics became manifest as possible follow-on efforts. These topics are:

(1) Axiomatization of fw.

(2) Automated fw tool.

(3) Implemented VHDL-to-CCS translator.

(4) Verification of translators.

(5) Verification of synthesis tools.

 6.3.1 Axiomatization of fw. Congruent weak conformance was defined in terms

of four transitional laws and five design restrictions. Thus, to prove that A fw B one must

ultimately show that A and B satisfy these laws and restrictions. An alternate

formalization of fw by means of axioms may be possible. A few primitive pairs of agents

would be assumed to observe fw, and this would yield a set of axioms. The proof that

6-6

A fw B would then be a theorem to be derived from the axioms. Observational

equivalence = was axiomatized in this way (Milner, 1989:160-9).

 6.3.2 Automated fw tool. For the present research it sufficed to use fw as a

manual proof tool to verify transformations. For any two agents A and B, whether or not

A fw B must be proven manually at the present time. However, an automated tool to

establish fw between two agents would be a great aid to designers and logisticians.

Furthermore, if an axiomatization of fw is achieved, then an extant automated theorem

proving tool could be used in this role.

 Guidance for producing an automated fw tool is now offered. This tool must

determine two things: (1) that a weak conformation exists between two agents and (2)

that the five construction restrictions are obeyed. Both tasks require knowledge of the

extraneous sorts, with (2) requiring a more detailed knowledge of the extraneous sorts of

any component agents down to the purely behavioral level. Thus the fw tool will likely

accomplish the following tasks:

 (1) Extract the input and output sorts of each agent as well as the sorts for each

component agent. As a compromise, the tool will extract syntactic sorts only,

since the determination of semantic sorts is undecidable. Having settled on

syntactic sorts only, a straightforward lexical analysis of agent expressions

will then suffice to accomplish this task.

 (2) Calculate the extraneous sorts of each agent and any component agents.

These extraneous sorts will be easily derived by set difference.

 (3) Check for violations of the five construction laws. The analysis will halt and

report if any such violation is found.

6-7

 (4) Use an appropriate algorithm to determine if a weak conformation exists.

Such an algorithm has not yet been invented. No doubt it will be similar to

existing algorithms that are used to determine the existence of a bisimulation

between agents (Cleaveland, 1989; Fernandez, 1989; Stevens 1994, 194-195).

However, any weak conformation algorithm will probably be more complex

than any of the bisimulation algorithms, owing to the greater complexity of

the weak conformation laws over bisimulation laws.

 Once the fw tool is built, test cases will then be needed to validate the tool.

Obviously, both behavioral and structural agent pairs that are known to share the fw

relation will need to be submitted as validation tests. Equally important, though, are

pairs that are expected to fail fw. Failure cases must be constructed to contain violations

of each of the five construction restrictions. In addition, tests that challenge each aspect

of the conformation laws need to be constructed. Examples of failure cases that should

appear in any validation suite include:

 (1) interleaving inputs (specified as well as extraneous inputs) that take the

implementation to illegal behavior.

 (2) interleaving outputs (specified and extraneous) that take the implementation to

illegal behavior.

 (3) maxoctsets illegally implemented. For example, the implementing string may

contain the proper output actions, but in an order that is unspecified, i.e., that

order of actions is missing from the maxoctset.

 (4) specifications having actions extraneous to the implementation. These should

result in immediate violation of LSIT and LSO.

 (5) implementations that lead to illegal behaviors triggered by an input action γ
→ ,

6-8

when the specification can or cannot perform an immediate γ
⇒ .

 (6) agent pairs that are not relatively stable.

 (7) constructions that promote extraneous actions to specified actions, using

Prefix, Choice and Parallel Composition.

 (8) constructions that attempt to synchronize on extraneous actions.

 (9) relabeling functions that are not bijective.

 (10) non-idle extraneous outputs illegally restricted.

 These above guidelines will hopefully aid the production and testing of a future

congruent weak conformance checking tool.

 6.3.3 Implemented VHDL-to-CCS translator. Chapter 5 provides the outline of a

VHDL-to-CCS translator. The obvious next step is to build and verify such a translator.

Such a translator would allow the bisimulation-based verifications possible within CCS

to accrue to VHDL models. Hence such a translator would be a good design aid.

 Guidance for producing such a translator has been given already, since an explicit

listing of the translation rules is given in Chapter 5. The most difficult rule to realize will

be the state machine extraction algorithm. Yet that algorithm mimics the VHDL

simulation cycle, and implemented VHDL simulators abound. Thus, a likely way to

implement the translator may be by modification of existing VHDL analyzers and

simulators, with a new “back-end” targeted to output CCS state machines in place of an

explicit event-based simulation.

 6.3.4 Verification of translators. Similarly, other existing translators, as well as

newly introduced translators, could and should be verified using fw. The bigger the

semantic gap between the initial language and its target, the more useful such a

verification could be.

6-9

 6.3.5 Verification of synthesis tools. In the design world, transformational

systems abound. Though one does not think of them as translators, the class of computer-

aided design tools called synthesis tools are, in fact, transformational systems. They

perform transformations between design language models, schematics, netlists and even

silicon layout. There is often a semantic gap involved in synthesis. For example, logic

that can be expressed in a language model may not have an exact equivalent within the

component library of a particular technology, and a component of different functionality

may be substituted. Furthermore, once an actual layout is generated, certain physical

parameters (resistance, delay time, etc.) become instantiated, and these may have an

effect on the desired functionality. These parameters often have to be “back-annotated”

into the original model so the functionality can be rechecked. Thus, synthesis is an

example of inter-semantic translation. There is a change or loss of information in the

process. Again, safe substitution must be preserved. This suggests that fw be used to

verify such synthesis tools.

6.4 Concluding Remarks

 The objects of this research were met. Intuitive notions of conformance were

captured formally. The resulting property, congruent weak conformance, was then

shown to be a congruence, and therefore a correct model of safe substitution. Congruent

weak conformance was then successfully used to verify transformations between systems

of unlike semantics. Thus congruent weak conformance was shown to be a useful

verification tool.

A-1

Appendix A

Strong Conformation

 For strong conformations, τ is treated as an output. The implementation must

match explicit τ actions in the specification, though it is free to add more of its own.

Specified τ actions are treated like outputs since, like outputs, the environment cannot

control their emission. The maxoctset concept must be modified to include τ actions

amidst the outputs. Call this a maxtoctset (with an extra ‘t’ for ‘tau’). LSO becomes

“LSOT” and LSIT, which loses its τ role, becomes “LSI.” LII and LIOT are unmodified.

 For LSOT, the implementation selects some string s from the maxtoctset, where s

consists of both outputs and τ actions. This sequence of outputs and taus must be

faithfully implemented, and the specified τ actions cannot be deleted in the

implementation, though additional τ actions and extraneous outputs, may be added.

t½ A (S) = s no longer captures the desired relationship between t and s, since s has

embedded taus. t½(A (S) ∪ {τ}) = s does not work either, due to the extra taus that t

may add. Therefore s has to be expressed as β0.β1….βn where the βi range over output

and τ.

Definition A-1. A binary relation on processes, S ⊆ P × P, is a strong conformation if

∀α ∈ A(S), ∀β ∈ A (I) ∪ {τ}, ∀γ ∈ A(S) , I S S implies the following four laws:

Law of Specified Input (LSI)

Whenever S α→ S' then ∃t ∈ (A(S) ∪ rExt (I,S))* such that

 (1) I t⇒ I'

 (2) t½A(S) = α

 (3) I' S S'

A-2

Law of Specified Output or Tau (LSOT)

Let X be a maxtoctset of S. ∃s = β0.β1….βn ∈ X (where βi ∈ A(S) ∪ {τ}) and

∃t ∈ (A (I) ∪ {τ})+ such that

 (1) S→s S'

 (2) I t⇒ I'

 (3) t½ A (S) ∪ {τ} = τ*.β0.τ*.β1. τ*.β2. τ*.….τ*.βn. τ*

 (4) I' W S'

Law of Implemented Input (LII)

Whenever I γ→ I' and S γ
⇒ then

 (1) S γ
⇒ S'

 (2) I' S S'

Law of Implemented Output or Tau (LIOT)

Whenever I β→ I' and δ ≡ β½ A (S) then

 (1) S δ⇒ S'

 (2) I' S S'

B-1

Appendix B.

Lengthy proofs

Proof of Proposition 3-9.

For P V Q W R let R →α R' for α ∈ A(R) ∪ {τ}.

• Applying LSIT on Q W R yields some s ∈ (A(R) ∪ Extr (Q,R))* such that

 Q⇒s Q', s½A(R) = α̂ , Q' W R'.

• Rewrite Q⇒s Q' as Q⇒u Q1 →$α Q2 ⇒
v Q' where u, v ∈ Extr (Q,R)* and any τ actions in

⇒s are subsumed by ⇒u and ⇒v . (→$α represents the empty transition →ε for α = τ.)

• There are two cases for string u: (1) u = ε and (2) u ≠ ε.

 Case 1. P ⇒ P1 V Q1 by LSE.

 Case 2. u is a specified output to be implemented by P under LSO.

 ∴∃r ∈ A (P)+ such that

 P⇒r P1, r½ A (Q) =conf u, P1 V Q1.

• Since P1 V Q1 and Q1 →$α Q2 there are two cases for α̂ : (1) α̂ ≠ ε and (2) α̂ = ε:

 Case 1. Apply LSO. ∃ x ∈ [A(Q) ∪ Extr (P,Q)]+ such that

 P1 ⇒x P2, x½A(Q) = α̂ , P2 V Q2.

 Case 2. Apply LSE.

 P1 ⇒ P2, Q1 ⇒ Q2, P2 V Q2.

• Performing the same case analysis on v that was done on u yields:

 P2 ⇒y P' V Q' for some y ∈ A (P)* where y½ A (Q) =conf v.

• ∴ P ⇒t P' where t = r.x.y and P' VW R'.

B-2

It remains to be shown that t½A(R) = α̂ .

• Both r and y are composed of output strings. Their projections onto input sort A(R)

are empty.

• ∴t½A(R) = r.x.y½A(R) = x½A(R).

• By LSIT on P1 V Q1 one knows that x½A(Q) =α̂ .

• Since A(R) ⊆ A(Q) then x½A(R) = x½A(Q)½A(R) = α̂ ½A(R) = α̂ .

Proof of Lemma 4-12.

First show that every maxoctset of (S | T) can be represented with respect to some si.tj.

Then show that every such si.tj defines a maxoctset of (S | T).

• Let M be a maxoctset of (S | T) with respect to r.

• Write r =conf s.t where s and t are the actions provided to r by S and T, respectively,

with the symbols appearing in r in the same order they appear in s and t, though they

are intermixed in r.

• Thus S ⇒s S', T ⇒t T' and (S | T) ⇒r (S' | T').

• By definition, ∀ri ∈ M, (S | T) ⇒ri ≈ (S' | T').

• Similar to r, let ri =conf si.ti such that S ⇒si ≈ S' and T ⇒ti ≈ T'.

• Note that si =conf s and ti =conf t.

• ∴ s defines an octset for S, as does t for T.

• Trial Hypothesis. Assume one of these octsets is not a maxoctset. W.l.o.g. let it be

the octset of S defined by s.

• Then S must then have a maxoctset MS' with respect to s.s" for some s" ≠ ε.

• ∀s' ∈ MS' : S ⇒′s ≈ S''.

• ∀r' =conf s.s''.t where (S | T) ⇒′r one has (S | T) ⇒′r ≈ (S" | T').

B-3

• ∴{r' =conf s.s".t : (S | T) ⇒′r } is an octset of (S | T) and ∴ M cannot be a maxoctset.

⇒⇐

Now show that every such si.tj defines a maxoctset of (S|T).

• Let Mij = { r : (S | T) ⇒r and r =conf si.ti }.

• ∀x ∈ Mij write x =conf s.t for some s ∈Yi, t ∈ Zj.

• Since Yi and Zj are maxoctsets one derives that ∀s : S ⇒s ≈ S' and ∀t : T⇒t ≈T'.

• ∴∀x ∈ Mij : (S | T) ⇒x ≈ (S' | T') and hence Mij is (at least) an octset of (S | T).

• Trial Hypothesis. Assume that Mij is not a maxoctset of (S | T).

• Then (S | T) has some maxoctset with respect to sitj.x' where x' ≠ ε.

• Let x' =conf s'.t' where s', t' are the contributions to x', in sequence, from S and T.

• At least one of s', t' ≠ ε. W.l.o.g. let s' ≠ ε.

• ∀r =conf si.s' such that S⇒r , one has S⇒r ≈ S". ∴S has an octset with respect to si.s'.

• ∴Yi cannot be a maxoctset of S.

⇒⇐

Proof of Proposition 4-13.

Given I W S and J W T, construct the relation

S ≡ { ((I | J), (S | T)) : I W S, J W T }

and show that S is a weak conformation.

• LSIT. Let (S | T) →α where α ∈ A(S | T). There are two cases to consider:

 (1) α is a visible action or an explicit τ emitted by one of the two agents.

 (2) α is a τ arising from communication between the two agents.

Case 1. Assume w.l.o.g. that S →α S'. Apply LSIT on I W S yielding:

 I ⇒t I'

t½A(S) = α̂

B-4

I' W S'.

 Hence, whenever (S | T) →α (S' | T) then

 (I | J) ⇒t (I' | J)

 Furthermore,

 t½A(S|T) = α̂

by an argument analogous to Proposition 4-11 (LSIT).

Finally,

 (I' | J) S (S' | T)

 since I' W S' and J W T.

Case 2. Assume w.l.o.g. that S →a S' and T →a where a is an input and a an output.

(Note that a is a participant in some maxoctset of S and, though it appears first in

some member string of that maxoctset, it may not appear first in the member string

that is implemented by J.)

 First apply LSO to J W T:

 T 1s
⇒ →a 2s

⇒ T'

J 1t⇒ →a 2t⇒ J'

t1½ A (T) = s1, t2½ A (T) = s2

 J' W T'.

 Then apply LSIT to I W S:

 S→a S'

 I 1r⇒ →a 2r⇒ I'

 r1½A(S) = ε, a½A(S) = a, r1½A(S) = ε

 I' W S'.

 Combining the results of LSO and LSIT under Parallel Composition:

 (S | T) 1s
⇒ aτ→ 2s

⇒ (S' | T') \

 (I | J) 1u⇒ aτ→ 2u⇒ (I' | J')

B-5

 where u1 =conf r1.t1 and u2 =conf r2.t2.

 Now r1, r2 ∈ Extr (S) and ∴by PEA, r1, r2 ∈ Extr ((S | T)) as well.

 PEA also prevents the promotion of extraneous outputs in t1 and t2. Hence

 t1½ A (S | T) = t1½ A (T) = s1

t2½ A (S | T) = s2.

 Thus,

 u1.τa.u2½ A ((S | T)) = s1.s2

 snd clearly

 (I' | J') S (S' | T').

• LSO.

Let M be a maxoctset of (S | T).

By Lemma 4-12, ∃maxoctsets Y of S and Z of T such that

 M is a maxoctset with respect to y.z for some y ∈ Yi and z ∈ Zj.

By LSO, ∃s ∈ Y such that

S ⇒s S', I ⇒u I', u½ A (S) = s, I' W S'.

 Similarly, ∃t ∈ Z such that

T ⇒t T', J ⇒v J', v½ A (T) = v, J' W T'.

 ∴ (S | T) ⇒s (S' | T) ⇒t (S' | T') and similarly, (I | J) ⇒u ⇒v (I' | J').

 Since (S | T) ⇒s ⇒t and s.t =conf y.z then s.t ∈ M.

PEA guarantees that no extraneous outputs in u or v are promoted.

 ∴ u½ A ((S | T)) = u½ A (S) = s and similarly, v½ A ((S | T)) = t.

 Hence u.v½ A ((S | T)) = s.t.

 Clearly (I' | J') S (S' | T').

∴ u.v is a valid implementation by (I | J) of s.t ∈ M.

• LII.

Let (I | J) →γ for γ ∈ A((S | T)). W.l.o.g. assume I →γ I'.

LII requires that:

B-6

S ⇒
γ

 S', I' W S'.

Thus: (S | T) ⇒
γ

(S' | T),

(I | J) →γ (I' | J) and

(I' | J) S (S' | T).

• LIOT.

 Let (I | J) →β P' where β ∈ A (I | J) ∪ {τ}. There are two cases to consider:

 (1) β is an output or explicit τ emitted by one of the components.

 (2) β is a τ arising from communication between the components.

 Case 1. W.l.o.g. let I →β I'. Thus P' = (I' | J)

 By LIOT on I W S one has

S δ⇒ S', δ ≡ β½ A (S), I' W S'.

 If β ∉ A (S) then β ∉ A (S | T)) by the PEA condition.

 ∴δ ≡ β½ A (S) = β½ A (S | T).

 Hence one has:

 (I | J) →β (I' | J)

 (S | T) δ⇒ (S' | T)

 β½ A ((S | T)) = δ

 (I' | J) S (S' | T).

Case 2. W.l.o.g. let I →a I' and J→a J', where a is the input action.

(I | J) →τa (I' | J') and thus P' = (I' | J').

There are two cases on a. All other cases violate ESP.

(a) a ∈ A(S) and a ∈ A (T).

(b) a ∈ Extr(I,S) and a ∈ Extr (J,T).

 Case a. First, apply LIOT to J W T:

 T δ⇒ T', δ ≡ a ½ A (T) = a , J a⇒ J', J' W T'.

 Now apply LII to I W S:

 S ⇒a S', I' W S', (S | T) aτ
⇒ (S' | T'). (I' | J') S (S' | T').

B-7

Case b. Both signals are extraneous to their respective specifications.

∴ S ⇒τ S', T⇒T', (S | T) ⇒τ (S' | T').

Again, (I' | J') S (S' | T').

Proof of Proposition 4-14.

 It suffices to conduct the proof for a singleton Restriction set {c}. All others will yield

to induction.

• Let I W S for some weak conformation W .

• Define SC ≡ { (P\{c}, Q\{c}) : P W Q }. Show that SC is a weak conformation.

• LSIT.

From LSIT on the base agents one derives

S→α S', I ⇒t I', t½A(S) = α̂ , I' W S'.

If α ∈ A(S\{c}) then α ≠ c and ∴ S \{c}→α S' \{c}.

Now t contains no inputs other than a single α ≠ c.

In accordance with COR, there are three possibilities for c:

 (1) c ∉ A (I), A (S),

 (2) c ∈ Idle (I,S) and

 (3) c ∈ A (S).

Case 1. c ∉ A (I) and ∴ c ∉ t.

Case 2. c cannot lie along any reachable path. Clearly t is a reachable path. ∴ c ∉ t.

Case 3. c ∈ A (S). ∴ c ∉ Extr (I,S). All outputs in t come from Extr (I,S). ∴ c ∉ t.

For all three cases c ∉ t. ∴ I \{c}⇒t I' \{c} and (I' \{c}, S' \{c}) ∈ SC.

• LSO.

 Let M be a maxoctset of S with respect to s.

There are two cases on c: (1) c ∈ s and (2) c ∉ s.

B-8

Case 1. The Restriction blocks every x ∈ M and the application of LSO to is moot.

Case 2. M remains whole, and ∴ ∀x ∈ M : S \{c}⇒x S' \{c}.

Let t be the implementation of M by I.

Now c ∉ t. Otherwise, c ∈ Extr (I,S), a violation of COR.

∴ I \{c}⇒t I' \{c}.

Also, since c ∉ t one has: t½A(S\{c}) = t½A(S) = s.

Clearly, (I'\{c}, S'\{c}) ∈ SC, so LSO is established.

• LII and LIOT: Similar.

Proof of Proposition 4-17.

Define R ≡ { (G{I/X}, G{S/X}) : I
def
= E{I/X}, S

def
= F{S/X} }. Show that R is a weak

conformation up to fw. Once that is established then G{I/X} R G{S/X} implies that

G{I/X} fw G{S/X}. In particular, when G{X} ≡ X one derives I fw S. To show R to be a

weak conformation up to fw one must establish each of the “primed” laws. The proof of

each law is a coinduction on the structure of G, also known as transistion induction

(Milner, 1989: Section 2.10). The cases are G ≡ X (recursive definition), G ≡ α.G1, G ≡

G1 + G2, G ≡ G1|G2, G≡ G1\{c}, G ≡ G1[f] and G ≡ C (a constant agent having no

occurrences of X).

• LSIT'.

To show, for α ∈ A(G{S/X}) ∪ {τ}:

 Whenever G{S/X} →α Q' then G(I/X} t⇒ P' fw R fw Q' where t½A(G{S/X}) = α̂ .

G ≡ X.

 In this case G{S/X} ≡ S.

Let G{S/X} ≡ S→α Q' and consider the inference that established this transition.

It arises from application of Con, where the side condition is S
def
= F{S/X}.

B-9

Hence, by a shorter inference, F{S/X} →α Q'.

By coinduction, F{I/X} t⇒ P' fw R fw Q' where t½A(F{S/X}) = α̂ .

Now apply E fw F. E{I/X} fw F{I/X}.

Since F{I/X} t⇒ P' then E{I/X} implements t with some u:

t contains at most one input α̂ amidst extraneous ouputs. i.e. t = t'.α̂ .t'''.

u = u'.u''.u''' arises by serial application of LSOS, LSIT and LSOS.

u'½ A (F{I/X}) =conf t'. u''½A(F{I/X}) = α̂ . u'''½ A (F{I/X}) =conf t'''.

Hence E{I/X} u⇒ O' fw P' .

But G{I/X} ≡ I
def
= E{I/X} so G{I/X} u⇒ O'.

u½A(F{S/X}) = α̂ .

O' fw P' fw R fw Q'. That is, O' fw R fw Q'.

Hence LSIT' is established for the case G ≡ X.

G ≡ α.G1.

 G{S/X} ≡ α.G1{S/X}→α G1{S/X} and G{I/X} ≡ α.G1{I/X}→α G1{I/X}

Clearly, G1{I/X} R G1{S/X}.

G ≡ G1 + G2.

Let G{S/X} →α Q'. The transition arises from Sum.

By a shorter inference, G1{S/X} →α Q' or G2{S/X} →α Q'.

W.l.o.g. assume the former.

 By coinduction, G1{I/X} t⇒ P' fw R fw Q' for t½A(G1{S/X}) = α̂ .

t½A(G{S/X}) = α̂ since t contains no inputs but α̂ .

G{I/X} t⇒ P' fw R fw Q' by Sum.

G ≡ G1|G2.

Let G{S/X} →α Q'. The transition arises from Com1, 2 or 3.

Com1.

 By a shorter inference, and w.l.o.g., G1{S/X}→α Q1'.

 By coinduction G1{I/X} t⇒ P1' fw R fw Q1' for t½A(G1{S/X}) = α̂ .

B-10

t½A(G{S/X}) = α̂ since t contains no inputs but α̂ .

Thus G{I/X} t⇒ P1'|G2{I/X} when G{S/X}→α Q1'|G2{I/X}

It remains to show that P1'|G2{I/X} fw R fw Q1'|G2{I/X}.

Write P1' fw R fw Q1' as P1' fw P1'' R Q1''fw Q1'.

P1'' R Q1'' means ∃H1{X} such that

 P1'' ≡ H1{I/X} and Q1'' ≡ H1{S/X}.

Set H ≡H1|G2.

P1'|G2{I/X} fw P1''|G2{I/X} ≡ H{I/X} R H{S/X} and

 H{S/X}≡ Q1'|G2{I/X}.fw Q1'|G2{I/X}

Thus P1'|G2{I/X} fw R fw Q1'|G2{I/X}.

 Com2. Similar.

 Com3. By a shorter inference, G1{S/X} a→ Q1'. G2{S/X} a→ Q2'.

 W.l.o.g., a is an input action and a is its output coaction.

 By coinduction, LSIT' applies to the former, and LSO' applies to the latter.

G1{I/X} and G2{I/X} implement with strings containing a and a .

This situation was faced in the proof of Proposition 4-13, LSIT, Case 2.

 The proof that:

 (G1{S/X} | G2{S/X}) aτ→ (Q1' | Q2')

 (G1{I/X} | G2{I/X}) t ′′⇒ (P1' | P2')

 t''↑A(G1{S/X} | G2{S/X}) = ε

is analogous to that of Proposition 4-13, where

G1{S/X}plays the role of S, Q1' of S',

G2{S/X} of T, Q2' of T',

G1{I/X} of I, P1' of I',

G2{S/X} of J and P2' of T'.

By coinduction both

 P1' fw R fw Q1'

B-11

 and

 P2' fw R fw Q2'.

Writing them as

 P1' fw H1'{I/X}R H1'{S/X} fw Q1'

 P2' fw H2'{I/X}R H2'{S/X} fw Q2'

one has

 (P1' | P2') fw (H1'{I/X} | H2'{I/X}) by Proposition 4-13,

 (H1'{I/X} | H2'{I/X}) R (H1'{S/X} | H2'{S/X}) by definition of‘R’

 (H1'{S/X} | H2'{S/X}) fw (Q1' | Q2') by Proposition 4-13

from which follows:

(P1' | P2') fw R fw (Q1' | Q2').

This proof that fw R fw applies to the derivatives of a composite agent follows a single

scheme, as can by seen in the Com1 and Com3 cases immediately above. The scheme is

as follows:

 (1) Take the ‘fw R fw’ relation(s) of the non-composite derivatives.

 (2) Introduce expression(s) H to fill in between ‘fw’ and ‘R’.

 (3) Form a composite H.

(4) Invoke the proposition that states that the operator in question preserves weak

conformation.

 (5) Show that the composite deriviatives share ‘fw’ with the composite H.

 (6) Note that (composite H{I/X}, composite H{S/X}) ∈ R.

 (6) Combine results to show that the composite derivatives share ‘fw R fw’.

B-12

This scheme will be frequently reused, and is now called the composite H scheme.

G ≡ G1\{c}.

 G{S/X}≡ G1{S/X}\{c} →α Q'.

 The transition arises from application of Res with the side condition α ≠ c.

 By a shorter inference G1{S/X}→α Q'' and hence Q' = Q''\{c}.

 By induction G1{I/X} t⇒ P'' fw R fw Q'' for t½A(G1{S/X}) = α̂ .

 The case analysis on c in Proposition 4-14 applies here, and ∴c ∉ t.

 Hence G1{I/X}\{c} t⇒ P'' \{c}

P''\{c} fw R fw Q''\{c} is shown by means of the composite H scheme.

G ≡ G1[f].

 G{S/X}≡ G1{S/X}[f])(αf → Q'[f]

 The transition arises by application of Rel.

 By a shorter inference, G1{S/X} →α Q'.

 By induction, G1{I/X} t⇒ P' fw R fw Q'.

 By Rel G{I/X})(tf
⇒ P'[f].

 P'[f] fw R fw Q'[f] is shown by means of the composite H scheme.

G ≡ C.

 G{I/X} ≡ G{S/X} and the satisfaction of LSIT' is trivial.

• LSO'.

To show that ∀maxoctsets M of G(S/X):

 G(I/X} t⇒ P' fw R fw Q' where G{S/X} s⇒ Q' and t½ A (G{S/X}) = s.

 G ≡ X.

G{S/X} ≡ S and S
def
= F{S/X}.

 ∀m ∈ M, whenever S m⇒ ≈Q' then F{S/X} m⇒ ≈Q' by shorter inferences.1

Hence F{S/X} has a maxocset M.

1 Since the transition rules derive atomic transitions, multiple applications are required to infer a string
transition.

B-13

By coinduction, F{I/X} t⇒ P' fw R fw Q' where t½ A (F{S/X} = s ∈ M.

t defines a maxoctset M' for F{I/X} by Proposition 3-6.

Apply E fw F. E{I/X} fw F{I/X}.

By LSO, E{I/X} implements M' with some u where u½ A (F{I/X}) =conf t.

Hence E{I/X} u⇒ O' fw P'.

But G{I/X} ≡ I
def
= E{I/X} so G{I/X} u⇒ O'.

Since u½ A (F{I/X}) =conf t then

 u½ A (F{S/X}) = u½ A (F{I/X})½ A (F{S/X}) = s' =conf s.

s' ∈ M for the same reasons that x ∈ X in the proof of Proposition 3-7.

 Now O' fw P' fw R fw Q' and hence O' fw R fw Q'.

G ≡ α.G1.

Let G{S/X}≡ α.G1{S/X} have maxoctset M with respect to m, terminating at Q'.

α must be an output action and must appear first in every string of M.

G1{S/X} has maxoctset M1 with respect to m1, where m = α.m1.

M1 also terminates at Q'.

By coinduction, G1{I/X} t⇒ P' fw R fw Q' where t½ A (G1{S/X}) = s ∈ M1.

Hence G{I/X} t.α⇒ P' and G{S/X} s⇒ Q'.

α.t½ A (α.G1{S/X}) = α.s ∈ M.

P' fw R fw Q' is already established.

G ≡ G1 + G2.

When G{S/X} has maxoctset M then by Lemma 4-10, M = M1 ∪ M2 where

M1 is a maxoctset of G1{S/X} and M2 is a maxoctset of G2{S/X}.

 By coinduction, G1{I/X} implements M1 with t:

 G1{I/X} t⇒ P' , G1{S/X} s⇒ Q', s ∈ M1, t½ A (G1{S/X}) = s, P' fw R fw Q'.

 By Sum, G{I/X} t⇒ P' and G{S/X} s⇒ Q'.

t½ A (G{S/X}) = s unless A (G2{I/X}) contains actions in Extr (G{I/X},

G{S/X}).

B-14

Yet PEA assures that no a is in both A (G2{I/X}) andExtr (G{I/X}.

∴ t½ A (G{S/X}) = s.

P' fw R fw Q' is already known.

 (The case where G2{I/X} implements M2 is similar, but unneeded.)

G ≡ G1|G2.

When G{S/X} has maxoctset M with respect to m then by Lemma 4-12,

 G1{S/X} has maxoctset M1 with respect to m1

 G2{S/X} has maxoctset M2 with respect to m2,

where m =conf m1.m2

By coinduction, G1{I/X} implements M1 with t1:

 G1{I/X} 1t⇒ P1', G1{S/X} 1s⇒ Q1', t1½ A (G1{S/X}) = s1 ∈ M1, P1' fw R fw Q1'.

and G2{I/X} implements M2 with t2:

 G2{I/X} 2t⇒ P2', G2{S/X} 2s⇒ Q2', t2½ A (G2{S/X}) = s2 ∈ M2, P2' fw R fw Q2'.

Now G{I/X} 1t⇒ 2t⇒ P1'|P2', G{S/X} 1s⇒ 2s⇒ Q1'|Q2', t1 .t2½ A (G{S/X}) = s1 . s2 ∈ M.

P1' |P2' fw R fw Q1'|Q2' is shown by the composite H scheme.

G ≡ G1\{c}.

 Let G{S/X}≡ G1{S/X}\{c} have maxoctset M with respect to m terminating at Q'.

 Since all strings in a maxoctset are =conf, \{c} blocks every string, or none of

them.

 Hence Restriction preserves every maxoctset that it does not delete entirely.

 ∴ c ∉ m, and M is a maxoctset of G1{S/X}.

 By coinduction, G1{I/X} implements M with t:

 G1{I/X}⇒t P1' fw R fw Q1', G1{S/X}⇒s Q1', and t½ A (G1{S/X}) = s ∈ M.

To prove that G1{I/X}\{c}⇒t P1' \{c} one must be assured that c ∉ t.

 Trial Hypothesis. Assume c ∈ t.

 Now c ∉ s since s survived the Restriction.

 ∴ c ∈ rExt (G1{I/X}, G1{S/X}).

B-15

 COR requires that only idle extraneous outputs can be Restricted.

 Lying along an implementing path t, the c is manisfestly not idle.

 ⇒⇐

Hence G1{I/X}\{c}⇒t P1' \{c} and t½ A (G1{S/X}\{c}) = s.

 P1' \{c} fw R fw Q1' \{c} is shown using the composite H scheme.

G ≡ G1[f].

 BR assures that f -1 exists and is bijective.

 If G1{S/X}[f] has maxoctset M then G1{S/X} has maxocset M[f--1].

 By coinduction, G1{I/X} implements M[f--1] with t:

 G1{I/X}⇒t P1' fw R fw Q1', where G1{S/X}⇒s Q1' and

 t½ A (G1{S/X}) = s ∈ M[f--1].

 Hence,

 G1{I/X}[f]
)(tf

⇒ P1' [f] where G1{S/X}[f]
)(sf

⇒ Q1'[f]

 f(t)½ A (G1{S/X}[f]) = f(s) ∈ M.

 To show P1' [f] fw R fw Q1'[f] use the composite H scheme.

G ≡ C.

 G{I/X} ≡ G{S/X} and the satisfaction of LSIT' is trivial.

• LII'.

To show ∀γ ∈ A(G{S/X})

 Whenever G{I/X} γ→ P' and G{S/X} γ
⇒ then G{S/X} γ

⇒ Q' where P' fw R fw Q'.

G ≡ X.

 G{I/X} ≡ I
def
= E{I/X}

 When G{S/X} γ
⇒ the actions are inferred from Con where S

def
= F{S/X}.

 By a shorter inference F{S/X} γ
⇒ .

 Now E{S/X} fw F{S/X} so LSAI requires that E{S/X} γ
⇒ .

 When G{I/X} ≡ I γ→ P' the action is inferred from Con, where I
def
= E{I/X}.

 By a shorter inference, E{I/X} γ→ P'.

B-16

 Since E{S/X} γ
⇒ then by coinduction, E{S/X} γ

⇒ Q' with P' fw R fw Q'.

 Now E{S/X} fw F{S/X}, and since F{S/X} γ
⇒ one may apply LII.

 F{S/X} γ
⇒ R' where Q' fw R'.

 So G{I/X} ≡ I
def
= E{I/X} γ

⇒ P' and G{S/X} ≡ S
def
= F{S/X} γ

⇒ R'.

 P' fw R fw Q' fw R' , or more simply, P' fw R fw R' .

G ≡ α.G1.

 α is an input.

 Clearly G{I/X} α→ G1{I/X}, G{S/X} α→ G1{S/X} and G1{S/X} R G1{S/X}.

G ≡ G1 + G2.

 Let G{I/X} γ
→ P' and G{S/X} γ

⇒ .

 By a shorter inference on Sum, and w.l.o.g., G1{I/X} γ
→ P'.

 The inference that G1{I/X} γ
→ is independent of the instantiated agent variable.

 ∴G1{S/X} γ
→ or, G1{S/X} γ

⇒ .

 By coinduction, G1{S/X} γ
⇒ Q' and P' fw R fw Q'.

G ≡ G1|G2.

 Let G{I/X} ≡ G1{I/X}|G2{I/X} γ
→ P' and G{S/X} ≡ G1{S/X}|G2{S/X} γ

⇒ .

 By a shorter inference on Com, and w.l.o.g., G1{I/X} γ
→ P''.

 Again, G1{S/X} γ
⇒ since the inference is independent of instantiated agent.

 By coinduction G1{S/X} γ
⇒ Q'' with P'' fw R fw Q''.

 Hence G{I/X} γ
→ P'' | G2{I/X} and G{S/X} γ

⇒ Q'' | G2{S/X}.

 P'' | G2{I/X} fw R fw Q'' |G{S/X} is shown using the composite H scheme.

G ≡ G1\{c}.

 Let G1{I/X}\{c} γ
→ P' and G1{S/X} ≡ G1{S/X}\{c} γ

⇒ . γ ≠ c.

 By shorter inferences on Res, G1{I/X} γ
→ P'' and G1{S/X} γ

⇒ where P' = P'' \{c}.

 By coinduction G1{S/X} γ
⇒ Q'' with P'' fw R fw Q''.

 Hence G{I/X} γ
→ P'' \{c} and G{S/X} γ

⇒ Q'' \{c}.

 P'' \{c} fw R fw Q'' \{c} is shown using the composite H scheme.

B-17

G ≡ G1[f]

 BR assures that f -1 exists and is bijective.

 Let G1{I/X}[f] γ
→ P' [f] and G1{S/X}[f] γ

⇒ .

 By shorter inferences, G1{I/X}
)(1 γ−

→
f

 P' and G1{S/X}
)(1 γ−

⇒
f

.

 By coinduction, G1{S/X}
)(1 γ−

⇒
f

Q' where P' fw R fw Q'.

 Hence, G1{S/X}[f] γ
⇒ Q' [f]

 The proof that P' [f] fw R fw Q' [f] follows the composite H scheme.

G ≡ C.

 G{I/X} ≡ G{S/X} and the satisfaction of LII' is trivial.

• LIOT'.

To show ∀β ∈ A (G{I/X}) ∪ {τ}

 If G{I/X} β→ P' then G{S/X} δ⇒ Q' where P' fw R fw Q' and δ = β½ A (G{S/X}).

G ≡ X.

 Let G{I/X} ≡ I β→ P'.

 I
def
= E{I/X} so, by a shorter inference, E{I/X} β→ P'.

 By coinduction, E{S/X} δ⇒ Q' where P' fw R fw Q' and δ = β½ A (G{S/X}).

 Apply E fw F. E{S/X}fw F{S/X}.

 By LIOT F{S/X} δ⇒ R' where Q' fw R'.

 S
def
= F{S/X} so by Con, G{S/X} ≡ S δ⇒ R'.

 P' fw R fw Q' fw R', so P' fw R fw R'.

G ≡ α.G1.

 α is an output or τ.

 G{I/X}→α G1{I/X}, G{S/X}⇒α G1{S/X}, α = α½ A (G{S/X}), G1{I/X}R G1{S/X}.

G ≡ G1 + G2.

 Let G1{I/X} + G2{I/X} β→ P'.

 By a shorter inference on Sum, and w.l.o.g., G1{I/X} β→ P'.

 By coinduction, G1{S/X} δ⇒ Q' where P' fw R fw Q' and δ = β½ A (G1{S/X}).

B-18

 By Sum, G{S/X} ≡ G1{S/X} + G2{S/X} δ⇒ Q'.

 Since A (G1{S/X}) ⊆ A (G{S/X}) then β½ A (G{S/X}) = δ.

 P' fw R fw Q' is already established.

G ≡ G1|G2.

 Let G{I/X} β→ P'.

 By a shorter inference on Com, w.l.o.g., G1{I/X} β→ P'' where P' ≡ P''|G2{I/X}.

 By coinduction, G1{S/X} δ⇒ Q'' where P'' fw R fw Q'' and δ = β½ A (G1{S/X}).

 By Com, G{S/X} δ⇒ Q''|G2{S/X}.

 Since A (G1{S/X}) ⊆ A (G{S/X}) then β½ A (G{S/X}) = δ.

 P''|G2{I/X} fw R fw Q''|G2{S/X} is shown by the composite H scheme.

G ≡ G1\{c}.

 Let G1{I/X}\{c} β→ P'. β ≠ {c}.

 By a shorter inference on Res, G1{I/X} β→ P'' where P'' \{c} = P'.

 By coinduction, G1{S/X} δ⇒ Q'' where P'' fw R fw Q'' and δ = β½ A (G1{S/X}).

 By Res, G1{S/X}\{c} δ⇒ Q' = Q'' \{c}.

 β½ A (G1{S/X}\{c}) = δ since β ≠ {c}.

 P''\{c} fw R fw Q''\{c} is shown by the composite H scheme.

G ≡ G1[f].

 BR assures that f –1 exists and is bijective.

 Let G1{I/X}[f] β→ P'.

 By a shorter inference on Rel, G1{I/X})(1 β−

→f P'' where P' = P''[f].

 By coinduction,

 G1{S/X} δ⇒ Q'' where P'' fw R fw Q'' and δ = f –1(β)½ A (G1{S/X}).

 By Rel, G1{S/X}[f])(δf
⇒ Q''[f] = Q'.

 f(δ) = f(f –1(β)½ A (G1{S/X})) = β½ A (G1{S/X}[f]) =β½ A (G{S/X}).

 P''[f] fw R fw Q''[f] is shown by the composite H scheme.

G ≡ C.

B-19

 G{I/X} ≡ G{S/X} and the satisfaction of LII' is trivial.

C-1

Appendix C

CCS Transition Rules (Milner, 1989)

Act ——————

 α.E →α E

 E →α E' E →α E'
Sum1 ————— Sum2 —————

 E + F →α E' F + E →α E'

 E →α E' E →α E' E l→E', F l→E'
Com1 —————— Com2 —————— Com3 ———————

 E | F →α E' | F F | E →α F | E' E | F →τ E' | F'

 E →α E'
 Res —————— (α, α ∉ L)

 E\L →α E'\L

 E →α E'
 Rel ———————

 E[f])(αf→E'[f]

 P →α P'

 Con ———— (A
def
= P)

 A →α P'

C-2

 E(fix(X = E)) →α E'
 Rec —————————

 fix(X = E) →α E'

α ∈ Act, l ∈ L, A and B are agents, E and F are agent expressions, and the restriction set

L ⊆ L.

 These rules are implications with the upper transition(s) implying the lower. Side

conditions apply for the rules Res and Con. The Act rule is universally inferred, having

an empty premise (truth).

D-1

Appendix D

S, I and J Initial Models

entity S is
 port (A, B, C, D : in bit;
 O0, O1, O2,…O9 : out bit);
end S;

architecture BEHAVIOR of S is
begin
 process (A,B,C,D)
 begin
 assert A&B&S&D < "1010";
 case A&B&S&D is
 when 0000 =>
 O0 <= 1;
 O1 <= 0;
 O2 <= 0;
 O3 <= 0;
 O4 <= 0;
 O5 <= 0;
 O6 <= 0;
 O7 <= 0;
 O8 <= 0;
 O9 <= 0;
 when 0001 =>
 O0 <= 0;
 O1 <= 1;
 O2 <= 0;
 O3 <= 0;
 O4 <= 0;
 O5 <= 0;
 O6 <= 0;
 O7 <= 0;
 O8 <= 0;
 O9 <= 0;
 when 0010 =>
 O0 <= 0;
 O1 <= 0;
 O2 <= 1;
 O3 <= 0;
 O4 <= 0;
 O5 <= 0;
 O6 <= 0;
 O7 <= 0;
 O8 <= 0;
 O9 <= 0;
 when 0011 =>
 O0 <= 0;
 O1 <= 0;
 O2 <= 0;
 O3 <= 1;
 O4 <= 0;
 O5 <= 0;

D-2

 O6 <= 0;
 O7 <= 0;
 O8 <= 0;
 O9 <= 0;
 when 0100 =>
 O0 <= 0;
 O1 <= 0;
 O2 <= 0;
 O3 <= 0;
 O4 <= 1;
 O5 <= 0;
 O6 <= 0;
 O7 <= 0;
 O8 <= 0;
 O9 <= 0;
 when 0101 =>
 O0 <= 0;
 O1 <= 0;
 O2 <= 0;
 O3 <= 0;
 O4 <= 0;
 O5 <= 1;
 O6 <= 0;
 O7 <= 0;
 O8 <= 0;
 O9 <= 0;
 when 0110 =>
 O0 <= 0;
 O1 <= 0;
 O2 <= 0;
 O3 <= 0;
 O4 <= 0;
 O5 <= 0;
 O6 <= 1;
 O7 <= 0;
 O8 <= 0;
 O9 <= 0;
 when 0111 =>
 O0 <= 0;
 O1 <= 0;
 O2 <= 0;
 O3 <= 0;
 O4 <= 0;
 O5 <= 0;
 O6 <= 0;
 O7 <= 1;
 O8 <= 0;
 O9 <= 0;

 when 1000 =>
 O0 <= 0;
 O1 <= 0;
 O2 <= 0;
 O3 <= 0;
 O4 <= 0;
 O5 <= 0;
 O6 <= 0;
 O7 <= 0;
 O8 <= 1;
 O9 <= 0;

D-3

 when 1001 =>
 O0 <= 0;
 O1 <= 0;
 O2 <= 0;
 O3 <= 0;
 O4 <= 0;
 O5 <= 0;
 O6 <= 0;
 O7 <= 0;
 O8 <= 0;
 O9 <= 1;
 end case;
 end process;
 end BEHAVIOR;
end behavior;

D-4

entity I is
 port (A, B, C, D : in bit;
 O0, O1, O2,…O15 : out bit);
end S;

architecture BEHAVIOR of I is
begin
 process (A,B,C,D)
 begin
 case A&B&S&D is
 when 0000 =>
 O0 <= 1;
 O1 <= 0;
 O2 <= 0;
 O3 <= 0;
 O4 <= 0;
 O5 <= 0;
 O6 <= 0;
 O7 <= 0;
 O8 <= 0;
 O9 <= 0;
 O10 <= 0;
 O11 <= 0;
 O12 <= 0;
 O13 <= 0;
 O14 <= 0;
 O15 <= 0;
 when 0001 =>
 O0 <= 0;
 O1 <= 1;
 O2 <= 0;
 O3 <= 0;
 O4 <= 0;
 O5 <= 0;
 O6 <= 0;
 O7 <= 0;
 O8 <= 0;
 O9 <= 0;
 O10 <= 0;
 O11 <= 0;
 O12 <= 0;
 O13 <= 0;
 O14 <= 0;
 O15 <= 0;
 when 0010 =>
 O0 <= 0;
 O1 <= 0;
 O2 <= 1;
 O3 <= 0;
 O4 <= 0;
 O5 <= 0;
 O6 <= 0;
 O7 <= 0;
 O8 <= 0;
 O9 <= 0;
 O10 <= 0;
 O11 <= 0;
 O12 <= 0;
 O13 <= 0;
 O14 <= 0;

D-5

 O15 <= 0;
 when 0011 =>
 O0 <= 0;
 O1 <= 0;
 O2 <= 0;
 O3 <= 1;
 O4 <= 0;
 O5 <= 0;
 O6 <= 0;
 O7 <= 0;
 O8 <= 0;
 O9 <= 0;
 O10 <= 0;
 O11 <= 0;
 O12 <= 0;
 O13 <= 0;
 O14 <= 0;
 O15 <= 0;
 when 0100 =>
 O0 <= 0;
 O1 <= 0;
 O2 <= 0;
 O3 <= 0;
 O4 <= 1;
 O5 <= 0;
 O6 <= 0;
 O7 <= 0;
 O8 <= 0;
 O9 <= 0;
 O10 <= 0;
 O11 <= 0;
 O12 <= 0;
 O13 <= 0;
 O14 <= 0;
 O15 <= 0;
 when 0101 =>
 O0 <= 0;
 O1 <= 0;
 O2 <= 0;
 O3 <= 0;
 O4 <= 0;
 O5 <= 1;
 O6 <= 0;
 O7 <= 0;
 O8 <= 0;
 O9 <= 0;
 O10 <= 0;
 O11 <= 0;
 O12 <= 0;
 O13 <= 0;
 O14 <= 0;
 O15 <= 0;
 when 0110 =>
 O0 <= 0;
 O1 <= 0;
 O2 <= 0;
 O3 <= 0;
 O4 <= 0;
 O5 <= 0;
 O6 <= 1;

D-6

 O7 <= 0;
 O8 <= 0;
 O9 <= 0;
 O10 <= 0;
 O11 <= 0;
 O12 <= 0;
 O13 <= 0;
 O14 <= 0;
 O15 <= 0;
 when 0111 =>
 O0 <= 0;
 O1 <= 0;
 O2 <= 0;
 O3 <= 0;
 O4 <= 0;
 O5 <= 0;
 O6 <= 0;
 O7 <= 1;
 O8 <= 0;
 O9 <= 0;
 O10 <= 0;
 O11 <= 0;
 O12 <= 0;
 O13 <= 0;
 O14 <= 0;
 O15 <= 0;
 when 1000 =>
 O0 <= 0;
 O1 <= 0;
 O2 <= 0;
 O3 <= 0;
 O4 <= 0;
 O5 <= 0;
 O6 <= 0;
 O7 <= 0;
 O8 <= 1;
 O9 <= 0;
 O10 <= 0;
 O11 <= 0;
 O12 <= 0;
 O13 <= 0;
 O14 <= 0;
 O15 <= 0;
 when 1001 =>
 O0 <= 0;
 O1 <= 0;
 O2 <= 0;
 O3 <= 0;
 O4 <= 0;
 O5 <= 0;
 O6 <= 0;
 O7 <= 0;
 O8 <= 0;
 O9 <= 1;
 O10 <= 0;
 O11 <= 0;
 O12 <= 0;
 O13 <= 0;
 O14 <= 0;
 O15 <= 0;

D-7

 when 1010 =>
 O0 <= 0;
 O1 <= 0;
 O2 <= 0;
 O3 <= 0;
 O4 <= 0;
 O5 <= 0;
 O6 <= 0;
 O7 <= 0;
 O8 <= 0;
 O9 <= 0;
 O10 <= 1;
 O11 <= 0;
 O12 <= 0;
 O13 <= 0;
 O14 <= 0;
 O15 <= 0;
 when 1011 =>
 O0 <= 0;
 O1 <= 0;
 O2 <= 0;
 O3 <= 0;
 O4 <= 0;
 O5 <= 0;
 O6 <= 0;
 O7 <= 0;
 O8 <= 0;
 O9 <= 0;
 O10 <= 0;
 O11 <= 1;
 O12 <= 0;
 O13 <= 0;
 O14 <= 0;
 O15 <= 0;
 when 1100 =>
 O0 <= 0;
 O1 <= 0;
 O2 <= 0;
 O3 <= 0;
 O4 <= 0;
 O5 <= 0;
 O6 <= 0;
 O7 <= 0;
 O8 <= 0;
 O9 <= 0;
 O10 <= 0;
 O11 <= 0;
 O12 <= 1;
 O13 <= 0;
 O14 <= 0;
 O15 <= 0;
 when 1101 =>
 O0 <= 0;
 O1 <= 0;
 O2 <= 0;
 O3 <= 0;
 O4 <= 0;
 O5 <= 0;
 O6 <= 0;
 O7 <= 0;

D-8

 O8 <= 0;
 O9 <= 0;
 O10 <= 0;
 O11 <= 0;
 O12 <= 0;
 O13 <= 1;
 O14 <= 0;
 O15 <= 0;
 when 1110 =>
 O0 <= 0;
 O1 <= 0;
 O2 <= 0;
 O3 <= 0;
 O4 <= 0;
 O5 <= 0;
 O6 <= 0;
 O7 <= 0;
 O8 <= 0;
 O9 <= 0;
 O10 <= 0;
 O11 <= 0;
 O12 <= 0;
 O13 <= 0;
 O14 <= 1;
 O15 <= 0;
 when 1111 =>
 O0 <= 0;
 O1 <= 0;
 O2 <= 0;
 O3 <= 0;
 O4 <= 0;
 O5 <= 0;
 O6 <= 0;
 O7 <= 0;
 O8 <= 0;
 O9 <= 0;
 O10 <= 0;
 O11 <= 0;
 O12 <= 0;
 O13 <= 0;
 O14 <= 0;
 O15 <= 1;
 end case;
 end process;
end BEHAVIOR;
entity J is
 port (A, B, C, D : in bit;
 O0, O1, O2,…O15 : out bit);
end S;

architecture BEHAVIOR of J is
 constant DELAY0, DELAY1, DELAY2, DELAY3,
 DELAY4, DELAY5, DELAY6, DELAY7,
 DELAY8, DELAY9, DELAY10, DELAY11,
 DELAY12, DELAY13, DELAY14, DELAY15
 : time;
begin
 process (A,B,C,D)
 begin

D-9

 case A&B&S&D is
 when 0000 =>
 O0 <= 1 after DELAY0;
 O1 <= 0 after DELAY1;
 O2 <= 0 after DELAY2;
 O3 <= 0 after DELAY3;
 O4 <= 0 after DELAY4;
 O5 <= 0 after DELAY5;
 O6 <= 0 after DELAY6;
 O7 <= 0 after DELAY7;
 O8 <= 0 after DELAY8;
 O9 <= 0 after DELAY9;
 O10 <= 0 after DELAY10;
 O11 <= 0 after DELAY11;
 O12 <= 0 after DELAY12;
 O13 <= 0 after DELAY13;
 O14 <= 0 after DELAY14;
 O15 <= 0 after DELAY15;
 when 0001 =>
 O0 <= 0 after DELAY0;
 O1 <= 1 after DELAY1;
 O2 <= 0 after DELAY2;
 O3 <= 0 after DELAY3;
 O4 <= 0 after DELAY4;
 O5 <= 0 after DELAY5;
 O6 <= 0 after DELAY6;
 O7 <= 0 after DELAY7;
 O8 <= 0 after DELAY8;
 O9 <= 0 after DELAY9;
 O10 <= 0 after DELAY10;
 O11 <= 0 after DELAY11;
 O12 <= 0 after DELAY12;
 O13 <= 0 after DELAY13;
 O14 <= 0 after DELAY14;
 O15 <= 0 after DELAY15;

 when 0010 =>
 O0 <= 0 after DELAY0;
 O1 <= 0 after DELAY1;
 O2 <= 1 after DELAY2;
 O3 <= 0 after DELAY3;
 O4 <= 0 after DELAY4;
 O5 <= 0 after DELAY5;
 O6 <= 0 after DELAY6;
 O7 <= 0 after DELAY7;
 O8 <= 0 after DELAY8;
 O9 <= 0 after DELAY9;
 O10 <= 0 after DELAY10;
 O11 <= 0 after DELAY11;
 O12 <= 0 after DELAY12;
 O13 <= 0 after DELAY13;
 O14 <= 0 after DELAY14;
 O15 <= 0 after DELAY15;
 when 0011 =>
 O0 <= 0 after DELAY0;
 O1 <= 0 after DELAY1;
 O2 <= 0 after DELAY2;
 O3 <= 1 after DELAY3;
 O4 <= 0 after DELAY4;
 O5 <= 0 after DELAY5;

D-10

 O6 <= 0 after DELAY6;
 O7 <= 0 after DELAY7;
 O8 <= 0 after DELAY8;
 O9 <= 0 after DELAY9;
 O10 <= 0 after DELAY10;
 O11 <= 0 after DELAY11;
 O12 <= 0 after DELAY12;
 O13 <= 0 after DELAY13;
 O14 <= 0 after DELAY14;
 O15 <= 0 after DELAY15;
 when 0100 =>
 O0 <= 0 after DELAY0;
 O1 <= 0 after DELAY1;
 O2 <= 0 after DELAY2;
 O3 <= 0 after DELAY3;
 O4 <= 1 after DELAY4;
 O5 <= 0 after DELAY5;
 O6 <= 0 after DELAY6;
 O7 <= 0 after DELAY7;
 O8 <= 0 after DELAY8;
 O9 <= 0 after DELAY9;
 O10 <= 0 after DELAY10;
 O11 <= 0 after DELAY11;
 O12 <= 0 after DELAY12;
 O13 <= 0 after DELAY13;
 O14 <= 0 after DELAY14;
 O15 <= 0 after DELAY15;
 when 0101 =>
 O0 <= 0 after DELAY0;
 O1 <= 0 after DELAY1;
 O2 <= 0 after DELAY2;
 O3 <= 0 after DELAY3;
 O4 <= 0 after DELAY4;
 O5 <= 1 after DELAY5;
 O6 <= 0 after DELAY6;
 O7 <= 0 after DELAY7;
 O8 <= 0 after DELAY8;
 O9 <= 0 after DELAY9;
 O10 <= 0 after DELAY10;
 O11 <= 0 after DELAY11;
 O12 <= 0 after DELAY12;
 O13 <= 0 after DELAY13;
 O14 <= 0 after DELAY14;
 O15 <= 0 after DELAY15;
 when 0110 =>
 O0 <= 0 after DELAY0;
 O1 <= 0 after DELAY1;
 O2 <= 0 after DELAY2;
 O3 <= 0 after DELAY3;
 O4 <= 0 after DELAY4;
 O5 <= 0 after DELAY5;
 O6 <= 1 after DELAY6;
 O7 <= 0 after DELAY7;
 O8 <= 0 after DELAY8;
 O9 <= 0 after DELAY9;
 O10 <= 0 after DELAY10;
 O11 <= 0 after DELAY11;
 O12 <= 0 after DELAY12;
 O13 <= 0 after DELAY13;
 O14 <= 0 after DELAY14;

D-11

 O15 <= 0 after DELAY15;
 when 0111 =>
 O0 <= 9 after DELAY0;
 O1 <= 0 after DELAY1;
 O2 <= 0 after DELAY2;
 O3 <= 0 after DELAY3;
 O4 <= 0 after DELAY4;
 O5 <= 0 after DELAY5;
 O6 <= 0 after DELAY6;
 O7 <= 1 after DELAY7;
 O8 <= 0 after DELAY8;
 O9 <= 0 after DELAY9;
 O10 <= 0 after DELAY10;
 O11 <= 0 after DELAY11;
 O12 <= 0 after DELAY12;
 O13 <= 0 after DELAY13;
 O14 <= 0 after DELAY14;
 O15 <= 0 after DELAY15;
 when 1000 =>
 O0 <= 0 after DELAY0;
 O1 <= 0 after DELAY1;
 O2 <= 0 after DELAY2;
 O3 <= 0 after DELAY3;
 O4 <= 0 after DELAY4;
 O5 <= 0 after DELAY5;
 O6 <= 0 after DELAY6;
 O7 <= 0 after DELAY7;
 O8 <= 1 after DELAY8;
 O9 <= 0 after DELAY9;
 O10 <= 0 after DELAY10;
 O11 <= 0 after DELAY11;
 O12 <= 0 after DELAY12;
 O13 <= 0 after DELAY13;
 O14 <= 0 after DELAY14;
 O15 <= 0 after DELAY15;
 when 1001 =>
 O0 <= 0 after DELAY0;
 O1 <= 0 after DELAY1;
 O2 <= 0 after DELAY2;
 O3 <= 0 after DELAY3;
 O4 <= 0 after DELAY4;
 O5 <= 0 after DELAY5;
 O6 <= 0 after DELAY6;
 O7 <= 0 after DELAY7;
 O8 <= 0 after DELAY8;
 O9 <= 1 after DELAY9;
 O10 <= 0 after DELAY10;
 O11 <= 0 after DELAY11;
 O12 <= 0 after DELAY12;
 O13 <= 0 after DELAY13;
 O14 <= 0 after DELAY14;
 O15 <= 0 after DELAY15;
 when 1010 =>
 O0 <= 0 after DELAY0;
 O1 <= 0 after DELAY1;
 O2 <= 0 after DELAY2;
 O3 <= 0 after DELAY3;
 O4 <= 0 after DELAY4;
 O5 <= 0 after DELAY5;
 O6 <= 0 after DELAY6;

D-12

 O7 <= 0 after DELAY7;
 O8 <= 0 after DELAY8;
 O9 <= 0 after DELAY9;
 O10 <= 1 after DELAY10;
 O11 <= 0 after DELAY11;
 O12 <= 0 after DELAY12;
 O13 <= 0 after DELAY13;
 O14 <= 0 after DELAY14;
 O15 <= 0 after DELAY15;
 when 1011 =>
 O0 <= 0 after DELAY0;
 O1 <= 0 after DELAY1;
 O2 <= 0 after DELAY2;
 O3 <= 0 after DELAY3;
 O4 <= 0 after DELAY4;
 O5 <= 0 after DELAY5;
 O6 <= 0 after DELAY6;
 O7 <= 0 after DELAY7;
 O8 <= 0 after DELAY8;
 O9 <= 0 after DELAY9;
 O10 <= 0 after DELAY10;
 O11 <= 1 after DELAY11;
 O12 <= 0 after DELAY12;
 O13 <= 0 after DELAY13;
 O14 <= 0 after DELAY14;
 O15 <= 0 after DELAY15;
 when 1100 =>
 O0 <= 0 after DELAY0;
 O1 <= 0 after DELAY1;
 O2 <= 0 after DELAY2;
 O3 <= 0 after DELAY3;
 O4 <= 0 after DELAY4;
 O5 <= 0 after DELAY5;
 O6 <= 0 after DELAY6;
 O7 <= 0 after DELAY7;
 O8 <= 0 after DELAY8;
 O9 <= 0 after DELAY9;
 O10 <= 0 after DELAY10;
 O11 <= 0 after DELAY11;
 O12 <= 1 after DELAY12;
 O13 <= 0 after DELAY13;
 O14 <= 0 after DELAY14;
 O15 <= 0 after DELAY15;
 when 1101 =>
 O0 <= 0 after DELAY0;
 O1 <= 0 after DELAY1;
 O2 <= 0 after DELAY2;
 O3 <= 0 after DELAY3;
 O4 <= 0 after DELAY4;
 O5 <= 0 after DELAY5;
 O6 <= 0 after DELAY6;
 O7 <= 0 after DELAY7;
 O8 <= 0 after DELAY8;
 O9 <= 0 after DELAY9;
 O10 <= 0 after DELAY10;
 O11 <= 0 after DELAY11;
 O12 <= 0 after DELAY12;
 O13 <= 1 after DELAY13;
 O14 <= 0 after DELAY14;
 O15 <= 0 after DELAY15;

D-13

 when 1110 =>
 O0 <= 0 after DELAY0;
 O1 <= 0 after DELAY1;
 O2 <= 0 after DELAY2;
 O3 <= 0 after DELAY3;
 O4 <= 0 after DELAY4;
 O5 <= 0 after DELAY5;
 O6 <= 0 after DELAY6;
 O7 <= 0 after DELAY7;
 O8 <= 0 after DELAY8;
 O9 <= 0 after DELAY9;
 O10 <= 0 after DELAY10;
 O11 <= 0 after DELAY11;
 O12 <= 0 after DELAY12;
 O13 <= 0 after DELAY13;
 O14 <= 1 after DELAY14;
 O15 <= 0 after DELAY15;
 when 1111 =>
 O0 <= 0 after DELAY0;
 O1 <= 0 after DELAY1;
 O2 <= 0 after DELAY2;
 O3 <= 0 after DELAY3;
 O4 <= 0 after DELAY4;
 O5 <= 0 after DELAY5;
 O6 <= 0 after DELAY6;
 O7 <= 0 after DELAY7;
 O8 <= 0 after DELAY8;
 O9 <= 0 after DELAY9;
 O10 <= 0 after DELAY10;
 O11 <= 0 after DELAY11;
 O12 <= 0 after DELAY12;
 O13 <= 0 after DELAY13;
 O14 <= 0 after DELAY14;
 O15 <= 1 after DELAY15;
 end case;
 end process;
end BEHAVIOR;

E-1

Appendix E

S,I and J Target Modesl

S_Behavior_Default_0
def
=

 s_behavior_default_a.('s_behavior_default_o0| 's_behavior_default_o1).S_Behavior_Default_1

+ s_behavior_default_b.('s_behavior_default_o0| s_behavior_default_o2).S_Behavior_Default_2

+ s_behavior_default_c.('s_behavior_default_o0| 's_behavior_default_o4).S_Behavior_Default_4

+ s_behavior_default_d.('s_behavior_default_o0| 's_behavior_default_o8).S_Behavior_Default_8

S_Behavior_Default_1
def
=

s_behavior_default_a.('s_behavior_default_o1 | 's_behavior_default_o0).S_Behavior_Default_0

+ s_behavior_default_b.('s_behavior_default_o1 | 's_behavior_default_o3).S_Behavior_Default_3

+ s_behavior_default_c.('s_behavior_default_o1 | 's_behavior_default_o5).S_Behavior_Default_5

+ s_behavior_default_d.('s_behavior_default_o1 | 's_behavior_default_o9).S_Behavior_Default_9

S_Behavior_Default_2
def
=

s_behavior_default_a.('s_behavior_default_o2 | 's_behavior_default_o3).S_Behavior_Default_3

+ s_behavior_default_b.('s_behavior_default_o2 | 's_behavior_default_o0).S_Behavior_Default_0

+ s_behavior_default_c.('s_behavior_default_o2 | 's_behavior_default_o6).S_Behavior_Default_6

S_Behavior_Default_3
def
=

s_behavior_default_a.('s_behavior_default_o3 | 's_behavior_default_o2).S_Behavior_Default_2

+ s_behavior_default_b.('s_behavior_default_o3 | 's_behavior_default_o1).S_Behavior_Default_1

+ s_behavior_default_c.('s_behavior_default_o3 | 's_behavior_default_o7).S_Behavior_Default_7

S_Behavior_Default_4
def
=

 s_behavior_default_a.('s_behavior_default_o4 | 's_behavior_default_o5).S_Behavior_Default_5

+ s_behavior_default_b.('s_behavior_default_o4 | 's_behavior_default_o6).S_Behavior_Default_6

+ s_behavior_default_c.('s_behavior_default_o4 | ō0).S_Behavior_Default_0

E-2

S_Behavior_Default_5
def
=

 s_behavior_default_a.('s_behavior_default_o5 | 's_behavior_default_o4).S_Behavior_Default_4

+ s_behavior_default_b.('s_behavior_default_o5 | 's_behavior_default_o7).S_Behavior_Default_7

+ s_behavior_default_c.('s_behavior_default_o5 | 's_behavior_default_o1).S_Behavior_Default_1

S_Behavior_Default_6
def
=

s_behavior_default_a.('s_behavior_default_o6 | 's_behavior_default_o7).S_Behavior_Default_7

+ s_behavior_default_b.('s_behavior_default_o6 | 's_behavior_default_o4).S_Behavior_Default_4

+ s_behavior_default_c.('s_behavior_default_o6 | 's_behavior_default_o2).S_Behavior_Default_2

S_Behavior_Default_7
def
=

 s_behavior_default_a.('s_behavior_default_o7 | 's_behavior_default_o6).S_Behavior_Default_6

+ s_behavior_default_b.('s_behavior_default_o7 | 's_behavior_default_o5).S_Behavior_Default_5

+ s_behavior_default_c.('s_behavior_default_o7 | 's_behavior_default_o3).S_Behavior_Default_3

S_Behavior_Default_8
def
=

 s_behavior_default_a.('s_behavior_default_o8 | 's_behavior_default_o9).S_Behavior_Default_9

+ s_behavior_default_d.('s_behavior_default_o8 | 's_behavior_default_o0).S_Behavior_Default_0

S_Behavior_Default_9
def
=

s_behavior_default_a.('s_behavior_default_o9 | 's_behavior_default_o8).S_Behavior_Default_8

+ s_behavior_default_d.('s_behavior_default_o9 | 's_behavior_default_o1).S_Behavior_Default_1

E-3

I_Behavior_Default_0
def
=

 i_behavior_default_a.('i_behavior_default_o0| 'i_behavior_default_o1).I_Behavior_Default_1

+ i_behavior_default_b.('i_behavior_default_o0| i_behavior_default_o2).I_Behavior_Default_2

+ i_behavior_default_c.('i_behavior_default_o0| 'i_behavior_default_o4).I_Behavior_Default_4

+ i_behavior_default_d.('i_behavior_default_o0| 'i_behavior_default_o8).I_Behavior_Default_8

I_Behavior_Default_1
def
=

i_behavior_default_a.('i_behavior_default_o1 | 'i_behavior_default_o0).I_Behavior_Default_0

+ i_behavior_default_b.('i_behavior_default_o1 | 'i_behavior_default_o3).I_Behavior_Default_3

+ i_behavior_default_c.('i_behavior_default_o1 | 'i_behavior_default_o5).I_Behavior_Default_5

+ i_behavior_default_d.('i_behavior_default_o1 | 'i_behavior_default_o9).I_Behavior_Default_9

I_Behavior_Default_2
def
=

i_behavior_default_a.('i_behavior_default_o2 | 'i_behavior_default_o3).I_Behavior_Default_3

+ i_behavior_default_b.('i_behavior_default_o2 | 'i_behavior_default_o0).I_Behavior_Default_0

+ i_behavior_default_c.('i_behavior_default_o2 | 'i_behavior_default_o6).I_Behavior_Default_6

+ i_behavior_default_d.('i_behavior_default_o2 | 'i_behavior_default_o10).I_Behavior_Default_10

I_Behavior_Default_3
def
=

i_behavior_default_a.('i_behavior_default_o3 | 'i_behavior_default_o2).I_Behavior_Default_2

+ i_behavior_default_b.('i_behavior_default_o3 | 'i_behavior_default_o1).I_Behavior_Default_1

+ i_behavior_default_c.('i_behavior_default_o3 | 'i_behavior_default_o7).I_Behavior_Default_7

+ i_behavior_default_d.('i_behavior_default_o3 | 'i_behavior_default_o11).I_Behavior_Default_11

I_Behavior_Default_4
def
=

 i_behavior_default_a.('i_behavior_default_o4 | 'i_behavior_default_o5).I_Behavior_Default_5

+ i_behavior_default_b.('i_behavior_default_o4 | 'i_behavior_default_o6).I_Behavior_Default_6

+ i_behavior_default_c.('i_behavior_default_o4 | ō0).I_Behavior_Default_0

+ i_behavior_default_d.('i_behavior_default_o4 | 'i_behavior_default_o12).I_Behavior_Default_12

I_Behavior_Default_5
def
=

 i_behavior_default_a.('i_behavior_default_o5 | 'i_behavior_default_o4).I_Behavior_Default_4

E-4

+ i_behavior_default_b.('i_behavior_default_o5 | 'i_behavior_default_o7).I_Behavior_Default_7

+ i_behavior_default_c.('i_behavior_default_o5 | 'i_behavior_default_o1).I_Behavior_Default_1

+ i_behavior_default_d.('i_behavior_default_o5 | 'i_behavior_default_o13).I_Behavior_Default_13

I_Behavior_Default_6
def
=

i_behavior_default_a.('i_behavior_default_o6 | 'i_behavior_default_o7).I_Behavior_Default_7

+ i_behavior_default_b.('i_behavior_default_o6 | 'i_behavior_default_o4).I_Behavior_Default_4

+ i_behavior_default_c.('i_behavior_default_o6 | 'i_behavior_default_o2).I_Behavior_Default_2

+ i_behavior_default_d.('i_behavior_default_o6 | 'i_behavior_default_o14).I_Behavior_Default_14

I_Behavior_Default_7
def
=

 i_behavior_default_a.('i_behavior_default_o7 | 'i_behavior_default_o6).I_Behavior_Default_6

+ i_behavior_default_b.('i_behavior_default_o7 | 'i_behavior_default_o5).I_Behavior_Default_5

+ i_behavior_default_c.('i_behavior_default_o7 | 'i_behavior_default_o3).I_Behavior_Default_3

+ i_behavior_default_d.('i_behavior_default_o7 | 'i_behavior_default_o15).I_Behavior_Default_15

I_Behavior_Default_8
def
=

 i_behavior_default_a.('i_behavior_default_o8 | 'i_behavior_default_o9).I_Behavior_Default_9

+ i_behavior_default_b.('i_behavior_default_o8 | 'i_behavior_default_o10).I_Behavior_Default_10

+ i_behavior_default_c.('i_behavior_default_o8 | 'i_behavior_default_o123).I_Behavior_Default_12

+ i_behavior_default_d.('i_behavior_default_o8 | 'i_behavior_default_o0).I_Behavior_Default_0

I_Behavior_Default_9
def
=

i_behavior_default_a.('i_behavior_default_o9 | 'i_behavior_default_o8).I_Behavior_Default_8

+ i_behavior_default_b.('i_behavior_default_o9 | 'i_behavior_default_o11).I_Behavior_Default_11

+ i_behavior_default_c.('i_behavior_default_o9 | 'i_behavior_default_o13).I_Behavior_Default_13

+ i_behavior_default_d.('i_behavior_default_o9 | 'i_behavior_default_o1).I_Behavior_Default_1

I_Behavior_Default_10
def
=

i_behavior_default_a.('i_behavior_default_o10 | 'i_behavior_default_o11).I_Behavior_Default_11

+ i_behavior_default_b.('i_behavior_default_o10 | 'i_behavior_default_o8).I_Behavior_Default_8

+ i_behavior_default_c.('i_behavior_default_o10 | 'i_behavior_default_o14).I_Behavior_Default_14

E-5

+ i_behavior_default_d.('i_behavior_default_o10 | 'i_behavior_default_o2).I_Behavior_Default_2

I_Behavior_Default_11
def
=

i_behavior_default_a.('i_behavior_default_o11 | 'i_behavior_default_o10).I_Behavior_Default_10

+ i_behavior_default_b.('i_behavior_default_o11 | 'i_behavior_default_o9).I_Behavior_Default_9

+ i_behavior_default_c.('i_behavior_default_o11 | 'i_behavior_default_o15).I_Behavior_Default_15

+ i_behavior_default_d.('i_behavior_default_o11 | 'i_behavior_default_o7).I_Behavior_Default_7

I_Behavior_Default_12
def
=

i_behavior_default_a.('i_behavior_default_o12 | 'i_behavior_default_o13).I_Behavior_Default_13

+ i_behavior_default_b.('i_behavior_default_o12 | 'i_behavior_default_o14).I_Behavior_Default_14

+ i_behavior_default_c.('i_behavior_default_o12 | 'i_behavior_default_o8).I_Behavior_Default_8

+ i_behavior_default_d.('i_behavior_default_o12 | 'i_behavior_default_o4).I_Behavior_Default_4

I_Behavior_Default_13
def
=

i_behavior_default_a.('i_behavior_default_o13 | 'i_behavior_default_o12).I_Behavior_Default_12

+ i_behavior_default_b.('i_behavior_default_o13 | 'i_behavior_default_o15).I_Behavior_Default_15

+ i_behavior_default_c.('i_behavior_default_o13 | 'i_behavior_default_o19).I_Behavior_Default_19

+ i_behavior_default_d.('i_behavior_default_o13 | 'i_behavior_default_o5).I_Behavior_Default_5

I_Behavior_Default_14
def
=

i_behavior_default_a.('i_behavior_default_o14 | 'i_behavior_default_o15).I_Behavior_Default_15

+ i_behavior_default_b.('i_behavior_default_o14 | 'i_behavior_default_o12).I_Behavior_Default_12

+ i_behavior_default_c.('i_behavior_default_o14 | 'i_behavior_default_o10).I_Behavior_Default_10

+ i_behavior_default_d.('i_behavior_default_o14 | 'i_behavior_default_o6).I_Behavior_Default_6

I_Behavior_Default_15
def
=

i_behavior_default_a.('i_behavior_default_o15 | 'i_behavior_default_o14).I_Behavior_Default_14

+ i_behavior_default_b.('i_behavior_default_o15 | 'i_behavior_default_o13).I_Behavior_Default_13

+ i_behavior_default_c.('i_behavior_default_o15 | 'i_behavior_default_o11).I_Behavior_Default_11

+ i_behavior_default_d.('i_behavior_default_o15 | 'i_behavior_default_o7).I_Behavior_Default_7

E-6

J_Behavior_Default_0
def
=

 j_behavior_default_a. 'j_behavior_default_o0. 'j_behavior_default_o1.J_Behavior_Default_1

+ j_behavior_default_b. 'j_behavior_default_o0. j_behavior_default_o2.J_Behavior_Default_2

+ j_behavior_default_c. 'j_behavior_default_o0. 'j_behavior_default_o4.J_Behavior_Default_4

+ j_behavior_default_d.'j_behavior_default_o0. 'j_behavior_default_o8.J_Behavior_Default_8

J_Behavior_Default_1
def
=

j_behavior_default_a. 'j_behavior_default_o0 . 'j_behavior_default_o1.J_Behavior_Default_0

+ j_behavior_default_b. 'j_behavior_default_o1 . 'j_behavior_default_o3.J_Behavior_Default_3

+ j_behavior_default_c. 'j_behavior_default_o1 . 'j_behavior_default_o5.J_Behavior_Default_5

+ j_behavior_default_d. 'j_behavior_default_o1 . 'j_behavior_default_o9.J_Behavior_Default_9

J_Behavior_Default_2
def
=

j_behavior_default_a. 'j_behavior_default_o2 . 'j_behavior_default_o3.J_Behavior_Default_3

+ j_behavior_default_b. 'j_behavior_default_o0 . 'j_behavior_default_o2.J_Behavior_Default_0

+ j_behavior_default_c. 'j_behavior_default_o2 . 'j_behavior_default_o6.J_Behavior_Default_6

+ j_behavior_default_d. 'j_behavior_default_o2 . 'j_behavior_default_o10.J_Behavior_Default_10

J_Behavior_Default_3
def
=

j_behavior_default_a. 'j_behavior_default_o2 . 'j_behavior_default_o3.J_Behavior_Default_2

+ j_behavior_default_b. 'j_behavior_default_o1 . 'j_behavior_default_o3.J_Behavior_Default_1

+ j_behavior_default_c. 'j_behavior_default_o3 . 'j_behavior_default_o7.J_Behavior_Default_7

+ j_behavior_default_d. 'j_behavior_default_o3 . 'j_behavior_default_o11.J_Behavior_Default_11

J_Behavior_Default_4
def
=

 j_behavior_default_a. 'j_behavior_default_o4 . 'j_behavior_default_o5.J_Behavior_Default_5

+ j_behavior_default_b. 'j_behavior_default_o4 . 'j_behavior_default_o6.J_Behavior_Default_6

+ j_behavior_default_c. 'j_behavior_default_o0 .'j_behavior_default_4.J_Behavior_Default_0

+ j_behavior_default_d. 'j_behavior_default_o4 . 'j_behavior_default_o12.J_Behavior_Default_12

J_Behavior_Default_5
def
=

 j_behavior_default_a. 'j_behavior_default_o4 . 'j_behavior_default_o5.J_Behavior_Default_4

E-7

+ j_behavior_default_b. 'j_behavior_default_o5 . 'j_behavior_default_o7.J_Behavior_Default_7

+ j_behavior_default_c. 'j_behavior_default_o1 . 'j_behavior_default_o5.J_Behavior_Default_1

+ j_behavior_default_d. 'j_behavior_default_o5 . 'j_behavior_default_o13.J_Behavior_Default_13

J_Behavior_Default_6
def
=

j_behavior_default_a. 'j_behavior_default_o6 . 'j_behavior_default_o7.J_Behavior_Default_7

+ j_behavior_default_b. 'j_behavior_default_o4 . 'j_behavior_default_o6.J_Behavior_Default_4

+ j_behavior_default_c. 'j_behavior_default_o2 . 'j_behavior_default_o6.J_Behavior_Default_2

+ j_behavior_default_d. 'j_behavior_default_o6 . 'j_behavior_default_o14.J_Behavior_Default_14

J_Behavior_Default_7
def
=

 j_behavior_default_a. 'j_behavior_default_o6 . 'j_behavior_default_o7.J_Behavior_Default_6

+ j_behavior_default_b. 'j_behavior_default_o5 . 'j_behavior_default_o7.J_Behavior_Default_5

+ j_behavior_default_c. 'j_behavior_default_o3 . 'j_behavior_default_o7.J_Behavior_Default_3

+ j_behavior_default_d. 'j_behavior_default_o7 . 'j_behavior_default_o15.J_Behavior_Default_15

J_Behavior_Default_8
def
=

 j_behavior_default_a. 'j_behavior_default_o8 . 'j_behavior_default_o9.J_Behavior_Default_9

+ j_behavior_default_b. 'j_behavior_default_o8 . 'j_behavior_default_o10.J_Behavior_Default_10

+ j_behavior_default_c. 'j_behavior_default_o8 . 'j_behavior_default_o12.J_Behavior_Default_12

+ j_behavior_default_d. 'j_behavior_default_o0 . 'j_behavior_default_o8.J_Behavior_Default_0

J_Behavior_Default_9
def
=

j_behavior_default_a. 'j_behavior_default_o0 . 'j_behavior_default_o9.J_Behavior_Default_8

+ j_behavior_default_b. 'j_behavior_default_o9 . 'j_behavior_default_o11.J_Behavior_Default_11

+ j_behavior_default_c. 'j_behavior_default_o9 . 'j_behavior_default_o13.J_Behavior_Default_13

+ j_behavior_default_d. 'j_behavior_default_o1 . 'j_behavior_default_o9.J_Behavior_Default_1

J_Behavior_Default_10
def
=

j_behavior_default_a. 'j_behavior_default_o10 . 'j_behavior_default_o11.J_Behavior_Default_11

+ j_behavior_default_b. 'j_behavior_default_o8 . 'j_behavior_default_o10.J_Behavior_Default_8

+ j_behavior_default_c. 'j_behavior_default_o10 . 'j_behavior_default_o14.J_Behavior_Default_14

E-8

+ j_behavior_default_d. 'j_behavior_default_o2 . 'j_behavior_default_o10.J_Behavior_Default_2

J_Behavior_Default_11
def
=

j_behavior_default_a. 'j_behavior_default_o10 . 'j_behavior_default_o11.J_Behavior_Default_10

+ j_behavior_default_b. 'j_behavior_default_o9 . 'j_behavior_default_o11.J_Behavior_Default_9

+ j_behavior_default_c. 'j_behavior_default_o11 . 'j_behavior_default_o15.J_Behavior_Default_15

+ j_behavior_default_d. 'j_behavior_default_o7 . 'j_behavior_default_o11.J_Behavior_Default_7

J_Behavior_Default_12
def
=

j_behavior_default_a. 'j_behavior_default_o12 . 'j_behavior_default_o13.J_Behavior_Default_13

+ j_behavior_default_b. 'j_behavior_default_o12 . 'j_behavior_default_o14.J_Behavior_Default_14

+ j_behavior_default_c. 'j_behavior_default_o8 . 'j_behavior_default_o12.J_Behavior_Default_8

+ j_behavior_default_d. 'j_behavior_default_o4 . 'j_behavior_default_o12.J_Behavior_Default_4

J_Behavior_Default_13
def
=

j_behavior_default_a. 'j_behavior_default_o12 . 'j_behavior_default_o13.J_Behavior_Default_12

+ j_behavior_default_b. 'j_behavior_default_o13 . 'j_behavior_default_o15.J_Behavior_Default_15

+ j_behavior_default_c. 'j_behavior_default_o9 . 'j_behavior_default_o13.J_Behavior_Default_19

+ j_behavior_default_d. 'j_behavior_default_o5 . 'j_behavior_default_o13.J_Behavior_Default_5

J_Behavior_Default_14
def
=

j_behavior_default_a. 'j_behavior_default_o14 . 'j_behavior_default_o15.J_Behavior_Default_15

+ j_behavior_default_b. 'j_behavior_default_o12 . 'j_behavior_default_o14.J_Behavior_Default_12

+ j_behavior_default_c. 'j_behavior_default_o10 . 'j_behavior_default_o14.J_Behavior_Default_10

+ j_behavior_default_d. 'j_behavior_default_o6 . 'j_behavior_default_o14.J_Behavior_Default_6

J_Behavior_Default_15
def
=

j_behavior_default_a. 'j_behavior_default_o14 . 'j_behavior_default_o15.J_Behavior_Default_14

+ j_behavior_default_b. 'j_behavior_default_o13 . 'j_behavior_default_o15.J_Behavior_Default_13

+ j_behavior_default_c. 'j_behavior_default_o11 . 'j_behavior_default_o15.J_Behavior_Default_11

+ j_behavior_default_d. 'j_behavior_default_o7 . 'j_behavior_default_o15.J_Behavior_Default_7

R-1

References

Alur, R., R.K. Brayton, T.A. Henzinger, S. Qadeer and S.K. Rajamani. “Partial Order

Reduction in Symbolic State Space Exploration.” Proceedings of the Ninth
International Conference on Computer-aided Verification (CAV 1997), Lecture
Notes in Computer Science 1254, Springer-Verlag, 1997. Pages 340-351.

Auletta, Richard J. “VHDL synthesized CSP Systems,” VHDL International Users

Forum, Fall 1991. Pages 95-102.

Arun-Kumar, S. and Matthew Hennessy. “An Efficiency Preoreder for Proceses.” Acta

Informatica 29, 1992. Pages 737-760

Arun-Kumar, S. and V. Natajaran. “Conformance: A Precongruence close to

Bisimilarity.” International Workshop on Structures in Concurrency Theory
(STRICT '95), J. Desel, ed., Workshops in Computing, Springer-Verlag, May
1995. Pages 55-68.

Bloom, B., S. Istrail and A. R. Meyer. “Bisimulation Can’t Be Traced: Preliminary

Report,” 15th ACM Symposium on Principles of Programming Languages
(POPL), pp. 229-239, San Diego CA. 1988.

Brookes, S. D., C. A. R. Hoare and A. W. Roscoe. “A Theory of Communicating

Sequential Processes,” JACM 31(3), pp. 560-599. 1984.

Burch, J. “Combining CTL, TraceTheory and Timing Models.” Automatic Verification

Methods for Finite State Systems: Proceedings of the First CAV, Lecture Notes in
Computer Science 407, pages 197--212. Springer-Verlag, 1989.

Cleaveland, Parrow and Steffin. The Concurrency Workbench: A Semantics-based

Verification Tool for Finite-state Machines, Lecture Notes in Computer Science
407, Springer-Verlag, 1989.

 Cleaveland, Rance and Joachim Parrow. "The Concurrency Workbench: A Semantics-

Based Tool for the Verification of Concurrent Systems," ACM Transactions on
Programming Languages and Systems, 15, no. 1, January 1993. Pages 36-72.

Corradini, F., R. Gorrieri and M. Roccetti. “Performance preorder and competitive

equivalence, ” Acta Informatica, 34, 1997. Pages 805-835.

Degano, Pierpaolo and Corrado Priami. “Non-interleaving semantics for mobile

processes”. Theoretical Computer Science 216, 1999. Pages 237-270

De Nicola, R. and M. Hennessy. “Testing Equivalences for Processes,” Theoretical

Computer Science 34, pp. 83-133. 1984.

R-2

Dijkstra, E. W., "Cooperating Sequential Processes," 43-112. Programming Languages,

F. Genys (editor). Academic Press, New York. 1968.

Dukes, Michael , Frank M. Brown and Joanne E. DeGroat. "Verification of Layout

Descriptions Using GES," 63-72. Proceedings of the VHDL Users Group Spring
1991 Conference. Menlo Park: Conference Management Services; 8-10 April
1991.

Dukes, Michael. Hardware Verification Through Logic Extraction. PhD Dissertation.

AFIT. School of Engineering. Wright-Patterson Air Force Base OH; 1993.

Davis, Clarke and Stevens. “Automatic Synthesis of Fast Compact Asynchronous

Control Circuits,” Research Report No. 92/495/33. University of Calgary.
Department of Electrical and Computer Engineering. Calgary, Alberta, Canada.
1992.

DoD (United States Department of Defense). Standard General Requirements for

Electronic Equipment. MIL-STD-454N. Requirement 64 (Microelectronic
Devices). Washington: Government Printing Office, 1992.

Fernandez, Jean-Claude. “An Implementation of an Efficient Algorithm for Bisimulation

Equivalence", Science of Computer Programming 13 219-236. Elsevier Science.
1989.

Fujita, Mashahiro, Hidehiko Tanaka and Tohru Moto-oka. “Temporal Logic Based

Hardware Description and Its Verification with Prolog,” New Generation
Computing 1 (1983) 195-203. OHMSHA, Ltd. and Springer-Verlag. 1983.

Fujita, Mashahiro, Hidehiko Tanaka and Tohru Moto-oka. “Verification with Prolog

and Temporal Logic,” Computer Hardware Description Languages and their
Applications, T. Uehara and M. Barbacci (Editors). North-Holland Publishing
Company. IFIP 1983.

Godefroid, Patrice. Partial Order Methods for the Verification of Concurrent Systems.

Doctoral Thesis. University of Liege. 1995.

Gordon, Andrew D. “A Tutorial on Coinduction and Functional Programming.”

Proceedings of the 1994 Glasgow Workshop on Functional Programming.
Springer Workshops on Computing. 1995.

Gordon, Michael. The HOL Manual. 1987.

-----. The HOL System Tutorial. Cambridge Research Center of SRI International under

a grant from DSTO Australia, 8 December 1989.

R-3

Groote, J. F. and F. W. Vaandrager. Structured Operational Semantics and Bisimulation

as a Congruence. Report CS-R8845, Centrum voor Wiskunde En Informatica,
Amsterdam. 1988.

Guttag, John V. and James J. Horning. Larch: Languages and Tools for Formal

Specification. Springer-Verlag. New York. 1993.

Hennessy, Matthew. Algebraic Theory of Processes. MIT Press. Cambridge MA.

1988.

Hennessy, M. and R. Milner. “Algebraic Laws for Nondeterminism and Concurrency,”

JACM 32(1), pp. 137-161. 1985.

Hoare, C. A. R. “Communicating Sequential Processes,” On the Construction of

Programs—an Advanced Course (R. M. McKeag and A. M. Macnaghten, eds.),
pp. 229-254. Cambridge University Press. 1980.

-----, Communicating Sequential Processes. Prentice Hall International, London, 1985.

Hua, Gary Xin and Hantoa Zhang. “Formal Semantics of VHDL for Verification of

Circuit Designs. 1993 IEEE International Conference on Computer Design.
IEEE Computer Society Press, Los Alamitos CA. 1993.

IEEE (Institute of Electrical and Electronics Engineers). IEEE Standard for Waveform

and Vector Exchange (WAVES), IEEE Std. 1029.1-1991, IEEE Press, New York
(1991).

-----. IEEE Standard VHDL Language Reference Manual, IEEE Press, New York

(1993).

-----. IEEE P1364.1/Draft 2.0, February 11,2002.

Ingólfsdóttir, Anna and Andrea Schalk. A Fully Abstract Denotational Model for

Observational Congruence. Basic Research in Computer Science Report
BRICS-RS-95-40, August 1995.

Jacobs, Bart and Jan Rutten. “A Tutorial on (Co)Algebras and (Co)Induction.” Bulletin

of EATCS 62, pages 222-259. 1997

Jamsik, Damir and Mark Bickford. Formal Verification of VHDL Models. Final

Technical Report RL-TR-94-3. Rome Laboratory. Air Force Material Command.
Griffiss Air Force Base NY.

Lipsett, Roger, Schaefer, Carl and Ussery, Cary. VHDL: Hardware Description and

Design. Springer-Verlag. 1989.

R-4

Liu, Ying. Reasoning about Asynchronous Designs in CCS. Master's Thesis.

University of Calgary. Department of Electrical and Computer Engineering.
Calgary, Alberta, Canada. 1992.

Lüttgen, Gerald and Walter Vogler. A Faster-than Relation for Asynchronous Processes.

ICASE Report No. 2001-2. NASA Langley Research Center, Hampton VA.
January 2001

Maclane, Saunders and Garrett Birkhoff. Algebra. Chelsea Publishing Company, New

York, 1993.

Manna, Z. and A Pnueli. The Temporal Logic of Reactive Systems: Specification,

Springer-Verlag. 1992.

Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers.

Boston (1993).

Milner, R. “Calculi for Synchrony and Asynchrony,” Theoretical Computer Science 25,

pp. 267-310. 1983.

Milner, R. Communication and Concurrency, Prentice Hall. New York, London. 1989.

Musgrave, Gerry, Roger B. Hughes and David Duncombe. “Review of Verification

Techniques.” http://www.ahl.co.uk. 1997.

Noh, Tim H. “Microcircuit Quality and Design Verification Improvement Project.”

Defense Electronics Supply Center presentation to the Air Force Producibility,
Reliability, Availability and Maintainability (PRAM) office, Wright-Patterson Air
Force Base OH.

Olderog, E. R. and C. A. R. Hoare. “Specification-oriented Semantics for

Communicating Processes,” Acta Informatica 23, pp. 9-66. 1986.

Park, D. M. R. “Concurrency and Automata on Infinite Processes,” Proceedings 5th GI

Conference (P. Deussen, ed.) LNCS 104, pp. 167-183. Springer-Verlag, 1981.

Perry, William. “Memorandum for Secretaries of the Military Departments,” 29 June

1994.

Phillips, I. C. C. “Refusal Testing,” Theoretical Computer Science 50, pp. 241-284.

1987.

Read, Simon and Martyn Edwards. “A Formal Semantics of VHDL in Boyer-Moore

Logic.” Proceedings of the International Conference on Concurrent Engineering
and Electronic Design Automation (CEEDA ‘94) (Medhat, ed.). Department of
Computation, UMIST Manchester, Great Britain.

R-5

Rounds, W. C. and S. D. Brookes. “Possible Futures, Acceptances, Refusals and
Communicating Processes,” Proceedings 22nd Annual Symposium on Foundations
of Computer Science, pp. 140-149. IEEE. New York. 1981.

Rutten, J. J. M. M. Universal Coalgebra: a Theory of Systems. Report CS-R9652,

Computer Science/Department of Software Technology, Centrum voor Wiskunde
en Informatica. Amsterdam, The Netherlands. 1996.

Segala, Roberto. A Process Algebraic View of I/O Automata. MS Thesis. Massachusetts

Institute of Technology, Cambridge MA. 1994.

Shams, M., J. C. Ebergen and M. I. Elmasry. “Modeling and Comparing CMOS

Implementations of the C-Element,” IEEE Transactions on VLSI Systems 6(4),
pp. 563-567. December 1998.

Seitz, Charles. “System Timing.” Introduction to VLSI Design (Mead and Conway).

1980.

Stevens, K. S. Practical Verification and Synthesis of Low Latency Asynchronous

Systems. Doctoral Dissertation. The University of Calgary. Calgary, Alberta,
Canada. 1994.

Stevens, K. S., J. Aldwinckle, G. Birtwistle and Y. Liu. “Designing Parallel

Specifications in CCS.” 1993 Canadian Conference on Electrical and Computer
Engineering, II, pages 983-6. Vancouver. Sepetember 1993.

Stirling, Colin, Modal and Temporal Logics for Processes. Technical Report ECS-

LFCS-92-221, Laboratory for the Foundations of Computer Science, Computer
Science Department, University of Edinburgh, 1992.

Wegner, Peter and Dina Goldin. Mathematical Models of Interactive Computing.

Technical Report, Brown University, Jan 1999.

Wolper, Pierre. "Temporal Logic Can Be More Expressive." CH1695-6/81/0340$00.75.

IEEE. 1981.

van Glabbeek, R. J. The Linear Time - Branching Time Spectrum. Technical Report

CS-R9029, Centre for Mathematical and Computer Science, P.O. Box 4079, 1009
AB Amsterdam, The Netherlands, 1990.

-----. "The Linear Time - Branching Time Spectrum," CONCUR '90

van Tassel, John P. Femto-VHDL: The Semantics of a Subset of VHDL and Its

Embedding in the HOL Proof Assistant. Doctoral Dissertation. Cambridge
University, July 1993.

V-1

Vita

 Ronald W. Brower earned the Bachelor of Science in Physics and Mathematics

from Wichita State University in 1967 and a second Bachelor of Science degree in

Computer Science from Wright State University in 1985. He earned the Master of

Science degree from the Air Force Institute of Technology in 1986.

While in the U.S. Army, he served a tour at the Electronic Devices and

Technology Laboratory, Ft. Monmouth, New Jersey. After leaving the Army, he was a

process development engineer for NCR’s Microelectronics Division in Miamisburg,

Ohio, where he was granted six patents. He then returned to government service and was

an engineering supervisor for the Defense Electronics Supply Center in Dayton, Ohio.

When that Center was closed in 1996, he transferred to the Aeronautical Systems Center

at Wright-Patterson AFB, Ohio, where he worked as an avionics engineer for F-22

Program. He is presently a researcher for the Information Directorate at the Air Force

Research Laboratory at Wright-Patterson.

 Permanent Address:

 Air Force Research Laboratory
 Information Directorate, AFRL/IFTA
 2241 Avionics Circle, Bldg. 620
 Wright-Patterson AFB, OH 45433-7334
 Tel: (937)255-6548x3590
 Email: Ronald.Brower@wpafb.af.mil

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

09-2002
2. REPORT TYPE

Doctoral Dissertation

3. DATES COVERED (From – To)
Dec 1997-Aug 2002

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

 CONGRUENT WEAK CONFORMANCE

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Brower, Ronald W., DR-II, USAF

 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 P Street, Building 640
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

AFIT/DS/ENG/02-04

10. SPONSOR/MONITOR’S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A
 11. SPONSOR/MONITOR’S REPORT

NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
 This research addresses the problem of verifying implementations against specifications through an innovative logic approach. Congruent weak
conformance, a formal relationship between agents and specifications, has been developed and proven to be a congruent partial order. This property
arises from a set of relations called weak conformations. The largest, called weak conformance, is analogous to Milner’s observational equivalence.
Weak conformance is not an equivalence, however, but rather an ordering relation among processes. Weak conformance allows behaviors in the
implementation that are unreachable in the specification. Furthermore, it exploits output concurrencies and allows interleaving of extraneous output
actions in the implementation. Finally, reasonable restrictions in CCS syntax strengthen weak conformance to a congruence, called congruent weak
conformance. At present, congruent weak conformance is the best known formal relation for verifying implementations against specifications.
This precongruence derives maximal flexibility and embodies all weaknesses in input, output, and no-connect signals while retaining a fully
replaceable conformance to the specification.
 Congruent weak conformance has additional utility in verifying transformations between systems of incompatible semantics such as found in
circuit development, security system design, and software engineering. This dissertation describes a hypothetical translator from the informal
simulation semantics of VHDL to the bisimulation semantics of CCS. A second translator is described from VHDL to a broadcast-communication
version of CCS. By showing that they preserve congruent weak conformance, both translators are verified.

15. SUBJECT TERMS
 Asynchronous Systems, Automata, Bisimulation, CCS, Concurrency, Congruence, Digital Systems, Formal Methods,
Precongruence, Preorder, Process Algebra, Semantics, Simulation, Specifications, Verification, VHDL.

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Gary B. Lamont,Professor, AFIT/ENG

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

199

19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636, ext 4718; e-mail: Gary.Lamont@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Congruent Weak Conformance
	Recommended Citation

