
SEMANTICS-DRIVEN DESIGN AND IMPLEMENTATION

OF HIGH-ASSURANCE HARDWARE

A Dissertation presented to

the Faculty of the Graduate School

at the University of Missouri

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

ADAM PROCTER

Dr. William L. Harrison, Dissertation Supervisor

DEC 2014

The undersigned, appointed by the Dean of the Graduate School, have exam-

ined the dissertation entitled:

SEMANTICS-DRIVEN DESIGN AND IMPLEMENTATION

OF HIGH-ASSURANCE HARDWARE

presented by Adam Procter, a candidate for the degree of Doctor of Philosophy,

and hereby certify that, in their opinion, it is worthy of acceptance.

Dr. William L. Harrison

Dr. Gerard Allwein

Dr. Michela Becchi

Dr. Prasad Calyam

Dr. Rohit Chadha

ACKNOWLEDGMENTS

Without a doubt I owe the greatest debt of gratitude to my advisor, Professor

William L. Harrison. It has been an immense pleasure to have played a small

part in his research program’s growth from a tiny group of researchers laboring

in a lead-lined room in the basement of the old student health building into the

Center for High Assurance Computing (CHACO), which now counts three tenure-

track faculty members, two postdoctoral researchers, four Ph.D. students, and one

standard poodle named Pearl (not Perl) among its members and associates.

I also wish to thank Ian Graves, Benjamin Schulz, Chris Hathhorn, Dr. Soumya

Deepta Sanyal, Andrew Lukefahr, and all the members of CHACO past and present

for their friendship, good humor, collaborative spirit, and countless illuminating

discussions both technical and non-technical. Chris Hathhorn in particular has

provided an enormous amount of feedback on this dissertation, including but not

limited to the discovery of numerous typos. His help has improved the presentation

of this work substantially. (As seems to be standard practice, however, I must state

for the record that any remaining errors are my own.)

Of course I also extend my thanks to the members of my dissertation commit-

tee: Dr. Gerard Allwein of the U.S. Naval Research Laboratory, Professor Michela

Becchi, Professor Prasad Calyam, and Professor Rohit Chadha. Professor Becchi

has been an enormously generous collaborator and role model as I have fumbled

towards establishing myself as a researcher. Dr. Allwein has been a great friend

to the lab, and a great contributor the development of my research over the years.

Professor Chadha’s logical insight is a constant source of amazement for me, and

ii

I greatly enjoyed the opportunity to provide assistance to him in organizing the

2014 Midwest Verification Day this past October—though not, unfortunately, as

much assistance as I had originally intended to provide, due to the time pressures

of finalizing this dissertation; here again Chris Hathhorn saved the day! I look

forward to future collaboration with everyone here at Mizzou as I continue on as a

postdoctoral researcher at CHACO.

Professor David Andrews of the University of Arkansas and his former student

Dr. Jason Agron of Intel Corporation, as well as Professor Andy Gill of the Uni-

versity of Kansas, have been enormously generous with their time and expertise

in the areas of reconfigurable computing, functional programming, and hardware

design languages. Professor Aaron Stump of the University of Iowa was gracious

enough to host me for a summer visit in 2010, which ultimately resulted in my first

publication as first author. The summer I spent there, and the many discussions I

had with with Professor Stump and his students at the time, especially Professor

Harley D. Eades III (now of Georgia Regents University), opened my mind to the

vast possibilities and enormous depth of type theory, an area which I am excited

to explore further in the future.

During the latter part of my graduate career I was supported by a U.S. De-

partment of Education Graduate Assistance in Areas of National Need (GAANN)

Fellowship (grant number P200A100053). Professor Chi-Ren Shyu was the princi-

pal investigator for this grant, and I am most grateful both for the financial support

it provided and for Professor Shyu’s guidance during this time. Prior to this I was

supported for a time by a fellowship funded by the Gilliom Cyber Security Gift

Fund.

iii

I thank Hiromi Miyagi-Lusthaus, now of Boston University, for teaching me

both the finer points of the Japanese language and how to face a classroom full of

bored undergraduates with confidence; Dr. Zachary Ernst of Narrative Science Inc.

for his tutelage in matters logico-philosophical; Fadi Muheidat of the Department

of Electrical and Computer Engineering for his excellent instruction in the VHDL

course that turned out to be crucial to my dissertation work; and my father Dr.

Michael Procter for teaching me how to program in the first place some twenty-

three years ago. (I remember coming to him once with a source code printout for

a buggy program I had written. He identified that I was generating a random

number via the built-in BASIC function RND, which was a nullary function but,

due to BASIC’s syntax, looked exactly like a variable. I was then attempting to re-

use the same random number I had previously generated by reading the “variable”

RND again at a later program point and, of course, this did not produce the expected

result. This anecdote shows that programming with effects has been a thorn in my

side for a very long time. It was not until I was introduced to the idea of referential

transparency around fifteen years later that I finally found satisfaction.)

Ian Graves and William Lyle “William Leonard Moore” Moore, thanks for being

cool dudes and awesome friends. Guess what? There are no length restrictions on

these acknowledgments, so you might say: it’s free real estate. Also, I’m a doctor too.

Great Job!

Finally, none of this work would have been possible without the support of

my family. With love and thanks from the bottom of my heart, I dedicate this

work to my parents Professor Brenda and Dr. Michael Procter, my sister Erin,

my cousins Meagan Hill and Sarah Moss, my aunt Lisa and my uncle Professor

iv

Michael Goldschmidt, and my grandmother Edith Hamilton; and to the memory

of my uncle Howard Hill and my grandfathers Roe Hamilton and Dan Procter.

Columbia, Missouri

December, 2014

v

Contents

ACKNOWLEDGMENTS . ii

LIST OF TABLES . xi

LIST OF FIGURES . xii

ABSTRACT . xiv

CHAPTER

1 Introduction . 1

1.1 Structural Modularity vs. Semantic Modularity 3

1.2 Making Semantics-Driven Design a Reality 7

1.3 Background: Modular Monadic Semantics 8

1.3.1 Language of Discourse: Haskell 8

1.3.2 Monads . 10

1.3.3 Monad Transformers . 17

1.3.4 Hardware as Reactive Computation, Reactive Computation
as a Monad . 21

1.4 Reasoning about Security with Monads 26

1.5 Generating Circuit Implementations 27

1.6 Structure of the Dissertation . 28

2 Related Work . 30

2.1 Functional Languages in Hardware Design 30

vi

2.1.1 Embedded Domain-Specific Languages: Lava, Hawk, and
ForSyDe . 31

2.1.2 Compiling Functional Languages to Hardware 35

2.2 Other Language Paradigms in Hardware Design 36

2.3 Monads and Modular Monadic Semantics 39

2.3.1 Modular Monadic Semantics 39

2.3.2 Monads and Security . 40

2.3.3 Monadic Hardware Semantics 40

2.3.4 Related Structures . 41

3 The ReWire Language . 43

3.1 Design of the ReWire Language . 44

3.1.1 Supporting Semantically Modular Hardware Design 45

3.1.2 Ensuring Synthesizability . 55

3.2 Syntax of ReWire Core . 60

3.2.1 Types . 60

3.2.2 Expressions . 62

3.2.3 Programs . 63

3.3 Semantics of ReWire Core . 64

3.3.1 Semantics of Types . 64

3.3.2 Type System . 65

3.3.3 Semantics of Programs . 66

3.4 Extended Language Constructs . 70

3.4.1 Haskell Concrete Syntax . 70

vii

3.4.2 Algebraic Data Types . 77

3.4.3 Polymorphism and Type Classes 79

4 The ReWire Compiler . 81

4.1 Front End . 84

4.2 Code Generation . 85

4.2.1 Definition of PreHDL . 86

4.2.2 Translating ReWire into PreHDL 88

4.2.3 PreHDL Transformations . 102

4.3 VHDL Generation . 111

5 Case Study I: A Simple CPU . 115

5.1 Basic Design . 115

5.2 Code for the Simple CPU . 116

5.2.1 Input and Output Types . 116

5.2.2 CPU State . 119

5.2.3 VHDL Foreign Functions . 120

5.2.4 CPU Monad . 122

5.2.5 Instruction Fetch, Decode, and Execute 123

5.2.6 Instructions . 126

5.2.7 Reset and Interrupt Handling 131

5.2.8 Startup . 132

5.3 Evaluation . 133

5.4 Extending the CPU with Multiple Security Domains 133

viii

5.4.1 Modifying the Monad . 133

5.4.2 Modifying the Code . 134

5.4.3 Correctness Property . 136

6 Case Study II: Fast Regular Expression Matchers 138

6.1 Introduction . 139

6.1.1 Overview of Methodology . 141

6.2 A Methodology for Synthesis from Functional EDSLs 144

6.2.1 Front End . 145

6.2.2 Simulating Circuits in Haskell 145

6.3 Related Work . 146

6.4 Case Study 1: Matching State of the Art 147

6.4.1 Experiments and Evaluation . 149

6.5 Case Study 2: Surpassing State of the Art 151

6.6 Conclusions and Future Work . 155

6.7 Acknowledgments . 156

7 Verification Techniques . 158

7.1 Introduction . 159

7.2 Effect Systems and Monads . 163

7.3 The Confinement Calculus . 169

7.4 Isolation Kernels in Confinement Calculus 174

7.5 Mechanizing the Logic in Coq . 177

7.6 Related Work . 179

ix

7.7 Conclusions . 180

8 Conclusions and Future Work . 183

8.1 Results . 183

8.2 Future Work . 185

8.2.1 Support for a Broader Class of Monads 185

8.2.2 Support for Structures Other than Monads 186

8.2.3 Support for Higher-Order Abstractions 188

8.2.4 Metaprogramming . 190

8.2.5 Heterogeneous Computing . 191

8.2.6 Tool Support for Formal Reasoning 192

BIBLIOGRAPHY . 193

VITA . 208

x

List of Tables

Table Page

3.1 Runtime Features of Haskell that are Problematic in Hardware 58

5.1 Instruction Set Architecture for the Simple CPU 117

xi

List of Figures

Figure Page

1.1 Structural vs. Semantic Modularity . 4

1.2 Structure of the ReWire Compiler . 28

3.1 Abstract Syntax for ReWire Core Calculus 61

3.2 Denotational Semantics of Types . 64

3.3 Type System for ReWire Core Calculus 67

3.4 Guardedness Condition for ReWire Core Calculus 68

3.5 Tail Recursiveness Predicate for ReWire Core Calculus 69

3.6 Denotational Semantics of Expressions 71

3.7 Denotational Semantics of Expressions 72

3.8 Denotational Semantics of Monads . 73

4.1 ReWire Compilation Process . 82

4.2 Running Example: A Simple Two-Function Calculator 83

4.3 PreHDL Syntax . 87

4.4 Loop Flattening Algorithm . 107

4.5 PreHDL CFG Before and After Loop Flattening 108

4.6 Flattened Code From CFG of Figure 4.5 109

xii

4.7 PreHDL Output for the Calculator Example 112

4.8 Final VHDL Output for the Calculator Example 114

6.1 FP Methodology for HLS . 141

6.2 Combining the Ease of Use of Traditional EDSLs with the Power and

Run-Time Performance of a Virtualized Language 142

6.3 Writing Domain-Specific Optimizations for Case Studies 143

6.4 NFA and Corresponding Sidhu and Prasanna-style Implementation . 145

6.5 Simulation in Haskell . 146

6.6 Performance Comparisons of RexHacc to reg2vhdl 150

6.7 NFA Before and After State Splitting 154

6.8 Comparisons of RexHacc with State Splitting Enabled to reg2vhdl . 157

7.1 A Simple Isolation Kernel in CC . 161

7.2 The Computational λ-Calculus . 164

7.3 Monadic Concurrency and Co-recursion Operations 169

7.4 Abstract Syntax . 169

7.5 Type System for Imperative Effects . 170

7.6 Type System for Concurrency . 171

7.7 Type System for Reactive Concurrency; Subtyping Relation 171

7.8 Denotational Semantics . 173

7.9 Expressing the Clobber Rule in Coq . 178

xiii

ABSTRACT

Modularity, that is the division of complex systems into less complex and more

easily understood parts, is a pervasive concern in computer science, and hardware

design is no exception. Existing hardware design languages such as Verilog and

VHDL support modular design by enabling hardware designers to decompose de-

signs into structural features that may be developed independently and connected

together to form more complex devices. In the realm of high assurance for security,

however, this sort of modularity is often of limited utility. Security properties are

notoriously non-compositional, i.e. subsystems that independently satisfy some

security property cannot necessary be relied upon to maintain that property when

operating in tandem.

The aim of this research is to establish semantically modular techniques for hard-

ware design and implementation, in contrast to the conventional structural notion

of modularity. A semantically modular design is constructed by adding “layers”

of semantic features, such as state and reactivity, one at a time. From the high as-

surance aspect, semantic modularity enables different layers of semantic features

to be reasoned about independently, greatly simplifying the structure of correct-

ness proofs and improving their reusability. The major contribution of this work is

a prototype compiler called ReWire which translates semantically modular hard-

ware specifications to efficient implementations on FPGAs. In this dissertation I

present the design and implementation of the ReWire compiler, along with a num-

ber of case studies illustrating both the practicality of the ReWire compiler and the

elegance of the semantically modular approach to hardware verification.

xiv

Chapter 1

Introduction

In this dissertation, I advocate a novel approach to confronting the complexities and

interlocking concerns of hardware design and verification. The key contributions

of this work are threefold.

1. A novel, semantically modular style of hardware specification. In contrast

with traditional design techniques typified by mainstream hardware design

languages like VHDL, semantically modular designs may easily be extended

with new semantic features without the need to rearchitect large portions of

the design.

2. A semantics-guided approach to hardware verification, where separate se-

mantic features may be reasoned about independently, thus reducing the

complexity of formal verification both for new designs and for existing de-

signs extended with new features.

3. The development and implementation of novel compilation techniques en-

1

abling circuit generation directly from high-level semantic specifications.

The first contribution is achieved by applying modular monadic semantics [1, 2]

to hardware design. I will demonstrate via several case studies that modular

monadic hardware designs possess a high degree of semantic extensibility. The

second contribution is also supported by the choice of modular monadic seman-

tics. I will demonstrate that existing reasoning techniques grounded in modular

monadic semantics result in a style of deductive hardware verification that scales

as the semantic complexity of designs increases. The third contribution takes the

form of a newly developed compiler called ReWire, which translates modular

monadic specifications written in a subset of the pure functional programming

language Haskell into efficient FPGA-based implementations. ReWire provides

built-in support for a monadic construct called reactive resumptions, which enable

the specification of systems combining reactivity and other sorts of effects in a

modular monadic style. Taking reactive resumptions as the core abstraction means

that the formal semantics of hardware specifications codifies precisely the expected

timing properties of the implementation.

This chapter introduces the challenges that my doctoral research addresses,

and gives a high-level overview of the tools and techniques that underpin that

research. Section 1.1 contrasts two notions of modularity—structural modularity

and semantic modularity—as they pertain to hardware design, and argues that (1)

semantic modularity is often more important than structural modularity, and (2)

existing hardware design languages and tools do not provide sufficient support for

semantic modularity. Section 1.3 outlines the use of modular monadic semantics

(MMS) as a vehicle for semantically modular hardware design. Section 1.4 gives

2

an overview of existing work on modular monadic semantics as a technique for

structuring security proofs. Section 1.5 discusses the challenges of synthesizing

efficient circuits from monadic specifications.

1.1 Structural Modularity vs. Semantic Modularity

Modularity, that is the division of complex systems into less complex and more

easily understood subsystems, is a pervasive concern in computer science. Hard-

ware design is no exception. While hardware designers are ultimately concerned

with the fabrication of working devices constructed of basic components such as

logic gates and flip-flops, modern hardware designs are so complex that high level

design abstractions are absolutely essential. This need for high level abstractions

leads directly to a need for high level design languages. It is reasonable to ask,

therefore, whether existing languages actually offer the right high level abstrac-

tions: do the languages we are using support the kind of abstractions we need to

construct hardware that is both efficient and easy to reason about?

In one sense, conventional hardware design languages such as VHDL and

Verilog do support modular design. For example, a CPU design in VHDL might

be broken down into one module for the ALU, one module for the register file, one

module for the microcode logic, and so on (Figure 1.1a). These subcomponents

may then be connected together to form a working CPU. This paradigm—let us call

it structural modularity—serves designers well when the expected behavior of the

device as determined by, for example, the semantics of an processor’s instruction

set, is fixed, and all one needs to do is construct a device conforming to that fixed

3

Control'FSM' Memory'

Registers'

Flags'

ALU'

Program'Counter'

(a) Structurally Modular CPU Design

State%(Registers,%Flags)%
%
%
%
%
%
%
%
%
%
%

Reac1vity%
(Address/Data%
Bus,%I/O%Ports)%

(b) Semantically Modular
CPU Design

State%(Lo%Regs,%Flags)%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

State%(Hi%Regs,%Flags)%
%
%
%
%
%
%
%
%
%
%

Reac3vity%
(Address/Data%
Bus,%I/O%Ports)%

(c) Semantically Modular CPU
w/Separation

Figure 1.1: Structural vs. Semantic Modularity

4

semantics.

When a hardware designer wishes to explore semantically novel ideas, how-

ever, structural modularity may be of limited utility. Suppose, for example, that

we wish to augment an existing CPU design with support for separation among

security domains [3] at the hardware level, enabling the safe interleaving of pro-

cesses handling both classified and unclassified data. Even if the existing design

is structurally modular, we are inevitably faced with the fact that separation is a

cross-cutting concern, touching all facets of the design’s structure. Put another

way, there is no obvious place in the structural diagram of Figure 1.1a to insert

a “separation module”. Does this new feature go between the control FSM and

the memory? Between the registers and memory? Between the ALU and flags

register? The answer is likely to be some or all of the above. This leaves us two

choices:

1. restructure our design to support separation, or

2. retrofit an existing structure to support separation.

Each of these choices, however, comes with a major drawback. Choice (1) may

require us to discard a substantial amount of already-expended engineering effort.

Choice (2) may add substantially to the complexity of the design, and we are still left

with the question of whether the newly restructured design implements separation

correctly.

From a formal methods standpoint, the problem is even more vexing. Effec-

tive and scalable formal methods require the existence of a concise, abstract, and

mathematically elegant semantics. Structural modularity offers no such thing. Nor

does it offer any assurances that our design is faithful to the intended semantics. If

5

the need for rigor is not taken into account from the very beginning of the design

process, the resulting design will be far more difficult to verify.

At the core of this dissertation is a novel hardware design process that is driven

not by structural modularity, but by semantic modularity. Figure 1.1 illustrates the

difference. In contrast to the structurally modular block diagram of Figure 1.1a, a

semantically modular specification is constructed by adding “layers” of semantic

features. The layered semantic universe of our simple CPU is illustrated in Fig-

ure 1.1b. At the core, we have the semantic realm of reactivity, that is, responding to

input and output signals. Layered on top of this we have a semantic notion of state,

i.e. registers and flags. Semantic modularity makes the transition from the non-

separating CPU of Figure 1.1b to the separating CPU of Figure 1.1c very simple. We

need only add one more layer of state to the semantics, representing the extra layer

of state corresponding to the privileged (high-security) domain. Critically, parts of

the design pertaining only to the pre-existing functionality are largely unchanged.

The advantages of semantic modularity extend to the domain of verification, as

well. A semantically modular design along the lines of Figure 1.1c allows the dif-

ferent layers of semantic features to be reasoned about more or less independently.

If, for example, we have a correctness proof for our implementation of one of the

CPU’s instructions, this correctness proof will be reusable for the separating CPU

as well.

6

1.2 Making Semantics-Driven Design a Reality

The particular approach to semantics-directed hardware design advocated in this

work has three main ingredients. The first is an idea borrowed from programming

language semantics known as modular monadic semantics (MMS). MMS arose from

the observation that denotational semantics of programming languages are often

difficult to construct in a modular way. The basic idea of MMS is to structure an

interpreter or compiler for a programming language in terms of semantic building

blocks called monad transformers. Beginning with a core type of pure, effect-free

computations, one may construct an enriched semantic universe with features such

as updatable state, concurrency, reactivity, non-determinism, and I/O one “layer”

at a time, by applying a monad transformer for each semantic feature. The present

work uses MMS to separate the various semantic concerns pertaining to hardware

designs: if a design requires a mutable store, this will be reflected in the use of a

state monad transformer. If a design requires separate state domains, this will be

reflected in the use of a layered state monad [4].

The second ingredient is a somewhat less well known construction called a

reactive resumption monad. The reactive resumption monad is the essence of syn-

chronous, reactive computation. It forms a semantic domain of computational

processes in which a process’s state is transformed in response to each value that

arrives on a synchronous input channel. This transformation of state is assumed

to happen “instantaneously”, much like state transitions in a finite automaton. (In

hardware implementation, “instantaneously” may simply mean “fast enough that

all the work is done by the time the next clock pulse arrives.”) The corresponding

reactive resumption monad transformer will allow us to combine reactivity with

7

semantic features such as state in an à la carte fashion.

The third and final ingredient is a prototype compiler called ReWire, which

produces synthesizable VHDL code from hardware designs written in a monadic

calculus. This calculus, called ReWire Core (RWC), provides support for stateful

and reactive computation. It borrows a concrete syntax from Haskell—and in

fact, can be interpreted as an embedded domain-specific language in Haskell—but

restricts recursion in various ways that ensure realizability in hardware.

1.3 Background: Modular Monadic Semantics

In the realm of programming languages, the distinction between structural mod-

ularity (e.g., the partitioning of a compiler into distinct phases of lexing, parsing,

static analysis, code generation, optimization, and instruction selection) and se-

mantic modularity (e.g., the construction of an interpreter whose object language

may be extended with new semantic features in a modular way) has been the sub-

ject of a great deal of research. The fruits of this research [2, 5, 1, 6, 7] are a paradigm

known as modular monadic semantics or MMS. This section gives background infor-

mation on MMS.

1.3.1 Language of Discourse: Haskell

Haskell [8] is a strongly-typed, purely functional programming language with a

non-strict semantics. “Purely functional” means that functions in Haskell really are

functions in the mathematical sense. That is, a Haskell function of type Int → Int

will always map any given integer to the same result value; if f (x) = 3 right now,

8

f (x) = 3 tomorrow and the day after as well. Furthermore, evaluation of the

function produces no side effects. It is not possible that f : Int → Int will, say,

mutate some state variable or overwrite a file on its way to computing its final

result. “Non-strict”, for our purposes, means that evaluation of expressions is

delayed until the value of that expression is actually needed. Non-strictness is an

essential feature of Haskell, closely tied to functional purity.

Haskell’s purely functional, non-strict semantics make it a favorite tool of

mathematically-minded computer scientists and programmers. Due to the absence

of side effects, Haskell exhibits a very useful property called referential transparency;

roughly speaking, this means that one may substitute “equals for equals” without

changing the meaning of a program. This property does not hold for effectful

languages like C or Java. But the purely functional nature of Haskell comes at a

cost. Many real world programs actually need I/O, and other classes of effect like

mutable state are often necessary to implement a program efficiently. How can one

possibly hope to implement these features in a language that, by its very design,

shuns side effects?

The answer is that one may use a monad [9, 10]. From a programming point

of view, a monad is a construction that allows us to embed effectful programming

features inside of a programming language that does not directly support them. At

the type level, monads provide a separation between ordinary values (which have

types like Int) and computations (which have types like M Int, where M is a monad).

Monads have proven to be a perfect fit for Haskell; they are manifested both in an

opaque abstraction for interfacing with the outside world called the IO monad [11],

and in a large class of programmer-defined abstractions that enable support for

9

everything from parser construction [12] to concurrent programming [13].

Due to the popularity of monads in the Haskell community, Haskell is also the

language that is most widely used by researchers to discuss, express, and explore

the subject of monadic computation. For this dissertation, I have made the same

choice. Apart from the very formal semantics given in Chapter 3, where monads

are expressed in a mathematical notation more commonly seen in denotational

semantics (replete with Greek letters and oddly shaped brackets), most high-level

discussion of monads and monadic programming will use Haskell as a surface

language. Indeed, the main contribution of this work is a monadic programming

language that itself borrows (a proper subset of) Haskell’s concrete syntax.

1.3.2 Monads

Modular monadic semantics is founded on algebraic structures called monads,

originally discovered in the context of category theory. Before delving into the

mathematical particulars, it is useful to consider the motivation behind monads.

To a computer scientist, a monad may be thought of as a way of assigning a de-

notational semantics to languages with effects. By “effects” we mean any compu-

tational notion that brings us outside the domain of pure, mathematical functions.

For example, in a language like C that features mutable global state, a “function”

int f(int x,int y) does not necessarily correspond semantically to any math-

ematical function f : Z × Z → Z, for the simple reason that evaluating f(a,b)

might, as a side effect, read and/or alter some global variable, or even make a

series of system calls that results in personal information being transmitted over

the Internet. Monads allow us to deal with this fact in a mathematically precise yet

10

well-structured fashion—in this case, our C function does correspond to a mathe-

matical function f : Z × Z → M(Z), where M is some monad (let us not worry

about which!) encapsulating the effect of updatable state and any other “impure”

semantic features that C offers.

Outside of programming language semantics, another area where monads have

found application is in functional programming. In a purely functional program-

ming language like Haskell, monads allow us to implement effectful computation—

stateful computation, computation with I/O, and so on—without compromising the

purity of the underlying language. The advantage of this approach lies partly in

type discipline: if a function has type Int→ Int→M Int for some monad M, then it

is clear that the function can have any of the side effects offered by the monad M,

but no others.

Rather than present monads in categorical language, the introductory expla-

nations of this chapter are written in terms of Haskell’s concrete syntax, as this

notation is considerably more convenient and accessible to computer scientists

(the author included). We may define the notion of a monad according to Haskell’s

type class system as follows.

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

In other words, a monad is a type constructor (m) with two associated operators

(return and >>=). The operator return takes a value of any type a and returns a

value of type m a. The operator >>= takes a value of type m a, and takes a value of

type a→ m b (that is, a function from a to m b), and returns a value of type m b.

11

Intuitively speaking:

• The type m a represents the type of computations producing a value of type a.

The computation may have side effects, but those side effects are restricted to

those provided by the monad m.

• The expression return v represents a computation that has no side effects, but

returns the value v.

• The expression m >>= f represents a computation that first “does” m, then

feeds the result value of m to f , and executes the computation that results.

Essentially, >>= is an operator of sequencing, except that the return value of

the first computation is available to the one that follows it.

Moreover, the monad operators are expected to satisfy the following laws,

though Haskell’s type system contains no means of enforcing that requirement.

m >>= return = m 〈right-unit〉
return x >>= f = f x 〈left-unit〉
(m >>= f) >>= g = m >>= (λx→ f x >>= g) 〈associativity〉

The simplest example of a monad is the identity monad.

newtype Identity a = Identity a

This Haskell declaration has the effect of declaring a new type constructor called

Identity, whose only data constructor is also called Identity and carries a value of

type a. That is, the type Identity a merely encapsulates a, with no further structure.

Formally, for every type a, the type Identity a is isomorphic to a.

We declare Identity to be a monad—or in Haskell terms, we declare it to be an

instance of the type class Monad—as follows.

12

instance Monad Identity where
return v = Identity v
Identity v >>= f = f v

That is, return simply boxes up its argument value, and >>= merely unboxes the

value in the computation and feeds it to the function on the right hand side. For

the sake of convenience, we can also define a function to project result values out

of the monad.

runIdentity :: Identity a -> a
runIdentity (Identity v) = v

So what notion of effects is represented by this monad? The answer is: nothing!

The identity monad is, in fact, a trivial monad of effect-free computations. The only

thing one can do with it is return a value, and feed the results of one computation

into another. When we are dealing later with monad transformers, however, it will

serve as a useful base on which to build more complex monads.

Let us now consider a less trivial monad, called the state monad. The state

monad allows us to express computations with state that may be read and written

as the computation progresses. Its underlying type constructor is as follows.

newtype State s a = State (s -> (a,s))

In other words, the type State s a merely wraps a function from type s to pairs of

type (a, s). This type may be understood as a state transformer that also produces

a return value of type a “on the side”. If we want to connect one computation to

another using >>=, we will have to pass not just its return value but also its post

state. The Monad instance is then:

13

instance Monad (State s) where
return v = State (\ s -> (v,s))
State f >>= g = State (\ s -> let (v,s’) = f s

in deState (g v) s’)

where:

deState :: State s -> (s -> (a,s))
deState (State f) = f

Unlike the identity monad, there are other useful operations besides return and

>>= that we can define and take as primitive. The “get” operation g :: State s s

which returns the current state value, and the “put” operation p :: s→ State s ()

which overwrites the current state with a new value and returns a value of unit

(“void”) type, are defined as follows.

g = State (\ s -> (s,s))
p v = State (\ s -> ((),v))

Operations like g and p, which (unlike return and >>=) only apply to a particular

monad, are sometimes referred to as non-proper morphisms.

With the state monad, we can define the semantics of an imperative language

in a concise and straightforward way. Consider a simple language containing

only three sorts of statements: Reset, which resets a global counter to zero, Incr,

which increments the global counter, and Seq, which sequentially composes two

computations. In Haskell, the abstract syntax for such a language may be written

as follows.

14

data Stmt = Reset | Incr | Seq Stmt Stmt

The semantics of Stmt is given by a function from Stmt to computations in the

State monad. Specifically:

exec :: Stmt -> State Int ()
exec Reset = p 0
exec Incr = g >>= \ ctr ->

p (ctr+1)
exec (Seq s1 s2) = exec s1 >>= \ _ ->

exec s2

This code exhibits a pattern that is very common in monadic programs, of mimick-

ing sequentiality by placing λ-abstractions on the right hand side of >>=, which (as

with the variable ctr in the case for Incr in the above code) has the effect of assigning

a name to the result of the subcomputation on the left so that it can be used later. In

fact, this pattern is so common that Haskell provides a spoonful of syntactic sugar

called do-notation to encapsulate it. The above code written in do-notation reads as

follows:

exec :: Stmt -> State Int ()
exec Reset = p 0
exec Incr = do ctr <- g

p (ctr+1)
exec (Seq s1 s2) = do exec s1

exec s2

As a final example of a monad, let us consider the monad of potentially failing

computations, called Maybe. The standard Haskell libraries define a data type

called Maybe as follows.

15

data Maybe a = Just a | Nothing

This type (which is used very frequently in Haskell, even in code that is not

written in monadic style) can be used to represent the possible absence of a value.

Expressions of the form Just v represent the presence of a value v. The expression

Nothing, on the other hand, reflects the absence of any value. For example, a

function safediv that takes two integers and returns their quotient, but should return

some sort of failure value when division by zero is requested, could be written as

follows.

safediv :: Int -> Int -> Maybe Int
safediv _ 0 = Nothing
safediv x y = Just (x ‘div‘ y)

The Maybe type forms a monad where return is simply Just, and >>= returns

a failed computation (Nothing) if the input computation is failed, and otherwise

passes the return value forward.

instance Monad Maybe where
return v = Just v
Nothing >>= f = Nothing
Just v >>= f = f v

Using Maybe as a monad is particularly handy in cases where multiple points of

failure exist in a function. Consider a somewhat contrived example that takes two

lists of integers, either of which may be empty, and returns the sum of their initial

elements, but fails if either list is empty. Without the Maybe monad this code may

involve an unwieldy nesting of case expressions, with a characteristic cascade of

mappings from Nothing to Nothing.

16

addFirst :: [Int] -> [Int] -> Maybe Int
addFirst l1 l2 = case head l1 of

Just x -> case head l2 of
Just y -> Just (x+y)
Nothing -> Nothing

Nothing -> Nothing
where head (x:xs) = Just x

head [] = Nothing

With the Maybe monad we obtain a much more elegant and readable formula-

tion.

addFirsts :: Int -> Int -> Maybe Int
addFirsts l1 l2 = do x <- head l1

y <- head l2
return (x+y)

where head (x:xs) = Just x
head [] = Nothing

1.3.3 Monad Transformers

We have seen how monads may be used to express particular notions of computa-

tional effect. But what if one wants to mix notions of effect? For example, what if

one requires updatable state and the possibility of failure? We have seen one monad

for state, and one monad for failure, but there is no obvious way to combine their

notions of effect. We could define from scratch an entirely new monad of state and

failure, whose type constructor would be isomorphic either to s→Maybe (a, s) or

to s→ (Maybe a, s), but this is a tedious and error prone process, requiring us to

define the new monad’s type constructor, and its return and >>= operations. One

might wonder if simply composing the desired monads will do the trick, but sadly

this is not the case in general.

17

As it turns out, a construct called a monad transformer will do the trick. A monad

transformer T is a mechanism for extending a pre-existing monad M with “more”

kinds of effects, producing a new monad T M. For example, if we start with a

monad of non-deterministic computation, and apply the state monad transformer

to that monad, this will produce a new monad of non-deterministic and stateful

computation.

In Haskell, we define the class of monad transformers as follows.

class MonadTrans t where
lift :: Monad m => m a -> (t m) a

Implicit in this definition is the requirement that a monad transformer must itself

operate on a type constructor (because t is applied to m, which is in turn applied

to a in the signature for lift); and that the result of applying a monad transformer

(e.g., t m in the signature for lift) is itself a type constructor. It is also expected,

though this requirement is not enforced by the type system, that if m is a monad,

so is t m; and that lift follows certain laws [2]:

lift (returnm v) = returntm v
lift (m >>=m f) = lift m >>=tm λx→ lift (f x)

(The subscripts here are intended to disambiguate between the operations of the

“base” monad m and the “lifted” monad t m.) In other words, lifting an effect-free

(return) computation produces an effect-free computation; and sequencing two

computations then lifting the sequence, is the same as lifting two computations

and then sequencing them.

One useful example of a monad transformer is the state monad transformer, which

augments an existing monad with stateful effects, akin to those provided by the

18

State monad seen earlier.

newtype StateT s m a = StateT (s -> m (a,s))

deStateT :: StateT s m a -> (s -> m (a,s))
deStateT (StateT f) = f

instance Monad m => Monad (StateT s m) where
return v = StateT (\ s -> return (v,s))
StateT f >>= g = StateT (\ s -> f s >>= \ (v,s’) ->

deStateT (g v) s’)

Parenthetically, it is interesting to note that StateT Identity is isomorphic to State

from the previous section.

Just as with State, the non-proper morphisms to “get” and “put” the state can

be defined for StateT.

g :: Monad m => StateT s m s
g = StateT (\ s -> return (s,s))

p :: Monad m => s -> StateT s m ()
p v = StateT (\ _ -> return ((),v))

Since these definitions are parametric in the base monad m, they can be used with

any monad that has StateT on the top of the transformer stack. If StateT is not on

top, lift may be applied as many times as needed to promote the operations into

the transformed monad.

With monad transformers in hand, we now have the means to achieve semantic

modularity. Let us illustrate this by extending the statement language of the

preceding section with a new statement form Fail, representing an abnormal end

to the program.

19

data Stmt = Reset | Incr | Seq Stmt Stmt | Fail

In order to represent the possibility of failure on the semantic side, we will

change our monad from State to one that layers StateT over Maybe. For convenience,

let us define this and give it the name M.

type M = StateT Int Maybe

Now the semantics of Stmt is defined in terms of the new monad.

exec :: Stmt -> M ()
exec Reset = p 0
exec Incr = do ctr <- g

p (ctr+1)
exec (Seq s1 s2) = do exec s1

exec s2
exec Fail = lift Nothing

Pleasingly, we find that the new semantics looks exactly like the old semantics

where the pre-existing commands (Reset, Incr, and Seq) are concerned. The only

new case is that for Fail, which we handle by lifting the failed computation, Nothing,

into M.

All of the above comes with an important caveat. While a monad transformer,

by definition, always produces a monad, understanding exactly which monad it

produces can be slightly tricky. The transformers StateT and MaybeT (which is the

monad transformer analogue of the monad Maybe) provide a classic example of

this. One ordering of the transformers:

StateT s (MaybeT Identity) a � s→Maybe (a, s)

produces a monad that will not retain its state on failure. The other:

20

MaybeT (StateT s Identity) a � s→ (Maybe a, s)

produces a monad that does retain state on failure. The sad fact in general is that

monad transformers do not commute; thus some care must be taken with their

use. A more fundamental annoyance is that lifted operations do not always retain

useful equational properties that they have in the base monad. In spite of these

caveats, however, monad transformers have proven to be an excellent basis for

semantic modularity in the world of programming languages.

1.3.4 Hardware as Reactive Computation, Reactive Computation
as a Monad

We have seen a few examples of monads and monad transformers reflecting modu-

lar notions of computation. Will this toolkit be sufficient for representing hardware?

The answer is no. There is a critical aspect of hardware computation that cannot

be represented by StateT, MaybeT, nor any of the standard menagerie of monad

transformers described by Liang et al [2]: namely, external I/O channels. A hard-

ware circuit may have semantic features like state on the inside, but fundamentally

it must also possess the means communicating with the outside world during the

course of its execution.

If we aim to apply MMS to hardware design, then, we need some way of

representing I/O monadically. Let us begin by approaching the underlying type

structure. A hardware circuit, viewed from the outside, has input ports, output

ports, and some kind of logic on the inside that produces outputs based on inputs.

This sounds very much like a function mapping inputs to outputs. At first blush,

then, we might try representing hardware simply as such a function.

21

type Hardware i o = i -> o

(Note that multiple inputs or outputs could simply be represented with tuple types

for i and o.)

It quickly becomes clear, however, that this type is too restrictive. Suppose

we wanted to design a three-bit up-counter with a reset signal. The type of the

input to this circuit is Bit, and the type of its output is (Bit,Bit,Bit). So we have

the type Hardware Bit (Bit,Bit,Bit), which is synonymous with the function type

Bit→ (Bit,Bit,Bit). But the circuit we are trying to specify is not a simple function,

in the sense that the same input may be mapped to different outputs at different

times. If at time t it maps an input (reset signal) of 0 to an output of (0, 1, 0), then at

time t + 1 it should map 0 to (0, 1, 1). Extrapolating from this example, the problem

is that hardware is allowed to have memory in a general sense of the word: i.e., it is

allowed to vary its behavior over time, based on what has happened in the past.

Evidently, we will need a richer type structure to represent sequential hardware.

One way we can represent this is as a function that takes an input and returns an

output, but also returns a new function representing the behavior expected on the

next input.

newtype Hardware i o =
Hardware (i -> (o,Hardware i o))

In fact, this very type structure has been used in the context of hardware design

centered on an alternative structure called an arrow. Specifically, it is known as the

automaton arrow [14]. Using Hardware we can define an up-counter with reset as

follows.

22

type Input = Bit
type Output = Bit

count :: Int -> Hardware Input Output
count x = Hardware (\ rst -> if rst == 1 then

(x,count 0)
else
(x,count (x+1)))

main :: Hardware Input Output
main = count 0

The only problem with this type structure—if our aim is to exploit the modularity

and ease of reasoning afforded by monads, at least—is that it is not a monad! In

particular, we cannot define return and >>= operations, because there is no form

of Hardware value that corresponds to a “finished” computation.

To obtain a monad, we will extend the underlying type to be a sum (T1 + T2,

written in Haskell as Either T1 T2). Now a computation may either be a return

value of type a, or it output and a function waiting on an input and producing a

new computation. With this, we obtain the monad of reactive computation, called

React.

newtype React i o a =
React (Either a (o,i -> React i o a))

The monad instance for React is as follows.

instance Monad (React i o) where
return v = React (Left v)
React m >>= f =
React (case m of

Left v -> f v
Right (o,k) ->

23

Right (o,\ i -> k i >>= f))

In other words, return v represents a finished computation with a return value of v.

As for >>=, when given a finished computation on the left it simply takes the return

value and feeds it to the function on the right. When given a paused computation, it

produces a new paused computation that, once the left-hand computation finishes,

will pass its return value on to f .

The up-counter can now be rewritten in monadic style.

type Input = Bit
type Output = Bit

count :: Int -> React Input Output ()
count x = do rst <- signal x

case rst of
1 -> count 0
_ -> count (x+1)

main :: React Input Output ()
main = count 0

This definition makes use of a non-proper morphism for React called signal,

which may be thought of as writing its argument to the output line, waiting for the

next clock tick, and returning the value of the input at that tick.

signal :: o -> React i o i
signal x = React (Right (x,\ y -> return y))

Finally, we can generalize the React monad to the resumption monad transformer

ReactT [13] as follows.

24

newtype ReactT i o m a =
ReactT (m (Either a (o,i -> ReactT i o m a)))

deReactT :: ReactT i o m a ->
m (Either a (o,i -> ReactT i o m a))

deReactT (ReactT m) = m

instance Monad m => Monad (ReactT i o m) where
return v = ReactT (return (Left v))
ReactT m >>= f =
ReactT (do r <- m

case r of
Left v -> deReactT (f v)
Right (o,k) ->
return (Right (o,\ i -> k i >>= f)))

instance MonadTrans (ReactT i o) where
lift m = ReactT (m >>= return . Left)

This reactive resumption monad transformer has already proved its usefulness

in the semantics of concurrency [15, 16], including the construction of verified

separation kernels [4, 17]. In that context, reactive resumption computations are

used to represent processes on a multitasking system. The structure of the monad

underlying ReactT controls the notion of effects that is available to processes, and a

kernel (consisting of a scheduler and a set of handlers for system calls) interleaves

processes (i.e., computations in ReactT) in a controlled fashion.

For modular monadic hardware, we will use reactive resumptions for two pur-

poses that are related to, but distinct from, the above. First, reactive resumptions

at the top level of a program represent the interactions of a hardware system with

the outside world, namely the ability to read input lines and write to output lines.

When reactive resumptions are used at the top level, the i and o parameters of React

and ReactT are exactly analogous to the I/O signals of a VHDL entity or architecture.

25

Second, reactive resumptions may be used as a way of coordinating resource shar-

ing among logically separate hardware units. For example, a dual-core processor

may be realized in MMS by instantiating two single-core CPU specifications, and

applying a parallel composition operator to these two instances. The parallel com-

position operator determines how resource contention is handled. This approach

is broadly similar to Harrison’s monadic separation kernels [15, 16]—but here, the

“processes” are hardware subsystems.

1.4 Reasoning about Security with Monads

Monads are not just a useful abstraction for programming with effects. They also

provide a powerful set of equational reasoning principles that have a wide array of

applications to program verification. In particular, Harrison and collaborators have

extensively explored the application of monadic equational reasoning to security

kernels [15, 16, 4, 17]. A monadic security kernel in this style is built around

layered state monads that make use of multiple state monad transformers. Such

monads have a number of useful properties by construction, providing an elegant

formalism for expressing security properties like non-interference. Specifically,

it follows from the type construction of layered state monads that computations

operating exclusively at one state level commute with those operating exclusively at

a different state level; in other words, computations operating in one state domain

have no effect on those operating at another. Thus if two different processes

(computations in a reactive resumption monad over layered state) can be shown

to operate at a single state level, it follows that their atomic state operations may

26

safely be interleaved without introducing information flow. Put simply, storage

channels via internal storage are a priori impossible. In this way, the verification of

security properties at the kernel level is reduced to the problem of proving that the

kernel itself does not introduce information flow via indirect channels. In practice,

this leads to very concise and manageable separation proofs.

This by-construction style of non-interference proof can also be applied to hard-

ware. For example, using the layered-state approach to construct the separating

CPU of Figure 1.1c substantially lightens the proof burden, as one only needs to

prove that the context-switch logic does not introduce information flow between

domains. A convincing demonstration of the applicability of monadic control of

effects to the construction and verification of secure hardware is one of the contri-

butions of this dissertation.

1.5 Generating Circuit Implementations

Programming with monads requires an expressive language like Haskell with a

rich type system supporting functional abstraction. But an unfortunate conse-

quence of Haskell’s expressiveness is that there are many constructs in Haskell that

cannot readily be mapped onto efficient hardware implementations. In particular,

higher-order functions and the unrestricted use of recursion make the synthesis of

hardware directly from Haskell a very tall order indeed.

To cut this problem down to size, we can identify a subset of Haskell that may

be translated to hardware. Chapter 3 identifies just such a subset, which we refer to

as ReWire. The ReWire language contains, essentially, those programs that consist

27

Parsing Type
Checking

PreHDL
Generation

VHDL
Generation

Figure 1.2: Structure of the ReWire Compiler

of a finite set of guarded, mutually tail-recursive equations whose codomains are all

typed in a reactive state monad, and whose arguments are all of finitely representable

type (e.g., bits, words, or enumerated types). Here “guarded” refers to a syntactic

criterion [18] that ensures each recursive call ultimately produces either a Left or

Right value, meaning that the next state and output signals are always well defined.

ReWire maps each such equation onto a state in a finite state machine with data

registers.

The structure of the ReWire compiler, which is discussed in much greater detail

in Chapter 4, is outlined in Figure 1.2. Once a ReWire program has passed the

parsing and type checking phase provided by what is essentially a vanilla Haskell

front end, it is translated to an intermediate language called PreHDL. A few source-

to-source transformations (not directly reflected in Figure 1.2) are made to the

resulting PreHDL program, resulting in a final form that can be translated to an

efficient VHDL program, suitable for implementation on an FPGA.

1.6 Structure of the Dissertation

The remainder of this dissertation starts with a discussion of related work in Chap-

ter 2. This is followed in Chapter 3 with a formal definition of the ReWire language.

In Chapter 4, the ReWire compiler is discussed in detail. Chapters 5 and 6 each

28

contain a significant case study in using ReWire to specify and synthesize circuits.

The former comprises a simple 8-bit CPU, and the latter a framework that uses

ReWire to generate fast hardware-based regular expression matchers for packet

inspection. In Chapter 7, we explore how ReWire enables support for formal veri-

fication of hardware security. Chapter 8 concludes with a summary of results and

a discussion of future work.

29

Chapter 2

Related Work

This chapter reviews related work. It is not intended to be an exhaustive review

of the literature on high-level synthesis, hardware languages, or secure hardware

design, but rather to situate this research in the context of especially closely related

work. Particular attention is given to ReWire’s place in the not-insubstantial body

of existing work on hardware design via functional programming languages. Here

the overarching theme is that the emphasis on semantics, not structure significantly

distinguishes ReWire from existing approaches.

2.1 Functional Languages in Hardware Design

There is a fairly long history of attempts to apply functional language technology to

hardware specification and synthesis, most of them using Haskell. These attempts

may be divided into two broad categories. On the one hand, Haskell has been

used as a host for a number of embedded domain specific languages (EDSL). On

30

the other, a few attempts have been made at using Haskell as a source language for

hardware compilation. The following slightly reductive slogan may elucidate the

difference between the EDSL approach and the Haskell-as-hardware-description-

language (Haskell-as-HDL) approach: The EDSL approach is about circuit design

with Haskell. The Haskell-as-HDL approach is about circuit design in Haskell. The

general design flow in an EDSL-based approach is to use Haskell as a language

for constructing circuit descriptions within a smaller, embedded language syntax.

Higher-order combinators can be used to mask this fact, but in general EDSL-

based circuit design techniques do not directly compile Haskell terms to hardware;

rather, Haskell terms are used to generate circuit descriptions, and it is these de-

scriptions that are then compiled to hardware. By contrast, the Haskell-as-HDL

approach identifies type structures in Haskell that are amenable to direct hardware

compilation. This avoids the complexity and overhead of an EDSL-based design

framework. ReWire falls squarely in the Haskell-as-HDL camp.

2.1.1 Embedded Domain-Specific Languages: Lava, Hawk, and
ForSyDe

Lava [19] is a family of Haskell-hosted domain specific languages for circuit specifi-

cation, simulation, synthesis, and verification. In its original implementation, Lava

provides a monadic interface for specifying circuits. A hierarchy of several different

type classes allows multiple interpretations of the same specification for purposes

of simulation, synthesis, and verification. The original paper on Lava [19] gives the

following example of a half-adder. (Note that Circuit is a subclass of Monad.)

31

halfAdd :: Circuit m => (Bit,Bit) -> m (Bit,Bit)
halfAdd (a,b) = do carry <- and2 (a,b)

sum <- xor2 (a,b)
return (carry,sum)

This specification is overloaded to work in any monad in the Circuit class. This

means that the same circuit specification can be interpreted for simulation (by

instantiating m to the “standard” simulation monad called Std), for synthesis to

VHDL (by instantiating m to a member of Symbolic), and for verification (by instan-

tiating m to an instance of Provable). The underlying type Bit can represent either

a boolean literal or a bit-valued variable in Lava (distinct from Haskell variables),

enabling symbolic properties of circuits to be expressed and verified via external

backends such as a SAT solver.

Roughly contemporary with Lava is Hawk [20, 21], a Haskell-hosted domain

specific language for processor specifications that bears a great deal of similarity

to Lava but was never intended to support hardware synthesis. It seems largely to

have been superseded by Lava.

Lava has been extended and revised by several research groups over the years,

resulting in variant implementations known as York Lava, Xilinx Lava, and Kansas

Lava [22, 23, 24]. Xilinx Lava differs from classic Lava (often referred to as

“Chalmers Lava” since it was developed primarily at Chalmers University of Tech-

nology) by providing a number of low-level primitives, specific to Xilinx FPGAs,

that allow circuit designers to specify circuit layout precisely. Kansas Lava rep-

resents a major overhaul of Lava’s internals, designed to leverage advances in

Haskell’s type system that have emerged since Lava was first designed in the late

1990s. One major difference is that Kansas Lava uses a unified Signal type to rep-

32

resent circuits both for simulation and for synthesis purposes. Internally, this type

encompasses both a functional representation of the circuit’s behavior used for

simulation, and a symbolic representation of its structure used for synthesis. This

dual deep and shallow embedding of circuit descriptions supplants the hierarchy

of monad classes present in Chalmers Lava. Kansas Lava also introduces sized

types, allowing sized bit vectors to be represented naturally in the Haskell type

system.

Another Haskell DSL-based design methodology is ForSyDe (“Formal System

Design”) [25, 26, 27]. With ForSyDe, one begins by specifying a design in terms of

high-level process networks. Mechanisms of synchronization and communication

are kept abstract at this level. A series of design transformation maps such a

high-level design onto a low-level implementation. These design transformations

are (by design) not fully automated; thus ForSyDe may be seen more as a design

framework than a language.

The major way in which Hawk, Lava, and ForSyDe all differ from ReWire is

that the former are all embedded domain-specific languages (EDSL), using Haskell

as a host language. In other words, they are best understood not as tools for trans-

lating Haskell itself into hardware, but as hardware design languages embedded

(implemented) within Haskell. The embedding of domain-specific languages may

take one of two forms: shallow embedding and deep embedding. In a shallow

embedding, one creates a small language of higher order combinators whose im-

plementations are given as Haskell functions. For example, a monad is an example

of a shallowly embedded domain specific language, whose primitive operations

are return and >>=. By contrast, a deep embedding consists of an abstract syn-

33

tax for a small special-purpose language, and a set of functions that interpret that

syntax in various ways—e.g., by compilation. The fundamental tension between

shallow and deep embeddings is one of observability versus expressiveness. With

a shallow embedding, it is often impossible to observe the inner workings of an

EDSL program. This is a major problem in the hardware synthesis space [28], as we

are ultimately concerned with a translation to a particular kind of structure (e.g.,

netlists). On the other hand, a deep embedding must often forgo the expressive-

ness of higher-order functional abstraction, and in some cases even type safety is

compromised.

ReWire is not an embedded DSL. Instead, it is a compiler that takes Haskell

itself as a source language. The result is that ReWire supports a full range of

functional language features, thus bypassing the problems of expressiveness that

are inherent to deep embeddings. At the same time, the fact that the full Haskell

source is available to the compiler means that observability is not a problem. The

major disadvantage is that the implementation is much more complex. A few other

attempts have been made at high-level hardware synthesis directly from Haskell,

and these are discussed in Section 2.1.2.

Ultimately, the embedded DSLs described here are all founded on a small set of

primitives which are actually rather low level. They achieve abstraction by using

Haskell as a means of automatic circuit construction with the primitives of the

EDSL forming the foundation. ReWire, by contrast, takes the abstract notion of

a reactive resumption as primitive. This has the disadvantage of wresting much

of the control over implementation away from the designer, possibly resulting

in less efficient implementations. Qualitative comparisons along these lines are

34

an important line of future work where ReWire is concerned. In applications

where semantic flexibility is important, however, I believe that the expressiveness

and intuitiveness of ReWire’s reactive resumption-based model make it worth the

trade off.

2.1.2 Compiling Functional Languages to Hardware

The CλaSH project is an effort to produce a compiler from Haskell to hardware. It

supports only a subset of the language, but has made quite a bit of progress lately on

dealing wih sequential and stateful circuits [29]. Its support for sequential circuits

is built around the automaton arrow [14], and it uses similar techniques to ReWire’s

partial evaluation to factor out un-hardware-like constructions at compile time. Its

implementation techniques are thus quite similar to ReWire. It is not clear from

published work on CλaSH, however, whether designs of the complexity exhibited

here—in particular, modular monadic designs—can be handled.

Another major effort that is underway is Stephen Edwards’ experiments with

generating hardware from high-level Haskell specifications [30, 31, 32]. Edwards

employs transformational techniques akin to defunctionalization [33] to derive

what are essentially specialized state machines implementing particular recursive

functions. So far, these techniques have not been fully automated. Unlike ReWire,

Edwards does not limit the Haskell source program to a top-level interface typed

in a reactive structure, nor indeed to any particular type structure. Another dis-

tinguishing feature of Edwards’ work is that it is capable of representing recursive

data structures at runtime. This is achieved by embedding RAM into the imple-

mented circuit, and using an in-memory representation of the recursive structures

35

that is broadly similar to what would be used by a typical Haskell compiler. It

might be possible to extend ReWire with similar features, but so far it does not

seem wise to take on this extra layer of complexity. A particular challenge here

would be reconciling the expected deterministic timing properties of reactive re-

sumption computations with the timing behavior of on-board RAM; this concern

seems not to apply to Edwards’ work, as he is more interested in compiling general

recursive Haskell functions, which do not have predictable timing to begin with.

As applied to processor design, Edwards’ approach is closely related to se-

mantics directed architecture [34] as described by Wand in his classic paper. In

semantics directed architecture, the implementation of a machine architecture is

derived directly from the denotational semantics of a source language. Wand is

more concerned, however, with deriving specialized architectures that are meant

to implement abstract machines whose operations are derived from the semantics

of a high-level source language. ReWire has broader goals than this, as it seeks

to extend monadic abstractions to all kinds of hardware designs, not just to the

automatic derivation of specialized instruction sets.

SAFL+ [35] represents yet another recent effort to compile a functional language

(but not Haskell) to hardware.

2.2 Other Language Paradigms in Hardware Design

Many other language paradigms, including imperative and data flow program-

ming, have been applied to hardware synthesis. Edwards gives a nice survey of

the landscape [36].

36

The quintessential examples of conventional hardware description languages

are VHDL and Verilog. Such languages are generally focused on abstractions that

are built around the notion of a signal over the time domain. A hardware circuit in

VHDL is built by connecting components with input and output signals in parallel,

though a behavioral style of specification is often used to specify the behavior of

individual components. The notion of composition offered by ReWire is more

general than this: it is possible, through the use of a handler akin to Harrison’s

monadic kernels [15, 16] to connect together components according to a variety of

communication protocols. While a ReWire program must produce and consume

signals externally, one is not forced to think in these terms internally. In principle,

this should bring about a much greater degree of modularity. It should be noted

that conventional hardware description languages have been extended to include

first-class notions of secure information flow, yielding in particular an experimental

language called Caisson [37].

Conventional high-level programming languages have been explored as source

languages for compilation, but experience suggests that they are ill suited to the

diversity of programming models embodied by modern hardware. Edwards has

argued [38] that the C language, for example, is inextricably joined to the assump-

tions that underlie classic architecture: flat address spaces, no inherent support

for parallelism. Edwards points out that the most successful C-like hardware lan-

guages actually tend to borrow only surface syntax features from C, while liberally

extending and contracting its semantics, particularly with respect to timing and

concurrency. Nevertheless, C-to-VHDL compilers do seem to find substantial use

in the reconfigurable computing world. An important conceptual advantage would

37

seem to arise here when dealing with hardware/software co-design. Here the C-

to-VHDL paradigm relieves programmers from the cognitive burden of having to

switch between languages. In any case, the working hypothesis of the line of work

presented in this dissertation (as well as many other active research programs) is

that programmer productivity is best enhanced not by forcing hardware design into

the imperative language paradigm, but rather by raising the level of abstraction for

hardware design. ReWire in particular reflects the belief that semantics must drive

the design process.

The synchronous languages [39] such as LUSTRE [40] and Esterel are based

on the fundamental assumption that a system is reacting to outside events, and

that its reactions to those events happen “instantaneously.” Computation in such a

language may be manifested either as interactions among streams (as in a data flow

language like LUSTRE), or with classical imperative constructs (as in Esterel). Lee

and Messerschmitt give an overview of the synchronous data flow paradigm [41].

Multiparadigm languages that mix the data flow and imperative paradigms have

also been proposed [42].

The synchronous approach has applications to verification [43, 44], as the notion

of interacting streams represents a quite elegant mathematical formalism. One dis-

advantage of such languages, or at least the data flow languages, is that (much like

conventional HDLs) they tend to enforce a certain structure on the inner working

of the circuit that may not be appropriate. While any synchronous hardware device

clearly can be viewed externally as consuming a stream of inputs and producing a

stream of outputs, there is no particular reason to assume that this is the best way to

understand the interactions of its internal components. The semantic modularity

38

of MMS allows one flexibility in this regard.

2.3 Monads and Modular Monadic Semantics

Monads as a mathematical structure first arose in category theory [45]. Moggi

first demonstrated [9] that they represent a useful unifying formalism for notions

of computation with effects. In the functional programming world, Wadler [10]

has popularized the use of monads as a way of embedding—one might say

simulating—effectful computation inside the pure language Haskell. Interactions

with the outside world are modeled in Haskell via a built-in abstract monad (ar-

guably a pseudomonad, since it has no formal mathematical definition) called the

IO monad [11]. This provides a way of isolating effectful parts of the program

from pure parts—in essence, once a program gets into the IO monad, it never gets

out—but it does not necessarily provide a useful framework for reasoning about

these external interactions; for this reason, Simon Peyton Jones has described the

IO monad as a sort of “sin bin”.

2.3.1 Modular Monadic Semantics

The use of monad transformers in modular semantics originates with Liang [2]. A

similar and roughly contemporary approach can be found in Espinosa’s Seman-

tic Lego [5]. Harrison showed that modular monadic semantics, in conjunction

with partial evaluation, can be used to derive compilers from modular monadic

semantics [6]. The general trend of this past research suggests that while monadic

semantics makes extensive use of higher order features, program transformation

39

is an effective way of transforming MMS into efficient implementations, e.g., in the

area of compiler construction. One of the techniques behind the research described

in this dissertation is to push this paradigm even further, down to the level of

specification of the hardware itself.

2.3.2 Monads and Security

Monads have been considered as an organizing principle for security reasoning

in a number of contexts. As mentioned several times already, Harrison and col-

laborators have done extensive work on modular monadic semantics as a way of

obtaining by-construction security properties such as separation [4]. A different

approach treats monads essentially as a way of “tagging” computations with in-

formation on what security domains they access; this is the approach taken by

Crary et al [46] and Russo et al [47]. In this treatment, the actual type structure of

the monad is largely irrelevant; instead, the type system is used extensionally to

account for information flow, with the use of a monad simply ensuring that this

type system cannot be subverted. A synthesis of these approaches is explored in

recent work by Bill Harrison and me [17].

2.3.3 Monadic Hardware Semantics

An active project at Cambridge utilizes monads to model relaxed-memory concur-

rency in modern multicore architectures [48]. This project does not, however, aim

at synthesizable hardware specifications. Monads are used instead as a basis for

reasoning about memory access events, with a formalization written in HOL. In the

40

long run, the Cambridge semantics may provide an interesting test case for ReWire,

to determine if monadic semantics that are innocent of performance concerns—that

is, not originally intended for synthesis—can be used to derive efficient implemen-

tations of modern ISAs. In practice I expect that there will be a considerable gap

between the reasoning-oriented semantics designed by the Cambridge group and

an efficient semantics designed for implementation with ReWire. Measuring and

bridging this gap may be a fascinating area of future work.

2.3.4 Related Structures

Comonads [49], the categorical dual of monads, have been used to embed data

flow programming into Haskell. It is possible that ReWire could serve as a host for

an embedded comonadic data flow DSL, building on the cited work.

Another related structure called arrows [50, 14] has seen considerable use in the

functional modeling of hardware. The general intuition behind arrows—which are

said to generalize monads—is that an arrow is an abstract notion of something that

“consumes” an input and “produces” an output. Formally, an arrow is a binary

type constructor T with three associated operations:

(>>>) :: T a b -> T b c -> T a c
first :: T a b -> T (a,c) (b,c)
second :: T a b -> T (c,a) (c,b)

The >>> operator is a composition operator that connects the output of one arrow

to the input of another, while the first and second operators allow the construc-

tion of paired signals, with one of the signals being filtered through the supplied

arrow and the other being passed unchanged. For example, Haskell’s function

41

type constructor (→) is itself an arrow. An arrow can also be constructed from

any monad M, comprising a type constructor mapping types a and b to the type

a→M b. This is known as a Kleisli arrow. And as previously discussed, the au-

tomata arrow [14] closely resembles a reactive resumption monad. Recent work

by Adam Megacz has thoroughly explored this line of work [51], demonstrating

that standard Haskell can be used as a host language for metaprogrammatically

generating hardware designs [52] with generalized arrows. Generalized arrows are

a superclass of arrows, expanded to include arrow-like constructions that (unlike

“ungeneralized” arrows) cannot subsume arbitrary Haskell functions. This enables

a phase distinction to be drawn between the Haskell program that generates an

arrow-based program, and the arrow-based program itself; Megacz refers to this

as heterogeneous metaprogramming.

The appeal of arrows in hardware design is that they directly reflect the kind

of structural composition that hardware designers are used to thinking about:

hardware is composed from modules that produce outputs, connected to modules

that produce inputs, possibly with feedback loops. For this reason it has been

claimed [50] that arrows are superior to monads when it comes to hardware con-

struction. I believe that this view holds up only insofar as one assumes that the

classical model of hardware design—that hardware should be thought of simply

as a set of components running in parallel and communicating over wires—is the

right way to think. The present work takes a different view, advocating the recast-

ing of the internal behavior of hardware circuits in terms of semantic, rather than

structural, notions. For this, monads are the right abstraction.

42

Chapter 3

The ReWire Language

This chapter describes the ReWire language, a domain-specific language for mod-

ular monadic hardware design. Both syntactically and semantically, the ReWire

language is a subset of Haskell, meaning that all ReWire programs are Haskell

programs. The ReWire language contains built-in support for an important class

of monads (all of which can be emulated in Haskell by means of a library) that en-

able the construction of verified hardware systems in a semantically modular way.

At the same time, the subset of Haskell embodied by ReWire has been carefully

selected to ensure synthesizability in hardware. Support for features like recursive

functions and data types is, therefore, more limited than that provided by Haskell.

A full exploration of the design choices made to enable semantic modularity and

ensure synthesizability is given in Section 3.1.

Section 3.2 presents the semantic core of ReWire as a first-order computational

λ-calculus [53]. Distilling the full language into a compact core simplifies the

presentation of ReWire’s formal semantics given in Section 3.3. By itself, however,

43

the core language is rather uncomfortable to program with, as it lacks, for example,

algebraic data types, polymorphism, and type inference. Thus the actual compiler

of Chapter 4 accepts a richer surface language that includes support for (non-

recursive) algebraic data types, polymorphism, and type inference, and shares a

concrete syntax with (a subset of) Haskell. The nature of this extended language is

discussed in more detail in Section 3.4, but we note at the outset that all of the extra

features of the full ReWire language can be encoded in terms of the core calculus.

Where the distinction between the core calculus and the full language is important,

we will refer to them respectively as “ReWire Core” and the “ReWire language”.

Where the distinction is unimportant, we will refer to both as “ReWire”.

3.1 Design of the ReWire Language

Two major criteria inform the design of ReWire. The first of these is the need to

support semantically modular hardware design with monads. The second is the

necessity that every valid ReWire program be synthesizable to an efficient hardware

implementation. These two concerns are explored in Sections 3.1.1 and 3.1.2,

respectively. In a nutshell, these considerations taken together mean that ReWire

must be “expressive enough without being too expressive”. That is, ReWire must

be expressive enough to support modular monadic hardware design abstractions,

but not so expressive as to require a runtime system burdened with features such

as dynamic memory allocation that are impractical in typical hardware designs.

With these criteria in mind, the remainder of this subsection consists of an ex-

ploration of the potential design space. Ultimately we converge on the conclusion

44

that (1) the combination of reactive resumptions and layered state monads is suffi-

cient for the kinds of monadic hardware designs we wish to express, and (2) these

may be implemented efficiently in hardware. Throughout this discussion the defi-

nitions of various type structures, monads, etc., will be expressed in Haskell syntax

for purposes of exposition, but it is important to note that the design abstractions

we choose will ultimately be taken as primitive in the ReWire language.

The language design that we converge on here will restrict the family of available

monads to that formed by the reactive resumption and state monad transformers.

This is motivated by a desire to have a simple language as a starting point for

research, and the observation that resumptions and state monads are by far the

most important ingredients for hardware construction. The basic design, however,

can easily be extended to support a broader class of built-in monads. This point

will be touched on at the end of Section 3.1.1 and in Chapter 8.

3.1.1 Supporting Semantically Modular Hardware Design

Digital circuit design is commonly divided into two domains: combinational circuit

design and sequential circuit design. In this section we shall divide the problem

of choosing design abstractions for ReWire along the same lines. Combinational

circuits consist only of asynchronous (unclocked) logic gates that map one or more

binary input signals to one or more binary output signals. Sequential circuits,

by contrast, do exhibit memory, and operate synchronously with a shared clock

signal that has the effect of imposing a discrete timeline on the circuit. These sorts

of circuits may be implemented in terms of a combination of asynchronous logic

gates and synchronous memory elements such as flip flops.

45

Combinational Logic Represented by Pure Functions

In logic design it is quite common to represent combinational circuits in terms

of truth tables that map input bits to output bits. The following truth table, for

example, describes the behavior of a two-input AND gate:

Inputs Outputs
a b z
0 0 0
0 1 0
1 0 0
1 1 1

By the same token, combinational circuits can be expressed in a functional/-

monadic language as pure functions, i.e. functions which do not have any side

effects. A binary AND gate, for example, may be expressed in Haskell according

to the following definition which directly reflects the truth table:

and :: Bit -> Bit -> Bit
and 0 0 = 0
and 0 1 = 0
and 1 0 = 0
and 1 1 = 1

Of course, we could also leverage the extra expressiveness of the language to

obtain something equivalent but more compact:

and :: Bit -> Bit -> Bit
and 0 _ = 0
and 1 b = b

We believe this style is more readily understood by a human reader, especially for

more complex logical functions.

46

Generalizing slightly from this example, the ReWire language adopts the basic

approach of implementing any pure function—i.e., any function whose codomain

is not typed in a monad—in terms of combinational logic constructs. The alert

reader may note that this approach would seem to present a handful of puzzling

implementation challenges, such as how to deal with higher-order functions, re-

cursion, and pattern match failures. The basic answer is that these problematic

constructs are forbidden; further details are given in Section 3.1.2. Some support

for abstract types, however, is afforded by the use of non-recursive data types,

which can be encoded as bit vectors. The implementation details of this are given

in Chapter 4.

Sequential Logic Represented by Monadic Functions

The purely functional nature of combinational circuitry means that simple functions

are a sufficient model of combinational logic. The picture for sequential logic,

however, is considerably trickier, as we will need to account for functions that may

have some memory of past inputs, and whose behavior, i.e., the mapping they they

make between inputs from outputs, may change over time.

To begin with, we will note that ReWire in its current design is limited to single

clock domains. This enables us to treat the problem somewhat more abstractly,

while still covering a very large class of realistic circuit designs. A sequential logic

circuit can be viewed as sampling a stream of input values i0, i1, · · · of some type I

at each tick of a clock signal, and producing a stream of output values o0, o1, · · · of

some type O in response, as illustrated by the following timing diagram.

47

Clock

Input i0 i1 i2 i3 i4

Output o0 o1 o2 o3 o4

We will assume that the output stream is a causal stream, meaning that output o j is

determined fully by the inputs i0, i1, · · · , i j−1. In other words, we cannot “look into

the future” when producing an output.

As an example of a sequential circuit which we will revisit later in this section,

consider an up-counter that takes as its input a stream of bits, and outputs at each

clock tick an 8-bit integer indicating how many ones have been received on the

input stream, illustrated as follows.

Clock

Input 1 0 1 1 1 0 0 1 · · ·

Output 00 01 01 02 03 04 04 04 05

We now face the task of choosing a functional/monadic structure to represent

this kind of behavior. We can reject out of hand the possibility of using simple

functions of type I → O, for this would preclude any sort of memory of past

inputs. As a second attempt, we might consider modeling sequential circuits as

functions mapping input histories to outputs, i.e., functions of type I∗ → O where

I∗ represents lists (or strings) of I values. As an abstract mathematical model this

does indeed suffice, but it is not immediately clear how to implement directly, as

it potentially requires us to store the entire input history for later examination,

even as its size grows without bound. Besides this, it does not seem to us like a

convenient structure for programming.

48

A more realistic approach to the memory problem is to use a recursive type like

the following.

data Seql i o = Seql o (i -> Seql i o)

In other words, a sequential circuit from inputs of type I to outputs of type O

consists of a current output value, and a function that maps an input to a “new”

sequential circuit; think of this as a continuation. This structure has the benefit that

any influence of past input values is encoded in the continuation, giving us some

hope (though no inherent guarantee) that we may be able to bound memory usage.

Our up-counter may be modeled in terms of Seql as follows (assuming the

existence of a numeric Int8 type of eight-bit integers).

upcount :: Seql Bit Int8
upcount = loop 0
where loop :: Int8 -> Seql Bit Int8

loop n = Seql n
(\ i -> case i of

0 -> loop n
1 -> loop (n+1))

Thus Seql seems to be sufficient to express the behavior of sequential hardware

circuits. It is also, as it happens, a monad [54].

-- Left-to-right Kleisli composition operator
(>=>) :: Monad m =>

(a -> m b) -> (b -> m c) -> (a -> m c)
f >=> g = \ x -> f x >>= g

instance Monad (Seql i) where
return x = Seql x (\ _ -> return x)
Seql o k >>= f =

49

case f o of
Seql o’ _ -> Seql o’ (k >=> f)

This is not a very useful monad for our purposes, however, as the monadic interface

provided here does not (and is not intended to) allow us to express computations

that take more than one clock cycle. Thus it is not possible to express our up-counter

circuit in Seql without breaking the monadic abstraction. (It should be noted that

Seql as implemented in the cited work, where it is referred to as Moore, is far more

useful when treated as a comonad.)

Let us consider a closely related structure, called a reactive resumption. In contrast

with Seql, a computation of type React i o a not only has an input and output channel,

but also has the ability to terminate, producing a value of type a. On a conceptual

level we may say that React provides output as a side effect, while Seql treats the

output channel as the computational result.

newtype React i o a =
React (Either a (o,i -> React i o a))

instance Monad (React i o) where
return x = React (Left x)
React (Left x) >>= f = f x
React (Right (o,k)) >>= f =

React (Right (o,\ i -> k i >>= f))

We will often make use of an additional operation in React called signal, which

in informal operational terms has the effect of sending an output signal, waiting

for the next input, and returning that input as its result value.

signal :: o -> React i o i
signal o = React (Right (o,return))

Equipped with React, we can now express our up-counter in monadic style.

50

upcount :: React Bit Int8 ()
upcount = loop 0
where loop :: Int8 -> React Bit Int8 ()

loop n = do i <- signal n
case i of

0 -> loop n
1 -> loop (n+1)

Semantic Modularity via Monad Transformers

Thus far we have established design abstractions for combinational logic (namely

pure functions) and sequential logic (namely the reactive resumption monad). The

final piece of the puzzle is to generalize these abstractions in such a way as to

enable semantic modularity.

Well-established techniques in the programming languages world [2, 1] center

on the use of monad transformers to structure monadic specifications in a semanti-

cally modular way. If we are to adopt the same approach, we will need to generalize

React from a monad to a monad transformer. Indeed, the React monad generalizes

cleanly to a monad transformer [13] as follows.

newtype ReactT i o m a =
ReactT (m (Either

a
(o,i -> ReactT i o m a)))

instance Monad m => Monad (ReactT i o m) where
return x = ReactT (return (Left x))
ReactT m >>= f = ReactT (m >>= \ r ->
case r of
Left x -> deReactT (f x)
Right (o,k) -> return (Right

51

(o,\ i -> k i >>= f)))
where deReactT (ReactT m) = m

instance MonadTrans (ReactT i o) where
lift m = ReactT (m >>= return . Left)

signal :: Monad m => o -> ReactT i o m i
signal o = ReactT (return (Right (o,return)))

We may now refactor the definition of our up-counter in a semantically modular

style, layering ReactT over the state monad transformer StateT so as to eliminate the

need to explicitly thread the counter value through to the next loop iteration.

type M = ReactT Bit Int8 (StateT Int8 Identity)

putctr = lift . put
getctr = lift get

upcount :: M ()
upcount = do putctr 0

loop
where loop :: M ()

loop = do n <- getctr
i <- signal n
case i of

0 -> loop
1 -> putctr (n+1) >> loop

In implementation terms, however, it is not clear how to account for the StateT

element, if for no other reason than that the initial value of the state is undefined.

One could simply choose an arbitrary initial value for state variables, but this seems

rather ad hoc and potentially unsafe.

To deal with the situation in a slightly more parsimonious way, we will supply

an operator we call “extrude” that, given a computation in a monad of the form

ReactT i o (StateT s m), allows us to “pull out” one state monad transformer, pro-

52

ducing a new computation in the monad ReactT i o m. We may then require that the

“top-level” definition for a ReWire program is typed in ReactT i o Identity. Doing

so will require us to supply the initial value for the state.

extrude :: Monad m =>
ReactT i o (StateT s m) a ->
s -> ReactT i o m (a,s)

extrude (ReactT phi) s =
ReactT (do (res,s’) <- runStateT phi s

case res of
Left x -> return (Left (x,s’))
Right (o,k) -> return (Right (o,

\ i -> extrudeStateT (k i) s’)))

This allows us to again refactor the code as follows, eliminating the need for the

introductory putctr call.

type M = ReactT Bit Int8 (StateT Int8 Identity)
type R = ReactT Bit Int8 Identity

putctr = lift . put
getctr = lift get

loop :: M ()
loop = do n <- getctr

i <- signal n
case i of

0 -> loop
1 -> putctr (n+1) >> loop

upcount :: R ((),Int8)
upcount = extrude loop 0

The current version of ReWire includes extrude as a primitive, largely because

implementing it as a non-primitive requires recursion on ReactT. However, if in

a future version of ReWire we choose to support a broader class, a more general

53

construction allowing extrusion from other monad transformers is possible. In the

general case we may think of an extrusion operator as “flipping” ReactT on top

of the transformer stack with the next-innermost transformer, as reflected in the

MonadExtrude class below.

class MonadTrans t => MonadExtrude t where
extrudeM :: Monad m => ReactT i o (t m) a

-> t (ReactT i o m) a

After extrudeM is applied, a transformer-specific “run” function can then be ap-

plied to dispense with the extruded transformer. The already-defined state monad

extrusion operator would then fit into the generalized picture as illustrated by the

following imaginary ghci session.

> :t m
ReactT I O (StateT S Identity) ()
> :t extrudeM m
StateT S (ReactT I O Identity) ()
> :t runStateT (extrudeM m)
S -> ReactT I O Identity ((),S)

Many, if not all, useful monad transformers can be a member of this class. For

example, the MaybeT monad transformer, which allows the possibility of runtime

failure to be combined with other effects, could be extruded as follows.

newtype MaybeT m a = MaybeT (m (Maybe a))
runMaybeT (MaybeT x) = x

instance Monad m => Monad (MaybeT m) ...
instance MonadTrans MaybeT ...

instance MonadExtrude MaybeT where
extrudeM (ReactT phi) =

54

MaybeT $ ReactT $
do res <- runMaybeT phi
case res of
Nothing ->
return (Left Nothing)

Just (Left x) ->
return (Left (Just x))

Just (Right (o,k)) ->
return (Right (o,runMaybeT . extrudeM . k))

Thus the basic language design advocated here could be generalized, if desired,

to a broader class of effects.

Facilitating Security Verification

One of the major motivations of the research presented in this dissertation is to

support the construction of formally verified secure hardware. The discussion in

this chapter is more concerned with language implementation trade-offs than with

formal reasoning concerns, but it is worth noting that the combination of reactive

resumption and layered state monads is already known to be a powerful basis for

reasoning about the security of concurrent systems [4, 17]. Our use of the same

class of monads in ReWire means that the very same techniques are applicable to

secure hardware design, further bolstering the argument in favor of our chosen

design abstractions. This is explored in greater detail in Chapter 7.

3.1.2 Ensuring Synthesizability

Having ensured that our language is expressive enough for modular monadic hard-

ware design, we now must take care that it is not too expressive for implementation

in hardware. If this were not a concern, the most obvious course of action would

55

be to take the Haskell definitions given above for ReactT and StateT, retarget an

existing Haskell compiler to FPGA platforms, and use this as our compiler. But

Haskell as a source language presents a number of major problems when it comes

to implementation in hardware. A Haskell implementation requires a runtime

system with a number of features that are undesirable in hardware, and may even

be impossible to implement efficiently. (Some of these features, such as dynamic

memory allocation, may be useful for certain hardware-based applications; but

the much tighter demands made of hardware with respect to timing and resource

utilization mean it is essential that control of them be kept in the programmer’s

hands. A hardware design language that lacks such features is more useful than

one that gives the programmer no control over them at all.)

Memory allocation and garbage collection. For tightly integrated, timing-

critical embedded systems, dynamic memory allocation (including both stack and

heap allocation) and garbage collection present significant problems. First, dy-

namic memory allocation requires the use of RAM. This is no problem in a software-

based runtime system, but in hardware it is often desirable to eschew the use of

RAM altogether in favor of statically sized, non-addressable storage elements (i.e.,

flip flops and registers). Second, dynamic memory allocation raises the possibility

that the system may run out of memory. This condition must be detected and

handled either by the runtime system or by the user; either way, this imposes a

substantial performance overhead on the design. Finally, garbage collection in par-

ticular may wreak havoc on timing, though recent research on real-time garbage

collection for reconfigurable hardware [55] may mitigate this particular concern

somewhat.

56

Divergence, unpredictable timing, and undefinedness. The presence of gen-

eral recursion in Haskell means that it is possible to write an expression whose

evaluation diverges, i.e. runs forever without producing a well-defined value. In

general, this is highly undesirable in hardware. While it is true that most hard-

ware systems are designed to run indefinitely, one usually requires that the system

produce a well-defined stream of outputs along the way.

Even if we could somehow guarantee that recursive functions will always ter-

minate, the use of recursion is still problematic in terms of timing. Generally we

require that a synchronous circuit always produces its next output value in time for

the next clock tick. Suppose, then, that we have a tail recursive function fib that

computes the nth Fibonacci number in linear time and constant space, and at each

clock tick we are writing fib(n) on the output stream, where n varies from clock tick

to clock tick over a large range. In general there is no upper bound on how long the

evaluation of fib(n) will take, meaning that the minimum acceptable clock period

for the circuit is∞; in other words, our circuit may operate no faster than 0Hz. In

some cases, we may know a priori that the value of n is never greater than some

maximum value, say 232. But this does not help us very much with respect to lan-

guage implementation, as we are still forced to slow the clock for the entire circuit

enough that fib(232) may be calculated between clock ticks, bringing our maximum

clock speed above zero, but likely not very far. (A quick benchmark test computing

this value via a C program running on a modern desktop CPU as of 2014 suggests

that we could expect this value to take at least one minute to compute, implying a

maximum clock frequency somewhere in the centihertz range.)

Additionally, there is another kind of undefinedness present in Haskell, arising

57

Semantic Feature Runtime Problems
Higher-order functions Dynamic memory allocation

Garbage collection
Recursive data structures Dynamic memory allocation

Garbage collection
General recursive functions Divergence

Unpredictable timing
Dynamic memory allocation

Incomplete pattern matching Undefined values

Table 3.1: The semantic antecedents of certain runtime features of Haskell that are
problematic in hardware.

from pattern match failure. While undefinedness in this sense presents no inherent

problem with respect to timing, it does require us to decide how to represent an

undefined value, and how the system must behave when one arises. Hardware

designers typically demand control over such decisions.

Identifying the Culprits

The approach we will take with ReWire is to identify the semantic features of

Haskell—the “culprits”—that cause undesirable runtime behaviors, and either

eliminate these features or restrict them. Table 3.1 identifies a number of prob-

lematic semantic features in Haskell, along with the problems they cause with

respect to hardware synthesis.

The good news is that these problematic features are not essential for our pur-

poses. By eliminating or placing restrictions on them, it is possible to have a

language that allows modular monadic hardware design, yet also guarantees syn-

thesizability of reasonably efficient FPGA implementations.

58

Culprit 1: Higher-Order Functions Higher-order functions are not allowed

in the ReWire language. This includes functions that take functions as argu-

ments, functions that return other functions (meaning all curried functions must

be fully applied), and functions that take reactive resumptions as arguments. Fur-

thermore, the state and input/output type parameters to monad types may only

be instantiated with simple non-recursive data types. For example, types like

ReactT (StateT Int Identity ()) Int (), which would represent a synchronous compu-

tation that takes a stream of stateful computations as input, are disallowed.

Culprit 2: Recursive Data Structures User-defined recursive data structures,

such as lists and trees, are not allowed in the ReWire language. Support for

recursive data is limited only to functions that produce values whose codomain

is in ReactT, and this is subject to the restrictions on function recursion described

below.

Culprit 3: General Recursive Functions Recursive functions are only allowed

under certain limited circumstances:

• Recursive functions must only take simple data types as arguments, and pro-

duce as a result a computation in a well-formed reactive resumption monad.

Formally, this means something of the form

a1 → a2 → · · · → an →

ReactT ti to (StateT s0 (StateT s1 (· · · (StateT sm Identity)))) b

59

where every a j, ti, to, every sk, and b are simple data types.

• Recursive functions must be productive. This means that every recursive

function must always either terminate with a final value, or produce an output

signal, in finite time. This may be ensured by a guardedness condition [18], a

syntactic condition that is sufficient (but not necessary) for productivity.

• All recursive calls must be tail calls.

Culprit 4: Incomplete Pattern Matching All pattern matching in the ReWire

language must be exhaustive.

3.2 Syntax of ReWire Core

The design decisions laid out informally in Section 3.1 guarantee that the ReWire

language provides enough expressiveness for modular monadic hardware design,

while guaranteeing synthesizability. In the remainder of this chapter, we give a

more formal definition of the language. We begin with the syntax of the ReWire

Core calculus, given in Figure 3.1.

3.2.1 Types

ReWire Core makes a critical but syntactically subtle distinction between “pure”

types (simple data) and general types, which include monadic computations. The

set of pure types (whose metavariables conventionally are t or any decoration

60

x, y, f ∈ Variable ::= identifiers
t ∈ PureType ::= () | t + t′ | t × t′

B ∈ BaseMonad ::= I | St B
R ∈ ResMonad ::= Rt,t′ B

M ∈Monad ::= B | R
τ ∈ Type ::= t | M(t)

ζ ∈ ResType ::= R(t)
e ∈ Expression ::= x e1 · · · en n ≥ 0 | let x = e in e′ end

| nil | 〈e,e′〉 | inl e | inr e | fst e | snd e
| case e of inl x→ e′ ; inr y→ e′′ end
| return e | bind x← e in e′ end | lift e
| get | put e | signal e | extrude e e′

l ∈ LetDefn ::= x x1 · · · xn = e n ≥ 0

Y ∈ ProgBody ::= letfun l in Y end
| letrec l1 ; · · · ; ln in e end n ≥ 0

P ∈ Prog ::= program Y end

Figure 3.1: Abstract Syntax for ReWire Core Calculus. (Metavariables may appear
subscripted or with prime marks.)

61

thereof) consists only of those types composed of the unit type (), the product

constructor ×, and the coproduct constructor +. The broader set of general types

(with metavariables τ, τ′, etc.) also contains monadic types, expressing the type of

a computation. Note that monads may not be stacked, i.e., one cannot construct

the type of a “computation that produces a computation”. Three constructors are

available for monads: the base identity monad I, the state monad transformer St

(where t represents the type of the state, i.e. the s in StateT s), and the reactive

resumption monad transformer Rt,t′ where t and t′ are (pure) input and output

types, respectively. Where a reactive resumption monad transformer is present,

there must be only one, and it must be on the top of the monad transformer stack.

The subset ResType of Type is restricted to the types of computations in a resumption

monad, i.e. types of the form Rt,t′St1St2 · · · StnI(t′′). Later we will see that recursion

is permitted only over types of this form. Arrow types are absent from the syntax

altogether, as ReWire Core does not support higher-order functions—functions are

not values.

3.2.2 Expressions

Apart from the monadic constructs (in the last two lines of the grammar for

Expression), most features of the expression language are exactly what one would

expect to find in a vanilla functional language. The expression nil constructs a

value of type (); tuples may be constructed with the form 〈−,−〉; sum values may

be constructed with inl and inr; and tuples (respectively, sums) may be destructed

with the projection operators fst and snd (respectively, case-expressions). Variable

reference and function application are slightly nonstandard; these are folded into

62

a single syntactic form merely to emphasize the first-order nature of the language.

Note also thatλ is absent from the language. As a consequence, let permits only the

definition of values, not of functions. (Such definitions can always be λ-lifted [56]

to the top level anyway.)

The basic monad operations take the form of built-in operations return and

bind. Lifting through monad transformers is also built-in via the lift operator,

as are the monad operations get and put (for state monads), signal (for reactive

resumption monads), and extrude (for supplying initial state values to state monads

underneath resumptions). Fundamentally, the internal structure of the monads is

kept abstract, meaning that it is not possible as it is in Haskell to construct a

computation by directly applying data constructors like StateT and ReactT. (As

we will see in Section 3.3, though, the semantic structures that underlie ReWire’s

monads are identical to their Haskell counterparts, modulo the nonexistence of ⊥

in ReWire Core.)

3.2.3 Programs

Finally, a program in ReWire Core is constructed by wrapping an expression with

a single letrec defining recursive functions, and a stack of letfuns that allows the

definition of zero or more nonrecursive functions. All aforementioned restrictions

on recursion are encoded not in the syntax, but in the type system.

63

T J()K = 1
T Jt + t′K = T JtK + T Jt′K
T Jt × t′K = T JtK × T Jt′K
T JM(t)K = M JMKT JtK

M JIK x = x
M JStMK x = (M JMK (x × T JtK))T JtK

M JRt,t′MK x = νX.M JMK (x + (T Jt′K × XT JtK
⊥

))

Figure 3.2: Denotational Semantics of Types

3.3 Semantics of ReWire Core

We now turn our attention to the static and dynamic semantics of ReWire Core,

that is its type system and the denotational semantics of programs.

3.3.1 Semantics of Types

The denotational semantics of types is provided in Figure 3.2 on page 64, in terms

of two meaning functions T J−K (for base types) andM J−K (for monads). Types

are interpreted as complete partial orders, but with the exception of the reactive

resumption monad all domains are discretely ordered. Each monad type construc-

tor is interpreted as a mapping that takes one domain (i.e., CPO) as its argument

and gives another domain as a result. (In categorical terms this is simply the object

map corresponding to the underlying functor of a monad in CPO.) Note that while

the reactive resumption monad is interpreted as a pointed CPO, the guardedness

criterion (discussed in Section 3.3.2) guarantees that the bottom value will never

actually be constructed by a program; it is needed only so we may make use of a

fixpoint operator in defining the semantics of letrec, the bind operation for R, and

extrude.

64

3.3.2 Type System

Figure 3.3 on page 67 contains the typing rules for ReWire Core. Typing judgments

have the form Γ ` θ : τ, where Γ is a set of assumptions about the types of

bound variables, τ is a type, and θ is either an expression, a program body, or a

program (i.e., θ ::= e |Y | P). Typing assumptions take the form x : t1 → t2 →

· · · → tn → τ, where n ≥ 0. Thus even though functions are not “first-class

citizens” and arrow “types” are not actually part of the syntax of types, the typing

environment may contain assumptions about functions. In understanding the type

system, it is important to bear in mind the distinction between the metavariables

τ, ζ, and t. The first of these includes all syntactically valid types, both data

types and computational types; the second includes only computational types in a

reactive resumption monad; and the third contains only data types. The distinction

among these three categories is the mechanism by which computations-as-values

are kept out of the language, and recursion is restricted only to resumption-monadic

computations.

Guardedness and Tail Recursiveness

The typing rule T-Prog requires judgments that the program being typed be

guarded and tail recursive. The exact rules for these judgments are formalized

in Figures 3.4 and 3.5. Guardedness judgments take the form Σ ` G (θ), where Σ

is a set containing the names of recursively defined functions currently in scope

and θ is either a program body or an expression. The key rule is G-Bind2, which,

in the presence of signal on the left-hand side of a bind, does not demand further

scrutiny of the right-hand side expression. Tail recursiveness judgments take the

65

form 〈Π,Σ〉 ` S (θ), where Σ andθ play the same role as in guardedness judgments,

and Π ∈ {⊥,>} indicates whether a recursive call made in the current context would

(>) or would not (⊥) be a tail call. (Thus Π is forced to ⊥when making judgments

about, for example, the subexpressions of a function application, but Π is not forced

to ⊥ when making judgments about, for example, the body of a let expression.)

The fact that recursion is restricted only to reactive resumption monads simpli-

fies both guardedness and tail recursiveness judgments significantly compared to

what would be required in a general recursive language. For example, it is not

necessary to inspect function argument expressions, as these expressions are, by

construction, restricted to simple base types, and therefore their values cannot be

constructed recursively. We note in passing that the rules both for guardedness

and tail recursiveness might be simplified if they were redefined in a type-directed

fashion (perhaps combining typing judgments, guardedness judgments, and tail-

recursiveness judgments into a single inductively-defined predicate).

3.3.3 Semantics of Programs

Finally, we turn our attention to the semantics of programs exhibited in Figure 3.6

on page 71. The meaning function E J−K is technically defined by induction on the

structure of typing derivations. For the sake of readability, however, the presentation

of Figure 3.6 is given merely in terms of expressions (or program bodies/programs),

whose type will be mentioned explicitly only when immediately relevant. Thus

E Jθ : τK takes a expression, program body, or program e of type τ, an environment

mapping variables to their meanings, and returns an element of the semantic

domain T JτK . For bind, return, and lift we refer to the functions η−, ?−, L−

66

Γ ` ei : ti for every i ∈ [1,n] x : t1 → · · · → tn → τ ∈ Γ

Γ ` x e1 · · · en : τ T-VarApp

Γ ` e : t Γ, x : t ` e′ : τ
Γ ` let x = e in e′ end : τ T-Let

Γ ` nil : () T-Nil Γ ` e : t Γ ` e′ : t′
Γ ` 〈e, e′〉 : t × t′ T-Pair

Γ ` e : t
Γ ` inl e : t + t′ T-InL Γ ` e : t′

Γ ` inr e : t + t′ T-InR

Γ ` e : t × t′
Γ ` fst e : t T-Fst Γ ` e : t × t′

Γ ` snd e : t′ T-Snd

Γ ` e : t + t′ Γ, x : t ` e′ : τ Γ, y : t′ ` e′′ : τ
Γ ` case e of inl x→ e′ ; inr y→ e′′ end : τ T-Case

Γ ` e : t
Γ ` return e : M(t) T-Ret

Γ ` e : M(t) Γ, x : t ` e′ : M(t′)
Γ ` bind x← e in e′ : M(t′) T-Bind

Γ ` e : B(t)
Γ ` lift e : Rt′:t′′B(t) T-LiftR

Γ ` e : B(t)
Γ ` lift e : St′B(t) T-LiftS

Γ ` get : StB(t) T-Get Γ ` e : t
Γ ` put e : StB(()) T-Put

Γ ` e : t′
Γ ` signal e : Rt:t′B(t) T-Signal

Γ ` e : Rt:t′St′′B(t′′′) Γ ` e′ : t′′

Γ ` extrude e e′ : Rt:t′B(t′′′ × t′′) T-Extrude

Γ, x1 : t1, · · · , xn : tn ` e : τ Γ, f : t1 → · · · → tn → t ` Y : ζ
Γ ` letfun f (x1 : t1) · · · (xn : tn) = e in Y end : ζ T-LetFun

li is fi xi
1 · · · x

i
ki

= ei for every i ∈ [1,n]
Γ′ = Γ, f1 : t1

1 → · · · → t1
k1
→ ζ1, . . . , fn : tn

1 → · · · → tn
kn
→ ζn

Γ′, xi
1 : ti

1, . . . , x
i
ki

: ti
ki
` ei : ζi for every i ∈ [1,n]

Γ′ ` e : ζ
Γ ` letrec l1 ; l2 ; · · · ; ln in e end : ζ T-LetRec

{} ` Y : ζ {} ` G (Y) 〈>, {}〉 ` S (Y)
{} ` program Y end : ζ T-Prog

Figure 3.3: Type System for ReWire Core Calculus

67

x < Σ
Σ ` G (x e1 · · · en) G-VarApp

Σ \ {x} ` G (e′)
Σ ` G (let x = e in e′ end) G-Let

Σ ` G (nil) G-Nil
Σ ` G (〈e, e′〉) G-Pair

Σ ` G (inl e) G-InL
Σ ` G (inr e) G-InR

Σ ` G (fst e) G-Fst
Σ ` G (snd e) G-Snd

Σ \ {x} ` G (e) Σ \ {y} ` G (e′′)
Σ ` G

(
case e of inl x→ e′ ; inr y→ e′′ end

) G-Case

Σ ` G (return e) G-Ret
Σ ` G (e)

Σ ` G (lift e) G-Lift

Σ ` G (e) Σ \ {x} ` G (e′)
Σ ` G (bind x← e in e′) G-Bind1

Σ ` G (e)
Σ ` G

(
bind x← signal e in e′

) G-Bind2

Σ ` G
(
get

) G-Get
Σ ` G

(
put e

) G-Put

Σ ` G
(
signal e

) G-Signal
Σ ` G (e)

Σ ` G (extrude e e′) G-Extrude

Σ \ { f } ` G (Y)
Σ ` G

(
letfun f x1 · · · xn = e in Y end

) G-LetFun

li is fi xi
1 · · · x

i
ki

= ei for every i ∈ [1,n]
Σ′ = Σ ∪ { f1, · · · , fn}

Σ′ \ {xi
1, . . . , x

i
ki
} ` G (ei) for every i ∈ [1,n]

Σ ` G (letrec l1 ; l2 ; · · · ; ln in e end) G-LetRec

Figure 3.4: Guardedness Condition for ReWire Core Calculus

68

x < Σ
〈⊥,Σ〉 ` S (x e1 · · · en) S-VarApp1

〈>,Σ〉 ` S (x e1 · · · en) S-VarApp2

〈Π,Σ \ {x}〉 ` S (e′)
〈Π,Σ〉 ` S (let x = e in e′ end) S-Let

〈Π,Σ〉 ` S (nil) S-Nil
〈Π,Σ〉 ` S (〈e, e′〉) S-Pair

〈Π,Σ〉 ` S (inl e) S-InL
〈Π,Σ〉 ` S (inr e) S-InR

〈Π,Σ〉 ` S (fst e) S-Fst
〈Π,Σ〉 ` S (snd e) S-Snd

〈Π,Σ \ {x}〉 ` S (e) 〈Π,Σ \ {y}〉 ` S (e′′)
〈Π,Σ〉 ` S

(
case e of inl x→ e′ ; inr y→ e′′ end

) S-Case

〈Π,Σ〉 ` S (return e) S-Ret
〈Π,Σ〉 ` S (e)
〈Π,Σ〉 ` S (lift e) S-Lift

〈⊥,Σ〉 ` S (e) 〈Π,Σ \ {x}〉 ` S (e′)
〈Π,Σ〉 ` S (bind x← e in e′) S-Bind

〈Π,Σ〉 ` S
(
get

) S-Get
〈Π,Σ〉 ` S

(
put e

) S-Put

〈Π,Σ〉 ` S
(
signal e

) S-Signal
〈Π,Σ〉 ` S (e)

〈Π,Σ〉 ` S (extrude e e′) S-Extrude

〈Π,Σ \ { f }〉 ` S (Y)
〈Π,Σ〉 ` S

(
letfun f x1 · · · xn = e in Y end

) S-LetFun

li is fi xi
1 · · · x

i
ki

= ei for every i ∈ [1,n]
Σ′ = Σ ∪ { f1, · · · , fn}

〈Π,Σ′ \ {xi
1, . . . , x

i
ki
}〉 ` S (ei) for every i ∈ [1,n]
〈Π,Σ′〉 ` S (e)

〈Π,Σ〉 ` S (letrec l1 ; l2 ; · · · ; ln in e end) S-LetRec

Figure 3.5: Tail Recursiveness Predicate for ReWire Core Calculus

69

of Figure 3.8 on page 73 which respectively define the semantics of the bind,

return/unit, and lift operations of a given monad. These semantics are equivalent

to those given by Liang [1] (for the state monad transformer) and Papaspyrou [13]

(for the reactive resumption monad transformer). On a minor technical note, L−,

which defines the lift operations for monad transformers, is technically not a total

function, as it is undefined when applied to I. The structure of the type system,

however, ensures that LI is never actually “used” by the semantics; see the rule

T-Lift in Figure 3.3 and the equation for lift in Figure 3.6.

3.4 Extended Language Constructs

The ReWire Core calculus features a syntax that is appealingly compact from a

semantic point of view. Its usefulness as a surface-level programming language,

however, is greatly enhanced by the addition of a number of convenience exten-

sions, forming what we call the ReWire language. Several such extensions, most of

which are already supported by the compiler of Chapter 4, will be described infor-

mally in this section. It is important to note that none of the language extensions

described here have major semantic implications; they may all be encoded in terms

of the ReWire Core calculus.

3.4.1 Haskell Concrete Syntax

The ultimate goal is to support Haskell concrete syntax for the entirety of ReWire’s

feature set. A few examples of this are given below.

70

E Jx e1 · · · enKρ = (ρx)(E Je1Kρ) · · · (E JenKρ)
E Jlet x = e in e′ endKρ = E Je′K (ρ[x 7→ E JeKρ])

E JnilKρ = ()
E J〈e, e′〉Kρ = 〈E JeKρ,E Je′Kρ〉
E Jfst eKρ = π1(E JeKρ)
E Jsnd eKρ = π2(E JeKρ)
E Jinl eKρ = ι1(E JeKρ)
E Jinr eKρ = ι2(E JeKρ)

E Jcase e of inl x→ e′ ; inr y→ e′′ endKρ =


E Je′K (ρ[x 7→ v])

if E JeKρ = ι1 v
E Je′′K (ρ[y 7→ v])

if E JeKρ = ι2 v

E Jbind x← e in e′ : M(t′)Kρ = E JeKρ ?M λv.E Je′K (ρ[x 7→ v])
E Jreturn e : M(t)Kρ = ηM(E JeKρ)
E Jlift e : TM(t)Kρ = LTM(E JeKρ)
E Jget : StM(t)Kρ = λσ.ηM〈σ, σ〉

E Jput e : StM(())Kρ = λσ.ηM〈(),E JeKρ〉
E Jsignal e : Rt:t′M(t)Kρ = ηM(ι2〈E JeKρ, λi.ηM(ι1 i)〉)

E Jextrude e e′ : Rt:t′M(t′′′ × t′′)Kρ = χM(E JeKρ)(E Je′Kρ) (†)
E Jletfun · · · Kρ = See Figure 3.7
E Jletrec · · · Kρ = See Figure 3.7

E Jprogram Y endKρ = E JYKρ

(†) In the equation for extrude,

χM = fix F.λϕ.λσ.

ϕσ ?M λp.

ηM(ι1〈x, σ′〉) if p = 〈ι1 x, σ′〉
ηM(ι2〈o, λi.F(κi)σ′〉) if p = 〈ι2〈o, κ〉, σ′〉

Figure 3.6: Denotational Semantics of Expressions (continued in Figure 3.7)

71

E
q

letfun f (x1 : t1) · · · (xk : tk) = e in Y end
y
ρ = E JYKρ′

where

g = λy1. · · ·λyk.E JeK (ρ[x1
7→ y1, · · · , xk

7→ yk])
ρ′ = ρ[f 7→ g]

E

u

www
v

letrec f1 (x1
1 : t1

1) · · · (xk1
1 : tk1

1) = e1
...

fn (x1
n : t1

n) · · · (xkn
n : tkn

n) = en

in e end

}

���
~
ρ = E JeKρ′′

where

〈g1, · · · , gn〉 = fix 〈F1, · · · ,Fn〉.

let ρ′ = ρ[f1 7→ F1, · · · , fn 7→ Fn]
in 〈λy1

1. · · ·λyk1
1 .E Je1K (ρ′[x1

1 7→ y1
1, · · · , x

k1
1 7→ yk1

1]),
...

λy1
n. · · ·λykn

n .E JenK (ρ′[x1
n 7→ y1

n, · · · , x
kn
n 7→ ykn

n])〉
ρ′′ = ρ[f1 7→ g1, · · · , fn 7→ gn]

Figure 3.7: Denotational Semantics of Expressions (continued from Figure 3.6)

72

Bind operators:

ϕ ?I f = fϕ
ϕ ?StM f = λσ.ϕσ ?M λp. f (π1p)(π2p)

ϕ0 ?Rt:t′M f0 = g ϕ0 f0

where g = fix F.λϕ.λ f .

ϕ ?M λr.


f x

if r = ι1 x
ηM(ι2〈o, λi.F (κ i) f 〉)

if r = ι2〈o, κ〉

Unit operators:

ηI(x) = x
ηStM(x) = λσ.ηM(〈x, σ〉)
ηRt:t′M(x) = ηM(ι1 x)

Lift operators:

LStM(ϕ) = λσ.ϕ ?M λx.ηM(〈x, σ〉)
LRt:t′M(ϕ) = ϕ ?M λx.ηM(ι1 x)

Figure 3.8: Denotational Semantics of Monads

73

Layout Rule

Haskell’s concrete syntax features block structuring based on indentation, the cor-

rect parsing of which is notoriously tricky to get right [8]. At the moment, the

layout rule is not implemented by the ReWire language, requiring explicit block

structuring on the part of the user, but it will be implemented in a future release.

Module Structure

In Haskell, programs are structured not as an explicitly nested set of let/letrec

expressions, but as a series of top-level function definitions that form a single

recursive binding group. The ReWire language adopts the same concrete syntax.

Decoding this to ReWire Core necessitates a simple static check that analyzes which

functions are being defined recursively and which are not, and rearranging the

declarations as a set of nested letfuns wrapped around a single letrec.

Where-Clauses

Haskell allows locally scoped function definitions via a syntactic form called a

where clause. For example, in the following code fragment for computing the nth

element of the Fibonacci sequence, the inner definition of fibs is not visible outside

the scope of fib.

fib :: Int -> Int
fib n = fibs!!n
where fibs :: [Int]

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

74

(Note that this code is not valid ReWire due to its use of recursion outside ReactT,

but it still illustrates the salient point.) A transformation akin to λ-lifting [56]

can dispense with where clauses, by promoting where-bound variables to top-

level definitions. This transformation is slated for implementation in the ReWire

compiler in the near future.

Pattern Binding

It is often convenient when programming in Haskell to assign values to multiple

variables at a time by deconstructing a data value. The syntax for this is called

pattern binding. For example, the standard Haskell Prelude defines a function

quotRem that returns both the quotient and the remainder result from dividing two

integers.

quotRem :: Int -> Int -> (Int,Int)

If we wish to break out the resulting values into separate named variables, using

pattern binding in a let expression or where clause is often convenient.

let
(q,r) = quotRem x y

in
...

This pattern is also useful in monadic programming. Suppose the input to our

reactive circuit is a tuple containing (say) an address and a write-enable line. We

can break out the individual elements of the tuple by applying pattern binding to

the return value of signal.

75

foo :: ReactT (Bit,Addr) Word Identity ()
foo = do (we,a) <- signal bar

...

Pattern binding can be desugared to pattern matching, the implementation of

which is described below. Note that as always, ReWire (unlike Haskell) will require

pattern matching to be exhaustive; this precludes the use of pattern binding on

multiple-constructor data types, as in the following example.

f :: Int -> Maybe Int
f x = ...

g :: Int
g = let (Just x) = f 0 in x -- NOT legal in ReWire

On the other hand, pattern binding in defining equations is permissible, as long as

all cases are handled.

h :: Maybe Int -> Int
h (Just x) = x -- Both cases are handled,
h Nothing = 0 -- so no problem for ReWire.

Pattern binding is slated for implementation in the ReWire compiler in the near

future, and will be implemented via desugaring to case expressions.

Infix Operators

Haskell allows programmers to define custom infix operators, which often results

in more visually appealing code. Support for this is not yet implemented in ReWire,

but it will require only a minor overhaul to the parser.

76

do-Notation

Since monads are such a pervasive programming structure in Haskell, it, like

ReWire Core, provides built-in support for imperative-style monadic programming

via a construct called do-notation. Here the syntactic differences between ReWire

Core and Haskell are quite shallow; a Haskell expression of the form

do x <- e
y <- e’
e’’
return (f x y)

can be translated to ReWire core as

bind x ← e
in bind y ← e′

in bind ? ← e′′

in return (f x y)

where ? is a freshly generated variable not occurring free in the expression.

3.4.2 Algebraic Data Types

Simple product and coproduct data types are clearly a bit unwieldy from a pro-

grammer’s point of view. For this reason the ReWire language includes support

for nonrecursive algebraic data types.

To see how to encode this in ReWire Core let us first consider the type of

bits.

77

data Bit = Zero | One

This type is, up to isomorphism, just the sum of two unit types. Therefore it may

be translated into ReWire Core’s type system as exactly that.

Bit , () + ()

Data types with fields, on the other hand, can be encoded as products. So the

type of four-bit vectors

data W4 = W4 Bit Bit Bit Bit

becomes

W4 , Bit × Bit × Bit × Bit
= (() + ()) × (() + ()) × (() + ()) × (() + ())

Semantically speaking, this sort of encoding will suffice for arbitrarily complex

non-recursive data types. The actual compiler treats named data constructors as

built in to the language rather than actually applying this transformation, mostly

for the sake of producing readable error messages.

When pattern matching on algebraic data types in the ReWire language, all

possible cases must be handled or the compiler will terminate with an error mes-

sage, unlike Haskell. This avoids the introduction of an “undefined” value into the

language.

78

3.4.3 Polymorphism and Type Classes

Haskell allows the definition of parametrically polymorphic functions and data

types. Maybe is a prime example of a polymorphic data type.

data Maybe a = Nothing | Just a

Here the type variable a stands for any type, meaning that the data declara-

tion actually defines several (indeed infinitely many) types: Maybe Int, Maybe Bit,

Maybe (Maybe (Bit,Bit, Int)), and so on.

Function definitions, too, may be polymorphic. For example, a function that

flips the elements of a pair may be defined as follows.

flipPair :: (a,b) -> (b,a)
flipPair (x,y) = (y,x)

Again, this function has infinitely many types: (Bit,Bit) → (Bit,Bit), (Bit, Int) →

(Int,Bit, (Maybe Bit,Bit)→ (Bit,Maybe Bit), and so on.

In Haskell, compiling parametrically polymorphic functions is a relatively sim-

ple matter since data structures are (basically) represented internally as a nest of

pointers. In ReWire, however, this approach presents a bit of a problem; later in

Chapter 4 we will define a compilation scheme that stores data types in a fixed-size

bit vector. Pattern matching and the construction of data values, then, requires that

we know a priori the exact size of the data that we are operating on, and therefore

its exact type.

Since separate compilation is not really a concern for ReWire, however, a simple

workaround is available: we will insist that every use of a polymorphic function

has a uniquely determined type. For example, if we apply the function flipPair to

79

the expression (0, 1) of type (Bit,Bit), we know that the function we want is actually

flipPair with both of its type variables instantiated to Bit. At compile time we will

produce a separate implementation of flipPair for each such case. Due to the lack

of polymorphic recursion in ReWire, the number of such implementations that we

will require is guaranteed to be finite.

Support for polymorphism in the manner described here is already imple-

mented in the ReWire compiler; again, the lack of polymorphic recursion means

that the typical dictionary-passing implementation of type classes may be trans-

formed away at compile time [57]. In the future, Haskell-style type classes may be

implemented according to a similar scheme, allowing the overloading of certain

functions. At the moment, however, only a limited and ad-hoc form of type class-

style overloading is available, sufficient to support functions that may operate in

any monad.

80

Chapter 4

The ReWire Compiler

This chapter comprises a detailed discussion of the design of the ReWire Compiler,

which translates programs in the ReWire language into VHDL programs suitable

for synthesis and implementation on FPGAs. A high-level outline of the compila-

tion process is provided in Figure 4.1. In the first of three broad phases (tagged (a)

in the figure), the compiler parses and type-checks a ReWire program expressed in

Haskell concrete syntax (as discussed previously in Section 3.4). The structure of

the front end is mostly standard and reuses an existing Haskell front end imple-

mentation, so the discussion of Section 4.1 is limited to broad strokes. The heart

of the compiler is the second phase (Figure 4.1b), where the compiler converts a

type-annotated ReWire program into a simple intermediate language called Pre-

HDL, which is then transformed into a normal form more amenable to translation

to VHDL. The use of a simple intermediate language allows various intermediate

compiler phases to be implemented without taking into account the full syntax,

semantics, and feature set of VHDL. Phase (b) of the compiler is discussed in its

81

Haskell
Concrete
Syntax

Type-
Checked
ReWire

AST

PreHDL VHDL
(a) (b) (c)

Figure 4.1: ReWire Compilation Process

entirety in Section 4.2. The final phase of the compiler (Figure 4.1c) is a relatively

straightforward translation from PreHDL into a single-process VHDL state ma-

chine, discussed in Section 4.3. The ReWire Compiler is implemented entirely in

Haskell.

Our running example program for the discussion of the compilation process

(Figure 4.2) is an idealized two-function calculator, supporting addition, subtrac-

tion, and a “clear” operation (defined by the type Oper on line 3). To make things

simple, we will assume that the calculator accepts a command on each clock cycle.

The use of the monad Calc = ReactT Oper W8 (StateT W8 Identity), defined

on line 4, indicates that the circuit takes inputs of type Oper, produces outputs of

type W8 (a standard library type representing 8-bit vectors), and has internal state

of type W8. Lines 6 and 7 define foreign functions written in VHDL implementing

addition and subtraction on W8. It is, of course, quite possible to implement these

functions directly in ReWire, but leaving them abstract allows us to define them

at the back end in terms of VHDL’s native + operator. The VHDL synthesis tools

will choose the implementation most appropriate to the target device. The main

program loop on lines 15-22 reads the current value from the store (line 16), then

signals it on the output and samples the next input (line 17) Then, depending on

the input Oper, either an add, subtract, or clear operation (lines 18-21) is executed.

82

1 module Calc where
2
3 data Oper = Add W8 | Sub W8 | Clr
4 type Calc = ReactT Oper W8 (StateT W8 Identity)
5
6 vhdl plusW8 :: W8 -> W8 -> W8
7 vhdl minusW8 :: W8 -> W8 -> W8
8
9 getVal :: Calc W8

10 getVal = lift get
11
12 putVal :: W8 -> Calc ()
13 putVal x = lift (put x)
14
15 loop :: Calc ()
16 loop = do x <- getVal
17 oper <- signal x
18 case oper of
19 Add y -> putVal plusW8 x y
20 Sub y -> putVal minusW8 x y
21 Clr -> putVal 0
22 loop
23
24 start :: Calc ((),W8)
25 start = extrude loop 0

Figure 4.2: Running Example: A Simple Two-Function Calculator

Finally, control tail-recursively returns to the top of the loop via a tail call (line 22).

The start function defined on lines 24-25 (start is taken by the compiler to be the

entry point to the program, à la main in C) initializes the state to 0 via extrude,

then begins the loop.

83

4.1 Front End

The front end of the ReWire compiler consists of a parser written with the Parsec

parser combinator library [12] and a type checker based on a pre-existing refer-

ence implementation called Typing Haskell in Haskell [58]. Expressions in the

AST are annotated with sufficient type information to reconstruct the types of

subexpressions without tracing the context in which they occur. Specifically, all

variable binders and occurrences, and all occurrences of data constructors, carry

an annotation recording their type at that occurrence. Thus, the polymorphic con-

structor Just : a → Maybe a can be tagged Int → Maybe Int in one position, and

Bit → Maybe Bit in another, depending ultimately on the type of its argument.

One possibility we are currently considering is switching the front end to that

provided by GHC, which has the advantages of extensive testing and performance

tuning as well as a plethora of useful language extensions (which would allow

us to implement, just to name two examples, metaprogramming via Template

Haskell [59], and much-desired support for sized bit vectors in place of a fixed

menu of types like W8, W16, and so on). We have held off on making this change

primarily because of the implementation challenges posed by interfacing with

GHC. While GHC is technologically unsurpassed, its internals are inconsistently

documented and historically something of a moving target. It is also possible that

we will wish to implement changes at a later stage that may break ReWire’s subset

relationship with Haskell; in this case, a simple reference implementation may give

a better platform for experimentation than GHC.

84

4.2 Code Generation

In this section we discuss the generation of PreHDL code from ReWire programs.

Ultimately, the goal of code generation is to produce synthesizable VHDL code for

a circuit containing a single process of the form:

process(clk)
begin
if clk’event and clk=’1’ then
-- <loop body>

end if;
end process;

where the loop body consists entirely of loop-free code. ReWire, however, allows

for nested loops (implemented via tail recursion). The code generation function

works by emitting code with goto (a construct that does not actually exist in VHDL,

though it can be eliminated in a favor of structured programming constructs at a

later pass [60]), which means that the single-loop structure we want is not guar-

anteed to be present. Therefore a significant amount of code transformation is

needed to bring the program into this form. For this reason, the code genera-

tion pass (Figure 4.1b) generates programs in an imperative intermediate language

called PreHDL, described in more detail in Section 4.2.1. Targeting PreHDL instead

of VHDL directly allows us to implement the necessary code transformation passes

on a much smaller language than VHDL itself.

The basic code generation procedure has three steps. First, a syntax-directed

code generation process translates the ReWire source program into a PreHDL pro-

gram which uses labels to represent tail call targets and contains yield statements

that delineate the end of a clock cycle. This program may contain multiple nested

85

loops (implemented in terms of goto). Such loops cannot be be implemented

directly in VHDL, so in the second step, we convert the source program into a

single-loop form where each iteration of the loop represents the action of a single

clock tick. The guardedness criterion, as we will see, is critical to ensure that this

transformation always succeeds. Finally, we perform a goto-elimination pass to

restructure the loop body (which may contain forward gotos) in terms of struc-

tured if/then/else statements (and no gotos). In this final form, the program may

be directly transliterated into a single VHDL process.

4.2.1 Definition of PreHDL

Figure 4.3 contains the grammar for PreHDL. The basic structure of a PreHDL

program contains a short preamble indicating the types of the input and output

channels for the circuit, followed by a collection of (pure) function definitions, and

then the main body of the program, which is comprised of a sequence of variable

declarations and a sequence of statements. Types are limited to booleans and bit

vectors. The only nonstandard constructs relative to an ordinary imperative lan-

guage are the input and output pseudovariables and the yield instruction. The

informal semantics of yield is to signal the current output value on the circuit’s

output lines, wait until the next clock tick, and re-sample the input value. Opera-

tionally, this will correspond to an end to the current iteration of the VHDL process

loop, whose statements are executed once at each clock tick. Variables declared at

the top level are not considered to be in scope inside function bodies, and although

this restriction is not reflected in the syntax, we assume that function bodies do not

contain any goto or yield statements.

86

Prog ::= IODecl VarDecl∗ FunDefn∗ Stmt∗

IODecl ::= input : Ty ; output : Ty ;
VarDecl ::= Name : Ty ;

FunDefn ::= function Name (ParamList) : Ty {
VarDecl∗ Stmt∗

return Exp ;
}

| vhdl Name (ParamList) : Ty ;
ParamList ::= Params | ε

Params ::= Param , Params | Param
Param ::= Name : Ty

Stmt ::= LHS := Exp ; | if BExp { Stmt∗ } else { Stmt∗ }
| label Name : | goto Name ; | yield ;

LHS ::= Name | output
Exp ::= BExp | Name | Name (ArgList) | " Bit∗ "

| Exp [Int : Int] | concat (ArgList) | input
ArgList ::= Args | ε

Args ::= Exp , Args | Exp
BExp ::= BExp && BExp | BExp || BExp | ! BExp

| Exp == Exp | Name | true | false
Ty ::= boolean | bits [Int]

Name ::= identifiers
Bit ::= 0 | 1
Int ::= Digit+

Digit ::= 0 | 1 | · · · | 9

Figure 4.3: PreHDL Syntax

87

For a concrete example of a PreHDL program the reader may wish to skip ahead

to Figure 4.7 on page 112. This program corresponds to the final PreHDL output

generated by the compiler for the example calculator program of Figure 4.2.

No formal semantics of PreHDL will be given here, but it is worth noting that

such a formal semantics could be defined quite naturally in resumption-monadic

terms. This should be beneficial to any future compiler-correctness proofs, as

stating and proving the correctness property (up to PreHDL generation) does not

require the construction of an elaborate correspondence between different semantic

universes.

4.2.2 Translating ReWire into PreHDL

Most of the work of translating ReWire into synthesizable VHDL takes place in the

first code generation phase, described in this section. The basic translation scheme

works by translating non-resumption functions directly into PreHDL functions,

and resumption-monadic computations into a sequence of statements containing

gotos. For the sake of simplicity, the current implementation of the compiler, as

well as the presentation of the process given in this section, will assume that any

functions with monadic codomain not bound by letrec (including those typed in

non-resumption monads) have been inlined in a previous pass; this restriction

would not be difficult to eliminate if need be.

We will present here a detailed specification of the PreHDL code generator,

in the form of pseudocode in a Haskell-like metalanguage. The metalanguage

diverges from Haskell primarily in the sense that, for the sake of readability, we

use J−K brackets as a quotation construct, representing terms in ReWire Core or

88

PreHDL abstract syntax. Interpolation of metalanguage variables is allowed in-

side quotation brackets; thus, for example, let l = “foo′′ in Jgoto l; K evaluates to

the PreHDL statement Jgoto foo; K. We will also use ellipses inside patterns and ex-

pressions where convenient. If, for example, the list pattern [r1, r2, . . . , rn] appears

in an expression, it should be read as binding n variables named r1, r2, and so on

up to rn.

Representing Data Types

Non-recursive types in ReWire, as discussed in Chapter 3, may be desugared to

ReWire Core’s sum and product types. This is the representation of data types we

will use here. Thus we will need to settle on a bit vector representation of sum and

product types. The basic scheme adopted by ReWire is to represent the nil value

as a zero-length bit vector; values 〈v,u〉 of product type t × t′ as the concatenation

of the bit vectors representing v and u; and sum values of the form inl v : t + t′

(respectively inr u : t + t′) as the bit vector representing v (respectively u) prefixed

with an extra 0 (respectively 1), with 0-padding at the right-hand side of the bit

vector making up any difference in size between t and t’. Thus the sizeof function,

which computes the number of bits needed to represent a value of a given type, is

defined as follows.

sizeof :: RWPureTy → Int
sizeof JnilK = 0
sizeof Jt + t′K = 1 + max (sizeof t) (sizeof t′)
sizeof Jt × t′K = sizeof t + sizeof t′

Data types can be encoded in terms of simple sum and product types. Assume

without loss of generality that all data constructors have an arity of 1. Then given

89

a data type:

data D = C1 T1 | C2 T2 | ... | Cn Tn

we will assign a data constructor to each leaf node in a balanced binary tree in

left-to-right order, and a + operation to each branch in that tree. Thus if we fix

n = 7, we obtain:

+

+ +

+ + + T7

T6T5T4T3T2T1

Flattening this binary tree, we obtain the sum that we will use to represent D:

((T1 + T2) + (T3 + T4)) + ((T5 + T6) + T7)

(where Ti here technically stands in for the representation of Ti in terms of sums and

products). An expression of the form of C1 e now corresponds to inl (inl (inl e)),

C4 e to inl (inr (inr e)), and C7 e to inr (inr e).

This construction induces the following relationship between expressions of D

and their corresponding bit vectors. (Assume that the bit-string representation of

e : T1 is d0d1d2d3, implying that sizeof T1 = 4, and assume without loss of generality

that T1 = T2 = · · · = T7. “X” stands for “don’t care”.)

90

Expression Bit Vector
C1 e 0 0 0 d0 d1 d2 d3

C2 e 0 0 1 d0 d1 d2 d3

C3 e 0 1 0 d0 d1 d2 d3

C4 e 0 1 1 d0 d1 d2 d3

C5 e 1 0 0 d0 d1 d2 d3

C6 e 1 0 1 d0 d1 d2 d3

C7 e 1 1 d0 d1 d2 d3 0
(no valid expression) 1 1 X X X X 1

Alternative Encoding One awkward thing about the encoding scheme de-

scribed here is that the part of the bit vector corresponding to the data constructor

variable width; as a result the data field is not always aligned, which is undesir-

able from an efficiency point of view. (Imagine a function that projects the e part

out of a D, regardless of the constructor. If we had a fixed-width encoding of the

tag, this would be a simple bit vector slice; but with the simplified encoding, the

logic for such a function would have to check for the special case arising from the

constructor C7.) An alternative encoding scheme, which is actually used by the

ReWire compiler, instead assigns a fixed-width tag of size dlog2 ne, where n is the

number of data constructors, producing a slightly different table for the example

as follows.

Expression Bit Vector
C1 e 0 0 0 d0 d1 d2 d3

C2 e 0 0 1 d0 d1 d2 d3

C3 e 0 1 0 d0 d1 d2 d3

C4 e 0 1 1 d0 d1 d2 d3

C5 e 1 0 0 d0 d1 d2 d3

C6 e 1 0 1 d0 d1 d2 d3

C7 e 1 1 0 d0 d1 d2 d3

(no valid expression) 1 1 1 X X X X

91

It is worth re-emphasizing that this is the encoding scheme actually used by the

ReWire compiler. The implementation details surrounding the alternative encoding

scheme are a bit complex, however, so we will proceed for the remainder of this

section with the simplified encoding described previously.

Code Generation Monad

The code generator operates in a monad M that contains support for (1) an envi-

ronment mapping ReWire names to binding information; (2) a stack of mutable

declaration frames (the declaration frame on top of this stack consists of a list of vari-

able declarations, which can be extended whenever a fresh temporary is generated);

(3) a global list of emitted function declarations; and (4) fresh name generation:

type M = ReaderT [(RWName,Binding)]
(StateT ([[PHDLVarDecl]], [PHDLFunDefn], Int)

Identity)

(Here the Int in the third position of the state tuple is a counter for fresh names.)

The basic interface for this monad is as follows:

withBindings :: [(RWName,Binding)] → M a → M a
— executes a computation in an extended
— binding environment

askBinding :: RWName → M Binding
— retrieves binding information for a variable

pushDeclFrame :: [PHDLVarDecl] → M ()
— pushes a declaration frame onto the stack

popDeclFrame :: M [PHDLVarDecl]
— pops a declaration frame from the stack

emitVarDecl :: PHDLVarDecl → M ()
— emits a variable declaration in the top frame

getFunDefns :: M [PHDLFunDefn]

92

— gets generated function definitions
emitFunDefn :: PHDLFunDefn → M ()

— emits a function definition
freshName :: M PHDLName

— generates a fresh name

The type Binding reflects four sorts of variable binding. If variable x maps to

RB l [r1, · · · , rn] in the environment, this indicates that x is a recursively defined

function (necessarily of resumption-monad type), whose PreHDL code begins at

the label l and whose argument registers are the PreHDL variables r1, · · · , rn. If

x maps to FB f , then x is a non-recursively defined function, implemented as the

PreHDL function f . (No information is needed with respect to the parameters.) If x

maps to VB r, then x is a (local or global) variable mapped to the PreHDL variable

r. Finally, if x maps to PB r, then x is a function parameter variable, mapped to the

PreHDL function parameter r.

data Binding = RB PHDLName [PHDLName]
| FB PHDLName
| VB PHDLName
| PB PHDLName

The presentation here assumes that ReWire programs always form an infinite

loop. Eliminating this assumption would simply require us to declare a return

value register, and decide at the VHDL level how to communicate the termination

condition and return value to the outside world.

Compiling Expressions

The heart of the code generator is the function cmp, which compiles expressions.

This function takes a ReWire expression and returns a list of PreHDL statements

93

implementing the expression, and a PreHDL expression which will represent the

result value after the execution of those statements:

cmp :: RWExpr → M ([PHDLStmt],PHDLExpr)

The variable/function application case proceeds by looking up the binding in-

formation for the variable/function name in the environment, and proceeding in

one of three ways. In the case where the variable x corresponds to a recursive

definition (meaning it is bound to a PreHDL label and list of argument registers),

we emit code that fills the argument registers for that definition with the argument

values, then jumps to its entry label. The result register is undefined in this case

due to the assumption of non-termination. If x is bound to a PreHDL function, this

is translated directly to a PreHDL function call, and if x is bound to a variable or

function parameter, the expression is translated to a PreHDL variable reference.

94

cmp Jx e1 · · · en : tK = do
b ← askBinding x
case b of

RB l [r1, · · · , rn]→ do
[(ce1, ee1), · · · , (cen, een)] ← mapM cmp [e1, · · · , en]

return


u

www
v

ce1; r1 := ee1;
...

cen; rn := een;
goto l;

}

���
~
,undefined


FB nf → do

[(ce1, ee1), · · · , (cen, een)]← mapM cmp [e1, · · · , en]
let st = sizeof t
r ← freshName
emitVarDecl Jr : bits[st]; K

return


u

www
v

ce1; r1 := ee1;
...

cen; rn := een;
r := nf(r1, · · · , rn);

}

���
~
, JrK


VB r → return ([], JrK)
PB r → return ([], JrK)

Let-expressions are compiled in a straightforward way, via a locally-bound

PreHDL variable corresponding to the bound ReWire variable.

cmp Jlet x : t = e in e′ endK = do
(ce, ee)← cmp e
let st = sizeof t
r ← freshName
emitVarDecl Jr : bits[st]; K
(ce′, ee′) ← withBindings [(x,VB r)] (cmp e′)
return (Jce; r := ee; ce′; K, ee′)

The nil expression simply corresponds to an empty bit string.

cmp JnilK = return ([], J""K) — empty bit string

A pair expression simply results in a concatenation of the bit vectors produced

by its arguments.

95

cmp J〈e, e′〉K = do
(ce, ee) ← cmp e
(ce′, ee′)← cmp e′
return (Jce; ce′; K, Jconcat(ee, ee′)K)

Where coproduct types are concerned, things are slightly more tricky. After

obtaining the result of the argument expression, we prepend the appropriate tag,

and pad the bit vector with zeros as necessary.

cmp Jinl e : t + t′K = do
(ce, ee) ← cmp e
let st = sizeof t

st′ = sizeof t′

padding = max (st′ − st, 0)
padbits = replicate padding J0K

return (ce, Jconcat("0", ee, "padbits")K)

cmp Jinr e : t + t′K = do
(ce, ee) ← cmp e
let st = sizeof t

st′ = sizeof t′

padding = max (st − st′, 0)
padbits = replicate padding J0K

return (ce, Jconcat("1", ee, "padbits")K)

To destruct tuples, we simply select out the appropriate slice of the underlying

bit vector.

cmp Jfst (e : t × t′)K = do
(ce, ee) ← cmp e
let end = sizeof t − 1
return (ce, Jee[0 : end]K)

cmp Jsnd (e : t × t′)K = do
(ce, ee) ← cmp e
let start = sizeof t

end = start + sizeof t′ − 1
return (ce, Jee[start : end]K)

Pattern matching (i.e., destruction of sums) takes a bit more effort to compile,

mostly owing to the need for branching control flow. Essentially we compute the

96

bit vector for e, and proceed with the code for expression e′ if the resulting tag bit

is zero, or for e′′ otherwise. In either case, pattern matching variables are bound to

the slice of the bit vector corresponding to the data field.

cmp J(case (e : t + t′) of inl x → e′ ; inr y → e′′ end) : t′′K = do
(ce, ee)← cmp e
nx ← freshName
ny ← freshName
r ← freshName
let st = sizeof t

st′ = sizeof t′

st′′ = sizeof t′′
emitVarDecl Jnx : bits[st]; K
emitVarDecl Jny : bits[st′]; K
emitVarDecl Jr : bits[st′′]; K
(ce′, ee′) ← withBindings [(x,VB nx)] (cmp e′)
(ce′′, ee′′)← withBindings [(y,VB ny)] (cmp e′′)

return



u

wwwwwwwwwwwwwwww
v

ce;
if ee[0 : 0] == "0" then {

nx := ee[1 : st];
ce′;
r := ee′;

}

else {
ny := ee[1 : st′];
ce′′;
r := ee′′;

}

}

����������������
~

, JrK


Compilation of the basic monadic primitives return, bind, and lift is straight-

forward. Bind expressions are compiled identically to let expressions, while return

and lift are operational no-ops.

cmp Jreturn eK = cmp e

97

cmp Jbind (x : t) ← e in e′ endK = do
(ce, ee)← cmp e
let st = sizeof t
r ← freshName
emitVarDecl Jr : bits[st]; K
(ce′, ee′) ← withBindings [(x,VB r)] (cmp e′)
return (Jce; r := ee; ce′; K, ee′)

cmp Jlift eK = cmp e

State monad operations may be compiled in a type-directed fashion. If the

operation is typed in a monad with n state layers, we know that the operation

should affect the nth state variable staten. Get-expressions, therefore, simply copies

staten into a temporary that is returned to the caller, and put overwrites staten.

cmp Jget : StnStn−1 · · · St1I(tn)K = do
let stn = sizeof tn

r ← freshName
emitVarDecl Jr : bits[stn]; K
return (Jr := staten; K, JrK)

cmp Jput e : StnStn−1 · · · St1I(())K = do
(ce, ee) ← cmp e
return (Jce; staten := ee; K, J""K)

(Note that in the case for get, it would not do to simply return staten as the result

expression, since this value could be overwritten before use.)

For the reactive resumption operation signal we will copy the result of the

argument expression into the (pseudo-)variable output, yield until the next clock

tick, and read the newly sampled input into a freshly allocated temporary.

98

cmp Jsignal e : Rt,t′ · · · I(t)K = do
(ce, ee)← cmp e
r ← freshName
let st = sizeof t
emitVarDecl Jr : bits[st]; K
return (Jce; output := ee; yield; r := input; K, JrK)

Finally, expressions of the form extrude e e′ operation, whose semantics as given

in Figure 3.6 seemed so complicated, compile merely to the initialization of a state

variable to the value of e′, followed by the execution of e.

cmp Jextrude (e : Rt,t′StnStn−1 · · · St1I(t
′′)) e′K = do

(ce′, ee′)← cmp e′

(ce, ee) ← cmp e
r ← freshName
let stn = sizeof Jt′′ × tnK
emitVarDecl Jr : bits[stn]; K
return (Jce′; staten := ee′; ce; r := concat(ee, staten); K, JrK)

Compiling Programs

The main entry point of the code generator is the function cmpProg which takes

a ReWire program and produces a PreHDL program. This function proceeds by

compiling the program body via cmpBody, then embedding the resulting statements

in a PreHDL program that contains appropriate declarations for the input and

output types, as well as any function definitions and variable declarations emitted

in the process of compiling the body. This function is also responsible for declaring

the variables state1, · · · , staten corresponding to the state monad layers.

99

cmpProg :: RWProg → M PHDLProg
cmpProg Jprogram y end : Rt,t′StnStn−1 · · · St1I(t

′′)K = do
pushDeclFrame []
(cy, _) ← cmpBody y
[d1, · · · , dm] ← popDeclFrame
let sti = sizeof t

sto = sizeof t′

[st1, · · · , stn] = map sizeof [t1, · · · , tn]
[fd1, · · · , fdj] ← getFunDefns

return

u

wwww
v

input : bits[sti]; output : bits[sto];
state1 : bits[st1]; · · · staten : bits[stn];
d1; · · · dm;
fd1; · · · fd j;
cy;

}

����
~

The function cmpBody proceeds recursively with two cases. For letfun, we first

compile the function being defined, which will result (inside cmpFunDefn) in the

emission of a function declaration, then recurse on the remainder of the program

body. For letrec, we must first pre-allocate labels and argument registers for the

recursively-bound functions via recDefnBinding, then compile the definitions of

those functions via cmpRecDefn, and finally compile the body of the letrec—which

will be the main entry point to the program—with the expression compilation

function cmp.

cmpBody :: RWBody → M ([PHDLStmt],PHDLExpr)
cmpBody Jletfun l in y endK = do

b ← cmpFunDefn l
withBindings [b] (cmpBody y)

cmpBody Jletrec l1 ; · · · ; ln in e endK = do
bs ← mapM recDefnBinding [l1, · · · , ln]
[cl1, · · · , cln]← withBindings bs

(mapM cmpRecDefn [l1, · · · , ln])
(ce, ee) ← withBindings bs (cmp e)
return (Jce; cl1; · · · cln; K, ee)

The recDefnBinding, which is responsible for pre-allocating labels and argument

100

registers, operates as follows. The Binding corresponding to the definition will be

returned as a result.

recDefnBinding :: RWLetDefn → M (RWName,Binding)
recDefnBinding Jf (x1 : t1) · · · (xn : tn) = eK = do

l ← freshName
[r1, · · · , rn] ← mapM (const freshName) [x1, · · · , xn]
let [st1, · · · , stn] = map sizeof [t1, · · · , tn]
mapM (λ (r, st) → emitVarDecl Jr : bits[st]; K)

[(r1, st1), · · · , (rn, stn)]
return (f ,RB l [r1, · · · , rn])

Function cmpFunDefn, which operates on non-recursive definitions, first gener-

ates fresh PreHDL names corresponding to the function name and to each function

parameter, enters the parameter bindings into the environment, and compiles the

function body. The resulting code is then wrapped up in a PreHDL function def-

inition, which is added to the global function definition list via emitFunDefn. We

then return the resulting binding to the caller, which is responsible for inserting it

into the environment as appropriate (see cmpBody).

cmpFunDefn :: RWLetDefn → M (RWName,Binding)
cmpFunDefn Jf (x1 : t1) · · · (xn : tn) = e : teK = do

[r1, · · · , rn]← mapM (const freshName) [x1, · · · , xn]
let pBdgs = [(x1,PB r1), · · · , (xn,PB rn)]
pushDeclFrame []
(ce, ee) ← withBindings pBdgs (cmp e)
[d1, · · · , dm] ← popDeclFrame
let [st1, · · · , stn] = map sizeof [t1, · · · , tn]

ste = sizeof te

nf ← freshName
emitFunDefnu

wwww
v

function nf (r1 : bits[st1], · · · , rn : bits[stn]) : bits[ste] {
d1; · · · ; dm;
ce;
return ee;

}

}

����
~

return (f ,FB nf)

101

In the case of a recursive definition, cmpRecDefn simply emits straight-line

code for the body of the function prefixed with the pre-allocated label. Note that

because we are assuming that the program runs forever, we will simply ignore the

expression returned by cmp.

cmpRecDefn :: RWLetDefn → M [PHDLStmt]
cmpRecDefn Jf x1 · · · xn = eK = do

RB l [r1, · · · , rn]← askBinding f
let pBdgs = [(x1,PB r1), · · · , (xn,PB rn)]
(ce, _) ← withBindings pBdgs (cmp e)
return Jlabel l : ce; K

With this, the code generator is complete.

4.2.3 PreHDL Transformations

The code generator of the preceding section will produce PreHDL code that, while

semantically valid, is not ready for compilation to VHDL for two reasons. First,

the output contains goto statements. These cannot directly be translated to VHDL.

Second, the code may contain multiple and nested loops. This is also difficult

to represent directly in VHDL, as most VHDL synthesis tools only support loops

in the context of generics; put another way, all VHDL loops must be completely

unrollable at compile time.

We will address the impedance mismatch with two source-to-source transfor-

mations implemented against PreHDL, both of which are discussed in this section.

The first transformation, called loop flattening, allows us to transform a PreHDL

program which may contain multiple loops into a single loop, suitable for im-

plementation in a single VHDL process. We shall see that ReWire’s guardedness

criterion is critical to the success of this technique. The second transformation,

102

called goto elimination, converts the loop body, which contains only forward gotos,

into a structured program fragment where if-then-else statements stand in for the

gotos. This is an instance of a more general technique due to Erosa and Hen-

dren [60], whose goto-elimination algorithm also handles backward jumps (but, in

the process, introduces looping constructs that, as we have said, are not directly

implementable in VHDL).

Control Flow Graphs

The loop flattening transformation operates on a PreHDL control flow graph, gen-

erated from the program returned by the code generation pass. In constructing a

CFG, we consider yield to be a control flow instruction, and it is therefore consid-

ered to end a basic block. Formally, every edge in the control flow graph will be

tagged with a branch condition of the form:

BranchCond ::= Jump | BranchF BExp | BranchT BExp | Yield

where Jump denotes an unconditional jump, BranchF and BranchT denote branches

on false/true, and Yield denotes that the source basic block terminated with a yield

statement.

Definition (Control Flow Graph). A PreHDL control flow graph (CFG) is a tuple

〈V,E,u, f , g〉, containing a finite set of vertices V ⊂ N, a set of edges E ⊆ V × V, a

designated start vertex u ∈ V, a vertex labeling function f : V → Stmt∗, and an edge

labeling function g : E → BranchCond, with 〈V,E〉 forming a directed graph, where for

every v ∈ V exactly one of the the following conditions holds:

103

1. there exists exactly one w ∈ V such that g(v,w) = Jump; or

2. there exist exactly two vertices w, w̄ ∈ V and an expression e ∈ BExp such that

g(w) = BranchF e and g(w̄) = BranchT e; or

3. there exists exactly one w ∈ V such that g(v,w) = Yield.

In other words, every node in the control flow graph may branch on a sin-

gle boolean expression, or jump unconditionally to another node, or yield before

jumping unconditionally to another node.

The loop flattening algorithm requires a control flow graph of a special form,

called a guarded control flow graph, as follows:

Definition (Guarded Control Flow Graph). A guarded control flow graph (GCFG)

is a control flow graph 〈V,E,u, f , g〉 such that every cycle in the graph 〈V,E〉 contains at

least one edge e such that g(e) = Yield.

Fortunately, programs produced by the code generation pass will always have this

property. This is a result of ReWire’s guardedness condition. To see this, recall that

in ReWire, the only opportunity for control flow loops arises from (tail) recursive

function calls. The guardedness condition guarantees that between entry into a

recursively-defined function and exit to another recursively-defined function, a

signal must occur. Since the code generated for signal expressions contains a yield

statement whose execution is unconditional, we can be certain that every loop in

the control flow graph will eventually yield.

104

Loop Flattening

Given a guarded control flow graph, we can produce a linear control flow graph

which is suitable for implementation as a single loop:

Definition (Linear Control Flow Graph). A linear control flow graph (LCFG) is a

guarded control flow graph 〈V,E,u, f , g〉 such that there exists an edge e ∈ E where for

every e′, g(e′) = Yield implies that e′ = e, and the graph 〈V,E \ {e}〉 is acyclic.

The process of converting a guarded control flow graph to a linear control

flow graph is called loop flattening. The action of loop flattening is illustrated in

Figure 4.5 on page 108. On the left we have a graph that contains multiple yield

edges (indicated by red dashed arrows). (Note that branch conditions are not

notated here, but it is assumed that for any node with out-degree 2, both branches

are labeled with complementary BranchT and BranchF conditions.) On the right, we

have a semantically equivalent graph with only one yield edge, and the deletion

of that edge results in an acyclic graph. Note that loop flattening has resulted

in the creation of new start and end nodes called A (pronounced alpha) and Ω

respectively, and the addition of a number of edges to the graph (indicated by green

dotted arrows). In the figure, the added edges are tagged either with a condition

(indicated by a question mark), or an action (indicated without a question mark).

These correspond to an additional variable that has been added to the program

indicating the re-entry point after a yield. The condition Rn? indicates a test that

the re-entry point is n, and the action Rn indicates that the re-entry point should be

assigned n just prior to the transition to Ω.

The full algorithm for loop flattening graph is given in Figure 4.4 on page 107.

Both here and in Figure 4.5 we will trivially generalize the definition of a control

105

flow graph by allowing Flatten to produce a graph with multiple edges between

two nodes (meaning the CFG is really a multigraph), and with with more than two

conditional edges outbound from a node, as long as the conditions labeling those

edges are mutually exclusive (which they will be, if produced by Flatten). This

abuse simplifies presentation but does not conceptually alter the algorithm. Note

that the input graph to Flatten must still conform to the strict definition; again,

this restriction exists merely to enhance the clarity of exposition.

After the control flow graph has been flattened, we may convert our program

back to straight-line code containing gotos, representing the body of a single infinite

loop, as follows. First, we delete the yield edge from the graph, resulting in an

acyclic graph. Second, we assign to each node in the graph a freshly generated

label. Third, to the code at each node in the graph except Ω we append a series of

(possibly conditional) goto statements corresponding to its outbound edges. To Ω

we append a yield statement. Fourth, we topologically sort the graph, taking care

to place Ω at the end of the resulting list. (To ensure this, we can take any valid

topological ordering on the nodes and simply move Ω to the end, since it has no

outbound edges.) Fifth, we output the code of each node in the CFG in topological

order (guaranteeing that there will be no backward jumps). The resulting code for

the flattened CFG of Figure 4.5 is given in Figure 4.6.

Goto Elimination

Once the loop body has been flattened, we may eliminate unstructured gotos from

the loop body by applying a goto-elimination transformation [60]. This transfor-

mation operates essentially by generating a boolean variable goto_L for each goto

106

1: procedure Flatten(G)
2: . Add new start node A and end node Ω with empty statement lists.
3: A← AddVertex(G, []);
4: Ω← AddVertex(G, []);
5:
6: . Gather yield edges.
7: Y← {e | e ∈ Edges(G),EdgeLabel(G, e) = Yield};
8:
9: for e ∈ Y do

10: s← EdgeSrc(e);
11: t← EdgeDest(e);
12:
13: . Add to s a jump to Ω and a statement to update entry point.
14: AddEdge(G, s,Ω, Jump);
15: SetVertexLabel(G, s,VertexLabel(G, s)++[entrypoint := t;]);
16:
17: . Add branch from A to the target.
18: AddEdge(G,A, t,BranchT (entrypoint == t));
19:
20: . Delete the old yield edge.
21: DeleteEdge(G, e);
22: end for
23:
24: . Add branch from A to old start node, and set A as new start node.
25: α← StartVertex(G);
26: AddEdge(G,A, α,BranchT (entrypoint == α));
27: SetStartVertex(G,A);
28:
29: . Add yield edge from Ω to A.
30: AddEdge(G,Ω,A,Yield);
31: end procedure

Figure 4.4: Loop Flattening Algorithm. We will assume that a variable entrypoint
is added to the program, with suitable type to represent every yield-target from
the original graph, and with an initial value equal to the old start node.

107

1

2 3

4

5

6

A

1

2

4

35

6

Ω

R6 R4

R1

R4?

R1?

R6?

Figure 4.5: PreHDL CFG Before (l) and After (r) Loop Flattening

108

label L_A:
if entrypoint==4 then goto L_4;
else if entrypoint==1 then goto L_1;
else if entrypoint==6 then goto L_6;
else goto L_1;

label L_1:
[[code originally at 1]];
if [[condition for branch from 1 to 2]] goto L_2;
else goto L_3;

label L_2:
[[code originally at 2]];
goto L_4;

label L_4:
[[code originally at 4]];
if [[condition for branch from 4 to 5]] goto L_5;
else goto L_3;

label L_5:
[[code originally at 5]];
entrypoint := 6;
goto L_Omega;

label L_3:
[[code originally at 3]];
entrypoint := 4;
goto L_Omega;

label L_6:
[[code originally at 6]];
entrypoint := 1;
goto L_Omega;

label L_Omega:
yield;

Figure 4.6: Flattened Code From CFG of Figure 4.5

109

target label L, and performing a series of rewrites that push goto statements ever

further down in the program text; for example, a goto into the body of an if may

be pushed down as follows:

if (condition) goto L;
statements1;
if (e) {
statements2; // contains label L

}

==>

goto_L := condition;
if (!goto_L) {
statements1;

}
if (e || goto_L) {
if (goto_L) goto L;
statements2;

}

Other rewrite rules exist for gotos that exit the body of an if, and for all other

control flow constructs. Through repeated application of these rules a condition

will eventually be reached where the goto statement is at the same “height” in the

syntax tree as its target label:

if (condition) goto L;
statements1;

label L:
statements2;

at which point the goto may be removed from the program:

110

goto_L := condition;
if(!goto_L) {
statements1;

}
label L:

goto_L := false;
statements2;

Experience suggests that this transformation does a good job of eliminating

gotos without introducing excessive overhead.

Example

For reference, the PreHDL code that is produced by the compiler for the example

of Figure 4.2 is presented in Figure 4.7. The resulting code has been cleaned up

cosmetically for presentation purposes. Note that variable entrypoint is intro-

duced during the loop flattening process; the values it may take are in one-to-one

correspondence with the yield statements occurring in the unflattened program

generated by the code generation phase.

4.3 VHDL Generation

Once a PreHDL program has been converted to the final form exemplified by

Figure 4.7, translation to VHDL is straightforward. The loop structure of Figure 4.7

is replaced with a VHDL process, but the body of the loop is essentially identical

except for shallow syntactic differences. The final VHDL code for the calculator

example of Figure 4.2 is listed in Figure 4.8. For completeness’ sake we may report

that this VHDL code, when synthesized by Xilinx’s XST synthesis tool (ISE version

111

input : bits[10]; output : bits[8];
s0 : bits[8];
entrypoint : bits[1];
vhdl plusW8 (bits[8], bits[8]) : bits[8];
vhdl minusW8 (bits[8], bits[8]) : bits[8];

entrypoint := "0";
label LOOP:

if (entrypoint == "0")
{ s0 := "00000000"; }

else if (entrypoint == "1") {
if ("00" == input[0:1])
{ s0 := plusW8 (s0,input[2:9]); }
else if ("01" == input[0:1])
{ s0 := minusW8 (s0,input[2:9]); }
else
{ s0 := "00000000"; }

}
output := s0;
entrypoint := "1";
yield;
goto LOOP;

Figure 4.7: PreHDL Output for the Calculator Example

112

14.7) for a Kintex-7 KC705 FPGA (XC7K70T, speed grade -2), produced a circuit

capable of operation at around a clock rate of around 760MHz.

VHDL veterans may notice a slight oddity in the structure of the resulting code.

Namely, the output value, rather than the input value, is registerized. In practice

this results in slightly undesirable timing behavior: given an input arriving at clock

tick t, the output register will not latch until tick t + 1. From that moment, there

is a short delay until the output value from the register stabilizes. As a result, the

output value is not actually available to be sampled by another device tied to the

same clock until time t + 2. A newer version of the ReWire compiler will remedy

this deficiency by registerizing the input lines rather than the outputs, but it was

not quite ready as this dissertation went to press. In the meantime we note that

for streaming applications, such as the regular expression matchers of Chapter 6,

this single-tick delay is not actually a problem, and even for more timing-sensitive

applications workarounds are available.

113

1 library ieee;
2 use ieee.std_logic_1164.all;
3 use work.prims.all;
4
5 entity Calc is
6 Port (clk : in std_logic ;
7 input : in std_logic_vector (0 to 9);
8 output : out std_logic_vector (0 to 7));
9 end Calc;

10
11 architecture ReWire of Calc is
12 begin
13 process(clk)
14 variable s0 : std_logic_vector(0 to 7);
15 variable entrypoint : std_logic_vector(0 to 0) := "0";
16 begin
17 if clk’event and clk=’1’ then
18 if entrypoint = "0" then
19 s0 := "00000000";
20 elsif entrypoint = "1" then
21 if input(0 to 1) = "00" then
22 s0 := plusW8 (s0,input(2 to 9));
23 elsif input(0 to 1) = "01" then
24 s0 := minusW8 (s0,input(2 to 9));
25 else
26 s0 := "00000000";
27 end if;
28 end if;
29 output <= s0;
30 entrypoint := "1";
31 end if;
32 end process;
33 end Calc;

Figure 4.8: Final VHDL Output for the Calculator Example

114

Chapter 5

Case Study I: A Simple CPU

This chapter presents the first of two case studies of circuit design in ReWire. The

example design is a simple 8-bit CPU. The purpose of this case study is to demon-

strate that ReWire provides a useful platform for semantically modular circuit

design. The semantically modular design style allows the rapid development of a

viable implementation 5.2 from a very high level design sketch 5.1 without getting

bogged down in structural circuit details. Moreover, as sketched in Section 5.4, se-

mantic modularity enables us to extend our design with security features without

modifying the basic outline of the design.

5.1 Basic Design

The CPU we will develop in this chapter is an 8-bit CPU with a simple instruction

set architecture. The instruction set architecture is given in Table 5.1. We will

assume that CPU is connected to (1) an 8-bit data bus, a reset line, and an interrupt

115

line on input; and (2) an 8-bit data bus, an 8-bit output address bus, a write-enable

line, and an interrupt acknowledge line on output. The CPU has four general

purpose registers r0 through r3, an 8-bit program counter, and flags for zero, carry,

and interrupt enable. When an interrupt occurs, the zero and carry bits and the

program counter will be stored in “save” registers, which are restored by the IRET

instruction.

5.2 Code for the Simple CPU

5.2.1 Input and Output Types

We begin by declaring the types of input and output signals for the CPU.

data Inputs = Inputs W8 Bit Bit
data Outputs = Outputs W8 W8 Bit Bit

The Inputs type has only one (eponymous) constructor and consists of three

fields: the first, of type W8, represents the 8-bit connection to the data input bus.

The second and third fields, both of type Bit, correspond to the reset and interrupt

lines. The Outputs type also has one constructor, and consists of four fields: the

first, of type W8, represents the address lines The second, of type W8, represents the

data output bus (used for memory writes). The third, of type Bit, is a write-enable

flag for memory accesses. The fourth, of type Bit, is an interrupt-acknowledge

signal.

For convenience we will define “getter” functions for each of the Inputfields.

116

Mnemonic Encoding Pseudocode Flags
MEM 0000RWrraaaaaaaa if R then reg(r) := mem(a) –

else if W then mem(a) := reg(r)
LD 0001ddaa reg(d) := mem(reg(a)) –
ST 0010ddaa mem(reg(a)) := reg(d) –
ADD 0011ddss reg(d) := reg(d) + reg(s) ZC
ADDC 0100ddss reg(d) := reg(d) + reg(s) + C ZC
SUB 0101ddss reg(d) := reg(d) - reg(s) ZC
SUBB 0110ddss reg(d) := reg(d) - reg(s) - C ZC
MOV 0111ddss reg(d) := reg(s) –
OR 1000ddss reg(d) := reg(d) OR reg(s) ZC
AND 1001ddss reg(d) := reg(d) AND reg(s) ZC
XOR 1010ddss reg(d) := reg(d) XOR reg(s ZC
CMP 1011ddss compute := reg(d) - reg(s) ZC
BRZ 110000rr pc := reg(r) if Z=0 –
BRNZ 110001rr pc := reg(r) if Z!=0 –
BRC 110010rr pc := reg(r) if C=0 –
BRNC 110011rr pc := reg(r) if c!=0 –
JMP 110100rr pc := reg(r) –
IEN 1101010E IE := E –
IACK 11010110 output iack signal –
IRET 11010111 return from interrupt ZC
NOT 110110rr reg(r) := NOT (reg(r)) –
CLRR 110111rr reg(r) := 0 –
INCR 111000rr reg(r) := reg(r) + 1 ZC
DECR 111001rr reg(r) := reg(r) - 1 ZC
ROTL 111010rr reg(r) := reg(r) ROL 1 –
ROTR 111011rr reg(r) := reg(r) ROR 1 –
SHLA 111100rr reg(r) := reg(r) shla 1 ZC
SHLL 111110rr reg(r) := reg(r) shll 1 ZC
SHRA 111101rr reg(r) := reg(r) shra 1 ZC
SHRL 111111rr reg(r) := reg(r) shrl 1 ZC

Table 5.1: Instruction Set Architecture for the Simple CPU

117

dataIn :: Inputs -> W8
dataIn (Inputs d_i _ _) = d_i

rstIn :: Inputs -> Bit
rstIn (Inputs _ r_i _) = r_i

intIn :: Inputs -> Bit
intIn (Inputs _ _ i_i) = i_i

We can also define “setter” functions for each of the Output fields.

setAddrOut :: Outputs -> W8 -> Outputs
setAddrOut (Outputs _ d_o we_o iack_o) a_o =
Outputs a_o d_o we_o iack_o

setDataOut :: Outputs -> W8 -> Outputs
setDataOut (Outputs a_o _ we_o iack_o) d_o =
Outputs a_o d_o we_o iack_o

setWeOut :: Outputs -> Bit -> Outputs
setWeOut (Outputs a_o d_o _ iack_o) we_o =
Outputs a_o d_o we_o iack_o

setIackOut :: Outputs -> Bit -> Outputs
setIackOut (Outputs a_o d_o we_o _) iack_o =
Outputs a_o d_o we_o iack_o

In fact, the CPU source code consists of a large number of such getter and setter

functions. The construction of these functions is entirely regular, so henceforth

only the type signatures of getter and setter functions will be given. It should be

noted that Haskell has a convenient record syntax that makes manipulation of types

like these much easier, and eliminates the need for boilerplate getter and setter

definitions. This is not currently implemented in the ReWire compiler, but since

record syntax is essentially just syntactic sugar for the kinds of getters and setters

we are defining here, it should not be too difficult to implement it in the future.

118

5.2.2 CPU State

Internally, the CPU will carry around a handful of state variables, which will be

stored in a state monad. We bundle these variables together in a single record type

called CPUState.

data CPUState = CPUState Inputs Outputs
Bit Bit Bit W8
Bit Bit W8
W8 W8 W8 W8

In order, the fields are:

1. inputs :: Inputs: Stores the input value received at the beginning of the

current clock cycle.

2. outputs :: Outputs: Stores the output value to be generated for this clock

cycle. (This value may be updated multiple times in the course of a clock tick;

the tick function defined below will simply output the final value.)

3. zFlag, cFlag, ieFlag :: Bit: Zero flag, carry flag, interrupt-enable flag.

4. pc :: W8: Program counter.

5. zsFlag, csFlag :: Bit and pcSave :: W8: “Save” spaces for the zero

flag, carry flag, and program counter. The values of zFlag, etc. will be copied

here when an interrupt is received.

6. r0,r1,r2,r3 :: W8: General purpose registers.

We define getter and setter functions for the fields of type CPUState with the

following signatures.

119

inputs :: CPUState -> Inputs
outputs :: CPUState -> Outputs
zFlag,cFlag,ieFlag :: CPUState -> Bit
pc :: CPUState -> W8
zsFlag,csFlag :: CPUState -> Bit
pcSave :: CPUState -> W8
r0,r1,r2,r3 :: CPUState -> W8

setInputs :: CPUState -> Inputs -> CPUState
setOutputs :: CPUState -> Outputs -> CPUState
setZFlag,setCFlag,setIEFlag

:: CPUState -> Bit -> CPUState
setPC :: CPUState -> W8 -> CPUState
setZSave,setCSave :: CPUState -> Bit -> CPUState
setPCSave :: CPUState -> W8 -> CPUState
setR0,setR1,setR2,setR3 :: CPUState -> W8 -> CPUState

Finally, it will be convenient to have an enumerated type that we may use to

name individual general purpose registers.

data Register = R0 | R1 | R2 | R3

5.2.3 VHDL Foreign Functions

A number of low-level functions dealing with bits, words, etc. are implemented

as foreign functions in VHDL. First, we define a number of bitwise logical opera-

tors.

vhdl notBit :: Bit -> Bit
vhdl eqBit :: Bit -> Bit -> Bit
vhdl andBit :: Bit -> Bit -> Bit
vhdl orBit :: Bit -> Bit -> Bit
vhdl xorBit :: Bit -> Bit -> Bit

120

Second, we define some logical and arithmetic operators over eight-bit words.

vhdl notW8 :: W8 -> W8
vhdl andW8 :: W8 -> W8 -> W8
vhdl orW8 :: W8 -> W8 -> W8
vhdl xorW8 :: W8 -> W8 -> W8
vhdl eqW8 :: W8 -> W8 -> Bit
vhdl rolW8 :: W8 -> W8
vhdl rorW8 :: W8 -> W8
vhdl plusCW8 :: W8 -> W8 -> Bit -> (Bit,W8)
vhdl plusW8 :: W8 -> W8 -> (Bit,W8)
vhdl negW8 :: W8 -> W8 -> W8
vhdl minusCW8 :: W8 -> W8 -> Bit -> (Bit,W8)
vhdl shlCW8 :: W8 -> Bit -> (Bit,W8)
vhdl shrCW8 :: W8 -> Bit -> (Bit,W8)
vhdl msbW8 :: W8 -> Bit
vhdl lsbW8 :: W8 -> Bit

Note that the arithmetic plusW8, plusCW8, and minusCW8 functions take a carry-

in bit as a third argument in addition to their operands. Furthermore, plusCW8 and

minusCW8 produce a carry-out bit as part of their return values. Similar remarks

apply to shlCW8 and shrCW8.

Each of the functions defined here certainly could be implemented directly in

ReWire. There are two reasons that using VHDL primitives is profitable, how-

ever. First, where the arithmetic functions are concerned, coding these functions

in VHDL allows us to use VHDL’s built-in arithmetic operations for addition and

subtraction, which can be compiled into whatever sort of adder is most efficient

for the target platform. This frees us from having to make decisions about (say)

whether to implement addition with a carry-lookahead adder or with a ripple-

carry adder. Second, the VHDL code generated by ReWire for “deep bit fiddling”

121

functions is often somewhat difficult for VHDL synthesis tools to digest. For large

circuits this can result in excessively long synthesis times. The latter problem could

probably be remedied with some more work on back-end code generation. In any

case, a more fully developed version of ReWire would probably have a large library

of functions like these as part of its standard library, or even implement them as

language primitives.

5.2.4 CPU Monad

The monad in which our CPU design will live is simply the layering of ReactT

Inputs Outputs—meaning our design will have inputs of type Inputs and out-

puts of type Outputs—on top of StateT CPUState Identity, giving an internal

mutable state of type CPUState.

type CPU = ReactT Inputs Outputs (StateT CPUState Identity)

To access and update the mutable state, we define some simple functions in the

monad.

getState :: CPU CPUState
getState = lift get

putState :: CPUState -> CPU ()
putState s = lift (put s)

To ease access to the individual fields of the current CPU state, we create

monadic functions to “get” and “put” the current values of individual fields. For

example, the functions associated with the program counter are as follows.

122

getPC :: CPU W8
getPC = do s <- getState

return (pc s)

putPC :: W8 -> CPU ()
putPC pc = do s <- getState

putState (setPC s pc)

Since the shape of these functions is quite regular, we will again give only the

type signatures for them.

getInputs :: CPU Inputs
getOutputs :: CPU Outputs
getZFlag,getCFlag,getIEFlag :: CPU Bit
getPC :: CPU W8
getZSave,getCSave :: CPU Bit
getPCSave :: CPU W8
getReg :: Register -> CPU W8
getDataIn :: CPU W8

putInputs :: Inputs -> CPU ()
putOutputs :: Outputs -> CPU ()
putZFlag,putCFlag,putIEFlag :: Bit -> CPU ()
putPC :: W8 -> CPU ()
putZSave,putCSave :: Bit -> CPU ()
putPCSave :: W8 -> CPU ()
putReg :: Register -> W8 -> CPU ()
putDataOut :: W8 -> CPU ()
putAddrOut :: W8 -> CPU ()
putWeOut :: Bit -> CPU ()
putIackOut :: Bit -> CPU ()

5.2.5 Instruction Fetch, Decode, and Execute

We now come to the main fetch-decode-execute loop. The loop proceeds by reading

the current input, and first checking whether the reset or interrupt line is high. If

123

the reset signal is high, a tail call to the reset function is made. If the interrupt line

is high and interrupts are currently enabled, a tail call to the interrupt function

is made. Otherwise we proceed to execute the instruction that has just arrived on

the data bus. The instruction decode logic comprises the bulk of this function. It

takes the form of a large sequence of pattern matches, dispatching in each case a

handler function that corresponds to each machine instruction. There is a clean,

one-to-one correspondence between the instruction mnemonics and the instruction

handling functions. There is, however, a bit of inefficiency here, to be discussed in

Section 5.3.

loop :: CPU ()
loop = do

inp <- getInputs
case rstIn inp of

1 -> reset
0 -> case (ie,intIn inp) of
(1,1) -> interrupt
_ -> do
incrPC
case dataIn inp of
W8 0 0 0 0 rEn wEn b0 b1 ->

mem rEn wEn (r b0 b1)
W8 0 0 0 1 b0 b1 c0 c1 ->

ld (r b0 b1) (r c0 c1)
W8 0 0 1 0 b0 b1 c0 c1 ->

st (r b0 b1) (r c0 c1)
W8 0 0 1 1 b0 b1 c0 c1 ->

add (r b0 b1) (r c0 c1)
W8 0 1 0 0 b0 b1 c0 c1 ->

addc (r b0 b1) (r c0 c1)
W8 0 1 0 1 b0 b1 c0 c1 ->

sub (r b0 b1) (r c0 c1)
W8 0 1 1 0 b0 b1 c0 c1 ->

subb (r b0 b1) (r c0 c1)

124

W8 0 1 1 1 b0 b1 c0 c1 ->
mov (r b0 b1) (r c0 c1)

W8 1 0 0 0 b0 b1 c0 c1 ->
or (r b0 b1) (r c0 c1)

W8 1 0 0 1 b0 b1 c0 c1 ->
and (r b0 b1) (r c0 c1)

W8 1 0 1 0 b0 b1 c0 c1 ->
xor (r b0 b1) (r c0 c1)

W8 1 0 1 1 b0 b1 c0 c1 ->
cmp (r b0 b1) (r c0 c1)

W8 1 1 0 0 0 0 b0 b1 ->
brz (r b0 b1)

W8 1 1 0 0 0 1 b0 b1 ->
brnz (r b0 b1)

W8 1 1 0 0 1 0 b0 b1 ->
brc (r b0 b1)

W8 1 1 0 0 1 1 b0 b1 ->
brnc (r b0 b1)

W8 1 1 0 1 0 0 b0 b1 ->
jmp (r b0 b1)

W8 1 1 0 1 0 1 0 b0 ->
ien b0

W8 1 1 0 1 0 1 1 0 ->
iack

W8 1 1 0 1 0 1 1 1 ->
iret

W8 1 1 0 1 1 0 b0 b1 ->
not (r b0 b1)

W8 1 1 0 1 1 1 b0 b1 ->
clrr (r b0 b1)

W8 1 1 1 0 0 0 b0 b1 ->
incr (r b0 b1)

W8 1 1 1 0 0 1 b0 b1 ->
decr (r b0 b1)

W8 1 1 1 0 1 d b0 b1 ->
rot d (r b0 b1)

W8 1 1 1 1 l d b0 b1 ->
shft l d (r b0 b1)

_ -> reset

125

pc <- getPC
putAddrOut pc
loop

where r :: Bit -> Bit -> Register
r 0 0 = R0
r 0 1 = R1
r 1 0 = R2
r 1 1 = R3

5.2.6 Instructions

We may now define the exact implementation of each individual instruction. First

we will define a couple of helper functions. The tick function delineates the end

of one clock cycle by signaling the output value (which has been built up in a state

monad) and storing the next input for use later in this cycle.

tick :: CPU ()
tick = do o <- getOutputs

i <- signal o
putInputs i

We will also define a helper to increment the program counter.

incrPC :: CPU ()
incrPC = do pc <- getPC

putPC (snd (plusW8 pc oneW8))

Our CPU’s mem instruction has a somewhat unconventional semantics that im-

plements both load and store operations. On the first clock cycle, mem will read

the immediate source/destination address (i.e. the second byte of the instruction)

from memory. On the second cycle, mem will output that address to the address

bus, along with the write enable bit and (if the write-enable bit is set) data from a

126

register on the data bus. On the third cycle, in the case of a read operation, mem

will store the resulting data into the register. (N.B., we assume the presence of an

asynchronous RAM, or at least of one clocked fast enough that it will be able to

respond within one CPU clock cycle. Setting both write-enable and read-enable

may result in undefined behavior.)

mem :: Bit -> Bit -> Register -> CPU ()
mem rEn wEn r = do pc <- getPC

putAddrOut pc

a <- getDataIn

putAddrOut a
putWeOut wEn
case wEn of
1 -> do d <- getReg r

putDataOut d
0 -> return ()

incrPC
tick

case rEn of
1 -> do v <- getDataIn

putReg r v
0 -> return ()

The ld instruction loads a value from an address stored in register rS into register

rD. The complementary st instruction will store the value of rD into the address

stored in rS.

ld :: Register -> Register -> CPU ()
ld rD rS = do a <- getReg rS

putWeOut 0

127

putAddrOut a
tick

getDataIn
putReg rD v

st :: Register -> Register -> CPU ()
st rD rS = do a <- getReg rS

v <- getReg rD
putWeOut 1
putDataOut v
putAddrOut a
tick

The arithmetic instructions add, addc (add-with-carry), sub, and subb (subtract-

with-borrow), and the logical operators or, and, xor, and cmp, all follow a very

similar pattern. We will provide only the code for addc as a representative exam-

ple.

addc :: Register -> Register -> CPU ()
addc rD rS = do vD <- getReg rD

vS <- getReg rS
cin <- getCFlag
let (cout,vD’) = plusCW8 vD vS cin
putCFlag cout
putReg rD vD’
tick

The mov instruction implements a register-register move.

mov :: Register -> Register -> CPU ()
mov rD rS = do v <- getReg rS

putReg rD v
tick

Control flow instructions brz (branch on zero), brnz, brc (branch on carry),

brnc, and jmp (unconditional jump) all follow a similar pattern; as an example, brz

128

is implemented as:

brz :: Register -> CPU ()
brz r = do z <- getZFlag

case z of
1 -> do a <- getReg r

putPC a
0 -> return ()

tick

The ien (interrupt-enable), iack (interrupt-acknowledge), and iret (return-

from-interrupt) instructions are used to implement interrupt handling.

ien :: Bit -> CPU ()
ien b = do putIEFlag b

tick

iack :: CPU ()
iack = do putIackOut 1

tick

iret :: CPU ()
iret = do putIEFlag 1

pc <- getPCSave
putPC pc
z <- getZSave
putZFlag z
c <- getCSave
putCFlag c
tick

Our CPU’s instruction set implements a handful of unary operators on register

as well: not (logical negatiion), clrr (clear register), incr (increment register), and

decr (decrement register).

129

not :: Register -> CPU ()
not r = do v <- getReg r

putReg r (notW8 v)
tick

clrr :: Register -> CPU ()
clrr r = do putReg r zeroW8

tick

incr :: Register -> CPU ()
incr r = do v <- getReg r

let (cout,v’) = plusCW8 v oneW8 0
putReg r v’
putCFlag cout
putZFlag (eqW8 v’ zeroW8)
tick

decr :: Register -> CPU ()
decr r = do v <- getReg r

let (cout,v’) = minusCW8 v oneW8 0
putReg r v’
putCFlag cout
putZFlag (eqW8 v’ zeroW8)
tick

Implementation of the rotl and rotr (rotate left/right) instructions is collapsed

into a single function:

rot :: Bit -> Register -> CPU ()
rot dir r = do v <- getReg r

case dir of
0 -> putReg r (rolW8 v)
1 -> putReg r (rorW8 v)

tick

Finally, the shft function encodes both arithmetic and logical shifts, in both the

left and the right direction.

130

shft :: Bit -> Bit -> Register -> CPU ()
shft log dir r = do v <- getReg r

(cout,v’) <- case (dir,log) of
(0,0) -> shlCW8 v (msbW8 v)
(0,1) -> shlCW8 v 0
(1,0) -> shrCW8 v (lsbW8 v)
(1,1) -> shrCW8 v 0

putReg r v’
putCFlag cout
putZFlag (eqW8 v’ zeroW8)
tick

5.2.7 Reset and Interrupt Handling

The handler for a reset event simply resets the carry and zero flags, initializes the

output register to initOutputs (all zeros), and waits for one clock tick. (The caller,

loop, will then return to the top of the fetch-decode-execute loop.)

reset :: CPU ()
reset = do putCFlag 0

putZFlag 0
putOutputs initOutputs
tick

Interrupts cause the the current program counter, zero flag, and carry flag to be

stored in a temporary, turns off the interrupt-enable bit (so that an interrupt cannot

interrupt an interrupt), and transfers control flow to an interrupt handling vector

at address FE16. This function, like reset, is invoked by the fetch-decode-execute

loop, which will return to the top of the loop after invocation.

131

interrupt :: CPU ()
interrupt = do putIEFlag Zero

getPC
z <- getZFlag
c <- getCFlag
putPCSave pc
putZSave z
putCSave c
putPC interruptVectorAddr
tick

5.2.8 Startup

The start function simply invokes reset, then transfers control to the loop.

start :: CPU ()
start = extrude begin initState
where begin = do reset

loop

Finally, for lack of a better place, we will define a few initial constants here.

initOutputs :: Outputs
initOutputs = Outputs zeroW8 zeroW8 0 0

initInputs :: Inputs
initInputs = Inputs zeroW8 0 0

initState :: CPUState
initState = CPUState initInputs initOutputs 0 0 0 zeroW8 0 0

zeroW8 zeroW8 zeroW8 zeroW8 zeroW8

This completes the ReWire portion of the CPU spec. The VHDL-defined primi-

tives are omitted here, but each consists of no more than a single arithmetic opera-

tion and/or straight-forward bit manipulation.

132

5.3 Evaluation

The CPU described here synthesizes successfully on Xilinx 7-series FPGAs. Unfor-

tunately, logic utilization is rather high, and the resulting clock frequency is less

than desired (several times slower, for example, than PicoBlaze on the same chip).

The main reason for this is probably redundant code occurring in (for example)

each arithmetic expression. In Section 8.2.3, a possible remedy for this problem is

explored.

5.4 Extending the CPU with Multiple Security Do-
mains

In this section we will sketch how to extend the CPU design given here in order

to enforce separation of security domains. Our methodology is derived from a set

of techniques developed originally by Harrison [4] based on layered state monad.

Specifically we will derive a single-core CPU where processes in multiple secu-

rity domains share an execution unit, yet information flows between the security

domains are provably absent. We assume that there are two independent input

and output channels present, and that an external “mode” bit input determines

whether the next instruction is to be executed in domain A or B.

5.4.1 Modifying the Monad

The first step in implementing multiple security domains is to alter the monad to

produce a layered state monad. We will add a second layer of CPUState for the

133

second security domain, and a third state layer containing an internal bit that will

track whether the CPU is operating in security domain A or B. We will then modify

the output channel by changing it to the type Maybe (Either Outputs Outputs) which

reflects three possibilities: (1) no output is available (this happens when the CPU

is querying the mode bit); (2) output for domain A is available; or (3) output for

domain B is available. We make a similar mutation to the input type while also

adding a line for the mode bit (of type Domain).

data Domain = A | B
type CPU = ReactT (Domain,Inputs,Inputs)

(Maybe (Either Outputs Outputs))
(StateT Domain
(StateT CPUState

(StateT CPUState Identity)))

5.4.2 Modifying the Code

We will make a slight alteration to the CPU loop, which will take one clock tick to

sample the current mode input. The rest of the loop is the same.

loop :: CPU ()
loop = do (dom,_,_) <- signal Nothing

putMode dom
...

This may seem slightly overcomplicated—if the current mode input is available

the circuit input, why do we need to store it separately? The answer is that there is

nothing stopping the mode bit from changing during instruction execution. We do

not wish to start overwriting domain B’s registers with data that was intended for

domain A just because a change in the mode bit came in the middle of instruction

134

execution. Therefore we must sample it once, at the beginning of an instruction,

and stick with that value for the remainder of instruction execution.

The instruction handler functions are identical except that we replace uses of

signal, get, and put with calls to newly defined functions that are analogous, but

examine the current mode register to determine which state domain is to be affected

and which input channel is to be sampled.

signal’ :: Outputs -> CPU Inputs
signal’ o = do
dom <- getMode
case dom of
A -> do (_,i,_) <- signal (Just (Left o))

return i
B -> do (_,_,o) <- signal (Just (Right o))

return i

get’ :: CPU CPUState
get’ = do

dom <- getMode
case dom of

m <- getMode
case m of
A -> lift (lift get)
B -> lift get

put’ :: CPUState -> CPU ()
put’ s = do
dom <- getMode
case dom of
A -> lift (lift (put s))
B -> lift (put s)

This completes the changes to the CPU specification.

135

5.4.3 Correctness Property

We may now formulate a correctness property for our CPU, proving that no internal

information leakage channels exist. The property is a Goguen and Meseguer [61]-

style non-interference property: if we alter the input stream in one domain, the

output stream in the other domain is unaffected. Formally, we can define this in

terms of a (Haskell, not ReWire) function that supplies a stream of inputs to the

function.

run :: CPU () -> [(Domain,Inputs,Inputs)] ->
[Maybe (Either Outputs Outputs)]

The program has no information flow from the security domain A to domain B if

the following equality holds:

forall insA :: [Inputs], insA’ :: [Inputs],
insB :: [Inputs], modes :: [Domain],

map bOuts (run start inStream)
=

map bOuts (run start inStream’)

where bOuts Nothing = Nothing
bOuts (Just (Left _)) = Nothing
bOuts (Just (Right o)) = o

inStream = zip3 modes insA insB
inStream’ = zip3 modes insA’ insB

The property may be proved using simple monadic equational reasoning tech-

niques that have been published previously [4, 17]. Chapter 7 gives a full account

of a formal type system and logic enabling such reasoning on a calculus that is

closely related to ReWire. In particular, the layered state-monad structure of the

136

ReWire calculus helps to establish that no direct storage channels exist between the

high and low domains: a value that is retrieved from the low domain with get is

never written to the high domain with put. This, in turn, enables the use of certain

cancellation and commutativity properties that establish the essential irrelevance

of what is happening in the high domain to what is happening in the low domain.

137

Chapter 6

Case Study II: Fast Regular
Expression Matchers

This chapter is reprinted from a paper I submitted to ARC 2015 with Ian Graves,

Michela Becchi, William L. Harrison, and Gerard Allwein, entitled “Hardware

Synthesis from Functional Embedded Domain-Specific Languages”. That paper

carries the following acknowledgment: This research was supported by the Office of

the Assistant Secretary of Defense for Research and Engineering, the U.S. Department of

Education under GAANN grant number P200A100053, NSF CAREER Award 00017806,

and NSF award CNS-1319748.

Abstract. Although FPGAs have the potential to bring software-like flexibility

and agility to the hardware world, designing for FPGAs remains a difficult task

divorced from standard software engineering norms. A better programming flow

would go far towards realizing the potential of widely deployed, programmable

138

hardware. We propose a general methodology based on domain specific lan-

guages embedded in the functional language Haskell to bridge the gap between

high level abstractions that support programmer productivity and the need for

high performance in FPGA circuit implementations. We illustrate this method-

ology with a framework for regular expression to hardware compilers, written

in Haskell, that supports high programmer productivity while producing circuits

whose performance matches and, indeed, exceeds that of a state of the art, hand-

optimized VHDL-based tool. For example, after applying a novel optimization

pass, throughput increased an average of 28.3% over the state of the art tool for one

set of benchmarks. All code discussed in the paper is available online [62].

6.1 Introduction

FPGAs are notably difficult to program and this has motivated research into high-

level synthesis (HLS) from high level programming languages and, in particular,

from domain-specific languages [63]. This language-based approach is attractive

because of its potential to make hardware engineering more like software engi-

neering with its support for modularity, reuse, and abstraction, and thereby create

a wider group of developers for programmable hardware. This paper describes

a methodology for deriving performant hardware implementations directly from

high-level functional embedded domain-specific languages (EDSL).

The main contribution of this research is a methodology and related tools

supporting the “three P’s” [64] for programming reconfigurable hardware: pro-

ductivity, performance and portability. DSLs address the first two P’s directly

139

because domain specialization supports programmer productivity and, further-

more, allows aggressive optimization of domain-specific idioms. Portability is

achieved by a retargetable back-end for producing hardware called ReWire [65]

and because functional languages naturally lend themselves to modularity and

reusability. The approach we advocate opens the world of FPGA programming

to the functional programming community because the methodology operates en-

tirely within the Haskell functional programming language and every language in

the EDSL pipeline is a high-level language.

The Delite DSL compiler framework [64] seeks to address the “three P’s” with

respect to implementing software on parallel, heterogeneous systems. Delite ad-

dresses portability (i.e., retargetability of DSL compilers to a broad range of parallel

hardware) through language virtualization (LV). ReWire is also a virtualized DSL in

that it has a separate compiler backend for producing FPGA-based implemen-

tations while reusing large parts of its host language’s infrastructure—including

Haskell’s type system, front end, etc. ReWire addresses the first two P’s in much

the same way as Delite. In George, et al., [63], the Delite framework is adapted to

the generation of hardware from DSLs, specifically the hardware acceleration of

kernels in a heterogeneous setting. By contrast, ReWire and the present methodol-

ogy is concerned exclusively with the generation of (homogeneous) synchronous

hardware circuits.

New language constructs raise issues with respect to performance. Is there

a performance price to be paid and, if so, is the increased expressiveness worth

it? Does the increased expressiveness enable better performance and programmer

productivity? In light of these questions, we evaluate our methodology via two case

140

Problem
Domain

… ReWire VHDLEDSL 1 EDSL n

Figure 6.1: FP Methodology for HLS

studies. The case studies presented here consider a purely functional framework for

REHC construction, called RexHacc (for “Regular EXpression HArdware compiler-

compiler”). RexHacc is an EDSL-structured compiler-compiler, implemented in

Haskell, for Perl-compatible regular expressions (PCRE) similar to those seen in

popular intrusion detection systems (e.g., Snort [66]).

6.1.1 Overview of Methodology

The methodology factors the problem of HLS into a series of translations between

EDSLs. An EDSL is a domain-specific language that is defined as a collection of

constructs within an existing high level language. The methodology is illustrated in

Figure 6.1. A problem domain can be realized as a DSL embedded in Haskell. DSL

cross-compilers targeting ReWire enable synthesis onto an FPGA via the ReWire

compiler. Section 6.2 presents a more in-depth discussion of our methodology.

The case studies (see Figure 6.2) involve regular expression to hardware compi-

lation in which we generate artifacts that perform as well as and often better than

state of the art approaches. The case studies reported here consider the problem

domain of regular expression to hardware compilers (REHC) [67]. Following Fig-

ure 6.1, we developed a reusable and modular framework for REHC called RexHacc

and demonstrated that circuits produced with it meet or exceed the performance

of state-of-the-art REHC.

141

Perl-
Compa+ble-
Regular-

Expressions-

Finite-
Automaton1-

Finite-
Automatonn-

…-

RexHacc-Framework-

ReWire-

ReWire-Compiler-

VHDL-

Figure 6.2: Combining the Ease of Use of Traditional EDSLs with the Power and
Run-Time Performance of a Virtualized Language

The RexHacc Framework To evaluate the methodology, we performed an

experiment in which we compared RexHacc to the performance of the state-of-

the-art REHC of Becchi and Crowley [68] (henceforth reg2vhdl) against its own

benchmarks. The goal is to demonstrate both the productivity gain and high per-

formance achievable via our methodology in the construction and testing of com-

pilers generated by RexHacc. This section is deliberately high-level. We suppress

the definitions of functions and data types; the code is online [62].

The entry point for RexHacc is the function rexhacc with Haskell type:

rexhacc :: (NFA a -> NFA a) -> RegEx a -> ReWire

The declaration form “::” is pronounced “has type”. The function rexhacc takes

two inputs, an optimization function (of type NFA a -> NFA a) as well as a regular

expression (of type RegEx a). The type NFA a (resp., RegEx a) represents non-

deterministic finite automata (resp., regular expressions) over an alphabet of type

a. A regular expression compiler is generated with RexHacc by applying the

top-level rexhacc function to an optimization pass, opt:

compiler :: RegEx a -> ReWire
(‡) compiler = rexhacc opt

where opt = (o1 . · · · . on)

Each oi is an optimization pass of type NFA a -> NFA a, all of which are composed

using Haskell’s function composition operator (i.e., the infix “.”) into a single

142

209Case Study 1

k=1 209reg2vhdl
317Case Study 2

156Case Study 1

k=2 178reg2vhdl
205Case Study 2

133Case Study 1

k=4 129reg2vhdl
154Case Study 2

0 100 200 300

1675Case Study 1

k=1 1675reg2vhdl
2538Case Study 2

2503Case Study 1

k=2 2853reg2vhdl
3287Case Study 2

4282Case Study 1

k=4 4137reg2vhdl
4940Case Study 2

0 1000 2000 3000 4000 5000

Figure 6.3: Writing Domain-Specific Optimizations for Case Studies. The tcp25
benchmark: (left) Maximum frequency (MHz) and (right) throughput in Mbits/sec.
Parameter k indicates stride length (defined in Section 6.4). Case study 2 shows an
average of 28.3% throughput increase over reg2vhdl.

pass. This composition corresponds to the middle box in Figure 6.2 and each oi

is a phase inside that box. The generated compiler takes a regular expression

over an alphabet of type a and converts it into an NFA a, which is then fed to

the optimization pass opt. The optimization pass produces an NFA a from which

ReWire code is generated. The ReWire output from this compiler can either be

translated into VHDL by the ReWire compiler or executed as software in any

standard Haskell environment.

Summary of Case Study Results Secs. 6.4 and 6.5 each describe the defini-

tion of an REHC in the RexHacc framework. Each case study was tested against

reg2vhdl using existing test suites [68] with respect to standard metrics for circuit

size, clock speed and throughput (see Figure 6.3). The first case study (Section 6.4)

implements the same optimization passes as reg2vhdl, and it was clear that this

compiler generally matched or exceeded the performance of the hand-optimized

compiler reg2vhdl with a tiny increase in circuit size. It was observed that one

of the benchmarks (tcp25) seemed to be particularly challenging for both the first

143

case study compiler and reg2vhdl with respect to throughput. This observation

motivated the second case study (Section 6.5), which improves on the first with

an (apparently novel) optimization pass that results in better performance than

reg2vhdl on the tcp25 benchmark.

6.2 A Methodology for Synthesis from Functional ED-
SLs

Synthesis from pure functional languages (e.g., Haskell, www.haskell.org) is ap-

pealing because combinational hardware is functional in nature, functional lan-

guages have powerful features supporting programmer productivity (e.g., mod-

ularity, expressive data types, static type inference, etc.), and the absence of side

effects (e.g., destructive update) simplifies synthesis. But general purpose func-

tional languages also contain a number of features that cannot be represented

in hardware (e.g., general recursion and garbage collection) and this makes HLS

directly from existing functional languages more challenging.

ReWire [65] is a proper sublanguage of Haskell—i.e., any ReWire program is

a Haskell program, but not all Haskell programs are ReWire programs. ReWire

programs, in contrast with general purpose functional languages like Haskell, are

always synthesizable to hardware. ReWire restricts Haskell by disallowing the use

of higher-order functions and general recursion at runtime (though techniques like

partial evaluation may enable their use at compile time). RexHacc uses the ReWire

hardware compiler as a back-end for producing VHDL implementations.

144

www.haskell.org

a

d

a

2

3
1

Is ‘a’ Is ‘d’

1 2
3

True

Character Input

Output

Figure 6.4: NFA and Corresponding Sidhu and Prasanna-style Implementation

6.2.1 Front End

The RexHacc compilation process begins with a collection of regular expressions

written in Perl-compatible regular expression (PCRE) syntax. We use the parser

combinator library Parsec in Haskell to parse the regular expressions in the source

file. The regular expression is converted to the NFA type via a textbook translation

of regular expressions to NFAs [69]. The resulting NFA is passed to the optimization

portion of the compilation chain.

6.2.2 Simulating Circuits in Haskell

Because ReWire is a sublanguage of Haskell, we can execute ReWire code as soft-

ware in any Haskell environment with a test harness for executing reactive re-

sumptions. Figure 6.5 demonstrates the process of generating ReWire from regular

expressions (lines 1-4) and compiling the generated ReWire to VHDL and to Haskell

for debugging (lines 5-6). The ReWire compiler generates a Haskell file (Debug.hs)

that is imported by the test harness (Harness.hs) for simulation. We load the test

harness in GHCI, an interactive Haskell shell, on line 7 of Figure 6.5. The harness

has a function called test that simulates a regular expression matcher with a string

(line 8). What results is a list that represents the stream of output bits from matcher

(line 9). These indicate the accept value of the device after reading each character

145

1 $ cat regex.pcre
2 a*bcde
3 $ rewire-regex regex.pcre
4 ReWire Output written to output.rw
5 $ rewire output.rw
6 Debug -> Debug.hs; VHDL -> output.vhd
7 $ ghci Harness.hs
8 ghci> test matcher "aaabcde"
9 ["0","0","0","0","0","0","1"]

Figure 6.5: Simulation in Haskell

of input. The final character in the input results in a match and so the final value

in the list of outputs is "1".

6.3 Related Work

The conversion of sets of regular expressions into NFAs is a well-known proce-

dure [69]. Sidhu and Prasanna [67] have proposed an efficient FPGA implementa-

tion of NFAs. Their solution is based on the one-hot encoding scheme; the use of

an NFA representation avoids the O(2n) space complexity that is characteristic of

DFA (deterministic finite automata) representations, typically adopted in memory-

based regular expression matching implementations [70, 71, 72, 73]. Subsequent

efforts on FPGA [74, 68, 75, 76] have refined Sidhu and Prasanna’s implementation

and achieved gigabit/sec processing throughputs on real-world pattern sets.

There are a number of efforts to apply ideas and techniques from functional pro-

gramming to hardware design and synthesis. Arvind [77] describes the Bluespec

synthesis language as “a relatively simple DSL (GAAs [Guarded Atomic Actions]

146

and modules) with a fully functioning Haskell-like meta programming layer on

top.” The methodology advocated here employs metaprogramming as well, in

that ReWire programs (which are also Haskell programs) are ultimately produced

by the rexhacc function. Within the Haskell community, perhaps the most well

known system for hardware synthesis is Lava [19]. Lava is a domain-specific

language for hardware specification embedded in Haskell. Primitives in Lava are

essentially structural and specify circuits at the level of signals. ReWire, by contrast,

compiles a subset of Haskell itself to hardware circuits, and relies on an abstract

set of behavioral primitives. The primary motivation for developing ReWire is as

a vehicle for the design, implementation, and formal verification of high assurance

hardware.

Cλash [78], is a compiler for a subset of Haskell to VHDL. Like ReWire, Cλash

uses Haskell itself as a source language. Cλash requires some limits be placed on

the kinds of algebraic data types used as well as the basic operating types. ForSyDe

is a platform to compile models of hardware written in Haskell to circuitry [27]. The

current research demonstrates that the ReWire compiler works at scale as the gen-

erated ReWire programs are on the order of 100K LOC. Great care was taken in the

design of ReWire so that it possesses a rigorous denotational semantics to support

formal verification while maintaining synthesizability for all of its programs.

6.4 Case Study 1: Matching State of the Art

We undertake the construction of a tool equivalent in functionality to the state of the

art [68] (reg2vhdl) and to examine the feasibility of duplicating this functionality

147

with our approach. The purpose of this case study is to demonstrate the ease

with which such a tool can be constructed. The optimizations were chosen to

match those of Becchi and Crowley [68] and include head zipping, striding, alphabet

compression, and epsilon elimination. These results indicate that the rexhacc-based

compiler compares favorably to and often surpasses reg2vhdlwhere throughput is

concerned, and area utilization is similarly competitive. Each optimization phase

was implemented in a few dozen lines of Haskell code; this is a rough indication

that the amount of programmer effort required is small.

Head zipping. Head zipping is a transformation that merges outbound transitions

from a state that have the same transition labels. Nodes with more than one inbound

transition are not head zipped because this would result in a non-equivalent NFA.

Head zipping is performed by merging the destination nodes of the matching

transitions into one node that includes all of the outbound transitions from the

merged nodes.

Striding. Striding is an optimization pass that doubles the number of characters an

NFA matches at each transition. Striding traverses the graph’s edges and looking

two transitions ahead from each state, converting each two-transition sequence in

the original NFA to a single transition consuming two characters.

Alphabet compression. Alphabet compression is a technique that increases sharing

of logic by exploiting the identical treatment of different characters by an NFA. If

two characters always result in the same transitions between all states, then these

characters can be compressed into a single character class.

Epsilon elimination. Eliminating ε-transitions reduces the complexity and size of

NFAs and simplifies code generation. NFAs with ε-transitions allow state transi-

148

tions without consuming input. States connected to an NFA solely by ε-transitions

can be eliminated. Eliminating unnecessary states reduces the number of flip flops

required to implement the NFA on an FPGA. A textbook ε-elimination algorithm

is used [69].

6.4.1 Experiments and Evaluation

To test the performance of RexHacc, we selected three benchmark sets of regular

expressions from the literature [70, 68]. Snort24 is a set of 24 regular expressions

drawn from the Snort network intrusion detection system [66]. Tcp25 is a set

of 79 regular expressions designed to match malicious SMTP traffic, also drawn

from the Snort NIDS. Bro217 is a set of 217 regular expressions drawn from the Bro

NIDS [79]. Matchers for each of these benchmarks were generated using reg2vhdl,

as well as RexHacc. Each benchmark was tested at stride lengths k = 1, k = 2, and

k = 4, producing circuits that consume input streams at one, two, and four bytes

per clock cycle. The resulting VHDL was then synthesized using Xilinx’s XST

synthesis tool for the Xilinx Spartan-3E X3CS500E FPGA, speed grade -4.

Figure 6.6 compares the resulting circuits in terms of three performance metrics:

(a) logic slice utilization, (b) LUT utilization, and (c) maximum throughput as mea-

sured in megabits per second. (Flip flop utilization was extremely close between

the two tools and thus is not shown.) RexHacc compares favorably with reg2vhdl

on virtually all fronts.

Throughput. RexHacc matches or exceeds reg2vhdl’s total throughput for all but

one of the nine benchmarks. In the best case (benchmark bro217, k = 1) throughput

is around 60% higher. In the worst case (benchmark tcp25, k = 2) throughput is

149

0	
 500	
 1000	
 1500	
 2000	
 2500	
 3000	

snort24	
 (k=1)	

snort24	
 (k=2)	

snort24	
 (k=4)	

bro217	
 (k=1)	

bro217	
 (k=2)	

bro217	
 (k=4)	

tcp25	
 (k=1)	

tcp25	
 (k=2)	

tcp25	
 (k=4)	

(a)	
 #	
 Logic	
 Slices	

r2v	

RexHacc	

0	
 500	
 1000	
 1500	
 2000	
 2500	
 3000	
 3500	
 4000	
 4500	
 5000	

snort24	
 (k=1)	

snort24	
 (k=2)	

snort24	
 (k=4)	

bro217	
 (k=1)	

bro217	
 (k=2)	

bro217	
 (k=4)	

tcp25	
 (k=1)	

tcp25	
 (k=2)	

tcp25	
 (k=4)	

(b)	
 #LUTs	

r2v	

RexHacc	

0	
 1000	
 2000	
 3000	
 4000	
 5000	
 6000	
 7000	
 8000	

snort24	
 (k=1)	

snort24	
 (k=2)	

snort24	
 (k=4)	

bro217	
 (k=1)	

bro217	
 (k=2)	

bro217	
 (k=4)	

tcp25	
 (k=1)	

tcp25	
 (k=2)	

tcp25	
 (k=4)	

(c)	
 Throughput	
 (Mbit/sec)	

r2v	

RexHacc	

Figure 6.6: Performance Comparisons of RexHacc to reg2vhdl

around 13% lower. Both tools, in all cases, are capable of processing input at a rate

of more than 1 Gbit/sec. In the best case, RexHacc is capable of handling input rates

up to 7.5 Gbit/sec on a Xilinx Spartan-3E FPGA at a relatively low clock rate. Tests

on a Xilinx 7-series platform (not presented here, but available online [62]) indicate

that throughputs of up to 25 Gbit/sec are achievable with a more modern FPGA.

Logic utilization. With the exception of the single-strided (k = 1) benchmarks,

LUT utilization for RexHacc-generated circuits ranged from 88% to 116% of their

reg2vhdl counterparts. In the specific case where k = 1, RexHacc tends to pro-

150

duce circuits with higher LUT counts (up to 219% higher), suggesting that the

combinational next-state logic produced by the RexHacc code generator is more

complicated for these circuits. For all benchmarks, flip flop utilization for RexHacc

was close to, but slightly higher than, the results generated by reg2vhdl. This is

not surprising since each state in the NFA is represented by a single flip flop, and

both tools tend to generate similar numbers of NFA states. RexHacc, however,

pays a small penalty here, because it generates output signals synchronously, stor-

ing them in flip flops, while reg2vhdl does not. Please note, however, that the

choice of synchronous outputs rather than asynchronous ones is optional in the

most recent version of ReWire.

The results exhibited here suggest that the case study compiler is competitive

with the state of the art. The extra flexibility of the modular, purely functional

design does not come at a prohibitive cost in terms of circuit size, and indeed

brings substantial benefits with respect to throughput.

6.5 Case Study 2: Surpassing State of the Art

In this case study, we demonstrate the agility of the RexHacc approach by iden-

tifying an opportunity for an optimization, and rapidly implementing that opti-

mization as a compiler phase in RexHacc. The modular nature of RexHacc made

it easy both to identify a key performance bottleneck, and to implement a new

optimization pass to address it.

Identifying the bottleneck. While conducting the experiments of Section 6.5, we no-

ticed that one of the benchmarks, tcp25, stood out for its relatively low maximum

151

throughput when processed by RexHacc as well as by reg2vhdl. While striding

enabled our compiler to produce circuits with maximum throughput in excess of

6 Gbit/sec for snort24 and bro217, maximum throughput for tcp25 just barely ex-

ceeded 4 Gbit/sec. The throughput advantage over reg2vhdl observed for snort24

and bro217 was essentially nonexistent for tcp25.

To explore the reasons for this, we instrumented our compiler pipeline by using

the Haskell Functional Graph Library’s built-in support for generating graph vi-

sualizations via GraphViz (www.graphviz.org). We observed that the tcp25 NFA

exhibited a structural feature that was not present in the snort24 and bro217NFAs.

Specifically, the tcp25 NFA contained one state that had a large number of inbound

transitions. A simplified example of this problem is exhibited in Figure 6.7 (top),

where state 9 has eight inbound transitions. A large number of inbound transitions

emerges when the source regular expression contains a long chain of choice oper-

ators. This pattern is not uncommon in packet inspection rulesets (e.g., consider a

long chain of alternative filenames followed by the common suffix “.exe”).

In the circuit implementation the inbound transitions translate to a large fan-

in of signals that must be ORed together to determine whether to activate that

state. As the size of this fan-in grows large, the combinational logic involved

begins to dominate the critical path of the circuit. The result is a sharp reduction

in maximum operating clock frequency, and therefore throughput. This suggested

an opportunity for optimization: namely, to transform the NFA in such a way as

to reduce the number of inbound transitions to heavily-loaded states.

Implementing an Optimization. To test our hypothesis, we extended the compiler

of Section 6.4 with an optimization called state splitting. Suppose we have in

152

our NFA a state s with inbound transitions e1, · · · , en, and assume without loss of

generality that s has no self-loops. Observe that we can produce an equivalent NFA

by “splitting” s in two: that is, introducing a new state (call it s′), and reassigning

half of the inbound transitions (say, e1, · · · , edn/2e) to s′ instead of s. State splitting

works by applying this transformation to each node whose indegree exceeds a

certain fixed threshold t. Figure 6.7 (bottom) illustrates the results of applying state

splitting to the NFA for t = 2. N.b., the maximum indegree has been reduced from

8 to 2 in this example.

The reader may note that this optimization may have the effect of increasing the

number of inbound transitions for successor states of split nodes. This is generally

not a problem for two reasons: first, as long as state splitting succeeds in reducing

the maximum indegree, it is likely to pay off even if some states see their number

of inbound transitions increased. Second, state splitting may be iterated; if the

splitting of state s1 results in state s2 exceeding the split threshold, s2 itself may be

split.

The full code for the state-splitting optimization, consisting of 17 lines of code,

is given as the splitStates function in the code base [62]. We can insert the

state-splitting into the optimization pipeline simply by adding an extra phase to

the rexhacc call; this is an instance of (‡) from Section 6.1:

rhcc2 :: Int -> Int -> RegEx a -> ReWire
rhcc2 k m = rexhacc

(alphabetCmpr k . stride k . splitStates m .

headZip . epsElim)

Experimental Results. To test the state-splitting optimization, we repeated the exper-

iments described above for the tcp25 benchmark with state splitting enabled; the

153

� �

�

���

�

���

�

���

�

���

�

���

�

���

�

���

�

���

�

��� ��� ��� ��� ��� ��� ��� ���

� �

�

���

�

���

�

���

�

���

�

���

�

���

�

���

�

���

��

��� ���

��

��� ���

��

��� ���

�

��� ���

Figure 6.7: NFA for (a|b|c|d|e| f |g|h)z, Before State Splitting (top) and After (bottom)

in-degree threshold for state splitting was set to 3. We chose to test only against the

tcp25 benchmark for the simple reason that the other two benchmarks did not have

any states with a large number of predecessors; as such, state splitting would have

precisely zero effect on those benchmarks. The results are reported in Figure 6.8.

With state splitting enabled, RexHacc now exceeds the maximum throughput of

reg2vhdl on the previously troublesome tcp25 benchmark, with throughput gains

(Figure 6.8(e)) of 51%, 15%, and 19% relative to reg2vhdl for stride values of k = 1,

k = 2, and k = 4 respectively. The cost in area is relatively modest, as illustrated by

the comparable numbers of logic slices, LUTs, and flip flops (Figure 6.8(a-c)).

We also measured the effect of moving state-splitting to the end of the pipeline,

154

performing it after, rather than before striding. Although this had minimal impact

on the performance, it does illustrate the ease of experimenting with optimization

orders in RexHacc.

6.6 Conclusions and Future Work

This research is a substantial case study utilizing the ReWire compiler at scale.

ReWire is a subset of Haskell limited in expressive power to ensure the synthesiz-

ability of every ReWire program. There is a potential drawback to such restrictions:

it excludes many powerful functional programming idioms. Can we maintain the

sufficient expressiveness to support design while guaranteeing programs yield

high-performance FPGA implementations? The key contribution of our method-

ology is an affirmative answer to this question.

The methodology leverages the intrinsic power of Haskell and functional pro-

gramming. RexHacc is modular and customizable in the sense that optimization

passes can be easily added and removed. Because the ordering of passes is exposed

as function composition in Haskell, experimentation with optimization ordering is

enabled. A RexHacc-generated compiler can be instrumented in a straightforward

manner as we did with GraphViz and take advantage of existing external Haskell

tools.

The flexibility of the RexHacc framework derives from the cross-compilation

to ReWire and the ability of ReWire to generate VHDL synthesizable to efficient

circuits. The methodology we have introduced lowers the barrier to entry for re-

configurable computing for functional programmers. At the same time, it provides

155

an opportunity for hardware designers to leverage the power of the functional

paradigm to improve productivity. The choice of a purely functional language

does not come at a performance cost: our benchmarking demonstrates that we

match or exceed the performance of a state-of-the-art hand-tuned compiler for a

number of real-world tests.

The two research directions we are pursuing have to do with increasing the ex-

pressiveness of the type system to support metaprogramming and hardware secu-

rity. The current methodology is based on metaprogramming (i.e., ReWire/Haskell

programs are generated by Haskell programs) and there are type systems for staged

programming (e.g., MetaML [80]) that we believe will improve programmer pro-

ductivity further while automatically enforcing type safety. We developed a type

system for enforcing fault isolation on ReWire [17] and we are currently extending

to information flow security.

6.7 Acknowledgments

The authors would like to thank David Andrews of the University of Arkansas and

Jason Agron of Intel Corporation for their helpful feedback.

156

0	
 500	
 1000	
 1500	
 2000	
 2500	
 3000	

tcp25	
 (k=1)	

tcp25	
 (k=2)	

tcp25	
 (k=4)	

#	
 Logic	
 Slices	

r2v	

RexHacc	

0	
 1000	
 2000	
 3000	
 4000	
 5000	
 6000	

tcp25	
 (k=1)	

tcp25	
 (k=2)	

tcp25	
 (k=4)	

#LUTs	

r2v	

RexHacc	

0	
 1000	
 2000	
 3000	
 4000	
 5000	
 6000	

tcp25	
 (k=1)	

tcp25	
 (k=2)	

tcp25	
 (k=4)	

Throughput	
 (Mbit/sec)	

r2v	

RexHacc	

Figure 6.8: Comparisons of RexHacc with State Splitting Enabled to reg2vhdl

157

Chapter 7

Verification Techniques

This chapter is reprinted from a paper I published with William L. Harrison and

Gerard Allwein at ICFEM 2012 entitled “The Confinement Problem in the Presence

of Faults”. That paper carried the following acknowledgment: This research was sup-

ported by NSF CAREER Award 00017806, US Naval Research Laboratory Contract 1302-

08-015S, and by the U.S. Department of Education GAANN grant no. P200A100053.

Abstract. In this paper, we establish a semantic foundation for the safe execu-

tion of untrusted code. Our approach extends Moggi’s computational λ-calculus

in two dimensions with operations for asynchronous concurrency, shared state and

software faults and with an effect type system à la Wadler providing fine-grained

control of effects. An equational system for fault isolation is exhibited and its

soundness demonstrated with a semantics based on monad transformers. Our

formalization of the equational system in the Coq theorem prover is discussed.

158

We argue that the approach may be generalized to capture other safety properties,

including information flow security.

7.1 Introduction

Suppose that you possess an executable of unknown provenance and you wish to

run it safely. The cost of analyzing the binary is prohibitive, and so, ultimately,

you have little choice but to explore its effects by trial and error. That is, you run

it and hope that nothing irreversibly damaging is done to your system. There are

two alternatives proposed in the literature to the trial and error strategy. You can

attempt to detect safety and security flaws in the untrusted code with automated

static analyses. This is the approach being explored by much of the literature

from the language-based security [81] community. The other approach is to isolate

the untrusted code so that any destructive side effects (malicious or otherwise)

resulting from its execution are rendered inert.

This paper introduces the confinement calculus (CC) and uses it as a vehicle for

exploring the design and verification of isolation kernels (defined below). CC

extends Moggi’s computational λ-calculus [53] with constructs for state, faults

and concurrency. Furthermore, the type system for the CC also incorporates an

effect system à la Wadler [82] to distinguish computations occurring on different

domains. The CC concurrency metalanguage is closely related to recent work of

Goncharov and Schröder [83].

Lampson coined the term confinement problem [84] for the challenge of confining

arbitrary programs—i.e., executing arbitrary code in a manner that prevents the

159

illegitimate leakage of information through what Lampson termed covert channels.

Legitimate channels transfer information via a system’s resources used as intended

by its architects. Covert channels transfer information by using or misusing system

resources in ways unintended by the system’s architects. The isolation property

we define—called domain isolation—is similar to, albeit more restrictive than, the

security property from our previous work [4]. Delimiting the scope of effects for

arbitrary programs is the essence of confinement and the combination of effect

types with monads is the scoping mechanism we use to confine effects.

A simple isolation kernel written in CC is presented in Figure 7.1. We assume

there are two confinement domains, named Athens (A) and Sparta (S). The kernel is

a function kwhich is parameterized by domain handler functions for each of the input

domains, with types ∆A and ∆S respectively. These domain handlers are applied

by the kernel to produce a single effectful computation step; the effect system

guarantees that the effects of the ∆A (resp. ∆S)-typed handler are restricted to A(S).

The kernel also takes as input an internal kernel state value (here just a domain tag

of type Dwhich serves a similar function to a process id), and domain state values of

types DomA and DomS. Execution of the respective threads is interleaved according

to a round robin policy. The unfold operator encapsulates guarded recursion.

The proof that k is, in fact, an isolation kernel rests on two important features of

the CC. The effect system guarantees that the domain handlers do not themselves

induce state effects outside of their respective domains. The equational logic allows

us to prove, using simple monadic equational reasoning, that the interleaving of

the threads by k does not introduce new interactions between the domains: failure

in Athens will not propagate to Sparta (nor vice versa).

160

D = {A,S}
k : (∆A×∆S) → (D×DomA×DomS) → RD()
k (ha,hs) (s0,α0,σ0) =
unfold (s0,α0,σ0)

(λ(s,α,σ). case s of
A -> case α of

(Just x) -> ha x >>= λα′. return (Left (S,α′,σ))
Nothing -> return (Left (S,α,σ))

S -> case σ of
(Just x) -> hs x >>= λσ′. return (Left (A,α,σ′))
Nothing -> return (Left (A,α,σ)))

Figure 7.1: A Simple Isolation Kernel in CC

The structure of the remainder of this article is as follows. The rest of this

section introduces the safety property fault isolation and motivates our approach to

it. Section 7.2 presents an overview of the literature on effect systems and monads.

The Confinement Calculus is defined in Section 7.3. Section 7.4 demonstrates

how to use the CC to construct and verify an isolating kernel. Formalization of

the Confinement Calculus in the Coq theorem prover is discussed in Section 7.5.

Related work is discussed in Section 7.6, and Section 7.7 concludes.

A Monadic Analysis of Fault Isolation

Fault isolation is a safety property which prescribes boundaries on the extent of a

fault effect. Here, we take a fault to mean a failure within a thread that causes it to

terminate abnormally. The causes of a fault can be many and system-dependent,

but some typical causes include activities such as division by zero, the corruption

of a runtime stack, etc. Under some circumstances, one thread’s failure can “crash”

other threads. Fault isolation in this context means that the failure of one thread

can only effect a subset of all threads running on a system.

We assume that the threads running on a system are partitioned into domains

161

where the term is adapted from the terminology of hypervisors [85] and separation

kernels [86] rather than denotational semantics. Fault isolation, as we use the

term, means that a thread effect may only operate on its own domain. We refer to a

fault-isolating kernel as a multitasking, multi-domain kernel in which the imperative

and fault operations on one domain have no impact on other thread domains. Our

fault model applies equally as well to software traps and programmable exceptions,

although we do not provide the details here.

From the perspective of an individual thread, the scope of a fault should be

global. Let the thread t be a sequence of atoms, a0; a1; a2; · · · , then, if a0 causes

a fault, then the execution of a1; a2; · · · should be cancelled, thereby satisfying

the (pseudo-)equation, a0; a1; a2; · · · = a0. From the point of view of a concurrent

system (e.g., a multitasking kernel, etc.), the scope of a fault within an individual

thread must remain isolated. The execution of t is really interwoven with other

actions, including potentially those of other threads (e.g., b0; a0; b1; a1; b2; a2; · · ·),

and a fault within t must not effect the execution of the other actions. In other

words, should a0 cause a fault, then the following (pseudo-)equation should hold,

b0; a0; b1; a1; b2; a2; · · · = b0; a0; b1; b2; · · · , specifying that the subsequent actions of t

should be filtered from the global system execution. The pseudo- prefix on the

aforementioned equations signifies that the equations capture intuitions rather

than rigorous mathematical truth. The confinement calculus will allow us to make

these statements rigorous.

162

7.2 Effect Systems and Monads

Effect systems [87] and monads [53, 1] are means of representing the potential

side effects of a program explicitly within its type. This section provides a brief

overview of effect systems and monads and motivates our use of their combination.

Effect Types. Effect systems are commonly associated with impure, strongly typed

functional languages (e.g., ML [88]) because the effect type annotations make ex-

plicit the side effects already present implicitly in the language itself. In an impure,

strongly-typed functional language, the type of a function specifies its input and

output behavior only. An ML function, f : int → int, takes and returns integer

values, but, because ML is impure, it may also have side effects (e.g., destructive

update or programmable exceptions) which are not reflected in its type. An effect

system would indicate the potential side effects in the type itself. Annotating the

arrow in f ’s type with ρ (i.e., f : int
ρ
→ int) could be used to indicate that f may

destructively update region ρ. Effect annotations are introduced via side effecting

language constructs (e.g., ML’s assignment and dereference operations, := and !,

respectively). An effect type system tracks the effects within a program to indicate

its potential side effects. For an excellent account of effect systems, the reader is

referred to Nielson, et al. [87].

Monads. Pure, strongly-typed functional languages (e.g., Haskell [8]) do not allow

side effects, so there are no implicit side effects to make explicit. Monads are used to

mimic side effecting computations within a pure language. Monads in Haskell are

type constructors with additional operations, bind (»=) and unit (return), obey-

ing the “monad laws” (defined in Figure 7.2). What makes monads useful is that

programmers can tailor the desired effects to the application being constructed, ef-

163

Σ ` Γ, x : B . e1 = e2 : A
Σ ` Γ, x : B . return(e1) = return(e2) : MA (cong1)

Σ ` Γ, x : C . e1 = e2 : MA Σ ` Γ, x′ : A . e′1 = e′2 : MB
Σ ` Γ, x : C . e1»=λx′.e′1 = e2»=λx′.e′2 : MB (cong2)

Γ, x : A . e1 : MA Γ, x1 : B . e2 : MB Γ, x2 : C . e3 : MC
Σ ` Γ, x : A . (e1 »= λx1.e2) »= λx2.e3 = e1 »= λx1.(e2 »= λx2.e3) : MC (assoc)

Γ, x : A . e1 : B Γ, x1 : B . e2 : MC
Σ ` Γ, x : A . (return(e1) »= λx1.e2) = [e1/x1]e2 : MC (l-unit)

Γ, x : A . e1 : MB
Σ ` Γ, x : A . e1 »= λx1.return(x1) = e1 : MB (r-unit)

Figure 7.2: The Computational λ-Calculus. M stands for any monad. The “monad
laws” are assoc (associativity), l-unit (left unit), and r-unit (right unit).

fectively configuring a domain-specific language for each application. Rewriting it

in Haskell, f now has type Int→ M Intwhere M is the monad type constructor that

encapsulates desired effects. Monads are also algebraic constructions with prop-

erties useful to formal verification (more will be said about this below). Figure 7.2

presents Moggi’s well-known computational λ-calculus [53]. The computational

λ-calculus is the core of any equational logic for monadic specifications, includ-

ing the logic presented in Section 7.3. An equational judgment has the form,

Σ `Γ . e1 = e2 : t, where Σ, Γ and t are a set of hypotheses, a typing environment,

and a type, respectively.

Effect Systems + Monads. Combining effect systems with monadic semantics (as

in Wadler [82]) provides fine-grained tracking of effects with a semantic model

of those effects. Monads give rise to an integrated theory of effects and effect

propagation. The integration of multiple effects within a single monad M has

consequences for formal verification. Because all of the effects are typed in M, those

effects are not distinguished syntactically within the type system of a specification

164

language. More positively, a rich equational theory governing their interaction

follows by construction.

Effect systems can reflect this semantic information in the syntax of the speci-

fication language itself, thereby making monadic specifications more amenable to

logical analysis. In the setting of this research, the combination of effects systems

with monads is used to abstract over computations that occur on a particular do-

main. Given a particular domain d and monad K, for example, any term, Γ.e : K{d}A,

is arbitrary code on domain d, i.e., its effects occur only in domain d. Combining

effects systems and monads delimits the scope of effects for arbitrary programs and

is the principal mechanism for designing and verifying confinement systems.

The Identity and State Monads. The identity (left) and state (right) mon-

ads are defined below (where Sto can be any type). The return operator

is the monadic analogue of the identity function, injecting a value into the

monad. The �= operator is a form of sequential application. Monadic oper-

ators other than �= and return are key to the formulation of a particular no-

tion of computation. The state monad S encapsulates an imperative notion of

computation with operators for updating and reading the state, u and g, resp.

data Id a = Id a
return v = Id v
(Id x) �= f = f x
data Sa = S(Sto→ (a,Sto))
deS (S x) = x
u : (Sto→ Sto)→ S()
u f = S (λσ.((), f σ))

g : S Sto
g = S (λσ.(σ, σ))
return v = S (λσ. (v, σ))
(S x) �= f

= S (λσ0. let (v, σ1) = x σ0
in deS (f v) σ1)

The Maybe Monad & Errors. The usual formulation of an error monad is called

Maybe in Haskell (see below). An error (i.e., Nothing) has the effect of canceling

165

the rest of the computation (i.e., f). The scope of Nothing is global in the sense that

each of the following expressions evaluates to Nothing: (Just 1 �= λv.Nothing),

(Nothing �= λd. Just 1), (Just 1 �= λv.Nothing �= λd. Just 2).

data Maybe a = Just a |Nothing
return = Just

Just v �= f = f v
Nothing �= f = Nothing

Observe that this behavior precludes the possibility of fault isolation within do-

mains: if the Nothing occurs on one domain and the (Just 1) or (Just 2) occur on

another, the entire multi-domain computation will be canceled. From a security

point of view, this is clearly undesirable: allowing a high-security computation to

terminate a low-security computation introduces information flow via a termina-

tion channel, and allowing a low-security computation to terminate a high-security

computation exposes the system to a denial of service attack.

Monad Transformers. Monad transformers allow monads to be combined and

extended. Monad transformers corresponding to the state monad are defined in

Haskell below. Formulations of the state monad equivalent to those above are

produced by the applications of this transformer to the identity monad, StateT Sto

Id. In the following, type variable m abstracts over monads.

data StateT s m a = ST (s → m (a, s))
deST (ST x) = x
return v = ST (λs. returnm (v, s))
(ST x) �= f = ST (λs0. (x s0) �=m λ(y, s1). deST (f y) s1)
lift : m a → StateT s m a
lift ϕ = ST (λs. ϕ �=m λv. returnm (v, s))

For a monad m and type s, (StateT s m) “extends” m with an updateable store s.

The lift morphism is used to redefine any existing operations on m for the monad

166

(StateT s m). The process of lifting operations is analogous to inheritance in object-

oriented languages. The layer (StateT s m) also generalizes the definitions of the

update and get operators:

u : (s → s) → StateT s m ()
u f = ST (λs. returnm ((), f s))

g : StateT s m s
g = ST (λs. returnm (s, s))

Layered State Monads. A layered state monad is a monad constructed from

multiple applications of the state monad transformer to an existing monad.

type K = StateT Sto (StateT Sto (StateT Sto Id))
u1, u2, u3 : (Sto → Sto) → K ()
u1 f = u f
u2 f = lift (u f)
u3 f = lift (lift (u f))

Each application of (StateT Sto) creates a layer with its own instances of the update

(u1-u3) and get operations (not shown). These imperative operators come with use-

ful properties by construction [4] and some of these are included as the equational

rules (clobber) and (atomic n.i.) (atomic non-interference) in Section 7.3.

Resumption-Monadic Concurrency. Two varieties of resumption monad are uti-

lized here, the basic and reactive resumption monads [15]. Basic resumptions en-

capsulate a concurrency-as-interleaving notion of computation, while reactive re-

sumptions refine this notion to include a failure signal. The basic and reactive

monad transformers are defined in Haskell in terms of monad m as:

data ResT m a = Done a | Pause (m (ResT m a))
return = Done
(Done v) �= f = f v
(Pause ϕ) �= f = Pause (ϕ �=m λκ. returnm (κ �= f))

data ReactT m a = Dn a | Ps (m (ReactT m a)) | Fail

167

return = Dn
(Dn v) �= f = f v
(Ps ϕ) �= f = Ps (ϕ �=m λκ. returnm (κ �= f))
Fail �= f = Fail

We chose to formulate the reactive resumption transformer along the lines of

Swierstra and Altenkirch [89] rather than that of our previous work [15] because

it is simpler. We define the following monads: Re = ReactTK, R = ResTK, and

K = StateTn Sto Id where n is the the number of domains and Sto is the type of

stores (left unspecified).

Figure 7.3 presents the concurrency and co-recursion operations for R and Re.

The step operation lifts an m-computation into the R (resp. Re) monad, thereby

creating an atomic (w.r.t. R (Re)) computation. A resumption computation may be

viewed as a (possibly infinite) sequence of such steps; a finite R-computation will

have the form, (stepR m1) �=R λv1. · · · �=R λvn. (stepR mn). The definition of stepR is

below (stepRe is analogous). The unfoldR operator is used to define kernels while

the unfoldRe operator is used to define threads. The co-recursion provided by these

operators is the only form of co-recursion supported by the confinement calculus.

An important consequence of this limitation on recursion is that it guarantees

productivity [90]. It should be noted that the presence of Maybe in the type of

unfoldRe means that threads may fail, while its absence from the type of unfoldR

means that kernels cannot fail. The unfold operators are defined below; note that

Either a b is simply Haskell-inspired notation for the sum type a + b.

168

stepR : KA→ R A
stepR ϕ = Pause (ϕ �= (return ◦ Done))

unfoldR : (Monad t) ⇒ a → (a → t (Either a b)) → ResT t b
unfoldR a f = stepR (f a) �= λκ.

case κ of
(Left a′) → unfoldR a′ f
(Right b) → return b

unfoldRe : (Monad t) ⇒ a → (a → t (Maybe (Either a b))) → ReactT t b
unfoldRe a f = stepRe (f a) �= λκ.

case κ of
(Just (Left a′)) → unfoldRe a′ f
(Just (Right b)) → return b
Nothing → Fail

Figure 7.3: Monadic Concurrency and Co-recursion Operations

e, e′ ∈ Exp ::= x | λx.e | e e′ | return e | e »= λx.e′ | get | upd e
| fail | mask | out | step | unfold | zero | succ | natRec

A,B ∈ Type ::= A→ B | Kσ A | Rσ A | Reσ A | Sto | Nat | () | A + B | A × B

Figure 7.4: Abstract Syntax. Assume D = {d1, . . . , dn} and σ ∈ P(D).

7.3 The Confinement Calculus

This section introduces the confinement calculus and defines its syntax, type system

and semantics. The CC proceeds from Moggi’s computational λ-calculus [53] and

Wadler’s marriage of type systems for effects with monads [82].

Types in the CC are directly reflective of semantic domains introduced in the

previous section, and as a result are named similarly. As a notational convention,

we will use teletype font when expressing a type in CC (e.g. K Nat), and an italic

font when referring to semantic domains (e.g. K Nat).

Abstract Syntax. Figure 7.4 presents the abstract syntax for the CC. The finite set

of domains, D contains labels for all thread domains in the system (D replaces

169

Γ . e : A
Γ . return e : K∅A

Γ . e : KσA Γ, x : A . e′ : Kσ′B
Γ . e »= λx.e′ : Kσ∪σ′B

Γ ` e : KσA σ ⊆ σ′

Γ ` e : Kσ′A

Γ ` get : K{d}Sto
Γ ` f : Sto→ Sto
Γ ` upd f : K{d}() Γ . mask : K{d}()

Figure 7.5: Type System for Imperative Effects

Region from Wadler’s original presentation of MONAD [82]). We also diverge

slightly from Wadler’s language in that we do not track the “sort” of effects that a

computation may cause: reading, writing, and failure are all treated the same.

The monadic expression language Exp has familiar computational λ-calculus

constructs as well as imperative operations (get, upd), an imperative operation

(mask) used in specifying the isolation of imperative effects [4], and others for re-

sumption monadic computations (out, step, and unfold). Intuitively, the mask

operation has the effect of resetting or “zeroing out” a particular domain. Ex-

pressions unfold, step and out are resumption-monadic operations. The unfold

operator encapsulates corecursion, and its semantics are structured to allow only

guarded recursion. More will be said about fail, step and out later in this sec-

tion. Finally, the expressions zero, succ, and natRec allow construction of, and

primitive recursion over, natural numbers. Note that the only forms of recursion

permitted by CC are primitive recursion over naturals (via natRec), and guarded

corecursion over resumptions (via unfold).

The type syntax in Figure 7.4 contains three monads. The monads K, R and

Re encapsulate layered state, concurrency and system executions, and concurrent

threads, respectively. The effect system can express fine-grained distinctions about

computations and, in particular, allows the domain of a thread to be expressed in

170

Γ . e : A
Γ . return e : R∅A

Γ . e : RσA Γ, x : A . e′ : Rσ
′B

Γ . e »= λx.e′ : Rσ∪σ
′B

Γ . e : KσA
Γ . step e : RσA

Γ . p : RσA
Γ . out p : Kσ(RσA)

Γ . p : A Γ, x:A . q : Kσ(A + B)
Γ . unfold p (λx.q) : RσB

Γ . natRec :
A→(A→A)→Nat→A

Figure 7.6: Type System for Concurrency. The rule for natRec is also included.

Γ . e : A
Γ . return e : Re∅A

Γ . e : ReσA Γ, x : A . e′ : Reσ′B
Γ . e »= λx.e′ : Reσ∪σ′B

Γ . e : KσA
Γ . step e : ReσA

Γ . p : ReσA
Γ . out p : Kσ(ReσA)

Γ . p : A Γ, x:A . q : Kσ(A + B + ())
Γ . unfold p (λx.q) : ReσB Γ . fail : Re{d}A

A <: B σ0 ⊆ σ1

Kσ0A <: Kσ1B
A <: B σ0 ⊆ σ1

Rσ0A <: Rσ1B
A <: B σ0 ⊆ σ1

Reσ0A <: Reσ1B

Figure 7.7: Type System for Reactive Concurrency; Subtyping Relation

its type.

Types and Effects for the Confinement Calculus. The type and effect system for

the CC is presented in Figures 7.5-7.7 and that figure is divided into three sections.

Figure 7.5 contains the system for the imperative core of CC—i.e., the computations

in the monad K. Figure 7.6 contains the type system for concurrency. Figure 7.7

contains the type system for threads—i.e., computations in the Re monad. The Re

monad expresses the same notion of computation as the R monad, except that it

also contains a signal fail. A thread may use fail to generate a fault, and it is up

to the kernel component to limit the extent of the fault to the thread’s domain.

Figure 7.7 gives the rules for subtyping monadic computations (standard rules

for reflexivity, transitivity, and for arrow, product, and sum types are omitted). The

intuition is that one monadic computation ϕmay stand in for another computation

γ without breaking type safety, if and only if the result type of ϕ is a subtype of

that of γ, and ϕ’s affected domains are a subset of γ’s. An effect-free computation

171

of type K∅A also has type K{d}A (but not vice versa).

Denotational Semantics of the Confinement Calculus. The dynamic semantics

of CC is a typed denotational semantics, meaning that the denotation of terms

depends in part on their typing derivations. This allows us to overload the monad

operations. The denotation of types does not depend on effect annotations and is

completely standard. The out operation accesses the first step of a concurrent (R-

typed) computation, producing a K-typed computation. Omitted from Figure 7.8

is the denotation of natRec, which is defined by structural induction on naturals.

The CC term run and its denotation are defined as:

run n ϕ0 = natRec (returnK ϕ0) (λϕ. (ϕ >>= outR)) n

run : Nat→ RA→ K(RA)
run 0 ϕ = returnϕ
run (n + 1) ϕ = out ϕ �= run n

Equational Logic. The rules of the equational logic encode known facts about the

denotational semantics proven in an earlier publication [4]. For instance, the run

operator “unrolls” R computations:

run (n + 1) (step ϕ�=R f) = ϕ�=K run n ◦ f (7.1)

run (n + 1) (returnR x) = returnK (returnR x) (7.2)

Properties (7.1) and (7.2) justify our introduction of the following rules:

Γ . n : Nat Γ . ϕ : KσA Γ, x : A . e : RσB
Σ ` Γ . run (n+1) (stepϕ »= λx.e) = ϕ »= λx. run n e : Kσ(RσB) (run-step)

Γ . n : Nat Γ . e : A
Σ ` Γ . run (n+1) (returnR e) = returnK (returnR e) : Kσ(Rσ A) (run-return)

172

[[Γ . x : A]]ρ = ρ x
[[Γ . λx.e : A→ B]]ρ = λv.[[Γ, x : A . e : B]](ρ[x 7→ v])
[[Γ . e e′ : A]]ρ = ([[Γ . e : B→ A]]ρ) ([[Γ . e′ : B]]ρ)
[[Γ . return e : M∅A]]ρ = returnM ([[Γ . e : A]]ρ)
[[Γ . get : KdiSto]]ρ = lifti g
[[Γ . upd δ : Kdi ()]]ρ = lifti (u ([[Γ . δ : Sto→ Sto]]ρ))
[[Γ . mask : Kdi ()]]ρ = lifti (u (λx.s0))
[[Γ . e »= λx.e′ : Mσ∪σ′B]]ρ

= [[Γ . e : MσA]]ρ»=Mλv.[[Γ, x:A . e′ : Mσ′B]](ρ[x 7→ v])
[[Γ . unfold e (λx.e′) : RσB]]ρ

= unfoldR ([[Γ . e : A]]ρ) (λv.[[Γ, x : A . e′ : Kσ(A + B)]] (ρ[x 7→ v]))

[[Γ . out(p) : Kσ(RσA)]]ρ =

{
return(Done v) if[[p]]ρ = Done v
ϕ if[[p]]ρ = Pause ϕ

[[Γ . fail : Redi A]]ρ = Fail
[[Γ . unfold e (λx.e′) : ReσB]]ρ

= unfoldRe ([[Γ . e : A]]ρ)(λv.[[Γ, x : A . e′ : Kσ(A + B + ())]] (ρ[x 7→ v]))

[[Γ . out(p) : Kσ(ReσA)]]ρ =


return(Just(Dn v)) if[[p]]ρ = Dn v
ϕ�= (return◦ Just) if[[p]]ρ = Ps ϕ
returnNothing if[[p]]ρ = Fail

Figure 7.8: Denotational Semantics. M stands for the K, R, or Re monads. K, R, and
Re are defined in Section 7.2.

173

A straightforward induction on the structure of type derivations justifies the

soundness of the following rules. This induction makes use of previous work

(specifically Theorems 1-3 on page 17 [4]) and the “lifting law” of Liang [1]: lift(x�

= f) = liftx�= lift ◦ f .

Γ . ϕ : Kσ0A Γ . mask : Kσ1() σ0 ⊆ σ1

Σ ` Γ . ϕ » mask = mask : Kσ1() (clobber)

Γ . ϕ : Kσ0() Γ . γ : Kσ1() σ0 ∩ σ1 = ∅

Σ ` Γ . ϕ » γ = γ » ϕ : Kσ0∪σ1()
(atomic n.i.)

7.4 Isolation Kernels in Confinement Calculus

In this section, we turn our attention the construction of isolation kernels within

the confinement calculus. An isolation kernel is a function which interleaves the

execution of two or more threads in different domains, without introducing any

interactions across domains. Put another way, an isolation kernel must have the

property that a computation in domain d, when interleaved with a computation

in d′ , d, behaves exactly the same as it would if the d′ computation had never

happened.

The formal definition of isolation is made in terms of a notion called domain

similarity. Two computations ϕ and γ are domain similar in a domain d if and only

if for every finite prefix of ϕ, there exists a finite prefix of γ whose effects in d are

the same.

Definition 1 (Domain Similarity Relation). Consider two computations

ϕ, γ : Rd1 ∪ ... ∪ dn A. We say ϕ and γ are similar with respect to domain di

174

(written ϕ ∼di γ) if and only if the following holds.

∀ n∈N. ∃m∈N. runn ϕ »K mask = runm γ »K mask

where mask = maskd1» . . . »maskdi−1»maskdi+1» . . . »maskdn .

Kernels. Assume in Definitions 2-4 that D = {d1, . . . , dn} is a fixed set of domains. We

first define a notion of state: namely a tuple containing one element representing the

kernel’s internal state, and an additional element for the state of each confinement

domain. The domain states are wrapped in a Maybe constructor to represent the

possibility of failure within a domain.

Definition 2 (Domain and Kernel State). The state of domain i, Domi is defined as:

Domi = Re{di}()

The type of kernel states for a type t is:

S = t×(Maybe Dom1)× . . .×(Maybe Domn)

A kernel is parameterized by handlers for each domain. A handler is a state

transition function on domain states, which may also have effects on the global

state (hence the presence of K in the type). The only restriction on a handler for

domain di is that its effects must be restricted to di.

Definition 3 (Domain Handler Function). The type of handler functions for domain di

is:

∆di = Domi → K
{di}(Maybe Domi)

The handler vector type for D is:

175

∆D = ∆1× . . .×∆n

Putting the pieces together brings us to the definition of a kernel. Note that a

kernel in our sense is parameterized over handler vectors.

Definition 4 (Kernel). Given a handler vector ∆D, kernel state type S, and an answer

type Ans, the type of kernels is defined by the following:

∆D → S→ KD(S + Ans)

Defining and Proving Isolation. To simplify the presentation, we will restrict our

attention for the remainder of this section to the case of two domains, called A (for

Athens) and S (for Sparta). All the results here generalize naturally to more than

two domains.

We define isolation by an extensional property on kernels. A kernel is said to be

isolating if the result of “eliminating” the computation in any one domain has no

effect on the outcome of any other. This is a property akin to noninterference [61].

We express this formally by replacing the domain handler with return – the “do-

nothing” computation – and replacing the domain state with Nothing.

Definition 5 (Isolation in the Presence of Faults). A kernel k is isolating in the

presence of faults if and only if

k (fA, fS)(s, dA, dS) ∼A k (fA, return)(s, dA, Nothing)

k (fA, fS)(s, dA, dS) ∼S k (return, fS)(s, Nothing, dS)

The following theorem shows that kernel k of Figure 7.1 satisfies this definition.

176

Theorem 1 (k is isolating). The kernel k of Figure 7.1 is isolating in the presence of faults.

Proof. We will show the S-similarity side of the proof, since the A-similarity proof

is analogous. N.b., Definition 1 allows the number of steps on each side of the

equation (n and m) to be different. Here it suffices to fix m = n:

run n (k (fA, fS) (s, dA, dS)) » maskA
= run n (k (return, fS) (s, Nothing, dS)) » maskA

The proof is by induction on n. The base case is trivial. We proceed by cases

on s, dA, and dS. The most interesting case is when s = A and dA = Just x; all

others involve no more than straightforward evaluation and an application of the

induction hypothesis. Let s = A and dA = Just x. Then:

run(n + 1)(k(fA, fS)(A, Just x, dS)))»maskA
= run 1 (k (fA, fS) (A, Just x, dS)) »= runn » maskA ∵ prop run
= fA x »= λd′A. runn (k (fA, fS) (S, Just x, dS)) » maskA ∵ evaluation
= fA x »= λd′A. runn (k (return, fS) (S, Nothing, dS)) » maskA ∵ i.h.
= fA x »= λd′A. maskA » runn (k (return, fS) (S, Nothing, dS)) ∵ atomic n.i.
= fA x » maskA » runn (k (return, fS) (S, Nothing, dS)) ∵ dA

′ does not occur
= maskA » runn (k (return, fS) (S, Nothing, dS)) ∵ clobber
= runn (k (return, fS) (S, Nothing, dS)) » maskA ∵ atomic n.i.
= return () » runn (k (return, fS) (S, Nothing, dS)) » maskA ∵ left unit
= run 1 (k (return, fS) (A, Nothing, dS)) »= runn » maskA ∵ evaluation
= run (n + 1) (k (return, fS) (A, Nothing, dS)) » maskA ∵ prop run

�

7.5 Mechanizing the Logic in Coq

The syntax, denotational semantics, and equational logic of CC have all been

mechanized in the Coq [90] theorem prover. In lieu of separate syntaxes for type

177

judgments and terms as presented in the preceding sections, the Coq formulation

uses a strongly-typed term formulation as suggested by Benton et al [91]. We

combine this with a dependently typed denotational semantics along the lines of

Chlipala [92] (see Chapter 9). The payoff of this approach is that we do not need to

establish many of the usual properties such as progress and subject reduction that

usually accompany an operational approach. Furthermore, strongly-typed terms

are much more amenable to the use of Coq’s built-in system of parametric relations

and morphisms. Just a handful of relation and morphism declarations lets us reuse

many of Coq’s standard tactics (e.g., replace and rewrite) when reasoning in the

CC logic.

Figure 7.9 presents an example equational judgment rule from the Coq devel-

opment, representing the clobber rule. The only major difference between the Coq

formalism and the corresponding rule in Section 7.3 has to do with the need for

explicit subtyping: the term constructor subsume casts a term from a supertype to

a subtype, and requires as an argument a proof term showing that the subtyping

relationship holds (here called S_just). The full development in Coq is available

by request.

J_clobber : ∀ (Γ:list ty) (d:domain) (t:ty)
(te:term Γ (tyK (onedom d) t)),

let S_just := S_tyK (onedom d) (union (onedom d) (onedom d))
(S_refl tynil) (clobber_obligation _)

in eq_judgment (subsume S_just (nullbindK te (mask Γ d))) (mask Γ d)

Figure 7.9: Expressing the Clobber Rule in Coq

178

7.6 Related Work

Klein et al. [93] describe their experience in designing, implementing and verifying

the seL4 secure kernel. Monads are applied as an organizing principle at all

levels of the seL4 design, implementation and verification. Their model of effects is

different from the one described here. The seL4 monadic models encapsulate errors,

state and non-determinism. The notions of computation applied here include

concurrency and interactivity (R and Re, respectively) as well as layered state (K).

Also, the type system underlying the seL4 models does not include effect types. The

present work models faults via simulation on distinct domains rather than as part

of an integrated model of effects. Cock, Klein and Sewell [94] apply Hoare-style

reasoning to prove that a design is fault free. Kernels in the CC are fault-free as a by-

product of our type system and it would be interesting to investigate whether the

application of CC in the seL4 construction and verification process would alleviate

some verification effort.

Another similarly interesting question is to consider the impact of integrating

layered state and resumption-based concurrency into their abstract, executable

and machine models. One design choice, for example, concerns the placement

of preemption points—i.e., places where interrupts may occur—within the seL4

kernel specifications. It seems plausible that interrupt handling in seL4 might be

simplified by the presence of an explicit concurrency model—i.e., resumptions. It

also seems plausible that aspects of the seL4 design and verification effort might be

reduced or abstracted by the inclusion of effect-scoping mechanisms like layered

state and effect types—e.g., issues arising from the separation of kernel space from

user space.

179

Language-based security [81] seeks to apply concepts from programming lan-

guages research to the design, construction and verification of secure systems.

While fault isolation is generally considered a safety property, it is also a security

property as well in that an unconfined fault may be used for a denial of service

attack and also as a covert channel. Monads were first applied within the context

of language-based security by Abadi et al. [95], although the use of effect systems

seems considerably less common in the security literature. Bartoletti et al. [96, 97]

apply effect systems to history-based access control and to the secure orchestration

of networked services. Bauer et al. [98] applied the combination of effect systems

and monads to the design of secure program monitors; their work appears to be

the first and only previously published research in security to do so. The cur-

rent work differs from theirs mainly in our use of interaction properties of effects

that follow by the construction of the monads themselves. These by-construction

properties provide considerable leverage towards formal verification. Scheduler-

independent security [99, 100]) considers the relationship between scheduling and

security and investigates possibilistic models of security that do not depend on

particular schedulers. A natural next step for the current research is to investigate

scheduler freedom with respect to CC kernels (e.g., Definition 4).

7.7 Conclusions

The research described here seeks to apply tools and techniques from program-

ming languages research—e.g., monads, type theory, language compilers—to the

production of high assurance systems. We are interested, in particular, in reducing

180

the cost of certification and re-certification of verified artifacts. The questions we

confront are, in terms of semantic effects, what can untrusted code do and, given

a semantic model of untrusted code, how can we specify a system for running

it safely in isolation? Untrusted code can read and write store obviously. It can

fail—i.e., cause an exception. It can also signal the operating system via a trap.

These effects are inherited from the machine language of the underlying hardware.

Previous work [4] explored the application of modular monadic semantics to

the design and verification of separation kernels. Each domain is associated with

an individual state monad transformer [1] and the “layered” state monad con-

structed with these transformers has “by-construction” properties that are helpful

for verifying the information flow security. The present work builds upon this

in the following ways. Our previous work did not consider fault effects, and the

layering approach taken in that work does not generalize to handle faults. It is

also interesting, albeit less significant, that the semantics of the CC effect system

is organized by state monad transformers. Structuring the semantics of Wadler’s

MONAD language with monad transformers was first suggested by Wadler [82]

and the present work, to the best of our knowledge, is the first to actually do so.

Although the current work focuses on isolation, we believe that it can be readily

adapted to MILS (multiple independent levels of security) systems by refining the

effect types to distinguish, for example, reads and writes on domains (as Wadler’s

original MONAD language did). One could then express, for example, a high

security handler that is allowed to read from, but not write to, domains lower in

the security hierarchy.

Kobayashi [101] proposed a general framework for reasoning about monadic

181

specifications based in modal logic in which monads are formalized as individual

modalities. Nanevski elaborated on the monad-as-modality paradigm, introducing

a modal logic for exception handling as an alternative to the exception monad [102].

Nanevski’s logic is an S4 modal logic in which necessity encodes a computation

which may cause an exception—i.e., �CA represents a computation of an A value

that may cause an exception named in set C. Modal logics have been adapted

to security verification by partially ordering modalities to reflect a security lattice

by Allwein and Harrison [103]. We are currently investigating the integration of

the monad-as-modality paradigm with security-enabled partially-ordered modal-

ities into a modal logic for verifying the security of monadic specifications in the

confinement calculus and related systems.

182

Chapter 8

Conclusions and Future Work

In this chapter we conclude with a brief summary of major results, and a discussion

of future research directions.

8.1 Results

This dissertation has presented three main results.

Semantic foundations and reasoning techniques for secure hardware sys-

tems. We have demonstrated that modular monadic semantics, which has previ-

ously been shown to provide a powerful framework for constructing and reasoning

about programming languages in a modular style, also provides a solid founda-

tion for verifiably secure hardware design. In particular we have shown that

reactive resumption monads form a natural basis for constructing and reasoning

183

about hardware systems. The computational λ-calculus/programming language of

Chapter 3 and the logical treatment of Chapter 7 together provide a formal system

not just for constructing resumption monadic programs, but also for reasoning

about their formal properties.

A language for designing high-assurance hardware systems. We have pre-

sented the design and formal semantics of a computationalλ-calculus called ReWire

Core that provides expressive constructs for hardware design, yet also ensures that

all well-formed programs are synthesizable to running hardware. The case study

of Chapter 5 shows that this language enables the rapid development of hardware

designs, and provides tools for high assurance from the very beginning of the

design process.

A compiler that produces efficient implementations of semantics-directed

hardware designs. The ReWire compiler of Chapter 4 produces implementations

of circuits directly from ReWire specifications. Compiling directly from monads

means there is no semantic gap between the language of specification and reasoning

and the language of implementation. This eliminates a major source of complexity

and error in the formal methods process. At the same time, circuits produced by

ReWire are efficient; the regular expression matchers of Chapter 6 in some cases

outperformed those generated by a state of the art hand-tuned implementation.

184

8.2 Future Work

8.2.1 Support for a Broader Class of Monads

Monads in the ReWire Core calculus are limited to those constructed with the re-

active resumption and state monad transformers. This does not have to be the

case. Haskell programmers often make use of a larger set of monads and monad

transformers, including ErrorT or ExceptionT for exception throwing and handling;

ContT for first class continuations; ReaderT for non-mutable state; WriterT for log-

ging; the list monad which supports nondeterminism; and many combinations

thereof. Many of these abstractions would be just as useful in hardware design.

Exceptions are commonly seen in hardware design (consider, for example page

faults), and we could make use of the nondeterminism monad or a probability

distribution monad [104] to reason about random bit-flips and signal disruptions

caused by cosmic rays.

It should be possible to extend the ReWire calculus to support many of these

monadic constructs. In some cases, however, we may be forced to burden the

language with the need for undesirable runtime features like dynamic memory

allocation. For example, computations in the ReaderT monad transformer are

conventionally built up in terms of the following operations:

ask :: Monad m => ReaderT r m r
local :: Monad m => (r -> r) -> ReaderT r m a

-> ReaderT r m a

Informally, we can view ReaderT as adding a locally fixed environment of type r

to the base monad m. The ask operation queries the current value of this environ-

185

ment; the operation local f m executes a subcomputation m in a local environment

produced by applying the function f to the current environment—once this sub-

computation returns, the environment effectively rolls back to its prior state. The

rollback induced by the local operation, however, presents a serious problem if

we wish to avoid the use of RAM—seemingly there is no way to implement this

without the use of a stack to store both environments and return contexts. Similar

concerns exist for ErrorT and ExceptionT, which would need to represent a stack of

exception handlers.

Of course, if a hardware designer is using a monad transformer like ReaderT,

we might reasonably assume that a stack implemented in RAM conforms to the

designer’s intentions. The presence of RAM, however, complicates ReWire’s

otherwise tidy timing semantics (where every signal corresponds to a clock

tick), as RAM itself typically is a synchronous device. A computation like

lift (local f (local g m)) : ReactT i o (ReaderT r Identity) a would have to make at least

two pushes to the stack, requiring at least two clock ticks for a single “logical”

ReWire time slice. Thus the inclusion of a broader class of monads will require

more thought to be put into ReWire’s timing properties, and may require new

language constructs in order to maintain some degree of timing predictability.

8.2.2 Support for Structures Other than Monads

This research has demonstrated the efficacy of monads for semantically modular

design. For designs of a more structural flavor, however, previous research has

already explored a number of other functional constructs. One that stands out in

particular is Lava’s use of lazy streams [23, 105], which model circuits essentially

186

at the level of (mutually reactive) binary signals. Another such construct is arrows,

including the automata arrow [14] and the Megacz’s generalized arrows [51]. Ar-

rows allow the structural composition of circuit features (i.e., connecting together

the inputs and outputs of black boxes) in a way that corresponds quite closely to

most hardware engineers’ pre-existing intuition of how circuits are built.

While in Chapter 2 we have made a strong case for monadic design in contrast

to these structures, all three paradigms (lazy streams, arrows, and monadic hard-

ware design as embodied by ReWire) have distinct and possibly complementary

advantages: sometimes one wishes to design at the level of signals, sometimes at

the level of structure, and sometimes at the level of semantics. Indeed, one may

want to make use of different abstractions within different parts of the same design,

specifying (for example) the action of one synchronous circuit component in terms

of monads, but interconnecting it with others via arrows.

Fashioning a calculus that mixes hardware monads with streams and/or arrows

will require extensive future research, but at the outset there are a few intrigu-

ing possibilities. Recall the definition of the underlying type for the automata

arrow:

newtype Auto i o = Auto (i -> (o,Auto i o))

We can define an operation which effectively translates a computation in a reactive

resumption monad into an automaton.

toAuto :: ReactT i o Identity a -> Auto i (Either o a)
toAuto (ReactT (Identity (Left x))) = r
where r = Auto (\ i -> (Right x,r))

toAuto (ReactT (Identity (Right (o,k)))) =

187

Auto (\ i -> (Left o,toAuto (k i)))

One could envision building support for toAuto as a primitive into a ReWire Core-

like calculus enhanced with support for the automata arrow, enabling the embed-

ding of resumption monad computations into arrow-structured circuits. Intuitively

this corresponds to something like embedding a circuit specified as an imperative

program into a larger structural block diagram.

8.2.3 Support for Higher-Order Abstractions

Higher-order abstractions could substantially speed the process of circuit design

in ReWire. By higher-order abstractions, we mean functions that take functions or

computations as arguments and/or return functions as results. For example, the

redundant code present for the arithmetic instructions in the CPU of Chapter 5

could be unified by supplying the arithmetic operator as a parameter to a single,

higher-order arithInstr function:

-- (rand 1:W8, rand 2:W8, carry in:Bit, result:W8)
type ArithOp = W8 -> W8 -> Bit -> W8
plusCW8 :: ArithOp
minusCW8 :: ArithOp

...

arithInstr :: ArithOp -> Register -> Register
-> CPU ()

arithInstr f rD rS = do
vD <- getReg rD
vS <- getReg rS
cin <- getCFlag
let (cout,vD’) = f vD vS cin

188

putCFlag cout
putReg rD vD’
tick

...

addc :: Register -> Register -> CPU ()
addc = arithInstr plusCW8

subc :: Register -> Register -> CPU ()
subc = arithInstr minusCW8

The challenge here essentially boils down to one of representing functions as

values within the restrictions imposed on data by ReWire. We could use a struc-

ture similar to the closures employed by a functional language runtime, but these

employ linked lists, which are not available to us. A promising candidate for

solving this problem is a technique originally due to Reynolds called defunctional-

ization [33]. Defunctionalization is a program transformation that takes an arbitrary

higher-order program and transforms it into a first-order program. Occurrences

of higher-order constructs in the original program (i.e., functions that occur less

than fully applied in argument position) may be represented by values of a newly

declared data type. In the general case, the data structures produced by defunc-

tionalization may themselves turn out to be recursive, making them difficult to

represent in hardware. In the presence of certain restrictions on recursion, how-

ever, we can eliminate this possibility. Thus the arithInstr example above could be

defunctionalized to the following (assuming we know that plusCW8 and minusCW8

are the only values that will ever be passed as the first argument of arithInstr).

189

data ArithOp = PlusCW8 | MinusCW8

doArithOp :: ArithOp -> W8 -> W8 -> Bit -> W8
doArithOp PlusCW8 x y c = plusCW8 x y c
doArithOp MinusCW8 x y c = minusCW8 x y c

arithInstr :: ArithOp -> Register -> Register
-> CPU ()

arithInstr f rD rS = do
vD <- getReg rD
vS <- getReg rS
cin <- getCFlag
let (cout,vD’) = doArithOp f vD vS cin
putCFlag cout
putReg rD vD’
tick

...

addc :: Register -> Register -> CPU ()
addc = arithInstr PlusCW8

subc :: Register -> Register -> CPU ()
subc = arithInstr MinusCW8

While it is already possible to apply defunctionalization by hand, automating

it would greatly increase the expressive power of ReWire.

8.2.4 Metaprogramming

Another language paradigm that has great potential to enhance ReWire’s expres-

siveness is metaprogramming [80, 59]. Metaprogramming essentially enables a

program p written in a language L to produce (either statically at compile-time

or dynamically at run-time) another program p′ written in L, and to invoke p′

from within p—or, at least, some subset of these features, depending on the imple-

190

mentation. The ReWire-based regular expression framework RexHacc, described

in Chapter 6, is itself metaprogrammatic according to this definition: RexHacc

is a program written in Haskell, producing programs (represented as strings) in

Haskell (particularly in ReWire, which is a subset of Haskell). This enables the

uniform construction of circuits with varying state and input/output types. The

string-based approach, however, is quite fragile, as it gives no static guarantee

that programs will be syntactically well-formed (let alone well-typed). Extending

ReWire with quasi-quotation and splicing constructs akin to Template Haskell [59]

would provide a much greater degree of convenience and safety to systems like

RexHacc. Metaprogramming can serve as a tool for the interconnection of a rich

and extensible library of circuit components.

8.2.5 Heterogeneous Computing

Looking farther into the future, ReWire may form the kernel of a language that

supports heterogeneous computing, i.e., computation that mixes CPUs, FPGAs,

and possibly even other architectures like GPUs. ReWire in its current form is

already a subset of Haskell, and Haskell can certainly be used to specify soft-

ware programs. In a heterogeneous implementation, reactive resumption monads

would provide a coordination mechanism allowing the CPU-based parts and the

FPGA-based parts of a program to communicate. Since both the CPU and FPGA-

based halves of such a program share a common language with a uniform seman-

tics, many of the inconveniences that plague existing heterogeneous programming

environments—marshalling and unmarshalling of data, coordinating kernel calls,

and so on—would be greatly reduced.

191

8.2.6 Tool Support for Formal Reasoning

While ReWire provides a sound and expressive basis for reasoning about reactive

hardware circuits, the inherent complexity of hardware verification means that

wider adoption still will likely require proof automation tools. Chapter 7 briefly

discusses a formalization of the confinement calculus logic in Coq. This formaliza-

tion could also serve as the basis for a ReWire proof assistant. Another possibility

would be to further develop and adapt the MProver system [106] I designed with

Bill Harrison and Aaron Stump, which contains a lightweight logic tailored towards

equational reasoning about programs in a Haskell-like language.

192

Bibliography

[1] Sheng Liang. Modular Monadic Semantics and Compilation. PhD thesis, Yale

University, 1998.

[2] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and mod-

ular interpreters. In Proceedings of the 22nd ACM Symposium on Principles of

Programming Languages, 1995.

[3] John Rushby. Design and verification of secure systems. In Proceedings of

the ACM Symposium on Operating System Principles, volume 15, pages 12–21,

1981.

[4] William L. Harrison and James Hook. Achieving information flow security

through monadic control of effects. Journal of Computer Security, 17(5):599–

653, 2009.

[5] David Espinosa. Semantic Lego. PhD thesis, Columbia University, 1995.

[6] William L. Harrison and Samuel N. Kamin. Modular compilers based on

monad transformers. In In Proceedings of the IEEE International Conference on

Computer Languages, pages 122–131. IEEE Computer Society Press, 1998.

193

[7] William L. Harrison. Modular Compilers and Their Correctness Proofs. PhD

thesis, University of Illinois at Urbana-Champaign, 2001.

[8] Simon Peyton Jones, editor. Haskell 98 Language and Libraries, the Revised

Report. Cambridge University Press, 2003.

[9] Eugenio Moggi. Notions of computation and monads. Information and Com-

putation, 93:55–92, 1989.

[10] Philip Wadler. The essence of functional programming. In Proceedings of

the 19th ACM SIGPLAN-SIGACT symposium on Principles of programming lan-

guages, POPL ’92, pages 1–14, New York, NY, USA, 1992. ACM.

[11] Simon L. Peyton Jones and Philip Wadler. Imperative functional program-

ming. In Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, POPL ’93, pages 71–84, New York, NY, USA,

1993. ACM.

[12] Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combi-

nators for the real world. Technical Report UU-CS-2001-27, Department of

Computer Science, Universiteit Utrecht, 2001.

[13] Nikos S. Papaspyrou. A Resumption Monad Transformer and its Applica-

tions in the Semantics of Concurrency. In Proceedings of the 3rd Panhellenic

Logic Symposium, 2001. An expanded version is available as a technical report

from the author by request.

[14] Ross Paterson. Arrows and computation. In The Fun of Programming, pages

201–222. Palgrave, 2003.

194

[15] William L. Harrison. The essence of multitasking. In 11th Int’l Conference on

Algebraic Methodology and Software Technology (AMAST 2006), pages 158–172,

July 2006.

[16] William L. Harrison and Adam Procter. Cheap (but functional) threads. 44

pages. Accepted for publication in Higher-Order and Symbolic Computation;

extends [15].

[17] William L. Harrison, Adam Procter, and Gerard Allwein. The confinement

problem in the presence of faults. In Proceedings of the 14th International

Conference on Formal Engineering Methods, ICFEM’12, pages 182–197, 2012.

[18] Carlos Eduardo Giménez. Un calcul de constructions infinies et son ap-

plication a la verification de systemes communicants (a calculus of infinite

constructions and its application to the verification of communicating sys-

tems), 1996. Ph.D. thesis. In English.

[19] Per Bjesse, Koen Claessen, and Mary Sheeran. Lava: Hardware design in

Haskell. In ICFP ’98, pages 174–184, 1998.

[20] John Matthews, Byron Cook, and John Launchbury. Microprocessor specifi-

cation in Hawk. In ICCL’98, 1998.

[21] John Launchbury, Jeffrey R. Lewis, and Byron Cook. On embedding a mi-

croarchitectural design language within Haskell. In Proceedings of the ACM

SIGPLAN International Conference on Functional Programming (ICFP ’99), pages

60–69. ACM Press, 1999.

195

[22] Andy Gill, Tristan Bull, Garrin Kimmell, Erik Perrins, Ed Komp, and Brett

Werling. Introducing Kansas Lava. In IFL ’09, 2009.

[23] Andy Gill. Declarative FPGA circuit synthesis using Kansas Lava. In ERSA

’11, 2011.

[24] Andy Gill, Tristan Bull, Andrew Farmer, Garrin Kimmell, and Ed Komp.

Types and associated type families for hardware simulation and synthesis:

The internals and externals of Kansas Lava. Higher-Order and Symbolic Com-

putation, 2013. Accepted for publication.

[25] Ingo Sander and Axel Jantsch. System synthesis based on a formal com-

putational model and skeletons. In Proceedings of the IEEE Computer Society

Workshop on VLSI ’99, pages 32–39, 1999.

[26] Ingo Sander and Axel Jantsch. System synthesis utilizing a layered functional

model. In Proceedings of the Seventh International Workshop on Hardware/Soft-

ware Codesign (CODES ’99), pages 136–140, 1999.

[27] Ingo Sander and Axel Jantsch. System modeling and transformational de-

sign refinement in ForSyDe. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 23(1):17–32, 2004.

[28] Koen Claessen and David Sands. Observable sharing for functional circuit

description. In Asian Computing Science Conference, pages 62–73. Springer

Verlag, 1999.

[29] Marco Gerards, Christiaan Baaij, Jan Kuper, and Matthijs Kooijman. Higher-

order abstraction in hardware descriptions with CλaSH. In Proceedings of the

196

2011 14th EUROMICRO Conference on Digital System Design, DSD ’11, pages

495–502, Washington, DC, USA, 2011. IEEE Computer Society.

[30] Stephen A. Edwards. Functional Fibonacci to a fast FPGA. Technical Report

CUCS-010-12, Department of Computer Science, Columbia University, June

2012.

[31] Stephen A. Edwards. A finer functional Fibonacci on a fast FPGA. Technical

Report CUCS-005-13, Department of Computer Science, Columbia Univer-

sity, February 2013.

[32] Stephen A. Edwards. Functioning hardware from functional programs. Tech-

nical Report CUCS-027-13, Department of Computer Science, Columbia Uni-

versity, October 2013.

[33] John Reynolds. Definitional interpreters for higher order programming lan-

guages. ACM Conference Proceedings, pages 717–740, 1972.

[34] Mitchell Wand. Semantics-directed machine architecture. In Proceedings

of the 9th ACM SIGPLAN-SIGACT symposium on Principles of Programming

Languages, POPL ’82, pages 234–241, New York, NY, USA, 1982. ACM.

[35] Richard Sharp and Alan Mycroft. A higher-level language for hardware

synthesis. In Proceedings of the 11th IFIP WG 10.5 Advanced Research Working

Conference on Correct Hardware Design and Verification Methods, CHARME ’01,

pages 228–243, London, UK, UK, 2001. Springer-Verlag.

197

[36] Stephen A. Edwards. Design languages for embedded systems. Technical Re-

port CUCS-009-03, Department of Computer Science, Columbia University,

May 2003.

[37] Xun Li, Mohit Tiwari, Jason K. Oberg, Vineeth Kashyap, Frederic T. Chong,

Timothy Sherwood, and Ben Hardekopf. Caisson: a hardware description

language for secure information flow. In Proceedings of the 32nd ACM SIG-

PLAN conference on Programming language design and implementation, PLDI ’11,

pages 109–120, New York, NY, USA, 2011. ACM.

[38] Stephen A. Edwards. The challenges of synthesizing hardware from C-like

languages. IEEE Design and Test of Computers, 23(5):375–386, 2006.

[39] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs,

Paul Le Guernic, and Robert de Simone. The synchronous languages 12

years later. Proceedings of the IEEE, 91(1):64–83, January 2003.

[40] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: a declarative

language for real-time programming. In Proceedings of the 14th ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages, POPL ’87, pages

178–188, New York, NY, USA, 1987. ACM.

[41] Edward A. Lee and David G. Messerschmitt. Synchronous data flow. Pro-

ceedings of the IEEE, 75(9):1235–1245, September 1987.

[42] M. Jourdan, F. Lagnier, R. Maraninchi, and P. Raymond. A multiparadigm

language for reactive systems. In Proceedings of the 1994 International Confer-

ence on Computer Languages, pages 211–218, 1994.

198

[43] H. Hsieh, F. Balarin, L. Lavagno, and A. Sangiovanni-Vincentelli. Syn-

chronous approach to the functional equivalence of embedded system imple-

mentations. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 20(8):1016–1033, 2001.

[44] N. Halbwachs and P. Raymond. Validation of synchronous reactive systems:

from formal verification to automatic testing. In ASIAN’99, Asian Computing

Science Conference, Phuket (Thailand), December 1999. LNCS 1742, Springer

Verlag.

[45] Saunders MacLane. Categories for the Working Mathematician. Springer-Verlag,

Berlin, Heidelberg, New York, 1971.

[46] Karl Crary, Aleksey Kliger, and Frank Pfenning. A monadic analysis of infor-

mation flow security with mutable state. Journal of Functional Programming,

15(2):249–291, March 2005.

[47] Alejandro Russo, Koen Claessen, and John Hughes. A library for light-

weight information-flow security in Haskell. In Proceedings of the First ACM

SIGPLAN Symposium on Haskell, Haskell ’08, pages 13–24, New York, NY,

USA, 2008. ACM.

[48] Jade Alglave, Anthony Fox, Samin Ishtiaq, Magnus O. Myreen, Susmit

Sarkar, Peter Sewell, and Francesco Zappa Nardelli. The semantics of Power

and ARM multiprocessor machine code. In Proceedings of the 4th Workshop on

Declarative Aspects of Multicore Programming, DAMP ’09, pages 13–24, New

York, NY, USA, 2008. ACM.

199

[49] Tarmo Uustalu and Varmo Vene. The essence of dataflow programming. In

CEFP 2005, volume 4164 of LNCS, pages 135–167, 2005.

[50] John Hughes. Generalizing monads to arrows, November 1998.

[51] Adam Megacz. Hardware design with generalized arrows. In Andy Gill and

Jurriaan Hage, editors, Implementation and Application of Functional Languages,

volume 7257 of Lecture Notes in Computer Science, pages 164–180. Springer

Berlin Heidelberg, 2012.

[52] Adam Megacz Joseph. Generalized Arrows. PhD thesis, EECS Department,

University of California, Berkeley, May 2014.

[53] Eugenio Moggi. Notions of computation and monads. Information and Com-

putation, 93(1):55–92, July 1991.

[54] Edward A. Kmett, Rúnar Bjarnason, and Josh Cough. machines: Networked

stream transducers. Haskell library available at http://hackage.haskell.

org/package/machines.

[55] David F. Bacon, Perry Cheng, and Sunil Shukla. And then there were none: A

stall-free real-time garbage collector for reconfigurable hardware. In Proceed-

ings of the 33rd ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’12, pages 23–34, New York, NY, USA, 2012. ACM.

[56] Thomas Johnsson. Lambda lifting: Transforming programs to recursive

equations. In Functional Programming Language and Computer Architecture,

number 201 in Lecture Notes in Computer Science, pages 190–203, Nancy,

France, September 1985.

200

http://hackage.haskell.org/package/machines
http://hackage.haskell.org/package/machines

[57] Mark P. Jones. Dictionary-free overloading by partial evaluation. LISP and

Symbolic Computation, 8(3):229–248, 1995.

[58] Mark P. Jones. Typing Haskell in Haskell. In Proceedings of the 1999 Haskell

Workshop, pages 68–78, Paris, France, 21–24 October 1999. Published in Tech-

nical Report UU-CS-1999-28, Department of Computer Science, University

of Utrecht.

[59] Tim Sheard and Simon Peyton Jones. Template meta-programming for

Haskell. SIGPLAN Notices, 37(12):60–75, December 2002.

[60] Ana Erosa and Laurie J. Hendren. Taming control flow: A structured ap-

proach to eliminating goto statements. In Proceedings of 1994 IEEE Inter-

national Conference on Computer Languages, pages 229–240. IEEE Computer

Society Press, 1994.

[61] Joseph A. Goguen and José Meseguer. Security policies and security models.

In Proc. of the 1982 Symposium on Security and Privacy (SSP ’82), pages 11–20.

IEEE Computer Society Press, 1990.

[62] ARC15 Code Base. http://goo.gl/efJ6SO.

[63] Nithin George, Hyoukjoong Lee, David Novo, Tiark Rompf, Kevin Brown,

Arvind Sujeeth, Martin Odersky, Kunle Olukotun, and Paolo Ienne. Hard-

ware system synthesis from domain-specific languages. In Proceedings of the

24th International Conference on Field Programmable Logic and Applications (FPL

’14).

201

http://goo.gl/efJ6SO

[64] HyoukJoong Lee, Kevin Brown, Arvind Sujeeth, Hassan Chafi, Tiark Rompf,

Martin Odersky, and Kunle Olukotun. Implementing domain-specific lan-

guages for heterogeneous parallel computing. IEEE Micro, 31(5):42–53,

September 2011.

[65] Adam Procter, William L. Harrison, Ian Graves, Michela Becchi, and Ger-

ard Allwein. Semantics-directed machine architecture in ReWire. In 2013

International Conference on Field-Programmable Technology, pages 446–449.

[66] Martin Roesch. Snort - lightweight intrusion detection for networks. In

Proc. of the 13th USENIX Conference on System Administration, LISA ’99, pages

229–238, 1999.

[67] Reetinder Sidhu and Viktor K. Prasanna. Fast regular expression matching

using FPGAs. In Proceedings of the the 9th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines, pages 227–238, 2001.

[68] Michela Becchi and Patrick Crowley. Efficient regular expression evaluation:

theory to practice. In Proc. of the 4th ACM/IEEE Symp. on Architectures for

Networking and Communications Systems, pages 50–59. ACM, 2008.

[69] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to

Automata Theory, Languages, and Computation (3rd Edition). Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2006.

[70] Michela Becchi and Patrick Crowley. An improved algorithm to accelerate

regular expression evaluation. In Proceedings of the 2007 ACM/IEEE Symposium

on Architecture for Networking and Communications Systems, pages 145–154.

202

[71] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and

Jonathan Turner. Algorithms to accelerate multiple regular expressions

matching for deep packet inspection. In Proceedings of the 2006 Conference

on Applications, Technologies, Architectures, and Protocols for Computer Commu-

nications, SIGCOMM ’06, pages 339–350, 2006.

[72] Benjamin C. Brodie, David E. Taylor, and Ron K. Cytron. A scalable architec-

ture for high-throughput regular-expression pattern matching. In Proceedings

of the 2006 International Symposium on Computer Architecture, pages 191–202.

[73] Michela Becchi and Patrick Crowley. A hybrid finite automaton for practical

deep packet inspection. In Proceedings of the 2007 ACM CoNEXT Conference,

pages 1–12.

[74] Abhishek Mitra, Walid Najjar, and Laxmi Bhuyan. Compiling PCRE to FPGA

for accelerating SNORT IDS. In Proceedings of the 2007 ACM/IEEE Symposium

on Architecture for Networking and Communications Systems, pages 127–136.

[75] Ioannis Sourdis, João Bispo, João M. Cardoso, and Stamatis Vassiliadis. Reg-

ular expression matching in reconfigurable hardware. Journal of Signal Pro-

cessing Systems, 51(1):99–121, April 2008.

[76] Yi-Hua E. Yang, Weirong Jiang, and Viktor K. Prasanna. Compact architecture

for high-throughput regular expression matching on fpga. In Proceedings of the

2008 ACM/IEEE Symposium on Architectures for Networking and Communications

Systems, pages 30–39.

203

[77] Arvind. Bluespec and Haskell. In Proceedings of the First Annual Workshop

on Functional Programming Concepts in Domain-Specific Languages, pages 1–2,

2013.

[78] Christiaan Baaij and Jan Kuper. Using rewriting to synthesize functional

languages to digital circuits. In Trends in Functional Programming, volume

8322 of Lecture Notes in Computer Science, pages 17–33, 2014.

[79] Vern Paxson. Bro: A system for detecting network intruders in real-time. In

Proceedings of the 1998 Conference on USENIX Security Symposium, pages 3–3.

[80] Walid Taha and Tim Sheard. MetaML and multi-stage programming with

explicit annotations. Theoretical Computer Science, 248(1–2):211–242, 2000.

[81] A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE

Journal on Selected Areas in Communications, 21(1), January 2003.

[82] P. Wadler. The marriage of effects and monads. In Proceedings of the 3rd ACM

SIGPLAN International Conference on Functional Programming, pages 63–74,

1998.

[83] S. Goncharov and L. Schröder. A coinductive calculus for asynchronous

side-effecting processes. In Proceedings of the 18th International Conference on

Fundamentals of Computation Theory, pages 276–287, 2011.

[84] Butler Lampson. A note on the confinement problem. Communications of the

ACM, 16(10):613–615, 1973.

204

[85] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,

I. Pratt, and A. Warfield. Xen and the art of virtualization. In Proceedings of the

19th ACM Symposium on Operating Systems Principles, pages 164–177, 2003.

[86] W. Martin, P. White, F. S. Taylor, and A. Goldberg. Formal construction of

the mathematically analyzed separation kernel. In ASE ’00: Proceedings of

the 15th IEEE International Conference on Automated Software Engineering, page

133, 2000.

[87] F. Nielson, H. Nielson, and C. Hankin. Principles of Program Analysis. 1999.

[88] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard

ML (Revised). The MIT Press, 1997.

[89] W. Swierstra and T. Altenkirch. Beauty in the beast. In Proceedings of the ACM

SIGPLAN Haskell Workshop (Haskell ’07), pages 25–36, 2007.

[90] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development.

Coq’Art: The Calculus of Inductive Constructions. Springer, 2004.

[91] N. Benton, C.-K. Hur, A. Kennedy, and C. McBride. Strongly Typed Term

Representations in Coq. Journal of Automated Reasoning (to appear).

[92] A. Chlipala. Certified programming with dependent types. Book draft of

April 12, 2012, available online at http://adam.chlipala.net/cpdt/.

[93] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elka-

duwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Win-

wood. seL4: Formal verification of an OS kernel. In Proceedings of the 22nd

ACM Symposium on Operating Systems Principles (SOSP), pages 207–220, 2009.

205

[94] D. Cock, G. Klein, and T. Sewell. Secure microkernels, state monads and scal-

able refinement. In Proceedings of the 21st International Conference on Theorem

Proving in Higher Order Logics, pages 167–182, 2008.

[95] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core calculus of depen-

dency. In 26th ACM Symposium on Principles of Programming Languages, pages

147–160, 1999.

[96] M. Bartoletti, P. Degano, and G. L. Ferrari. History-based access control with

local policies. In 8th International Conference on the Foundations of Software

Science and Computation Structures, FOSSACS’05, pages 316–332, 2005.

[97] M. Bartoletti, P. Degano, and G.L. Ferrari. Types and effects for secure service

orchestration. In 19th IEEE Computer Security Foundations Workshop, 2006.

[98] L. Bauer, J. Ligatti, and D. Walker. Types and effects for non-interfering

program monitors. In Software Security—Theories and Systems., volume 2609

of LNCS, pages 154–171, 2003.

[99] A. Russo and A. Sabelfeld. Securing interaction between threads and the

scheduler. In Proceedings of the 19th IEEE Workshop on Computer Security

Foundations, pages 177–189, 2006.

[100] H. Mantel and H. Sudbrock. Flexible scheduler-independent security. In

Proceedings of the 15th European Conference on Research in Computer Security,

pages 116–133, 2010.

[101] S. Kobayashi. Monad as modality. Theoretical Computer Science, 175(1):29 –

74, 1997.

206

[102] A. Nanevski. A Modal Calculus for Exception Handling. In Intuitionistic

Modal Logics and Applications Workshop (IMLA ’05), June 2005.

[103] Gerard Allwein and William L. Harrison. Partially-ordered modalities. In

Advances in Modal Logic, pages 1–21, 2010.

[104] Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and monads of

probability distributions. In Proceedings of the 29th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’02, pages 154–165,

New York, NY, USA, 2002. ACM.

[105] Andy Gill, Tristan Bull, Andrew Farmer, Garrin Kimmell, and Ed Komp.

Types and type families for hardware simulation and synthesis. In Rex Page,

Zoltán Horváth, and Viktória Zsók, editors, Trends in Functional Programming,

volume 6546 of Lecture Notes in Computer Science, pages 118–133. Springer

Berlin Heidelberg, 2011.

[106] Adam Procter, William L. Harrison, and Aaron Stump. The design of a

practical proof checker for a lazy functional language. In Trends in Functional

Programming, volume 7829 of Lecture Notes in Computer Science, pages 117–

132, 2012.

207

VITA

Adam Procter was born in Columbia, Missouri on March 6, 1982, to Brenda

Procter (B.A. ’81, M.S. ’93) and Michael Procter (B.A. ’76, M.S. ’78, Ph.D. ’82). He

received the B.A. degree in Computer Science summa cum laude with a minor in

Mathematics from the University of Missouri in May 2005, and the Ph.D. degree in

Computer Science from the University of Missouri in December 2014.

208

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Structural Modularity vs. Semantic Modularity
	Making Semantics-Driven Design a Reality
	Background: Modular Monadic Semantics
	Language of Discourse: Haskell
	Monads
	Monad Transformers
	Hardware as Reactive Computation, Reactive Computation as a Monad

	Reasoning about Security with Monads
	Generating Circuit Implementations
	Structure of the Dissertation

	Related Work
	Functional Languages in Hardware Design
	Embedded Domain-Specific Languages: Lava, Hawk, and ForSyDe
	Compiling Functional Languages to Hardware

	Other Language Paradigms in Hardware Design
	Monads and Modular Monadic Semantics
	Modular Monadic Semantics
	Monads and Security
	Monadic Hardware Semantics
	Related Structures

	The ReWire Language
	Design of the ReWire Language
	Supporting Semantically Modular Hardware Design
	Ensuring Synthesizability

	Syntax of ReWire Core
	Types
	Expressions
	Programs

	Semantics of ReWire Core
	Semantics of Types
	Type System
	Semantics of Programs

	Extended Language Constructs
	Haskell Concrete Syntax
	Algebraic Data Types
	Polymorphism and Type Classes

	The ReWire Compiler
	Front End
	Code Generation
	Definition of PreHDL
	Translating ReWire into PreHDL
	PreHDL Transformations

	VHDL Generation

	Case Study I: A Simple CPU
	Basic Design
	Code for the Simple CPU
	Input and Output Types
	CPU State
	VHDL Foreign Functions
	CPU Monad
	Instruction Fetch, Decode, and Execute
	Instructions
	Reset and Interrupt Handling
	Startup

	Evaluation
	Extending the CPU with Multiple Security Domains
	Modifying the Monad
	Modifying the Code
	Correctness Property

	Case Study II: Fast Regular Expression Matchers
	Introduction
	Overview of Methodology

	A Methodology for Synthesis from Functional EDSLs
	Front End
	Simulating Circuits in Haskell

	Related Work
	Case Study 1: Matching State of the Art
	Experiments and Evaluation

	Case Study 2: Surpassing State of the Art
	Conclusions and Future Work
	Acknowledgments

	Verification Techniques
	Introduction
	Effect Systems and Monads
	The Confinement Calculus
	Isolation Kernels in Confinement Calculus
	Mechanizing the Logic in Coq
	Related Work
	Conclusions

	Conclusions and Future Work
	Results
	Future Work
	Support for a Broader Class of Monads
	Support for Structures Other than Monads
	Support for Higher-Order Abstractions
	Metaprogramming
	Heterogeneous Computing
	Tool Support for Formal Reasoning

	BIBLIOGRAPHY
	VITA

