248 research outputs found

    Experimental Validation of Shared Inverter Topology to Drive Multi AC-Loads

    Get PDF
    Many reduced-switch-count (RSC) inverter topologies have been proposed in the literature. As the number of switches required to produce a set of voltages in RSC inverters are less than that in conventional inverter, as a result utilizing RSC inverters in a certain system reduces its size and cost. In this paper, a novel RSC shared inverter topology consisting of fifteen switches and capable of driving four three-phase AC-loads independently is proposed and experimentally verified. A carrier-based pulse width modulation (PWM) technique that employs the zero-sequence-signal injection principle is developed to drive the proposed inverter along with adequate DC voltage bus utilization between the shared loads for common frequency (CF) as well as different frequency (DF) modes. The structure and the principle of operation of the proposed inverter are introduced and intensively verified using simulation and field-programmable-gate-array (FPGA)-in-the-loop simulation under linear and nonlinear loads. Then, Inverter prototype was built and the proposed inverter has been verified experimentally. The experimental results verify the applicability of the proposed inverter and the employed PWM

    A family of discontinuous PWM strategies for quasi Z-source nine-switch inverters

    Get PDF
    This paper proposes a new family of discontinuous PWM strategies to control the quasi-Z-source nine-switch inverters (qZS-NSI). The presented strategies provide buck and boost inversion capabilities, and suitable for common-frequency and different-frequency modes of operation. Accordingly, two different shoot-through (ST) approaches are introduced and compared. The first approach uses three-leg ST, while the second uses single-leg ST to reduce the number of switching commutations, therefore minimizing switching losses. Both approaches can be implemented using simple-boost (SB) and maximum boost (MB) control methods. The operating principles, performance criteria, and PWM modulator of each scheme are introduced. Compared to the conventional PWM technique for the same output voltage gains, the proposed schemes ensure continuous input current with minimum ripples, and the voltage stresses on the switching devices and capacitors could be reduced in the proposed MB control schemes. Moreover, the effective switching frequency of upper and lower switches of all schemes is fixed and could be reduced by 1/3 from the switching frequency of the conventional technique of the qZS-NSI, while only the single-leg ST schemes ensure minimum effective switching frequency of the middle switches. The proposed modulation strategies are digitally implemented and tested on the LAUNCHXL-F28379D DSP. The feasibility of the proposed modulation schemes is confirmed via simulation and experimental results, which show good agreement with the theoretical analysis. Moreover, the presented strategies can be applied to other types of Z-source NSIs.Scopu

    Application of the cascaded multilevel inverter as a shunt active power filter

    Get PDF
    Abstract unavailable please refer to PD

    Multiphase induction motor drives - a technology status review

    Get PDF
    The area of multiphase variable-speed motor drives in general and multiphase induction motor drives in particular has experienced a substantial growth since the beginning of this century. Research has been conducted worldwide and numerous interesting developments have been reported in the literature. An attempt is made to provide a detailed overview of the current state-of-the-art in this area. The elaborated aspects include advantages of multiphase induction machines, modelling of multiphase induction machines, basic vector control and direct torque control schemes and PWM control of multiphase voltage source inverters. The authors also provide a detailed survey of the control strategies for five-phase and asymmetrical six-phase induction motor drives, as well as an overview of the approaches to the design of fault tolerant strategies for post-fault drive operation, and a discussion of multiphase multi-motor drives with single inverter supply. Experimental results, collected from various multiphase induction motor drive laboratory rigs, are also included to facilitate the understanding of the drive operatio

    Mitigation of power quality issues due to high penetration of renewable energy sources in electric grid systems using three-phase APF/STATCOM technologies: a review.

    Get PDF
    This study summarizes an analytical review on the comparison of three-phase static compensator (STATCOM) and active power filter (APF) inverter topologies and their control schemes using industrial standards and advanced high-power configurations. Transformerless and reduced switch count topologies are the leading technologies in power electronics that aim to reduce system cost and offer the additional benefits of small volumetric size, lightweight and compact structure, and high reliability. A detailed comparison of the topologies, control strategies and implementation structures of grid-connected high-power converters is presented. However, reducing the number of power semiconductor devices, sensors, and control circuits requires complex control strategies. This study focuses on different topological devices, namely, passive filters, shunt and hybrid filters, and STATCOMs, which are typically used for power quality improvement. Additionally, appropriate control schemes, such as sinusoidal pulse width modulation (SPWM) and space vector PWM techniques, are selected. According to recent developments in shunt APF/STATCOM inverters, simulation and experimental results prove the effectiveness of APF/STATCOM systems for harmonic mitigation based on the defined limit in IEEE-519

    Recently Developed Reduced Switch Multilevel Inverter for Renewable Energy Integration and Drives Application: Topologies, Comprehensive Analysis and Comparative Evaluation

    Get PDF
    Recently, multilevel inverters (MLIs) have gained lots of interest in industry and academia, as they are changing into a viable technology for numerous applications, such as renewable power conversion system and drives. For these high power and high/medium voltage applications, MLIs are widely used as one of the advanced power converter topologies. To produce high-quality output without the need for a large number of switches, development of reduced switch MLI (RS MLI) topologies has been a major focus of current research. Therefore, this review paper focuses on a number of recently developed MLIs used in various applications. To assist with advanced current research in this field and in the selection of suitable inverter for various applications, significant understanding on these topologies is clearly summarized based on the three categories, i.e., symmetrical, asymmetrical, and modified topologies. This review paper also includes a comparison based on important performance parameters, detailed technical challenges, current focus, and future development trends. By a suitable combination of switches, the MLI produces a staircase output with low harmonic distortion. For a better understanding of the working principle, a single-phase RS MLI topology is experimentally illustrated for different level generation using both fundamental and high switching frequency techniques which will help the readers to gain the utmost knowledge for advance research

    Symmetrical nine-phase drives with a single neutral-point: common-mode voltage analysis and reduction

    Get PDF
    Power converters generate switching common mode voltage (CMV) through the pulse width modulation (PWM). Several problems occur in the drive systems due to the generated CMV. These problems can be dangerous to the insulation and bearings of the electric machine windings. In recent years, many modulation methods have been developed to reduce the CMV in multiphase machines. Symmetrical nine-phase machines with single-neutral are considered in this paper. In this case, conventional PWM uses eight active vectors of different magnitudes in combination with two zero states in a switching cycle, and this generates maximum CMV. This paper proposes two PWM schemes to reduce the CMV in such a system. The first scheme is called active zero state (AZS). It replaces the zero vectors with suitable opposite active vectors. The second scheme uses ten large active vectors during switching and is called SVM-10L. Compared with conventional strategies, the AZS reduces the peak CMV by 22.2%, and the SVM-10L reduces the peak CMV by 88.8%. Moreover, this paper presents a carrier-based implementation of the proposed schemes to simplify the implementation. The proposed schemes are assessed using simulations and experimental studies for an induction motor load under different case studies

    Design Tools for Submersible Converter

    Get PDF

    Flux-Weakening Control for Permanent-Magnet Synchronous Motors Based on Z-Source Inverters

    Get PDF
    Permanent magnet synchronous machines (PMSMs) have high efficiency, high power density, high torque-to-inertia ratio, and fast dynamic response. These features make this kind of machines very attractive for electric vehicle (EV) applications. However, because of their nature, i.e., constant magnet flux provided by magnets, these machines have a narrow constant power speed range (CPSR). This limitation is a strong drawback for application of PMSMs in electric vehicles, where high speed is the top requirement. Two different approaches can extend the maximum speed under constant power: (1) Increasing a drive\u27s output voltage, and (2) implementing flux-weakening (FW) control methods. However, a conventional drive\u27s output voltage is limited by its dc bus. Furthermore, FW control methods are constrained by the maximum output voltage of a drive. In this work, a new approach is demonstrated to obtain a wider CPSR range by implementing a Z-source inverter as a motor-drive. Such a Z-source inverter can provide highly boosted voltage and is immune to dead time and shoot through issues. In addition, in this thesis, a constant power FW control algorithm is developed and simulated for this new approach
    • ā€¦
    corecore