757 research outputs found

    Toward a unified PNT, Part 1: Complexity and context: Key challenges of multisensor positioning

    Get PDF
    The next generation of navigation and positioning systems must provide greater accuracy and reliability in a range of challenging environments to meet the needs of a variety of mission-critical applications. No single navigation technology is robust enough to meet these requirements on its own, so a multisensor solution is required. Known environmental features, such as signs, buildings, terrain height variation, and magnetic anomalies, may or may not be available for positioning. The system could be stationary, carried by a pedestrian, or on any type of land, sea, or air vehicle. Furthermore, for many applications, the environment and host behavior are subject to change. A multi-sensor solution is thus required. The expert knowledge problem is compounded by the fact that different modules in an integrated navigation system are often supplied by different organizations, who may be reluctant to share necessary design information if this is considered to be intellectual property that must be protected

    Map matching by using inertial sensors: literature review

    Get PDF
    This literature review aims to clarify what is known about map matching by using inertial sensors and what are the requirements for map matching, inertial sensors, placement and possible complementary position technology. The target is to develop a wearable location system that can position itself within a complex construction environment automatically with the aid of an accurate building model. The wearable location system should work on a tablet computer which is running an augmented reality (AR) solution and is capable of track and visualize 3D-CAD models in real environment. The wearable location system is needed to support the system in initialization of the accurate camera pose calculation and automatically finding the right location in the 3D-CAD model. One type of sensor which does seem applicable to people tracking is inertial measurement unit (IMU). The IMU sensors in aerospace applications, based on laser based gyroscopes, are big but provide a very accurate position estimation with a limited drift. Small and light units such as those based on Micro-Electro-Mechanical (MEMS) sensors are becoming very popular, but they have a significant bias and therefore suffer from large drifts and require method for calibration like map matching. The system requires very little fixed infrastructure, the monetary cost is proportional to the number of users, rather than to the coverage area as is the case for traditional absolute indoor location systems.Siirretty Doriast

    Entwicklung und Implementierung eines Peer-to-Peer Kalman Filters für Fußgänger- und Indoor-Navigation

    Get PDF
    Smartphones are an integral part of our society by now. They are used for messaging, searching the Internet, working on documents, and of course for navigation. Although smartphones are also used for car navigation their main area of application is pedestrian navigation. Almost all smartphones sold today comprise a GPS L1 receiver which provides position computation with accuracy between 1 and 10 m as long as the environment in beneficial, i.e. the line-of-sight to satellites is not obstructed by trees or high buildings. But this is often the case in areas where smartphones are used primarily for navigation. Users walk in narrow streets with high density, in city centers, enter, and leave buildings and the smartphone is not able to follow their movement because it loses satellite signals. The approach presented in this thesis addresses the problem to enable seamless navigation for the user independently of the current environment and based on cooperative positioning and inertial navigation. It is intended to realize location-based services in areas and buildings with limited or no access to satellite data and a large amount of users like e.g. shopping malls, city centers, airports, railway stations and similar environments. The idea of this concept was for a start based on cooperative positioning between users’ devices denoted here as peers moving within an area with only limited access to satellite signals at certain places (windows, doors) or no access at all. The devices are therefore not able to provide a position by means of satellite signals. Instead of deploying solutions based on infrastructure, surveying, and centralized computations like range measurements, individual signal strength, and similar approaches a decentralized concept was developed. This concept suggests that the smartphone automatically detects if no satellite signals are available and uses its already integrated inertial sensors like magnetic field sensor, accelerometer, and gyroscope for seamless navigation. Since the quality of those sensors is very low the accuracy of the position estimation decreases with each step of the user. To avoid a continuously growing bias between real position and estimated position an update has to be performed to stabilize the position estimate. This update is either provided by the computation of a position based on satellite signals or if signals are not available by the exchange of position data with another peer in the near vicinity using peer-to-peer ad-hoc networks. The received and the own position are processed in a Kalman Filter algorithm and the result is then used as new position estimate and new start position for further navigation based on inertial sensors. The here presented concept is therefore denoted as Peer-to-Peer Kalman Filter (P2PKF)

    Collaborative Indoor Positioning Systems: A Systematic Review

    Get PDF
    Research and development in Collaborative Indoor Positioning Systems (CIPSs) is growing steadily due to their potential to improve on the performance of their non-collaborative counterparts. In contrast to the outdoors scenario, where Global Navigation Satellite System is widely adopted, in (collaborative) indoor positioning systems a large variety of technologies, techniques, and methods is being used. Moreover, the diversity of evaluation procedures and scenarios hinders a direct comparison. This paper presents a systematic review that gives a general view of the current CIPSs. A total of 84 works, published between 2006 and 2020, have been identified. These articles were analyzed and classified according to the described system’s architecture, infrastructure, technologies, techniques, methods, and evaluation. The results indicate a growing interest in collaborative positioning, and the trend tend to be towards the use of distributed architectures and infrastructure-less systems. Moreover, the most used technologies to determine the collaborative positioning between users are wireless communication technologies (Wi-Fi, Ultra-WideBand, and Bluetooth). The predominant collaborative positioning techniques are Received Signal Strength Indication, Fingerprinting, and Time of Arrival/Flight, and the collaborative methods are particle filters, Belief Propagation, Extended Kalman Filter, and Least Squares. Simulations are used as the main evaluation procedure. On the basis of the analysis and results, several promising future research avenues and gaps in research were identified

    Robust localization with wearable sensors

    Get PDF
    Measuring physical movements of humans and understanding human behaviour is useful in a variety of areas and disciplines. Human inertial tracking is a method that can be leveraged for monitoring complex actions that emerge from interactions between human actors and their environment. An accurate estimation of motion trajectories can support new approaches to pedestrian navigation, emergency rescue, athlete management, and medicine. However, tracking with wearable inertial sensors has several problems that need to be overcome, such as the low accuracy of consumer-grade inertial measurement units (IMUs), the error accumulation problem in long-term tracking, and the artefacts generated by movements that are less common. This thesis focusses on measuring human movements with wearable head-mounted sensors to accurately estimate the physical location of a person over time. The research consisted of (i) providing an overview of the current state of research for inertial tracking with wearable sensors, (ii) investigating the performance of new tracking algorithms that combine sensor fusion and data-driven machine learning, (iii) eliminating the effect of random head motion during tracking, (iv) creating robust long-term tracking systems with a Bayesian neural network and sequential Monte Carlo method, and (v) verifying that the system can be applied with changing modes of behaviour, defined as natural transitions from walking to running and vice versa. This research introduces a new system for inertial tracking with head-mounted sensors (which can be placed in, e.g. helmets, caps, or glasses). This technology can be used for long-term positional tracking to explore complex behaviours

    A review of RFID based solutions for indoor localization and location-based classification of tags

    Get PDF
    Wireless communication systems are very used for indoor localization of items. In particular, two main application field can be identified. The former relates to detection or localization of static items. The latter relates to real-time tracking of moving objects, whose movements can be reconstructed over identified timespans. Among the adopted technologies, Radio-Frequency IDentification (RFID), especially if based on cheap passive RFID tags, stands out for its affordability and reasonable efficiency. This aspect makes RFID suitable for both the above-mentioned applications, especially when a large number of objects need to be tagged. The reason lies in a suitable trade-off between low cost for implementing the position sensing system, and its precision and accuracy. However, RFID-based solutions suffer for limited reading range and lower accuracy. Solutions have been proposed by academia and industry. However, a structured analysis of developed solutions, useful for further implementations, is missing. The purpose of this paper is to highlight and review the recently proposed solutions for indoor localization making use of RFID passive tags. The paper focuses on both precise and qualitative location of objects. The form relates to (i) the correct position of tags, namely mapping their right position in a 2D or 3D environment. The latter relates to the classification of tags, namely the identification of the area where the tag is regardless its specific position

    Generalizable Deep-Learning-Based Wireless Indoor Localization

    Get PDF
    The growing interest in indoor localization has been driven by its wide range of applications in areas such as smart homes, industrial automation, and healthcare. With the increasing reliance on wireless devices for location-based services, accurate estimation of device positions within indoor environments has become crucial. Deep learning approaches have shown promise in leveraging wireless parameters like Channel State Information (CSI) and Received Signal Strength Indicator (RSSI) to achieve precise localization. However, despite their success in achieving high accuracy, these deep learning models suffer from limited generalizability, making them unsuitable for deployment in new or dynamic environments without retraining. To address the generalizability challenge faced by conventionally trained deep learning localization models, we propose the use of meta-learning-based approaches. By leveraging meta-learning, we aim to improve the models\u27 ability to adapt to new environments without extensive retraining. Additionally, since meta-learning algorithms typically require diverse datasets from various scenarios, which can be difficult to collect specifically for localization tasks, we introduce a novel meta-learning algorithm called TB-MAML (Task Biased Model Agnostic Meta Learning). This algorithm is specifically designed to enhance generalization when dealing with limited datasets. Finally, we conduct an evaluation to compare the performance of TB-MAML-based localization with conventionally trained localization models and other meta-learning algorithms in the context of indoor localization

    WIFI BASED INDOOR POSITIONING - A MACHINE LEARNING APPROACH

    Get PDF
    Navigation has become much easier these days mainly due to advancement in satellite technology. The current navigation systems provide better positioning accuracy but are limited to outdoors. When it comes to the indoor spaces such as airports, shopping malls, hospitals or office buildings, to name a few, it will be challenging to get good positioning accuracy with satellite signals due to thick walls and roofs as obstacles. This gap led to a whole new area of research in the field of indoor positioning. Many researches have been conducting experiments on different technologies and successful outcomes have beenseen. Each technology providing indoor positioning capability has its own limitations. In this thesis, different radio frequency (RF) and non-radio frequency (Non-RF) technologies are discussed but focus is set on Wi-Fi for indoor positioning. A demo indoor positioning app is developed for the Technobothnia building at the University of Vaasa premises. This building is already equipped with Wi-Fi infrastructure. A floor plan of the building, radio maps and a fingerprinting database with Wi-Fi signal strength measurements is created with help of tools from HERE technology. The app provides real-time positioning and routing as a future visitor tool. With the exceeding amounts of available data, one of the highly popular fields is applying Machine Learning (ML) to data. It can be applied in many disciplines from medicine to space. In ML, algorithms learn from the data and make predictions. Due to the significant growth in various sensor technologies and computational power, large amounts of data can be stored and processed. Here, the ML approach is also taken to the indoor positioning challenge. An open-source Wi-Fi fingerprinting dataset is obtained from Tampere University and ML algorithms are applied on it for performing indoor positioning. Algorithms are trained with received signal strength (RSS) values with their respective reference coordinates and the user location can be predicted. The thesis provides a performance analysis of different algorithms suitable for future mobile implementations
    corecore