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Abstract

The growing interest in indoor localization has been driven by its wide range of applications

in areas such as smart homes, industrial automation, and healthcare. With the increasing reliance

on wireless devices for location-based services, accurate estimation of device positions within indoor

environments has become crucial. Deep learning approaches have shown promise in leveraging wire-

less parameters like Channel State Information (CSI) and Received Signal Strength Indicator (RSSI)

to achieve precise localization. However, despite their success in achieving high accuracy, these deep

learning models suffer from limited generalizability, making them unsuitable for deployment in new

or dynamic environments without retraining. To address the generalizability challenge faced by

conventionally trained deep learning localization models, we propose the use of meta-learning-based

approaches. By leveraging meta-learning, we aim to improve the models’ ability to adapt to new

environments without extensive retraining. Additionally, since meta-learning algorithms typically

require diverse datasets from various scenarios, which can be difficult to collect specifically for local-

ization tasks, we introduce a novel meta-learning algorithm called TB-MAML (Task Biased Model

Agnostic Meta Learning). This algorithm is specifically designed to enhance generalization when

dealing with limited datasets. Finally, we conduct an evaluation to compare the performance of TB-

MAML-based localization with conventionally trained localization models and other meta-learning

algorithms in the context of indoor localization.
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Chapter 1

Introduction

Indoor localization has experienced a surge in importance in recent years, primarily due

to its wide range of applications and their growing significance across various domains. Industries

such as logistics, healthcare, retail, and public safety heavily rely on accurate and real-time location

information within indoor spaces. The ability to precisely track assets, manage inventory, optimize

operations, and ensure safety in complex indoor environments has become paramount. Moreover,

indoor localization plays a crucial role in improving customer experiences, enhancing personalized

marketing, enabling efficient navigation, and facilitating resource management. The increasing adop-

tion of smartphones, IoT devices, and advanced wireless networks has further fueled the demand

for robust and reliable indoor localization solutions. This heightened importance is reflected in the

rising research efforts, commercial deployments, and standardization initiatives aimed at advancing

indoor localization technology and unlocking its full potential in addressing the unique challenges

and requirements of indoor environments.

Contrary to outdoor localization, where line-of-sight (LOS) is present in most instances,

there are a lot of challenges in indoor localization, such as the presence of physical barriers, mul-

tipath effect, and the complexity of indoor environments. Outdoor localization methods, such as

GPS, are not suitable for indoor localization despite their accuracy in outdoor settings due to fun-

damental differences in the indoor environment. GPS relies on signals from satellites, which are

attenuated or blocked by buildings, resulting in degraded or no reception indoors. Additionally,

GPS requires a clear line of sight to multiple satellites for accurate positioning, which is hindered

by walls and obstructions indoors. The granularity and precision required for indoor localization,
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such as distinguishing between different rooms or objects, exceed the capabilities of GPS, which

typically provides accuracy in the range of several meters. The limited penetration of GPS signals

through building materials and the scarcity of visible satellites within indoor spaces further limit its

effectiveness. Due to all these challenges, researchers have been focusing on developing localization

methods tailored for indoor localization instead.

1.1 Localization Techniques

Indoor localization has witnessed the application of numerous techniques to estimate the lo-

cation of objects or individuals within enclosed spaces. Various approaches, including fingerprinting,

triangulation, dead reckoning, and proximity detection, have been employed to achieve this goal.

Each technique offers advantages and may cater to specific indoor environments or use cases, leading

to a diverse range of solutions for indoor localization challenges. In this section we discuss some of

the commonly used techniques for indoor localization. Taxonomy of the discussed techniques are

depicted in Figure 1.1. Moreover, a summary of comparisons between the techniques are presented

in table 1.1.

Figure 1.1: Taxonomy of indoor localization techniques

2



Table 1.1: Comparison of Indoor Localzaition Techniques.

Technique Accuracy Advantages Disadvantages

Fingerprinting High
Less affected by multipath effects

Integration with data-driven methods

Callibration and data collection

Proximity Detection Low Low cost and simple Approximation of the location

Time-based Lateration Medium-High High accuracy with LoS
Heavily affected by multipath effects

Synchronization needed

RSS-based Lateration Medium-High High accuracy with LoS Affected by multipath effects

Angulation High High accuracy with LoS
Heavily affected by multipath effects

Antenna array needed

Dead Reckoning Low-Medium Self-localizing method
Susceptible to cumulative error

Extra sensors needed

1.1.1 Triangulation

Triangulation techniques are methods that leverage the geometric properties of triangles to

determine the location of the target, by forming triangles between known points. Triangultion has

two main approaches: lateration and angulation. Lateration, a distance-based technique, employs

measurements like Time of Arrival (TOA) and Received Signal Strength (RSS) to estimate the

object’s position. On the other hand, angulation, a direction-based technique, utilizes Angle of

Arrival (AOA) to determine the target’s location relative to multiple reference points.

1.1.1.1 Lateration

In lateration, location of an object is measured by its distance from multiple APs. Param-

eters such as RSS, ToA are commonly used as measurements of the distance between an object

and an access point. Each distance equation will specify a circle in the 2D space (and a sphere in

the 3D space). In 2D, two equations yield two potential solutions, but for a definitive result, three

equations are necessary. The intersection of these equations, depicted in Figure 1.2, identifies the

object’s location. In 3D scenarios at least four APs are required to achieve a unique solution [123].

Furthermore, differential measurements such as Time Difference of Arrival (TDoA) or Differ-

ential Received Signal Strength (DRSS) can also be utilized for lateration. Differential measurements

can help mitigate the impact of environmental changes. In cases where the transmitted power or

3



Figure 1.2: Lateration localization in 2D space.

the transmission time are unknown, differential measurements are beneficial [38]. Moreover, in the

case of time-based lateration, using differential measurements such as TDoA will eliminate the need

for synchronization between the target object and the other APs [7]. When n APs are present in

a lateration localization system, a total of (n(n1)/2) differential equations are formulated. Out of

all the formulated equations only (n-1) are base equations and the rest are redundant linear combi-

nations of the base equations. Each base equation will specify a hyperbola in a 2D space. To have

a unique solution, 3 base equations are required in a 2D space, meaning that at least 4 APs are

needed when differential measurements are used compared to the three required APs when distance

measurements are utilized.

1.1.1.2 Angulation

Angulation is a method employed to determine the location of an object by calculating

angles relative to multiple reference points, utilizing measurements like Angle of Arrival (AoA).

This process involves using directional antennas or antenna arrays, which can lead to higher imple-

mentation costs. In 2D spaces, localizing an object requires two angle measurements and a single

distance measurement, as depicted in Figure 1.3. The distance measurement could be represented

4



as the distance between the APs. In 3D spaces, the process requires two angle measurements, a

single azimuth measurement, and a distance measurement [22]. Although two APs are required for

angulation, in many cases three or more APs are utilized to enhance accuracy.

Figure 1.3: Angulation localization in 2D space.

1.1.2 Fingerprinting

Localization based on fingerprinting is a widely used technique for determining the location

of an object within an indoor environment. In the fingerprinting technique, various features of the

environment are collected as fingerprints from different locations within the target area, forming

a database. The core concept involves matching the measurements from a target object, with the

pre-built database of fingerprints to compute the target object’s location [19]. The fingerprinting

process consists of two phases: the offline/calibration/training phase and the online phase. In the

offline phase, the fingerprint database is established within the area of interest at a certain level

of granularity, where finer granularity often leads to improved accuracy but requires more effort

and time for fingerprint collection. The built fingerprint dataset acts as a radio map which serves

as a reference for the localization process. In the online phase, the object’s location is determined

by matching the collected fingerprint with the fingerprints in the database using deterministic or

probabilistic algorithms.

Fingerprinting does not necessitate specialized hardware (as needed in the Dead Reckoning
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technique) or time synchronization (as needed in time-based lateration). Moreover, the data-oriented

nature of the fingerprinting technique makes it a suitable approach for applying Machine Learning

and Deep Learning methods. However, fingerprinting approach does have drawbacks, including

the laborious and time-consuming offline process, challenges in adding signal stations for building

the fingerprint dataset, and sensitivity to environmental changes like object movement. To maintain

positioning accuracy in time, periodic recalibration of the fingerprint dataset or retraining is needed.

1.1.3 Proximity Detection

Proximity-based indoor localization is a simple technique for determining the approximate

location of objects within enclosed spaces. Wireless devices receive signals that are above a certain

threshold in terms of power, below which received power signals are considered noise, indicating the

device is out of the AP coverage area. Above this threshold, the mobile and AP are connected, and

the device is within the coverage area [50]. By considering the intersection between AP coverage

areas, localization accuracy can be improved. Although proximity detection techniques are relatively

simple to implement, they are limited in coverage area, and the achieved accuracies are lower than

other techniques. Hence, they better be implemented alongside other techniques to narrow down

the possible locations.

1.1.4 Dead Reckoning

Dead reckoning is a technique used in localization to estimate the current position of a mo-

bile entity without relying on external positioning systems. Instead, it uses internal measurements

of velocity and direction using sensors such as accelerometers, gyroscopes, and magnetometers to

track the entity’s movements from a known starting point. By continuously integrating these mea-

surements over time, dead reckoning provides real-time updates on the entity’s position. However,

a drawback of dead reckoning is its cumulative inaccuracy, where the deviation in the estimated

position increases over time. This happens because each new position is solely determined based on

previous positions, leading to a growing error in the final position fix. While dead reckoning is a

valuable method for short-term, it may encounter challenges in dynamic and unpredictable environ-

ments. To this end, hybrid techniques involving dead reckoning are utilized [3, 30] to enhance the

accuracy and correct the accumulative error of dead reckoning in future steps.
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1.2 RF Technologies Used for Indoor Localization

Many RF technologies have been studied as a medium for indoor localization, radio fre-

quency identification (RFID), ultra-wideband (UWB), Bluetooth, and Wi-Fi [36]. In this section

some of the main RF technologies used for indoor localization and their capabilities in the con-

text of localization are are discussed. A high-level comparison of RF technologies in the context

of indoor localization is presented in table 1.2. While there are localization methods that rely on

camera/vision technologies, These methods are not discussed here as they are beyond the scope of

this thesis.

1.2.1 Wi-Fi

Out of the proposed technologies, Wi-Fi has emerged as the predominant technology for

indoor localization due to several key factors. Wi-Fi infrastructure is already pervasive in indoor

environments, making it readily available for localization without the need for additional infrastruc-

ture deployment. Furthermore, Wi-Fi offers reasonable accuracy for indoor positioning by leveraging

signal strength measurements and various localization algorithms. Additionally, Wi-Fi is compatible

with a wide range of devices, such as smartphones and laptops, which already have Wi-Fi capabili-

ties, eliminating the need for additional hardware. The extensive research and development in Wi-Fi

localization techniques, coupled with its cost-effectiveness, further contribute to its prevalence for

localization purposes.

1.2.2 Bluetooth

Bluetooth (IEEE 802.15.1) is designated for low power short-range wireless communication

in the 2.4GHz ISM band. Bluetooth is widely available on smartphones and portable devices,

which makes it more suitable for localization applications. Localization accuracy using Bluetooth

is generally reported to be lower than Wi-Fi. In [54], a comparison between localization accuracy

of Wi-Fi and Bluetooth with RSSI-based trilateration reported localization accuracies of 48.6 cm

and 84.4 cm for Wi-Fi and ZigBee respectively. The lower power consumption of Bluetooth and it’s

compatibility with many portable devices makes Bluetooth a viable choice for efficient low range

indoor localization and proximity detection applications where detecting the precise is not the most

important obejctive.
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1.2.3 ZigBee

ZigBee is a low-power, wireless communication protocol designed for short-range and low-

data-rate applications. It is based on the IEEE 802.15.4 standard and operates in the 2.4 GHz

frequency band. Although ZigBee’s low power consumption and its integration in wireless sensor

networks (WSN) makes it and interesting choice for WSN localization applications, ZigBee is gener-

ally not considered a good choice as it is not readily available on a majority of the portable devices

and the obtained localization accuracy is usually lower. In [54], the authors compared the localiza-

tion accuracy of Wi-Fi and ZigBee with RSSI-based trilateration method and reported localization

accuracies of 48.6 cm and 91.1cm for Wi-Fi and ZigBee respectively.

1.2.4 RFID

Out of the two types of RFID (passive RFID, and active RFID), passive RFID is not a

suitable choice for localization due to its extremely short range (1-2m). Active RFID on the other

hand has a reasonable range and can be used for low energy and efficient localization systems.

Moreover, although it currently not readily available on many portable user devices, it can be easily

embedded in the tracking objects. The biggest downside to using RFID for localization is the limited

localization accuracy that it offers (hardly reaching sub-meter levels), which makes it unsuitable for

applications requiring high localization accuracy levels.

1.2.5 UWB

Multiple characteristics of UWB has made it a very suitable fit for indoor localization

applications. UWB use low energy level for short-range, high-bandwidth communications over a

large portion of the radio spectrum. UWB has higher immunity against interference from other

signals due to its unique signal type and radio spectrum. Additionally, UWB signals, especially the

lower frequencies within its broad spectrum, can penetrate various materials easier, which makes

it a more resilient choice for highly obstructed indoor environments. Furthermore, UWB is less

susceptible to disruptions caused by multi-path effects as it uses extremely short pulses (¡1 ns). All

these desirable characteristics lead to a high localization accuracy when UWB is used. However, the

limited adoption of UWB in consumer products and portable devices and higher cost for hardware

requirements has currently prevented wide usages of UWB for indoor localization.

8



Table 1.2: High-level comparison of wireless technologies in the context of indoor localization

Technolgoy Indoor Coverage Power Consumption Advantages Disadvantages

Wi-Fi (802.11n) Good Coverage Medium
Widely Available

High Accuracy

Relatively Higher Power Consumption

UWB Good Coverage Low

High Accuracy

More Immune to Interference

More Immune to Multi-path effects

Higher Cost

Hardware Requirements

Newer Technology, Less Developed

Passive RFID Extremely Short Coverage Extremely Low Extremely Low Power Consumption Very Low Accuracy

Active RFID Good Coverage Very Low Very Low Power Consumption Low Accuracy

Bluetooth Shorter Range Low
Low Power Consumption

Widely Available

Lower Accuracy

ZigBee Shorter Range Very Low Very Low Power Consumption
Lower Accuracy

Not Readily Available on Devices

1.3 Parameters Used for Indoor Localization

Many different parameters have been utilized for indoor localization such as Time of Arrival

(ToA) [39], Time Difference of Arrival(TDoA) [6,62,75], Received Signal Strength Indicator (RSSI),

and Channel State Information (CSI), In this section a couple of these parameteres are introduced

and discussed in the context of localization. It should be noted that to overcome the downsides of

these parameters, normalization and post processing of data are often used in practice, alongisde

incorporation of multiple parameters as a hybrid heterogeneous input data in some cases of data-

driven indoor localization methods.

1.3.1 Received Signal Strength Indicator (RSSI)

RSSI is the most commonly used parameter for indoor localization [11, 18, 74]. RSSI is a

simple measurement of the strength of the received signal and very easy to obtain compared to the

other parameters. To acquire RSSI, There is no need for specialized hardware to besides a wireless

network interface card [20]. In theory RSSI decreases monotonically with distance in free space [52],

so it can be used to detect distance of the target wireless device. But in practice, RSSI is volatile and

unreliable as multi-path effects, obstacles, attenuation, and changes in indoor environments severely

effect RSSI measurements, making establishment of a highly accurate localization model using RSSI

a difficult task.
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1.3.2 Channel State Information (CSI)

CSI provides information about the channel characteristics between a device and an access

point. CSI can provide more detailed information about the wireless signal, including phase and

amplitude in different sub-channel and between each transmitter-receiver antennae pairs [79]. These

characteristics of CSI lead into better multipath information, stable measurements, and improved

localization accuracy. It should be noted, that although CSI is more stable than RSSI, it is still

volatile and susceptible to environmental changes. On the downside, CSI’s complexity may also

require more complex ways of data preprocessing than simpler measurements such as RSSI [46].

Furthermore, there are extra hardware requirements for collecting CSI data. Currently, numerous

IEEE 802.11 NICs cards have the capability to offer channel measurements at the subcarrier level

for Orthogonal Frequency Division Multiplexing (OFDM) systems.

1.3.3 Time of Arrival (ToA)

The Time of Arrival (ToA) or Time of Flight (ToF) method utilizes the time taken for a

signal to travel from a transmitter to a receiver to calculate the distance between them. ToA can be

applied to localization systems using both radio frequency (RF) and acoustic signals [49]. By mul-

tiplying the ToA value by the speed of light (c = 3 × 108 m/sec), the physical distance between the

utilizes and receiver can be determined. ToA measurements require precise synchronization between

transmitters and receivers, often involving the transmission of timestamps along with the signal.

ToA accuracy may be reduced with a low sampling rate in time, as the signal might arrive between

the sampled intervals. It’s important to note that ToA-based localization systems will significantly

deteriorate in non-line-of-sight (NLOS) conditions which are not rare in indoor environments. This

is because signal reflections and multi-path effects will effect ToA measurements severely.

The concept of lateration is commonly utilized in ToA-based localization [56]. In order to

solve the equations involved in ToA localization, measurements from a minimum of three Access

Points (APs) must be utilized. When dealing with a three-dimensional scenario involving coordi-

nates, at least four APs are required to obtain a single, unique solution. [49]
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1.3.4 Time Difference of Arrival (TDoA)

Time Difference of Arrival (TDoA) is a measurement of difference in signal propagation

times between a target device and multiple anchor devices. To determine the target’s position using

TDoA in a 2D space at least four anchor nodes are required (three TDoA measurements), and

five anchor nodes (four TDoA measurements) in 3D space [27]. Each TDoA measurement specifies

a hyperboloid in the space and the intersection of hyperboloids are used to pinpoint the target’s

position [14].

TDoA offers some advantages over Time of Arrival (ToA) in terms of synchronization. While

ToA requires synchronization of all devices, the target device and the anchor devices, TDoA only

requires synchronization of the anchor devices, reducing the synchronization error [13,57].

However, TDoA-based localization does not solve the issue of ToA-based localization with

multi-path effects, and TDoA-based systems are also significantly affected by NLOS signal propa-

gation, leading to degraded performance [44].

1.3.5 Angle of Arrival (AoA)

Angle of Arrival (AoA) approaches in localization utilize antenna arrays at the receiver side

to estimate the angle at which the transmitted signal arrives. This is achieved by calculating the

time difference of arrival at individual elements of the antenna array [77]. The advantage of AoA is

that it can estimate the location of a device with as few as two anchor nodes in a 2D environment

or three monitors in a 3D environment [81]. However, AoA requires complex hardware and careful

calibration, and its accuracy decreases as the distance between the transmitter and receiver increases.

Even a slight error in the angle of arrival calculation can result in a significant error in the actual

location estimation [32]. Additionally, obtaining accurate line-of-sight (LOS) AoA measurements in

indoor environments is often challenging due to multipath effects.

However, a drawback of AoA is the need for antenna arrays, which adds complexity and cost

to the system [55]. Time difference of arrival can also be employed in AoA, but it necessitates even

more complex hardware and precise calibration. Moreover, AoA is highly sensitive to multipath and

NLOS conditions, as well as the precision of the antenna array [70].
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1.4 Traditional and Data-Driven Localization Methods

Traditional indoor localization methods, such as dead reckoning, proximity detection, trian-

gulation, and fingerprinting using statistical methods, have been widely used for indoor localization.

Proximity detection is not an accurate and reliable method and introduces a lot of localization

error. Dead reckoning is susceptible to cumulative error and it is best used in conjunction with

another technique. Triangulation methods leverage the principles of distance measurements and

angle calculations to estimate positions. These methods offer benefits such as simplicity, scalability,

and compatibility with minimal infrastructure. They require relatively low computational resources

and can achieve reasonable accuracy in certain scenarios. Triangulation techniques can reach high

accuracies in open spaces with LoS. However, as these methods heavily rely on accurate distance

measurements or angle estimations, they are drastically effected by signal propagation issues, multi-

path effects, and environmental obstacles, challenges that we commonly face in indoor environments.

Moreover, these methods are susceptible to errors introduced by measurement inaccuracies and noise,

limiting their precision and robustness.

On the other hand, fingerprinting methods rely on pre-collected information from known ref-

erence points to create a database of signal fingerprints. These technique can achieve high accuracies

and are more suitable for indoor localization as they are less affected by multipath effects comapred

to triangulation methods. Moreover, fingerprinting methods offer flexibility in handling complex

environments and can provide room-level or object-level localization. However, both fingerprinting-

based techniques using traditional statistical methods, and fingerprinting-based techniques using DL

and ML models, require labor-intensive data collection, periodic calibration, and may suffer from

environmental changes, hindering real-time positioning accuracy. Nevertheless, DL and ML mod-

els can infer complex information and match the fingerprints to the pre-built fingerprint database

much better than statistical fingerprinting methods. Overall, while traditional localization methods

have their advantages in terms of simplicity and compatibility, they also face limitations regard-

ing accuracy and robustness especially in complex indoor environments with obstacles and signal

interference.

The disadvantages of traditional indoor localization methods has led to the exploration of

more advanced and hybrid approaches in indoor localization research such as data-driven and Deep

Learning-based (DL-based) methods. Data-driven and especially DL-based indoor localization meth-
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ods offer several advantages over traditional approaches. Firstly, these methods leverage large-scale

datasets and machine learning algorithms to extract complex patterns and relationships from the

data, enabling more accurate and precise positioning. They can adapt to the unique characteristics

of different indoor environments, mitigating challenges posed by signal propagation, multipath ef-

fects, and environmental dynamics. Secondly, data-driven and DL-based methods have the potential

to handle multi-modal sensor data, incorporate contextual information, and fuse heterogeneous data

sources, leading to improved localization performance. Additionally, these methods can continu-

ously learn and improve over time, allowing for adaptive and robust indoor localization in dynamic

environments.

Despite the advantages dl-based localization methods, they have several notable drawbacks.

Firstly, these methods often require a substantial amount of labeled training data, which can be time-

consuming and resource-intensive to collect and annotate accurately. Additionally, although powerful

processors have become much more accessible, DL models are still computationally demanding and

require substantial time and processing resources. Moreover, the black-box nature of DL models

limits their interpretability, making it challenging to understand the reasoning behind localization

decisions. DL-based methods are also sensitive to the quality and representativeness of the training

data, and biases or inaccuracies in the data can impact model performance and generalization.

Lastly, DL-based methods may struggle with robustness in dynamic environments, where changes

in sensor characteristics or environmental conditions can adversely affect their performance and

reliability.

Nevertheless, a large proportion of the recently proposed indoor localization systems focus

of DL and ML methods, aiming to improve the mentioned downsides that these methods have.

Overcoming these challenges remains a crucial focus for improving the effectiveness and applicability

of DL-based localization methods.

1.5 Generalizability of DL-based Indoor Localization Meth-

ods

Even though none of the mentioned parameters and technologies used for indoor localization

provide perfect information, many of the recently proposed data-driven localization methods perform

relatively well [46] on the respective testing dataset. The issue with these models is that they have
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been trained on a train-set collected from a specific location and at a specific time, and due to the

high volatility of the mentioned parameters, the underlying distribution that the data-driven model

has learned from the given train-set is certain to change when the environment changes or even with

time. This means that the learned information for a specific location and time is nearly ineffective for

other locations or the same location at a different time. For these conventionally trained ML models

to perform well in new environments, they have to go through a complete process of training, which

makes these models not be readily-deployable for new locations. Moreover, a complete training

process can be very hard or even not feasible in some instances due to the limitations on resources,

time, and new datasets. All these mentioned reasons render conventionally trained ML models

impractical as a scalable solution for indoor localization.
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Chapter 2

Related Work

2.1 Indoor Localization Using Traditional ML approaches

Numerous ML algorithms have been used for the task of indoor localization. In this section

we will introduce papers that have used traditional ML methods such as K-Nearest Neighbours,

SVM, RVM, Random Forests, and Bayesian classification.

2.1.1 K-Nearest Neighbours (KNN)

KNN is one the popular ML algorithms that is commonly used for localization, both for

classification and regression approaches . In the classification approach, the unseen data is classified

by the majority vote of its k nearest neighbors. In other words, the class that appears most frequently

among its k nearest neighbors is assigned to the unseen data. In regression tasks, the unseen sample

is assigned an average value calculated from its k nearest neighbors. Moreover, the Weighted K-

Nearest Neighbors (WKNN) can improve KNN results by modifying the weights assigned to the K

nearest points.

In [85], the authors introduced a localization system that incorporated various techniques to

improve position estimation accuracy. Their system employed time domain filtering and coherence

bandwidth-based dimensional reduction on the Channel State Information (CSI) data. They further

utilized an enhanced WKNN, integrating kernel methods, for precise position estimation. The k-

nearest neighbor KNN algorithm was employed to select K reference points with the highest similarity
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to the target point. The average coordinate of these selected RPs was then calculated and considered

as the estimated position. The results demonstrated that the system achieved a positioning error of

less than 2m in 70% of the tested data points.

To enhance the precision of WiFi-based localization, the authors in [31] employed Bluetooth

Low Energy (BLE) beacons in combination with WiFi RSS measurements. They adopted a WKNN

to estimate unknown locations. In their approach, BLE transmitters served as substitutes for WiFi

APs in areas where APs lacked power supply, as BLE transmitters can operate on battery power.

They reported a localization error of 1m and 0.77m, for the KNN model using only WiFi RSS data

and the KNN model using both BLE beacons data alongside WiFi RSS data.

In [1], the authors built a two-stage localization system based on KNN. In the first stage,

their algorithm aims to identify the type of environment, and in the second stage, localization is

performed using KNN. They utilized RSSI alongside a hybrid feature vector of Channel Transfer

Function (CTF) and Frequency Coherence Function (FCF). They concluded that a model using

multiple or hybrid features outperforms RSSI-only approaches.

In an effort to reduce the substantial energy usage of Wi-Fi devices caused by frequent

scanning of APs, an energy-efficient system for indoor localization named ZIL [48]. ZIL employs

ZigBee interfaces to gather Wi-Fi signals. To identify Wi-Fi APs using ZigBee interfaces, the

researchers devised RSSI Quantification and RSSI Normalization techniques. Furthermore, they

assessed three K-NN based localization approaches with distinct distance metrics, namely weighted

Euclidean distance, weighted Manhattan distance, and relative entropy, in order to enhance the

precision of localization. The results showed that ZIL saved energy by 68 percent on average with

competitive accuracy compared to the approach based purely on Wi-Fi interface.

2.1.2 SVM

Support Vector Machine (SVM) is a popular machine learning algorithm used for classifica-

tion and regression tasks. It finds the best decision boundary, known as a hyperplane, to separate

different classes of data points by maximizing the margin [21]. SVM can handle complex relation-

ships between features by transforming the data into a higher-dimensional space using a kernel

function. It is widely used for its ability to handle both linear and nonlinear data, making it a

versatile and effective tool in various domains.

In [83] SVM was proposed to determine the optimal hyperplane for distinguishing the nearest
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neighbor training data points of a given test data point using RSS. To minimize the calibration effort

required to generate a fingerprint map, they employed the Bilinear Median Interpolation Method

(BMIM) while ensuring the accuracy of user localization is preserved. The authors in [86] employed

SVM to introduce a system for device-free localization and presence detection using WiFi CSI

data. Localization and presence detection were treated as regression and classification problems

respectively. The process (presented in Figure 2.1)involved collecting CSI data, CSI data denoising,

extracting features, training a presence detection classifier, establishing the relationship between CSI.

Density-based spatial clustering was performed on CSI data to address noise and extract effective

features. To reduce computational complexity, PCA was employed to reduce the dimensionality of

the data. The authors evaluated theeir proposed model in two different settings with localization

accuracies of 1.22m and 1.39m for each of the two settings. The Detection precision of over 97%

was achieved for both settings.

Figure 2.1: Overview of the localization algorithm used in [86]

2.1.3 RVM

Relevance Vector Machine (RVM) is a machine learning method that employs Bayesian

inference to obtain parsimonious solutions for regression and probabilistic classification tasks. RVM

shares a similar functional form to the support vector machine but distinguishes itself by offering

probabilistic classification [59]. In [60], the authors introduced a novel approach for Ultra-Wideband
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ToA localization using RVM. Their proposed model utilizes an RVM-based classifier to distinguish

between LoS and NLoS signals. Additionally, they employed an RVM regressor to predict ranging

errors. The authors conducted a comparative analysis between RVM and SVM in terms of NLOS

identification and localization accuracy estimation. The results indicated that the mis-identification

probability of the SVM classifier was 0.1143, while for the RVM classifier, it was 0.1084. In terms of

localization accuracy, the RVM method achieved a localization error of less than 1 meter in 63.37%

of the cases. In comparison, the corresponding percentage for SVM was 58.48%.

2.1.4 Random Forest

Random Forest [5] is a powerful ensemble learning algorithm widely used in machine learn-

ing. It combines multiple decision trees to make predictions by averaging their outputs. Each decision

tree is trained on a random subset of features and data samples, ensuring diversity in the model.

Random Forest is known for its ability to handle complex relationships, handle high-dimensional

data, and mitigate overfitting. It provides robust predictions, feature importance rankings, and can

handle both regression and classification tasks efficiently. [69] introduced a novel approach to feature

extraction in complex environments for indoor localization using Random Forests. They constructed

multiple decision trees and pruned them based on the root mean square error. By aggregating the

votes from these trees, they obtained an estimated result. In the offline stage, they utilized the

Random Forest training model as a fingerprint to design a localization algorithm, which leveraged

CSI. With their method, the size of fingerprint databases just depends on the size of the Random

Forest, so only a handful of information are needed to be stored so that localization can be done.

This approach not only saved space but also exhibited improved performance in mitigating the im-

pact of multipath effects. Compared to KNN and WKNN, RFFP demonstrated higher classification

accuracy and lower average positioning error, making it a more effective solution.

2.2 DL-based Localization Models

This section is dedicated to introducing some of the influential DL-based indoor localization

systems that have been proposed.

DeepFi [66] [67] proposes a Deep Neural Networks (DNN) model for indoor localization that

uses CSI amplitude for its input. A greedy learning algorithm is used to train the model to reduce
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Figure 2.2: Overview of the Random Forest finger printing localization method used in [69]

the computational complexity. Finally, in the online localization phase, DeepFi uses a probabilistic

method based on the radial basis function to estimate the target’s location. Evaluations indicate that

DeepFi outperforms traditional statistical localization schemes such as HORUS [82] and FIFS [73]

with localization accuracy of 0.9425m and 1.8081m in two different environments that were tested.

In 2016, PhaseFi system [63, 64] was proposed. PhaseFi is a system that utilizes a Deep

Neural Network with three hidden layers to train Channel State Information (CSI) phase data.

Unlike traditional methods that treat measured data as fingerprints, the authors developed feature-

based fingerprints using Deep Learning. PhaseFi employs a deep self-encoder to extract features

from calibrated phase data. To reduce computational complexity, a greedy algorithm to train the

Deep Network’s weights layer-by-layer was used. The system achieved positioning errors of 1.08m

in open indoor environments and 2.01m in complex indoor environments. The experiment layouts

for the open and complex environment used in this paper can be seen in Figure 2.3

The authors in [24] compared different combinations of neural networks and input types (CSI

and RSS) to determine the best system for location estimation. The study compared MLP-RSS,

MLP-CSI, CNN-RSS, and CNN-CSI models. It was found that a 1D-CNN model with CSI data
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(a) Open space indoor environment experiment layout (b) Complex indoor environment experiment layout

Figure 2.3: Experiment settings used in [63]

was the most effective combination in achieving accurate results while minimizing computational

costs. 1D-CNN uses 1-dimensional kernels which deals with 1D data rather than 2D image data. As

CSI amplitude data is also 1D, using 1D-CNN also reduces the prepossessing phase of turning CSI

data into processed CSI images. The 1D-CNN system, using CSI data, achieved a maximum error

of 0.92m with a probability of 99.97%. It was noted, however, that further validation with larger

public datasets was necessary due to the small size of the testbed. The study utilized a testbed

consisting of a room with obstacles, where 251,388 CSI measurements were collected. The authors

took a classification approach to localization. They divided the room into 16 blocks and trained the

system to predict the user’s location within a block. An overview of the expermint settings and the

proposed 1D-CNN architecture can be seen in Figure 2.4.

(a) (b)

Figure 2.4: Experiment settings and the proposed 1D-CNN model in [24]

ConFi [9] is the first localization paper that utilizes Convolutional Neural Networks (CNN).

As CNNs are powerful tools for inferring information from images, ConFi arranges CSI amplitude
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data to create CSI feature images. 4 samples of the processed CSI images are presented in Figure 2.5.

The created feature images are then fed to CNN with three convolutional and two fully connected

layers. ConFi treats localization as a classification problem ,where inputs are localized based on

several specified reference points. Their evaluations show that ConFi outperforms other conventional

data-driven localization methods, demonstrating that CNN-based localization is a viable option.

Figure 2.5: Sample of processed CSI images for 4 different reference points used in [9]. For one
antenna, T CSI measurements for N subcarriers are grouped to form a N∗T matrix which turns inro
a CSI image.

In CiFi [68], CSI phase data was used as a medium to calculate the angle of arrival (AoA).

They used the Intel 5300 network interface card with three antennas to collect the CSI data. Based

on the measured CSI phase data for every two adjacent antennas, the phase difference was obtained,

from which AoA can be calculated. As AoA is not as random raw CSI phase data, it was then fed

to the CNN-based localization model they proposed as an input. A sample of a preprocessed AoA

image created from CSI phase data is shown in Figure 2.6. Their results show that CiFi can compete

with other established localization methods, such as DeepFi, suggesting that CSI phase data can

also be effective for localization.

In [51], the authors proposed a localization system that aimed to estimate the user’s location

using multiple Extreme Learning Machine (ELM) classifiers. ELMs are feed-forward neural networks

where parameters of their hidden nodes and not just the weights need to be tuned. ELMs enable fast

training for the models [25]. The proposed system employs a combination of techniques and models

which can be seen in Figure 2.7. During the offline phase, the system initially utilizes principal
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Figure 2.6: Sample of processed AoA created from CSI phase data in [68]. 2 sets of AoA data are
calculated from each pair of 3 adjacent antennae at the receiver. the 2 sets of AoA data with the
size 30∗60 are then concatenated to form the processed image for a reference point.

component analysis (PCA) to reduce the dimensions of the RSS data. This dimension reduction

process improved the system’s performance by eliminating irrelevant information from the training

data. The preprocessed data are then given to an ensemble model as the input. Within the ensemble

model, distinct ELM classifiers are trained for each floor to obtain individual floor-level classification

results. The outcomes of all separate ELMs are then consolidated using a majority voting algorithm,

to reach the final prediction of the model. During the online phase, PCA is performed again on

real-time RSS data and then the processed RSS data is passed to the ensemble model. To assess the

performance of their system, the authors conducted tests in a building comprising of 7 floors and

95 access points. The system was tested using 700 RSS measurements. The accuracy of the final

floor-level predictions was determined to be over 96%.

The authors in [76] focused on improving the accuracy of coordinate prediction by integrat-

ing multiple data sources. Their database included geomagnetic, iBeacon, and WiFi RSS data. To

process this diverse data, the authors employed a Deep Neural Network initialized with an RBM

(Restricted Boltzmann Machine) [16]. Additionally, they utilized cross-validation and grid search

techniques to fine-tune the neural network, while incorporating the Kalman Filter to smoothen pre-

processed data to simplify the input while retaining crucial information. They approached indoor

localization as a regression problem. The experiments were conducted in a testbed consisting of two

interconnected rooms, spanning an area of 124 m². A trajectory with 15 reference points along the

path was used, and 1300 groups of data were collected for each position. The results demonstrated

that the system, combining the DNN and Kalman Filter, achieved impressive performance. The
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Figure 2.7: Block diagram of the localization system used in [51].

mean distance error of the system was reported to be 0.29 m, with a maximum position error of

1.59 m. In comparison, other machine learning methods tested on the same testbed achieved a

best localization error of 1.26 m. Localization accuracies for models using RSS are rarely this good,

suggesting that substantial enhancement in accuracy can be achieved by integrating multiple data

sources.

In [58], the authors put forward an approach for indoor localization using a CNN that relies

on the image representation of WiFi RSS signals. The core idea is to convert the RSS signals into

2D images, which are then processed by the neural network. The experiment involved setting up

74 reference points in a testbed, where data from 256 Access Points (APs) were collected. Each

reference point’s 256 RSS measurements were transformed into a 16 × 16 image. A sample of the

created RSS images is shown in Figure 2.8. The presence of light dots in the image indicates the

APs whose RSS values can be detected at that particular reference point. To enhance the input RSS

data during preprocessing, they employed augmentation techniques and incorporated mean values

and random numbers uniformly distributed across the dataset. This enriched dataset was utilized

for training their proposed CNN architecture. In terms of performance, their model achieved a

localization mean squared error of 1.44 m.

In [29] a positioning system is proposed that combines a stacked autoencoder (SAE) and

23



Figure 2.8: RSS data conversion to RSS images used in [58].

a DNN to estimate the user’s building and floor location in indoor positioning using RSS data.

Rather than predicting the building and floor simultaneously for each sample, the system tackles

them separately, as illustrated in Figure 2.9. This approach necessitates the use of multiple classifiers

within the indoor positioning system. To preprocess the input RSS data, the SAE is employed to

reduce dimensionality and filter out noise. The resulting features are then given as inputs into

seperate classifiers for building, floor, and location predictions. In terms of building and floor

estimation, the system achieves 99% accuracy in building identification and a floor identification

rate of 93.4%. For evaluating floor-level location estimation, they deployed approximately 200 APs

and collected over 4000 RSS fingerprints. The system attains a high accuracy of 97.2% for floor-level

location estimation in this specific setting. However, when applying the same system to the another

dataset, the accuracy drops below 70%.

Table 2.1 provides a summary of some of the DL-based localization methods that have

been proposed in the recent years. It should be noted that the presented localization errors can

not be necessarily compared with each other and we can not decide which proposed method is

better than the others. Different methods have been trained and tested using different datasets with

different number of reference points, environment sizes, complexity of environments and obstacles,

task definition (regression or classification), and granularity of reference points. Nevertheless, this

table can provide a good insight into different DL-based localization systems and their performance.
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Table 2.1: Summary of DL-based Indoor Localization Papers

Localization

System

Method Parameter Technology Localization Error

[66] FC CSI Amplitude Wi-Fi
0.94m for LoS scenario

1.8m for NLoS scenario

[63] FC CSI phase Wi-Fi
1.08m for LoS scenario

2.01m for NLoS secnario

[65] AE
CSI Amplitude

+ AoA

Wi-Fi
1.57m for LoS scenario

2.17m for NLoS scenario

[68] CNN AoA Wi-Fi
1.78 for LoS scenario

2.38 for NLoS scenario

[9] CNN CSI Amplitude Wi-Fi 1.36m

[84] SDAE+HMM RSS Wi-Fi 0.39 for indoor scenario

[23] LSTM RSS Wi-Fi
0.75m on a collected dataset

4.2m on UJIIndoorLoc public dataset

[61] SDAE+MLP RSS Wi-Fi
5.64 on UJIIndoorLoc public dataset

3.05m, 4.24m on two collected datasets

[72] DAE+KNN RSS BLE
1.09m Horizontal

0.34 Vertical

[45] VAE+DRL RSS BLE 4.3m

[53] FC RSS Cellular 0.78m

[4] FC RSS BLE+XBee+Wi-Fi 0.45

[40] DBN CIR UWB <1.5m 90% of the time
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Figure 2.9: Overveiw of the hierarchical building/floor/location classification model employed
in [29]. Three distinct classifiers are used to output predictions for building, floor and location. L,
M, and N respectively denote the number of buildings, the maximum of the number of floors in
buildings, and the maximum of the number of locations in the floors

2.3 Generalizable DL-based Localization

One fundamental issue with most of the mentioned localization models is the lack of gener-

alizability and adaptability to new or dynamic environments, as these models have to be retrained

when the environment changes to perform well. This dramatically hinders their applicability to

real-world scenarios. To address this issue, a few recent works have utilized transfer learning and

domain adaptation.

Transloc [34], is a knowledge transfer framework for indoor localization, which derives a

cross-domain mapping to transfer the specific knowledge of one domain to another and then cre-

ates a homogeneous feature space. This enables the localization model to perform well when the

environment changes with a limited number of new training data from the new environment. To

increase robustness against environmental changes, Fidora [10] augments the data with a variational

autoencoder to add diversity and then employs a domain-adaptive classifier to adjust the localization

model to the new data.

In a recently published work, authors of [17] utilized meta-learning for indoor localization to

increase the generalizability of DL-based localization models. [17] proposes a localization framework

based on MAML [15] as opposed to conventional DL-based localization models. The results presented
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in this paper are based on simulated RSSI data. Some parameters used to generate the simulated

data, such as the room size, number of reference points, and noise level, differed for each scenario, the

parameters being set by pre-determined settings for training and testing scenarios separately. This

was done to increase the diversity of scenarios. As RSSI is highly dependent on many parameters,

such as obstacles, obstructions, and positioning, which simulations can not fully capture. Hence,

the generated scenarios may not be realistically diverse. In the context of meta-learning, a lack

of sufficient diverse training scenarios may lead to meta-overfitting in the model, memorizing the

learning process for a handful of scenarios and not reaching generalizability for unseen scenarios.
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Chapter 3

Preliminaries

3.1 Meta-Learning

Meta-learning is a subfield of machine learning that focuses on the development of algorithms

capable of enabling intelligent systems to acquire knowledge from past learning experiences and

improve their learning process in the future, hence, also known as ”learning to learn”. At its core,

meta-learning seeks to build models or systems that can effectively generalize from past learning

experiences to new tasks or domains, thereby exhibiting a form of adaptive intelligence. Meta-

learning algorithms often operate by learning a higher-level representation or model that captures

patterns and regularities across different learning tasks or datasets, allowing for the extraction of

valuable insights and knowledge that can be applied to new tasks.

One prominent approach is gradient-based meta-learning, exemplified by the Model-Agnostic

Meta-Learning (MAML) algorithm. Gradient-based methods optimize the model’s parameters across

multiple tasks or datasets, allowing the system to quickly adapt to new tasks by taking a few gra-

dient steps. Another approach is memory-based meta-learning, where past experiences or data

are stored in a memory bank and utilized to solve new tasks. Prototype-based meta-learning is

one such memory-based approach that relies on the creation and utilization of prototypes, which

are representations of past tasks, to guide the learning process on new tasks. In addition, there

are Bayesian meta-learning methods that leverage Bayesian inference to capture uncertainty in the

meta-parameters or task parameters. These methods enable more robust and principled learning

in the face of limited data. Evolutionary algorithms, such as genetic programming and genetic al-
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gorithms, have also been applied in the context of meta-learning, where populations of models or

algorithms are evolved to adapt to changing environments.

Meta-learning has found diverse applications across various domains in the field of machine

learning. In the domain of computer vision, meta-learning has been applied to tasks such as few-shot

image classification [28], where models are trained to quickly recognize and classify new classes with

limited labeled examples. Meta-learning has also been utilized for tasks like object detection [71],

semantic segmentation [41], and image generation [43], where it enables models to adapt and gen-

eralize to new datasets or unseen scenarios. In natural language processing (NLP), meta-learning

has been employed for tasks such as few-shot text classification [78], sentiment analysis [37], and

machine translation [35]. By leveraging meta-knowledge, models can effectively transfer knowledge

from related tasks or domains and achieve better performance with limited labeled data. Rein-

forcement learning (RL) is another domain where meta-learning has made significant contributions.

Meta-RL algorithms enable agents to quickly adapt to new environments, learn from sparse rewards,

and acquire policies that can be generalized across different tasks. These meta-RL methods have

been successfully applied to robotic control [26], game playing [8], and autonomous systems [80].

Furthermore, meta-learning has also found applications in other areas, including recommendation

systems [12], drug discovery [42], and personalized medicine [33]. As meta-learning continues to ad-

vance, it holds great potential for driving the development of more intelligent and adaptable systems,

contributing to the overall progress of artificial intelligence and machine learning research.

3.2 Model-Agnostic Meta-Learning (MAML)

Among the many proposed meta-learning algorithms, MAML [15] is arguably the most

popular algorithm. One reason for this popularity is that, as its name suggests, MAML is model

agnostic, meaning that it can be applied to any differentiable model regardless of its architecture

or specific learning objective. In MAML, multiple tasks are divided into training tasks and testing

tasks, and each task consists of a distinct objective, a support set (training set), and a query set

(test set). In the inner loop (also referred to as the adaptation phase), the meta-learning model

adapts to each task by training on the corresponding support set, followed by computing the loss

function for that task on the query set. It should be noted that the outer objective function utilized

in MAML for meta-learning is not the same as the objective function used for each task during the
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inner loop.

MAML aims to determine an initial set of parameters for the inner model, such that adapting

to new tasks can be done as quickly as possible using the computed initial set of parameters.

Formally, MAML considers an inner model f with a set of parameters θ denoted by fθ.

During the inner loop, for each task Ti, the model adapts to task Ti by training on the cor-

responding support set and, respectively, updating model parameters θ based on the inner objective

function to compute θ′i. The following equation shows the adaptation phase of a single gradient step,

but it can be extended to cases where multiple gradient steps are taken, as well.

θ
′

i = θ − α∆θLTi(fθ) (3.1)

where α is the step size.

The outer objective function used in the outer loop is defined as below:

min
θ

∑
Ti∼p(T )

LTi

(
fθ′

i

)
=

∑
Ti∼p(T )

LTi
(fθ−α∇θ

LTi
(fθ)) (3.2)

where f ′
θ is optimized with respect to the initial set of parameters θ used to adapt to each task. And

the outer loop optimization rule is as followings:

θ ← θ − β∇θ

∑
Ti∼p(T )

LTi

(
fθ′

i

)
(3.3)

where β is a hyper-parameter known as meta-step size.

For all training tasks, the inner loop is performed, and then θ is updated during the outer

loop as shown in (3.3). In contrast, only the inner loop is performed for the testing tasks to see

how well the model can adapt to an unseen task using a limited support set. The pseudo code for

MAML is presented in Algorithm 1.
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Algorithm 1 MAML

Require: P(T ): Distribution over training tasks

Require: α, β: inner step size, outer step size

Randomly initialize inner model’s weights θ

while not converged do

Sample meta-training task Ti ∼ P(T )
θ
′

i ← θ

for all inner loop iterations do

Using support set Di compute loss LTi

Update θ
′

i ← θ
′

i − α∆θ
′
i
LTi(fθ′

i
)

end for

Using query set D′
i compute loss LTi

Update θ ← θ − β∇θLTi

(
fθ′

i

)
end while

31



Chapter 4

Proposed Method

Dl-based indoor localization solutions have shown promising results in accurately estimating

the position of wireless devices in indoor environments using wireless parameters such as Channel

State Information (CSI) and Received Signal Strength Indicator (RSSI). Despite their success, cur-

rent DL-based indoor localization methods face challenges related to the need for extensive data,

time and computational resources for training, interpretability, robustness in dynamic environments,

and generalizability. Other than the issue with interpretabillity which is inherent in DL models in

general, the rest of the issues are closely related to each other. A generalizable indoor localization

that can perform well even in unseen or dynamic environments, would be less prone to dataset

domain changes which leads to a better robustness as well. Moreover, if a model has better general-

izability, it would require less or even no data to adapt to new environments, alleviating the need for

extensive data and computational costs in the future. On the other hand, if an indoor localization

model can only have a good accuracy on a testing set based on the training set it has observed

before, it would need to go through a complete training process in order to perform well in new

environments. Not being readily-deplyable in new environments, greatly reduces the applicability

of the indoor localization model for practical uses.

We aim to solve the lack of generalizability in conventionally trained indoor dl-based local-

ization models. We propose a generalizable indoor localization model using meta-learning, which can

utilize the knowledge gained from training on multiple datasets collected in different environments

towards new unseen environments requiring very little fine-tuning. To this end, we have collected

CSI data in 33 different locations, with the data in each location constituting a separate task. We
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then evaluate the generalizability of the proposed meta-learning-based localization model and other

benchmark methods by training on a set of the collected tasks and testing against a set of unseen

tasks. Meta-learning algorithms require a sizeable amount of training tasks, which is time-consuming

and challenging to collect in the context of indoor localization. Thus, we propose a data-efficient

novel meta-learning algorithm, Task Biased Model Agnostic Meta Learning (TB-MAML), based on

Model Agnostic Meta Learning (MAML) [15] to further improve generalizability even with relatively

limited datasets. Lastly, we compare the generalizability of the TB-MAML-based localization model

with other meta-learning-based localization models in terms of the number of tasks used for training.

4.1 Task Biased Model Agnostic Meta Learning (TB-MAML)

In this section, we would like to propose TB-MAML, a novel meta-learning algorithm based

on MAML. TB-MAML is designed for cases with a limited number of training tasks for the meta-

training process. In conventional deep learning, not having enough data samples leads to overfitting,

memorization of the data samples, and consequently, not learning the underlying distribution from

which the data was sampled. A similar concept called Meta-overfitting exists in the context of

meta-learning. Consider a distribution over all tasks P(T ) and a limited set of tasks T that do not

wholly represent the distribution P(T ). Suppose a meta-learning model just uses the tasks T for

the meta-training process. In that case, it will meta-overfit to the tasks in T , meaning that it will

not learn to adapt quickly to all the tasks drawn from the distribution P(T ), but just the tasks in

T . TB-MAML is designed to learn the underlying distribution P(T ) even in cases where the set of

training tasks T available to us is limited. In the context of localization, each task requires a training

set and a test set for multiple reference points in a location. Since the process of collecting data

for multiple reference points per each task is time-consuming, gathering a large enough number of

indoor localization tasks is not an easy feat. To provide a sense of comparison, the dataset Omniglot

which is a standard toy dataset for meta-learning literature has 1623 classes. If we define each

task as a 10-way classification, we will have
(
1623
10

)
different tasks at our disposal which we can split

into meta-training and meta-testing tasks. To this end, TB-MAML is particularly valuable in the

context of indoor localization as it is designed for improved generalizability for circumstances where

the number of tasks is limited.

TB-MAML defines an importance vector over the available meta-training tasks to identify
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the tasks that push the model more toward generalizability, or in other words, the tasks that provide

better information regarding the learning process of all the other tasks in P(T ). TB-MAML is biased

towards the more important tasks as it emphasizes them during the learning process, hence the name,

Task Biased Model Agnostic Meta Learning.

To calculate the importance vector, we first select task i from the meta-training tasks. We

train our inner model with the training set of task i. In a case of n-shot learning, for each task j

in the meta-training tasks where i ̸= j, we further train the inner model with the support set of

task j and then test the model against the query set of task j, resulting in the loss Li(θij). We

denote the average of all these losses as Li, which is a measurement of how well a model trained

for task i can adapt to unseen tasks. By calculating the average loss Li for all tasks, we form the

vector [L1, ...,Ln]. By normalizing this vector between values (-1,1) and then inverting the values,

we derive the importance vector [u1, ..., un].

During outer loop (steps 6 and 7 in fig 4.1), when the inner loop TB-MAML has adapted

to the task j using the corresponding support set, it updates θ based on the importance of task j.

More Formally:

θ ← θ − (β + γuj)∇θ

∑
Ti∼p(T )

LTi

(
fθ′

i

)
(4.1)

where uj is the importance of task j and γ is a hyperparameter that adjusts intensity of the impor-

tance vector.

The entire process of TB-MAML is summarized in Algorithm 2. Furthermore, a schematic

of TB-MAML is provided in Fig 4.1 for illustration of TB-MAML. In step 1, the importance vector

is computed from the training tasks available. In step 2, the inner model is initilized with weight

θ, task Ti is sampled and the corresponding support set is fed to the inner model. Steps 3 and 4

represent the inner loop where the model adapts to task Ti. In step 5, query set of Ti is given to the

model and outer loop is then performed (steps 6 and 7), and the inner model’s initialization weight θ

is updated. After sufficient iterations when convergence is reached, meta-testing phase starts (steps

9-13). The steps taken in this phase are similar to the ones taken in the meta training phase, with

the difference that outer loop is not performed.

In table 4.1, advantages and disadvantages of some of the known meta learning algorithms

based on the MAML algorithm alongside the proposed TB-MAML algorithm are summarized.
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Figure 4.1: Schematic of the proposed TB-MAML algorithm.
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Algorithm 2 TB-MAML

Require: P(T ): Distribution over training tasks

Require: U = [u1, ..., un]: Importance vector for training tasks

Require: α, β, γ,: inner step size, outer step size, and importance vector intensity

Randomly initialize inner model’s weights θ

while not converged do

Sample meta-training task Ti ∼ P(T )
θ
′

i ← θ

for all inner loop iterations do

Using support set Di compute loss LTi

Update θ
′

i ← θ
′

i − α∆θ
′
i
LTi(fθ′

i
)

end for

Using query set D′
i compute loss LTi

Update θ ← θ − (β + γui)∇θLTi

(
fθ′

i

)
end while

Table 4.1: Comparison of Meta Learning Algorithms.

Method Advantages Disadvantages

MAML Good accuracy on new tasks High computational cost

FOMAML Lower accuracy on new tasks Relatively much lower computational cost

REPTILE [47]
Competitive accuracy on new tasks

compared to MAML

Relatively lower compuational cost

MAML++ [2]

Good accuracy on new tasks

Stabilized training

Improved Convergence Speed

High computational cost

TB-MAML

Good accuracy on new tasks

Better accuracy when number of training tasks are limited

Less number of training tasks required

High computational cost

+ Cost of computing importance vector
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Chapter 5

Evaluations

5.1 Dataset

For the purpose of testing the generalizability and adaptability of the discussed localization

models, a dataset consisting of multiple different scenarios was required. In total, we collected 33

scenarios, each scenario resulting in a different task. All 33 scenarios were collected in different indoor

locations such as rooms, laboratories, corridors, and auditoriums in the Fluor Daniel building and

the Lowry hall building at Clemson University, to diversify the overall dataset as much as possible.

A few example locations can be seen in fig 5.1(b). Each scenario consisted of 12 reference points,

arranged in a 3 by 4 grid with a grid size of 60 cm. Fig 5.1(a) shows the positioning of the reference

points in test scenarios. We collected CSI data for all reference points using two Intel 5300 network

interface cards, one as a receiver and one as a transmitter. We transmitted Wi-Fi 802.11n packets

with 20 MHz bandwidth on the 5 GHz frequency band and for every reference point. The transmitter

transmits 40 bursts each of the burst includes 100 packets. To counter the instantaneous interference

or fluctuations in the environment, each burst has 1 second pause time before the next one. The

transmitter uses only one antenna for transmission, while the receiver uses all three antennas for

receiving. In 802.11n, 52 subcarriers are carrying information and used for calculating the CSI data.

The Intel 5300 card follows a grouping method that reduces the size of the CSI report field to 30.

Hence, each CSI sample had a size of 3× 30. We calculate and normalize only the amplitude of the

CSI data before feeding it into the network1.

1Dataset was collected with the help of Mr. Chunchih Lin
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(a) Reference points arrangement

(b) Example locations of different scenarios

Figure 5.1: Experiment Settings.
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Table 5.1: Structure of Inner Model
Layer Input Parameters Activation Function

1D Convolution 3*30
Out Channels=10
Kernel Size=3
Padding=1

ReLU

1D Max Pooling 10*30 Kernel Size=2 -

1D Convolution 10*15
Out Channels=15
Kernel Size=3
Padding=1

ReLU

1D Max Pooling 15*15 Kernel Size=2 -

Dense 105 128 neurons ReLU

Dense 128 64 neurons ReLU

Dense 64 32 neurons ReLU

Dense 32 8 neurons ReLU

Dense 8 2 neurons -

(a) No additional training (b) Additional 5 shot training

Figure 5.2: Localization distance errors of a conventional DL-based localization model trained on
scenario i and tested against scenario j. In Figure (a) no additional training samples from the testing
scenario were provided to the model, whereas in Figure (b), five additional samples per reference
point from the testing scenario were given to the model for further training. For cleaner visualization
purposes, only the first 10 scenarios are considered in the figures.

39



5.2 Generalizability Analysis of Conventional DL-based Lo-

calization Models

Before providing the results for the proposed meta-learning models we would like to empha-

size on the lack of generalizability in conventional DL localization models. Fig 5.2(a) depicts the

error of a conventionally trained DL localization model on one task and then tested against another

one. The architecture of the used DL model is described in table 5.1. The value in cell (i, j) is the

distance error of the localization model trained for scenario i and then tested against scenario j.

For cleaner visualization purposes, only the first 10 scenarios are considered in the heatmap. As it

can be seen from the figure, the distance error on the main diagonal is very low (when the model

was trained for scenario i and was tested against i) but for the other cases we can see the distance

error is pretty high, pointing to the lack of generalizability of the conventionally trained localization

model. The mean distance error in this plot is 95.98 cm.

In 5.2(b), we have the same experiment as 5.2(a) but just 5 new data samples per reference

point from scenario j are provided to the localization model to train on. With a mean distance error

of 63.45cm, we can observe that the overall distance error has reduced as expected in comparison

with 5.2(a). But the distance error is still very high when compared to the main diagonal of the

heatmap, pointing to the lack of adaptability in the conventionally trained model.

5.3 Localization Accuracy Analysis

To evaluate the generalizability of our proposed TB-MAML-based localization model, we

are considering several benchmark algorithms in our experiments. The first benchmark, referred

to as conventional learning, we have a localization model without prior training that has to train

on a few new samples from the unseen environments. In Transfer Learning, we are feeding the full

training dataset of one of the scenarios to the localization model, followed by a few new samples from

the unseen target environments. We are then employing MAML, First Order Model Agnostic Meta

Learning (FOMAML), and our proposed meta-learning model, TB-MAML, as cases of meta-learning

based localization. It has to be noted that for all benchmarks, results are based on localization

accuracies from unseen scenarios. All algorithms have been executed multiple times with different

training scenarios and testing scenarios and results are averaged over the runs to reduce randomness
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in results. To have a fair comparison, the same inner model structure has been used for all cases

which is described in table 5.1.

Figure 5.3 shows the localization errors of the compared localization models in terms of

cumulative distribution function (CDF), in multiple cases with different number of new samples from

the new scenarios. As visible from the figures, TB-MAML localization outperforms other benchmarks

throughout all few-shot scenarios, followed by MAML. We can further observe that FOMAML-

based localization is more accurate that a conventionally trained model, but slightly less accurate

than transfer-learning-based localization. Since FOMAML is a computationally efficient first-order

approximation of MAML and, therefore, a less accurate meta-learning algorithm, this observation

is not unexpected. In the 5-shot case, 59 percent of distance errors for TB-MAML were below 50

cm, while the corresponding percentage for MAML, Transfer learning, FOMAML, and Conventional

learning were 45, 38, 22, and 18 percent respectively. Figure 5.4 depicts a boxplot of the distance

errors for the same experiments. Again, it can be observed that TB-MAML localization outperforms

other benchmarks in terms of the average distance error, followed by the MAML localization model.

5.4 Limited Number of Tasks Analysis

In another experiment, we compared the accuracy of the mentioned meta-learning based

localization models with our proposed TB-MAML-based localization model in scenarios with dif-

ferent number of training tasks. Figure 5.5 illustrates the results for this experiment. As expected

we can observe that distance error of all compared meta-learning-based algorithms increases as the

number of training tasks decreases. But we can also observe that TB-MAML outperforms the other

benchmark localization algorithms throughout all scenarios with different number of training tasks.

Moreover, we can see that TB-MAML is less affected in comparison when the number of training

tasks is small (e.g. five training tasks), as TB-MAML is designed for situations where the number

training tasks is limited.

5.5 Sample Efficiency Analysis

In this thesis, we claimed that by incorporating meta learning with a DL-based localization

model, we are able to increase the efficiency of the localization model. In other words, we are able
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(a) 5 Shot (b) 3 Shot

Figure 5.3: CDF of localization distance errors for different localization models. Figure (a) and (b)
depict cases of 5-shot and 3-shot learning respectively.

(a) 5 Shot (b) 3 Shot

Figure 5.4: Distribution of localization distance errors for different localization models. Figure (a)
and (b) depict cases of 5-shot and 3-shot learning respectively.
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Figure 5.5: Localization distance errors of meta-learning based localization models over the number
of training tasks.
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to reach higher accuracy levels using less number of new training samples and hence, lower the

retraining time and resources significantly, allowing the model to be applied to new environments

easier. In this section we compare the efficiency of a meta learning-bsed localization model with a

conventionally trained DL-bsed localization model and a localization model using transfer learning.

Figure 5.6 depicts the number of shots (samples per reference point) from a new environment that

are required for each of the mentioned localization models to reach a certain accuracy in the new

environment. As seen in the figure, we are considering three cases of better than 70cm localization

error, better than 60cm localization error, and better than 55cm localization error. The number

of shots required to reach each of these localization error thresholds respectively were, 2, 5, and 7

for the TB-MAML model, 7, 12, and 19 for the Transfer learning model, and 18, 62, and 90 for

Conventional DL model. We can see that by using the proposed meta learning method, we can

make a conventional DL-based localization model nearly 10 times more efficient in terms of the new

samples that are needed for adaptation to new environment. More over, TB-MAML is also more

than 2 times more efficient than localization using Transfer Learning.

Figure 5.6: Sample efficiency of TB-MAML-based localization, conventional DL Localization, and
Transfer Learning Localization
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Deep learning-based indoor localization models have shown immense potential in accurately

predicting the position of objects within complex indoor environments. However, most current

models suffer from certain shortcomings such as challenges in interpretability , lack of generalizability

and struggles with unseen environments, need for excessive data and training resources, and lack of

robustness in dynamic environments. All these issues prevent the current propoed dl-based indoor

localization models to become practical solutions in real-world situations.

To this end, in this thesis we focused on proposing a solution to increase generalizability in dl-

based localization models. By increasing generalizability, we are also making the model more robust

to dynamic environmental changes as these changes practically lead to having a new environment,

and a generalizabile model can perform better in new or unseen environments. Moreover, increasing

generalizability, increases data efficiency and training resources as well, as a generilizble model needs

less to new training data if the environment changes.

We proposed a meta-learning-based localization model in which the localization model is

wrapped around a layer of of meta-learning algorithm. Through evaluations, we demonstrated

that a meta-learning-based localization algorithm can perform much more accurately in unseen

environments compared to conventional deep learning localization and transfer learning localization

given just a handful of new training data samples.

Meta learning algorithms require a substantial number of training scenarios to reach their full
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potential in generalizability for unseen scenarios and to not overfit on training scenarios. Collecting

a large number of such scenarios for localization is not an easy feat. Thus, we designed a new meta-

learning algorithm named TB-MAML with the focus of making the training scenarios available to

us more efficient, and to enable the overall localization model reach higher generalizability with a

rather limited number of training scenarios. Based on our evaluations we showed that TB-MAML

localization not only outperformed conventional DL-based localization and Transfer Learning-based

localization in unseen environments, but also outperforms localization models that utilize other

meta-learning algorithms.

6.2 Future Work

Through the evaluations that we presented, we showed that our meta learning-based local-

ization model can be an effective method as a generalizable localization method that can adapt to

unseen environments, but there are still places for further improvement that can be addressed in

future studies.

6.2.1 Flexible generalized indoor localization

The current model being put forward operates on the basis of a fixed grid space with a

rectangular shape, a configuration applied uniformly in all train and test scenarios. While this ap-

proach is advantageous when dealing with scenarios featuring consistent topologies across various

environments, its practicality becomes constrained when applied to different instances. The devel-

opment of a localization model boasting flexibility becomes a formidable task, as it necessitates the

ability to transfer knowledge seamlessly between environments characterized by diverse topological

structures. Nonetheless, overcoming this challenge is paramount, as it holds the potential to sig-

nificantly enhance the model’s overall applicability, rendering it more adaptable to a wide range

of real-world situations. This adaptability, in turn, can pave the way for the model’s successful

commercial deployment, unlocking novel applications and opportunities. The impact of a successful

flexible DL-based localization model can revolutionize indoor localization technologies, as it will

greatly diminish the biggest downside to fingerprinting DL-based localzization methods, the need

for constant recallibration and retraining.
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6.2.2 Decreasing the number of needed RPs data

The proposed design offers significant reductions in the number of samples and training

resources required for adaptation to a new environment. However, it remains necessary to collect a

few samples for each individual reference point, leading to a brief data collection phase in every new

environment. To optimize this process, it is prudent to explore alternative models that demand only

a few new samples from a smaller subset of reference points compared to those used in the training

scenarios. This approach further streamlines the effort needed for adapting to novel environments,

enhancing overall efficiency and scalability. Emphasizing this line of inquiry could yield valuable

insights, paving the way for better integration of DL-based indoor localization systems into dynamic

and evolving settings.

6.2.3 self-calibrating generalized indoor localization pipeline

Different environments are not necessarily environments in different locations. Changes

in Obstacles, movements, interferences and even temperature could shift the domain space of the

collected data which will in time result in having a different environment. Another future study

could be designing a pipeline, with a data collection module that is constantly collecting data from

various reference points of a location, and an online generalizble indoor localization model that

keeps updating itself using the knowledge it has amassed and based on the few new samples that

it is receiving from the data collection module. This design can be very effective for applications

where a single location needs localization capabilities over long periods of time.

6.2.4 Standardized tests for the proposed DL-based localization systems

A diverse range of technologies, parameters, and model architectures being explored and

proposed for DL-based localization models. Researchers have delved into various sensor technologies,

including Wi-Fi, Bluetooth, UWB, RFID, cameras, and environmental sensors, to gather data for

indoor positioning. They have employed different DL architectures, such as CNNs, RNNs, AEs,

and transformer models, to process and analyze the sensor data for localization tasks. Despite

this, we are not able to confidently decide which of the proposed localization systems are superior

over the others as these proposed systems have been tested based on different datasets with varying

characteristics. These datasets encompass differing numbers of reference points, various environment
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sizes, complexities of indoor spaces, types of obstacles, task definitions (regression or classification),

and granularity of reference points. This variability makes it challenging to compare and identify

the best solution for indoor localization. To arrive at the optimal solution, it becomes essential to

conduct a series of standardized tests under precisely the same settings, enabling a fair and conclusive

evaluation of the proposed models’ performance.
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