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Abstract

Measuring physical movements of humans and understanding human be-

haviour is useful in a variety of areas and disciplines. Human inertial

tracking is a method that can be leveraged for monitoring complex ac-

tions that emerge from interactions between human actors and their envi-

ronment. An accurate estimation of motion trajectories can support new

approaches to pedestrian navigation, emergency rescue, athlete manage-

ment, and medicine. However, tracking with wearable inertial sensors has

several problems that need to be overcome, such as the low accuracy of

consumer-grade inertial measurement units (IMUs), the error accumula-

tion problem in long-term tracking, and the artefacts generated by move-

ments that are less common. This thesis focusses on measuring human

movements with wearable head-mounted sensors to accurately estimate

the physical location of a person over time. The research consisted of (i)

providing an overview of the current state of research for inertial tracking

with wearable sensors, (ii) investigating the performance of new tracking

algorithms that combine sensor fusion and data-driven machine learning,

(iii) eliminating the effect of random head motion during tracking, (iv) cre-

ating robust long-term tracking systems with a Bayesian neural network

and sequential Monte Carlo method, and (v) verifying that the system can

be applied with changing modes of behaviour, defined as natural transi-

tions from walking to running and vice versa. This research introduces

a new system for inertial tracking with head-mounted sensors (which can

be placed in, e.g. helmets, caps, or glasses). This technology can be used

for long-term positional tracking to explore complex behaviours.
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Chapter 1

Introduction

1.1 Human positioning

Finding the relative position of objects is an eternal question in our three-dimensional

universe. How far is the boundary of the universe from us? What are the distances

and relative motions between celestial bodies? Docking between spaceships and space

stations requires highly accurate relative position estimations. As for us humans, po-

sitioning is a much more common problem and used in a variety of fields across our

daily life. People use it to locate and navigate to unfamiliar destinations without get-

ting lost. Athletes use it to track their movements for recording workload, estimating

fatigue level, or optimising their competitive strategies. Rescue teams use it to search

for survivors and ensure that their own safety is maintained in extreme environments,

such as burning buildings or wild environments [50]. Smart homes use user position

information to make better decisions on how to support their lives. Hospitals can

apply it to localise patients in case of emergencies [139]. Location Based Services

(LBS) is thus often being leveraged to provide specific services to users based on their

location. And it has been suggested that LBS is becoming one of the most important

sources of revenue for the wireless communications industry [31].

The wide variety of these applications is attributed to the rapid development

of position tracking technology in recent years. Global navigation satellite system

(GNSS) is the most common tracking system, which includes Global Positioning

System (GPS), GLONASS, BeiDou, Galileo. GNSS allows small electronic receivers

1



to determine their locations with high precision using time data transmitted along

a line of sight by radio signals from satellites. However, due to signal blockage or

strong multipath propagation, satellite signals are often unavailable or degraded in

critical environments, including indoor, underground, or urban canyons. Therefore,

it is widely used in outdoor open field environments.

As for positioning when the GNSS is unavailable or when it cannot be trusted to

accurately work within a given environment, various methods have been developed by

researchers, which could be classified into building dependent and building indepen-

dent methods. Building-dependent methods include techniques which require access

to the building’s infrastructures such as Wi-Fi [46], Cellular, or Bluetooth low energy

(BLE) beacons [174], as well as approaches requiring dedicated infrastructures, such

as radio frequency identification (RFID) [77] [182], ultra wideband (UWB) [84, 3],

infrared, Radar [78], Zigbee, Visible Light Communication (VLC), ultrasound [193],

and acoustic signal. Building independent methods include image-based technologies

like cameras, and dead reckoning with inertial sensors.

Unfortunately, many of these methods still rely on external aiding signals, infor-

mation or infrastructure, and thus are not applicable in scenarios where the signals

are severely affected or when there is no specific infrastructure available. The con-

struction of new infrastructures to facilitate indoor tracking also comes at an added

cost, as it can be expensive to setup and maintain these frameworks. In addition,

image-capture devices may face privacy or security threats when used in a private

environment.

In that case, inertial tracking outperforms these other methods, as it is self-

contained and does not rely on any external infrastructure or signals. It will not

be affected by the natural environment or human disturbance and could be used in

any environment such as indoor, outdoor, underground, underwater, or complex sur-

roundings that combine different environments together. For example, it is suitable

for environmental emergencies, even as the environment is changing frequently. It

also works well in dim and smoky light conditions, making it ideal for firefighting or
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rescue operations that could face similar challenges. It can also be adopted for the

sports community since it could provide a scalable solution. Trajectories of athletes

could be recorded indoors or outdoors, which coaches could then analyse to improve

performance or manage the players. The trajectory length that the athletes have cov-

ered during the basketball or football game can also reflect the amount of work that

the player has done, and fatigue levels could be estimated, which could be applied

by the coach, as a training tool, to create a competitive advantage [106] and avoid

injuries. The inertial tracking techniques relies on data from inertial sensors.

1.2 Inertial sensors

Inertial Measurement Unit (IMU) is composed of accelerometer and gyroscope. IMUs

have first been adopted in planes, spacecraft, and submarines as core components of

control and navigation systems since the last century. It used to be very expensive

and the size of the systems was huge. However, the provided valuable information and

could generate very precise and useful data. In recent years, with the development

of Micro-Electro-Mechanical Systems (MEMS), IMUs tend to be significantly lower

in cost, smaller and more energy efficient, thus becoming widely deployed in many

products such as wearable devices, mobile phones, robots and unmanned aerial vehicle

(UAV), to name just a few.

Accelerometers measure accelerations based on Newton’s second law and gyro-

scopes measure the angular velocity. Data are normally obtained from three axes to

provide a suitable 3D representation. Low-cost IMUs face the problem of limited accu-

racy, with error sources categorised into two types: deterministic errors and stochastic

errors. The deterministic terms include scale factor and axis misalignment. Stochas-

tic terms are composed of white noise that follows a Gaussian distribution and bias

with parameters including in-run bias stability, turn-on bias stability or repeatability,
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and bias over temperature. The error models of IMU measurements are:

ωm = ωt + ηω + bω

am = at + ηa + ba
(1.1)

where ωm and am are the measured values, ωt and at are true values, η is noise with

high frequency and b is bias with low frequency.

One key benefit of the IMU is that it does not need any external infrastructure

or signals. There are other advantages in choosing the inertial sensor for positioning.

They include the small form factor, which can make them discreet to use and thus it

can be integrated in a variety of daily objects like glasses, mouthguards, earphones,

etc. Of course, the low-cost nature of the IMUS makes them very popular, and this is

shown by the fact that they are integrated in almost all ”smart” mobile devices that

are available on the market.

1.3 Strapdown inertial navigation system

In the basic Strapdown Inertial Navigation System (SINS), the inertial sensors are

rigidly mounted on the measuring subject. The basic SINS algorithms is based on

the physical models as follows.

1.3.1 Orientation

The gyroscope measures the angular velocity signal in the body frame.

ωb(t) = (ωbx(t), ωby(t), ωbz(t))
T

A vector vb in the body frame is equivalent to the vector vg in global frame, if

vg = Cvb, where C is the 3×3 rotation matrix in the direction cosines representation

of the body frame attitude.

The changing rate of rotation matrix is updated with the angular velocity:

Ċ(t) = C(t)Ω(t) (1.2)
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where

Ω(t) =

 0 −ωbz(t) ωby(t)
ωbz(t) 0 −ωbx(t)
−ωby(t) ωbx(t) 0

 (1.3)

is the skew symmetric form of the angular rate vector ωb(t).

Thus the rotation matrix will be updated with:

C(t) = C(0) · exp
(∫ t

0

Ω(t)dt

)
(1.4)

1.3.2 Position

The accelerometer measures the acceleration signal in the body frame.

ab(t) = (abx(t), aby(t), abz(t))
T

Transfer it to the global frame:

ag(t) = C(t)ab(t) (1.5)

To obtain the displacement:

sg(t) = sg(0) +

∫ t

0

(
vg(0) +

∫ t

0

(ag(t)− gg) dt

)
dt (1.6)

where vg is the velocity and sg is the displacement both in the global frame.

Although there are many reasons to use inertial sensors for localisation, inertial

sensors do have some drawbacks that cannot be ignored. MEMS IMUs get smaller in

size and lower in cost, but this can come with a loss of precision. The orientation and

displacement are calculated directly by the integration of angular velocity (Equation

1.4) and the double integration of acceleration (Equation 1.6). This works well with

the traditional larger (but precise) IMUs. Yet, when adopting low-cost MEMS IMUs
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with only SINS, errors could be exploding by the double integration and thus the

system will collapse in a few seconds. To overcome this problem, scientists have

proposed a lot of different methods for positioning with these less precise low-cost

IMUs. Model-based inertial positioning systems were one of the first solutions that

gained traction.

1.4 Model based inertial positioning systems

SINS faces the problem of error mushrooming. A possible solution to mitigate un-

bounded drifts could be based on the knowledge we have of the human walking

pattern, each foot standing still for a small period during the gait cycle when people

are walking. Zero velocity update (ZUPT) [47] and zero-angular rate update (ZARU)

utilise this feature to eliminate drifts during this stationary phase. However, these

methods are only suitable for tracking systems consisting of IMUs mounted on the

foot, which is a rare placement in the current product market.

When we discard the basic integration concept and fully focus on leveraging the

human walking patterns, the concept of Pedestrian Dead Reckoning can be consid-

ered. Pedestrian Dead Reckoning (PDR) is the process of calculating one’s current

location by using the previously known position, and advancing that position over

time using established or estimated speeds and trajectories (or alternatively stride

lengths and directions). PDR is based on the idea of Step-and-Heading Systems

(SHSs), which divide the whole tracking problem into three specific questions con-

sisting of the following aspects: (i) step detection, (ii) step length estimation, and

(iii) orientation estimation. Figure 1.1 illustrates the phases that make up the SHSs.

After estimating the step length Lt and the orientation of each step θt, the position

xt, yt at the time step t could be calculated by the following.

xt = xt−1 + Lt · cos θt

yt = yt−1 + Lt · sin θt
(1.7)
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Figure 1.1: Step-and-Heading Systems (SHSs) with x and y representing the 2D global
reference frame. L is the step length and θ the orientation of each step. A total of
three steps is shown.

1.4.1 Step detection

There are a range of different approaches that can be used to detect whether a step

has been taken. Step detection methods include, for example, peak detection, zero-

crossing detection, Fast Fourier Transformation (FFT), and filtering techniques.

1.4.2 Step length estimation

Step length is the distance between the point of initial contact of one foot and the

point of initial contact of the opposite foot. In normal gait, right and left step lengths

are relatively similar. Step length does, however, vary between people according to

height, gender, age, physical condition, etc. An inertial navigation system (INS)

calculates the distance by double integration of the acceleration signal. Yet, the in-

tegration error due to noise, bias and other disturbances is not negligible and can

increase rather quickly. There are various algorithms designed to correct or compen-

sate for these errors, such as ZUPT, which utilises the stance and swing phase during

walking. This implies that ZUPT is not suitable for PDR with head-mounted sensors.
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Machine learning methods were also normally used in step length estimation, such

as using stacked autoencoders [53], Long Short-Term Memory (LSTM) and denoising

autoencoders [165], etc. There are other model-based step length estimators, which

propose equations to capture the relationship between step length and other step

characteristics, such as step frequency, maximum or minimum acceleration, or accel-

eration variation. For example, Do et al. [36] estimated the horizontal displacement

using vertical acceleration, which is based on the double integration of vertical ac-

celeration followed by the use of the inverted pendulum model. The most commonly

used models consist of the linear model [103], Weinberg model [166], Kim model [91],

Scarlett model [143] and Shin model [149].

1. The linear model represents the linear relationship between step length and

walking frequency f (Hz).

step length = a · f + b (1.8)

2. Weinberg method utilises the difference of the vertical acceleration values within

a step.

step length = k · 4
√
amax − amin (1.9)

3. Kim method is only based on the average acceleration within a step.

step length = k ·
3

√∑N
i=1 |ai|
N

(1.10)

4. Scarlett method eliminates the spring effect of the human gait by using mini-

mum, maximum, and average acceleration.

step length = k ·

∑N
i=1 |ai|
N

− amin

amax − amin

(1.11)

5. In Shin model, not only the step frequency but also the variance during that

step is involved. So, it is more precise than the frequency singly related model

listed before.

step length = a · f + b · v + c (1.12)

8



where a, b, c, k are coefficients, amax and amin (ms−2) are the maximum and

minimum accelerations in one step, N is the number of samples in one step, v is the

variance of the accelerometer signal in one step, ai stands for the accelerometer signal

at time i.

1.4.3 Orientation estimation

Orientation can be integrated directly from gyroscope data using the method de-

scribed in Section 1.3.1. However, the error of gyroscope will be integrated as well,

especially the constant bias, which grows linearly with time when integrated, lead-

ing to non-negligible error in long-term estimation. Previously mentioned methods

ZUPT and ZARU can also help correct the error of orientation estimation, but only

works for foot-mounted sensors. Other condition-specific methods will be introduced

in the next chapter with their conditions and limitations. The more general way is

using model-based state estimation methods on both the estimated step length and

orientation to optimise the result.

1.4.4 Model based state estimation methods

1.4.4.1 Kalman filter

A Kalman Filter (KF) is a recursive Bayesian filter, known to be an optimal filter for

Gaussian linear systems. Bayesian models belong to probabilistic models. A prob-

abilistic model is a mathematical quantitative description of an uncertain situation,

with two main elements including the sample space containing the set of all possi-

ble outcomes of the experiment; and the probability law assigning probabilities to

outcomes. There are two different ways to quantify the probabilities: the frequentist

with maximum likelihood estimation (MLE) and Bayesian with maximum a posteriori

(MAP). Frequentist methods are more traditional and focus on the long-term prop-

erties of procedures, while Bayesian methods explicitly incorporate prior knowledge

and update beliefs based on new data.

KF uses a series of measurements that are observed over time (containing statis-
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tical noise and other inaccuracies) to produce estimates of unknown variables. These

estimates tend to be more accurate than those based on a single measurement alone.

An output from the filter is obtained by estimating the joint probability distribution

over the variables for each given time frame. KF is generally conceptualised as two

distinct phases: “Predict” and “Update”.

“Predict” includes a priori state estimation:

x̂k|k−1 = Fkxk−1|k−1 +Bkuk (1.13)

and a priori covariance esitmation:

P̂k|k−1 = FkPk−1|k−1F
T
k +Qk (1.14)

“Update” includes Kalman gain calculation:

Kk = P̂k|k−1H
T
k (HkP̂k|k−1H

T
k +Rk)

−1 (1.15)

a posteriori state estimation:

xk|k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1) (1.16)

a posteriori covariance estimation:

Pk|k = (I−KkHk) P̂k|k−1 (1.17)

where Fk is the state transition model, Hk is the observation model, Qk is the

covariance of the process noise, Rk is the covariance of the observation noise, Bk is

the input control model and uk is the control vector.

1.4.4.2 Particle filter

The particle filter (PF) is a non-parametric Bayesian filter that represents the entire

state vector using a set of particles. Each particle is a sample from the entire state

space, which carries a weight, and the collection of particles approximates the prob-

ability distribution. The algorithm starts with an initial set of particles, typically
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drawn from an initial estimate of the state. In the prediction step, each particle is

propagated forward in time according to the dynamic model of the system. This

step accounts for the evolution of the system over time. The particles are updated

on the basis of the measurements obtained from sensors. Following the update step,

the likelihood of each particle given the measurements is computed. Particles that

are consistent with the measurements are assigned higher weights, and those that are

less consistent are assigned lower weights. To ensure that the weights sum to one

and represent a valid probability distribution, the weights of the particles are then

normalised. After a few iterations, some particles gain large weights, while weights

of others will be almost zero. This degeneracy problem would then be fixed by re-

sampling the particles with probabilities proportional to their weights. This step

emphasises particles that are more consistent with both the system dynamics and the

measurements. Resampling helps prevent particle depletion and maintains a diverse

set of particles. Finally, the result of the system state estimation is obtained by com-

bining the information from all particles, with more weight given to particles that are

more consistent with the measurements.

It has the advantage for situations where the posterior distribution is complex and

may not have a simple analytical form, such as non-linear or non-Gaussian systems,

which makes it suitable for a wide range of real-world applications. However, in high-

dimensional state spaces, particle filters can suffer from the ”curse of dimensionality,”

requiring a large number of particles to maintain a representative sample of the state

space, leading to computational challenges.

Although these model based methods may have accurate results under experi-

mental environments, their performance can reduce quickly in real world scenarios

with longer run times and more complex motions. Performance is also negatively

affected if there is more variation between users. Factors such as age, ability, and

lived experience are likely to lead to different behaviour patterns. Movement is not

only affected by intrinsic factors. It is also affected by the environment [10]. This

is further augmented if there is an increased unpredictability of the environment
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or if the user activities themselves become less predictable. Because model-based

pedestrian inertial navigation methods represent the functional relationships between

inertial measurement inputs and estimated localisation information outputs with sim-

ple fitting equations, such as a simplified inverted pendulum model, and individual

parameters for each person, which will be ineffective with more complex motions in

real scenarios.

To solve this problem, mapping the hidden relations between measurements and

real motions to a higher-dimensional space is one of the ways that scientists are

searching for, which are mainly based on the Deep Learning (DL) techniques.

1.5 Deep learning based inertial positioning sys-

tems

1.5.1 Introduction of deep learning

Deep learning is part of machine learning techniques that are based on artificial neu-

ral networks with multiple layers and parameters. With the rapid advancement of

computing hardware, deep learning is developing quickly and has already shown its

impressive potential in solving tasks in a variety of fields, including natural language

processing [33], image processing [191], and healthcare [127] [72]. One of the key

benefits consists of the ability to model complex non-linear relationships with large

volumes of data. The precise identification of patterns or trends indicates its suit-

ability in pedestrian inertial navigation.

Several different deep learning models have been used in this thesis. In the fol-

lowing, a basic explanation is given for each of the possible techniques.

1.5.1.1 Recurrent Neural Network (RNN)

RNNs are designed to process sequential or time-series data, like text, voice, sequences

of stock prices or weather, for ordinal or temporal problems. These problems contain

domains such as neural machine translation (NMT) [112], handwriting recognition
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[38] and generation [52], speech synthesis [45], protein structure prediction [150],

visual recognition and description [39].

(a) RNN (b) Bi-RNN

Figure 1.2: The architectures of (a) Recurrent Neural Network (RNN) and (b) Bidi-
rectional Recurrent Neural Network (Bi-RNN).

With a input sequence x = (x1, ..., xt), a standard RNN model updates the hidden

states h = (h1, ..., ht) and produces the output vectors y = (y1, ..., yt) sequentially,

which is shown in Figure 1.2a. Each circle represents one RNN node, with the detailed

structure illustrated in Figure 1.3a. In each cell, the current time step xt and the

hidden state of the last time step ht−1 are processed to produce the current hidden

state ht and output yt via the Equations 1.18, where ϕ represents a full connected

network with an activation function (sigmoid, tanh, ReLu, etc.)

ht = ϕ(Wxhxt +Whhht−1 + bh)

yt = ϕ(Whyht + by)
(1.18)

The output layer of standard RNN can only get information from past states.

In order to get information from both past (backward) and future (forward) states

simultaneously, Bidirectional Recurrent Neural Networks (Bi-RNNs) were introduced

to increase the amount of input information by connecting two hidden layers in op-

posite directions [144], which is shown in Figure 1.2b. The hidden state ht at each

time step t is updated via Equation 1.19, where
−→
ht and

←−
ht denote the hidden states

from the forward and backward layers. It is especially useful when the context of the
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input is needed, such as predicting one word in the middle of a paragraph.

ht = [
−→
hTt ;
←−
hTt ] (1.19)

(a) RNN

(b) LSTM

(c) GRU

Figure 1.3: The Architectures of (a) RNN node (b) LSTM merory cell (c) GRU cell.

The vanilla RNNs face the problem of gradient vanishing in practice, which re-

sults in losing long-term dependencies. LSTM networks were then proposed which

successfully solve the vanishing gradient problem partially [66]. LSTMs replace the
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ordinary recurrent node by a memory cell, which contains an internal state besides

the hidden state, to ensure that the gradient can pass across a lot of time steps with-

out vanishing, thus keeping the information for a longer term. The memory cell of

LSTM is illustrated in Figure 1.3b with the internal state and hidden state updated

via Equations 1.20, where i, f , o represent the input gate, the forget gate and the

output gate, c and h are the cell’s internal state and hidden state, σ is the activation

function, W s and bs are weight parameter and bias parameter in the full connected

layer, ⊙ denotes the Hadamard (elementwise) product operator.

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf )

ot = σ(Wxoxt +Whoht−1 +Wcoct−1 + bo)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wxcxt +Whcht−1 + bc)

ht = ot ⊙ tanh(ct)

(1.20)

Gated Recurrent Units (GRU) [25] is a streamlined version of LSTM with a sim-

plified architecture and faster computation speed, but it achieves comparable per-

formance [28]. The hidden state in the GRU cell is updated by Equations 1.21 and

illustrated in Figure 1.3c, where σ is the activation function,W s and bs are the weight

and bias parameter in the full connected layer, r and z are the reset and update gate.

rt = σ(Wxrxt +Whrht−1 + br)

zt = σ(Wxzxt +Whzht−1 + bz)

ht = zt ⊙ ht−1 + (1− zt)⊙ tanh(Wxhxt +Whh(rt ⊙ ht−1) + bh)

(1.21)

1.5.1.2 Convolutional Neural Network (CNN)

CNN [98] was initially designed for image processing as it was inspired by the receptive

fields in the visual cortex of brain [79]. It has been the dominant machine learning

approach in image processing tasks for over 20 years. However, with the introduction
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of 1D convolutional layers, CNNs have become increasingly effective in processing

sequential data such as audio [1], text [86], and time series analysis [97].

Figure 1.4: A structure of a Convolutional Neural Network (CNN).

An example of CNN structure is shown in Figure 1.41. Convolutional layers are

the fundamental blocks of CNNs, which are designed to extract features from input

data by applying convolution operations with learnable filters sliding over it. A set

of feature maps will be produced and pass through a non-linear activation function

to introduce non-linearity into the model. A subsequent pooling layer will reduce the

spatial dimension of the feature maps while preserving their essential information.

With the ongoing advancement of computer hardware, it has become possible to

train CNNs with deeper structures that incorporate more layers for more complex

models. As CNNs have been developed with more layers in deeper structures, an

important issue that was mentioned previously has arisen, known as the ”gradient

vanishing” problem. This refers to the phenomenon in which the gradients propagated

through the network during training become extremely small as they move backward

through the layers, making it difficult to update the weights of the earlier layers and

hindering the overall training process.

1Plotted with the software: LeNail, (2019). NN-SVG: Publication-Ready Neu-
ral Network Architecture Schematics. Journal of Open Source Software, 4(33), 747,
https://doi.org/10.21105/joss.00747
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A variety of different methods have been designed to solve this problem. ResNet

[61] proposed residual blocks, which allows faster propagation of inputs through the

residual connections across layers. DenseNet [76] is an extension of ResNet to some

extent, where each layer is connected to all preceding layers by concatenations (rather

than additions in ResNet) to maintain and reuse features from earlier layers. The

structures are compared in Figure 1.5

Figure 1.5: Structures of CNN, ResNet, DenseNet.

1.5.2 Inertial navigation systems with deep learning

IONET [22] was the first machine learning human inertial tracking method proposed

in 2018. It adopted a 2-layer bi-directional LSTM to predict the rotation and distance

in each 2s window. It was used in a study that applied it for positional tracking with a

smartphone. A range of different phone placements were explored, such as keeping it

in the hand, placing it in the pocket, or even carrying it in a handbag. Another inertial

navigation method also used the IMU on a smartphone. RIDI [175] was designed to

estimate walking velocities based on historical data of linear accelerations and angular

velocities, and subsequently corrected the data for any low-frequency errors in the

linear accelerations to ensure that their integration was consistent with predicted
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velocities. Then a standard double integration was used to estimate the trajectory

from these corrected linear accelerations. Finally, RONIN [62] used ResNet to regress

2D displacement vectors from normalised IMU data. It also focused on tracking with

smartphones using different ”placements” whilst measuring across a set of real day-

to-day activities. Currently, almost all deep learning inertial tracking methods have

been developed for smartphones. However, sensor placement will become even more

important in the future, which will require new systems to be developed for other

promising sensor locations.

1.6 Motivation

As mentioned previously, inertial tracking has a broader applicability in a wide range

of scenarios, which comes from its cost-effectiveness, widespread availability, and

self-contained nature. Promising applications include tracking athletes in sports for

performance improvements or fatigue level estimations, recording trajectories of first

responders or fire fighters in emergency rescues for safety, obtaining position infor-

mation of medical staff and patients in hospitals for efficient allocations, etc.

Chapter 2 found that foot-mounted sensors are the most commonly utilised sensors

in prior studies on human tracking with wearable devices, exhibiting the highest

estimation accuracy as well, which is because the steps have direct relation with foot

movements and it is easy to build the biomechanical model for them. But they are

not convenient for daily use, as people need to specifically attach extra sensors to the

shoes.The wear and tear of normal shoes is such that these objects often need to be

replaced. The smartphone was concluded to be the second most common device in

human tracking due to its popularity, but people do not always have it on them at

home or can not take it during sports.

Sensors that could be worn in most of the scenarios without extra installations are

needed for the more convenient, unobtrusive, discreet, and all-day tracking. Head-

mounted devices provide a possible better solution to it. There are already many
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head-mounted devices integrated with inertial sensors that can be leveraged, such as

smart glasses, instrumented mouthguards, earphones, hearing aids, and smart caps.

These locations are more convenient to use, while they also do not influence normal

behaviour much since they are integrated into already widely used products. Current

tracking methods with sensors at one position are hard to simply transfer to another

position, as different parts of the human body show different moving patterns during

activities, with a different set of signals from different biomechanical models. Special

tracking methods are needed for head-mounted sensors. However, only 2 out of 145

previous wearable tracking studies adopted head-mounted sensors, which shows a

significant research gap.

On the other hand, consumer-grade IMUs suffer from significant noise and bias,

which brings considerable errors to inertial tracking, leading to even uncontrollable

and unacceptable results in long-term tracking. Meanwhile, unpredictable human

behaviours with the extra motions from the body part to which sensors are attached

will lead to more complex patterns in the inertial data. This will influence position

tracking, and any proposed algorithm needs to be able to adequately cope with these

signals. Moreover, more realistic behaviour should be recorded to verify such systems.

Most of the studies only focused on situations where participants were walking with

at a constant pace, which does not reflect well on the more complex actions we create

in real world scenarios.

These identified research gaps form the motivation for this thesis to develop inertial

tracking methods, for more conveniently placed wearable devices, and achieve accurate

and robust long-term localisation.

1.7 Research questions

In this thesis, head-mounted wearable devices are chosen as research subject. The

main challenges faced by inertial tracking with head-mounted sensors are as follows:

• Head motion confusion. During human movement, the head may have its
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own motions, such as turning to one side to look around. These kinds of mo-

tions would overlap with locomotion signals in the IMU data. For example, an

increased angular velocity measured in the gyroscope may be caused by chang-

ing the walking direction or might just be a pure head rotation. If these signals

cannot be correctly distinguished then this would lead to a heading estimation

error.

• Error accumulation in long-term tracking. Tracking with only inertial

sensors creates the problem that there is no simple way to determine the global

(world) reference frame without additional external reference points. This im-

plies that no ”recalibration” can take place to help correct for estimation errors.

Thus, the errors will accumulate as time goes on, resulting in unacceptable large

differences between real and estimated positions when the aim is to monitor over

a longer period of time.

• Various locomotion. Human locomotion not only consists of walking at a

constant pace. In the real world, people can walk or run at various speeds,

which increases the complexity of patterns in the IMU data.

1.8 Contributions

• Chapter 2 is a systematic review of all available studies that use pedestrian

dead reckoning to track human motion with wearable devices. It provides a

summary of the sensor types, placements, algorithms, testing environments,

and recorded findings. This work has been published in:

Hou, Xinyu, and Jeroen Bergmann. “Pedestrian dead reckoning with

wearable sensors: A systematic review.” IEEE Sensors Journal 21.1

(2020): 143-152.

• Chapter 3 proposes a novel PDR method for head-mounted sensors. This has

been published in:
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Hou, Xinyu, and Jeroen Bergmann. “A pedestrian dead reckoning

method for head-mounted sensors.” Sensors 20.21 (2020): 6349.

• Chapter 4 introduces a method to solve the error accumulation problem in

long-term tracking. It has been published in:

Hou, Xinyu, and Jeroen Bergmann. “HeadSLAM: pedestrian SLAM

with head-mounted sensors.” Sensors 22.4 (2022): 1593.

• Chapter 5 proposes a machine learning based inertial tracking method that

solves the problem of random head motions during localisation. This research

has been published in:

Hou, Xinyu, and Jeroen Bergmann. “HINNet: Inertial Navigation

with Head-Mounted Sensors Using a Neural Network.” Engineering

Applications of Artificial Intelligence, Elsevier, 2023.

• Chapter 6 describes an extension of the HINNet approach in Chapter 5 to allow

for both long term tracking and free head motions. This has been submitted

to:

Hou, Xinyu, and Jeroen Bergmann. “HINNet + HeadSLAM: Ro-

bust inertial navigation with machine learning for long-term stable

tracking”, In submission to IEEE Sensors Letters.

• Chapter 7 proposes a machine learning inertial tracking method based on a

probabilistic DenseNet model, which could estimate both pose and uncertainty.

It supports positional estimates during walking and running at various speeds,

with free head motions and robust long-term tracking. It has been submitted

to:

Hou, Xinyu, and Jeroen Bergmann. “ROCIP: RObust Continuous

Inertial Position tracking for complex actions emerging from the in-

teraction of human actors and environment”, In submission to 2023
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International Conference on Intelligent Robots and Systems (IROS

2023).
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Chapter 2

Pedestrian dead reckoning with
wearable sensors: A systematic
review

Pedestrian Dead Reckoning (PDR) plays an important role in modern life, including

tracking the locations of people whenever GPS is not available. Self-contained PDR

systems do not require an infrastructure, thus they can be used for rapid deploy-

ment in situations such as search and rescue, disaster relief, or medical emergencies.

Wearable sensors are often applied in self-contained PDR, but implementation varies

in terms of the number, type, and placement of sensors used. Many algorithms are

designed for PDR in order to reduce the error or drift of the final estimate, with var-

ious levels of success. There is a lack of comparison between these different methods.

This systematic review provides a comprehensive overview on sensor types, layouts,

algorithms, and evaluations for all available PDR literature with a focus on wearable

sensors. Further research directions are suggested on the basis of these results. This

study also highlights the need for more standardised and robust assessment protocols

to capture real-world tracking performance of PDR methods.

2.1 Introduction

Human position tracking technology, which provides information on the current lo-

cation of an individual, has been rapidly developing over the last decades. It has
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drastically changed modern life by offering information regarding the local position

of things even during complex scenarios. LBS are supported by human positioning

technologies, which provide help in a variety of contexts including health, entertain-

ment, work, personal life, etc.

A wide range of sensors have been adopted in different pedestrian position tracking

approaches. These approaches can be classified into two main categories: (i) depen-

dent and (ii) self-contained methods. Dependent methods include the well known

GNSS, and other methods relying on external aiding signals, information or infras-

tructure, such as using wireless local area network (WLAN), BLE beacons, etc. How-

ever, these methods are not applicable in environments where signals are affected or

without specific infrastructures, which limits their using scenarios. On the contrary,

self-contained position tracking does not rely on any infrastructure, which implies that

it could be used in any kind of environment. These infrastructure-independent meth-

ods for human localisation are mainly based on Pedestrian Dead Reckoning (PDR),

whilst utilising on-body sensors.

Most of the sensors used for PDR are small and portable. They include IMUs,

accelerometers, gyroscopes, compasses, barometers, magnetometers, anemometers,

and on-body cameras, to name some of the most popular types. These sensors are

usually combined to create a multimodal system and are commonly mounted on the

foot, wrist, waist, leg, or head. They are relatively low cost and have low energy

consumption, making them more attractive for use. PDR does not depend on any

infrastructure, so it can be readily deployed in almost any situation. It is a particularly

useful application when conditions change rapidly. Thus, PDR is suitable during

environmental emergencies, as the surroundings might be changing frequently. It also

works well under smoky and dim lighting conditions, making it ideal for firefighting

or rescue operations that could encounter similar environments.

Inevitably, measurement errors exist in sensor data, and they could accumulated

over time to reach a critical value. Highly accurate sensors are used in aviation and

marine applications with the aim to keep the error at an acceptable level, whilst track-
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ing positions over several hours. However, these sensor systems are too expensive and

bulky for wearable use. The key user preferences for body-worn sensor systems are

often the compact nature, the ability to embed it in an everyday object, and the sim-

plicity of operating / maintaining the system [11]. These specifications are captured

perfectly in MEMS. However, the open-loop integration of MEMS inertial sensor data

is only suitable for a few minutes before drift dominates the signal. Therefore, a lot

of research has been done to develop effective algorithms that can reduce these errors.

They range from ZUPT[47] to Extended Kalman Filter (EKF)[6] and Heuristic Drift

Reduction (HDR)[14], etc.

Several review studies have already been published on PDR methods, but all of

them have been limited in scope. For example, [58, 172] are surveys of the research

status of PDR and only include inertial sensors; [35] only focused on step length

estimation methods; [49] explored PDR only using inertial and magnetic sensors, and

[29] reviewed PDR specifically for mass market applications. Despite these numerous

reviews of PDR, none of them performed a comprehensive analysis of PDR across a

range of wearable sensors. More importantly, none of them conducted a systematic

search or included a quality assessment of the research.

In this chapter, a systematic review was conducted on all studies related to PDR

with wearable sensors. This study provides an overview of the sensor types, sen-

sor placements, algorithms, and evaluations applied in each study. And a quality

assessment was conducted for all selected studies.

2.2 Methods

2.2.1 Search strategy

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)[117]

was used to structure the content provided below. The literature search was con-

ducted using these three databases: (i) PubMed, (ii) Web of Science, and (iii) IEE-

EXplore. A total of 18 keywords were selected and combined with Boolean operators

25



to obtain all papers related to PDR and wearable sensors. All papers published before

February 2020 were included in this systematic search.

The search strategy applied consisted of the following keyword combination:

(”dead reckoning” OR ”position tracking” OR localisation OR ”posi-

tion monitoring”) AND (”physical activity” OR sports OR walking OR

running OR pedestrian) AND (accelerometer OR ”Inertial Measurement

Unit” OR Gyroscope OR Magnetometer OR ”Body Sensor Network” OR

”wearable sensor” OR ”wearable sensors”) NOT GPS NOT wifi

2.2.2 Study selection

A variety of sensors could be used for PDR, but only studies using wearable sensors

were included. The wearable sensors consist of sensors, such as IMUs, gyroscopes,

magnetometers, compasses, Electromyography (EMG) sensors, sonar, on-body cam-

eras, barometers, and anemometers. Studies that used sensors that were not attached

to the body or relied on other infrastructures (for example GPS, Wi-Fi, RFID, UWB,

Bluetooth beacon, radio, etc.) were excluded. Studies that amend trajectories with

previously known information or data were also excluded. Therefore, research that

relied on information taken from an earlier established map, floor plan, magnetic

fingerprints, light fingerprints, or similar constructs were not included.

The inclusion criteria for the articles were:

1. It must be written in the English language.

2. It must be peer reviewed.

3. It must contain an outcome measure - methodology alone does not suffice.

4. It must explore a PDR method using wearable sensors.

5. It must report a quantitative tracking error.

The characteristics and data extracted from each study consisted of (i) year of

publication, (ii) algorithm used, (iii) type, amount, and position of sensors, (iv) error

and total travel distance.
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All eligible studies that were not accessible through library services were attempted

to be obtained by contacting the corresponding author.

2.2.3 Quality assessment

The quality assessment of each paper followed the questions of the adapted Specialist

Unit for Review Evidence (SURE) to assist with the critical appraisal of the studies

[157]. The checklist was modified to better fit the field of this systematic review. The

modified checklist included 8 questions, which can be found in Table 2.1.

Table 2.1: Modified SURE critical appraisal checklist for systematic review and 9
samples of quality scores

Item Checklist Wang
[164]

Shin
[148]

Shi
[146]

Li
[105]

Guo
[54]

Park
[122]

Lee
[101]

Yang
[176]

Cardarelli
[20]

1 Does the study address a
clearly focused question?

1 1 1 1 1 1 1 1 1

2 Do the authors discuss how
they decided which method
to use?

1 1 1 1 1 1 0 1 0

3 Is there sufficient detail re-
garding the methods used?

0 0 1 1 1 0 1 0 1

4 Is the data collection
method well described?

0 1 1 0 1 0 0 1 1

5 Are the explanations for
the results plausible and
coherent?

0 1 1 0 1 0 0 1 1

6 Are the results of the study
compared with those from
other studies?

1 0 1 0 1 0 0 1 0

7 Did the authors identify
any limitations?

0 0 1 0 1 0 1 0 0

8 Was ethical approval
sought?

0 0 0 0 0 0 0 0 1

2.3 Results

A total of 877 records were identified by searching the aforementioned databases. A

total of 265 duplicates were removed from the list. The titles and abstracts of 612

remaining papers were subsequently screened by both authors. The full manuscript

was assessed for the 307 cases that remained after review of the title and abstract.

The 307 articles were obtained using the University library system, online resources,

and by contacting corresponding authors. This led to the full review of 301 papers, as

not all articles were available. Finally, 145 studies met the inclusion criteria and were
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further evaluated (see Figure 2.1). A sample summary of the study characteristic is

presented in Table 2.2. The complete table for characteristic summary and quality

assessment can be found in Appendix A.

Figure 2.1: PRISMA flowchart of systematic review. The process consisted of iden-
tification, duplicate removing, screening and inclusion of relevant papers.
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Table 2.2: Sample of study characteristics summary

First au-
thor, year
of publica-
tion

Sensor layouts Algorithms No.
of
sub-
jects

Mean er-
ror (m)

Total
travel
distance
(m)

Accuracy EnvironmentDimension

Wang,
2016[164]

A smartphone, a
foot-mounted IMU

zero velocity
update, Indoor
landmark de-
tection, online
magnetic trajec-
tory matching

1 2.55 - 80 per-
centile
locali-
sation
accuracy
of 1.4m

Indoor 2D

Shin,
2014[148]

A smartphone motion recogni-
tion, ZUPT, KF,
SVM

3 2.25 133.2 5.00% Indoor 3D

Shi,
2019[146]

An IMU mounted
on foot

zero velocity up-
date (ZVU), Gait
Phase Detection
Algorithm, KF

1 0.74indoor,
2.33out-
door

103.86indoor,
402.7out-
door

0.73%indoor,
0.58%out-
door

Indoor +
Outdoor

2D

Li, 2017
[105]

A foot-mounted
IMU, magnetome-
ter

KF, peak detec-
tion

1 4.27 400 1.00% Outdoor 2D

Guo,
2015[54]

A Foot-Mounted
IMU

ZARU, ZUPT 1 0.88 90.48 1.00% Indoor 2D

Park,
2012[122]

A waist-worn IMU HDR 1 - 64.48 3.00% Indoor 2D

Lee,
2002[101]

A biaxial ac-
celerometer and
the gyroscope
located in one
trouser pocket; a
digital compass
and a microcon-
troller attached to
the middle of the
user’s waist.

fuzzy logic algo-
rithm

8 - 90 8.20% Indoor 3D

Yang,
2017[176]

A smartphone
(camera)

Hybrid Orienta-
tion Filter

5 0.83 207 0.41% Indoor 2D

Cardarelli,
2019[20]

A foot-mounted
IMU

KF, ZUPT 1 0.96 43.16 2.22% Indoor 2D

2.4 Descriptive summary of results

2.4.1 Sensor types and layouts

A variety of different sensors were applied in the studies that were identified. The

difference in the type, the amount, and the placement on the body of the sensors also

led to contrasting algorithm designs.

2.4.1.1 Types

The IMU was the most common used sensor (n=81) across all the studies. It consisted

of a triaxial accelerometer, a triaxial gyroscope, and sometimes a triaxial magnetome-

ter. It was reported that the data from the magnetometer was not always a reliable

source for heading estimation, due to the existence of soft and hard magnetic distur-

bance in the environment. This was especially true for indoor environments. Only a

few studies (n=32) adopted magnetometers for azimuth calculation.

Some studies also used other wearable sensors to increase the tracking accuracy,

29



beyond the application of IMUs. Cameras were used to extract features of the en-

vironment [176], while others used pressure sensors under the shoe to detect heel-

strike and toe-off points that could aid in the step detection[23]. EMG sensors were

also applied to get EMG signals of the Gastrocnemius for both step detection and

step length estimation[24]. Other methods that were reported leveraged a compass

to obtain geomagnetic information[186], used a barometer to estimate the vertical

moving distance[5], used an anemometer to estimate walking speed[155], used an

ultrasonic sensor to estimate step length[193] or used a laser scanner to calculate

relative distances[73]. A large proportion of the studies included (n = 49) applied

smartphones as their data collection and measuring device.

2.4.1.2 Layouts

The sensors were mounted on a variety of locations on the body. Studies with a single

IMU, most often mounting the sensor on one of the shoes[173]. Another commonly

selected placement was the waist[82]. Studies with multiple IMUs preferred to mount

them on the lower limb and trunk[100]. This included placement on the pelvis,

thighs, shanks, and feet. There were studies that had an even larger network of IMUs

available and also placed sensors on the upper limb in addition to the aforementioned

locations[26]. For the upper limb, sensor placement consisted of the shoulder, upper

and lower arms. Studies relying on a smartphone usually resorted to having the

sensor near the hand or in the pocket at the front/back of the trousers, as well as

the pocket located on the shirt/jacket [116]. Holding the smartphone in the hand

allowed for a further breakdown based on the specific task that was performed on the

phone. Separation of phone tasks was used to help with data analysis, and activities

consisted of texting, swinging, and calling[147]. The study with the most diverse type

of sensors, placed a camera on the chest, one IMU on the head, one on the back and

one on the shoe, whilst also relying on sonar with the user carrying a computer on

the back[140].
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2.4.2 Algorithms

To robustly estimate the trajectory of pedestrians, the designed algorithms should

be adapted to operate correctly under a range of different conditions. Ideally, they

should also be able to work for a range of sensors, placements, motions, people, and

environments. The algorithms were subdivided to better group the results of the

studies. The PDR systems are divided into categories that are described in [58]:

Inertial Navigation Systems

An INS is a system that tracks position by estimating the full 3D trajectory of the

sensor at any given moment. INSs are based on the theory that the first integra-

tion of the acceleration signal measured by the accelerometer produces the real-time

velocity and the successive integration of velocity then gives the real-time displace-

ment. The real-time attitude is produced by integration of the angular velocity,

which is measured by the gyroscope. The accumulation of displacement and attitude

is subsequently used. However, the integration error due to noise, bias, and other

disturbances in this measurement is not negligible and can increase quickly. There

are various algorithms presented in the papers to correct or compensate for these

errors.

Step-and-Heading Systems

An SHS is specific to pedestrians, estimating position by accruing distance, heading

vectors representing either steps or strides. In certain cases, a 3D trajectory is not

required for a specific tracking scenario, and the 2D navigation in the horizontal plane

using step vectors, rather than complete limb trajectories, is sufficient. SHSs output

a series of step vectors by detecting each step of the pedestrian, estimating the length

and direction of it, and finally integrating every step to obtain a complete trajectory.

There are also other techniques available for data analysis and these will now be

discussed.
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2.4.2.1 Zero velocity update (ZUPT) and zero-angular rate update (ZARU)

This approach relies on the idea that the amount of drift in the signal could be reduced

if the integration loop can be closed using external constraints. The ZUPT and ZARU

both make use of PDR constraints[173, 100, 6]. ZUPT was first used by Foxlin et al.

in the NavShoe project, and good results were reported for gait [47]. Human walking

consists of two distinct phases (stance and swing phase). The foot is in contact with

the ground during the stance phase, which provides a useful reference point as the

angular and linear velocity of the foot is close to zero during large portions of the

stance phase. This information can be detected using the aforementioned algorithms

and allows for the separation of individual steps. The ability to label each step

provides a method to reduce the long-term accumulation of errors. However, ZUPT

and ZARU are only suitable for tracking systems consisting of IMUs mounted on the

foot.

2.4.2.2 Magnetic information

Geomagnetic fields cover the Earth’s surface and this information can be sensed us-

ing magnetometers. Magnetometers measure the direction of the local magnetic field

and can help derive the absolute heading direction. This information can provide a

useful correction for the inevitable heading drift, which arises from the integration of

gyroscopic output. However, the geomagnetic field is not always uniform and can be

easily disturbed by hard or soft magnetic interferences. This means that the heading

information produced from magnetometers does not always provide a stable direc-

tionality. Only a few studies apply magnetometers and they have specially designed

algorithms to deal with these magnetic disturbances. These algorithms aim to cal-

ibrate, compensate, or rely on the disturbances in order to create a more accurate

position estimate. Magnetic measurements can also benefit from the application of a

Kalman filter. As an example, Ashkar[6] estimated the magnetic field offset, which is

then treated similar to the gyroscope and accelerometer biases within the measure-

ment model. Another common correction algorithm depends on fusing gyroscope out-
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put with the compass information. This works well because of their complementary

error characteristics. The gyroscope has an accumulation of long-term orientation

errors, while magnetometers are subject to short-term orientation issues [96]. Fi-

nally, a Quasi-Static magnetic Field (QSF) can also be used to detect particular QSF

periods during movement. The changes in magnetic field components during these

periods can be compared with the angular rates of the overall sensor unit. Therefore,

providing more information can help compensate for any arising errors [2].

Some researches exploit the fact that the magnetic field is not uniform. This

provides the opportunity to use the sensor output for “fingerprinting”. They collect

magnetic field maps before tracking and then apply a matching algorithm to estimate

position during real-time data collection based on the previously obtained map [83,

75, 162]. The concept of matching to an established map does yield good results, but

articles that employ this technique are excluded from this review since they require

predetermined information. Interestingly enough, there is a study that does take

advantage of the magnetic anomalies, but does not rely on collecting a historic map

before data collection. This study uses a process that consists of collecting magnetic

anomalies in real time to calibrate the PDR location without the need of deploying

any additional infrastructure or performing offline site surveying [164]. Shin et al.

use a support vector machine (SVM) for the heading estimation by recognising the

consistent patterns in magnetic fields when orientated in a certain direction[148].

2.4.2.3 Gait cycle detection

Gait cycle detection was indirectly discussed in the ZUPT and ZARU section. How-

ever, step detection is more widely used and it can serve different purposes, including

step counting. Wu et al. proposed that gait division strategies could fall into two

categories: (i) abbreviated and (ii) detailed strategy[172]. The abbreviated strategy

consists of simply dividing the gait cycle into only one or two events. For example,

divide it into a stance and swing phase [146]. The detailed division strategy refers

to the separation of the gait cycle into three or more phases. One possible option is
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the division of gait into four main stages such as a contact phase, mid-stance phase,

propulsive phase, and swing phase[105]. Other breakdowns of the gait cycle in the

temporal domain are possible.

Detection of these phases can be facilitated by threshold-based algorithms, which

are typically used for stance detection. Corresponding gait phases can also be de-

termined by measuring whether a specific set of features is part of the threshold set.

Guo et al. set three thresholds to split-up the gait cycle. They used the magnitude

and variance of the acceleration, as well as the magnitude of the angular rate, to

estimate the stance phase[54].

Another way of doing it is by relying on a peak detection method to recognise

gait and steps by detecting the maximum peak of the acceleration output signal

[105]. Other popular methods in the time domain include a zero crossing detec-

tion method[122], the application of fuzzy logic[101] or applying autocorrelations

[131]. These methods are usually based on accelerometer signals, and the data is

often preprocessed by using a low-pass filter to reduce noise. Approaches in the fre-

quency domain have also been explored and include a Short-Time Fourier Transform

(STFT)[125] or a continuous/discrete wavelet transforms (CWT/DWT)[21].

Feature clustering approaches that employ machine learning algorithms have started

to become more popular. Hidden Markov Models (HMMs) can be trained by two-

state HMM with Gaussian emissions in an unsupervised fashion using the Viterbi

algorithm and K-means clustering to classify activities based on features extracted

from inertial measurements in both the time and frequency domains. Zhang et al.

used an HMM as a gait detector during dynamic and fast gait speeds in [186]. Edel

and Koppe used Bidirectional Long Short-Term Memory Recurrent Neural Networks

(BLSTM-RNNs) to accomplish a 3D step recognition approach [42].

Finally, step detection can also be accomplished using sensors that do not contain

inertial sensing capabilities. Chen et al. used pressure sensors embedded in the sole of

the shoe[23], while Zizzo et al. used two position-sensitive detectors (PSDs) mounted

on the toe and heel of the shoe[193] for phase detection. Chen et al. investigated the
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ability of two EMG sensors that were attached to calves[24].

2.4.2.4 Step length estimation

One of the simplest approaches for step length estimation is to set the step length

as a constant value. An average value can be set when people walk at their own

”natural” pace. The detection of the step frequency can then be combined with

this pre-set step length value. Issues arise when subjects start to deviate from this

value. This can occur when they change their activity to running, turning, or even

when they start to walk in groups. A dynamic step length estimation method is

more appropriate in these situations. One such model is the Weinberg model[166],

which assumes that the vertical bounce is proportional to the step length. The Kim

model[91] aims to associate the step length and the average acceleration that occurs

during a step. Scarlet’s approach[143] focuses on the spring variation in the steps of

different people or in the steps of one person walking at different velocities. Methods

have also been introduced that build a model using linear methods[136] or SC-based

methods [163].

Direct measurement of step length can also be accomplished with non-inertial

sensors. Zizzo used five ultrasound receivers on the left foot and two ultrasound

transmitters on the right foot to measure the step displacement[193].

2.4.2.5 Heading estimation

The heading is usually estimated by gyroscopes, which output a relevant angular

velocity. The integration of gyroscope signals provide the heading change and, as

previously mentioned, the heading drifts can then be limited by e.g. ZUPT or ZARU.

However, ZUPT and ZARU are not very suitable when the sensors are not placed on

the foot. Thus, sometimes headings need to be corrected by using other processes. For

instance, HDR can limit the constant drift based on the assumption that when roads

are straight, the pedestrian heading should remain unchanged[14]. The suitability of

this method is decreased when reality starts to deviate from this assumption.
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2.4.2.6 Data fusion

Filtering algorithms that integrate multiple observations are important in PDR sys-

tems with multiple sensors. The most commonly used algorithm among the presented

studies is the KF[21]. This is a recursive Bayesian filter, known to be an optimal fil-

ter for Gaussian linear systems. KF uses a series of measurements that are observed

over time (containing statistical noise and other inaccuracies) to produce estimates of

unknown variables. These estimates tend to be more accurate than those based on a

single measurement alone. The output of the filter is obtained by estimating the joint

probability distribution over the variables for each given time frame. Many studies

did not use the original KF, but applied extensions or generalisations of it. The

following filters were reported; the Unscented Kalman Filter (UKF)[132], Cascaded

Kalman Filter (CKF)[115], EKF[6], quaternion-based extended Kalman Filter[74],

Adaptive Kalman Filter (AKF)[81] or Robust Adaptive Kalman Filter (RAKF)[168].

These were some of the more common adaptations, but other filter methods were

also found. A Complementary Filter (CF) is such a filter. It is applied to make

the accelerometer and gyroscope data complement each other to obtain the initial

attitude[44]. The PF is another one. This filter is a numerical approximation to a

Bayesian filter[64] and is often used in the estimation of walking length and direction.

PF consists of many “particles” that represent possible positions and headings with

a weighted value that indicates the probabilities of each. Adjusting these values is an

iterative process consisting of three steps (update, correct, and resample) [57].

Wu et al. divided filtering methods into direct and indirect estimates. The direct

estimation is a method where the filter directly outputs the final tracking data, whilst

the indirect estimation refers to the fact that the filter estimates the errors of the

tracking data before compensating for errors in the integration results.

2.4.2.7 Mode Classification

It is essential to keep in mind that pedestrians do not always walk at a regular pace.

Gait itself can be affected by environmental or behavioural situations. Inderst et
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al. classified patterns as walking, standing, ascending, and descending stairs before

estimating any positions[82]. Hussain also classified the recorded signals into different

motion states that included walking, running, and stopping[80].

The classification of modes can go beyond mobility classification, whenever a

smartphone is used as the primary data collection system. Different classes can be

defined in terms of how the phone is carried or held. Errors can occur if this is not

taken into account, since there are various ”holding” locations and carrying modes

for smartphones [147]. The phone might be placed in the hand, located in the front

trousers pocket, front shirt / jacket pocket, or back trousers pocket[116]. The ability

to know where the phone is located creates an additional relevant layer in the process

of estimating the position of the user.

Adopting these diverse tracking strategies for different modes aims to increase the

overall tracking accuracy. Appropriate models are needed to correctly classify these

modes, and most papers make use of machine learning algorithms to do so. The

classification models encountered in this review are LSTM[80], Support Vector Ma-

chine (SVM)[183], Muti-layer perceptrons (MLP)[173], Probabilistic neural network

classifiers (PNN)[152] and Random Forest models[55].

2.4.2.8 Simultaneous Localisation and Mapping (SLAM)

The SLAM proposition combines the localisation problem with a map estimation.

It iteratively builds a map of the environment and localises the user within this

map. Kaiser and Diaz investigated PocketSLAM by combining PocketNav with

FootSLAM[85]. Hardegger et al. proposed ActionSLAM, which used location-related

actions as landmarks[56].

2.4.3 Evaluation

The results show that no standard procedure was implemented in all the papers to

evaluate the precision of PDR. The process by which the algorithm was evaluated dif-

fered greatly between the studies. Moreover, the underlying ground truth regarding
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the positions that an individual passed over time also varied between the experiments.

This lack of consistency makes it harder to compare the performance of each algo-

rithm. Ideally, the exact same procedure and setup is used to create a condition in

which only the selected algorithms differ between measurements.

The testing environments of the studies were heterogeneous, and thus a one-to-one

mapping of accuracies between techniques was not possible. One area of divergence in

terms of environment related to the experiments taking place either in- or outdoors.

A total of 20 studies tested their systems in an outdoor environment, 108 papers

stayed indoors, and 17 studies tested both in- and outdoor. For indoor evaluations,

the ground truths of the tracking trajectories often came from optical motion capture

systems[193], multiple cameras[56], labels along a certain route with a downwards-

facing hand-held camera[42], centre of the route in a floor plan[130], laser distance

meters[36], commercial robot localisation system including an infrared camera and

a set of passive landmarks placed on the ceiling[43] or a general motion tracking

system (MTS)[158]. All of these data collection systems come with their own levels

of accuracy. They also limit the kind of activities that could be performed, as well

as the distances and patterns that can be verified with these devices. For outdoor

evaluations, ground truths came mainly from a GPS receiver[135] or simply by ref-

erencing a predetermined trajectory[146]. The same considerations need to be taken

into account for gold reference systems used in an outdoor environment. Determin-

ing whether a certain accuracy of a PDR technique is generalisable to other scenarios

is limited by the initial experimental setup. Creating results in terms of accuracy

that translate easier to real-world deployments involves the inclusion of more realistic

testing conditions. It is suggested that more work is done to reflect specific scenarios

of interest during the testing of PDR approaches.

The tracking was performed in 2D or 3D. The 2D PDR estimated the trajectory

of a person in the horizontal plane, while the 3D PDR provided an extra vertical

dimension to calculate the current position. Most studies (n = 105) tracked people

in 2D. However, the 3D methodology was still explored in 40 studies. Dimensionality
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was not the only thing that differed in terms of the paths that were set in each

study. There was also a great dissimilarity between the total travel distances in

the experimental setups. The longest walking distance for one particular test was

4,029m[135], while the shortest was found to be 6m[151].

Some studies were conducted to evaluate the robustness of the system, for example,

by testing trajectories with different shapes[179] or by testing with smartphones of

different brands[94]. This is a suitable notion to investigate, as it is well connected

to the need for more real-world evidence for PDR. Including variability into scientific

research allows for a broader interpretation. The same benefit can be claimed for

using multiple volunteers to assess PDR performance. People do produce changed

gaits under different conditions, and capturing more representative groups of users

will contribute to a potential greater uptake of this technology. Currently, the total

number of test subjects varied considerably between studies. The majority of studies

had only one participant (n=96), but 15 studies had more than 10 subjects and the

maximum number of subjects recruited for a single paper was 30.

2.4.4 Errors

No standard method was adopted to calculate the error in all studies, which echoes

the issue that was highlighted for the experimental setup. Researchers showed their

tracking accuracy through a range of error representations. They consisted of calculat-

ing the end-to-end error, determining a position/distance error, defining the position

error rate, giving a return position error, as well as reporting deviations on three axes

and calculating the root mean square error or standard deviation. In this review,

a percentage error was calculated to provide a better comparison between research

studies. The smallest error found was 0.07%, while the largest error is 10.07%. The

median of all errors reported for PDR was around 1%.
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2.5 Discussion

This chapter performed a systematic review and quality assessment of studies that

discussed PDR with wearable sensors. The selected papers were analysed across

several factors to provide an easy comparison for those interested in this topic. The

sensor type, placement, applied algorithm and evaluation methods were reported

across all included studies. It is difficult to objectively compare the different PDR

systems, as the experimental conditions varied along with the error metric that was

used to quantify the performance of the technique. The field could benefit from

adopting a testing method that can be applied more widely whenever systems and

techniques need to be compared. The testing setup should aim to represent real-world

scenarios to be able to generalise the results to potential functional applications.

Figure 2.2 presents an overview of the sensor placements and the average error

for each position. It shows that the attachment of sensors to the foot may yield a

better result, which is likely mainly due to the adoption of ZUPT or ZARU. These are

two algorithms that are often used and can only be used in PDR with foot-mounted

sensors. Filters like KF are also essential to PDR because of the commonly applied

multi-sensor methods. Regarding the type of sensors, almost all the studies used

IMUs, which is recognised as the dominant type of sensor for detecting movements.

It is expected that IMUS will remain one of the core technologies for PDR in the

future.

As stated above, many studies relied on IMUs to perform PDR. In [189], Zhao,

et al. designed an approach to reduce the heading drift for foot-mounted sensors by

implementing dual-gait analysis and multi-sensor fusion. The setup consisted of a

dual-sensor configuration with one IMU on each foot. This study yielded a relatively

small position error of 0.76%. It introduced a novel implementation of dual-gait anal-

ysis for multi-sensor fusion, relying on a Kalman-type filter. The advantage is that

it does not require a personalised parametric adjustment or calibration for each in-

dividual user. It also primarily depends on the gyroscope signal, which has a lower
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Figure 2.2: Average error of different sensor mounted positions.
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signal-to-noise ratio (SNR) than an accelerometer, due to the specificity of the rele-

vant foot movement. However, a foot-mounted system might not always be functional

for prospective users. Another study [128] designed an indoor position estimation al-

gorithm using an IMU located in a smartphone. They created a pitch-based step

detection method that combined the accelerometer and gyroscope signals, with an

additional sensor fusion heading estimation based on the gyroscope and magnetome-

ter. In the study a displacement error of 0. 61% was obtained, which shows that

it could outperform a conventional method in terms of error by a factor of 2. This

described method is easy to implement and could be used in real- time navigation.

However, the results might not generalise well, as it was only tested once on a single

subject. The described experiment was carried out indoors under ideal conditions

that required the subject to walk on an even floor. It remains unclear how these

results translate to surroundings that are less ideal. One study that did perform

tests under more diverse scenarios showed some promising results. In [134], Qiu, et

al. proposed a multi-sensor fusion PDR method using EKF, zero velocity updates

(ZVU) and a clustering algorithm for stance phases distinction. This study com-

pleted the most diverse set of experiments out of all papers that were included in this

review. It reached rather competitive errors of less than 1%, despite the fact that

the method was tested under more challenging conditions than most other studies.

Indoor and outdoor scenarios were tested and included walking on level ground, as

well as climbing stairs. This outcome provided some insights into the robustness of

this method.

Interestingly enough, among all 145 papers, only one of them had ethical approval

in place. This poses a serious question about how some of these data was collected

and stored. It is strongly recommended that reviewers and editors of journals only

accept human-based studies that have obtained the relevant ethical approval.

The summarised results show that in all papers a relatively high level of precision

was reached (1%). However, it is hard to say whether this result had external validity.

Real-world scenarios are very different from most of the testing conditions reported
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in the articles and it is very probable that the error significantly increases when these

systems move outside the lab. People may run, jump, turn, slide, or stumble in

daily activities, and the ground we walk on could be uneven, rugged, or inclined.

Position tracking in these environments is much more complex than walking on a

smooth surface at a constant pace. Pushing system testing to include more challenging

conditions will help create the next generation of PDR systems.

2.6 Conclusion

This chapter concluded the current research status on human tracking with wearable

sensors in the aspects of sensor type, placement, algorithm, and evaluation.

IMU is the most commonly used sensor due to its self-contained property and wide

adoption in electrical devices. It is so far the best option for low-cost, unobtrusive,

discreet, everyday, anywhere wearable human tracking solution. In this thesis, the

IMU has been adopted for the following studies.

The foot and smartphone were concluded to be the most utilised sensor positions

for human tracking, since the movements of feet are directly related to steps, the

swing and stance phases of feet provide perfect reference for calibrations, and the

smartphone is widely used. However, there does not exist a widely used electric device

on the feet, so extra installations and periodically replacements of a special device

on the feet or shoes are needed, which brings unnecessary inconvenience to potential

users. However, smartphones are hard to carry during sports or do not need to be

carried with people all the time in environments such as home or office. The head-

mounted sensor is a better choice for continuous daily tracking, as there are already

many smart objects integrated with IMUs like smart glasses, smart mouthguards,

earphones, etc. More detailed reasons are summarised in the next chapter. In this

thesis, human tracking with head-mounted sensors was studied.
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Chapter 3

A pedestrian dead reckoning
method for head-mounted sensors

In the last chapter, it was found that most previous PDR methods adopted foot-

mounted sensors. However, humans have evolved to keep the head steady in space

when the body is moving in order to stabilise the visual field. This indicates that

sensors placed on the head might provide a more suitable alternative for real-world

tracking. Emerging wearable technologies that connect to the head also make this a

growing field of interest. Head-mounted equipments, such as glasses, are already ubiq-

uitous in everyday life. Other wearable gear, such as helmets, masks, or mouthguards,

are becoming increasingly common. Therefore, an accurate PDR method specifically

designed for head-mounted sensors is needed. It could have various applications in

sports, emergency rescue, smart home, etc. In this chapter, a new PDR method for

head mounted sensors is introduced, compared to two established methods. Data

were collected using sensors placed on glasses and embedded into a mouthguard. The

results show that the newly proposed method outperforms the other two techniques

in terms of accuracy, with the new method producing an average end-to-end error of

0.88m and a total distance error of 2.10%.

3.1 Introduction

As mentioned, in the last chapter, the majority of PDR papers with wearable de-

vices apply sensors on the foot, which is closely followed by publications that use
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smartphone-based sensors. The waist is the third most researched option, after which

the leg and upper torso seem to follow. Only 2 published papers identified looked at

PDR for head-mounted sensing systems. Most studies have adopted foot-mounted

sensors, as this location makes it easier to detect specific gait features that reoc-

cur during walking. This gait information can be utilised by subsequently applying

ZUPT or ZARU techniques. ZUPT and ZARU allow for a reduction in the long-term

accumulation of errors. However, when potential users within a healthcare setting

were asked where they would like to wear sensor technologies, placement on the foot

was rarely mentioned (only 2% of the time this location was mentioned) [9]. It was

also shown that small, discreet, and unobtrusive systems were preferred with many

people referring back to everyday objects. The head provides an interesting location

to attach sensors to, as there are several everyday worn objects that could easily be

adapted for monitoring purposes. Potential objects that the sensor system could be

integrated into are glasses, mouthguards, face masks, helmets, earrings, earphones,

hearing aids, or even caps. Glasses might be more acceptable for monitoring in an

everyday environment, whilst within the (contact) sports community the applicability

of smart mouthguards or helmets might be more appropriate.

Glasses are already a requisite to people who need to correct for certain visual

impairments, and it is estimated that there are 1,406 million people with near-

sightedness globally (22.9% of the world population). This number is predicted to

increase to 4,758 million (49.8% of the world population) by 2050[67]. Besides vision

correction, people also wear glasses to protect themselves from ultraviolet or blue

light or just to accessorise. There are already several smart glasses products on the

market, such as Google Glasses, Vuzix Blade, Epson Moverio BT-300, Solos, and Ev-

erysight Raptor. The field of smart glasses also links well with the growing interest

in providing tracking in virtual reality (VR) environments without the need of any

other technology, accepting what is integrated into the VR headset.

Protective gear is often located on the head. Helmets, masks, and mouthguards

are some of the obvious devices that are used both in industry and sports. It was
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estimated that 40 million mouthguards are sold in the United States each year[15].

With increasing participation in contact sports, the consumption of mouthguards will

continue to increase. Smart mouthguards are already being equipped with sensors for

a variety of purposes [32] [68], which show the feasibility of sensor-embedded mouth-

guards. For contact sports, watches or other wearable objects are not allowed, as they

could cause injuries and therefore form a risk to players. However, the mouthguard

is often required to be worn to protect the teeth, which makes it a very suitable piece

of equipment for sensor integration. This integration would provide an unobtrusive,

head-mounted sensor system that can be worn on-field. Smart mouthguards may

be the future of the mouthguard industry, as they combine physical protection with

relevant information for the sport community [30].

Moreover, in humans, the stability of the visual field is essential for efficient motor

control. The ability to keep the head steady in space allows control of movement

during locomotor tasks [129]. Therefore, placing sensors on the head would provide

a very suitable location, as the whole body is working on stabilising that particular

segment of the system. The head is also where the vestibular system is located, which

acts as an inertial guidance system in vertebrates. Placing the artificial positional

tracking system near the biological one seems a suitable approach.

For head-mounted solutions, Hasan and Mishuk proposed an IMU sensor fusion

algorithm, which uses data collected by a 3-axis accelerometer and a 3-axis gyroscope

embedded in smart glasses [59]. The glasses were worn by a subject and the steps

were detected by applying a peak detection of the accelerometer norm. The linear

model in 1.8 is used to obtain a step length estimation. An EKF is used to then

fuse the accelerometer and gyroscope data to determine the heading direction. The

EKF is the non-linear version of the KF, where the state transition and observation

matrices are Jacobian matrices of non-linear measurement model equations. In this

comparing study, the state vector xt, the measurement vector yt, and the estimated

measurement h are shown in Equation 3.1, where θ represents the Euler angle (◦), ω

is the angular rate (◦/s), and a is acceleration (ms−2) on each axis.
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xt =


θx
θy
θz
ωx

ωy

ωz

 ; yt =


ωx

ωy

ωz

ax
ay
az

 ;h(xt, 0) =


ωx

ωy

ωz

sin θz sin θx
cos θz sin θx

cos θx

 (3.1)

The result found by [59] showed that the sensor fusion positioning technique

achieved an average error between the estimated and real position of 2 m in the

most complex case, when the monitoring time frame was less than 2 min.

Zhu et al.[192] utilised a hybrid step length model and a new azimuth estimation

method for PDR. Steps were detected by the peak detection algorithm or the positive

zero crossing detection algorithm. The hybrid step length model is given in Equation

3.2,

l = (a · (rlf · f + rlv · v) + b) · 4
√
amax − amin (3.2)

where a and b are coefficients, f is the walking frequency (Hz), v is the accelerations’

variance. amax and amin (ms−2) are the maximum and minimum acceleration in

one step, rlf is the Pearson correlation coefficient between step length and walking

frequency, and rlv is the Pearson correlation coefficient between the step length and

acceleration variance.

rlf =

∑N
i=1(li − l̄)(fi − f̄)√∑N

i=1(li − l̄)2 ·
√∑N

i=1(fi − f̄)2
(3.3)

rlv =

∑N
i=1(li − l̄)(vi − v̄)√∑N

i=1(li − l̄)2 ·
√∑N

i=1(vi − v̄)2
(3.4)

The heading information was generated from the hybrid value of the azimuth esti-

mated by gyroscopes and magnetometers:

φhyb = kgyr ∗ φgyr + kmag ∗ φmag (3.5)

where φgyr and φmag (◦) are the heading angles estimated by gyroscope and magne-

tometer, kgyr and kmag are coefficients, and φhyb (
◦) is the hybrid heading estimation.

In their study, they found a maximum error of 1.44m and a mean error of 0.62m.
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We propose exploring the performance of these two PDR methods (which are

specifically for head-mounted sensors) [59][192] and a novel algorithm based on Peak

detection, Mahony algorithm and Weinberg step length model. These three methods

will be compared, and the average end-to-end error, as well as total distance error,

will be recorded. The proposed PDR method has a higher accuracy than the two cur-

rently available methods. The performance is consistent across different sensors and

placements, which verifies its robustness. This method provides a suitable approach

across various hardware platforms and thus supports the potential creation of truly

innovative smart head-mounted systems in the long term.

3.2 Methods

The proposed techniques belong to the field of SHSs. SHSs output a series of step

vectors by detecting each step of the pedestrian, estimating the length and direction

of it, and finally integrating every step to obtain a complete trajectory. The next

position of the pedestrian could then be estimated in Equation3.6 when the current

position after kth step (xk, yk) is known, where lk+1 (in m) and φk+1 (in ◦) represent

the step length and the forward direction of the next step.

xk+1 = xk + lk+1 ∗ sin(φk+1)

yk+1 = yk + lk+1 ∗ cos(φk+1)
(3.6)

3.2.1 Step detection

Accurate step detection is a primary requirement for precise position estimation with

PDR. In this study, a peak detection method was used to detect a step at a heel

strike. First, the norm of the accelerometer signal was calculated by Equation3.7,

where Ax, Ay, Az (ms−2) represent accelerations on three axes.

Accelnorm =
√
A2

x + A2
y + A2

z (3.7)

The accelerometer norm was then filtered by a first-order low pass filter (LPF)

with a cut-off frequency set to 2Hz to eliminate any high-frequency noise, which

48



should be sufficient to capture the walking motion of most users. The filtered signal

peaks that cross the minimum threshold are detected as a step. The period between

two adjacent peaks represents the process of the centre of gravity moving from the

lowest point to the highest point and back again, which corresponds to a single step

when walking. Therefore, peak detection method can be applied to detect each step

(see Figure 3.1).

Figure 3.1: Step detection result.

3.2.2 Step length estimation

The most commonly used models consist of the linear model [103], Weinberg model

[166], Kim model [91], Scarlett model [143] and Shin model [149]. These methods were

tested on single-user gait data (walking in a straight path). The preliminary results in

Table 3.1 show that Weinberg, Kim, and Shin models have the best performance with

head-mounted sensors in this study. Considering the speed of calculation, Weinberg

model was finally chosen as the step length estimator in this study. The application of

a single step length estimator across the PDR algorithms allowed for a more unbiased

assessment of the performance within this study.

49



Table 3.1: Comparison of step length estimation algorithms. (Real distance: 11.28m.)

Methods Linear Weinberg Kim Scarlett Shin
Estimated
distance (m)

8.86 11.11 11.23 10.08 11.12

Error (m) 2.41 0.16 0.05 1.20 0.15
Error rate 21.42% 1.48% 0.45% 10.67% 1.41%

3.2.3 Heading estimation

Mahony et al.[113] proposed an explicit complementary filter, which considers the

problem of obtaining good attitude estimates from measurements obtained from typ-

ical low-cost inertial measurement units. This algorithm requires only accelerometer

and gyro outputs to estimate heading direction. In this study a quaternion-based

derivation of the explicit complementary filter was adopted as the heading estimator.

The explicit complementary filter in terms of unit quaternion representation can

be expressed in Equation3.8, where Ωy is the biased measure of angular velocity by

gyroscope, kP is the proportional gain and kI is the integral gain, p(Ω) = (0,Ω) is a

pure quaternion, b̂ denotes gyro bias, ωmes is a correction term and can be thought of

as a non-linear approximation of the error.

ωmes = −vex

(
n∑

i=1

ki
2

(
viv̂i

T − v̂ivTi
))

˙̂q =
1

2
q̂ ⊗ p(Ωy − b̂+ kPωmes)

˙̂
b = −kIωmes

(3.8)

When implementing it, the accelerometer data (showing the direction of gravity)

is used as a reference. First, the estimated direction of gravity is calculated by the

unit quaternion. The orthogonal matrix corresponding to a rotation by the unit

quaternion q = a+ bi+ cj+ dk (with |q| = 1), when post-multiplying with a column

vector, is given by:

R =a2 + b2 − c2 − d2 2bc− 2ad 2bd+ 2ac
2bc+ 2ad a2 − b2 + c2 − d2 2cd− 2ab
2bd− 2ac 2cd+ 2ab a2 − b2 − c2 + d2

 (3.9)
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Then the estimated gravity direction is:

v̂i = R̂T
[
0 0 1

]T
=
[
2bd− 2ac 2cd+ 2ab a2 − b2 − c2 + d2

]T (3.10)

The measured gravity direction is:

vi =
a

|a|
(3.11)

The error is given as the cross product between estimated gravity direction and mea-

sured direction:

ei = vi × v̂i (3.12)

In this sample period, the quaternion rate of change is:

˙̂qi =
1

2
q̂i−1 ⊗ p(Ωi + kP · ei + kI ·

N∑
i=1

ei) (3.13)

The estimated quaternion in this sample period is:

q̂′i = q̂i−1 + ˙̂qi · t (3.14)

where t is the length of sample period. Finally, the normalised quaternion will be

outputted:

q̂i =
q̂′i
|q̂′i|

=
[
q0 q1 q2 q3

]T
(3.15)

After calculating this for each sample period, a series of estimated quaternions is

generated. To obtain the heading angle, each quaternion is subsequent transformed

into an Euler angle:ϕθ
ψ

 =

atan2(2(q0q1 + q2q3), 1− 2(q21 + q22))
asin(2(q0q2 − q1q3))

atan2(2(q0q3 + q1q2), 1− 2(q22 + q23))

 (3.16)

The Mahony algorithm can also fuse magnetometer data into the calculation.

However, because of the unpredictable magnetic interference and noise in the low-

cost sensors, our proposed method did not include any magnetometer data in the

final estimation.
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3.3 Experimental conditions and results

3.3.1 Hardware description

The sensor that was placed on the glasses and the mouthguard is the SensorTile Micro-

controller Unit (MCU) module (STEVAL-STLCS01V1), which includes a low-power

3D accelerometer and 3D gyroscope (LSM6DSM), ultra-low power 3D magnetometer

(LSM303AGR), Bluetooth low energy network processor

(BlueNRG-MS), 32-bit ultra-low-power MCU with Cortex®M4F (STM32L476JG),

and a 100 mAh lithium-Ion polymer battery. Data were collected at 20Hz and trans-

ferred to a mobile phone by Bluetooth.

The MCU was attached to the glasses and embedded into a mouthguard. The

mouthguard was made out of two Ethylene-vinyl acetate (EVA) layers with 0.6 mm

thickness, which were thermoformed using the upper teeth cast of the subject. The

MCU was embedded between the EVA sheets and placed near the hard palate of the

oral cavity (Figure 3.2a). The MCU was also attached to the legs of a pair of glasses

with a sensor located near the left temple (Figure 3.2b). Both placements provided a

rigid arrangement that ensured that the sensors precisely followed the head motions.

3.3.2 Data collection

Three healthy adults voluntarily participated in this study, including one female vol-

unteer and two male volunteers. In [69], the majority of PDR studies (66.2%) had

only one participant, which made the results somewhat limited. This study had 3

subjects and data were collected 4 times with each device.

The tests were carried out on a hard outdoor surface on a clear day. The red

dotted line shown in Figure 3.3 is the walking trajectory used in the tests. The set

path formed a rectangle with an approximate length of 25.5m and a width of 8.5m.

The satellite image shown in Figure 3.3 is from Google Map.

Subjects were asked to face the walking direction and stand still for 5 seconds at

the beginning of each data collection trial. Then they were asked to walk at a normal
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(a) Smart Mouthguard

(b) Glasses with MCU

Figure 3.2: Devices used in this study.
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Figure 3.3: Top view of the data collection trajectory that was set out for each subject.
The red dotted line shows the trajectory subjects were asked to walk.
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and constant speed while keeping their head facing the walking direction. When the

subject reached the end of the trajectory, they were asked to stop walking and stand

still again for another 5 seconds. Specific information on walking speed was provided,

as it is known that small changes in the instructions given could change the result of

the test [8]. Ethical approval was obtained from the University and this experiment

was part of a larger study (R43470/RE001).

All data analysis was conducted in MATLAB (R2020a, Mathworks, United States).

3.3.3 Results

Figures in Figure 3.4 show the estimated trajectories with glasses and mouthguard by

Hasan’s, Zhu’s and the newly proposed algorithm. The proposed method generated

trajectories that are closer to the ground-truth trajectory compared to the other two

methods.

The end-to-end error represents the distance between the start point and the end

point of the estimated trajectory. The total distance error is the absolute difference

between the real and estimated trajectory lengths. The mean end-to-end error of

Hasan’s method is 2.62m, and Zhu reached 5.41m, while the new method reached a

mean end-to-end error of 0.88m. Figure 3.5a shows that Zhu’s method has a larger

variance of the error with different sensor layouts, while the proposed method has the

smallest mean error and the smallest variance for both sensor locations.

The novel method has a mean total walking distance error of 1.43m, which is

2.10% of the total length. However, Hasan’s and Zhu’s methods have a relatively

larger error rate of 25.97% and 36.36%, respectively. Total distance errors are shown

in Figure 3.5b.
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Glasses Mouthguard

Subject 1

End-to-end error (m) 0.20 10.71 3.00 1.70 4.37 5.59
Total distance error (m) 1.90 62.49 21.60 1.16 25.83 24.99

Subject 2

End-to-end error (m) 0.92 6.53 1.54 1.31 3.06 2.80
Total distance error (m) 0.15 22.92 12.53 0.23 34.63 10.08

Subject 3

End-to-end error (m) 0.47 4.26 2.12 0.67 3.11 2.81
Total distance error (m) 0.32 0.70 17.73 1.37 19.81 16.94

Figure 3.4: Estimated trajectories for the three methods plotted against the ground-truth. One of the measurements (randomly
selected) of each subject is shown for each placement. The end-to-end error and total distance error (m) are shown in the
sequence of proposed, Zhu’s, and Hasan’s algorithm.
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3.4 Discussion

The results show that the end-to-end and total distance error was the lowest in terms

of central tendency for the newly proposed method. Extra tests were carried out with

a different set of sensor platform (smartphone) to provide a further preliminary cross-

platform comparison. Data were collected using a Huawei P30 smartphone, which

consists of a 3-axis accelerometer and gyroscope (ICM-20690) produced by TDK In-

venSense and a 3-axis magnetometer (AK09918) from Asahi Kasei Microdevices. The

smartphone was placed on the cranial part of the head and was held securely in place

using adaptable straps. Only one subject was tested under this head-mounted smart-

phone condition. The three methods all performed comparatively well for heading

estimation under smartphone conditions (see Figure 3.6), likely due to the higher

accuracy of the IMU in the smartphone compared to the MCU. However, when a

cheaper IMU is used (such as the one attached to the glasses and mouthguard), the

results of Hasan’s method and Zhu’s method quickly perform with greater errors (Fig-

ure 3.4). The newly proposed method in this article seems rather robust (in terms

of errors) even when the sensor platform changes, indicating that a more broader

inclusion of hardware is possible and that the system is likely to perform relatively

stable even under less optimum operational conditions.

For the heading estimation, the error of Zhu’s method was heavily influenced by

sensor type and layout. The main reason for the lack of robustness in this algorithm is

probably due to the fact that the noise from the sensors is not well compensated for.

The hybrid heading estimation is simply the proportional sum of the raw integration of

gyroscope and magnetic direction, with the proportional gain set manually. Although

it sets a threshold for the gyroscope to start integration only when the Euclidean norm

of the gyroscope data is above this threshold, the bias in gyroscopic data still remains

and thus the integration error remains. Heading estimation from the magnetometer

is also still a problem, because the geomagnetic field is not always uniform [19] and

it can easily be disturbed by hard or soft magnetic interferences. In addition, the
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(a) End-to-end error

(b) Total distance error

Figure 3.5: Errors across all subjects for each condition. Horizontal lines represent
median values. A triangle is used to represent data from subject 1, a circle is given
for subject 2 and data from subject 3 is shown as a cross.
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Figure 3.6: Estimated trajectories for the three methods plotted against the ground-
truth for a head-mounted smart phone. The measurement is from one subject.

oscillation during walking creates non-negligible high-frequency noise in the heading

estimation.

Regarding the step length estimation, Hasan’s and Zhu’s methods yield larger er-

rors for a range of reasons. Hasan’s algorithm used a linear model with the coefficient

values adopted from another study, which obtained parameters from 4000 steps of

23 different people[103]. The linear regression based on these data would provide a

general model, and this model does not necessarily scale well across individuals. Es-

pecially if the conditions, subjects, or instructions differ from the original database.

Generating specific parameters for each individual is therefore a key factor in ob-

taining more accurate step length estimates. As for Zhu’s method, the step length

estimation model combines information of step frequency, acceleration variance, as

well as maximum and minimum accelerations in one step. This is a more scalable

solution that should yield more accurate estimates. Nevertheless, this method only

performs well when the conditions and sensor placement are exactly the same be-

tween the step length estimation session and the subsequent tracking sessions. If

changes occur between these sessions then the step length estimate might no longer

be accurate enough under the new conditions. Even when the temperature or sen-

sor changes, acceleration variance, maximum, and minimum acceleration can start to
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vary, because of the changing noise or the different sensor properties[107]. This can

lead to contrasting estimations even when all other conditions remain constant.

The attitude representation in Hasan’s method and in the proposed method of

this study is notably different. The former uses Euler angles in the EKF, which

consists of three rotation angles around three axes. The latter adopted quaternions

within the Mahony algorithm. Euler angles are more human understandable but

have several disadvantages. These include the ambiguity in the rotation sequence

of axes and the possible occurrence of a gimbal lock, which leads to the loss of one

degree of freedom. In contrast, expressing rotations as unit quaternions has some ad-

vantages, such as: concatenating rotations is computationally faster and numerically

more stable; extracting the angle and axis of rotation is simpler; interpolation is more

straightforward and quaternions do not suffer from gimbal lock as Euler angles do

[34]. Although the EKF with Euler angle in Hasan’s method performs well, it would

be more stable if quaternions were used.

Hasan’s method and the newly proposed method showed high accuracy in heading

estimations, proving the effectiveness of EKF and Mahony’s algorithm in the attitude

estimation. This is reflected in the fact that they are already one of the most popular

algorithms in this area. In EKF, usually there are two parameters that need to be

set and tuned, which are the process noise covariance matrix Q and measurement

noise covariance matrix R [110]. In Mahony’s algorithm, there are also two param-

eters that need to be adjusted: proportional gain kP and integral gain kI . In both

of these algorithms, the parameters are found by tuning until the best results are

achieved. This is, of course, time consuming and there is no guarantee of optimality.

More importantly, when the sensor position changes, for example, from glasses to

the mouthguard, the parameters need retuning. More research on automatic param-

eter tuning will be useful, as it can help with the creation of the next generation of

algorithms.

The processing of the data recorded in this study was done off-line. However,

many applications will need online PDR to provide real-time navigation or localisa-
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tion. PDR algorithms should be assessed for online implementation feasibility, and

preliminary estimates of running time provide some insight into this. The running

time of each method is shown in Table 3.2. Hasan’s method takes much more time

than the other two methods because the Jacobian calculation in EKF is complex and

time-consuming. The mean running time of one sample is 0.0661s, which indicates

that the sampling frequency will be lower than 15Hz. Empirical run-time estimates

are limited as algorithms are platform-independent and for that reason more theoret-

ical assessment needs to take place to compare the complexity of these algorithms,

which is beyond the scope of this chapter.

Table 3.2: Running time of methods.

Methods Hasan Zhu Proposed
Number of samples 701 701 701

Total time (s) 46.34 0.23 0.95
Mean time (s) 0.0661 0.0003 0.0014

Subjects were instructed to follow the reference path shown in Figures 4 and 6.

However, it is likely that there is some deviation from the ideal path, especially during

turning, as subjects were asked to walk in their own preferred manner. However, all

subjects started and stopped always at the same location. Caution needs to be taken

regarding the generalisability of the results. Different environmental conditions, such

as pathways taken or surrounding objects, can yield different outcomes. In this study,

a simple walking pattern (rectangle) was selected to minimise any variability in the

trial between subjects and sensor placement. It should be noted that most studies

use only a single person in their testing [69] and that this study included multiple

subjects. It will be useful for the field to further expand the number of subjects, as

well as environmental conditions (e.g. walking surface) during experimental testing

to create ever increasing levels of external validity.

The method presented in this chapter was the algorithm that performed the best

in all locations of the sensors. This new technique offers an approach that can be

generalised across sensors and smart head-mounted equipment, such as helmets, hats,
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glasses, mouthguard, dentures, or earphones. The ability to have a high-performance

general algorithm for head-based systems can provide new opportunities for a range

of industries, ranging from healthcare to entertainment.

The data collected by mouthguard was expected to have higher accuracy because

it is closer to the longitudinal axis of the body. But the results show that glasses got

lower values in both end-to-end error and total distance error. The temperature affect

was the first factor considered. The normal oral temperature is 37 ◦C which has a 12◦C

difference to the normal testing environment temperature 25◦C. But according to the

IMU hardware datasheet, sensitivity change of the linear acceleration vs. temperature

is ±0.01%/◦C, of the angular rate is ±0.007%/◦C; the linear acceleration zero-g level

change vs. temperature is ±0.1mg/◦C; the angular rate typical zero-rate level change

vs. temperature is ±0.015dps/◦C. They all change very little over temperature and

time. Another potential reason is that the board in the mouthguard is not rigidly

fitted inside. There is extra space in the cavity of the mouthguard that can cause

board movements inside during walking with unconscious mouth or tongue muscle

movements. More importantly, the size of the dataset is limited, which may not be

representative of the overall population, leading to bias in the estimation.

The current experiment did not collect synchronised data from the different lo-

cations. Thus, any assessment of the relationship between these locations needs to

take into account, as well as the subject variability between trials. Nonetheless, the

task at hand was relatively simple to complete, and variability is likely to be limited

within a subject. Information about how strongly these placements are correlated

allows for a further insight in terms of potential reciprocal nature of these systems.

Spearman’s rank correlation coefficient (rs) was calculated to assess this, as a Pearson

Correlation is susceptible to outliners in small sample sizes. Coefficients were deter-

mined between the glasses and mouthguard condition for the proposed (rs= 0.4261,

p= 0.0390), Zhu’s (rs= 0.6435, p=0.0009) and Hasan’s (rs= 0.9920, p= 3.0338e-21)

method. It showed a strong correlation across all methods between the locations.

This indicates that these systems can act as potentially interchangeable. More work
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is needed to further confirm these preliminary findings regarding the association be-

tween different head-mounted sensor positions.

3.5 Summary

In this chapter, a PDR method for head-mounted equipment was proposed. Peak

detection was used to detect steps and heading estimation was carried out with the

Mahony algorithm. The Weinberg model was implemented to obtain step length

estimation. This proposed method was executed in MATLAB with another two

methods for performance comparison. To evaluate the accuracy of three methods, we

collected walking data on a rectangle trajectory using low-cost IMUs on glasses and

in a mouthguard, respectively. The result shows that the proposed method reached

an average end-to-end error of 0.88m and a total walking distance error of 2.10%.

A consistent performance was obtained for the novel algorithm across conditions

indicating the potential robustness of the proposed method. This algorithm provides

potential implementation into various hardware platforms, which can be translated

into truly innovative smart head-mounted systems in the long term.
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Chapter 4

HeadSLAM: pedestrian SLAM
with head-mounted sensors

PDR with IMUs is one of the most promising solutions within the human position

tracking domain, as it does not rely on any additional infrastructure, whilst also

being suitable for use in a diverse set of scenarios. However, PDR is only accurate

for a limited period of time before unbounded accumulated errors, which will affect

the position estimate. Error correction can be difficult, as inertial tracking has no

way to calibrate with the real world without other sensors. HeadSLAM, a method

specifically designed for head-mounted IMUs, is proposed to improve the accuracy

during longer tracking times (>10 mins). Research participants (n=7) were asked

to walk in both indoor and outdoor environments with head mounted sensors, and

the accuracy obtained with HeadSLAM was subsequently compared to that of PDR

method. A significant difference (p <.001) in the average root mean square error

and absolute error was found between the two methods. HeadSLAM had a consistent

lower error across all scenarios and subjects in a 20-hour walking dataset. The findings

of this study show how HeadSLAM algorithm can provide a more accurate long-term

human tracking for low-cost head-mounted sensors. The improved performance can

support affordable applications for infrastructureless navigation.

64



4.1 Introduction

In recent years, human position tracking technology has drastically changed modern

life by offering location information for a variety of scenarios. In some scenarios,

long-term stable tracking is required for continual LBS. For example, physical activity

through sports participation has become an essential part of ensuring healthy living

in today’s world and key to this is continual tracking of workload [156] for monitoring

or optimising their physical performance during sports. A robust long-term position

tracking method provides a suitable method for determining external load during

sport activities. Subsequently, this can be combined with objective internal load

measurements to accurately provide a complete picture of an athlete’s workload [41].

Tracking time during normal sports would be around an hour. Long-term positioning

can also facilitate new ways of human-environment interaction, in which positional

information could be leveraged to create responsive systems. For example, smart

homes can use user position information to make better decisions on how to support

those living in these spaces[124]. The tracking time needed for smart homes may

last for hours. These responsive interactions could be particularly interesting for

healthcare settings, such as care homes. For example, services can be deployed to

provide assistance to the elderly by identifying their daily routines and establishing

care plans that are specifically developed around the patient, instead of the other

way around. It could allow for more personalised healthcare, by integration of user

mobility patterns and mapping of their physical behavioural routines. The tracking

time in care homes would last for a whole day.

Inertial tracking is still a competitive and user-friendly method in long-term po-

sition tracking for a lot of reasons: IMUs are energy efficient and could last for a

longer time after charging (i.e., lower charging frequency); IMUs are small, discreet,

portable, and easy to implement in everyday objects like glasses, mouthguard, ear-

phones,etc., which reduce the affect on people’s normal daily life to the lowest level;

Inertial tracking is self-contained and could be used in any scenarios without extra
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cost on infrastructures or privacy issue; IMUs are affordable, and inertial tracking

does not need complex implementations, which allows it to be generalised to more

users and more scenarios even in the middle-and low-income countries.

A lot of inertial tracking methods have been proposed by scientists and declared

to have high accuracy, which have been summarised in Chapter 2. However, 91% of

the summarised studies tested in a tracking of less than 10min (i.e., <840m). These

techniques are only accurate across a ”short” time period, and they become prone

to drifting errors when measurement time increases. The accumulated error and the

lack of a reliable re-calibration way subsequently limits the utility of this method.

Thus, it is essential to find a pedestrian tracking method that has a lower error when

tracking is applied over longer periods of time.

SLAM is a computational problem of constructing or updating a map of an un-

known environment, while tracking the location of the object at the same time[40].

Current SLAM methods can generate accurate location tracking trajectories and en-

vironment maps by using reference landmarks to reduce errors. These landmarks can

be observed with exteroceptive sensors, such as cameras[119], laser rangefinders[120],

LiDAR[63] or sonar[137]. However, these extra sensors also come at an added cost,

and image capturing devices face the problem of privacy or security threats when

used in a private environment. Michael Angermann and Patrick Robertson previously

proposed a FootSLAM algorithm, which only uses accelerometers and gyroscopes em-

bedded in a foot-mounted IMU. FootSLAM applies a Rao-Blackwellised particle filter

to build a probabilistic transition map. This approach was able to prevent unbounded

error growth, and they presented two subsequent extensions of this (PlaceSLAM and

FeetSLAM)[4]. Susanna Kaiser and Estefania Munoz Diaz subsequently created the

PocketSLAM, which is a combination of a pocket navigation system with a Foot-

SLAM method [85]. They showed that it was possible to reduce error accumulation

with this technique.

In the last chapter, a PDR method specially designed for head mounted IMUs

(HeadPDR) was proposed, which could generate accurate results for short trajectories,
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during brief recording periods (< 1 min). In this chapter, SLAM is combined with

the previously proposed HeadPDR method to determine if this would yield lower

position errors compared to application of the PDR method on its own. It has been

tested for indoor and outdoor environments, which simulates a sports and healthcare

setting. The contribution of this chapter consists of proposing a SLAM method for

head-mounted sensors, which only requires low-cost portable IMU data and remains

accurate over longer time periods.

4.2 Methods

HeadSLAM method consists of two consecutive stages; (i) PDR and (ii) SLAM. The

PDR estimates the heading direction and the length of each step based on raw ac-

celerometer and gyroscope data. This is then fed into the SLAM to generate a suitable

map. The whole process is shown in Figure 4.1.

4.2.1 PDR

A PDR algorithm designed for head-mounted sensors was proposed in the last chapter

[68] and is adopted in this study. It uses SHSs. The SHSs output a series of step

vectors by detecting each step of the user and estimating the length and direction of

it. This information is then integrated throughout each step to obtain a complete

trajectory. The next position of the pedestrian could then be estimated with (4.1).

The current position after the kth step (xk, yk) is entered into the equation. The lk+1

and φk+1 represent the step length in metres (m) and the forward direction of the

next step given in degrees (◦). The iterative process provides an updated estimate of

the x and y position, which reflects the 2D space in which the person is moving.

xk+1 = xk + lk+1 ∗ sin(φk+1)

yk+1 = yk + lk+1 ∗ cos(φk+1)
(4.1)
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Figure 4.1: Overview of HeadSLAM method. The Simultaneous localisation and
mapping (SLAM) step is performed after the Pedestrian Dead Reckoning (PDR)
in order to create a map based on the data collected from head-mounted inertial
measurement units. The gray arrows show the sequence of the flowchart. The dark
blue arrows represents the data or variables usage or update.
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4.2.1.1 Step detection

Step detection is updated in a manner similar to the method used in [68], which also

adopts a peak detection approach to identify a step in a heel strike. The vertical

acceleration (z-axis) is first filtered by applying a first-order low pass filter (LPF)

with a cut-off frequency set to 2Hz to eliminate any high frequency noise. This is

sufficient to capture the general walking motion of most users. Peaks and valleys in

the filtered signal are then identified. If the value difference between a peak and its

subsequent valley exceeds the predetermined threshold (0.5 m/s2), the time interval

between the previous and subsequent valley will be recognised as a step.

4.2.1.2 Step length estimation

Weinberg’s model[166] was used as step estimator:

step length = k · 4
√
amax − amin (4.2)

where k is a constant coefficient for unit conversion, while amax and amin (ms−2)

indicate the maximum and minimum acceleration measured in the z direction for a

single step. It was proved to perform best for personalised sets of constants compared

to 12 representative step length estimation models.[160]

4.2.1.3 Heading estimation

A quaternion-based derivation of the explicit complementary filter [114] was adopted

as the heading estimator, which considers the problem of obtaining good attitude

estimates from measurements obtained from typical low-cost inertial measurement

units.

The complementary filter can also fuse the magnetometer data into the calculation.

However, this study did not include any magnetometer data in the final estimate, due

to unpredictable magnetic interference in indoor spaces, the noise in these low-cost

sensors, and the expectation for longer battery life of the wearable devices[102, 99,

154].
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4.2.2 HeadSLAM

The length and heading direction of each step (estimated by the PDR) are fed into

the SLAM for calibration. The output from this is subsequently used to build the

map.

In the SLAM algorithm, the two-dimensional space is first divided into a grid of

adjacent hexagons of a given radius. The Rao Blackwellised Particle filter (RBPF),

which is applied in the FastSLAM algorithm[118], was then used.

Rao-Blackwellised Particle filter

Rao-Blackwellisation is a statistical technique that aims to improve the efficiency of

estimating certain parameters in a probabilistic model. The basic idea is to exploit the

conditional independence structure of the problem to obtain a more efficient estimator

for some subset of the parameters.

The Rao-Blackwell theorem states that: Suppose T is a sufficient statistic for a

parameter θ, θ̂ is an estimator of θ, θ∗ = E(θ̂|T ) which is the conditional expectation

of θ given T . θ∗ is a superior estimator in terms of mean squared error and it is the

Rao-Blackwellised estimator of θ̂:

E(θ∗ − θ)2 ≤ E(θ̂ − θ)2

The RBPF is an extension of the basic PF that incorporates the principles of

Rao-Blackwellisation to provide more efficient and accurate estimates. RBPF can

overcome some of the issues associated with the curse of dimensionality by analyti-

cally marginalising over parts of the state space. RBPF decomposes the state space

into two parts: one for which an analytical solution is possible (typically a lower-

dimensional subset) and the other for which particles are used. The example of a

decomposition equation is Equation 4.3, where the entire state space is decomposed

into map estimation and pose estimation. This can lead to more accurate and com-

putationally efficient state estimates compared to a regular particle filter.
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FastSLAM

FastSLAM adopted RBPF for localisation. The differences between FastSLAM and

ours are as follows.

• Environment representation: FastSLAM used a set of landmarks. HeadSLAM

used grids.

• Map estimation: FastSLAM used EKF for each particle. HeadSLAM used

multinomial states in grids.

HeadSLAM

The SLAM problem was decomposed into a pedestrian localisation problem and a

mapping problem conditioned on the pedestrian’s position (pose). The posterior can

be simplified as :

p(P0:k,M|Z1:k) = p(M|P0:k) · p(P0:k|Z1:k) (4.3)

where P and M represent the pose and the map, Zk is a noisy measurement of the

difference between Pk−1 and Pk, which is the step vector estimated from the previous

PDR layer. The pose could be estimated recursively:

p(P0:k|Z1:k) ∝ p(Zk|Pk−1:k) · p(Pk|P0:k−1) · p(P0:k−1|Z1:k−1) (4.4)

p(Zk|Pk−1:k) is the likelihood function, which adopts a Gaussian distribution to

draw possible poses after each step. The errors of the estimations of the step length

and rotation are treated as Gaussian distributed. So in each step, the particles are

sampled and updated following a Gaussian distribution with a mean of the estimated

value and a variance defined by the noise in measurements and errors in PDR model.

The pose transition function p(Pk|P0:k−1) is computed by marginalising over the map.

Integrating it yields:

I i ∝
N ẽ

h̃
+ αẽ

h̃

Nh̃ + αh̃

(4.5)
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where N ẽ
h̃
is the number of times the i-th particle crossed edge ẽ, Nh̃ is the sum of

the crossed times of all edges of the hexagon in this particle’s map counters. αẽ
h̃
and

αh̃ =
∑5

e=0 α
ẽ
h̃
are the prior counts. The result is used in the particle weight update:

wi
k ∝ wi

k−1 · I i (4.6)

where wi
k denotes the weight of the i-th particle at step k. If a particle crossed an

edge which has been crossed more frequently than the other edges of the previous

hexagon, it tends to have more weight. Thus a consistent walking pattern would be

generated.

Each particle contains information about the previous track and the probability

of transitions from each hexagon to its adjacent hexagons, which is represented by

a probabilistic map. The final result is the best map based on the particle with the

highest weight.

4.3 Experimental conditions

4.3.1 Data collection site

The data collection was conducted in two environments, consisting of an indoor and

an outdoor setting. Indoor tests were carried out in a building with a known floor

plan, while outdoor experiments were carried out using a basketball court, to have

exact measurements for the reference map. These maps were used as ground truths

to allow a direct comparison with the PDR and HeadSLAM outcomes.

4.3.2 Participants

There were 5 volunteers for the indoor data collection session and 5 volunteers for

the outdoor data session with 2 people participating in both. Demographic infor-

mation of the participants is given in Table 4.1. All participants signed a consent

form before data collection started, and they were given the opportunity to ask any

questions before deciding to participate in this study. Ethical approval was obtained
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from the university ethics committee and this experiment was part of a larger study

(R70833/RE001).

Table 4.1: Demographics of participants.

Subjects 1 2 3 4 5 6 7
Age 25 20 23 24 49 46 47

Height (m) 1.80 1.81 1.77 1.66 1.60 1.75 1.60
Weight (kg) 80 74 61 58 55 89 62

Gender M M F F F M F
Indoor tests ✓ ✓ ✓ ✓ ✓
Outdoor tests ✓ ✓ ✓ ✓ ✓

4.3.3 Devices

The sensor adopted in the experiments is the SensorTile Microcontroller Unit (MCU)

module (STEVAL-STLCS01V1), which includes a low-power 3D accelerometer and

3D gyroscope (LSM6DSM), ultra-low power 3D magnetometer

(LSM303AGR), Bluetooth low energy network processor

(BlueNRG-MS), 32-bit ultra-low-power MCU with Cortex®M4F (STM32L476JG),

and a 100 mAh lithium-Ion polymer battery. Data were collected at 20Hz and trans-

ferred to a mobile phone by Bluetooth. Two modules were used for each session with

different placements. One was firmly attached to a pair of glasses, whilst the other

was connected to a cap. The placement is shown in Figure 4.2.

4.3.4 Experimental setup

Before experiments, participants were asked to put on the cap and wear glasses with

the sensors on them. They were requested to place these on their head in such a

way that they remained comfortably in contact with the head during walking. Each

volunteer was asked to complete the test, for a given environment, six times. Each

test took around 10 minutes. In the first three tests, subjects were requested to walk

the same predetermined trajectories. The last three tests consisted of volunteers

walking randomly in the indoor space or randomly on the lines of the basketball
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(a) Glasses with IMU

(b) Cap with IMU

Figure 4.2: Placement of sensor modules on glasses and cap, as used in this study.
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Figure 4.3: A subject wearing the devices.

court (outdoor). In all tests, participants were instructed to walk at a normal and

constant speed while keeping their head facing the walking direction. A total of 60

datasets were collected in all experiments. Each dataset contained both the data from

the instrumented glasses, as well as from the instrumented cap.

4.3.5 Statistical analysis

A total of 3 error measurements were computed by comparing the positional results of

the algorithms with the known reference map or path. These error measurements con-

sisted of the Root Mean Square Error (RMSE), average absolute error, and maximum

absolute error. All errors were computed across the entire trajectory and in metres.

A Kolmogorov-Smirnov (K-S) test was applied to determine if the data were normally

distributed. The K-S test showed that they were not normally distributed, which was

further confirmed by visual inspection of the histograms. The errors obtained by the

PDR were therefore compared with those of headSLAM using the Wilcoxon signed

rank test. A p value of less than 0.05 was considered significant. All data analysis

was conducted in MATLAB (R2020a, Mathworks, Natick, MA, USA).
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4.4 Results

An example of the indoor test results is shown in Figure 4.4 and for the outdoor test

results an example is shown in Figure 4.5. The light blue shape is the passable area

extracted from the floor plan and acts as a reference for the results generated by the

PDR and HeadSLAM. The red lines in (a) represent the trajectory estimated by PDR

method. The blue lines in (b) show the trajectory of the particle with the highest

weight in SLAM. The red hexagons in (c) represent the trajectory map generated

by HeadSLAM, with the heavier shades representing those with a higher visiting

frequency. The results for all subjects on all 120 tests can be found here1.

The obtained errors are shown in Table 4.2 for the two different environments. The

ground truths consist of the floor plan for the indoor environment, and the lines on

the basketball court for the outdoor environment. The data are split further between

PDR and HeadSLAM methods. The K-S test showed that there was a significant

difference between PDR and HeadSLAM method (in all 3 error measurements) for

both the indoor and outdoor environment.

Table 4.2: Errors in meters (m) are given in- and outdoor environments for both
PDR and HeadSLam methods. RMSE is the Root Mean Square Error. A significant
difference based on Wilcoson signed-rank test (p value 1.63 · 10−11) was found for all
six direct comparisons between the PDR and HeadSLAM outcomes.

Environment Algorithm RMSE Average absolute error Max absolute error
Indoor PDR 2.2943 1.4108 8.2473

HeadSLAM 0.3399 0.1610 1.6597
Outdoor PDR 2.4358 1.7712 7.6218

HeadSLAM 0.8343 0.6400 2.8368

4.5 Discussion

The results showed that HeadSLAM performed better than the PDR in all volunteers

and environments. This increase in performance is likely due to the efficient calibra-

tion approach of HeadSLAM. However, the effectiveness of HeadSLAM only exists

1https://zenodo.org/record/5562364#.ZBI7WXbP3tU
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(a) PDR

(b) HeadSLAM

(c) Map

Figure 4.4: Indoor test results example.
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(a) PDR

(b) HeadSLAM

(c) Map

Figure 4.5: Example of outdoor test results.
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when trajectories on a confined path are repeated and overlap, such as walking in the

corridor for several laps. The overlaps allow for re-calibration and provide updates

to the probability map that is being generated. HeadSLAM is thus applicable for

scenarios in which people cover the same path multiple times.

Our dataset, containing around 20-hour walking data (2 devices · 5 subjects ·

2 scenarios · 6 repeats · 10 minutes walking), is much larger than previous studies.

[85] used 1 subject to test indoor and outdoor once with 17 minutes of walking in

total. [4] used 1 subject to test three times with 30 minutes walking in total. A

larger dataset is essential to validate the robustness of these systems and provides

a better way to ensure that it performs across different movement behaviours. The

situations encompass an indoor setting within the office and an outdoor setting on

a basketball court, to increase the complexity of the trajectory, which now includes

straight lines, curves, and turns. However, its representation remains inadequate to

capture all intricate situations in real-world scenarios, as most corners of the map

adhere to right angles. This problem has been addressed in the next chapter with

more complex maps.

Although the size of the data set is large, there are other aspects that can lead to

potential errors during experiments. For example, although subjects have a balanced

gender ratio, the height, weight, and age distribution of the subjects did not follow the

real distribution of the entire population, which can lead to bias in the model. Another

aspect that may lead to unforeseen errors is the obvious head motion. The head was

assumed to be relatively still throughout the experiments. However, various subjects

exhibit distinct motion patterns, including both larger and smaller head movements.

The affect of head motions in the tracking will be solved in the next chapter.

It should be noted that the current approach still requires parameter optimisa-

tion. This is currently not conducted in a automated manner. Automatically tuning

the parameter is one of the key issues that need to be solved before practical ap-

plication can be considered. Since there are internal drift errors in low-cost sensors

and because of external factors which influence the sensors such as temperature, the
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optimal parameters in Mahony algorithms and the particle filter will be different in

each test. FootSLAM could solve this problem by calculating them based on the data

collected in the beginning when the foot was kept still. For example, [161] used the

adaptive threshold in ZUPT. However, it is impossible to leverage this technique in

HeadSLAM, because the head cannot be kept completely still when the participant

is in standing pose. Fixing the head during a calibration period does not provide a

minimally obtrusive method of tracking. This is something that should be explored

in further research.

It should also be noted that other parameters also vary between people. The

k in the step length estimation will differ between individuals. In this study, these

parameters were adjusted manually. If a plug-and-play system is required for a better

user experience, then all these parameters should be set automatically. Itzik Klein

and Omri Asraf proposed a method that uses deep learning to estimate the Weinberg

gain[92]. This could be an interesting way to solve some of these issues.

HeadSLAM approach presented here can be useful for human tracking at scale.

It only requires low-cost IMUs, whilst other infrastructure solutions for positional

tracking can be expensive to setup and maintain. It is also not prone to privacy issues,

which could arise when cameras are used. More importantly, the system can be fully

self-contained creating possibilities for very secure tracking. Although HeadSLAM

could work without external infrastructures or previously known information, there is

also a possibility to combine it with other methods to create a more accurate or robust

system. Switching between HeadSLAM and approaches that require infrastructure

can also solve loss of position estimation whenever, for example, there is a temporarily

weak or loss of WiFi/GPS signal.

The K-S test is a non-parametric statistical test used to determine whether a

sample comes from a specific probability distribution or comparing if two samples

follow the same distribution. It has been used in this chapter twice to check whether

one sample follows the normal distribution and difference of two lists of errors from two

methods. They both rejected the null hypothesis that the distributions are the same.
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In practice, the K-S test can be very sensitive to differences between distributions,

especially more sensitive near the centre, potentially leading to a rejection of the null

hypothesis even if the bulk of the distributions is similar.

4.6 Summary

HeadSLAM could reach an average RMSE of 0.34m indoor and 0.83m outdoors during

a 10-minute walk, which shows a significant improvement compared to a PDRmethod.

It shows the potential of longer-term stable inertial tracking based on head-mounted

low-cost sensors, which allows for possible cheap applications in healthcare, sports,

or emergency services. The particle filter in HeadSLAM approach smooths out small

errors that are due to head motions. However, further research will need to conducted

to deal with the problem of unexpected (larger) head movements during walking.

These kinds of unique problems need to be addressed to generate real-world impact

for head-mounted sensors.
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Chapter 5

HINNet: Inertial navigation with
head-mounted sensors using a
neural network.

Previous chapters proposed a PDR method for head-mounted sensors based on the

traditional model-based method, and its extension HeadSLAM allowing long-term

stable tracking. However, there exists a non-negligible problem that has not been

solved in inertial tracking with a head-mounted sensor, which is the affect of head

motions during tracking. HeadSLAM could smooth out the small errors caused by

head motions, but it still needs an effective way specifically for this problem.

To solve this problem, HINNet is presented in this chapter, which is the first deep

neural network (DNN) pedestrian inertial navigation system that allows free head

movements with head-mounted IMUs. It deploys a 2-layer bi-directional LSTM. A

new “peak ratio” feature is introduced and utilised as part of the input to the neural

network. This feature unveiled latent information in the frequency domain of the

time series data. This information can be leveraged to solve the issue of differentiat-

ing between changes in movements related to the head and those associated with the

walking pattern. A dataset with 8 subjects totalling 528 minutes has been collected

on three different tracks for training and verification. HINNet could effectively dis-

tinguish head rotations and changes in walking direction with a distance percentage

error of 0.46%, a relative trajectory error of 3.88 m, and an absolute trajectory error
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of 5.98 m, which outperforms the current best head-mounted PDR method.

5.1 Introduction

The unpredictability of human behaviour in dynamic environments makes it a com-

plex task for position tracking, as various complicated motions overlap locomotion.

Tracking with GPS, WiFi or other infrastructure based methods could ignore this

issue for that complex motions would not affect as long as the signal receiver is still

with the subject. But these infrastructure based methods have limitations which were

summarised in Chapter 1. More than that, in some of the use cases, such as those

that can be found in healthcare, sports, or emergency services, they also come with

a potential additional level of behavioural complexity, which could be measured and

used for further studies on behaviours. Although these signal-receiving methods are

not affected by behaviours, they lose the ability to measure the behaviours. The iner-

tial navigation is more sensitive to variations in behavioural patterns, as it builds-up

the positional estimation from the information that is extracted from motions, which

allows it to also extract behaviour information for further usage.

Traditional pedestrian inertial navigation methods utilise integration of measure-

ments from accelerometers and gyroscopes, or apply PDR. For example, Chapter 3[68]

adopted peak detection to detect steps, combined with a complementary filter [114]

to determine orientations and a Weinberg model to subsequently detect step lengths

with head-mounted sensors. [87] and [123] used IMUs in smartphones to track users

also with a step and heading system, while [57] used a single foot-mounted IMU and

a hip-worn smartphone for tracking with a zero velocity update, action recognition

algorithm and particle filter. [51] used EKF and Weinberg model with a waist-worn

IMU. Foot-mounted IMUs can also be used, as shown by [44], indicating that a range

of possible sensor placements are available for inertial navigation.

Although traditional model-based inertial tracking methods may have accurate

results in experimental environments, their performance can be reduced quickly in
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real-world scenarios. Performance would be negatively affected if there are more

varied users, if there is an increased unpredictability of the environment, or if the

user activities themselves become less predictable. Because model-based pedestrian

inertial navigation methods represent the functional relationships between inertial

measurement inputs and estimated localisation information, which use simple man-

ually selected fitting equations with different parameters for each individual. This

means that the output suffers from sensor drifts, accumulated errors, and fitting er-

rors from the simple models. For example, Weinberg step length model estimates the

step length only with a fourth root of the difference between the maximum and min-

imum vertical accelerations in one step, which multiplies with a parameter k. This

will be different for each participant [166].

Recently, machine learning has shown its impressive potential in solving tasks in a

variety of fields such as natural language processing [33], image processing [191], and

healthcare [127] [72] [133]. One of the key benefits consists of the ability to model

complex non-linear relationships with large volumes of data. The precise identification

of patterns or trends indicates the suitability of it to be utilised in pedestrian inertial

navigation. [22] adopted a 2-layer Bi-LSTM to learn human odometry with IMU

that were either hand-held, in a pocket, in a handbag, or on a trolley. [62] estimated

horizontal positions and heading direction of a moving subject from a sequence of IMU

sensor measurements using a phone with ResNet, LSTM and Temporal Convolutional

Network (TCN). The feasibility and performance of human odometry estimation with

machine learning have been demonstrated in these previous published studies. It

also showcases the ability to collect this data with different sensor placements. The

selection of placement should be based on the applicability of that sensor for use in

complex real-world activities.

The advantages of using head-mounted sensors have been discussed in previous

chapters. And according to the systematic review in Chapter 2, there are only a

few papers [59, 192] that explore inertial navigation with head-mounted sensors [69].

That can be attributed to the behaviour issue that rotational head motions (used to
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change the visual field) could be mistaken with body rotations (related to a change

in walking direction). This is not more or less a problem for sensor attachments to

the feet, waist, or chest. The ”heading” direction of the head may not always align

with the body orientation, which can lead to an obvious position error in pedestrian

localisation. The three papers with head-mounted sensors mentioned above are all

based on traditional pedestrian inertial navigation methods with step-and-heading

systems, which lack generalisability in more complex real-world scenarios. None of

them solved the problem of misalignment of head and body orientation, as they simply

ignored head rotations during walking.

To solve this interesting problem, this chapter proposed the first DNN framework

for pedestrian inertial navigation with head-mounted sensors allowing for free head

movements: HINNet. Previous studies on pedestrian navigation with head-mounted

sensors all depended on traditional pedestrian inertial navigation methods with step-

and-heading models, and only work when the head is facing forward. This is the first

study to propose deep learning methods in pedestrian navigation with head-mounted

sensors, and allow for free head rotations during walking. In this study, the relative

trajectory error (RTE), absolute trajectory error (ATE) and the percentage error of

distance for HINNet and PDR are determined against a ground truth measurement

during long-period walking trials. This chapter introduces a DNN with a set of new

features to address the issue of separating head rotation signals from walking data

for head-mounted IMUs. This information is then used for positional tracking.

5.2 Methods

HINNet system is summarised in Figure 5.1. It provides an overview of how data

from the head-mounted sensor are processed to estimate trajectories.
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Figure 5.1: Overview of HINNet, a deep neural network for pedestrian inertial navi-
gation with head-mounted sensors that allows for free head movements. The Inertial
Measurement Unit (IMU) placed on the head is shown in the top left corner. After
normalisation, the IMU Data is first transformed into frequency domain with a fast
fourier transform (FFT) to generate the peak ratio feature. The peak ratios and nor-
malised IMU data form the input into the Long Short-Term Memory (LSTM) model.
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5.2.1 Roll and pitch compensation

The raw IMU sensor data was first transformed into a normalised coordinate system in

which the z axis is perpendicular to the horizontal plane, which was accomplished by

Equation 5.1 and Equation 5.3, where a and ω are 3 ∗ lengthdata vectors representing

accelerometer data and gyroscope data.

anorm = R−1
a · araw (5.1)

Ra = Rx(ϕ)Ry(θ) =

 cos θ 0 − sin θ
sinϕ sin θ cosϕ sinϕ cos θ
cosϕ sin θ − sinϕ cosϕ cos θ

 (5.2)

ωnorm = R−1
ω · ωraw (5.3)

Rω =

1 0 − sin θ
0 cosϕ sinϕ cos θ
0 − sinϕ cosϕ cos θ

 (5.4)

After compensation, the normalised z-axis of the IMU will align with the gravity

direction. The heading direction (yaw angle ψ) is considered in reference to the

angular velocity ωz and there is no expected gravity component on the normalised

x-axis and y-axis, which will be used later for peak ratio calculation in Section 5.2.2.

In this part, the input (araw, ωraw)6 is the 6-dimensional raw IMU data, the output

(anorm, ωnorm)6 is the 6-dimensional normalised IMU data.

5.2.2 Feature of peak ratio

The key is to be able to distinguish the head rotation from the whole body rotation.

This can be done by finding the difference in the walking patterns, which are recorded

by the head-mounted IMU. There are two obvious kinds of body movements during

walking that can generate regular acceleration waves. They are generated by (i) the

body swinging from left to right and (ii) the variation in linear acceleration in the

front-to-back direction caused by stepping. The change in signals that are recorded on
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the x and y axes when the head is rotating is shown in Figure 5.2. Only stepping will

be recorded on x axis when the head is held ”straight” during walking. Alternatively,

both stepping and side swing will be measured on x axis when walking with the

head facing sideways. This concept is used to help determine whether (i) a rotation

occurred due to a head movement without any change in walking direction, or (ii) if

the head relative to body remained aligned and a change in walking direction took

place [167].

One full wave of a swing requires one stride (two steps) and a full stepping wave

requires one step. The frequency difference between stepping and side swings gives

us the possibility of visualising these two motions in the frequency domain. The

spectrums of accelerometer sensor data in the horizontal plane (x axis and y axis) are

shown in Figure 5.3.

The relation of the two peaks in Figure 5.3 can be represented by the peak ratio

Pratio in Equation 5.5 [167].

Pratio =
Pswing

Pstepping

(5.5)

The method applied for this paper consists of the following steps: for each time

point t, the accelerations on the x axis in a 2s window [t − 2s, t) prior to t are

transformed into the frequency domain using an FFT. Then the two peaks Pswing and

Pstepping are extracted from the generated frequency spectrum. These are subsequently

used to calculate a P before
ratio , which represents the 2 seconds prior to t. The same

operation is conducted on the 2s window (t, t + 2s] after the time point t, for which

we get a P after
ratio . Gyroscope data are used to determine if a rotation took place at

the time point t. If P before
ratio and P after

ratio are very similar, then it is likely that the

walking direction has changed. Essentially, only the ”stepping” information should

be projected on the x axis before and after rotation (see the top image in Figure 5.2).

In the case of pure head rotation, the projection of the ”side” swing on the x axis will

alter P after
ratio , creating a different outcome compared to P before

ratio (see the bottom image

in Figure 5.2).
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Figure 5.2: The images show a person walking forward at two different arbitrary time
points. The top image shows them with the head facing in the same direction as
they are walking. The bottom image still depicts a forward walking direction, but
with the head rotated to the left. Different magnitudes of side swing and stepping are
projected on the x and y axes of the head-mounted IMU depending on the orientation
of the head.
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Figure 5.3: Frequency spectrum of accelerations obtained from the x and y axes.
This information was produced by a Fast Fourier Transform (FFT) taken from the
normalised accelerations. The peak in the red circle is generated by swings and the
peak in the yellow circle is produced by steps.
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The (Pratios)2 (see Figure 5.1) consists of both the P after
ratio as well as the P before

ratio .

This information is then used in the LSTM.

5.2.3 Deep neural network framework

After pre-processing and feature generation, a sequence of normalised IMU data and

peak ratio features were fed into the neural network as input. The RNN would be

the best choice for this task, since it was designed to process sequential data or time

series data, and has already been successfully applied in e.g. speech recognition [142]

and machine translation [171]. The LSTM was leveraged in this research instead

of vanilla RNN to prevent the vanishing gradient problem. The LTSM is a special

kind of RNN, capable of learning long-term dependencies [66]. The LSTM works as

a function fθ mapping normalised accelerometer data a, gyroscope data ω and peak

ratio features Pratios to walking distance ∆l and rotation ∆ψ over a window,

(anorm, ωnorm, Pratios)8∗120
Fθ−→ (∆l,∆ψ)2∗1 (5.6)

where a window length of 120 frames (2s) was used. To leverage each sample’s past

and future contexts, a bi-directional LSTM network was adopted in the study, with

2-layers stacked to add levels of abstraction of input observations over time. Each

layer had 128 nodes. The framework overview is shown in Figure 5.4.

After getting (∆l,∆ψ)2 in every window, the whole trajectory could be generated

by connecting them sequentially.

5.3 Experiment conditions

5.3.1 Data collection site

The data collection was conducted in three different environments with different sizes

and paths to ensure a broader ability to generalise. Figure 5.5 shows the shapes and

dimensions of trajectories of the three scenarios. The trajectories include straight

routes, curves, and turns with different angles, increasing the complexity and appli-

cability of the tests.

91



Figure 5.4: Overview of HINNet neural network. In each window, 120 frames of
normalised IMU data and peak ratios are sequentially inputted into a 2-layer bidirec-
tional LSTM, which outputs the displacement and orientation variation.

Figure 5.5: The exact map of each of the walked paths is shown in this figure. The
volunteers were asked to follow these paths during data collection.
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5.3.2 Participants

There were 8 volunteers participating in the experiments, with the demographic in-

formation of the participants given in Table 5.1. According to the result of a recent

systematic review [69], 128 out of 145 papers about human inertial navigation used

less than 8 subjects. The amount of subject in this study exceeds 88% papers in this

domain. All participants signed a consent form before data collection started and

were given the opportunity to ask any questions before deciding to participate in this

study. Ethical approval was obtained from the University ethics committee and this

experiment was part of a larger study (R70833/RE001).

Table 5.1: Demographics of participants. (M=male, F=female)

Subject Age (years) Height (m) Weight (kg) Gender
1 42 1.79 73 M
2 27 1.65 60 F
3 25 1.79 77 M
4 24 1.77 62 F
5 48 1.75 85 M
6 49 1.60 58 F
7 30 1.70 66 M
8 21 1.65 65 F

5.3.3 Devices

Xsens Dot sensors (Xsens Technologies BV, Enschede, Netherlands) were used in the

experiments. They logged the 3D angular velocity from a gyroscope, 3D acceleration

from an accelerometer, and 3D (local) magnetic field from a magnetometer. Data was

collected at 60Hz and transferred to a mobile phone by Bluetooth. An Xsens Dot

was firmly attached to the forehead with a strap and another one was placed on the

chest for reference. The placement is shown in Figure 5.6. A phone was also firmly

attached on the chest with straps.

An application developed in Unity 3D game engine (Unity Technologies, San Fran-

cisco, CA, USA) based on Google ARCore was installed in the phone for ground truth
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Figure 5.6: Schematic of the sensor placement. A IMU (Xsens Dot sensor) was
attached on the head using a strap, while another IMU is attached by applying a
chest harness. This harness also holds a phone to collect positional reference data.
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generation. The ground truth trajectories in Figure 5.5 were generated using this in-

formation.

5.3.4 Experimental setup

Before the experiment started, participants were asked to put on the straps with

sensors. They were requested to place one Xsens Dot on their head in such a way

that it remained comfortably in contact with the head during walking. In each test,

subjects were requested to walk the predetermined trajectories for 5 to 10 minutes.

Each volunteer was tested between 4 to 16 times. In all the tests participants were

instructed to walk at a normal and constant speed whilst rotating their head in a

random manner. A total of 79 datasets were collected across all experiments, with

a total time of around 528 minutes. Each dataset contained both the data from the

Xsens Dots, as well as from the phone.

5.3.5 Training setup

We trained HINNet for 150 epochs on the single NVIDIA TITAN Xp GPU with 12

GB memory. Adam optimiser was used to train. The learning rate is set to 1e−4 with

a dropout rate of 0.25.

5.4 Results

A recently published PDR system [68] was selected as the current baseline method

for comparison, which is based on traditional step-and-heading systems, with peak

detection to detect steps, complementary filter [114] to determine orientations, and

Weinberg model to subsequently detect step lengths with head-mounted sensors. This

particular method is the most accurate inertial tracking method available for head-

mounted sensors, as the algorithm has been adapted to this specific sensor location,

as shown in [68]. Current PDR algorithms are not agnostic to sensor placement,

since the signals can drastically change depending on where the sensor is attached to

the body. The percentage errors of total distances, RTE, and ATE were computed
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for PDR and HINNet. RTE and ATE are standard position evaluation metrics in

navigation [187]. RTE is defined as the average RMSE over a fixed time interval of

1 minute. ATE is the RMSE between the whole ground truth trajectory and the

estimated trajectory. These particular metrics have been widely utilised in other

tracking studies, thus deemed to be a suitable output for this research.

Figure 5.7 shows the estimated and real walking distance (Delta Distance) and

variation of orientation (Delta Orientation) in each 2s from one test dataset.

Figure 5.7: The walking distance in each 2 second window (Delta Distance) and the
variation of orientation in each 2 second window (Delta Orientation) from one of the
test dataset. Orange lines represent the values from ground truth. Blue lines show
the values estimated by HINNet.

The estimated trajectories of different methods under the three scenarios are

shown in Figure 5.8.

RTE, ATE and the percentage error of the total distance of each method are
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Figure 5.8: Estimated trajectories of different methods. The light blue lines represent
the ground truths. Green lines show trajectories estimated by HINNet. Orange lines
are the trajectories generated by the PDR.
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summarised in Table 5.2.

Table 5.2: Relative trajectory error (RTE), absolute trajectory error (ATE), and
percentage error of total distances of HINNet and PDR.

Methods RTE(m) ATE(m) Distance Error (%)
HINNet 3.88 5.98 0.46
PDR 5.76 9.89 6.05

An ablation study was conducted to investigate the contribution of peak ratio

features in the neural network. A model without peak ratio feature input was trained

with the same parameters as the one with the features. Results are shown in Table

5.3.

Table 5.3: Ablation study on the peak ratio feature. Relative trajectory error (RTE),
absolute trajectory error (ATE), and percentage error of total distances of HINNet
with and without peak ratio feature.

Methods RTE(m) ATE(m) Distance Error (%)
With peak ratio 3.88 5.98 0.46

Without peak ratio 4.47 7.94 0.61

5.5 Discussion

We presented the first pedestrian inertial navigation system for a head-mounted IMU

that allows for free head-movements by applying a DNN. HINNet performs much

better than a dedicated PDR on walking distance estimation, with a distance error

of 0.46%. The PDR requires tuning of specific parameters for each individual, while

HINNet does not need human input to tune any parameters manually. The difference

in performance can also be observed in the lower RTE and ATE of HINNet compared

to that of the PDR. However, the biggest improvement accomplished by HINNet is

the possibility to eliminate head motion that might be due to ”sightseeing” while

walking. In Figure 5.8, there are a lot of small curves in the PDR trajectories. These

represent the head motions that are not related to the walking, and thus they lead

to false additional trajectories. While the trajectories estimated by HINNet are a lot
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more similar to the shape of the ground truth, which implies its ability to distinguish

head rotations that are independent of walking. These promising results need to be

considered carefully due to the relatively small sample size.

The curves presented in the PDR trajectories have different sizes and frequencies,

which indicates the variation in head rotation behaviours between different volunteers.

Interestingly, the data showed that when people were specifically told to rotate their

head, head rotations were more frequent with larger angles compared to previous

tests in which volunteers were only asked to walk as usual. It indicates that the

instructions given to subjects should be composed carefully to avoid implications

leading to biased data. Nonetheless, for this study the additional head rotation was

requested to better asses the performance between the algorithms. It should also

be noted that these increased head motions might very likely when people are, e.g.,

sightseeing or navigating busy streets.

Although HINNet could effectively differentiate head motions, limitations still ex-

ist when head and body rotate separately compared to synchronised motion. Overlaps

of head and body movements lead to confusion in estimation and can benefit from

further information produced by other sensors (e.g. magnetometer, GPS) to maintain

a correct heading direction.

It should also be noted that the position error is still accumulating over time,

although the head rotation error has been eliminated. To improve this, additional

information or complementary sensors could be leveraged, such as Bluetooth RFID,

GPS, etc. Another option would consist of using self calibration methods like Head-

SLAM [70].

HINNet uses the peak ratio feature in the input, which is a hand-crafted feature

and seems redundant for deep learning, as one of the advantages of deep learning is

that representations can be learnt without feature engineering. In fact, peak ratio

features represent the latent information in the frequency domain, while LSTM is

more good at featuring time domain information. Therefore, it is reasonable to add

frequency domain features in the network like the peak ratio feature. However, it is
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not only limited to a hand-crafted peak ratio feature, rawer data in the frequency

domain as input probably also work. There is also research proposed LSTM with

both time and frequency domain input [109] that could be leveraged in the future

studies.

Considering the potential implementation in real-time positioning, HINNet would

have a lag of 2s, since the bi-directional LSTM requires information from both past

and future in a 2s window, and Pratio is also calculated in a 2s window. As the

preferred walking speed of human is 1.42ms−1 [18], less than 3m lag will be contained

in the application, which is acceptable in most tracking scenarios. However, if the

accurate real-time position is strictly required, algorithms may need to stop using

future information. Model size also needs to be considered for a trade-off between

accuracy and running time in the real-time applications.

Besides the above research directions, future studies could also focus on developing

robust tracking methods to include more complex motions like running, jumping,

sitting, etc. Furthermore, extending the tracking system to a three-dimensional space

would also provide real-world monitoring benefits, as it would allow for incorporation

of information related to, e.g. stair climbing or walking on slopes.

5.6 Summary

This study highlighted the performance increase that can be obtained by considering

the sensors placement and designing suitable algorithms that can overcome identified

biases in localisation that result from behaviours at these placements. It showed

that HINNet could cope with head rotations for head-worn sensors outperforming

the current best head-mounted PDR method.
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Chapter 6

HINNet + HeadSLAM: Robust
inertial navigation with machine
learning for long-term stable
tracking

Human inertial tracking with head-mounted sensors had some problems before. Two

studies proposed in Chapter 4,5 solved part of the problems separately: HINNet is

able to track people with free head motions; HeadSLAM allows long-term tracking

with stable errors. In this chapter, to allow free head rotations meanwhile support

long-term tracking, HINNet is combined with HeadSLAM and tested. The result

shows that the combination could effectively distinguish head rotations and maintain

a low and stable position error in long-term tracking, with an ATE of 2.69 m and an

RTE of 3.52 m.

6.1 Introduction

There has been a rapid development in technology and algorithms that allow real-

time human position tracking. The maturation of this technology has brought many

possibilities that could substantially change our modern way of life. However, the

applicability of monitoring in the real world is governed by the performance of these

systems. However, certain scenarios require robust and accurate information, even

when complex environmental constraints are in place. The environment can lead
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to a range of behavioural responses that influence our motor outcomes [10]. This

indicates that people can move in unpredictable ways, as they navigate and interact

within their environment. This is particularly important to consider when we are

exploring solutions for areas such as security, first responders, or healthcare. The

location of people might need to be tracked accurately, as their safety and lives might

depend on it. They can e.g. move in and out of buildings with unknown layouts

and the monitoring system will need to be able to deal with that. Furthermore, in

environmentally complex environments, it is unlikely that any infrastructure is either

available or operational under those conditions (disaster areas are a good example

of this). Normally, additional infrastructure (such as Wi-Fi) can be leveraged for

positional tracking, but it should be clear that there is no certainty of this in the

aforementioned situation. Therefore, the solution should be infrastructure-agnostic.

Inertial tracking has been discussed to be one of the competitive solutions. And for

inertial tracking with head-mounted sensors, two systems were proposed in Chapters

4 and 5: HeadSLAM[70] and HINNet [71].

HeadSLAM was proposed to improve tracking accuracy during a longer tracking

duration. Traditional PDR methods suffer from error accumulations, because of the

lack of calibration methods. HeadSLAM uses estimated trajectories at the earlier

stage, which was proved to be more reliable, to calibrate estimated trajectories in the

later stage that tended to have larger accumulation errors. HeadSLAM could reach

an average RMSE of 0.34 m indoors and 0.83 m outdoors during 10 min walks in a

20 hour dataset. This showed a significant improvement compared to PDR method.

However, HeadSLAM in the original study still used odometry from a basic PDR

method [68], which has two drawbacks; (i) parameters need to be optimised for each

individual, and (ii) it does not allow free head rotations during walking.

HINNet is a pedestrian inertial navigation system that allows free head movements

with head-mounted IMUs by applying a DNN[71]. It could effectively distinguish head

rotations and changes in walking direction. It was shown to have a relative trajectory

error of 5.57m. Although it solved the problem of head rotations, the estimation
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errors got larger as the testing time got longer. The underlying reason for this was

that there is no efficient calibration that is being performed.

In this chapter, the above two methods are neatly combined to solve both the

head rotation problem and the long-term estimation error accumulation. ATE and

RTE were used as performance measurements. A performance comparison with just

HINNet will be given.

6.2 Methods

The whole system is summarised in Figure 6.1.

HINNet was proposed in Chapter 5. It estimates the odometry with deep learn-

ing; meanwhile, it solves the problem of differentiating between head rotations and

changes in the walking direction.

HeadSLAM was proposed in Chapter 4. The odometry generated in HINNet is

subsequently fed into HeadSLAM for trajectory calibration to eliminate the accumu-

lated drift.

6.3 Results

This chapter uses data from HINNet [71], in which the IMU data was collected from

a head-mounted XSens Dot and the ground truth was collected from a chest-mounted

phone based on visual inertial odometry (VIO).

Figure 6.2 shows the results from HINNet with HeadSLAM compared to the orig-

inal HINNet on three different tracks.

Three metrics were used for the quantitative analysis:

ATE (m): Absolute trajectory error. ATE is the RMSE between the whole ground

truth trajectory and the estimated trajectory.

RTE (m in ∆t): Relative trajectory error. RTE is defined as the average RMSE

over a fixed time interval (1 minute in this study) with alignments of the initial states.

RTE and ATE are standard position evaluation metrics in navigation [187].
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Figure 6.1: Overview of HINNet-HeadSLAM system. HINNet receives raw accelerom-
eter and gyroscope data from the IMU on the head, and output the odometry to
HeadSLAM. HeadSLAM calibrates and estimates the final trajectory. Long short-
term memory is abbreviated by LSTM.
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(a)

(b)

(c)

Figure 6.2: Estimated trajectories in metres. Light grey lines are ground truth. The
red lines represent the trajectories generated from HINNet only. The blue lines show
the results from the combination of HINNet and HeadSLAM.
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Distance error rate (%): Drift of the estimated total distance.

RTE, ATE and the percentage error of the total distance of each method are

summarised in Table 6.1.

Table 6.1: Relative trajectory error (RTE), absolute trajectory error (ATE), and
percentage error of total distances of HINNet and HINNet+HeadSLAM.

Methods RTE (m) ATE (m) Distance Error(%)
HINNet 3.69 7.13 1.15

HINNet + HeadSLAM 3.52 2.69 2.19

The position error over time is presented in Table 6.3.

6.4 Discussion and conclusion

HINNet solved the problem of confusion between pure head rotations and walking

direction change when using head-mounted IMUs. HeadSLAM solved the problem

of error accumulations in long-term tracking. The combination of them could solve

both problems: allowing free head rotations and meanwhile supporting long-term

tracking. ATE is the RMSE of the whole trajectory (8 - 12 minutes in this study).

RTE could be recognised as ATE in one minute. Both methods have similar RTEs.

But the ATE of the combined method is significantly lower than that of original

HINNet, which proved that HINNet + HeadSLAM is able to maintain a stable and

consistent error in long-term tracking. It has also been shown in Figure 6.2, that the

trajectories generated by HINNet are gradually getting farther and farther away from

the ground truth due to the error accumulations and the lack of calibration. However,

the trajectories estimated by HINNet + HeadSLAM remain close to the ground truth

as time goes on. Figure 6.3 quantifies this difference, showing the change in position

error over time. The position error of HINNet shows a general increasing trend over

time, while that of the combined method keeps relatively steady as time goes on.

Although the proposed method has the advantage from both HINNet and Head-

SLAM, it also obtained part of limitations from them. It could differentiate pure

head rotations from walking direction changing as long as they do not happen at
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(b)
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Figure 6.3: Position errors change over time on three sample trajectories.
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the same time. Overlaps of head and body rotations lead to confusion in heading

estimation and need further information from other sensors or new features to main-

tain a correct heading direction. It should also be noted that, just like HeadSLAM,

the effectiveness of this combined method only exists when walking repeatedly on a

predefined restricted path, such as walking in indoor corridors or outdoor tracks for

several laps. Because the calibration of HeadSLAM depends on the probability map

which is updated in overlaps. Thus, the combined method is applicable for scenarios

in which people cover the same path multiple times.

Another problem is that this system is still not a fully automatic system as there

is still a human-tuned parameter in the particle filter, which is the deviation of the

probability distribution of particles. In theory, this distribution in each step varies, as

the inference of neural network contains different accuracy / uncertainty each time.

The next chapter will address this problem with uncertainties estimated by the neural

network, to establish a fully automatic system.

In addition to the above limitations, there are also other possible future research

directions. In real world scenarios, people not just rotate their heads and walk with

constant pace, they may run, jump, turn, slide, or stumble in daily activities. Users

will have different body data and movement patterns. Sensors may also have different

accuracy or other parameters. If a tracking system seeks extensive use in daily real

scenarios, datasets with a larger scale and variety should be essential for the generali-

sation and robustness of the system. The next chapter will also address this problem,

starting by proposing a new dataset covering walking and running at different speeds.
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Chapter 7

ROCIP: RObust Continues Inertial
Position tracking for complex
actions emerging from the
interaction of human actors and
environment

As discussed in previous chapters, inertial navigation is a rapidly developing area

and it is becoming more widely used than ever, due to ongoing advances in sensor

technologies and tracking algorithms. At the same time, consumer-grade IMUs con-

tinue to get smaller, while also becoming cheaper to obtain. Despite developments in

PDR, the application for positional tracking using IMUs is still suffering from consid-

erable noise and biases. Various methods have been introduced in the aforementioned

chapters to reduce the drift of the signal, ranging from the traditional model-based

PDR to more recent machine learning based methods. However, error accumulation

needs to be further reduced to allow for long-term operation of these systems. The

self-contained property of inertial tracking offers a potential broad adoption across

scenarios, but it also is a drawback that limits the system and makes it impossible

for it to “connect” to a global reference frame.

To solve this problem, a system that could “introspect its error” and “learn from

the past” is proposed. It consists of a neural statistical motion model that regresses

both poses and uncertainties with DenseNet, which are then fed into RBPF for cali-
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bration with a probabilistic transition map.

An inertial tracking dataset with head-mounted IMUs was collected, including

walking and running with different speeds while allowing participants to rotate their

heads in a self-selected manner. The dataset consisted of 19 volunteers that generated

151 sequences in 4 scenarios with a total time of 929.8 min.

It was shown that our proposed ROCIP method provided an improved perfor-

mance (lower error) for localisation compared to previously described methods in the

field, such as PDR and HINNET methods. ROCIP had an RTE of 4.94m and an

ATE of 4.36m. ROCIP could also solve the problem of error accumulation in dead

reckoning and maintain a small and consistent error during long-term tracking.

7.1 Introduction

In previous chapters, solutions for inertial tracking with head-mounted sensors have

been proposed for problems with estimating position as head motions occur and

the issue of error accumulations during long-term tracking. However, new research

questions also emerged after using machine learning techniques to solve these issues.

One question that came up is related to the uncertainty of the prediction. The ability

to assess the uncertainty would provide us with some insights into how much we

should ”trust” the obtained outcome. Not knowing this can cause dilemmas for users

as they are not able to accurately assess the risk if they decide to rely on the presented

estimations. This is particularly relevant for certain use cases in which positional data

might affect the safety of the user. People might need to depend on their estimated

location to safely navigate their environment. A deterministic estimation result with

an unknown error may cause serious problems if the information would be taken at

face value. If the uncertainty of the given output could be quantified, then better

risk assessments can be performed. The uncertainty can be fed into some kind of

decision model that incorporates this information to determine whether to rely on

it. Additionally, it can also help with fusing the sensor information with other data
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sources, such as GPS, camera, etc. It should be mentioned that quantifying the

uncertainty could further support the optimisation of the application of a Kalman or

particle filter. Uncertainty estimation in deep learning has been discussed in previous

studies [141, 90] and it could be suggested that they can provide additional value to

the problem of localisation. The concept of multivariate uncertainty will be discussed

further in this chapter. Not only is there a need to understand the (un)certainty of a

given estimate, but there is also a need to cover more complex behaviours related to

mobility. As discussed in previous chapters, the aim of implementing the developed

technology in real-world scenarios requires us to consider experimental environments

that are more varied. These scenarios should reflect real-world behaviour as much

as possible. Currently, there is hardly any pedestrian inertial navigation method

that maintains long-term robust performance when applied in the real world, despite

many studies claiming that high accuracies could be obtained. The level of external

validity remains limited in most cases. A key consideration that is often ignored is the

unpredictability of human behaviour. More importantly, people transition from one

mode of locomotion into another (e.g. from walking to jogging to running). Human

motions are more complex and unpredictable during daily living [10]. In experiments

conducted under laboratory conditions, most studies only require subjects to walk at

a constant pace on a predefined trajectory. Yet, in the natural world people may not

always walk with a constant pace, they may jog or run with different speeds, walk

sideways, stop and start walking unexpectedly, or shown any other complex motion.

This is also one of the reasons why the traditional PDR methods fail when efforts

are made to apply them in the real world, as they were only modelling the most

basic behaviours in human gait. Nonetheless, machine learning has the potential

to learn these more realistic complex motions by itself without manual input. A

limited number of studies have already seen this problem and started to investigate

tracking with different motions. [180] tested its algorithm in walking, fast walking

and running. [181] got experimental results for various human motions including

straight line walking, circular walking, side stepping, backward walking, running, and
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climbing stairs. [108] collected data that show a variety of activities including walking,

standing still, organising the kitchen, playing pool, going up and down stairs.

Nonetheless, error accumulation remains an inevitable problem in dead reckoning

if there is no opportunity for re-calibration with the true positions in the real world.

To overcome this complication, common calibration approaches have been used, which

include, for example, the application of a camera or RFID. It is obvious that these

solutions introduce external infrastructures and/or extra devices. It provides a solu-

tion that is no longer self-contained and reduces the ability to widely utilise this kind

of technology. As for using IMUs only, ongoing calibrations for long-term monitoring

with the real world is impossible. However, there exists a way to eliminate the error

accumulation by calibrating the system with its own prior trajectories. Similar ideas

have been used in [4][70]. However, these studies were conducted only in situations

where the volunteers were walking at a constant pace. Furthermore, the fixed un-

certainty parameters needed to be manually set, which reduce their robustness and

generalisability across various users, motions, and environments.

In this chapter, ROCIP, an inertial navigation system for a head-mounted IMU,

is proposed. It uses a probabilistic DenseNet model to estimate both pose and un-

certainty in a mixed supervised and unsupervised way and is tightly coupled with

an RBPF for optimal estimation. The system is tested for ”long-term” tracking

with various head motions and different speeds of walking and running. The main

contributions are as follows.

• We propose a network specially designed for inertial navigation with head-

mounted IMUs, based on special input features and outputs that include both

displacement and uncertainty.

• We propose a complete state estimation system combining the neural network

with the RBPF to control the error accumulations in long-term localisation.

• We introduce an inertial tracking dataset with head-mounted IMUs, with a
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total length of 929.8min, 151 sequences, and 19 subjects, which includes human

walking and running with different speeds and random head rotations.

ROCIP was compared with two other well-defined methods for head-mounted sen-

sors, and the absolute and relative errors were computed across all three approaches.

7.2 Methods

The system is comprised of two main components: (i) network and (ii) filter. Fig.7.1

shows the main structure of the system. The raw data from the IMU sensor was first

transformed into a normalised coordinate system in which the z axis is aligned with

the gravity direction, while there is no gravity component on the normalised x axis

and the y axis. Then the peak ratio features were calculated, which were specifically

designed for tracking with head mounted devices. This ratio helps distinguish between

head motion patterns during walking[71]. The peak ratios and normalised IMU data

form the input into the subsequent neural network.

Figure 7.1: Overview of the system. Raw accelerometer and gyroscope data form the
input from the head-mounted IMUs. The position and uncertainties are estimated
by DenseNet and form the input for the particle filter.

7.2.1 DenseNet

Dense Convolutional Network (DenseNet)[76] is an improved version of CNN. CNN

were proposed in the 1980s and have been the dominant machine learning approach in

image processing tasks for more than 10 years. More recently, improvements in com-

puter hardware have enabled the training of truly deep CNNs. Yet, the previously
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discussed problem of gradient vanishing emerges as the layers are getting deeper.

ResNet[61] was proposed to solve this problem by passing signals from one layer to

the next via identity connections, and it has been used in RoNIN [62] for inertial nav-

igation. DenseNet connects all layers directly with each other to ensure maximum

information flow between layers in the network. It was evaluated on four highly com-

petitive object recognition benchmark tasks and obtained significant improvements

over the state-of-the-art with less computational effort. In this research, a DenseNet-

BC 100 was adopted as the backbone, which is a DenseNet with bottleneck layers and

compression, with 100 convolutional layers. It has three dense blocks. Each block

has 16 layers, with each layer having a bottle neck layer and a convolutional layer.

DenseNet has been adapted to fit this research, with the layers reshaped to process

1D information. The input and output have also been redesigned for this research.

The input could be recognised as a 1D image with a shape of window size×1 and the

channels are input features, which could be represented as (anorm, ωnorm, Pratios)8∗120.

It outputs the moving distance and orientation variation (∆l,∆φ)2, with the uncer-

tainty of both in a time window. Fig. 7.2 shows the architecture of the adapted

neural network.

Figure 7.2: Architecture of DenseNet-BC 100 that is used in this chapter.

7.2.2 Uncertainty estimation

In DenseNet, the model outputs are the estimated polar vectors and variances:

[ŷ, Σ̂] = fθ(x) (7.1)
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where ŷ = [∆l̂,∆φ̂] and Σ̂ = diag(σ2
∆l, σ

2
∆φ).

Assuming that y follows a multivariate normal distribution:

y ∼ N2(ŷ, Σ̂) (7.2)

with a probability density function:

p(y|fθ(x)) =
1√

(2π)2|Σ̂|
exp (−1

2
(y − ŷ)T Σ̂

−1
(y − ŷ)) (7.3)

The optimal neural network weights θ∗ could be approximated by log-likelihood:

θ∗ = argmax
θ
p(y|fθ(x))

= argmin
θ
−2 log p(y|fθ(x))

= argmin
θ

log |Σ̂|+ (y − ŷ)T Σ̂
−1
(y − ŷ)

(7.4)

To make regression more stable, sl and sφ are predicted by the neural network

instead of σ2
∆l, σ

2
∆φ, where sl = log σ2

∆l and sφ = log σ2
∆φ [90]. Thus, the loss function

of neural network could be defined as:

L = log |Σ̂|+ (y − ŷ)T Σ̂
−1
(y − ŷ)

= log σ2
∆l + log σ2

∆φ +
(∆l −∆l̂)2

σ2
∆l

+
(∆φ−∆φ̂)2

σ2
∆φ

= sl + sφ +
(∆l −∆l̂)2

exp sl
+

(∆φ−∆φ̂)2

exp sφ

(7.5)

The loss function shows that the network training contains a mixture of supervised

and unsupervised parts. The estimated displacement and rotation ∆l̂,∆φ̂ have their

corresponding ground truth ∆l,∆φ, so they could be optimised in a supervised way.

While there is no ground truth for estimated uncertainty, the estimation of uncertainty

is optimised in an unsupervised way.

The loss function can be converged appropriately. Separate the loss function into

two parts for displacement ∆l and rotation ∆φ:
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L∆l = log σ2
∆l +

(∆l −∆l̂)2

σ2
∆l

L∆φ = log σ2
∆φ +

(∆φ−∆φ̂)2

σ2
∆φ

Use L∆l as the example. If ∆l and ∆l̂ are known, as a function of σ∆l, L∆l is

convex. The minimum of it will appear where the derivative equals 0:

∂L∆l

∂σ∆l

=
2

σ∗
∆l

− 2(∆l −∆l̂)2

σ∗3
∆l

= 0

1− (∆l −∆l̂)∗2

σ2
∆l

= 0

σ∗2
∆l = (∆l −∆l̂)2

(7.6)

Therefore, during training, σ2
∆l will try to converge to (∆l−∆l̂)2, which perfectly

matches its property as a variance. L∆φ converges in the same way.

7.2.3 Rao-Blackwellised particle filter

Path inference utilises the Rao-Blackwellised particle filter of the FastSLAM algorithm[118],

which decomposes the SLAM problem into a pedestrian localisation problem and a

mapping problem conditioned on the estimated poses. Based on the conditional in-

dependence property of the SLAM, the posterior pose could be factored as Equation

4.3, where P and M represent the pose and the map estimated in the current Bayes

inference step. And Zk, which is intrinsically equal to the ŷ estimated from the

previous neural network, now recognised as a noisy measurement of the difference

between Pk−1 and Pk. The pose in time step k could be estimated recursively from

the last with the first pose P0 set arbitrarily, with Equation 4.4. The first factor

in it, p(Zk|Pk−1:k), is the likelihood function of the pose difference estimation in the

current part, which is expected to approximate to the real value y. Therefore, it

is proportional to p(y|ŷ), which is the posterior and also proportional to Equation
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7.3. This likelihood factor is used to sample particles in each step from a Gaussian

distribution N2(µk,Σk), where

µk = ŷk = [∆lk,∆φk]

Σk = diag(
k∑

i=0

σ2
∆li
,

k∑
i=0

σ2
∆φi

)

The second factor in Equation 4.4, p(Pk|P0:k−1), is the pose transition probability,

which is used in the particle weight update (Equation 7.7). In this section, the two-

dimensional space was divided into a grid of adjacent hexagons of a given radius.

Each hexagon h̃ has six edges. Each time a particle makes a transition across an edge

ẽ will be counted up and recorded in the number of transition times N ẽ
h̃
. For each

hexagon, the number of transition times of six edges is recorded in a local map Mh̃,

which is a vector of length 6. All Mh̃ of every hexagon comprise the probabilistic

transition map M. When updating the map after each step, if an edge was crossed,

the transition times of this edge will increase in both the incoming and outgoing

hexagons. The transition times recorded in the map are then used in the particle

weight update:

wi
k ∝ p(Pk|P0:k−1) · wi

k−1 ∝
N ẽ

h̃
+ αẽ

h̃

Nh̃ + αh̃

· wi
k−1 (7.7)

where wi
k denotes the weight of the i-th particle at step k, Nh̃ is the sum of the crossed

times of all 6 edges of the outgoing hexagon h̃ in i-th particle’s map counters. αẽ
h̃
and

αh̃ =
∑5

e=0 α
ẽ
h̃
are the prior counts.

With the above functions, the sequential Bayesian estimation in the particle filter

will be conducted in a loop of particle sampling, weight updating, resampling, and

probabilistic transition map updating.

7.3 Data collection

Xsens Dot sensors (Xsens Technologies BV, Enschede, Netherlands) were used in the

experiments with a recording frequency of 60Hz. An Xsens Dot was firmly attached
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to the forehead using a strap that was adjusted for each subject. A phone was also

firmly attached on the chest with straps to provide reference data. An application

developed in Unity 3D game engine (Unity Technologies, San Francisco, CA, USA)

based on Google ARCore was installed in the phone for ground truth collection.

The data collection was conducted in four different environments with different

path sizes and trajectories to ensure more varied patterns were captured. This should

help to clarify the eternal validity of the results obtained. The trajectories included

straight routes, curves, and turnings with different angles, which increased the com-

plexity and diversity of the tests. There were 19 volunteers participating in the

experiments with 11 males and 8 females. The participant’s ages ranged from 22 to

50 years. Ethical approval was obtained from the University Ethics Committee and

this experiment, which was part of a larger study (R70833/RE001). Subjects were

asked to walk and run with different speeds on the predetermined trajectories, whilst

rotating their head in a random manner.

A total of 151 sequences of data were collected, with a total duration of 929.8

minutes. Each dataset contained both the IMU data from the Xsens Dots, as well as

the ground truth trajectory and orientation data from the phone.

7.4 Results

The proposed methods were trained at the University of Oxford Advanced Research

Computing (ARC) facility[138], with the dataset split into a training, test, and val-

idation set. Two published methods for tracking with a head-mounted IMU were

chosen for comparison: a PDR method [68] that uses peak detection to detect steps,

with complementary filter to determine orientations and Weinberg model to detect

step lengths; and HINNet [71], which uses Bi-LSTM and peak ratio features.

Figures 7.3 and 7.4 show the output of probabilistic neural network. The motion

represented in Figure 7.3 is walking and running in various speed. While Figure 7.4

shows the motion with only walking with constant pace.
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Figure 7.3: Estimated delta distance and heading from probabilistic DenseNet –
walking and running in various speeds. Blue lines represent the Ground Truth.
Red lines are mean values estimated by DenseNet. Light red zones show the estimated
uncertainty σ.
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Figure 7.4: Estimated delta distance and heading from probabilistic DenseNet –
walking with constant pace. Blue lines represent the Ground Truth. Red lines are
mean values estimated by DenseNet. Light red zones show the estimated uncertainty
σ.
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RTE, ATE and percentage error of the total distance covered for each method are

summarised in Table 7.1.

Table 7.1: Relative trajectory error (RTE), absolute trajectory error (ATE), and
percentage error of total distances of proposed and comparing methods.

Methods RTE(m) ATE(m) Distance Error (%)
PDR 7.99 13.85 7.26

HINNet 5.46 13.41 0.46
ROCIP 4.94 4.36 2.81

The estimated trajectories of different methods in the 4 scenarios are shown in

Figure 7.5.

7.5 Discussion and conclusion

This study presented ROCIP, which fuses a DenseNet based neural statistical motion

model and a RBPF for long-term inertial tracking with stable errors. The proposed

system was trained and evaluated with a newly collected dataset. It outperformed the

comparative methods in both ATE and RTE, and generated estimated trajectories

that are much closer to the ground truth.

The result also shows the robustness of the proposed system in long-term tracking.

ATE is the RMSE of the total trajectory, which is around 7-12 minutes in this study.

RTE could be considered as the ATE in one minute. The ATEs of the PDR and

HINNet were around a factor of two larger than their RTEs, which suggests that

their errors are gradually accumulating as time increases. However, the proposed

ROCIP has similar RTE and ATE, indicating that ROCIP error remains relatively

stable even during long-term tracking. Fig. 7.5 also provides further evidence of this.

The trajectories generated by HINNet and PDR are gradually getting further and

further away from the ground truth because of the error accumulations and the lack

of calibration. However, the trajectories estimated by ROCIP remain close to the

ground truth as time goes on.
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Figure 7.5: Estimated trajectories of different methods on four different paths. The
green lines represent the ground truths. Orange lines show trajectories estimated
by HINNet. Blue lines are the trajectories generated by the PDR. Purple lines are
proposed ROCIP trajectories.
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The probabilistic neural network also proves its ability to give reasonable uncer-

tainty estimations. Figure 7.3 shows the estimation result on walking and running at

various speeds. 4 walking periods (0-110s, 190-220s, 290-320s, 370-420s) show similar

speeds around 3m/s, while 3 running periods (110-190s, 220-290s, 320-370s) show

increasing speeds (4m/s, 5m/s, 6m/s). With the speed increasing, the estimated un-

certainty (light red region in the figure) shows a trend to increase as well, which infers

that the estimation of neural network has larger uncertainty for higher speed. Figure

7.4 shows the estimation result for walking with a constant speed around 2.5-3m/s.

The uncertainty also remains in a relatively constant range, and clearly much smaller

than that of the running periods in Figure 7.3. It is probably because running intro-

duces more complex motions and higher noise to the network, thus it is reasonable

to result in larger uncertainties.

This chapter also proposed a new larger dataset including more subjects, more

scenarios, more motions, and speeds. Comparing HINNet results on this new dataset

and on the dataset proposed in Chapter 5, in Table 7.1 and Table 5.2, it shows worse

performance in a larger dataset, which seems counterintuitive. But it is because the

new dataset includes more complex motions such as walking and running at different

speeds, and the scenarios are much larger (150*80m) comparing to previous small

maps (15*20m). Although accuracy decreased, robustness improved, allowing the

system to work with more complex motions and environments.

These kind of approaches can also be generalised to other research areas, such as

the tracking of legged robots. The models are also strong candidates for monitoring,

e.g., professionals or robots during search and rescue missions, in mining or agriculture

[7]. As these environments could require robots that can cope with obstacles, rough

outdoor terrain, and steps, which is difficult for wheeled robots. Using IMUs with

algorithms similar to human tracking could serve as a component in the fusion of its

multi-sensor localisation.

The findings presented here show the ability to use widely available IMU for

localisation and monitoring of behaviour with relatively stable errors.
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Chapter 8

Conclusions and future work

8.1 Conclusions

This thesis investigated human inertial tracking with wearable devices, especially

focusing on being able to apply this to head-mounted sensors.

The systematic review in Chapter 2 provided a comprehensive overview on the

current research status of human localisation technology with self-contained wearable

sensors, summarised characteristics of all papers in this area, and conducted a quality

assessment on them. It showed that only a limited number of papers used head-

mounted sensors. This despite that the head could be an appropriate and promising

place for wearable sensors to be attached to. It is likely that the additional movements

of the head made this location a more challenging sensor placement option. These

challenges are further discussed in the subsequent chapters.

Chapter 3 then proposed an inertial navigation solution especially designed for

head-mounted IMUs. It was based on the traditional model-based PDR method with

a step-and-heading system, which used peak detection to detect steps, a complemen-

tary filter to estimate the heading, and Weinberg model to infer the step length. A

dataset of 24 sequences was collected with 3 subjects and 2 devices (glasses and in-

strumented mouthguard with IMUs). Participants were asked to walk in a rectangle

with a total length of 68m. Proposed PDR method outperformed the other two com-

paring methods, with an end-to-end error of 0.88m and total distance error of 2.10%.

This indicated that head-mounted systems could perform in a similar fashion as other
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sensor placements.

The focus then shifted to the error accumulation problem for long-term track-

ing. This is a problem of inertial tracking independent of sensor placement, as it

is impossible to calibrate the system using a reference position during tracking with

only IMUs. However, inertial tracking could leverage information related to its previ-

ous trajectory, as it has been shown that the PDR is accurate in the anterior period,

which was then further described in Chapter 4 as HeadSLAM. HeadSLAM conducted

optimal estimation on the pose estimated by PDR, with a Rao-Blackwellised Particle

filter. A dataset of 60 sequences was collected, with 7 subjects and 2 devices (glasses,

cap). In this case, participants walked randomly during two scenarios (indoor, out-

door) following a provided template. Each collected sequence was around 10 minutes

(∼ 840m). HeadSLAM outperformed original PDR method with a RMSE of 0.34m.

It could also generate a probabilistic map for future localisation. This result further

confirmed the possibility of using head mounted sensors for localisation.

The difficulty of identifying a head movement from a locomotion-related motion

still needed to be further explored, as it forms a fundamental problem for inertial

tracking with head-mounted devices. Motions of the head increases the complexity

of IMU signals and affect the inertial tracking with traditional model-based PDR

methods (e.g. head rotations lead to wrong heading estimations). Chapter 5 proposed

HINNet, which disposed of traditional model-based PDR method, instead using a

neural network and special “peak ratio” features, to solve the problem of tracking with

unpredictable head motions. The dataset in this chapter was collected from 8 subjects

over 3 scenarios, accumulating to a total of 79 sequences of around 528 minutes.

HINNet was shown to successfully solve the head motion separation problem. Chapter

6 then added a SLAM layer after HINNet and provided some long-term tracking

robustness to it. This was now becoming a system that started to become more

applicable in the real world.

Nonetheless, the gait patterns explored so far did not really vary much within

a subject. The effect of locomotion variation needs to be investigated in order to
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truly make these systems robust. Different people walk or run with different speeds

and transitions can occur at random times. It is important that inertial tracking is

able to cope with that. Additionally, uncertainty estimation in tracking with machine

learning is also worth researching, as it would feed into further sensor fusion or optimal

positional estimation with SLAM. ROCIP was then proposed in Chapter 8 using a

DenseNet to estimate both pose and uncertainty, which were then inputted into the

SLAM layer for re-calibration during long-term tracking. It provided a robust method

even with volunteers walking or running in different speeds. The dataset used in this

chapter was collected from 19 subjects walking and running at different speeds in 4

scenarios, with a total of 151 sequences lasting 929.8 min. ROCIP has proved to be

able to handle random head movements as well as changes in walking patterns, and

could maintain a stable small error during the long-term tracking assessment.

8.2 Discussion

This thesis fills the gap in the research of low-cost head-mounted human tracking,

with papers focused on different aspects, together solving the problem of long-term,

robust pedestrian localisation with a consumer-grade head-mounted IMU. Before,

wearable tracking relied largely on sensors on the foot, smartphone, and waist, with

additional requirements for attaching specific sensors to body parts which rarely wear

any device or are not convenient to carry all the time like the phone. Now people

can track themselves with the device they already wear everyday without extra effort,

such as the earphone, glasses, smart mouthguard, etc. Possible applications include:

tracking older adults living alone with the sensors in removable dentures, hearing

aids, or other daily worn devices, to help them live a healthier lifestyle and in case of

emergency; tracking atheletes with smart mouthguards to help increase performance

and estimate fatigue level; providing a dead reckoning tracking solution for hikers to

know their relative position during hiking in wilderness.

In this thesis, different state estimation methods have been covered, which could
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be roughly divided as model-based and data-driven machine learning methods. Due to

the simplicity and ease of implementation, Kalman filter has been wildly used. EKF

has been implemented in this thesis for its extended ability to deal with nonlinear

systems. But the linearisation process will lead to errors in the nonlinear system due

to the calculation of Jacobian matrix, resulting in the accuracy decreasing in the final

state estimation. Sigma point Kalman filter (SPKF) avoids the linearisation errors

by directly propagating the probability distribution through the non-linear functions.

This makes it more accurate for highly non-linear systems and can provide better

estimates of the state and its uncertainty. It includes UKF, central difference Kalman

filter (CDKF), square-root unscented Kalman filter(SRUKF), etc. The Cubature

Kalman Filter (CKF) is another variant of the Kalman Filter for nonlinear systems,

which avoids linearisation errors by directly integrating nonlinear functions into the

filter framework. So, besides the EKF used in the thesis, there are more kinds of

Kalman filters that may achieve better nonlinear estimations. But when the system

becomes more complex and challenging to obtain system models, another kind of

state estimation method shows its advantage by random sampling, calculating the

conditional probability of the system state and realizes the conditional probability

transfer through Bayes’ theorem, which is sequential Monte Carlo method or particle

filter method. It has been used in HeadSLAM and ROCIP for trajectory calibration.

Particle filter has the advantage of its wide applicability for any complex system

and overcoming the problem in EKF or other Gaussian filters being sensitive to

initial values. However, its larger calculation amount brings challenges to real-time

applications like real-time tracking on edge devices.

Data-driven state estimation methods are based on learning of neural networks,

which is also adopted in this thesis, LSTM and CNN (DenseNet). It does not require

other prior physical information or model assumptions, learning the models from

the hidden relations in the data capable of fitting almost any nonlinear relationship.

Chapters 5 and 6 have proven their excellence compared to model-based methods.

But one of the biggest problems faced by data-driven learning based state estimation
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methods is the complex noise in the system. One of the solutions is considering

the noise characteristics in the input, the Bayesian training process. It learns the

distribution of weights and bias rather than the fixed values, to model the uncertainty

of the system, and thus improves the reliability of the results. Although data-driven

methods have the generalisability to fit any system, they ignored the established

physical knowledge of the system but only relies on data, the performance of which

will be easily affected if the data are insufficient or too noisy.

State estimation methods based on hybrid models and data-driven algorithms

could benefit from both. Chapter 7 tries this hybrid way by coupling neural network

with particle filter. There are other research studies focus on Kalman filter and neural

network hybrid. For example, research [145] used augmentation of the radial basis

function (RBF) neural network with error-state Kalman filter (ESKF) for underwater

vehicle multi-sensor localisation. Research [188] used the learning Kalman network

(LKN), which achieves the non-linearity of the observation model and the transi-

tion model through deep neural networks, for monocular visual odometry estimation.

Similar methods also have potential applications in human tracking tasks.

The ability to use head-mounted sensors that are integrated into everyday objects

to track position of people and groups can greatly improve a range of different oper-

ations. It allows for accurate behavioural tracking in anything from sports, industry,

and robotics. This work opens up the ability for smart objects (such as clothing and

assistive technologies) to be used in new ways to increase safety, security, and health.

It can be envisioned that these techniques will become as ubiquitous as mobile phones

are at the moment.

8.3 Future work

The current research of robust localisation with wearable devices could be extended

by exploring the following aspects.
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Large comprehensive motion model.

Recently, ChatGPT was introduced and quickly gained recognition for its comprehen-

sive replies and eloquent solutions in various fields of expertise. It is mostly attributed

to GPT-3, which was the largest language model with 175 billion parameters and a

training dataset with 499 billion tokens[17]. Prior to GPT-3, the first GPT launched

in 2018 used 117 million parameters, and the second version GPT-2 released in 2019

took a huge jump to 1.5 billion parameters, then the number was increased to 175 bil-

lion in GPT-3. The recently introduced GPT-4[121] shows better performance and,

of course, with a larger model. Multimodal tasks also benefit from larger models.

Text-to-image generation models are also developing rapidly, with models and train-

ing data becoming extremely larger. OpenAI image generation model “DALL-E 2” a

3.5 billion-parameter model trained on approximately 650 million images. DALL-E 3

[12] is the newest release, which could understand significantly more nuance and detail

than previous systems. The text-to-video model is another kind of multimodal task

that is greatly improved by large models. The recent release of OpenAI, Sora [16],

is capable of generating a minute of high-fidelity video, which is their largest model

with large-scale training. Its results suggest that, to build general purpose simulators

of the physical world, scaling models is a promising path. One point worth noting is

that, during the Sora training, AI is learning to understand and simulate the motions

in the real physical world, which contains great potential in AI understanding human

motions, activities, and interactions with environments, for various applications.

It all proved that an immense deep learning model has the potential to represent

and capture extremely complicated information and patterns, and could generate

more diverse outputs for a variety of applications. Reflecting again on deep learning in

human motion tasks, it is promising and reasonable that a motion model with a similar

size could fulfil almost any tasks related to human motions, such as tracking, motion

recognition, behaviour analysis, intention prediction, etc. In practical operation,

training such a huge model is not a problem because of the development of computing
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hardware and the previous experience in training largest language models. But the

problem also arises that when model size increases, the running time will increase.

Human motion analysis in real time may be challenged if the calculation time is longer

than the sampling time of each sensor data group. The current cutting-edge models

for text or images are training and running on GPUs with high speed. However,

human motion tracking with wearable sensors is usually calculated directly on edge

devices like the phone or wearable devices. The calculation speed is impossible to

compete with GPUs. Meanwhile, it also suffers from the problem of limited battery

capacity. More complex models will lead to more energy consumption, thus decreasing

the battery life of the device, which could be very inconvenient for users. Besides the

problem of calculation time and energy consumption, there is also a question to think

about. Do we really need it to be that accurate? If a similar size of the model is used

in inertial motion trackings, it is possible that the error could be reduced to extremely

small, like only several centimetres. But in what kinds of scenario do we need such

high accuracy? One of the possible applications is the human motion analysis during

operating instruments like people operating precise machines in factories. In some

other scenarios, such as tracking human position at home or in even larger spaces like

airports, errors around or less than 1 m would be enough.

Data are another important aspect that needs to be focused on. Large models

require large dataset for training. Huge human labelling work is essential for the

datasets. Companies that focus on large models for texts or images usually crowd-

source data labelling or even hire people for labeling. As for the motion data, the

activities can be labelled by human, but the trajectory groud truth can not but need

more accurate tools to collect. Montion capture systems like Vicon (Vicon Motion

Systems Ltd., Oxford, UK) are usually used for indoor groudtruth generation. How-

ever, the activity range is limited in the Vicon room, and it can not be used for

outdoor activities. So, the way to get trajectory ground truth is also need to be con-

sidered. The pretraining could use a vast amount of unlabelled IMU data collected

from various wearable devices. The fine-tuning for each specific task could then use
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the limited labelled data. To obtain more labelled data, besides crowd sourcing, there

are other technique ways like data augmentation, transfer learning, active learning,

intelligent labelling, and generative learning.

Intelligent sensor fusion.

Inertial navigation is low-cost, unobtrusive, and self-contained, which allows it to be

used in almost any scenario, with any wearable device or smart daily worn objects.

However, it suffers from lack of calibration way with real world locations. It is impos-

sible for inertial navigation systems to know their initial absolute position in the real

world, not to mention calibrating the estimated position with real position during

tracking. Therefore, it is hard to start inertial navigation from a random unknown

position, and even hard to keep localisation accuracy in long-term tracking.

One of the possible solutions is the fusion of more IMU sensors attached to dif-

ferent body parts. Research [27] used 12 IMUs separately mounted on the centre

of the pelvis, thighs, shanks, feet, center of shoulder, upper arms, and lower arms,

calibrated sensors based on the human skeleton model. Research [178] adopted 6

IMUs for human pose estimation based on deep learning. Research [185] used two

IMUs mounted on the foot and chest to estimate the accurate position based on the

different motion patterns of the two IMUs. The fusion of more IMUs is a promising

way to reduce or even eliminate drift. The convenience of using devices may need to

be considered if a lot of devices are required to be worn.

Fusing other sensors for tracking is another practical way to calibrate its accumu-

lated errors, such as using Wi-Fi, Bluetooth beacons, RFID tags, GPS, etc. Research

[60] used passive RFID tags placed around the building to confirm the reference lo-

cation to correct the drift in inertial tracking. Research [170] used BLE beacons

placed in specific locations indoors to correct the accumulated inertial tracking er-

rors. Research [159] proposed a WiFi-assisted inertial odometry technique that uses

WiFi signals as an auxiliary source of information to correct drift errors. Research

[111] adopted the BLE signal system on lampposts, together with GNSS and iner-
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tial sensors, for real-time positioning in urban environments. These researches all

required sensors pre-installed at the known locations in the specific environments to

provide reference positions for tracking systems. The reference positions help cali-

brate the estimated positions with real locations and avoid drift and accumulated

errors in inertial tracking systems. But on the other hand, the application scenarios

of these systems are limited to only the environments with the required pre-installed

infrastructures. It is impossible to use them in an unknown environment or when the

infrastructure is faulty or powered off.

If a tracking system with more generalisable application scenarios is needed, other

infrastructureless sensors could be adopted as well, such as cameras, Lidar, radar, etc.

RGB cameras are basically the essential sensor for tracking in autonomous driving

and for other autonomous vehicles or robots. Combining with inertial sensors, visual-

inertial localisation is an important task in the computer vision area, reaching high

accuracies with the rapid development of deep learning in recent years. Research

[190] is one of the examples that uses semantic segmentation technique in computer

vision for visual-inertial odometry estimation. Other kinds of cameras also help in

different situations, such as thermal cameras, event cameras, night vision cameras,

etc, with similar computer vision techniques. Other range sensors like Lidar and radar

could generate point clouds to sense 3D information of the environment relative to

the current position. Research [37] estimates radar inertial odometry for localisation

in visually degraded and GNSS denied environments. Research [177] tightly coupled

lidar and inertial sensor data for odometry and mapping. These sensors do not require

infrastructures, and thus can be used in a variety of scenarios. However, the aspects

that limit their application include running time and energy consumptions. 2D image

processing with deep learning would require more calculation resources compared to

1D inertial sensor data, leading to longer calculation time and energy consumption,

which need careful consideration for real-time or long-term trackings.

How to fuse them intelligently is the main question in this research. As these

infrastructure-based methods do not always work: sometimes they are unavailable;
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sometimes their signals are severely affected and not reliable. In addition, for long-

term tracking, battery life is valued. It is not practical to always turn on all the

energy-consuming sensors. A decision making solution is essential for the balance of

accuracy and energy with the questions like: when to turn on each sensor, how long

each time lasts, and to what extent should the result be trusted from some sensor

at some time. Probabilistic models are the first steps to generate uncertainties of

results. The decision optimisation could then be carried out by deep learning.

Human motion analysis for more applications

In addition to position tracking, inertial sensors could be used for human pose es-

timation, human activity recognition, and other applications benefited from motion

analysis. Human motion analysis encompasses a wide range of techniques aimed

at understanding, quantifying, and interpreting human movement patterns. With

the integration of the knowledge from other areas like biomechanics, neuroscience,

rehabilitation, etc., human motion analysis has various applications including the

following:

• Understanding complex human movements.

• Predicting the risk of injury.

• Optimising rehabilitation protocols.

• Design of assistive devices.

• Mental health monitoring.

• Emotion recognition.

• Human-computer interaction.

Traditional methods such as optical motion capture systems are often considered

to be the gold standard method for motion capture and have been widely used but
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are often limited by factors such as cost, complexity, and invasiveness. For example,

three-dimensional motion capture systems like Vicon (Vicon Motion Systems Ltd.,

Oxford, UK) or Optotrak (Northern Digital Inc, Ontario, Canada) have a high ac-

curacy, but require conduction in controlled environments with several fixed cameras

pre-installed, calibrated, and correlated. Meanwhile, human subjects are required

to place up to 50 markers at anatomically specific locations, which makes it even

harder to conduct motion analysis in daily life environment for daily activities. Two-

dimensional motion capture system, like Kinect (Microsoft Corporation, WA, USA), is

a more affordable alternative, and can be used in almost any relatively uncontrolled

environments. However, multiple cameras may still be required for a full motion

analysis because of the problem of a restricted field of view of the camera. Parallax

error and perspective error will also lead to wrong perception of spatial relationships.

The privacy issue of video recording makes it hardly acceptable to conduct motion

capture in private places. Besides, with the limited maneuverability margins, these

camera-based systems are designed primarily for indoor use. On the contrary, wear-

able inertial sensors benefited from their portability and can be used in any indoor

and outdoor scenarios, even in a private space. Many research investigations have

shown strong alignment between IMU and the gold standard 3D optical motion cap-

ture systems on the spatiotemporal and kinematic measure, across various domains

such as clinical, ergonomics, and sports analysis [13, 126, 184, 65, 153]. To extract

the motion information from the raw noisy 1D IMU data, complex sensor fusion and

pose estimation methodologies are necessary. Combining with machine learning al-

gorithms, wearable inertial sensors could offer the potential for accurate real-time

motion tracking in diverse environments without the need for specialised equipment.

Beyond pose and activity measurements, if IMUs are combined with other wear-

able monitoring sensors, motion analysis can be used in a variety of applications.

Integrating IMU data with other modalities such as EMG, electroencephalography

(EEG), and heart rate monitoring can provide deeper insights into human movement

patterns and physiological responses. Research [169] developed a wearable system
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for American sign language recognition with 4 channel surface EMG on the right

forearm and an IMU on the right wrist. EMG and IMU combination has also been

used to develop an upper limb exoskeleton for rehabilitation [48], multi-grip prosthe-

sis control [93], omnidirectional wheelchair control [95], etc. For the combination of

IMU and EEG, research [104] has used it to create a smart safety helmet to detect

the fatigue level of the workers. Research [88] adopted the sensor fusion of the IMU

and EEG for drowsiness detection. Research [89] estimated respiration rate from imu

with Photoplethysmogram (PPG). With its characteristic of recording any subtle or

obvious motions directly, IMU has already shown great potential in various applica-

tions of different areas. In the future, IMU motion capture and analysis could have

more application areas, such as healthcare in low- and middle-income countries for

its availability and popularity, or personal care for older adults living alone.
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systematic review

136



Title 
D

ate
 

A
u

th
o

r 
M

eth
o

d
 

A
lgo

rith
m

 
M

ean
 erro

r (m
) 

N
u

m
b

er o
f 

su
b

jects 
Len

gth
 (m

)  
Erro

r 
In

d
o

o
r(1

) 
/O

u
td

o
o

r(0
)  

2
d

 / 3
d

 
1

. D
o

e
s th

e
 stu

d
y 

ad
d

re
ss a cle

arly 
fo

cu
se

d
 q

u
e

stio
n

?
 

2
. D

o
 th

e au
th

o
rs 

d
iscu

ss h
o

w
 th

e
y 

d
e

cid
e

d
 w

h
ich

 m
e

th
o

d
 

to
 u

se
?  

3
. Is th

e
re

 su
fficie

n
t 

d
e

tail o
f th

e
 m

e
th

o
d

s 
u

se
d

? 

4
. Is th

e
 m

eth
o

d
 o

f d
ata 

co
lle

ctio
n

 w
e

ll 
d

e
scrib

e
d

? 

5
. A

re th
e

 e
xp

lan
atio

n
s 

fo
r th

e
 re

su
lts p

lau
sib

le
 

an
d

 co
h

e
re

n
t? 

6
. A

re th
e

 re
su

lts o
f th

e 
stu

d
y co

m
p

are
d

 w
ith

 
th

o
se

 fro
m

 o
th

e
r 

stu
d

ie
s? 

7
. D

id
 th

e au
th

o
rs 

id
e

n
tify an

y lim
itatio

n
s?

 8
.W

as eth
ical ap

p
ro

val 
so

u
gh

t? 

3D
 A

ctio
n

SLA
M

: w
earab

le p
e

rso
n

 trackin
g in

 
m

u
lti-flo

o
r e

n
viro

n
m

en
ts 

2
01

5 H
ard

egger, M
ich

ael; R
o

ggen
, 

D
an

iel; Troester, G
erh

ard
 

a sin
gle fo

o
t- m

ou
n

ted
 IM

U
 an

d
 a h

ip
-w

o
rn

 
sm

artp
h

o
n

e th
at acts as b

o
th, sen

so
r an

d
 

co
m

p
u

tin
g p

latfo
rm

. 

ZU
P

T
-P

D
R

, action
 reco

gn
itio

n
 algorithm

, 
P

article filter 
- 

23
 

28
2

 
7.0

0%
 

1 
3 

Y
 

Y
 

Y
 

Y
 

N
 

N
 

Y
 

N
 

3D
 p

e
d

e
strian

 d
e

ad
 re

cko
n

in
g an

d
 activity 

classificatio
n

 u
sin

g w
aist-m

o
u

n
ted

 in
e

rtial 
m

e
asu

re
m

en
t u

n
it 

2
01

5 F. In
d

erst; F. P
ascucci; M

. San
to

n
i 

W
aist-m

o
u

n
ted

 IM
U

 
C

ascad
e Ped

estrian
 D

ead R
ecko

n
in

g (C
-

P
D

R
), activity classificatio

n, Exten
d

ed
 

K
alm

an
 Filter,  

26 
1 

28
0

 
10.00%

 
1 

3 
Y

 
Y

 
Y

 
Y

 
Y

 
N

 
Y

 
N

 

A
 co

m
p

ariso
n

 o
f P

e
d

estrian
 D

e
ad

-R
ecko

n
in

g 
algo

rith
m

s u
sin

g a lo
w

-co
st M

EM
S IM

U
 

2
00

9 A
. R

. Jim
en

ez; F. Seco
; C

. P
rieto

; J. 
G

u
evara 

a sin
gle fo

o
t- m

ou
n

ted
 IM

U
 

Th
e W

eib
erg SL A

lgo
rithm

, ZU
PT 

5-15
 

1 
10

0
-320

 
5%

 
10 

2 
Y

 
Y

 
Y

 
N

 
N

 
N

 
Y

 
N

 

A
 fo

o
t-m

o
u

n
te

d
 P

D
R

 syste
m

 b
ased

 o
n

 
IM

U
/EK

F+H
M

M
+ZU

P
T+ZA

R
U

+H
D

R
+co

m
p

ass 
algo

rith
m

 

2
01

7 W
. Zh

an
g; X

. Li; D
. W

ei; X
. Ji; H

. 
Yu

an
 

a sin
gle fo

o
t- m

ou
n

ted
 IM

U
 

IM
U

/EK
F+H

M
M

+ZU
P

T+ZA
R

U
+H

D
R

+C
o

m
p

ass algo
rithm

 
0.643

 
1 

31
0

 
0.2

1%
 

1 
3 

N
 

N
 

Y
 

Y
 

N
 

N
 

N
 

N
 

A
 H

an
d

h
e

ld
 In

e
rtial P

ed
estrian

 N
avigatio

n
 

Syste
m

 W
ith

 A
ccu

rate
 Step

 M
o

d
es an

d
 

D
evice P

o
se

s R
eco

gn
itio

n
 

2
01

5 H
. Zh

an
g; W

. Yu
an

; Q
. Sh

en
; T. Li; 

H
. C

h
an

g 
A

 h
an

d
h

eld
 in

ertial ped
estrian

 n
avigatio

n
 system

 
(IP

N
S). Th

e system
 co

n
sists o

f a sen
so

r m
o

du
le an

d
 

a p
ro

cesso
r m

o
d

ule. Th
e sen

so
r m

o
d

u
le in

clu
des a 

tri-axial accelero
m

eter, a tri-axial gyro
sco

p
e, a tri-

axial m
agn

etom
eter an

d
 a p

ressu
re sen

so
r. 

Step
 M

o
des an

d
 D

evice P
o

ses 
R

eco
gn

itio
n

, Step D
etecto

r W
ith

 B
an

d
-

P
ass Filter 

4.5in
d

o
o

r, 
40o

u
td

o
o

r 
1 

21
00o

u
td

o
o

r 
2.0

0%
 

10 
32 

Y
 

Y
 

Y
 

Y
 

N
 

Y
 

Y
 

N
 

A
 H

yb
rid

 H
ead

in
g Estim

atio
n

 Sch
e

m
e 

Exp
lo

itin
g Sm

art-p
h

o
n

e In
e

rtial Sen
so

rs fo
r 

P
D

R
 b

ased
 In

d
o

o
r N

avigatio
n

 

2
01

5 K
im

, N
am

m
o

o
n

; Zen
g, Q

in
gch

i; 
K

im
, Yo

u
n

go
k 

A
 sm

artp
h

o
n

e w
ith in

ertial sen
so

rs 
H

yb
rid

 h
eadin

g estim
atio

n
 

- 
1 

50
 

error decrease 17%
 

1 
2 

N
 

N
 

N
 

N
 

N
 

Y
 

N
 

N
 

A
 h

yb
rid

 step
 m

o
d

el an
d

 n
e

w
 azim

u
th

 
estim

atio
n

 m
eth

o
d

 fo
r p

ed
e

strian
 d

ead
 

re
cko

n
in

g 

2
01

4 Y. Zh
u

; R
. Zh

an
g; W

. Xia; Z. Jia; L. 
Sh

en
 

a h
ead

-m
o

u
n

ted
 IM

U
 

H
yb

rid
 Step

 Len
gth M

o
d

el, N
ew

 A
zim

u
th 

Estim
atio

n
 M

e
th

o
d

 
0.617

8
 

1 
25

 
- 

1 
2 

Y
 

Y
 

Y
 

N
 

N
 

Y
 

N
 

N
 

A
 lo

calizatio
n

 syste
m

 u
sin

g in
e

rtial 
m

e
asu

re
m

en
t u

n
its fro

m
 w

ire
le

ss 
co

m
m

ercial h
an

d
-h

e
ld

 d
e

vices 

2
01

3 A
. M

iko
v; A

. M
o

sch
evikin

; A
. 

Fed
o

ro
v; A

. Siko
ra 

A
 h

an
d

-h
eld

 d
evice eq

u
ip

p
ed w

ith
 a gyro

sco
p

e an
d

 
an

 accelerom
eter,w

h
ich

 can
 be attach

ed
 o

n h
an

d,  
fro

n
t tro

u
sers p

o
cket, fro

n
t sh

irt/jacket p
o

cket o
r 

b
ack tro

u
sers p

o
cket. 

ZU
P

T 
- 

10
 

27
0

 
5%

 
1 

2 
Y

 
Y

 
Y

 
N

 
N

 
Y

 
N

 
N

 

A
 lo

w
-co

st sh
o

e
-m

o
u

n
ted

 In
ertial N

avigatio
n

 
Syste

m
 w

ith
 m

agn
etic d

istu
rb

an
ce 

co
m

p
en

satio
n

 

2
01

3 R
. A

sh
kar; M

. R
om

an
o

vas; V
. 

G
o

rid
ko

; M
. Sch

w
aab

; M
. 

Traech
tler; Y. M

an
o

li 

A
n

 IM
U

 p
laced

 o
n th

e sh
o

e, m
agn

etic sen
so

r 
U

K
F, EEK

F, EK
F, ZU

P
T, Zero

 A
ngu

lar R
ate 

U
p

d
ate (ZA

R
U

), m
agn

etic distu
rb

ance 
co

m
p

en
satio

n
 

0.019
4in

d
o

o
r, 

3.088
2o

u
td

o
o

r 
1 

- 
- 

10 
3 

Y
 

Y
 

Y
 

N
 

N
 

N
 

N
 

N
 

A
 m

e
th

o
d

 o
f p

ed
estrian

 d
e

ad
 re

cko
n

in
g fo

r 
sm

artp
h

o
n

es u
sin

g freq
u

e
n

cy d
o

m
ain

 
an

alysis o
n

 p
attern

s o
f accele

ratio
n

 an
d

 
an

gu
lar ve

lo
city 

2
01

4 M
. K

o
u

rogi; T. K
u

rata 
A

 sm
artp

h
o

n
e 

- 
4.5

 
10

 
27

0
 

1.7
0%

 
1 

2 
Y

 
Y

 
N

 
Y

 
Y

 
N

 
Y

 
N

 

A
 M

u
lti-M

o
d

e
 D

e
ad

 R
ecko

n
in

g Syste
m

 fo
r 

P
e

d
e

strian
 Trackin

g U
sin

g Sm
artp

h
o

n
es 

2
01

6 Q
. Tian

; Z. Salcic; K
. I. W

ang; Y. 
P

an 
A

 sm
artp

h
o

n
e 

m
o

d
e classificatio

n
,  

0.6in
d

o
o

r, 
13o

u
td

o
o

r 
5 

96
.33in

d
o

o
r, 

34
8o

u
td

o
o

r 
1.5

7%
in

d
o

or, 
3.7

%
o

u
td

o
o

r 
1 

2 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
N

 
N

 

A
 N

o
vel B

o
d

y M
o

tio
n

 M
o

d
e

l b
ase

d
 P

e
rso

n
al 

D
ead

-recko
n

in
g Syste

m
 

2
01

1 X
ian

g, Zh
iyu

; Q
i, B

aozh
en

; W
an

g, 
Jiafe

n
g 

A
 co

m
p

ass, a cheap
 M

EM
S IM

U
 w

orn
 at th

e w
aist 

K
alm

an
 filter 

1.11
 

1 
41

.96
 

2.5
8%

 
1 

2 
Y

 
Y

 
Y

 
N

 
N

 
N

 
N

 
N

 

A
 n

o
vel h

e
ad

in
g estim

atio
n

 algo
rith

m
 fo

r 
p

ed
estrian

 u
sin

g a sm
artp

h
o

n
e w

ith
o

u
t 

attitu
d

e co
n

stra
in

ts 

2
01

6 D
o

n
gh

ui Liu
; L. P

ei; J. Q
ian

; L. 
W

an
g; P

. Liu
; Zhen

jiang D
o

n
g; 

Siyu
an

 X
ie; W

ei W
ei 

A
 sm

artp
h

o
n

e 
A

ttitu
d

e an
d

 H
ead

in
g R

eferen
ce System

 
(A

H
R

S)  
0.43

 
1 

- 
- 

1 
2 

Y
 

Y
 

N
 

N
 

N
 

N
 

N
 

N
 

A
 N

o
vel P

ed
e

strian
 D

ead
 R

ecko
n

in
g 

A
lgo

rith
m

 fo
r M

u
lti-M

o
d

e
 R

e
co

gn
itio

n
 B

ased
 

o
n

 Sm
artp

h
o

n
e

s 

2
01

9 X
u

, Lim
in

; X
io

n
g, Zhi; Liu, Jian

ye; 
W

an
g, Zh

en
gch

u
n

; D
in

g, Yim
in

g 
A

 sm
artp

h
o

n
e 

zero
 an

gu
lar velo

city, lateral velo
city 

lim
itatio

n
 (LV

) 
1.53

 
1 

19
8.4

 
0.9

0%
 

1 
2 

Y
 

Y
 

Y
  

N
 

Y
 

Y
 

N
 

N
 

A
 N

o
vel Step

 D
etectio

n
 an

d
 Step

 Len
gth

 
Estim

atio
n

 A
lgo

rith
m

 fo
r H

an
d

-h
e

ld
 

Sm
artp

h
o

n
e

s 

2
01

8 N
. Stro

zzi; F. P
arisi; G

. Ferrari 
A

 sm
artp

h
o

n
e 

W
ein

b
erg step

 len
gth

 estim
atio

n fo
rm

ula - 
1 

18
8

 
3.0

0%
 

1 
2 

Y
 

Y
 

Y
 

N
 

N
 

N
 

N
 

N
 

A
 N

o
vel Te

ch
n

iq
u

e fo
r G

ait A
n

alysis U
sin

g 
Tw

o
 W

aist M
o

u
n

ted
 G

yro
sco

p
es 

2
01

9 A
. N

asr; T. N
ad

eem
 

2
 IM

U
s m

o
u

n
ted

 o
n

 th
e w

aist 
p

eak d
etectio

n
, W

ein
b

erg m
eth

o
d

,  
- 

3 
32

 
5.1

5%
 

1 
3 

Y
 

Y
 

Y
 

N
 

Y
 

Y
 

N
 

N
 

A
 p

ed
estrian

 d
e

ad
 re

cko
n

in
g syste

m
 u

sin
g a 

fo
o

t kin
e

m
atic co

n
strain

t an
d

 sh
o

e m
o

d
e

lin
g 

fo
r vario

u
s m

o
tio

n
s 

2
01

8 Ju
, H

o
jin

; P
ark, C

h
an

 G
o

o
k 

a fo
o

t-M
o

u
n

ted
 IM

U
 an

d
 a p

ressu
re sen

so
r 

- 
0.11

 
1 

60
 

0.1
8%

 
1 

2 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
N

 
N

 

A
 P

e
d

e
strian

 D
ead

-R
ecko

n
in

g System
 fo

r 
W

alkin
g an

d
 M

arkin
g Tim

e
 M

ixe
d

 M
o

ve
m

en
t 

U
sin

g an
 SH

Ss Sch
e

m
e an

d
 a Fo

o
t-M

o
u

n
te

d
 

IM
U

 

2
01

9 Y. W
u

; H
. Zh

u
; Q

. D
u

; S. Tang 
a Fo

o
t-M

o
u

n
ted

 IM
U

 
exten

d
ed

 K
alm

an filter (EK
F), zero

 
an

gu
lar rate m

easu
rem

en
t (ZA

R
M

), 
H

eu
ristic H

ead
ing R

ed
u

ctio
n (H

D
R

), Flat-
gro

u
n

d H
yp

o
thesis (FG

H
) an

d C
ardin

al 
H

ead
in

g A
ided

 In
ertial N

avigatio
n 

(C
H

A
IN

), b
ack p

ro
p

agatio
n (B

P
) algo

rithm
 4.38

 
7 

32
0.8

 
0.5

0%
 

1 
2 

Y
 

Y
 

Y
 

Y
 

Y
 

N
 

Y
 

N
 

A
 p

ed
estrian

 d
e

ad
-recko

n
in

g syste
m

 th
at 

co
n

sid
e

rs th
e h

e
e

l-strike an
d

 to
e

-o
ff p

h
ases 

w
h

e
n

 u
sin

g a fo
o

t-m
o

u
n

ted
 IM

U
 

2
01

6 Ju
, H

o
jin

; Lee, M
in Su

; P
ark, So 

Yo
u

n
g; So

n
g, Jin

 W
o

o
; P

ark, C
h

an
 

G
o

o
k 

a fo
o

t-M
o

u
n

ted
 IM

U
 

EK
F, ZU

P
T 

in
d

o
o

r1.24, 
o

u
td

o
o

r7.63 
1 

in
d

o
o

r3
40, 

o
u

td
o

o
r700

 
in

d
o

o
r0.3

6%
, 

o
u

td
o

o
r1.09%

 
10 

3 
Y

 
N

 
Y

 
Y

 
Y

 
Y

 
N

 
N

 

A
 ro

b
u

st d
ead

-recko
n

in
g p

e
d

estrian
 trackin

g 
system

 w
ith

 lo
w

 co
st se

n
so

rs 
2

01
1 Y. Jin

; H
o

n
g-So

ng To
h

; W
. So

h
; 

W
ai-C

h
o

o
n

g W
o

n
g 

Th
ree

 sm
artph

o
n

es, tw
o are place

d
 in

 the 
p

ed
estrian

’s tw
o

 tro
u

sers p
o

ckets, o
n

e is h
eld

 in
 

h
an

d
. 

lo
w

-p
ass filters (LP

F) 
- 

1 
- 

red
u

ctio
n in average 

trackin
g erro

r u
p to

 
73.7%

 

1 
2 

Y
 

Y
 

Y
 

N
 

N
 

Y
 

N
 

N
 

A
 ro

b
u

st h
u

m
an

o
id

 ro
b

o
t n

avigatio
n

 
algo

rith
m

 w
ith

 ZU
P

T 
2

01
2 Y. Li; X. Lu

o
; X

. T. R
en

; J. J. W
an

g 
A

 sh
o

e
-m

o
u

n
ted

 IM
U

 
ZU

P
T, EK

F 
   

 - 
1 

24
0

 
0.3

3%
 

1 
3 

Y
 

Y
 

Y
 

N
 

N
 

N
 

Y
 

N
 

A
 R

o
b

u
st In

d
o

o
r/O

u
td

o
o

r N
avigatio

n
 Filter 

Fu
sin

g D
ata fro

m
 V

isio
n

 an
d

 M
agn

eto
-

In
e

rtial M
easu

re
m

en
t U

n
it 

2
01

7 C
aru

so
, D

avid
; Eu

d
es, A

lexan
d

re; 
San

fo
u

rch
e, M

artial; V
issiere, 

D
avid

; Le B
esnerais, G

u
y 

m
o

n
o

cu
lar cam

era, M
IM

U
 

M
SC

K
F algo

rith
m

, K
F; erro

r-state kalm
an 1.64

 
1 

53
0

 
0.3

1%
 

1 
3 

Y
 

Y
 

Y
 

N
 

Y
 

Y
 

N
 

N
 

A
 R

o
b

u
st P

ed
e

strian
 D

ead
 R

ecko
n

in
g Syste

m
 

U
sin

g Lo
w

-C
o

st M
agn

e
tic an

d
 In

ertial 
Se

n
so

rs 

2
01

9 L. Sh
i; Y. Zh

ao
; G

. Liu
; S. C

hen
; Y. 

W
an

g; Y. Sh
i 

A
n

 in
ertial an

d
 m

agn
etic m

easu
rem

en
t u

n
it (IM

M
U

) 
m

o
u

n
ted

 o
n

 fo
o

t 
zero

 velo
city up

d
ate (ZV

U
), G

ait P
h

ase 
D

etectio
n A

lgo
rithm

, K
F 

0.74in
d

o
o

r, 
2.33o

u
td

o
o

r 
1 

10
3.86in

d
o

o
r, 

40
2.7o

u
td

o
o

r 
0.7

3%
in

d
o

or, 
0.5

8%
o

u
td

o
o

r 
10 

2 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
N

 

A
 ro

b
u

st p
e

d
estrian

 d
ead

-recko
n

in
g 

p
o

sitio
n

in
g b

ase
d

 o
n

 p
ed

e
strian

 b
eh

avio
r 

an
d

 sen
so

r valid
ity 

2
01

2 S. A
san

o
; Y. W

aku
d

a; N
. 

K
o

sh
izu

ka; K
. Sakam

u
ra 

A
 th

ree
-axis accelero

m
eter, a th

ree
-axis gyro

sco
p

e, 
a th

ree
-axis m

agn
etom

eter an
d

 a b
aro

m
eter, 

m
o

u
n

ted
 o

n
 w

aist 

p
article filter,  

0.36
 

1 
60

0
 

- 
10 

2 
Y

 
Y

 
N

 
N

 
N

 
N

 
Y

 
N

 

A
 se

n
so

r-to
-se

gm
en

t calib
ratio

n
 m

e
th

o
d

 fo
r 

m
o

tio
n

 cap
tu

re
 syste

m
 b

ased
 o

n
 lo

w
 co

st 
M

IM
U

 

2
01

8 C
h

o
e, N

am
ch

o
l; Zh

ao
, H

o
n

gyu
; 

Q
iu

, Sen
; So

, Yo
nggu

k 
tw

elve M
IM

U
s sep

arately m
o

u
n

ted
 o

n
 th

e cen
ter o

f 
p

elvis, thigh
s, sh

an
ks, fee

t, cen
ter of sh

o
u

ld
er, 

u
p

p
er arm

s, an
d

 lo
w

er arm
s 

a n
o

vel calib
ratio

n
 m

eth
od

 
- 

1 
10

0
 

1.0
0%

 
1 

3 
Y

 
Y

 
N

 
Y

 
Y

 
N

 
Y

 
N

 

137



A
 Sm

artp
h

o
n

e-B
ased

 P
ed

e
strian

 D
ead

 
R

e
cko

n
in

g Syste
m

 W
ith

 M
u

ltip
le

 V
irtu

al 
Trackin

g fo
r In

d
o

o
r N

avigatio
n

 

2
01

8 H
. Ju

; S. Y. P
ark; C

. G
. P

ark 
A

 sm
artp

h
o

n
e 

lo
w

-p
ass filters (LP

F), A
R

S, EK
F,  

3.85
 

3 
71

0
 

0.7
7%

 
1 

2 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
N

 
N

 

A
 W

earab
le In

e
rtial P

ed
estrian

 N
avigatio

n
 

Syste
m

 W
ith

 Q
u

atern
io

n
-B

ase
d

 Exten
d

ed
 

K
alm

an
 Filte

r fo
r P

ed
e

strian
 Lo

calizatio
n

 

2
01

7 Y. H
su

; J. W
an

g; C
. C

h
an

g 
A

 sh
o

e
-m

o
u

n
ted

 IM
U

 
zero

-velocity com
pen

satio
n

 (ZV
C

), 
Lo

w
p

ass Filter, EK
F, p

ro
b

abilistic n
eu

ral 
n

etw
o

rk (P
N

N
),  

8.33in
d

o
o

r, 
5.28o

u
td

o
o

r 
1 

23
9.9in

d
o

o
r, 

10
20o

u
td

o
o

r 
3.4

7%
in

d
o

or, 
0.5

2%
o

u
td

o
o

r 
10 

3 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
N

 
N

 

A
ccu

rate
 3D

-Trackin
g System

 fo
r W

ire
less 

In
d

o
o

r P
erso

n
al P

o
sitio

n
in

g 
2

01
8 M

. A
sadi; S. Sad

egh
i; A

. K
argar; A

. 
M

ah
an

i 
A

 sh
o

e
-m

o
u

n
ted

 IM
U

 
zero

 velo
city up

d
ate (ZV

U
), Enh

an
ced

 
H

eu
ristic D

rift Elim
in

atio
n (EH

D
E) 

0.22
 

10
 

40
 

6.0
0%

 
1 

3 
Y

 
Y

 
N

 
Y

 
Y

 
Y

 
N

 
N

 

A
ctio

n
SLA

M
 o

n
 a sm

artp
h

o
n

e: A
t-h

o
m

e 
trackin

g w
ith

 a fu
lly w

earab
le

 syste
m

 
2

01
3 M

. H
ard

egger; S. M
azilu

; D
. 

C
araci; F. H

ess; D
. R

oggen
; G

. 
Tr??ster 

a sm
artp

h
o

n
e p

laced
 in

 th
e h

ip
 p

ocket 
A

ctio
n

 R
eco

gn
itio

n
, p

artical filter 
0.39

 
1 

13
0

 
0.3

0%
 

1 
2 

Y
 

Y
 

N
 

N
 

N
 

Y
 

Y
 

N
 

A
ctio

n
SLA

M
: U

sin
g lo

catio
n

-re
lated

 actio
n

s 
as lan

d
m

arks in
 p

ed
estrian

 SLA
M

 
2

01
2 M

. H
ard

egger; D
. R

o
ggen

; S. 
M

azilu
; G

. Tr??ster 
A

 fo
o

t-m
o

u
n

ted
 IM

U
 

a sp
ecific in

stan
tiatio

n
 of the FastSLA

M
 

fram
ew

o
rk o

p
tim

ized
 to o

p
erate w

ith
 

actio
n

 lan
d

m
arks, ZU

P
T, EK

F,  

1.2
 

1 
96

0
 

0.1
3%

 
1 

2 
Y

 
N

 
Y

 
N

 
N

 
Y

 
N

 
N

 

A
ctivity an

d
 lo

catio
n

 reco
gn

itio
n

 u
sin

g 
w

e
arab

le
 sen

so
rs 

2
00

2 Seo
n

-W
o

o
 Lee

; K
. M

ase 
Th

e leg m
o

d
ule, co

n
tain

s th
e b

iaxial accelerom
eter 

an
d

 th
e gyro

sco
p

e lo
cated

 in
 th

e u
ser’s righ

t o
r left 

tro
u

ser p
o

cket. th
e w

aist m
o

du
le, co

n
tain

s a d
igital 

co
m

p
ass and

  a m
icro

co
n

tro
ller attach

ed
 to th

e 
m

id
dle o

f th
e u

ser’s w
aist. 

U
n

it m
o

tio
n

 reco
gn

itio
n

 
- 

8 
90

 
8.2

0%
 

1 
3 

Y
 

N
 

Y
 

N
 

N
 

N
 

Y
 

N
 

A
ctivity classificatio

n
 an

d
 d

e
ad

 re
cko

n
in

g fo
r 

p
ed

estrian
 n

avigatio
n

 w
ith

 w
earab

le
 se

n
so

rs 2
00

9 Su
n

, Zu
o

lei; M
ao

, Xu
ch

u
; Tian

, 
W

eifen
g; Zh

an
g, X

iangfen
 

A
 M

EM
S, a  tri-axial accelero

m
eter an

d
 an 

electro
n

ic m
agn

etic co
m

p
ass, m

o
u

n
ted

 o
n th

e b
elt. fast Fo

u
rier tran

sfo
rm

s (FFTs), 
P

ro
b

abilistic n
eu

ral n
etw

ork (P
N

N
), 

w
avelet tran

sfo
rm

 (W
T) 

14.7
 

1 
43

4.21
 

3.3
9%

 
0 

2 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
N

 

A
d

ap
tive Zero

 V
elo

city U
p

d
ate

 B
ase

d
 o

n
 

V
e

lo
city C

lassificatio
n

 fo
r P

ed
estrian

 
Trackin

g 

2
01

7 R
. Zh

an
g; H

. Yan
g; F. H

??flinger; L. 
M

. R
ein

d
l 

Tw
o IM

U
s m

o
u

n
ted

 o
n fo

o
t an

d
 ch

est 
ZU

P
T, A

d
ap

tive N
eu

ro
-Fu

zzy Inferen
ce 

System
 (A

N
FIS)  

1 
10

 
40

 
2.5

0%
 

1 
3 

Y
 

Y
 

N
 

Y
 

N
 

N
 

Y
 

N
 

A
n

 ad
van

ced
 m

eth
o

d
 fo

r p
ed

e
strian

 d
e

ad
 

re
cko

n
in

g u
sin

g B
LSTM

-R
N

N
s 

2
01

5 M
. Ed

el; E. K
??p

p
e 

a Fo
o

t-M
o

u
n

ted
 IM

U
 

B
LSTM

-R
N

N
s, linear regressio

n
 

- 
10

 
- 

0.8
0%

 
10 

3 
N

 
N

 
N

 
Y

 
Y

 
Y

 
N

 
N

 

A
n

 alte
rn

ative
 ap

p
ro

ach
 to

 visio
n

 
te

ch
n

iq
u

es: P
e

d
estrian

 n
avigatio

n
 system

 
b

ased
 o

n
 d

igital m
agn

e
tic co

m
p

ass an
d

 
gyro

sco
p

e in
te

gratio
n

 

2
00

2 Lad
etto, Q

; M
erm

in
o

d
, B

 
A

 co
m

p
ass an

d
 a gyro

sco
pe w

orn
 vertical at the 

b
elt level 

- 
10 

1 
19

05
 

0.5
3%

 
0 

3 
N

 
N

 
N

 
N

 
N

 
N

 
N

 
N

 

A
n

 au
to

n
o

m
ic in

d
o

o
r p

o
sitio

n
in

g ap
p

licatio
n

 
b

ased
 o

n
 sm

artp
h

o
n

e 
2

01
4 Y. Su

n
; Y. Zh

ao
; J. Schiller 

A
 sm

artp
h

o
n

e 
Zero

 V
elo

city C
o

m
p

en
satio

n
 (ZV

C
), K

F,  
0.298

 
10

 
40

 
0.7

5%
 

1 
2 

Y
 

Y
 

N
 

Y
 

N
 

N
 

Y
 

N
 

A
n

 efficien
t m

eth
o

d
 fo

r e
valu

atin
g th

e 
p

erfo
rm

an
ce o

f in
te

grated
 m

u
ltip

le 
p

ed
estrian

 n
avigatio

n
 syste

m
s 

2
01

5 H
. Lan

; C
. Yu

; Y. Li; Y. Zh
u

an
g; N

. 
E

l-Sh
eim

y 
Tw

o sm
artp

h
o

n
es m

o
u

n
ted

 o
n

 th
e u

ser’s u
p

p
er 

b
o

d
y 

K
F 

1.289
 

1 
19

3
 

0.6
7%

 
1 

2 
N

 
Y

 
Y

 
Y

 
Y

 
N

 
N

 
N

 

A
n

 en
h

an
ced

 p
ed

estrian
 d

e
ad

 re
cko

n
in

g 
ap

p
ro

ach
 fo

r p
e

d
estrian

 trackin
g u

sin
g 

sm
artp

h
o

n
es 

2
01

5 Q
in

glin
 Tian

; Z. Salcic; K
. I. W

an
g; 

Yu
n

 P
an 

A
 sm

artp
h

o
n

e 
classificatio

n
 algo

rithm
, False P

eak 
R

eje
ctio

n (FPR
) 

0.3
 

10
 

96
.33

 
0.3

0%
 

1 
2 

Y
 

Y
 

N
 

N
 

N
 

N
 

N
 

N
 

A
n

 Exp
e

rim
en

tal H
eu

ristic A
p

p
ro

ach
 to

 
M

u
lti-P

o
se P

e
d

estrian
 D

e
ad

 R
ecko

n
in

g 
W

ith
o

u
t U

sin
g M

agn
eto

m
eters fo

r In
d

o
o

r 
Lo

calizatio
n

 

2
01

9 J. Lee
; S. H

u
an

g 
A

 sm
artp

h
o

n
e 

classificatio
n

 algo
rithm

，
 

3.51
 

4 
89

 
2.0

1%
 

1 
2 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

N
 

N
 

A
n

 Im
p

ro
ve

d
 P

e
d

estrian
 N

avigatio
n

 Syste
m

 
U

sin
g IM

U
 an

d
 M

agn
eto

m
e

te
r 

2
01

7 Li, Zh
en

w
ei; So

ng, C
h

u
nlei; C

ai, 
Jin

gyi; H
u

a, R
ui; Yu

, P
ei 

A
 fo

o
t-m

o
u

n
ted

 IM
U

, m
agn

etom
eter 

K
F, G

ait detectio
n

 algorithm
,  

4.27
 

1 
40

0
 

1.0
0%

 
0 

2 
Y

 
Y

 
Y

 
N

 
N

 
N

 
N

 
N

 

A
n

 in
d

o
o

r se
lf-lo

calizatio
n

 algo
rith

m
 u

sin
g 

th
e calib

ratio
n

 o
f th

e o
n

lin
e m

agn
etic 

fin
ge

rp
rin

ts an
d

 in
d

o
o

r lan
d

m
arks 

2
01

6 Q
. W

an
g; H

. Lu
o

; F. Zh
ao

; W
. Sh

ao
 A

 sm
artp

h
o

n
e, a fo

o
t-m

o
u

n
ted

 IM
U

 
zero

 velo
city up

d
ate, In

d
o

o
r lan

d
m

ark 
d

etectio
n

, m
agn

etic trajectory m
atch

ing 
2.55

 
1 

- 
80 p

ercen
tile 

lo
calizatio

n accuracy o
f 

1.4
m

 

1 
2 

Y
 

Y
 

N
 

N
 

N
 

Y
 

N
 

N
 

A
n

 in
verse sq

u
are ro

o
t filte

r fo
r ro

b
u

st 
in

d
o

o
r/o

u
td

o
o

r m
agn

eto
-visu

al-in
e

rtial 
o

d
o

m
etry 

2
01

7 D
. C

aru
so

; A
. Eu

d
es; M

. 
San

fo
u

rch
e; D

. V
issiere; G

. le 
B

esn
erais 

cam
era an

d
 M

IM
U

 
M

SC
K

F V
IN

S algo
rithm

, In
verse Sq

u
are 

ro
o

t Filter  
1.89

 
1 

- 
0.7

0%
 

1 
3 

Y
 

N
 

Y
 

N
 

N
 

Y
 

N
 

N
 

A
p

p
licatio

n
 o

f m
u

ltisen
so

r fu
sio

n
 to

 d
e

ve
lo

p
 

a p
e

rso
n

al lo
catio

n
 an

d
 3D

 m
ap

p
in

g syste
m

 
2

01
8 H

su
, Ya-W

en
; H

u
an

g, Sh
iang-

Sh
u

an
g; P

erng, Jau
-W

o
ei 

an
 IM

U
, a laser ran

ge fin
d

er, a M
icro

so
ft Kin

ect 
R

G
B

-D
 sen

so
r 

R
G

B
-D

 SLA
M

, IM
U

/laser SLA
M

 
1.15

 
1 

30
 

3.8
3%

 
1 

3 
Y

 
Y

 
Y

 
Y

 
N

 
Y

 
Y

 
N

 

C
o

m
p

ariso
n

 o
f EM

G
-b

ased
 an

d
 

A
cce

le
ro

m
e

te
r-b

ased
 Sp

e
ed

 Estim
atio

n
 

M
eth

o
d

s in
 P

ed
estrian

 D
ead

 R
ecko

n
in

g 

2
01

1 C
h

en
, W

ei; C
h

en
, R

u
izh

i; C
hen

, 
X

ian
g; Zh

an
g, X

u
; C

h
en

, Yu
w

ei; 
W

an
g, Jian

yu
; Fu

, Zh
o

ngq
ian

 

EM
G

 sen
sors attach

ed
 to

 b
o

th legs, an 
accelero

m
eter an

d
 a co

m
p

ass attach
ed

 o
n

 th
e 

ab
d

o
m

in
al area 

- 
- 

1 
15

92.8
 

0.6
9%

 
0 

2 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
N

 

C
o

m
p

ariso
n

 o
f P

ed
estrian

 Trackin
g M

eth
o

d
s 

B
ased

 o
n

 Fo
o

t- an
d

 W
aist-M

o
u

n
ted

 In
e

rtial 
Se

n
so

rs an
d

 H
an

d
h

e
ld

 Sm
artp

h
o

n
e

s 

2
01

9 Yu
, N

in
g; Li, Yu

nfei; M
a, X

iaofen
g; 

W
u

, Yin
fen

g; Fen
g, R

en
jian

 
IM

U
 m

o
u

n
ted

 o
n

 fo
o

t, w
aist, h

an
d

 resp
ectively 

M
ad

gw
ick, M

ah
o

n
y, SV

O
-LK

F, FC
F, EK

F, 
EH

D
E, V

LK
F 

0.8
 

1 
34

0
 

0.3
0%

 
1 

2 
Y

 
Y

 
N

 
Y

 
Y

 
Y

 
Y

 
N

 

C
o

n
te

xt-A
id

e
d

 In
ertial N

avigatio
n

 via B
e

lie
f 

C
o

n
d

e
n

satio
n

 
2

01
6 J. P

rieto
; S. M

azu
elas; M

. Z. W
in

 
a Fo

o
t-M

o
u

n
ted

 IM
U

 
b

elief co
n

d
en

satio
n

 (B
C

), H
id

d
en M

arko
v 

M
o

d
el 

0.55
 

1 
43

5
 

0.1
2%

 
1 

2 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
N

 
N

 

C
o

n
tin

u
o

u
s M

o
tio

n
 R

e
co

gn
itio

n
 fo

r N
atu

ral 
P

e
d

e
strian

 D
e

ad
 R

ecko
n

in
g U

sin
g 

Sm
artp

h
o

n
e Sen

so
rs 

2
01

4 Q
ian

, Jiu
chao

; P
ei, Lin

g; Ying, 
R

en
d

o
n

g; C
h

en
, X

in
; Zo

u, D
an

p
in

g; 
Liu

, P
eilin

; Yu
, W

en
xian

 

A
 sm

artp
h

o
n

e 
co

n
tin

u
o

u
s m

o
tio

n reco
gnitio

n
 

algo
rithm

, C
o

n
d

itio
n

al R
and

o
m

 Field
s 

(C
R

Fs) algo
rithm

 

0.27
 

1 
- 

- 
1 

2 
Y

 
Y

 
N

 
N

 
N

 
N

 
N

 
N

 

D
ead

 R
ecko

n
in

g in
 Stru

ctu
re

d
 En

viro
n

m
e

n
ts 

fo
r H

u
m

an
 In

d
o

o
r N

avigatio
n

 
2

01
7 G

. G
io

rgi; G
. Frigo

; C
. N

ard
u

zzi 
A

 sm
artp

h
o

n
e 

SD
, H

D
E, K

F 
3.8

 
2 

68
.23

 
4.0

0%
 

1 
2 

Y
 

Y
 

N
 

Y
 

N
 

N
 

Y
 

N
 

D
ead

 re
cko

n
in

g n
avigatio

n
 w

ith
 C

o
n

stan
t 

V
e

lo
city U

p
d

ate
 (C

U
P

T) 
2

01
2 Y. Li; J. J. W

an
g; S. X

iao
; X. Lu

o
 

a Fo
o

t-M
o

u
n

ted
 IM

U
 

C
o

n
stan

t V
elo

city U
p

d
ate (C

U
P

T) 
- 

1 
31

5.3
 

0.3
7%

 
1 

3 
Y

 
Y

 
Y

 
N

 
N

 
N

 
N

 
N

 

D
esign

 an
d

 im
p

le
m

en
tatio

n
 o

f an
 in

e
rtial 

n
avigatio

n
 syste

m
 fo

r p
ed

estrian
s b

ased
 o

n
 a 

lo
w

-co
st M

EM
S IM

U
 

2
01

3 F. M
o

n
to

rsi; F. P
an

cald
i; G

. M
. 

V
itetta 

a Fo
o

t-M
o

u
n

ted
 IM

U
 

EK
F, ZU

P
T 

10 
10

 
30

0
 

3.3
3%

 
1 

2 
Y

 
N

 
Y

 
N

 
N

 
N

 
Y

 
N

 

D
esign

 an
d

 Im
p

le
m

en
tatio

n
 o

f M
A

R
G

 
Se

n
so

rs B
ased

 P
o

sitio
n

in
g M

e
th

o
d

 U
sin

g a 
M

o
b

ile
 P

h
o

n
e 

2
01

5 Tian, Zen
gsh

an
; Q

ian
, G

u
an

g; 
Zh

o
u

, M
u

 
A

 sm
artp

h
o

n
e 

EK
F 

- 
1 

- 
0.2

0%
 

1 
2 

Y
 

Y
 

N
 

N
 

N
 

N
 

N
 

N
 

D
esign

 o
f an

 in
frastru

ctu
re

le
ss in

-d
o

o
r 

lo
calizatio

n
 d

e
vice u

sin
g an

 IM
U

 sen
so

r 
2

01
5 T. D

o
; R

. Liu
; C

. Yu
en

; U
. Tan

 
a Fo

o
t-M

o
u

n
ted

 IM
U

 
q

u
atern

io
n

-b
ased

 in
direct K

alm
an filter 

(iK
F) 

0.84
 

4 
40

 
0.4

4%
 

1 
2 

Y
 

Y
 

Y
 

Y
 

Y
 

N
 

N
 

N
 

D
EV

ELO
P

M
EN

T O
F A

 P
ED

ESTR
IA

N
 IN

D
O

O
R

 
N

A
V

IG
A

TIO
N

 SY
STEM

 B
A

SED
 O

N
 M

U
LTI-

SEN
SO

R
 FU

SIO
N

 A
N

D
 FU

ZZY
 LO

G
IC

 
ESTIM

A
TIO

N
 A

LG
O

R
ITH

M
S 

2
01

5 Lai, Y. C
.; C

h
an

g, C
. C

.; Tsai, C
. M

.; 
Lin

, S. Y.; H
u

an
g, S. C

. 
h

an
d

h
eld

/w
aist m

o
u

n
ted

 IM
U

  
m

u
lti-sen

so
r fu

sio
n

 an
d fuzzy lo

gic 
estim

atio
n

 algo
rithm

s 
0.33

 
1 

45
 

0.7
3%

 
1 

2 
Y

 
Y

 
N

 
N

 
N

 
N

 
N

 
N

 

D
isp

lace
m

en
t estim

atio
n

 in
 m

icro
-sen

so
r 

m
o

tio
n

 cap
tu

re 
2

01
0 X

iao
li M

e
n

g; Sh
u

yan Su
n

; Lianyin
g 

Ji; Jian
kan

g W
u

; W
ai-C

h
o

o
n

g 
W

o
n

g 

seve
n

 SM
U

s, w
h

ich
 are m

o
u

n
ted

 to
 the h

um
an 

p
elvis, thigh

s, sh
an

ks an
d

 fee
t resp

ectively 
co

m
plem

en
tary K

alm
an filter (CK

F) 
0.72

 
1 

15
 

4.8
0%

 
1 

2 
N

 
Y

 
Y

 
Y

 
N

 
N

 
N

 
N

 

En
h

an
ce

d
 H

e
u

ristic D
rift Elim

in
atio

n
 w

ith
 

A
d

ap
tive Zero

-V
elo

city D
ete

ctio
n

 an
d

 
H

ead
in

g C
o

rrectio
n

 A
lgo

rith
m

s fo
r 

P
e

d
e

strian
 N

avigatio
n

. 

2
02

0 Zh
u

 R
, W

an
g Y, Yu

 B
, G

an
 X, Jia H

, 
W

an
g B

. 
a fo

o
t m

o
un

ted IM
U

 
H

D
E, ZU

P
T 

- 
2 

- 
1.0

6%
 

0 
2 

Y
 

Y
 

Y
 

N
 

Y
 

Y
 

N
 

N
 

En
h

an
ce

d
 P

e
d

estrian
 N

avigatio
n

 B
ased

 o
n

 
C

o
u

rse
 A

n
gle

 Erro
r Estim

atio
n

 U
sin

g 
C

ascad
ed

 K
a

lm
an

 Filte
rs. 

2
01

8 So
n

g JW
, P

ark C
G

. 
a Fo

o
t-M

o
u

n
ted

 IM
U

 
tw

o
 cascad

ed
 K

alm
an filters (TC

K
F), 

in
ertial n

avigatio
n

 system
-exten

d
ed

 
K

alm
an

 filter-ZU
P

T (IN
S-EK

F-ZU
P

T) 

0.794
o

u
td

o
o

r, 
0.978

in
d

o
o

r 
1 

40
0o

u
td

o
o

r 
0.1

98%
o

u
td

o
o

r 
10 

2 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
N

 
N

 

138



En
h

an
cin

g Im
p

ro
ved

 H
eu

ristic D
rift 

Elim
in

atio
n

 fo
r W

rist-W
o

rn
 PD

R
 System

s in
 

B
u

ild
in

gs 

2
01

6 L. E. D
iez; A

. B
ah

illo
; S. B

atain
eh

; 
A

. D
. M

asego
sa; A

. P
erallo

s 
a w

rist-w
o

rn
 IM

U
 

m
o

d
ified

 im
pro

ved
 h

eu
ristic drift 

elim
in

atio
n (iH

D
E) 

0.57
 

1 
25

6
 

0.2
2%

 
1 

2 
Y

 
Y

 
N

 
N

 
N

 
Y

 
N

 
N

 

Erro
r M

o
d

e
llin

g fo
r M

u
lti-Sen

so
r 

M
easu

re
m

en
ts in

 In
frastru

ctu
re

-Fre
e In

d
o

o
r 

N
avigatio

n
 

2
01

8 R
u

o
tsalain

en
, Laura; K

irkko
-

Jaakko
la, M

artti; R
an

tan
en

, 
Jesp

eri; M
akela, M

aija 

a m
o

n
ocu

lar cam
era, a fo

o
t-m

o
u

n
ted

 Inertial 
M

e
asu

rem
en

t U
n

it (IM
U

), so
n

ar, an
d a b

ar 
p

article filter 
2.54

 
1 

17
0

 
1.4

9%
 

1 
2 

Y
 

Y
 

N
 

Y
 

Y
 

N
 

N
 

N
 

Evalu
atio

n
 o

f a n
ew

 m
e

th
o

d
 o

f h
ead

in
g 

estim
atio

n
 fo

r p
ed

estrian
 d

ead
 recko

n
in

g 
u

sin
g sh

o
e

 m
o

u
n

ted
 se

n
so

rs 

2
00

5 Stirlin
g, R

; Fyfe, K
; Lach

ap
elle, G

 
a Fo

o
t-M

o
u

n
ted

 IM
U

 
- 

25 
1 

90
0

 
2.7

7%
 

0 
2 

Y
 

N
 

N
 

N
 

N
 

Y
 

Y
 

N
 

Fo
o

t-m
o

u
n

ted
 IN

S an
d

 sele
cte

d
 geo

m
agn

etic 
in

fo
rm

atio
n

 co
n

stra
in

t fo
r in

d
ivid

u
al 

lo
calizatio

n
 

2
01

7 W
. D

u
o

; P
. X

ianfei; H
. X

iao
p

ing; H
. 

X
iao

fen
g 

fo
o

t-m
o

u
n

ted M
EM

S in
ertial/ m

agn
etic 

m
easu

rem
en

t u
nit 

ZU
P

T, recu
rsive least sq

u
are (R

LS) w
ith 

fo
rgettin

g facto
r 

algo
rithm

 

3 
1 

18
5.8

 
1.6

0%
 

0 
2 

Y
 

Y
 

N
 

Y
 

Y
 

Y
 

N
 

N
 

Fo
o

t-M
o

u
n

ted
 P

ed
estrian

 N
avigatio

n
 

A
lgo

rith
m

 B
ased

 o
n

 B
O

R
/M

IN
S In

te
grated

 
Fra

m
e

w
o

rk 

2
01

9 Z. D
en

; P
. W

ang; T. Liu
; Y. C

ao
; B

. 
W

an
g 

a Fo
o

t-M
o

u
n

ted
 M

IM
U

 
h

eu
ristic d

rift red
u

ctio
n

 (H
D

R
), 

co
m

plem
en

tary 
filter 

2.01
 

5 
40

8
 

0.4
9%

 
0 

2 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
N

 
N

 

H
ead

in
g D

rift R
ed

u
ctio

n
 fo

r Fo
o

t-M
o

u
n

ted
 

In
e

rtial N
avigatio

n
 Syste

m
 via M

u
lti-Sen

so
r 

Fu
sio

n
 an

d
 D

u
al-G

ait A
n

alysis 

2
01

9 H
. Zh

ao
; Z. W

an
g; S. Q

iu
; Y. Sh

en
; 

L. Zh
an

g; K
. Tang; G

. Fo
rtin

o
 

tw
o

 IM
U

s m
o

u
n

ted
 o

n each
 fo

o
t 

zero
 velo

city up
d

ates (ZU
PT) 

3 
4 

34
6

 
0.8

6%
 

0 
2 

Y
 

Y
 

Y
 

Y
 

Y
 

N
 

N
 

N
 

H
ead

in
g Estim

atio
n

 fo
r P

ed
e

strian
 D

e
ad

 
R

e
cko

n
in

g B
ased

 o
n

 R
o

b
u

st A
d

ap
tive K

alm
an

 
Filterin

g. 

2
01

8 W
u

 D
, X

ia L, G
en

g J. 
A

 sm
artp

h
o

n
e 

ro
b

u
st ad

ap
tive K

alm
an

 filterin
g (R

A
K

F) 
1.35

 
5 

15
0.4

 
0.8

9%
 

1 
2 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

N
 

N
 

H
ead

in
g Estim

atio
n

 w
ith

 R
eal-tim

e 
C

o
m

p
en

satio
n

 B
ased

 o
n

 K
a

lm
an

 Filte
r 

A
lgo

rith
m

 fo
r an

 In
d

o
o

r P
o

sitio
n

in
g System

 

2
01

6 Li, Xin
; W

an
g, Jian

; Liu
, C

h
u

n
yan

 
M

E
M

S, IM
U

 o
f sm

artp
h

o
ne 

K
F 

2.31
 

1 
- 

- 
1 

2 
Y

 
Y

 
N

 
N

 
N

 
Y

 
N

 
N

 

H
iera

rch
ical calib

ratio
n

 arch
ite

ctu
re

 b
ased

 
o

n
 In

ertial/m
agn

e
tic sen

so
rs fo

r in
d

o
o

r 
p

o
sitio

n
in

g 

2
01

8 G
. Liu

; L. Sh
i; J. X

u
n

; S. C
h

en
; H

. 
Liu

; Y. Sh
i 

IM
U

 m
o

u
n

ted
 o

n
 th

e an
kle 

EK
F, m

ach
in

e learn
in

g 
0.5

 
1 

22
0

 
0.2

3%
 

1 
3 

Y
 

Y
 

N
 

N
 

N
 

Y
 

N
 

N
 

H
u

m
an

 velo
city trackin

g an
d

 lo
calizatio

n
 

u
sin

g 3 IM
U

 sen
so

rs 
2

01
3 Q

. Yu
an

; I. C
h

en
; A

. C
au

s 
Th

ree
 IM

U
 m

o
u

n
ted

 o
n th

e righ
t sh

an
k, righ

t thigh
 

an
d

 th
e p

elvis, Fo
u

r fo
rce sen

sin
g resistors (FSR

) in
 

th
e in

so
le sh

o
e p

ad
 

EK
F 

0.1
 

1 
15

 
0.6

7%
 

1 
3 

Y
 

Y
 

Y
 

N
 

N
 

N
 

Y
 

N
 

H
yb

rid
 In

d
o

o
r Lo

calizatio
n

 U
sin

g IM
U

 
Se

n
so

rs an
d

 Sm
artp

h
o

n
e C

am
e

ra 
2

01
9 P

o
u

lo
se, A

lw
in

; H
an, D

o
n

g Seo
g 

IM
U

 an
d

 cam
era o

n
 a sm

artph
o

n
e 

U
co

SLA
M

, K
F 

0.069
 

1 
18

.2
 

0.3
8%

 
1 

2 
Y

 
N

 
Y

 
Y

 
Y

 
Y

 
N

 
N

 

H
yb

rid
 N

avigatio
n

 M
eth

o
d

 o
f IN

S/PD
R

 B
ased

 
o

n
 A

ctio
n

 R
e

co
gn

itio
n

 
2

01
8 J. Lu

; K
. C

h
en

; B
. Li; M

. D
ai 

a Fo
o

t-M
o

u
n

ted
 M

IM
U

 
M

o
tio

n
 C

lassificatio
n

, ZU
PT 

- 
4 

52
.2

 
1.1

3%
 

1 
2 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

N
 

H
yb

rid
 o

rie
n

tatio
n

 filte
r aid

e
d

 in
d

o
o

r 
trackin

g fo
r p

ed
estrian

s u
sin

g a sm
artp

h
o

n
e 

2
01

7 Z. Yang; Y. P
an

; L. Zh
ang 

A
 sm

artp
h

o
n

e (cam
era) 

H
yb

rid
 O

rien
tatio

n
 Filter 

0.83
 

5 
20

7
 

0.4
1%

 
1 

2 
Y

 
Y

 
N

 
Y

 
Y

 
Y

 
N

 
N

 

iD
Fu

sio
n

: G
lo

b
ally C

o
n

sisten
t D

e
n

se
 3D

 
R

e
co

n
stru

ctio
n

 fro
m

 R
G

B
-D

 an
d

 In
e

rtial 
M

easu
re

m
en

ts 

2
01

9 Zh
o

n
g, D

aw
ei; H

an, Lei; Fan
g, Lu

 
IM

U
 an

d
 cam

era 
TSD

F fu
sio

n
 

0.01
 

1 
- 

- 
1 

3 
Y

 
N

 
Y

 
N

 
N

 
Y

 
Y

 
N

 

Im
p

lem
e

n
tatio

n
 an

d
 p

erfo
rm

an
ce

 an
alysis o

f 
sm

artp
h

o
n

e
-b

ased
 3D

 PD
R

 syste
m

 w
ith

 
h

yb
rid

 m
o

tio
n

 an
d

 h
ead

in
g classifie

r 

2
01

4 B
. Sh

in
; S. Lee

; C
. K

im
; J. K

im
; T. 

Lee
; C

. K
ee

; S. H
eo

; H
. R

h
ee 

A
 sm

artp
h

o
n

e 
m

o
tio

n reco
gn

itio
n

, ZU
P

T, K
F, SV

M
 

2.25
 

3 
13

3.2
 

5.0
0%

 
1 

3 
Y

 
Y

 
N

 
Y

 
Y

 
N

 
N

 
N

 

Im
p

ro
ved

 P
e

d
estrian

 D
e

ad
 R

ecko
n

in
g B

ased
 

o
n

 a R
o

b
u

st A
d

ap
tive K

a
lm

an
 Filte

r fo
r 

In
d

o
o

r In
e

rtial Lo
catio

n
 System

 

2
01

9 Fan
, Q

igao
; Zh

ang, H
ai; P

an, P
en

g; 
Zh

u
an

g, X
iangp

en
g; Jia, Jie; Zh

an
g, 

P
en

gso
n

g; Zhao
, Zh

en
gqin

g; Zh
u, 

G
ao

w
en

; Tan
g, Yu

an
yu

an
 

a Fo
o

t-M
o

u
n

ted
 M

IM
U

 
ro

b
u

st ad
ap

tive K
alm

an
 filter (R

A
K

F) 
algo

rithm
, C

o
m

p
lem

en
tary Filter 

0.27
 

1 
23

1.8
 

2.5
0%

 
1 

2 
Y

 
Y

 
Y

 
N

 
Y

 
Y

 
N

 
N

 

Im
p

ro
vin

g p
e

d
estrian

 n
avigatio

n
 system

 
p

erfo
rm

an
ce th

ro
u

gh
 th

e u
se

 o
f n

o
n

-
o

rth
o

go
n

al red
u

n
d

an
t in

e
rtial m

e
asu

re
m

en
t 

u
n

its 

2
01

7 P
. M

arin
u

sh
kin

; A
. Levitskiy; F. 

Zo
graf 

a Fo
o

t-M
o

u
n

ted
 IM

U
 

exten
d

ed
 K

alm
an filter 

- 
1 

17
0

 
2.5

0%
 

1 
2 

Y
 

Y
 

N
 

N
 

N
 

Y
 

N
 

N
 

In
 situ

 h
e

ad
in

g d
rift co

rrectio
n

 fo
r h

u
m

an
 

p
o

sitio
n

 trackin
g u

sin
g fo

o
t-m

o
u

n
ted

 
in

ertial/m
agn

e
tic se

n
so

rs 

2
01

2 E. B
ach

m
ann

; J. C
alu

sd
ian

; E. 
H

o
d

gso
n

; X
. Yu

n
 

2
 Fo

o
t-M

o
u

n
ted

 In
ertial/M

agn
etic Sen

so
rs 

zero
 p

o
sitio

n
 u

p
d

ate 
1.07

 
4 

40
0

 
0.2

0%
 

0 
2 

Y
 

Y
 

N
 

Y
 

Y
 

N
 

Y
 

N
 

In
d

o
o

r in
fra

stru
ctu

re
-le

ss so
lu

tio
n

 b
ased

 o
n

 
sen

so
r au

gm
en

ted
 sm

artp
h

o
n

e
 fo

r 
p

ed
estrian

 lo
calisatio

n
 

2
01

2 G
. Treh

ard
; S. Lam

y-P
erb

al; M
. 

B
o

u
kallel 

a sm
artp

h
o

n
e w

ith
 anem

o
m

eter 
gyro

sco
pic sen

so
rs 

P
ito

t tu
b

e th
eory 

3 
1 

50
 

6.0
0%

 
1 

2 
Y

 
Y

 
Y

 
N

 
N

 
N

 
Y

 
N

 

In
d

o
o

r M
u

lti-Flo
o

r 3D
 Targe

t Trackin
g B

ased
 

o
n

 th
e M

u
lti-Sen

so
r Fu

sio
n

 
2

02
0 J. Lu

o
; C

. Zh
an

g; C
. W

ang 
sm

artp
h

o
n

e 
K

F, FC
D

 
0.499

 
1 

- 
- 

1 
3 

Y
 

Y
 

Y
 

N
 

Y
 

Y
 

N
 

N
 

In
d

o
o

r p
ed

estrian
 lo

calisatio
n

 so
lu

tio
n

 b
ase

d
 

o
n

 an
e

m
o

m
e

try se
n

so
r in

tegra
tio

n
 w

ith
 a 

sm
artp

h
o

n
e 

2
01

2 G
. Treh

ard
; M

. B
o

u
kallel; S. Lam

y-
P

erb
al 

a sm
artp

h
o

n
e w

ith
 anem

o
m

eter an
d

 
gyro

sco
pic sen

so
rs 

P
ito

t tu
b

e th
eory 

3 
1 

50
 

6.0
0%

 
1 

2 
Y

 
Y

 
Y

 
N

 
N

 
N

 
Y

 
N

 

In
d

o
o

r P
ed

e
strian

 Lo
calizatio

n
 W

ith
 a 

Sm
artp

h
o

n
e: A

 C
o

m
p

ariso
n

 o
f In

e
rtial an

d
 

V
isio

n
-B

ased
 M

eth
o

d
s 

2
01

6 W
. Ello

u
m

i; A
. Lato

u
i; R

. C
an

als; A
. 

C
h

eto
u

an
i; S. Treu

illet 
A

 sm
artp

h
o

n
e 

 Exten
d

ed
 K

alm
an Filter (EK

F) 
0.519

 
1 

59
 

0.8
8

%
 

1 
2 

Y
 

Y
 

N
 

Y
 

Y
 

Y
 

Y
 

N
 

In
d

o
o

r p
ed

estrian
 n

avigatio
n

 u
sin

g an
 

IN
S/EK

F fram
ew

o
rk fo

r yaw
 d

rift red
u

ctio
n

 
an

d
 a fo

o
t-m

o
u

n
ted

 IM
U

 

2
01

0 A
. R

. Jim
??n

ez; F. Seco
; J. C

. 
P

rieto
; J. G

u
evara 

a Fo
o

t-M
o

u
n

ted
 IM

U
 

IN
S- EK

F-ZU
P

T (IEZ), ZA
R

U
, H

D
R

 
0.3 - 1.5 

1 
12

5
 

1.0
0%

 
1 

2 
Y

 
Y

 
Y

 
N

 
N

 
Y

 
N

 
N

 

In
d

o
o

r p
o

sitio
n

in
g b

ase
d

 o
n

 fo
o

t-m
o

u
n

ted
 

IM
U

 
2

01
5 G

u
o

, H
.; U

rad
zin

ski, M
.; Yin

, H
.; 

Yu
, M

. 
a Fo

o
t-M

o
u

n
ted

 IM
U

 
ZA

R
U

, ZU
P

T 
0.88

 
1 

90
.48

 
1.0

0%
 

1 
2 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

N
 

In
d

o
o

r p
o

sitio
n

in
g syste

m
 u

sin
g w

alkin
g 

p
atte

rn
 classificatio

n
 

2
01

4 F. D
e C

illis; F. D
e Sim

io
; L. 

Faram
o

n
di; F. In

d
erst; F. P

ascu
cci; 

R
. Seto

la 

W
aist-m

o
u

n
ted

 IM
U

 
classificatio

n
, Exten

d
ed

 K
alm

an Filter 
2 

1 
20

0
 

1.0
0%

 
1 

3 
Y

 
Y

 
N

 
N

 
N

 
N

 
Y

 
N

 

In
d

o
o

r P
o

sitio
n

in
g Syste

m
: A

 N
ew

 A
p

p
ro

ach
 

B
ased

 o
n

 LSTM
 an

d
 Tw

o
 Stage A

ctivity 
C

lassificatio
n

 

2
01

9 H
u

ssain
, G

h
ulam

; Jab
b

ar, 
M

u
h

am
m

ad Sh
ah

id
; C

h
o

, Ju
n

-
D

o
n

g; B
ae, Sangm

in
 

A
 sm

artp
h

o
n

e 
LSTM

 an
d

 Tw
o

 Stage A
ctivity 

C
lassificatio

n
 

0.782
 

19
 

- 
- 

1 
2 

Y
 

Y
 

Y
 

N
 

Y
 

Y
 

N
 

N
 

In
d

o
o

rG
u

id
e ?€? A

 m
u

lti se
n

so
r p

e
d

estrian
 

n
avigatio

n
 syste

m
 fo

r p
recise an

d
 ro

b
u

st 
in

d
o

o
r lo

calizatio
n

 

2
01

6 J. R
u

p
pelt; P

. M
e

rz; G
. F. Tro

m
m

er A
 IM

U
 an

d a cam
era or a ro

tatin
g laser scan

n
er 

m
o

u
n

ted
 o

n
 th

e u
p

p
er b

od
y, a IM

U
 m

o
u

n
ted

 o
n

 
th

e fo
o

t 

sto
ch

astic clo
nin

g error state sp
ace 

K
alm

an
 filter (SC

K
F), FSM

-b
ased

 ZU
PT, 

M
u

lti-fram
e Feature In

tegratio
n (M

fFI), 
R

A
N

d
o

m
 SA

m
p

le C
o

n
sen

su
s (R

A
N

SA
C

) 
strategy 

0.1
 

1 
- 

- 
1 

2 
Y

 
Y

 
N

 
N

 
N

 
Y

 
N

 
N

 

In
e

rtial Sen
so

r B
ased

 In
d

o
o

r Lo
calizatio

n
 an

d
 

M
o

n
ito

rin
g System

 fo
r Em

erge
n

cy 
R

e
sp

o
n

d
ers 

2
01

3 R
. Zh

an
g; F. H

o
flin

ger; L. R
ein

d
l 

six IM
U

s m
o

u
n

ted
 o

n w
aist, th

igh
s, sh

an
ks, an

d
 o

n
e 

fo
o

t 
m

o
d

ified
 K

alm
an

 filter, zero
 velocity 

u
p

d
ate (ZU

P
T) 

2.35
 

1 
- 

- 
1 

3 
Y

 
Y

 
Y

 
Y

 
Y

 
N

 
Y

 
N

 

In
e

rtial/m
agn

e
tic se

n
so

rs b
ased

 p
ed

estrian
 

d
ead

 re
cko

n
in

g b
y m

ean
s o

f m
u

lti-se
n

so
r 

fu
sio

n
 

2
01

8 Q
iu

, Sen
; W

ang, Zh
elo

ng; Zh
ao

, 
H

o
n

gyu
; Q

in
, K

airo
ng; Li, Zh

en
glin

; 
H

u
, H

u
o

sh
en

g 

a Fo
o

t-M
o

u
n

ted
 IM

U
 

EK
F, zero

 velo
city u

p
d

ate(ZV
U

) 
0.49in

d
o

o
r, 

2.59o
u

td
o

o
r 

4 
50

in
d

o
o

r, 
42

3o
u

td
o

o
r 

0.4
1%

in
d

o
or, 

0.6
5%

o
u

td
o

o
r 

10 
23 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

N
 

In
e

rtial-visio
n

 sen
so

r fu
sio

n
 fo

r p
e

d
estrian

 
lo

calizatio
n

 
2

01
1 D

. C
h

did
; R

. O
ueis; H

. K
h

o
u

ry; D
. 

A
sm

ar; I. Elh
ajj 

A
n

 IM
U

 m
o

u
n

ted
 o

n
 th

e fo
o

t an
d cam

era rigs 
attach

ed
 to

 the w
aist 

EK
F in

co
rp

o
rates three correctio

n 
tech

n
iq

u
es: ZU

P
T, ZA

R
U

 an
d

 H
D

R
 

0.186
45

 
1 

40
 

0.4
7%

 
1 

2 
Y

 
Y

 
N

 
Y

 
Y

 
Y

 
N

 
N

 

In
-p

lan
e d

e
ad

 recko
n

in
g w

ith
 kn

e
e

 an
d

 w
aist 

attach
ed

 gyro
sco

p
e

s 
2

01
1 Liu

, Zexi; A
d

u
b

a, C
h

u
kw

u
em

eka; 
W

o
n

, C
h

ang-H
ee 

tw
o

 gyro
sco

p
es attached

 to th
e w

aist an
d

 kn
ee 

Zero
 A

n
gu

lar D
isp

lacem
en

t U
p

- d
ate 

(ZA
D

U
) algo

rithm
 

0.193
5

 
1 

62
.32

 
0.3

1%
 

1 
2 

Y
 

Y
 

N
 

N
 

Y
 

Y
 

N
 

N
 

139



K
in

e
m

atic M
o

d
e

l-B
ased

 P
ed

estrian
 D

e
ad

 
R

e
cko

n
in

g fo
r H

e
ad

in
g C

o
rrectio

n
 an

d
 Lo

w
e

r 
B

o
d

y M
o

tio
n

 Trackin
g 

2
01

5 Lee, M
in Su

; Ju, H
o

jin
; So

ng, Jin
 

W
o

o
; P

ark, C
h

an
 G

o
o

k 
7

 IM
U

s m
o

u
n

ted
 o

n
 w

aist, each
 u

p
p

er leg, each 
lo

w
er leg an

d
 each fo

o
t 

Exten
d

ed
 K

alm
an

 Filter (EK
F), ZU

P
T 

0.208
5in

d
o

o
r, 

5.35o
u

td
o

o
r 

5 
28

0in
d

o
o

r, 
40

0o
u

td
o

o
r 

0.0
7%

in
d

o
or, 

1.3
3%

o
u

td
o

o
r 

10 
2 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

N
 

Lo
calizatio

n
 o

f W
alkin

g o
r R

u
n

n
in

g U
ser w

ith
 

W
earab

le 3D
 P

o
sitio

n
 Se

n
so

r 
2

00
7 K

azu
ki Yam

an
aka, M

asayu
ki 

K
an

b
ara an

d N
ao

kazu
 Yo

ko
ya 

an
 electro

m
agn

etic sen
so

r , an
 in

ertial sen
so

r at 
u

ser's h
ip, p

u
sh

 b
u

tton
 sw

itch
es attach

ed
 to u

ser's 
b

o
th

 h
eels an

d
 to

es, electro
m

agn
etic sen

so
r are 

fixed
 o

n
 cn

em
is o

f b
o

th
 u

sers' legs 

- 
1.054

 
1 

30
 

1.4
0%

 
1 

3 
Y

 
Y

 
N

 
Y

 
N

 
Y

 
N

 
N

 

Lo
o

se C
o

u
p

lin
g o

f W
earab

le
-B

ased
 IN

Ss w
ith

 
A

u
to

m
atic H

ead
in

g Evalu
atio

n
 

2
01

7 A
h

m
ed

, D
in

a B
o

u
sd

ar; D
iaz, 

Estefania M
u

n
o

z 
2

 IM
U

s lo
cated

 o
n

 th
e u

p
p

er-fro
n

t p
art o

f th
e fo

o
t 

an
d

 o
n th

e u
p

p
er thigh o

f th
e sam

e leg 
ZU

P
Ts, exted

ed
 K

alm
an filter (EK

F) is 
- 

30
 

- 
10cm

/s 
0 

2 
Y

 
Y

 
N

 
Y

 
N

 
N

 
N

 
N

 

Lo
w

 co
st in

fra
stru

ctu
re

 fre
e fo

rm
 o

f in
d

o
o

r 
p

o
sitio

n
in

g 
2

01
4 S. K

. G
u

p
ta; S. B

o
x; R

. E. W
ilso

n
 

A
 sm

artp
h

o
n

e 
Fast Fo

u
rier Tran

sfo
rm

 (FFT) 
1.7

 
7 

32
.7

 
2.7

0%
 

1 
3 

Y
 

Y
 

N
 

Y
 

Y
 

Y
 

Y
 

N
 

Lo
w

-co
st B

lu
e

to
o

th
 fo

o
t-m

o
u

n
ted

 IM
U

 fo
r 

p
ed

estrian
 trackin

g in
 in

d
u

strial 
en

viro
n

m
en

ts 

2
01

5 A
. B

ahillo
; I. A

n
gu

lo
; E. O

nieva; A
. 

P
erallo

s; P
. Fern

??n
d

ez 
a Fo

o
t-M

o
u

n
ted

 IM
U

 
ZU

P
T, K

F, h
eu

ristic d
rif elim

in
atio

n (H
D

E) 2 
1 

80
0

 
0.2

5%
 

1 
3 

Y
 

Y
 

N
 

N
 

Y
 

N
 

N
 

N
 

LSTM
-B

ased
 Zero

-V
e

lo
city D

etectio
n

 fo
r 

R
o

b
u

st In
ertial N

avigatio
n

 
2

01
8 B

. W
agstaff; J. K

elly 
a Fo

o
t-M

o
u

n
ted

 IM
U

 
EK

F, LSTM
 

1.083
 

5 
22

0
 

0.4
9%

 
1 

3 
Y

 
Y

 
N

 
Y

 
Y

 
Y

 
N

 
N

 

M
agn

eto
m

ete
r-Fre

e Sen
so

r Fu
sio

n
 A

p
p

lied
 

to
 P

ed
estrian

 Trackin
g: A

 Feasib
ility Stu

d
y 

2
01

9 S. C
ard

arelli; P
. di Flo

rio
; A

. 
M

e
n

garelli; A
. Tigrin

i; S. Fio
retti; F. 

V
erd

in
i 

a fo
o

t m
o

un
ted IM

U
 

K
F, ZU

P
T 

0.96
 

1 
43

.16
 

2.2
2%

 
1 

2 
Y

 
N

 
Y

 
Y

 
Y

 
N

 
N

 
Y

 

M
o

tio
n

 R
e

co
gn

itio
n

-B
ased

 3D
 P

ed
estrian

 
N

avigatio
n

 Syste
m

 U
sin

g Sm
artp

h
o

n
e 

2
01

6 Sh
in

, B
eo

m
ju

; K
im

, C
h

ulki; K
im

, 
Jaeh

u
n

; Lee
, Seo

k; K
ee, C

h
an

gd
o

n
; 

K
im

, H
yo

u
n

g Seo
k; Lee, Taikjin

 

A
 sm

artp
h

o
n

e 
artificial n

eu
ral n

etw
ork, K

F 
- 

3 
14

4
 

6.0
0%

 
1 

3 
Y

 
Y

 
Y

 
N

 
N

 
N

 
N

 
N

 

M
u

ltim
o

d
e

 P
ed

e
strian

 D
ead

 R
ecko

n
in

g G
ait 

D
etectio

n
 A

lgo
rith

m
 B

ase
d

 o
n

 Id
en

tificatio
n

 
o

f P
e

d
estrian

 P
h

o
n

e
 C

arryin
g P

o
sitio

n
 

2
01

9 G
u

o
, Yin

g; Liu, Q
in

gh
u

a; Ji, X
ianlei; 

W
an

g, Sh
en

gli; Fen
g, M

in
gyan

g; 
Su

n
, Yu

xi 

sm
artp

h
o

n
e 

P
C

A
, ran

d
om

 fo
rest algo

rith
m

 
0.261

 
1 

45
 

0.5
8%

 
1 

2 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
N

 
N

 

N
o

ve
l V

e
lo

city U
p

d
ate A

p
p

lie
d

 fo
r IM

U
-

b
ased

 W
earab

le
 D

e
vice to

 Estim
ate th

e 
V

e
rtical D

istan
ce 

2
01

9 T. N
. D

o
; U

. Tan
 

an
 IM

U
 m

o
u

n
ted

 o
n

 w
aist 

- 
- 

4 
- 

0.7
7%

 
1 

3 
Y

 
Y

 
N

 
Y

 
N

 
N

 
N

 
N

 

O
n

 sin
gle

 se
n

so
r-b

ased
 in

e
rtial n

avigatio
n

 
2

01
6 N

. Stro
zzi; F. P

arisi; G
. Ferrari 

a sin
gle w

earab
le M

agn
etic, A

ngu
lar R

ate, an
d

 
G

ravity (M
A

R
G

) sen
sor o

n
 fo

o
t/ch

est 
En

h
an

ced
 P

ed
estrian D

ead
 R

ecko
nin

g 
(EPD

R
) an

d
 D

e
-D

rifted
 P

rop
agation

 (D
D

P
) 1.73in

d
o

o
r, 

6.14o
u

td
o

o
r 

16
 

90
in

d
o

o
r, 

40
0o

u
td

o
o

r 
2.0

1%
in

d
o

or, 
1.5

4%
o

u
td

o
o

r 
10 

2 
Y

 
Y

 
N

 
N

 
N

 
N

 
N

 
N

 

O
p

tim
al H

ead
in

g Estim
atio

n
 B

ased
 

M
u

ltid
im

e
n

sio
n

al P
article

 Filte
r fo

r 
P

e
d

e
strian

 In
d

o
o

r P
o

sitio
n

in
g 

2
01

8 L. P
ei; D

. Liu
; D

. Zo
u

; R
. Lee Fo

o
k 

C
h

o
y; Y. C

h
en

; Z. H
e 

A
 sm

artp
h

o
n

e 
m

u
ltid

im
en

sio
n

al p
article filter (M

P
F) 

algo
rithm

 
2.5

 
5 

30
0

 
0.8

3%
 

1 
2 

Y
 

Y
 

Y
 

N
 

Y
 

Y
 

Y
 

N
 

P
e

d
e

strian
 D

e
ad

 R
ecko

n
in

g B
ased

 o
n

 
Fre

q
u

en
cy Se

lf-Syn
ch

ro
n

izatio
n

 an
d

 B
o

d
y 

K
in

e
m

atics 

2
01

7 M
. B

asso
; M

. G
alan

ti; G
. 

In
n

o
cen

ti; D
. M

iceli 
IM

U
 em

b
ed

ded
 in

 a sm
artp

h
o

n
e an

d
 a m

o
re 

exp
en

sive stan
d

-alo
n

e IM
U

 freely p
o

sitio
n

ed
 n

o
t 

to
o

 far fro
m

 the w
aist 

P
h

ase Lo
cked Lo

o
p

 (PLL), P
C

A
 

8 
2 

32
62

 
0.3

0%
 

0 
2 

Y
 

Y
 

N
 

Y
 

N
 

N
 

N
 

N
 

P
e

d
e

strian
 D

e
ad

 R
ecko

n
in

g in
 H

an
d

h
e

ld
 

Te
rm

in
al w

ith
 In

ertial M
easu

rem
e

n
t U

n
it 

2
01

4 W
an

g, K
eji; D

en
g, Zh

o
n

glian
g; 

Lu
o

, Sh
en

gm
ei; Yu, Yan

pei; R
u

an, 
Fen

gli 

A
 sm

artp
h

o
n

e 
- 

3 
1 

- 
- 

1 
2 

Y
 

Y
 

N
 

N
 

N
 

N
 

N
 

N
 

P
e

d
e

strian
 d

e
ad

 re
cko

n
in

g o
n

 sm
artp

h
o

n
e

s 
w

ith
 varyin

g w
alkin

g sp
e

ed
 

2
01

6 R
. Zh

o
u

 
A

 sm
artp

h
o

n
e 

Sim
p

le M
o

vin
g A

verage (SM
A

) algo
rithm

, 
K

F 
2.7

 
1 

- 
- 

1 
2 

Y
 

Y
 

N
 

N
 

N
 

N
 

Y
 

N
 

P
e

d
e

strian
 D

e
ad

 R
ecko

n
in

g System
 U

sin
g 

D
u

al IM
U

 to
 C

o
n

sid
e

r H
e

e
l Strike

 Im
p

act 
2

01
8 H

. Ju
; J. H

. Lee
; C

. G
. P

ark 
sh

o
e an

d calf m
o

u
n

ted
 IM

U
s 

ZU
P

T 
0.3

 
3 

13
8

 
0.2

2%
 

1 
2 

Y
 

Y
 

N
 

Y
 

Y
 

Y
 

N
 

N
 

P
e

d
e

strian
 d

e
ad

 re
cko

n
in

g w
ith

 attitu
d

e 
estim

atio
n

 u
sin

g a fu
zzy lo

gic tu
n

ed
 ad

ap
tive 

kalm
an

 filte
r 

2
01

3 M
. N

. Ib
arra-B

o
n

illa; P
. Jo

rge 
Escam

illa-A
m

b
ro

sio
; J. M

an
uel 

R
am

irez-C
o

rtes; C
. V

ian
ch

ad
a 

a lap
to

p
 

fu
zzy lo

gic tu
n

ed ad
ap

tive K
alm

an filter 
   

 

- 
1 

- 
6.4

0%
 

10 
2 

Y
 

N
 

N
 

N
 

N
 

N
 

N
 

N
 

P
e

d
e

strian
 d

e
ad

 re
cko

n
in

g w
ith

 w
aist-w

o
rn

 
in

ertial sen
so

rs 
2

01
2 J. C

. A
lvarez; A

. M
. L??p

ez; R
. C

. 
G

o
n

z??lez; D
. ??lvarez 

W
aist-m

o
u

n
ted

 IM
U

 
- 

- 
1 

17
8.58

 
7.0

0%
 

1 
2 

Y
 

Y
 

N
 

N
 

N
 

N
 

Y
 

N
 

P
e

d
e

strian
 D

e
ad

 R
ecko

n
in

g-A
ssisted

 V
isu

al 
In

e
rtial O

d
o

m
etry In

te
grity M

o
n

ito
rin

g. 
2

01
9 W

an
g Y, P

en
g A

, Lin
 Z, Zh

en
g L, 

Zh
en

g H
. 

a cam
era an

d
 an IM

U
 

M
u

lti-State co
n

strain
ed

 K
alm

an Filter 
(M

SC
K

F) 
2.583

8
 

1 
14

00
 

0.1
8%

 
1 

3 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
N

 
N

 

P
e

d
e

strian
 d

e
ad

-recko
n

in
g algo

rith
m

s fo
r 

d
u

al fo
o

t-m
o

u
n

ted
 in

e
rtial se

n
so

rs 
2

01
9 I. A

. C
h

istiako
v; A

. A
. N

ikulin
; I. B

. 
G

artseev 
tw

o
 fo

o
t-m

o
u

n
ted

 in
ertial m

easurem
en

t u
n

its 
(IM

U
) 

ZU
P

T 
0.241

 
6 

70
 

0.3
4%

 
1 

2 
Y

 
N

 
Y

 
N

 
N

 
Y

 
N

 
N

 

P
e

d
e

strian
 in

ertial n
avigatio

n
 w

ith
 gait 

p
h

ase d
ete

ctio
n

 assiste
d

 ze
ro

 velo
city 

u
p

d
atin

g 

2
00

9 Yo
u

n
g So

o
 Su

h
; S. P

ark 
A

n
 IM

U
 and

 4 fo
rce sen

so
r m

o
u

n
ted

 o
n

 fo
o

t 
h

id
d

en
 M

arko
v m

o
del (H

M
M

) filter, 
C

o
m

p
lem

en
tary K

alm
an filter, Zero 

velo
city u

p
d

atin
g 

0.242
2

 
1 

6 
4.0

3%
 

1 
3 

Y
 

N
 

Y
 

N
 

N
 

N
 

N
 

N
 

P
e

d
e

strian
 N

avigatio
n

 w
ith

 Fo
o

t-M
o

u
n

ted
 

In
e

rtial Sen
so

rs in
 W

earab
le B

o
d

y A
re

a 
N

etw
o

rks 

2
01

4 Zh
o

u
, X

u
an

-ch
en

g; C
hen

, Jian
-xin

; 
D

o
n

g, Yi; Lu
, X

i-ru
o

; C
ui, Jing-w

u
; 

Zh
en

g, B
ao

-yu
 

a Fo
o

t-M
o

u
n

ted
 IM

U
 

EK
F, ZU

P
T 

1.5
 

1 
20

6
 

0.7
3%

 
0 

2 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
N

 
N

 

P
e

d
e

strian
 Trackin

g b
y A

co
u

stic D
o

p
p

le
r 

Effe
cts 

2
01

9 T. C
h

iang; K. O
u

; J. Q
iu

; Y. Tsen
g 

A
 m

icro
p

h
o

n
e m

o
u

n
ted

 o
n

 the left fo
o

t an
d

 tw
o 

b
u

zzers m
o

u
n

ted
 o

n
 th

e righ
t fo

o
t 

sh
o

rt-tim
e Fo

u
rier tran

sfo
rm

 (STFT) 
0.364

6
 

1 
24

.4
 

1.4
9%

 
1 

2 
Y

 
Y

 
N

 
N

 
Y

 
Y

 
Y

 
N

 

P
e

rfo
rm

an
ce En

h
an

cem
en

t o
f P

ed
e

strian
 

N
avigatio

n
 Syste

m
s B

ased
 o

n
 Lo

w
-C

o
st Fo

o
t-

M
o

u
n

ted
 M

EM
S-IM

U
/U

ltraso
n

ic Sen
so

r 

2
01

9 X
ia, M

in
g; Xiu

, C
h

u
n

di; Yan
g, 

D
o

n
gkai; W

an
g, Li 

A
n

 IM
U

 and
 an u

ltraso
n

ic sen
so

r 
a straigh

t m
o

tio
n

 head
in

g u
p

d
ate 

(SM
H

U
),  fuzzy ad

ap
tive EK

F(FA
EK

F)  
12.2

 
1 

80
0

 
1.5

4%
 

0 
2 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

N
 

P
e

rfo
rm

an
ce testin

g o
f P

D
R

 u
sin

g co
m

m
o

n
 

sen
so

rs o
n

 a sm
artp

h
o

n
e 

2
01

3 A
. R

. P
ratam

a; W
id

yaw
an

; R
. 

H
id

ayat 
A

 sm
artp

h
o

n
e 

Scarlet experim
en

tal 
m

eth
o

d
 

3.58
 

30
 

82
.67

 
4.4

0%
 

1 
2 

Y
 

Y
 

N
 

Y
 

Y
 

N
 

N
 

N
 

P
e

rso
n

al d
ead

 recko
n

in
g u

sin
g IM

U
 d

e
vice at 

u
p

p
e

r to
rso

 fo
r w

alkin
g an

d
 ru

n
n

in
g 

2
01

6 T. N
. D

o
; R

. Liu
; C

. Yu
en

; U
. Tan

 
A

n
 IM

U
 attach

ed
 to p

ed
estrian’s lo

w
er b

ack 
q

u
atern

io
n

-b
ased

 K
alm

an Filter 
3.22

 
1 

68
.28

 
4.7

2%
 

1 
2 

Y
 

N
 

N
 

Y
 

Y
 

N
 

N
 

N
 

P
e

rso
n

al D
ead

 R
ecko

n
in

g U
sin

g IM
U

 
M

o
u

n
ted

 o
n

 U
p

p
er To

rso
 an

d
 In

verted
 

P
e

n
d

u
lu

m
 M

o
d

el 

2
01

6 T. D
o

; R
. Liu

; C
. Yu

en
; M

. Zh
an

g; U
. 

Tan 
IM

U
 m

o
u

n
ted

 o
n

  th
e w

aist/b
ack/ch

est 
P

yth
ago

rean th
eorem

 
5.7

 
4 

40
0

 
1.4

2%
 

0 
2 

Y
 

Y
 

Y
 

Y
 

Y
 

N
 

Y
 

N
 

P
e

rso
n

al p
o

sitio
n

 m
e

asu
re

m
e

n
t u

sin
g d

ead
 

re
cko

n
in

g 
2

00
3 R

an
d

ell, C
; D

jallis, C
; M

u
ller, H

 
co

m
p

ass sen
so

r taped
 to sh

o
u

lder; accelero
m

eter 
sen

so
rs attach

ed
 to p

ed
estrian’s sh

o
es; B

itsy 
m

o
th

erb
o

ard
 carried

 in
 p

o
cket; an

d
 accelero

m
eter 

sen
so

r, extracted
 fro

m
 so

le h
o

lster to sh
o

w
 size 

- 
52 

1 
40

29
 

1.2
9%

 
0 

2 
Y

 
Y

 
N

 
Y

 
Y

 
N

 
N

 
N

 

P
o

sitio
n

 Trackin
g D

u
rin

g H
u

m
an

 W
alkin

g 
U

sin
g an

 In
te

grate
d

 W
earab

le
 Sen

sin
g 

Syste
m

 

2
01

7 Zizzo
, G

iu
lio

; R
en

, Lei 
five u

ltraso
u

n
d

 receivers m
o

u
n

ted
 o

n
 the left fo

o
t 

alo
n

g w
ith th

e IM
U

s, tw
o u

ltraso
u

n
d tran

sm
itters 

m
o

u
n

ted
 o

n
 th

e righ
t fo

o
t 

EK
F, ZU

P
T, H

D
R

 
0.423

 
1 

55
 

0.7
7%

 
1 

2 
Y

 
Y

 
N

 
Y

 
Y

 
Y

 
N

 
N

 

R
e

al-Tim
e H

u
m

an
 Fo

o
t M

o
tio

n
 Lo

calizatio
n

 
A

lgo
rith

m
 W

ith
 D

yn
am

ic Sp
e

ed
 

2
01

6 L. V
an N

gu
yen

; H
. M

. La 
a Fo

o
t-M

o
u

n
ted

 IM
U

 
Exten

d
ed

 K
alm

an
 filter (EK

F), zero
 

velo
city u

p
d

ate (ZV
U

) 
o

u
td

o
o

r3.59, 
in

d
o

o
r0.45

 
1 

o
u

td
o

o
r645, 

in
d

o
o

r1
20 

o
u

td
o

o
r0.55%

, 
in

d
o

o
r0.3

75%
 

10 
2 

Y
 

Y
 

Y
 

Y
 

Y
 

N
 

N
 

N
 

R
e

al-Tim
e In

frastru
ctu

re
less In

d
o

o
r Trackin

g 
fo

r P
ed

e
strian

 U
sin

g a Sm
artp

h
o

n
e 

2
01

9 Z. Yang; Y. P
an

; Q
. Tian

; R
. H

u
an

 
A

 sm
artp

h
o

n
e 

C
o

m
p

lem
en

tary Filter 
0.83

 
6 

20
7

 
0.4

0%
 

1 
2 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

N
 

N
 

R
e

al-tim
e

 P
ed

estrian
 Trackin

g in
 In

d
o

o
r 

En
viro

n
m

en
ts 

2
01

4 A
. V

id
al; J. J. M

arro
n

; M
. A

. 
Lab

rad
o

r 
A

 sm
artp

h
o

n
e 

- 
5 

1 
11

1
 

10.07%
 

1 
2 

Y
 

Y
 

N
 

N
 

N
 

N
 

N
 

N
 

R
e

se
arch

 fo
r p

ed
e

strian
 n

avigatio
n

 
p

o
sitio

n
in

g m
eth

o
d

 b
ased

 o
n

 M
EM

S sen
so

rs 2
01

5 X
. Yu

n
qian

g; Z. Yan
sh

u
n

; W
. Z. 

Q
in

g; L. M
in

g 
an

 IM
U

  w
orn

 in
 th

e b
ack o

f w
aist 

- 
8.7o

u
td

o
o

r 
1 

15
60.9o

u
td

o
o

r 
0.5

6%
o

u
td

o
o

r 
10 

2 
Y

 
Y

 
Y

 
N

 
Y

 
N

 
N

 
N

 

140



R
e

se
arch

 o
n

 P
F-SLA

M
 In

d
o

o
r P

ed
estrian

 
Lo

calizatio
n

 A
lgo

rith
m

 B
ased

 o
n

 Featu
re 

P
o

in
t M

ap
 

2
01

8 Sh
i, Jin

gjin
g; R

en
, M

ingro
ng; 

W
an

g, P
u

; M
e

ng, Ju
an

 
a fo

o
t-M

o
u

n
ted

 IM
U

 
SLA

M
,  K

F, ZU
P

T, p
article filter 

- 
1 

18
4.6

 
0.2

6%
 

1 
2 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

N
 

N
 

R
e

se
arch

 o
n

 R
o

b
u

st P
D

R
 A

lgo
rith

m
 B

ased
 o

n
 

Sm
art P

h
o

n
e 

2
01

8 K
u

an
, Jian

; C
h

en
, Xin

gen
g; N

iu, 
X

iao
Ji 

A
 sm

artp
h

o
n

e 
EK

F 
1.9in

d
o

o
r, 

4.3o
u

td
o

o
r 

1 
20

5in
d

o
o

r, 
39

0o
u

td
o

o
r 

0.9
%

in
d

o
o

r, 
1.1

%
o

u
td

o
o

r 
10 

2 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
N

 
N

 

R
o

b
u

st p
e

d
estrian

 d
ead

 recko
n

in
g fo

r in
d

o
o

r 
p

o
sitio

n
in

g u
sin

g sm
artp

h
o

n
e 

2
01

5 M
yu

n
g C

h
u

l P
ark; V

. V
. C

h
irakkal; 

D
o

n
g Seo

g H
an

 
A

 sm
artp

h
o

n
e 

- 
2 

1 
47

 
4.2

5%
 

1 
2 

Y
 

N
 

N
 

N
 

N
 

Y
 

N
 

N
 

Se
lf-co

n
tain

ed
 P

o
sitio

n
 Trackin

g o
f H

u
m

an
 

M
o

vem
e

n
t U

sin
g Sm

all In
e

rtial/M
agn

etic 
Se

n
so

r M
o

d
u

les 

2
00

7 X
. Yu

n
; E. R

. B
ach

m
an

n
; H

. M
o

o
re; 

J. C
alu

sd
ian

 
a Fo

o
t-M

o
u

n
ted

 IM
U

 
Zero

 velo
city u

p
d

ate 
- 

2 
24

in
d

o
o

r,  
12

0o
u

td
o

o
r 

5.5
%

in
d

o
o

r, 
1.3

%
o

u
td

o
o

r 
10 

3 
Y

 
Y

 
N

 
N

 
N

 
N

 
N

 
N

 

Se
n

sin
g strid

e
s u

sin
g EM

G
 sign

al fo
r 

p
ed

estrian
 n

avigatio
n

 
2

01
0 C

h
en

, R
u

izh
i; C

h
en

, W
ei; C

hen
, 

X
ian

g; Zh
an

g, X
u

; C
h

en
, Yu

w
ei 

EM
G

 sen
sors attach

ed
 to

 the left an
d righ

t leg 
artificial n

eu
ral n

etw
ork (A

N
N

) 
11 

3 
15

81.8
 

0.6
9%

 
0 

2 
Y

 
Y

 
N

 
Y

 
Y

 
Y

 
N

 
N

 

Se
n

so
r-b

ased
 d

e
ad

-recko
n

in
g fo

r in
d

o
o

r 
p

o
sitio

n
in

g 
2

01
4 Sh

arp
, Ian

; Yu
, K

egen
 

a sm
artp

h
o

n
e m

o
u

n
ted

 o
n

 th
e h

ip
 

ZU
P

T 
0.85

 
12

 
12

2.6
 

0.6
9%

 
1 

2 
Y

 
Y

 
N

 
N

 
N

 
N

 
N

 
N

 

Sim
u

late
d

-Zero
 V

e
lo

city U
p

d
ate M

eth
o

d
 fo

r 
sm

artp
h

o
n

e N
avigatio

n
 

2
01

8 S. Zen
g; Q

. Zen
g; R

. C
h

en
; Q

. 
M

e
n

g; H
. H

u
an

g; J. Liu
 

A
 sm

artp
h

o
n

e 
Zero

 V
elo

city U
p

d
ate (ZU

P
T),  K

alm
an 

Filter 
3.27

 
1 

20
0

 
1.6

3%
 

1 
2 

Y
 

Y
 

Y
 

N
 

Y
 

Y
 

N
 

N
 

Sm
all an

d
 lo

w
-co

st n
avigatio

n
 d

evice fo
r 

p
ed

estrian
 

2
01

8 X
. X

in
g; Z. Yatin

g 
M

E
M

S accelero
m

eter, gyro
sco

p
e 

- 
6.28

 
1 

40
0

 
1.5

7%
 

1 
2 

N
 

N
 

N
 

N
 

N
 

N
 

N
 

N
 

Sm
art In

so
le

-B
ased

 In
d

o
o

r Lo
calizatio

n
 

Syste
m

 fo
r In

tern
et o

f Th
in

gs A
p

p
licatio

n
s 

2
01

9 D
. C

h
en

; H
. C

ao
; H

. C
h

en
; Z. Zhu

; 
X

. Q
ian

; W
. X

u
; M

. H
u

an
g 

p
ressu

re sen
so

rs an
d IM

U
s o

n
 sh

o
es 

kn
o

w
n

 velo
c- ity u

p
d

ate (KU
P

T) an
d

 
d

o
u

b
le

-fo
o

t p
o

sitio
n calibratio

n (D
FP

C
) 

0.78
 

1 
91

 
0.8

6%
 

1 
2 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

N
 

N
 

Sm
artM

Tra: Pu
t th

e Lim
it o

f th
e In

e
rtial 

Se
n

so
r B

ased
 In

d
o

o
r M

o
tio

n
 Trajecto

ry 
Tracin

g U
sin

g Sm
artp

h
o

n
e 

2
01

6 Zh
an

g, P
en

gyan
; C

h
en

, X
iao

jiang; 
Fan

g, D
ingyi; W

an
g, W

ei; Tang, 
Zh

an
yo

n
g; M

a, Yang 

A
 sm

artp
h

o
n

e 
d

o
m

ain
-d

ivid
ed

 statistics m
o

d
el 

5.2
 

5 
15

0
 

3.4
6%

 
1 

3 
Y

 
Y

 
N

 
Y

 
Y

 
Y

 
N

 
N

 

Sm
artp

h
o

n
e In

d
o

o
r Lo

calizatio
n

 w
ith

 
A

cce
le

ro
m

e
te

r an
d

 G
yro

sco
p

e 
2

01
4 H

. H
su

; W
. P

en
g; T. K. Shih

; T. P
ai; 

K
. L. M

an
 

A
 sm

artp
h

o
n

e 
- 

0.43
 

1 
10

 
6.9

0%
 

1 
2 

Y
 

Y
 

N
 

Y
 

Y
 

N
 

N
 

N
 

Sm
artp

h
o

n
e sen

so
r b

ased
 algo

rith
m

s fo
r 

D
ead

 R
ecko

n
in

g u
sin

g m
agn

e
tic fie

ld
 sen

so
r 

an
d

 acce
le

ro
m

eter fo
r lo

calizatio
n

 p
u

rp
o

se
s 

2
01

4 D
. C

asp
ari; L. R

ied
h

am
m

er; M
. 

Stru
tu

; U
. G

ro
ssm

an
n

 
A

 sm
artp

h
o

n
e 

- 
2.1

 
1 

34
.2

 
6.1

4%
 

1 
2 

Y
 

N
 

N
 

Y
 

N
 

N
 

Y
 

N
 

Sm
artp

h
o

n
e

-b
ase

d
 P

ed
e

strian
 D

ead
 

R
e

cko
n

in
g as an

 in
d

o
o

r p
o

sitio
n

in
g system

 
2

01
2 A

. R
. P

ratam
a; W

id
yaw

an
; R

. 
H

id
ayat 

A
 sm

artp
h

o
n

e 
p

eak d
etectio

n
 m

eth
od

, W
einb

erg 
ap

p
ro

ach
, Scarlet ap

p
ro

ach
, Kim

 
ap

p
ro

ach
 

1.39
 

15
 

20
 

6.9
5%

 
1 

2 
Y

 
Y

 
N

 
Y

 
Y

 
Y

 
N

 
N

 

Sp
atial d

irectio
n

 co
rrectio

n
s to

 im
p

ro
ve

 
in

d
o

o
r lo

calizatio
n

 u
sin

g in
e

rtial n
avigatio

n
 

w
ith

 sen
so

rs o
n

 a sm
artp

h
o

n
e 

2
01

6 H
. D

. R
. Lakm

al; J. Sam
arab

an
d

u
 

A
 sm

artp
h

o
n

e 
Scarlet m

eth
o

d
, G

au
ssian m

o
d

el 
3.3

 
1 

12
4.36

 
2.6

5%
 

1 
2 

Y
 

Y
 

N
 

N
 

Y
 

Y
 

N
 

N
 

Step
 D

e
tectio

n
 fo

r ZU
P

T-A
id

ed
 In

e
rtial 

P
e

d
e

strian
 N

avigatio
n

 System
 U

sin
g Fo

o
t-

M
o

u
n

ted
 P

e
rm

an
en

t M
agn

et 

2
01

6 A
. N

o
rrd

in
e; Z. K

asm
i; J. 

B
lan

ken
b

ach
 

IM
U

 an
d

 p
erm

anen
t m

agn
et attach

ed
 resp

ectively 
o

n
 th

e righ
t an

d left fo
o

t 
ZU

P
T, K

alm
an

 filter 
0.11

 
1 

30
.5

 
0.3

6%
 

1 
2 

Y
 

Y
 

Y
 

Y
 

Y
 

N
 

Y
 

N
 

Strap
-d

o
w

n
 P

e
d

estrian
 D

e
ad

-R
ecko

n
in

g 
system

 
2

01
1 P

. G
o

yal; V
. J. R

ib
eiro

; H
. Saran

; A
. 

K
u

m
ar 

a w
aist-w

o
rn

 IM
U

 
q

u
atern

io
n

-b
ased

 exten
d

ed
 K

alm
an filter 

(EK
F), W

ien
b

erg m
eth

od
 

3.61
 

9 
94

.37
 

4.0
0%

 
1 

3 
Y

 
N

 
Y

 
Y

 
Y

 
Y

 
N

 
N

 

Syn
ergism

 o
f IN

S an
d

 PD
R

 in
 Se

lf-C
o

n
tain

ed
 

P
e

d
e

strian
 Trackin

g W
ith

 a M
in

iatu
re Sen

so
r 

M
o

d
u

le 

2
01

0 C
. H

u
an

g; Z. Liao
; L. Zh

ao
 

a Fo
o

t-M
o

u
n

ted
 IM

U
 

lin
e

-p
h

ase finite im
p

u
lse resp

o
n

se (FIR
) 

lo
w

-p
ass filter (LP

F), stance p
h

ase 
u

p
d

ates (SP
U

) 

1.2
 

1 
60

 
2.0

0%
 

0 
2 

Y
 

Y
 

Y
 

Y
 

N
 

N
 

N
 

N
 

Th
e m

u
lti-m

o
d

e in
e

rtial trackin
g syste

m
 fo

r 
u

n
co

n
strain

ed
 in

d
o

o
r p

o
sitio

n
in

g 
2

01
6 A

. M
iko

v 
A

 sm
artp

h
o

n
e 

Sto
ch

astic G
rad

ien
t D

escen
t (SG

D
), 

M
arko

v m
atrix,  

- 
5 

- 
7.0

0%
 

1 
2 

Y
 

Y
 

N
 

N
 

N
 

N
 

N
 

N
 

Th
e Stan

d
in

g C
alib

ratio
n

 M
eth

o
d

 o
f M

EM
S 

G
yro

 B
ias fo

r A
u

to
n

o
m

o
u

s P
ed

estrian
 

N
avigatio

n
 Syste

m
 

2
01

7 Zh
an

g, Yan
sh

u
n

; Yang, X
u

; X
in

g, 
X

ian
gm

in
g; W

ang, Zh
an

q
in

g; 
X

io
n

g, Yu
nq

ian
g 

W
aist-m

o
u

n
ted

 IM
U

 
- 

32.72
 

1 
89

0
 

3.6
8%

 
1 

2 
Y

 
Y

 
Y

 
N

 
Y

 
Y

 
N

 
N

 

Tw
o

-m
o

d
e

 n
avigatio

n
 m

eth
o

d
 fo

r lo
w

-co
st 

in
ertial m

e
asu

rem
en

t u
n

it-b
ased

 in
d

o
o

r 
p

ed
estrian

 n
avigatio

n
 

2
01

6 X
u

, Yu
an

; C
h

en
, X

iyu
an

; W
ang, 

Yim
in

 
fo

o
t-m

o
u

n
ted IM

U
 and

 the sh
o

u
ld

er- m
o

u
n

ted
 IM

U
 K

alm
an

 filter (K
F) 

1.926
5

 
1 

17
6

 
1.0

9%
 

1 
2 

Y
 

Y
 

N
 

N
 

N
 

Y
 

N
 

N
 

U
se

r Lo
calizatio

n
 U

sin
g W

earab
le 

Electro
m

agn
e

tic Tracke
r an

d
 O

rien
tatio

n
 

Se
n

so
r 

2
00

6 A
. H

am
agu

ch
i; M

. K
an

b
ara; N

. 
Yo

ko
ya 

an
 electro

m
agn

etic sen
so

r, an in
ertial sen

so
r at hip

, 
p

u
sh

 b
u

tto
n

 sw
itch

es o
n b

o
th h

eels 
- 

- 
1 

20
0

 
5.2

0%
 

1 
3 

Y
 

N
 

N
 

N
 

N
 

N
 

N
 

N
 

U
sin

g Step
 Size an

d
 Lo

w
e

r Lim
b

 Segm
en

t 
O

rie
n

tatio
n

 fro
m

 M
u

ltip
le Lo

w
-C

o
st 

W
earab

le In
ertial/M

agn
etic Sen

so
rs fo

r 
P

e
d

e
strian

 N
avigatio

n
 

2
01

9 Tjh
ai, C

h
an

d
ra; O

'K
eefe, K

yle 
7

 in
ertial sen

so
rs m

o
u

n
ted

 o
n

 th
e b

ack o
f p

elvis 
an

d
 o

n th
e fro

n
t o

f each
 thigh

, sh
an

k, an
d fo

o
t 

W
ein

b
erg’s m

o
d

el, Sko
g’s gen

eralized
 

likelih
o

o
d ratio test (G

LR
T) d

etecto
r 

- 
1 

94
.761

 
4.9

0%
 

1 
3 

Y
 

Y
 

Y
 

N
 

N
 

N
 

Y
 

N
 

W
aist m

o
u

n
ted

 P
e

d
estrian

 D
e

ad
-R

ecko
n

in
g 

system
 

2
01

2 Jaeh
yu

n
 P

ark; Yu
n

ki K
im

; 
Jan

gm
yu

ng Lee 
a w

aist-w
o

rn
 IM

U
 

H
D

R
(H

eu
ristic D

rift R
ed

u
ctio

n
) algorith

m
 - 

1 
64

.48
 

3.0
0%

 
1 

2 
Y

 
Y

 
N

 
N

 
N

 
N

 
N

 
N

 

W
alkin

g co
m

p
ass w

ith
 h

ead
-m

o
u

n
ted

 IM
U

 
sen

so
r 

2
01

6 J. W
in

d
au

; L. Itti 
a h

ead
-m

o
u

n
ted

 IM
U

 (G
o

o
gle G

lass) 
w

alking p
attern an

alysis, EK
F fu

sio
n

 
algo

rithm
 

- 
1 

35
 

2.5
0%

 
0 

2 
Y

 
Y

 
Y

 
N

 
Y

 
Y

 
N

 
N

 

W
alkin

g D
irectio

n
 Estim

atio
n

 B
ase

d
 o

n
 

Statistical M
o

d
e

lin
g o

f H
u

m
an

 G
ait Featu

re
s 

W
ith

 H
an

d
h

e
ld

 M
IM

U
 

2
01

7 C
. C

o
m

b
ettes; V

. R
en

au
d

in
 

H
an

d
h

eld
 M

IM
U

 
G

au
ssian

 M
ixtureM

o
d

el (G
M

M
),  

W
A

lkin
g d

irectio
n estim

atio
n b

ased
 o

n 
In

ertial Sign
al Statistics (W

A
ISS) 

algo
rith

m
 

- 
4 

10
00

 
5.6

0%
 

0 
2 

Y
 

Y
 

Y
 

Y
 

N
 

Y
 

Y
 

N
 

 

141



Bibliography

[1] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Ger-

ald Penn, and Dong Yu. Convolutional neural networks for speech recog-

nition. IEEE/ACM Transactions on audio, speech, and language processing,

22(10):1533–1545, 2014.

[2] Muhammad Haris Afzal, Valérie Renaudin, and Gérard Lachapelle. Use of

earth’s magnetic field for mitigating gyroscope errors regardless of magnetic

perturbation. Sensors, 11(12):11390–11414, 2011.

[3] Abdulrahman Alarifi, AbdulMalik Al-Salman, Mansour Alsaleh, Ahmad Al-

nafessah, Suheer Al-Hadhrami, Mai A Al-Ammar, and Hend S Al-Khalifa. Ul-

tra wideband indoor positioning technologies: Analysis and recent advances.

Sensors, 16(5):707, 2016.

[4] Michael Angermann and Patrick Robertson. Footslam: Pedestrian simultaneous

localization and mapping without exteroceptive sensors—hitchhiking on human

perception and cognition. Proceedings of the IEEE, 100(Special Centennial

Issue):1840–1848, 2012.

[5] Satoshi Asano, Yuki Wakuda, Noboru Koshizuka, and Ken Sakamura. A ro-

bust pedestrian dead-reckoning positioning based on pedestrian behavior and

sensor validity. In Proceedings of the 2012 IEEE/ION Position, Location and

Navigation Symposium, pages 328–333. IEEE, 2012.

[6] Rania Ashkar, Michailas Romanovas, Vadim Goridko, Manuel Schwaab, Martin

Traechtler, and Yiannos Manoli. A low-cost shoe-mounted inertial navigation

142



system with magnetic disturbance compensation. In International Conference

on Indoor Positioning and Indoor Navigation, pages 1–10. IEEE, 2013.

[7] C Dario Bellicoso, Marko Bjelonic, Lorenz Wellhausen, Kai Holtmann, Fabian

Günther, Marco Tranzatto, Peter Fankhauser, and Marco Hutter. Advances in

real-world applications for legged robots. Journal of Field Robotics, 35(8):1311–

1326, 2018.

[8] Jeroen HM Bergmann, Caroline Alexiou, and Ian CH Smith. Procedural differ-

ences directly affect timed up and go times. Journal of the American Geriatrics

Society, 57(11):2168–2169, 2009.

[9] Jeroen HM Bergmann, Vikesh Chandaria, and Alison McGregor. Wearable and

implantable sensors: the patient’s perspective. Sensors, 12(12):16695–16709,

2012.

[10] Jeroen HM Bergmann, Patrick M Langdon, Ruth E Mayagoitia, and Newton

Howard. Exploring the use of sensors to measure behavioral interactions: an

experimental evaluation of using hand trajectories. PLoS One, 9(2):e88080,

2014.

[11] JHM Bergmann and AH McGregor. Body-worn sensor design: what do patients

and clinicians want? Annals of biomedical engineering, 39:2299–2312, 2011.

[12] James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li,

Long Ouyang, Juntang Zhuang, Joyce Lee, Yufei Guo, Wesam Manassra, Pra-

fulla Dhariwal, Casey Chu, Yunxin Jiao, and Aditya Ramesh.

[13] Stephanie Blair, Grant Duthie, Sam Robertson, William Hopkins, and Kevin

Ball. Concurrent validation of an inertial measurement system to quantify

kicking biomechanics in four football codes. Journal of biomechanics, 73:24–32,

2018.

143



[14] Johann Borenstein, Lauro Ojeda, and Surat Kwanmuang. Heuristic reduction of

gyro drift for personnel tracking systems. The Journal of navigation, 62(1):41–

58, 2009.

[15] Dan Brett. Mouthguard evolution. https://www.dentistryiq.

com/dentistry/pediatric-dentistry/article/16348536/

mouthguard-evolution. Accessed January 1st, 2003.

[16] Tim Brooks, Bill Peebles, Connor Homes, Will DePue, Yufei Guo, Li Jing,

David Schnurr, Joe Taylor, Troy Luhman, Eric Luhman, Clarence Yin NgWing,

Ricky Wang, and Aditya Ramesh. Video generation models as world simulators.

OpenAI, 2024.

[17] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, et al. Language models are few-shot learners. Advances in neural infor-

mation processing systems, 33:1877–1901, 2020.

[18] Raymond C Browning, Emily A Baker, Jessica A Herron, and Rodger Kram.

Effects of obesity and sex on the energetic cost and preferred speed of walking.

Journal of applied physiology, 100(2):390–398, 2006.

[19] Wallace H Campbell. Introduction to geomagnetic fields. Cambridge University

Press, 2003.

[20] Stefano Cardarelli, Paola di Florio, Alessandro Mengarelli, Andrea Tigrini, San-

dro Fioretti, and Federica Verdini. Magnetometer-free sensor fusion applied to

pedestrian tracking: A feasibility study. In 2019 IEEE 23rd International Sym-

posium on Consumer Technologies (ISCT), pages 238–242. IEEE, 2019.

[21] MA Chattha and Ijaz Haider Naqvi. Pilot: A precise imu based localization

technique for smart phone users. In 2016 IEEE 84th Vehicular Technology

Conference (VTC-Fall), pages 1–5. IEEE, 2016.

144



[22] Changhao Chen, Xiaoxuan Lu, Andrew Markham, and Niki Trigoni. Ionet:

Learning to cure the curse of drift in inertial odometry. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 32, 2018.

[23] Diliang Chen, Huiyi Cao, Huan Chen, Zetao Zhu, Xiaoye Qian, Wenyao Xu, and

Ming-Chun Huang. Smart insole-based indoor localization system for internet

of things applications. IEEE Internet of Things Journal, 6(4):7253–7265, 2019.

[24] Wei Chen, Ruizhi Chen, Xiang Chen, Xu Zhang, Yuwei Chen, Jianyu Wang,

and Zhongqian Fu. Comparison of emg-based and accelerometer-based speed

estimation methods in pedestrian dead reckoning. The Journal of Navigation,

64(2):265–280, 2011.
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