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Abstract

This literature review aims to clarify what is known about map matching by
using inertial sensors and what are the requirements for map matching, inertial
sensors, placement and possible complementary position technology. The target
is to develop a wearable location system that can position itself within a complex
construction environment automatically with the aid of an accurate building model.
The wearable location system should work on a tablet computer which is running
an augmented reality (AR) solution and is capable of track and visualize 3D-CAD
models in real environment. The wearable location system is needed to support the
system in initialization of the accurate camera pose calculation and automatically
finding the right location in the 3D-CAD model. One type of sensor which does seem
applicable to people tracking is inertial measurement unit (IMU). The IMU sensors
in aerospace applications, based on laser based gyroscopes, are big but provide a
very accurate position estimation with a limited drift. Small and light units such
as those based on Micro-Electro-Mechanical (MEMS) sensors are becoming very
popular, but they have a significant bias and therefore suffer from large drifts and
require method for calibration like map matching. The system requires very little
fixed infrastructure, the monetary cost is proportional to the number of users, rather
than to the coverage area as is the case for traditional absolute indoor location
systems.
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1 Introduction

An augmented reality system (AR) must be able to align the augmented, virtual con-
tent with real world. For this the location of the system must be known with high
accuracy. When an AR system is starting up, it must be initialized by determining
the approximate location and then certain computer vision algorithms can be used
to perform the exact matching of the real world to the virtual model in the sys-
tem. For the approximate location, often a complex sensor network infrastructure
is needed with sufficient coverage [11]. Alternatively, the inertial sensors (IMUs) uti-
lization of dead reckoning underlines the advantages in such a scenario where being
independent from any infrastructure and thus being immediately ready for operation
is needed. The problem of signal multipath propagation in an indoor environment,
which is common for sensor networks and decreases the accuracy, is completely
irrelevant for the IMUs. The main problem for the low cost IMUs is the drift of
acceleration or orientation over time. Because the dead reckoning system is con-
tinually adding detected changes to its previously calculated positions, any errors in
measurement, even small, are accumulated from point to point, which leads to drift
error. In order to limit this drift error, waypoints like RFID-tags and the inclusion
of context information like map knowledge can lead to a significant improvement of
localization accuracy. The use of dead reckoning for localization seems to reach at
least room level precision in mission-critical, emergency or military indoor scenar-
ios [P4]. Mission-critical indoor localization requirements that National Institute of
Standards and Technology [3] concluded in 2008 suit well for environments under
construction also to find the current position of a person or a device:

• localization accuracy of about 1 m
• functional within all types of buildings
• restricted to equipment that is brought on-site by the relief units themselves
• no site-specific training required
• stability against structural changes
• moderate costs
The target is to develop a wearable location system that can position itself within

a complex construction environment automatically with the aid of accurate building
model. The wearable location system should work at the same time on a tablet
computer which is running an augmented reality solution and is capable to track
and visualize 3D-CAD models in real environment. The wearable location system is
needed to support the system in initialization of the accurate camera pose calculation
and automatically finding the right location in the 3D-CAD model. The accuracy
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of the system must be high enough. The system must be able to tell in which room
or corridor the user is. Knowing also the direction where the camera is pointing
or user is looking at would be very useful and make the camera pose initialization
procedure faster. The system should not require a fixed localization infrastructure,
the monetary cost should be proportional to the number of users, rather than to the
coverage area. Also the environment is changing all the time during construction
as new structures, modules and equipment, furniture are installed. This means
additional challenge to all fingerprinting techniques i.e. those that are based on
comparing the properties of radio signal propagation to a predefined map of such
signals. An important requirement is that the system must be light, easy to carry with
and the target is that no additional equipment would be needed [P13]. The scope of
the literature review is utilization of map knowledge, map matching and data fusion
with inertial sensors in indoor localization and possible complementary position
technology. This paper is organized as follows: In Section 2, a brief introduction to
localization is given, continued with inertial sensors and map matching in Section
3. In Section 4, the research method of the literature review and search results
are described. The findings are discussed in Section 5 and the paper is concluded
in Section 6. Terminology and abbreviations are listed in Appendix A, Glossary.
Review papers and references are listed in Bibliography.
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2 Indoor and Outdoor
Localization

While there are solutions like global navigation satellite systems (GNSS) for the local-
ization outdoors, problems arise in urban scenarios and indoors due to insufficient
or failed signal reception. For indoor use, multiple alternative localization concepts
exist that are suited for different use cases. Many of these encounter a series of
challenges due to complex indoor environments, e.g. severe multipath effect, Non-
Line-of-Sight (NLOS) conditions, high signal attenuations and noise interferences. In
Time of Arrival (ToA) example in Figure 1, TX is transmitter to various receivers
RX1, RX2 and RX3. The RX2 is in NLOS condition but the direct path (DP) is not
completely obstructed. The propagation time of the signal depends not only upon
the travelled distance, but also on the encountered materials. Since the propagation
of electromagnetic waves is slower in some materials compared to air, the signal
arrives with delay. The RX3 receives signal via reflector only. Several ToA estima-
tors as well as ranging/localization schemes have been proposed in the literature to
deal with these challenges [12]. A more robust system can be achieved with com-
plementary localization method like inertial measurement unit, which is capable of
detecting and rejecting multipath effects and NLOS.

A reliable indoor localization solution with high accuracy is still a challenge.
Indoor localization methods can be divided into four main categories: triangula-
tion, direct sensing, pattern recognition and dead reckoning [P21]. Triangulation-
based e.g. WLAN and direct-sensing-based e.g. infrared localization approaches
need infrastructure assistance and depend on the installation of beacons at known
positions. Highest level accuracy can be achieved using Ultra Wide Band (UWB),
Bluetooth Low Energy (BLE) or RFID (DASH7) beacons. UWB radio has several
inherent advantages over narrowband radio (BLE, DASH7) in its use for calculating
location by time-difference of arrival (TDOA) or time-of-arrival (TOA) measurements
instead of signal attenuation (RSSI). First, the transmission bursts of wideband radio
are shorter, so their starts and stops can be measured more precisely. But more
importantly, UWB signals will be more readable in the presence of distortions [5,
2]. The huge UWB bandwidth coupled with a very low power level makes UWB
signals appear more or less like background noise to other wireless communication
systems. This allows them to coexist with other radio communication devices as well
and make them immune to detection and interception by other narrowband wireless
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Figure 1: Multipath problems of traditional narrowband radio signal based position-
ing.
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communication receivers [P25]. Figure 2 presents the Precision Personnel Locator
(PPL) of the Worcester Polytechnic Institute (WPI) [6]. It is a UWB based system
for the tracking of emergency agents within buildings and is independent from any
previously installed infrastructure and includes IMU also. The signal is emitted by
portable devices that are carried by the emergency agents and it is received by at
least three beacons outside building, e.g. mounted on fire trucks that can be local-
ized by using the GNSS. The position of each portable device is determined by first
calculating distances using the time-difference of arrival technique and then fusing
with IMU position estimation to have even more accurate position estimation. Qu-
uppa [10] location tracking solution utilizes Bluetooth Low Energy and antennas that
measure the angle-of-arrival (AoA) of a radio signal emitted by the tag. Benefit of
this is that only two beacons are needed. DASH7 is an open source RFID-standard
for wireless sensor networking, which operates in the 433 MHz unlicensed ISM-band
and its biggest benefit is signal penetration of walls due low frequency [4]. Accuracy
below 1 m has been reached in an office building using DASH7 system and Particle
filter [8]. Visual pattern recognition based localization methods require high storage
capacity and significant computing power. Magnetic distortions recognition requires
fingerprint-maps and huge training before usage. Pedestrian dead reckoning (PDR)
localization technique, which is based on inertial sensors, estimates a pedestrian’s lo-
cation with lower installation cost and computation over other localization methods.
PDR localization techniques, however, have a main drawback that they are only able
to provide required accuracy for a limited time due to the sensor errors arising from
random zero bias and oscillation noise. For the low-cost inertial sensors specially,
the accumulating errors grow rapidly with the travel distance of pedestrians. To
handle this disadvantage, it is necessary to combine PDR techniques with other lo-
calization solutions or auxiliary information to correct the accumulating errors and
achieve constant high-precision indoor localization. [P4]
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Figure 2: The Precision Personnel Locator (PPL) of the Worcester Polytechnic Insti-
tute (WPI).
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3 Map Matching By Using
Inertial Sensors

The major advantage of inertial and motion sensors is that they do not require any
setup of measurement devices or supporting sensors located at the site. Therefore,
it is possible to conduct a position estimation in unknown terrain as the sensors are
independent from any preinstalled infrastructure like transmitters, external satellites
or other fixed reference points. Inertial and motion sensors are increasingly inte-
grated as so-called inertial measurement unit (IMU) in end-user devices of the mass
market like mobile phones and game controllers. An inertial measurement unit is an
electronic device that measures and reports a device’s velocity, orientation, and grav-
itational forces, using a combination of accelerometers and gyroscopes, sometimes
also magnetometers. One way to get position is to make double integration over
time. This yields the object’s velocity in the first step and in the second step the dis-
tance travelled from the origin. Another, lightweight way, is to calculate steps, stride
length and direction of a person. The inertial and motion sensors are used within
the so-called dead reckoning (DR) navigation. The term dead reckoning describes
the process of localization based on the continuous tracing of the measured direc-
tion and acceleration when starting from a known position. A general prerequisite
for tracking the current position of an observed object using inertial sensors is the
knowledge of the initial position and orientation. Localization is only possible rel-
ative to a known location, which leads to the main disadvantage of inertial sensors,
measurement errors sum up over time. Thus, without an appropriate compensation,
and increasing distance from the starting point, the inaccuracy of the localization
may drastically increase. This is the reason that suitable compensation methods
are required (see Section 2). The inclusion of context information like maps in the
dead reckoning approach does not require any extra infrastructure. A detailed three
dimensional building map is modeled as an input for a particle filter (PF) and map
matching and fused to the inertial data from inertial sensor. PF is particularly useful
in solving non-linear and non-Gaussian problems. The basic idea in using PF is to
use random number generator to simulate the errors in position due to the noises
in inertial sensors. Instead of single position estimate, there are multiple position
estimates. These are called particles and whose form a cloud. With realistic state
propagation and noise models, simulated particle states in the cloud provide good
approximations of the statistical distributions of the true quantities represented by
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the particle states. Inertial sensor can be placed for example a foot, a waist or keep
in a pocket. Map matching methods are probably the most promising methods to
aid DR. To make use of position information of personnel, an indoor map e.g. floor
plan is needed. The idea of map matching is to utilize the map information for
aiding the positioning. Corrections can be made to position and heading according
to map information [P18].
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4 Research Process And
Search Results

A systematic literature study (SLR) is a systematic and repeatable approach to
identify and study all relevant evidence on a specific research question or phe-
nomenon [1]. Major publication databases and search engines were used that are
available at our university. The search process was started by conducting several
pilot searches using different search terms and search options. The following search
string was used:

(IMU OR "inertial sensors" OR "inertial measurement unit" OR "MEMS INS")
AND (localization OR positioning OR navigation OR tracking) AND (calibration
OR "map matching" OR "particle filter" OR building OR maps OR layout OR RFID
OR "Radio Frequency Identification")

The searches were done in November 2014. An article was selected if it was from
the field of inertial sensor and localization and map matching. Only articles written
in English were included. The article search was divided into three stages. In the
first stage, the studies were included based on the title of an article. From 9729
hits, 292 were selected for the second stage. In the second stage, over half of the
articles were dropped out based on the abstract. After the second stage, 110 articles
remained to be analyzed in the third stage. In the third stage, short overviews of the
articles were made and finally 25 articles were selected for the review. One person
read the articles. In the categorization, the articles were categorized in terms of
their content and type. The articles were divided to be either map matching (RQ1),
inertial sensor (RQ2-4), complementary calibration method (RQ5) or another review.
Finally the articles were read carefully and data was extracted from them and they
were summarized.

16 articles were considered to belong to RQ1, map matching [P18, P19, P22, P11,
P20, P25, P24, P20, P3, P23, P6, P5, P12, P1, P2, P9] and 7 articles were considered to
belong to RQ2-RQ4, inertial sensors [P21, P14, P13, P7, P16, P17, P10]. Though, there
were no direct borders between these, many times RQ1 articles included material
reglated to RQ2-RQ4 and vice versa. None of the articles were considered to belong
directly to RQ5, but often RQ1 articles included material related to RQ5. Among the
selected articles two articles are considered as reviews or surveys [P8, P4]. Hashemi
et al. [P8] present a review of real time map matching algorithms, current issues
and future directions and Funchs et al. [P4] present a survey of indoor tracking

9



“University of Turku Technical Reports, No.6 — August 2015”

Figure 3: Search results.

for mission-critical scenarios. As mentioned in Section 1, mission-critical indoor
localization requirements suite many times very well for construction environments
also. Review articles contents are introduced shortly in Section 4.2 and discussed in
Section 5. Accuracy of each papers method are listed in Table 1. The oldest article
was from year 2004 [P5], the second oldest was from year 2008 [P24, P3, P23], while
most of them were published in year 2014 [P18, P14, P13, P8, P7, P25, P20, P1, P2].

4.1 Review Questions

In this literature review, the main objective was to find out the current state of in-
door map matching by using inertial sensors, accelerometer and gyroscope. Review
questions are:

RQ1 What is currently known about map matching by using inertial sensors?
RQ2 What are hardware requirements for inertial sensors?
RQ3 What are pedestrian dead-reckoning algorithm requirements?
RQ4 What are inertial sensors placement requirements?
RQ5 What could be complementary calibration method for inertial sensors?

4.2 Review Articles

4.2.1 Map Matching Articles

Leppäkoski et al. [P15] presented results of field tests where extended Kalman filter
was used to fuse signals from WLAN strengths and waist-mounted inertial sensor
unit including one gyro and an accelerometer. The inertial sensor was used to deter-
mine traveled distance and heading. A particle filter was used to combine the inertial
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data with map information. The results showed that both the map information and
WLAN signals can be used to improve the quality of pedestrian dead reckoning
estimates. The WLAN based positioning is complementary with map information,
because map information is relatively useless in open areas, where walls and ob-
stacles cannot guide the particles. There is a lot of disturbances present in WLAN
signals in areas that contain dense obstacles, which distort positioning algorithms
using fingerprints, while in open areas the quality of WLAN based position estimate
is better. In the system, the maximum position error was 3 m in 17 min walk and
can be obtained even without WLAN, however tests were done in one test area only,
in a library. This emphasizes the benefit that usage of heading information can pro-
vide in an indoor positioning system. The utilization of indoor maps in pedestrian
navigation differs from the way how street maps are used in car navigation. In car
navigation, the roads represent the possible locations of the car, and the task of the
positioning algorithm is to estimate to the most probable road segment where the
car is located. In indoor navigation, instead of defining possible routes, the indoor
map gives information about impossible locations and movements. The position-
ing algorithm uses information about walls and obstacles that the pedestrian is not
able walk through. The walls and obstacles are presented by line segments defined
by the coordinates of starting and ending nodes. The map information about the
walls and obstacles is difficult to formulate so that it could be applied with Extended
Kalman Filter (EKF). Particle filters can utilize such information easily. After each
propagation step, particle filter algorithm can check whether the particles ended into
obstacles or out of the room through the walls. If either of these happened the parti-
cles weight can be set to zero that in the next resampling those will not survive. The
computational load of this process is significant if the number of obstacle lines is
large. However, the number of intersection tests can be reduced, if the obstacle lines
close to each other are grouped, which minimizes the run time of the particle filter
processing. Then, instead of checking intersections with all the lines, the algorithm
first searches the line groups in the area where the particle transition happens, and
checks the line crossing only with the lines of these groups.

Tofthjaer et al. [P22] evaluated the impact of sensor errors and building struc-
tures on the positioning accuracy using a waist-mounted system and a particle filter.
Tofthjaer et al. analyzed results of regular and open spaced office buildings as well
as a shopping mall environment. The results showed that accuracy differences can
be explained by sensor errors and the constraints provided by building structures.
The noise of the inertial sensors is the major source of positioning errors. Doors
that have to be passed change a pedestrian’s movement pattern because a couple of
sidesteps, maybe even a backwards step have to be made for every closed door. As
sensors are less accurate for such types of steps, the presence of doors will increase
the error. The evaluated system provides a median accuracy of 2.5–8.6 m depend-
ing on the sensor errors and building structures compared to 8.0–25.3 m with pure
inertial positioning. GPS was also used to provide at least the initial position and
to correct particles. For correction, the particle filter updates the particle weights
according to their distance from the GPS position.

Kirkko-Jaakkola et al. [P12] presented a method for indoor pedestrian navigation
based on low-cost inertial sensors and building plan information initialized with
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Global Navigation Satellite System (GNSS). The body mounted inertial sensor is
utilizing a step-detecting technique. Position is estimated with the Monte Carlo
approximation of the Bayesian filter called Particle Filter (PF). Kirkko-Jaakkola et
al. evaluated a system which is capable of indoor localization without availability
of local infrastructure. The most common approach is to scan Wireless Local Area
Network (WLAN) signals, since wireless Access Points (APs) usually stay in the same
location for a long time. Medium Access Control (MAC) addresses of APs allow
estimation of the location of the user. Cellular network and Bluetooth signals are
also popular, but those have certain limitations. Despite the global coverage, cellular
triangulation yields a relatively imprecise position solution. Bluetooth signals work
at short ranges, but using them for positioning requires the presence of dedicated
transmitters. Bluetooth has the advantage over WLAN that its signal power is lower,
which decreases the probability of outlier observations. Initialization was made
with high-sensitivity (HS) GNSS receiver that is capable of acquiring and tracking
signals that are significantly weaker than nominally, well below 10 dB-Hz which is a
typical level indoors, corresponding to a signal that has propagated through a brick
roofing or a concrete wall. Even high-sensitivity receivers designed for acquiring
and tracking weak signals cannot typically resolve the user position accurately. For
example, identifying the room where the user is located depends on the surroundings
of the antenna and on the available assistance information.

Perttula et al. [P18] made a system which consists of an inertial measurement
unit (IMU) connected to a radio. Step length and heading estimation is computed
in the IMU and sent to the server that is connected to another radio. On the
server side, the position is estimated using particle filter-based map matching. The
benefit of the distributed architecture is that the computational capacity can be kept
very low on the user side, which leads to long operation time as power consumption
remains very low. For accurate WLAN positioning, methods based on signal strength
measurements and triangulation are not sufficient because fingerprinting are needed.
The accuracy of localization is proportional to the density of reference points. The
time consumption of the measurements is directly proportional to the number of the
reference points. Although WLAN networks exist nowadays almost everywhere, most
of them are not sufficient for accurate positioning. Another radio technology used
in indoor positioning is ultrawideband (UWB). It is more reliable technology than
other radio network-based positioning systems as the reference points can be located
outside the building. Extremely short pulses are transmitted using low transmit
power which overcomes the multipath problems of traditional radio signal-based
positioning techniques. The reference points can locate themselves using GPS, and
thus the tracked personnel’s relative position to reference points can be converted
to absolute coordinates. The advantage of this approach is that no preinstalled
infrastructure is needed. Because of limited transmission power, the method is
not suitable for large buildings. Perttula et al. used low-cost accelerometers and
gyroscopes in a torso-mounted IMU although the advantage of foot-mounted sensors
is that Zero Velocity Updates (ZUPTs) can be used to reduce error growth of double
integration. In some studies, this has been found to be more accurate than PDR
methods which are based on step detection and step length estimation. In addition,
ZUPTs do not assume normal walking to the forward direction. Also, ZUPTs are
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not as practical as body mounted sensors where no extra interfaces are needed.
Perttula et al. also mentioned that a system that uses a digital compass, is very
vulnerable for magnetic distortions. When the user walks, every step introduces a
distinctive pattern to the accelerometer output. Therefore, it is assumed that the user
is moving on a flat surface such as on the floor indoors. The positioning problem
reduces to two dimensions when the motion is estimated by detecting steps from the
acceleration signals. Waypoint corrections and map matching are techniques used to
aid PDR to prevent unbounded error accumulation. According to some studies, the
error of basic PDR in torso-mounted system is larger than error of double integration
based ZUPT foot-mounted system. Both of these aiding techniques can be used to
keep the localization error at a reasonable level. The gyroscope and accelerometer
measurements of a torso mounted IMU are preprocessed in the microcontroller of
the IMU to produce step length and heading change estimates and sent to the server
for map matching. The average distance errors of the PDR system were 9.9 and 10.3
m, while the average distance errors were 1.4 and 1.7 m with the PF map matching.

Woodman et al. [P24] developed a localization system which used a foot-mounted
inertial unit, a detailed building model, and a particle filter. Woodman et al. pointed
out environmental symmetry and scalability problems that are commonly faced dur-
ing particle filter localization task. Translational symmetry is a problem for buildings
where each floor has a similar layout. In such environments, locating the pedestrian
in a single floor is difficult due to translational symmetry in the vertical direction.
The number of particles required during the early stages of localization can be re-
duced by identifying the area. WLAN signal strength can be used to reduce the
initial complexity and to locate particle filter area. Woodman et al. point out that
the main cause of drift are small errors in the gyroscope signals. These errors cause
growing tilt errors in the tracked orientation. Together with acceleration signals
double integration this causes an error in position which grows cubically in time. By
using Zero Velocity Updates (ZUPTs) the drift problem can be reduced by detecting
when the foot is in the stationary stance phase, i.e. in contact with the ground.
Woodman et al. used 2.5 dimensional description of the building map where each
object has a vertical position but no depth. The map is defined to be a set of planar
floor polygons. Each floor polygon corresponds to a surface on which a pedestrian’s
foot may be grounded. Each edge of a floor polygon is either an impassable wall or a
connection to the edge of another polygon. Connected edges must coexist in the (x,y)
plane. However the connected edges may be separated in the vertical direction to
represent stairs. The use of a 2.5D format avoids complexity that would be required
if fully 3-dimensional maps would be used. The evaluated post-processed system is
able to track a user throughout a 8725 m2 building in three floors to within 0.5 m
75% of the time, and to within 0.73 m 95% of the time.

A floor plan is needed for map matching. The idea of map matching is to utilize
the map information to aid the positioning. Corrections can be made to position
and heading according to map information. In construction engineering it is highly
unlikely that a person crosses walls, but it is possible in case all walls are not the
same as on map information. In sophisticated systems, crossing walls in maps should
not be fully restricted, but then parallel RF-based indoor localization method and
radio frequency tags would be needed for initialization. Map matching is used as an
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aid for PDR system [P5], possible routes consist of nodes, curves and connectivity
information. Constraining the position estimates only to predefined routes, i.e. nodes
and curves, makes that type of map matching impractical. A more sophisticated map
matching algorithm is based on particle filtering as in [P6]. This algorithm corrects
the IMU-based estimate by fitting the shape of the estimated trajectory to the shape
of the areas defined in the map. The system [P6] uses double integration of the
acceleration signals over time to calculate the distances. Furthermore all three Euler-
angles (roll, pitch, yaw) are calculated by integration of the angular rate over time.
Unfortunately, small measurement errors could induce large errors to the estimated
position if additional sensors or methods are not used. Therefore an Extended
Kalman Filter (EKF) is used to stabilize the measurement of the IMU’s orientation.
Also the earth’s magnetic and gravitational field are measured and utilized. The
distances to the three axes are calculated using one footstep.

In [P19] Pinchin et al. introduced a heuristic heading approach. The method uses
a particle filter approach where particles that cross walls are removed. Previously the
particle filter approach has been computationally intensive process and has required
many particles to effectively model the navigation errors. Pinchin et al. recognized
that heading is the primary source of navigation error and therefore a heuristic
heading information was incorporated into the particle filter design. By weighting
particles according to their heading the number of particles required to maintain
a small failure rate was reduced. There are two key problems with foot mounted
inertial navigation system (INS) according Pinchin et al.. Firstly, the INS heading
errors are poorly observable using ZUPTs. Secondly, in order to achieve stable filter
performance, especially when using an Extended Kalman Filter (EKF), the INS must
be initialized with an accurate position and attitude. Pinchin et al. demonstrated
“CHAIN method” to improve positioning performance in areas where only few map
constraints are present. The system showed significant reduction the filter failure
rates, ranging from 44% to 14% when a small number of particles is used and the
initial position is poorly known.

The Simultaneous Localization and Mapping (SLAM) principle can be used to
generate a suitable map of the visited areas. In [P20] Puyol et al. introduced Foot-
SLAM that is an algorithm based on the simultaneous localization and mapping
principle. It relies on human odometry, i.e. measurements of a pedestrian’s steps
with foot mounted inertial measurement unit to build probabilistic maps of hu-
man motion for such environments using crowdsourcing. The approach employs
a particle filter and partitions of the map space. The partitioned map space is a
grid of adjacent hexagonal prisms with eight faces in multistory building. An Au-
toRegressive Integrated Moving Average (ARIMA) model is used to model vertical
component of the odometry errors. Tree based data structure is used to efficiently
store the probabilistic map, allowing real time processing. The FootSLAM is a suit-
able for massmarket applications where data collected by traveling pedestrians are
used to create navigable maps in heavily frequented areas. The FootSLAM map of a
building could help optimize the building’s operations to identify usage and identify
hot spots, bottlenecks and alternative routes. The paper raises the future possibil-
ity of crowdsourced indoor mapping and accurate navigation by using the low-cost
sensors of a handheld smartphone.
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In [P11] Kaiser et al. introduced a foot-mounted indoor positioning system which
is using the knowledge of floorplans in the localization algorithm. A new motion
model based on floorplans is introduced that is capable of weighting the possible
headings of the pedestrian as a function of the environment. The motion model
benefit is that it can more effectively represent the probability density function of
possible headings that are restricted by floorplans than a simple binary particle
weighting. The simple binary particle weighting eliminates only those that crossed
walls and keeps the rest. The following situations result a very large and probably
permanent position error until a second source of location can be obtained (e.g.
GNSS, wireless localization). 1) Pedestrian walks in area of differently sized rooms
and structures. 2) Pedestrian walks past a door at an angle and a certain fraction of
the particles walk through the door as well. A good human motion model will not just
eliminate particles that cross walls but rather reward those that follow a trajectory
compatible with the building layout. The demonstrated motion model worked better
than a simple PF that only uses knowledge of walls to constrain particles and can
fail above example situations.

In [P3, P23] Beauregard et al. introduced a novel Backtracking Particle Fil-
ter (BPF) that can utilize different levels of building plan detail to improve PDR
performance. The BPF takes advantage of trajectory histories and longrange geo-
metrical constraint information. The BPF yields excellent positioning performance
with detailed building plan information. For indoor positioning, building plans are
very useful information that can be used to enhance location accuracy and reduce
uncertainty of walking trajectories. Particle Filters (PF) can utilize building plan in-
formation during the indoor positioning. This technique is called Map Filtering. It
is usually possible during even short ZUPs (Zero Velocity Updates) at footfalls to
estimate the gravity vector from accelerometer readings and thereby determine roll
and pitch angles. These can be exploited by a KF to correct gyro drifts around these
two axes. Gyro drift around the yaw axis is typically controlled via magnetometer
readings. Unfortunately, magnetic disturbances can make magnetometer based ori-
entation estimates very problematic in indoor environments. It is wise to give more
weight to the yaw gyro measurements than to the magnetometers. The system uti-
lized foot mounted inertial sensors and showed that BPF technique can give better
results than a standard Particle Filter technique. BPF takes advantage of longrange
geometrical constraint information that the estimated path is always backtracked.
That means that the particles proven to be unsuitable are eliminated in previous
steps. In this way, the localization results of the previous steps are improved, which
improves localization accuracy. The system got 0.74 m mean 2D error with detailed
building plan information and BPF.

In [P1, P2] Bao et al. introduced step counting based dead reckoning algorithm
which utilizes map matching. Inertial sensors are put on trousers pocket simulating
mobile device and step is detected by the pattern of the acceleration. To compensate
for the accumulating error in a dead reckoning tracking system, some other method
needs to be fused to form a hybrid system. The paper compares different com-
pensation methods with dead-reckoning. Pure Map Matching (MM), Map Matching
enabled Particle Filter (MMPF) and improved PF are compared. The improved PF
underlines the uncertainty in the step direction estimation. The particles with the
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wrong direction estimation are more likely to be the ones with the wrong location
estimation and can be eliminated by map constraints. The improved PF calibrates
the location estimation, as well as step direction estimation, while keeping the com-
putational complexity the same as the original PF. Unlike PF, which is executed at
every step, the MM algorithm is triggered only when a pedestrian is considered to
be walking along a certain corridor. The MM takes 1/6 of the CPU time compared to
the PF (100 particles). Although the MM algorithm provides reliable results with less
CPU cost, the required narrow corridors may not always exist in an indoor environ-
ment. Experimental results shown that in a dense map with corridors, MM, MMPF
and improved PF outperform the original PF. When only partial map constraints
are applied, the advantage of using the improved PF is shown, which returns more
accurate and robust results.

In [P25] Xiao et al. introduced a fresh MM method for indoor localization. The
MM method is computationally efficient and tracks very well even with noisy inertial
sensor data. Key to the method is to handle the tracking problem as a Conditional
Random Field. The CRF is a technique which has had great success in areas such
as natural language processing. The system demonstrated how it is able to accurate
track the position of a user using accelerometer and magnetometer measurements
only. The system is energy efficient because gyro is not needed at all. Xiao et al.
compared the CRF-method against other state of the art map matching methods in
three buildings. The novel method outperforms competing algorithms in all three
buildings. The room level accuracy is above 90% in all buildings.

In [P9] Holcik Master’s Thesis work presents a mobile system which combines
pedestrian dead reckoning and absolute localization methods. Pedestrian dead reck-
oning uses a step detection filter and the device orientation is measured by combin-
ing inertial sensor signals from gyroscope, magnetometer and accelerometer. WLAN
is used as absolute localization method. WLAN signal strength is used for the initial
location initialization and location correction. Signal strength fingerprint method
is used for the computation of the location probability density function. The func-
tion is added to the one of the particle filter, together with a wall collision model
for building map matching. Before particle filter was selected, Grip based method
was found out to have too high computation load requirements for handheld device.
Evaluation test measured the median error distance of 2.3 meters, 90th-percentile is
at 5.6 meters.

In [P8] Hashemi et al. presented a review of real time map matching algo-
rithms, current issues and future directions. The review concentrated on outdoor
map matching which allows drivers to keep track of their precise whereabouts and
provide optimal routes to reach specified locations. It was found out that most
map-matching algorithms make an unbalanced trade-off between performance and
accuracy and that “weight-based” map-matching algorithms balance simplicity and
accuracy and “advanced” map-matching algorithms provide high accuracy but with
low performance. The review pointed out that most “weigh-based” map-matching
algorithms divide their logic into different parts for identifying the correct segment
in different situations: when the movement starts, before crossing an intersection
and after crossing an intersection. This approach is proven to be efficient because it
improves the percentage of correct segment identification without making the algo-
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rithm complicated or computationally intensive.
In [P4] Fuchs et al. presented a survey of indoor tracking for mission critical

scenarios among first responders like firemen. The survey pointed out requirements
for this kind of system, already mentioned in Section 1. The survey grouped systems
as signal based and non-signal based systems. The survey points out that as a
radio signal is not following a defined propagation model indoors, using signal
attenuation for position estimation is only feasible when preceded by an extensive
fingerprinting phase of the received signal strength. Even then, an accuracy of below
1 m is not achieved with current systems. Signal delay is only an imprecise distance
estimate in an indoor environment because of effects like reflection and multipath
propagation. Different approaches try to improve the accuracy by using wideband
signals or statistical methods in order to alleviate the disturbances of multipath
propagation. The most promising concept, according to the survey, seems to be
the use of ultra-wideband signals (UWB). On the other hand, the lateration with
signal delay and attenuation alone delivers unacceptable results for a reliable and
precise indoor localization in difficult conditions. The method of dead reckoning
holds the decisive advantage of being independent from an existing infrastructure.
It is not influenced by structural changes of the environment. The only disadvantage
is the increasing error over time due to imprecise measurements. Thought, there are
multiple approaches to reduce the impact of imprecise sensor measurements with
methods of data fusion like Kalman or Particle Filters. As a summary the survey
proposed a system which would combine the data of several different localization
methods that complement one another as much as possible.

4.2.2 Inertial Sensor Articles

[P17] presents a novel orientation algorithm designed to support a computationally
efficient, wearable inertial human motion tracking. The Kalman filter (KF) has be-
come the accepted basis for the majority of orientation algorithms and commercial
inertial orientation sensors. Xsens, Microstrain, VectorNav, Intersense , PNI and
Crossbow all produce systems founded on its use. However, it has a number of
disadvantages. It can be complicated to implement and requires high sampling rates
which can far exceed the subject bandwidth. The article introduces orientation esti-
mation algorithm that is applicable to both IMU and MARG (Magnetic Angular Rate
and Gravity) systems. Orientation estimation algorithm is also known as Attitude
and Heading Reference System. The key difference between an inertial measure-
ment unit (IMU) and an AHRS is the addition of an on-board processing system in
the AHRS. The on-board processing provides solved attitude and heading solutions
versus an IMU which just delivers sensor data to an additional device that solves the
attitude solution. AHRS is able to provide a complete measurement of orientation
relative to the direction of gravity and the earth’s magnetic field. Results indicate
that the algorithm achieves levels of accuracy matching that of the Kalman based
algorithm. The low computational load and ability to operate at small sampling
rates significantly reduces the hardware and power necessary for wearable inertial
movement tracking. These enable the creation of lightweight, inexpensive systems
capable of functioning for extended periods of time. The algorithm is available as
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an open source software.
In [P10], Jimenez et al. compared several of the most relevant algorithms for step

detection, stride length, heading and position estimation. Some PDR approaches
assume a smooth walk on horizontal surfaces, and others are valid for uneven terrain
with complicated gait patterns. Foot inserted inertial measurement unit is used to
first compare step detection methods. Best method is based on accelerometers (0.1%
error), second gyroscopes (0.2 % error) and third magnetometer (0.94 % error). The
step detection is very reliable at continuous walk, but it is more difficult to detect
steps robustly at the beginning/end of walk, and at very low speeds (e.g. museum-like
style of walking). Tests continued to stride length estimation, where “Weindberg” and
ZUPT stride length methods and ZUPT double integration method were tested. The
ZUPT double integration positioning method is normally considered as the most
powerful PDR method, since it is able to satisfactorily estimate the position while
running, with lateral walk or on uneven terrain. However Jimenez et al. showed that
in smooth surfaces, positioning method based on stride length plus foot orientations
can be superior and more computationally efficient.

In [P21], Jiuchao et al. presented indoor localization method based on a smart-
phone inertial sensors, combined with a floor plan and a particle filter. To address
the challenges of low sampling frequency and limited processing power in smart-
phones, a step detection technique is developed. The precision of the stride length
estimation is influenced by pedestrian different kind of motions. An adaptive stride
length estimation algorithm based on the motions classification is developed. Head-
ing estimation is carried out by applying the principal component analysis (PCA) to
acceleration measurements projected to the global horizontal plane, which is inde-
pendent of the orientation of a smartphone. The heading determination is one of the
most challenging parts of a PDR system, because the error of heading leads to a fast
growth of localization error. It is difficult to achieve reliable heading determination
specifically in indoor environments where magnetometer may become invalid due to
various interferences. For indoor localization on a smartphone, there exists another
problem that the smartphone heading may be different from the pedestrian’s head-
ing. Therefore, two main tasks need to be finished before implementing an indoor
localization. One is to obtain the heading of a smartphone, and the other is to infer
the heading offset between the smartphone and the pedestrian. Jiuchao et al. argued
also that as particle filtering has been regarded as a computationally intensive algo-
rithm, and the goal is to achieve real-time operation on a platform of a commercial
smartphone. Two methods are implemented to reduce the computational load of
particle filter. One is binary weight, the other is reduction in particle number. When
particle’s weight is binary, the computation of state update and resampling is lighter.
The system mean error is 0.74 meters and 95th percentile error is 1.71 meters.

Li et al. [P16] presents a system which utilizes a smartphone inertial sensors. Li
et al. developed an algorithm for detection of steps and heading direction, and in-
tegrating these to an indoor map using a particle filter. The algorithm provides an
adaptive estimate at every step, and it is position and orientation free on the user
body. A 3-axis accelerometer is used instead of its vertical and horizontal compo-
nents because a mobile phone can be at any position on the user body. The position
of the phone, such as in a hand or in a pocket, can affect the sensor readings. This
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makes reliable detection across positions challenging. The step length can vary quite
a lot over time, due to speed, terrain, and other environmental constraints. That is
why Li et al. developed a personalization algorithm that adapts the stride length es-
timation to each user on the fly. Another challenge for the system is to have reliable
heading direction, despite the fact the phone can be at any heading on the body. The
phone heading may be different from the user heading during walking. Here one
source of constraints is the indoor floor map, which constrains the motion with cor-
ridors and walls. Li et al. utilized the particle filter algorithm, a nonparametric form
of Bayesian estimation, to compute the overall position. The algorithm integrates
information from the step length estimator and heading estimator, in addition to the
constraints from the floor map. Every time a step is detected, the system acquires
the step length based on step model and infers the heading direction of that step as
well. Both step length and heading direction are fed into the particle filter module
together with the map information. Each particle filter particle moves according to
the dynamics of the model step by step and is constrained by the map. If a particle
hits a wall, it will die, and a new particle is generated around another live particle.
Particles whose trajectories align with the observation will have a higher probability
to live. Thus, the position of live particles reflect the estimated position of the user.
Tests are carried out in Windows phone and the map is loaded as XML file and
is divided into small tiles. Each tile is labeled as pathway, room or wall. Manual
method is used for localization initialization. Two phones are evaluated. One in the
hand and the other in the pant pocket. Evaluation results showed that the system
can achieve a mean accuracy of 1.5m for the in-hand case and 2m for the in-pocket
case in a 31m×15m testing area. Li et al. pointed out that heading direction inference
from magnetometer is the major cause for error, and they are looking methods to
calibrate the readings to compensate for the error.

In [P14] and [P13] Lan et al. introduced a new method to estimate user’s step
length with a waist mounted mobile phone. The method utilizes the height change
of the waist based on the Pythagorean Theorem. Similar is used in Weinbergs
method and also mentioned in [P10]. Lan et al. proposed a new zero velocity
update (ZUPT) method to address sensor drift error. Simple harmonic motion and
a low-pass filtering mechanism is combined with the analysis of gait characteristics.
Exploiting the geometric similarity between the user trajectory and a floor map is
proposed for map matching. The map matching algorithm includes three different
filters to calibrate the direction errors from a gyro using the building floor map. The
sliding-window-based algorithm detects corners. The floor plan is characterized
by using a link–node model, also mentioned in [P5] and [P18]. Lan et al. stated
that while waist-mounted systems are implementable on a hand-held device, their
step length estimation accuracy is typically worse than foot-mounted systems. On
the other hand foot-mounted systems performs poorly with regard to orientation
accuracy. Lan et al. pointed two type of errors that can be observed due to PDR
sensor hardware: 1) Systematic, such as sensor bias, sensitivity, and drift. 2) Random
such as environmental changes. The system 98th percentile error is 0.48 meters.

In [P7] Hardegger et al. introduced “ActionSLAM”, a wearable system that can
track people in previously unknown multi-floor environments with sub-room accu-
racy. There are two common PDR approaches, Step-and-Heading (SH-PDR) and
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Zero-Velocity UPdaTes (ZUPT-PDR). Step-and-Heading, SH-PDR, which is relying
on hip- or belt-mounted IMUs or they do not make any assumption regarding the
on-body location of the sensors. SH-PDR combines step detection rules, step length
heuristics and heading estimators to derive the user’s trajectory. For regular, straight
step, the error accumulation for SH-PDR may be less than 2 % of the distance trav-
elled. In recordings with more complex foot motions such as jumps and walking
in place, SH-PDR however fails. Zero velocity update, ZUPT-PDR integrates the
raw acceleration and rotation velocity data of a foot-mounted IMU, and corrects
the velocity whenever the foot is on the ground and therefore not moving. Out-
side and in wooden buildings where magnetometers provide reliable information
about the sensor’s heading, the error accumulation can be as low as 0.3 % of the
distance travelled. In particular, in steel-framed constructions, the magnetic field
close to the ground is strongly disturbed. ZUPT-PDR without magnetometer correc-
tion achieves a tracking accuracy of 0.6–1.2 % of the distance travelled. To perform
frequent zero-velocity updates, ZUPT-PDR requires that the feet are on the ground
and not moving at regular intervals. Aside from that, ZUPT-PDR is independent of
the user’s motions on territory and therefore better suited for real-world deployment
than SH-PDR. SLAM is a family of techniques in which one set of sensors estimates
the user trajectory (e.g., through PDR), while another set of sensors recognizes land-
marks in the environment. By adding these landmarks to a map, future observations
of the same landmarks will compensate for errors in the user trajectory. Action-
SLAM stands for action-based simultaneous localization and mapping. It fuses dead
reckoning data from a foot-mounted inertial measurement unit with the recognition
of location-related actions to build and update a local landmark map. Simultane-
ously, this map compensates for position drift errors that accumulate in open-loop
tracking by means of a particle filter. The system utilized a foot mounted inertial
measurement unit, similar as the OpenShoe project (openshoe.org). The algorithm
is computationally light-weight and runs in realtime in a mobile phone, enabling
immediate location-aware feedback. The algorithm robustly (93 % of runs) mapped
the areas with a mean landmark positioning error of 0.59 m.
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Article PDR method MM method Accuracy IMU placing

P9 SH-PDR PF 3 m Waist

P7 SH-PDR PF 2.5–8.6 m Waist

P20 SH-PDR PF good Waist

P1 SH-PDR PF 1.4-1.7 m Torso

P13 ZUPT-PDR PF 0.5 m 75%, 0.73 m 95% Foot

P8 ZUPT-PDR PF 1.33 m Foot

P15, P17 ZUPT-PDR BPF 0.74 m Foot

P22, P23 SH-PDR PF 1.19 m Pocket

P12 SH-PDR CRF 1.14 m, 2.37 m 97 % Hand

P24 SH-PDR PF 2.3 m, 5.6 m 90 % Hand

P21 SH-PDR - 4.15 m Foot

P3 SH-PDR PF 0.74 m, 1.71 m 95% Pocket

P11 SH-PDR PF 1.5 m hand, 2m pocket Hand/Pocket

P4, P5 SH-PDR Three filters 0.48 m 98% Waist

P10 ZUPT-PDR PF 0.59 m 93% Foot

Table 1: PDR and MM methods and accuracy.
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5 Discussion

The paper presents a study about indoor localization by using the map matching
and the inertial measurement sensors. Target is to collect knowhow about map
matching and complementary calibration methods (RQ1, RQ5) and inertial sensors
requirements, like hardware (RQ2), algorithm (RQ3) and placement (RQ4). First
there is discussion about the map matching and complementary methods findings
and then, in the following chapter, about the inertial sensors findings.

5.1 Calibration Method Discussion

5.1.1 Complementary Method

A particle filter was used in many papers to combine the inertial data with map
information, when Extended Kalman filter was used to fuse together some other
localization method, like WLAN. Leppäkoski et al. [P15] pointed out that map infor-
mation is relatively useless in open areas, where walls and obstacles cannot guide
the particles. Same open area issue was found by Tofthjaer et al. [P22] when they an-
alyzed results from deploying the system in regular and open spaced office buildings
as well as in a shopping mall. WLAN is a good complementary method for inertial
sensors, but it is not sufficient for accurate positioning due normally low density of
reference points and signal multipath [P18]. Bluetooth has the advantage over WLAN
that its signal power is lower, which decreases the probability of outlier observations.
RFID DASH7 is a standard which operates in the 433 MHz unlicensed ISM band and
penetrates walls better than more high frequency Bluetooth or WLAN [P12]. Main
issue on the above methods is that they are based on signal strength measurements
and fingerprinting is needed for adequate accuracy. In some papers GPS was used
for providing the initial position and to correct particles, whose weights are updated
according to their distances from the GPS position. HS-GNSS is capable of acquiring
and tracking signals that are significantly weaker than nominally. Signals are able
to propagate through a brick roofing or a concrete wall. The UWB uses extremely
short pulses and signal is spread over a large frequency range to overcome the multi-
path problems of traditional radio signal based positioning techniques and it looked
as most promising in mission critical review [P4]. Because of limited transmission
power, the UWB is not suitable for large buildings if only three beacons/anchors are
used. For example, DecaWave [5] DW1000 UWB chip (Figure 4) has 40 meters of
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Figure 4: DecaWave UWB localization system SDK [5]

range Non Line Of Sight (NLOS, through walls) and up to 300 meters of range Line
Of Sight (LOS). Accuracy of the chip is 10 cm both indoors and outdoors. For small
building it is possible to add three beacons/anchors outside the building. Thus, it is
possible to locate beacons/anchors by using the GNSS and the tracked personnel’s
relative position to beacons/anchors can be converted to absolute coordinates [P18]
. The system could also enable algorithm for assisted placing of beacons/anchors
according the 3D map, thus supporting an optimal deployment. Also for inertial
measurements initialization complementary localization method would be good to
reduce particle filter particles needed in the beginning. Although many times particle
filter can fix the location later on based on movements. In construction engineer-
ing it is highly unlikely that person crosses walls, but it is possible in case all walls
are not the same as on the map. In sophisticated systems, crossing walls in maps
should not be fully restricted, but then parallel RF-based indoor localization method
and radio frequency tags would be needed for initialization. Woodman et al. [P24]
pointed out two problems commonly faced during particle filter localization task:
environmental symmetry and scalability. For correcting these two above problems
Woodman et al. proposed complementary absolute position method which could
locate the particle filter area.

5.1.2 Map Matching

In [P4] Fuchs et al. presented a survey of indoor tracking for mission critical sce-
narios among first responders like firemen. Fuchs et al. argued that for signal based
localization, the most promising concept seems to be the use of ultra-wideband sig-
nals (UWB). Fuchs et al. argued also that the method of dead reckoning holds the
decisive advantage to be independent from an existing infrastructure, disadvantage
is the increasing error over time due to imprecise measurements. Though, there are
multiple approaches to reduce the impact of imprecise sensor measurements with
methods of sensor data fusion like Kalman or Particle Filters. In [P15] Leppäkoski
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et al. mentioned that the map information about the walls and obstacles is difficult
to formulate so that it could be applied with Extended Kalman Filter (EKF). Particle
filters (PF) can utilize this kind of information easily. Several papers concentrated on
improving original Particle Filter. Pinchin [P19] and Kaiser [P11] weighting particles
according to their heading. That way they reduce the number of particles required
to maintain a small failure rate and improve system performance in more open ar-
eas where there are few mapped walls to aid navigation. A good human motion
model will not just eliminate particles that cross walls but rather reward those that
follow a trajectory compatible with the building layout. In [P3, P23] Beauregard
et al. introduced a novel Backtracking Particle Filter (BPF), which is a technique
where different levels of building plan detail can be combined to improve PDR per-
formance. The BPF technique can give better results than a standard Particle Filter
technique. The BPF takes advantage of long-range geometrical constraint informa-
tion that the estimated path is always backtracked. That means that the particles
proven to be unsuitable are eliminated in previous steps. In [P1, P2] Bao et al. intro-
duced improved PF. Bao et al. compared pure Map Matching (MM), Map Matching
enabled Particle Filter (MMPF) and improved PF. The improved PF underlines the
uncertainty in step direction estimation. The particles with the wrong direction es-
timation are more likely to be the ones with the wrong location estimation and can
be eliminated by map constraints. The improved PF calibrates the location esti-
mation, while keeping the computational complexity the same as the original PF.
Experimental result shows that in a dense map constraint environment with corri-
dors, MM, MMPF and improved PF outperform the original PF. The computational
load of the particle filter process is significant if the number of obstacle lines is large.
However, the number of line crossing checks can be reduced, if the obstacle lines
close to each other are grouped, which minimizes the run time of the particle filter
processing [P18]. To reduce the computational load of a particle filter two methods
are implemented in [P21], one is binary weight, the other is reduction in particle
number. In [P25] Xiao et al. introduced a fresh approach which is computation-
ally efficient and power efficient because gyro is not used. Key of the approach is
expressing the tracking problem as a conditional random field (CRF). Xiao et al.
argued that their novel method outperforms competing algorithms like PF. In [P8]
Hashemi et al. compared outdoor map matching which allows drivers to keep track
of their precise whereabouts and provide optimal routes to reach specified locations.
Hashemi et al. found out for example that most map-matching algorithms make an
unbalanced trade-off between performance and accuracy and that “weight-based”
map-matching algorithms balance simplicity and accuracy.

5.2 Inertial Sensors Discussion

5.2.1 Hardware

There is a clear trend towards low power digital motion processors (DMPs), e.g. In-
venSense MPU-6000/MPU-6050 is able to task and process inertial data in bursts,
while the system processor remains in a low power sleep mode. Many ultra low
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Figure 5: Intel® Curie™ module - button-sized prototype [7].

power chips (KMX61, LMS303C) are not equipped with power hungry gyroscopes,
allowing always-on positioning for wearable device market. Positioning uses ac-
celerometer and magnetometer only in [P25]. Intel came out with its first platform
for wearable technology market on January/2015 (Figure 5). Intel has developed a
tiny size of SoC-module called Curie that is ideal for always-on applications, includ-
ing motion sensors, application processor, Bluetooth, battery charging circuitry and
a low-power integrated DSP sensorhub with a proprietary pattern matching acceler-
ator. The module runs on open source RTOS. Intel starts to sell the module on the
second half of 2015 [7]. [P17] presents a novel open source orientation algorithm that
is computationally efficient and competes with the Kalman filter. [P17] results indi-
cated the algorithm achieves levels of accuracy matching that of the Kalman based
algorithm, but with lower computational load. It is possible to buy a development
kit that includes proprietary AHRS algorithm (Attitude and Heading Reference Sys-
tem) also and ZUPT-PDR demo [13]. Another open source project is the OpenShoe
project [9]. OpenShoe is an open source embedded foot-mounted inertial navigation
system (ZUPT-PDR) implementation, including both hardware and software designs.

5.2.2 Step Detection / Double Integration And Placement

There are two common PDR approaches, Step-and-Heading (SH-PDR) and Zero-
Velocity-Update (ZUPT-PRD). Step-and-Heading, SH-PDR, is relying on hip- or belt-
or torso-mounted IMUs. To address the challenges of low sampling frequency and
limited processing power in mobile device, a step and heading detection technology
seems to be adequate method. It is more difficult to detect steps robustly at the
beginning/end of motion, and at very low speeds [P10] or more complex foot mo-
tions such as jumps and walking in place [P7]. Tofthjaer et al. [P22] mentioned that
the presence of doors that have to be passed will change a pedestrian’s movement
pattern because for every closed door a couple of sidesteps, maybe even backwards
steps have to be made. As the step detection method is less accurate for such type
of steps, the presence of doors will increase the error. Several articles presented
different ways to measure step length and heading. It is showed that on smooth
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surfaces, which is expected for SH-PDR, positioning method based on stride length
plus foot orientations, can be superior and more computationally efficient than dou-
ble integration [P10]. The position problem reduces to two dimension when the
motion is estimated by detecting steps from the acceleration signals. It also allows
distributed architecture where computational capacity can be kept very low on the
user side, which leads to long operation time as power consumption also remains
very low [P18]. Zero velocity update ZUPT-PDR on the other side integrates the
raw acceleration and rotation velocity data of a foot-mounted IMU, and corrects the
velocity whenever the foot is on the ground and therefore not moving. Since it is
able to satisfactorily estimate steps while running, with lateral walk or on uneven
terrain, ZUPT-PDR is independent of the user’s motions and therefore better suited
for real-world deployment than SH-PDR [P7]. Although the error of SH-PDR in
torso-mounted system is larger than error of double integration based ZUPT-PDR
foot-mounted system, according to some studies, both of these aiding techniques can
be used to keep the error at reasonable level [P18] (See Table 1)

5.2.3 Algorithms

Several papers presented algorithms for PDR, many of them for the SH-PDR, but
also for the ZUPT-PDR. In [P10] Jimenez et al. found out that best method for step
detection is to use accelerators (0.1 % error). Many papers argued that heading deter-
mination is one of the most challenging parts of a PDR system because the error of
heading leads to a fast growth of localization error. The reliable heading determina-
tion is difficult to achieve specifically in indoor environments where magnetometer
may become invalid due to various interferences. These errors from gyroscope or
magnetometer causes growing tilt error in the tracked orientation. Together with
acceleration signals double integration this causes an error in position (drift) which
grows cubically in time [P24]. By using Zero Velocity Updates (ZUPT-PDR) and so-
phisticated filters [P17, P6] the drift problem can be reduced. Xiao [P25] mentioned
that the system is energy efficient because power hungry gyro is not needed at all.
Xiao argued that the novel conditional random field based system beat other state of
the art map matching methods. On a smartphone, there exists another problem that
the smartphone heading may be different from the pedestrian’s heading and that
needs to be solved first. Some papers also presented adaptive personal step algo-
rithms that adapt the stride length estimation to each user. Couple of papers [P11, P7]
raise the future possibility of crowdsourced indoor mapping and accurate navigation
by using low-cost inertial sensors. The Simultaneous Localization And Mapping
(SLAM) principle can be used to generate a suitable map of the visited areas. The
map compensates for position drift errors that accumulate in tracking by means of a
particle filter. [P17] presents a novel open source orientation algorithm that is com-
putationally efficient and competes with the Kalman filter. [P17] results indicated the
algorithm achieves levels of accuracy matching that of the Kalman based algorithm,
but with lower computational load. Anyway, before algorithms can be selected it
needs to be decided if the system which will be developed is relying on SH-PDR
or ZUPT-PDR. Another decision is related to open areas [P22, P15], like large open
halls where inertial sensors aid with map matching is not the most accurate solution
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and where complementary absolute position system is more accurate.

27



“University of Turku Technical Reports, No.6 — August 2015”

6 Conclusions

For mobile tools in general, lightweight equipment and reasonably low processing
power and data storage needs are essential. Visual tracking methods are essential
for camera tracking, but they alone are typically not capable of defining the indoor
location. On the review it was found that a particle filter is a good choice for map
matching by using inertial sensors and there is enough information available for
the start and it is accurate enough. Before inertial measurement unit algorithms
can be developed it needs to be decided if the system is relying on the SH-PDR
or the ZUPT-PDR. Because the system which will be developed requires quite a
heavy picture recognition processing and rendering to be done at the same time
with localization, the SH-PDR looks like a better choice because of low computation
requirements. Accuracy of the SH-PDR with map matching is suitable for the sys-
tem. Also digital motion processor hardware platform of Intel’s Curie [7], which will
be available 2H/2015, looks promising for the SH-PDR. Another decision is related
to open areas, like large open halls where inertial sensors aid with map matching
is not the most accurate solution and where complementary absolute position sys-
tem is more accurate. Also for localization initialization, a complementary absolute
position system would be beneficial. All of these absolute position systems require
special hardware, beacons network. DASH7 and UWB should penetrate walls bet-
ter due to signal characteristics and already have lower interference and BLE is in
mobile devices. Each of these have certain benefits and would need a separate re-
view and construction site tests of the features and limitations. However, the need
to have an installed beacon network, as well as the possible need of an initializa-
tion phase every time the radio map changes, makes signal attenuation based (BLE,
DASH7) on systems problematic for construction time use. UWB technology of-
fers the potential of achieving high ranging accuracy through signal time-of-arrival
(ToA) measurements even in harsh construction environments due to its ability to
resolve multipath problem and penetrate obstacles. The IEEE 802.15.4a is the first
UWB-based standard for low-rate wireless personal area network with localization
capability. Ranging accuracy is expected to be one meter or sub-meter at least 90
% of the time. However, the big challenge is to achieve ranging accuracy also in
non-ideal conditions, i.e. when the ranging measurements are affected by large er-
rors. In the integrated UWB + INS system, a position error is calculated from the
difference in the position estimation from both systems. When UWB measurements
are not available or some of the measurements are of low confidence because of
multipath radio propagation, the inertial measurements are used for the position
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calculation. A combination of these two systems compensates for the shortcomings
of each and yields a better performance when compared to individual subsystems.
The most essential contribution of INS positioning is the direction. In a pure UWB
systems it is impossible to determine the direction. It is only possible to calculate the
heading by subsequent position fixes. The beacon based absolute position system
should not need a computing resource hungry particle filter, which is needed for
the map matching. This would give more computing power for other applications
on the tablet computer, like AR tracking and rendering. In the construction site, a
beacon network infrastructure cannot be assumed for the whole big building. In-
stead removable beacons installed according the required AR area looks reasonable.
An additional benefit is that the placed beacons can serve as AR markers also and
form a communication network. The system could inform a user each time when the
algorithm detects that the user is leaving the signal range of the beacons and asking
to add beacons so that localization is again possible. The system could also enable
algorithm for assisted placing of beacons according the 3D map, thus supporting
an optimal deployment. It would be natural to combine several position methods
i.e. use UWB based absolute localization method and fuse it with SH-PDR localiza-
tion method and particle filter based map matching to have optimal accuracy. In
case computing power on the tablet is found to be insufficient for map matching, a
backend server for calculations is one solution, but makes the system more compli-
cated. The integration of UWB and inertial measurement units only (SH-PDR) has
three primary benefits. Firstly, IMU data can be employed to compute the travelled
trajectory when UWB measurements are absent due to range limitations or adverse
non-line-of-sight (NLOS) conditions. Secondly, UWB-based positioning can supple-
ment IMU data to discriminate between accurate measurements and data corrupted
by noise and drift. Thirdly, because of map matching is not needed, a lot of com-
puting power is saved. Assisted placing of removable UWB-beacons and automatic
range calibration looks reasonable for construction environment.
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Appendix A Glossary

AHRS
An Attitude and Heading Reference System consists of sensors on three axes
that provide attitude for vehicle, including heading, pitch and yaw. The key
difference between an inertial measurement unit (IMU) and an AHRS is the
addition of an on-board processing system in an AHRS which provides solved
attitude and heading solutions versus an IMU which just delivers sensor data
to an additional device that solves the attitude solution.

AoA
Angle of Arrival.

AR
Augmented Reality. According to the definition by Azuma, an augmented
reality system has three capabilities: combination of real and virtual imagery,
registration (alignment) of computer graphics with the objects in real 3D envi-
ronment and interactivity in real time.

DASH7
An open source RFID-standard for wireless sensor networking, which operates
in the 433 MHz unlicensed ISM band.

DP
Direct Path.

DR
Dead Reckoning, a process of calculating one’s current position by using a
previously determined position.

EKF
Extended Kalman Filter. In estimation theory, the extended Kalman filter
(EKF) is the nonlinear version of the Kalman filter which linearizes about an
estimate of the current mean and covariance.

FP
Fingerprinting means mapping based on received signal strength in a location.
FP is often used in radio frequency positioning, but it is possible to apply it also
to visual or audio signals. Fingerprinting maps can be measured empirically,
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or calculated analytically based on models. In operation, the measured signal
strengths are compared to the maps and the best match is searched.

GNSS
Global Navigation Satellite System (GNSS) receivers: GPS, GLONASS, Galileo
or Beidou system

IMU
Inertial Measurement Unit. A device that measures velocity, orientation and
gravitational forces, typically using a combination of three orthogonally ar-
ranged accelerometers and three gyroscopes, possibly also magnetometers.

INS
Inertial Navigation System. A device that provides an estimate of velocity,
orientation and (possibly) position based on the data from an IMU. Position
and orientation can be tracked from measured data if the initial position and
orientation is known.

ISM
The industrial, scientific and medical (ISM) radio bands.

KF
Kalman filtering is an algorithm that uses a series of measurements observed
over time, containing noise (random variations) and other inaccuracies, and
produces estimates of unknown variables that tend to be more precise than
those based on a single measurement alone.

MARG
Magnetic Angular Rate and Gravity. A MARG sensor is a hybrid IMU which
incorporates a triaxis magnetometer. An IMU alone can only measure an
attitude relative to the direction of gravity. MARG systems are able to provide
a complete measurement of orientation relative to the direction of gravity and
the earth’s magnetic field.

NFC
Near Field Communication. A very short range radio communication stan-
dard, based on RFID technology.

PAN
Personal Area Network. A local, wireless networking system that can be used
e.g. to connect mobile devices and accessories. Bluetooth is an example of a
PAN technology.

PDR
Pedestrian Dead Reckoning. In navigation, dead reckoning is the process of
calculating one’s current position by using a previously determined position,
or fix, and advancing that position based upon known or estimated speeds
over elapsed time and course.
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PoA
Phase of Arrival.

Pose
The exact location, with an accuracy of a few centimeters or better, and di-
rection of view.

Position
Determining the approximate location, meaning an accuracy of less than a few
meters or better. Same as location.

RSSI
Received Signal Strength Indication (or Radio Signal Strength Indication).
Measurement of the received signal strength can be used for estimation of
the distance between transmitter and receiver.

SH-PDR
Step and Heading-Pedestrian Dead Reckoning. Measures stride length plus
heading for PDR.

SLAM
Simultaneous Location and Mapping. A technique used to build up a map
within an unknown environment, or to update and fill in a map within a known
environment, while at the same time keeping track of their current location.

TDoA
Time Difference of Arrival.

ToA
Time of Arrival.

Tracking
Following the pose in (practically) real time, so that the system can keep up-
dating the virtual view without significant delay.

UWB
Ultra-Wide Band. A radio technology which uses a very low energy level
for short-range, high-bandwidth communications using a large portion of the
radio spectrum. A valuable aspect of UWB technology is the ability for a UWB
radio system to determine the "time of flight" of the transmission at various
frequencies. This helps overcome multipath propagation, as at least some of
the frequencies have a line-of-sight trajectory.

WLAN
Wireless Local Area Network.

ZUPT-PDR
Zero Velocity UPdaTe-Pedestrian Dead Reckoning. Integrates the raw accel-
eration and rotation velocity data of a foot-mounted IMU, and corrects the
velocity whenever the foot is on the ground and therefore not moving.
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