
AugBot: indoor
location system using
ROS
João Paulo de Melo Carvalho
Mestrado em Engenharia de Redes e Sistemas Informáticos
Departamento de Ciências de Computadores
2022

Orientador
Eduardo Resende Brandão Marques
Professor Auxiliar
Faculdade de Ciências da Universidade do Porto

Coorientador
Sérgio Armindo Lopes Crisóstomo
Professor Auxiliar
Faculdade de Ciências da Universidade do Porto

Todas as correções determinadas
pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, ______/______/_________

Declaração de Honra

Eu, João Paulo de Melo Carvalho, inscrito no Mestrado em Engenharia de Redes e Sistemas
Informáticos da Faculdade de Ciências da Universidade do Porto declaro, nos termos do disposto
na alínea a) do artigo 14.º do Código Ético de Conduta Académica da U.Porto, que o conteúdo da
presente dissertação reflete as perspetivas, o trabalho de investigação e as minhas interpretações
no momento da sua entrega.

Ao entregar esta dissertação de estágio, declaro, ainda, que a mesma é resultado do meu
próprio trabalho de investigação e contém contributos que não foram utilizados previamente
noutros trabalhos apresentados a esta ou outra instituição.

Mais declaro que todas as referências a outros autores respeitam escrupulosamente as regras
da atribuição, encontrando-se devidamente citadas no corpo do texto e identificadas na secção
de referências bibliográficas. Não são divulgados na presente dissertação de estágio quaisquer
conteúdos cuja reprodução esteja vedada por direitos de autor.

Tenho consciência de que a prática de plágio e auto-plágio constitui um ilícito académico.

João Carvalho,

14 de Outubro de 2022

i

Abstract

The ability to obtain a precise location of a person or object has led to several so-called
location-based services, mainly in logistics, but also in more consumer applications such as
localized weather information and navigation. This works well when a clear view of the sky allows
the use of a Global Navigation Satellite System (GNSS) to identify an asset’s location with good
accuracy. In an indoor environment, however, GNSS signal reception is severy compromised and
consequently, the accuracy of position estimates is poor, and a custom sensor infrastructure is
required within the environment to overcome the problem.

In the scope of the Augmanity project, we present a framework called AugBot for developing
and testing indoor location algorithms using low-footprint embedded devices. AugBot is
implemented using the Robot Operating System (ROS), allowing a modular separation of
code for distinct concerns like sensor readings, communication, as well as the location algorithms
themselves. AugBot has been deployed in a real-world physical environment for indoor location
that includes the AlphaBot2 robot and Ultra-Wide Band (UWB) beacons, as well as in a
simulation environment enabled using the Gazebo simulation engine. In both environments, we
implemented and evaluated two different types of indoor location algorithms: multi-lateration
feeding on UWB beacon ranges, and dead reckoning feeding on inertial sensor measurements.

AugBot is a basis for hardware/software integration in the Augmanity project tasks in
collaboration with FCUP partners, and suitable for the development and testing of more complex
algorithms for indoor location and different use cases in indoor location.

iii

Resumo

A capacidade de obter a localização precisa de uma pessoa ou objecto levou à criação de
diversos serviços baseados na localização do utilizador, para logísticas, mas também em aplicações
para consumo, tais como informação meteorológica localizada e navegação. Isto funciona bem
quando a vista para o céu não se encontra obstruída, permitindo a utilização de um Global
Navigation Satellite System (GNSS) para identificar uma localização com boa precisão. No
entanto, num ambiente indoor, a recepção do sinal GNSS está comprometida e, consequentemente,
a precisão das estimativas de posição é fraca, sendo necessária uma infra-estrutura de sensores
ajustada ao ambiente para ultrapassar o problema.

No âmbito do projecto Augmanity, apresentamos uma framework chamada AugBot para o
desenvolvimento e teste de algoritmos de localização em ambientes indoor , utilizando dispositivos
embutidos de pequenas dimensões. AugBot é implementado utilizando o Robot Operating System
(ROS), permitindo uma separação modular do código para preocupações distintas como leituras de
sensores, comunicação, bem como os próprios algoritmos de localização. AugBot foi implementado
num ambiente físico real para localização indoor que inclui o robô AlphaBot2 e um sistema de
beacons de Ultra-Wide Band (UWB), bem como num ambiente de simulação possibilitado através
do motor de simulação Gazebo. Em ambos os ambientes, implementámos e avaliámos dois tipos
diferentes de algoritmos de localização indoor : multi-lateração usando medições do sistema de
beacons UWB, e dead reckoning baseado nas medições do sensor inercial.

O trabalho desenvolvido constitui uma base para a integração de hardware/software nas
tarefas do projecto Augmanity em colaboração com os parceiros da FCUP, e é adequado ao
desenvolvimento e teste de algoritmos mais complexos para localização indoor e diferentes casos
de utilização neste tipo de cenários.

v

Acknowledgements

I would first like to thank my dissertation advisors, Professor Eduardo Marques and Professor
Sérgio Crisóstomo for their assistance and dedicated involvement in every step, throughout the
process.

Most importantly, I would like to thank my parents, my sister, and my girlfriend Sofia for
supporting me and providing continuous encouragement to keep on giving my very best, especially
throughout this last year. This accomplishment would not have been possible without their
support.

The work of this dissertation has been funded by project Augmanity (POCI-01-0247-FEDER-
046103). I would also like to thank Faculdade de Ciências da Universidade do Porto, Instituto
de Telecomunicações (UIDB/50008/2020), and CRACS / INESC-TEC for hosting this work.

vii

Contents

Declaração de Honra i

Abstract iii

Resumo v

Acknowledgements vii

List of Tables xiii

List of Figures xvi

1 Introduction 3

1.1 Motivation . 3

1.2 Problem statement and contributions . 3

1.3 Thesis structure . 4

2 Background 7

2.1 Indoor location . 7

2.1.1 Important Concepts . 8

2.1.2 Technologies . 11

2.1.3 Algorithms . 14

2.2 Software components . 15

2.2.1 ROS . 15

ix

2.2.2 Gazebo . 18

2.2.3 MQTT . 18

2.3 Hardware components . 19

2.3.1 AlphaBot2-Pi . 19

2.3.2 Micro:bit . 19

2.3.3 Pi Pico . 20

2.3.4 DWM1001 . 21

2.4 The Augmanity project . 22

3 State of Art 25

3.1 ATLAS . 26

3.2 Bostanci et al. 28

3.3 Guan et al. 29

3.4 Okumus et al. 31

3.5 Mishra et al. 32

3.6 Cheng et al. 32

4 Design and Implementation 35

4.1 Framework Requirements . 35

4.2 Approach . 36

4.2.1 Common modules . 38

4.2.2 Robot Configuration . 38

4.2.3 Simulation Configuration . 40

4.2.4 Replay Configuration . 42

4.3 Framework Structure . 42

4.3.1 src/ folder . 43

4.3.2 script/ folder . 43

4.3.3 launch/ and config/ folders . 44

4.3.4 msg/ folder and communication . 44

x

5 Experiments and Results 47

5.1 Real AlphaBot2 case-study . 48

5.1.1 Setup . 48

5.1.2 Results . 49

5.2 Simulation case-study . 52

5.2.1 Setup . 52

5.2.2 Results without noise . 53

5.2.3 Results with noise . 54

5.3 Replay case-study . 55

5.3.1 Setup . 56

5.3.2 Results . 56

5.4 Summary . 57

6 Conclusion 59

Bibliography 61

xi

List of Tables

3.1 Comparision of AugBot framework with some related systems 25

4.1 C++ files in src/ folder . 43

4.2 Python executables in scripts/ folder . 43

4.3 Structure of anchor message . 44

4.4 Structure of the estimate message . 45

4.5 Structure of message type tagFull . 45

4.6 Structure of message type synchPoint . 45

xiii

List of Figures

2.1 Communication in indoor location system with NLoS [6] 9

2.2 Message structure for ToF measurement [6] . 10

2.3 Tri-lateration example . 14

2.4 Representation of the structure of a ROS-based system. Nodes are oval shaped
and arrows represent ROS topics . 15

2.5 AlphaBot2-pi [32] . 19

2.6 micro:bit [18] . 20

2.7 Raspberry Pi Pico [22] . 20

2.8 Pico 10DOF IMU [31] . 21

2.9 DWM1001 [8] . 21

2.10 DWM1001 module [8] . 22

2.11 5G Tag prototype [23] . 23

3.1 Top-down illustration of the scenario used for experimental evaluation of the
system accuracy. 26

3.2 Schematic illustration of the system architecture for the ATLAS localization system. 27

3.3 Schematic illustration of the system ROS-based architecture for the ATLAS
localization system using FaST scheduling. 28

3.4 The left picture represents the map obtained by LiDAR in the graphical interface
Rviz. Both pictures present the final position of the TurtleBot3. 29

3.5 Top-down illustration of the scenario used for experimental evaluation of the system. 30

3.6 Architecture of System presented . 31

3.7 Floor plan of experimental site . 33

xv

4.1 Framework requirements . 35

4.2 General representation of framework functionalities 36

4.3 General representation of each configuration . 37

4.4 Diagram of Robot configuration . 39

4.5 Diagram of Simulation . 41

4.6 Simulated AlphaBot2 on Gazebo . 41

4.7 Diagram of Replay . 42

5.1 AlphaBot2 setup, with UWB anchors (DW...) and control points (CP) with their
respective positions. It also includes the AlphaBot2 route that starts at the S
point and moves according to the yellow arrows 48

5.2 AlphaBot2 setup . 49

5.3 Real case-study estimations . 50

5.4 Comparison of Least Squares algorithms . 51

5.5 Dead Reckoning results . 51

5.6 Simulation course with simulated control points (black dots) and anchors (purple
triangles). Robot starts at point S (0,0) and moves according to the red arrows. . 52

5.7 Simulated estimations without noise . 53

5.8 Simulated estimations with noise . 55

5.9 Plots that validate the Replay Configuration . 56

xvi

Acronyms

AGV Automatic Guided Vehicles

AoA Angle of Arrival

BLE Bluetooth low energy

DCC Departamento de Ciência de Computadores

DR Dead Reckoning

ECC Electronic Communications Committee

ERDF European Regional Development Fund

FCUP Faculdade de Ciências da Universidade do Porto

GNSS Global Navigation Satellite Systems

IMU Inertial Measurement Unit

IoT Internet of Things

LoS Line of Sight

NLoS non-line of sight

PID Proportional–Integral–Derivative

QoS Quality of Service

ROS Robot Operating System

RSS Received Signal Strength

RSSI Received Signal Strength Indication

RTLS Real-Time Location System

RTT Round Trip Time

TDoA Time Difference of Arrival

1

2

ToA Time of Arrival

ToF Time of Flight

UWB Ultra-Wide Band

VLC Visual Light Communication

WLAN wireless Local Area Network

Chapter 1

Introduction

This chapter introduces the concerned problem and the purpose of this thesis project.

1.1 Motivation

The importance of being able to accurately locate persons and objects has deeply increased
over the last few years and has led to many so-called location-based services, mainly in logistics
but also in more consumer applications such as localized weather information and navigation.
This works well where a clear view of the sky enables the use of Global Navigation Satellite
Systems (GNSS) for location estimates with good accuracy [6].

In an indoor environment, however, GNSS signal reception is severely compromised and
consequently the accuracy of position estimates is poor, and a custom sensor infrastructure is
required within the environment to overcome the problem. Several technologies can be used,
in some cases simultaneously, e.g., the use of receive signal strength (RSS) from WiFi access
points (APs) or Bluetooth beacons, range estimates from APs that are compliant with WiFi-RTT
or Ultra-Wide Band (UWB) beacons, or inertial sensors that are present in devices such as
smartphones or mobile robots that can be used to estimate their movement. Indoor location is
challenged by the problems that, as in the case of GNSS, may lead to poor accuracy in some of
these technologies, e.g., signal interference and multi-path propagation in WiFi or UWB or the
accumulation of errors in position estimates that rely solely on inertial sensor measurements.

1.2 Problem statement and contributions

The Augmented Humanity (Augmanity) project [9] consortium aims to anticipate the future
by developing user-friendly, immersive, and supportive technologies in industrial production
environments. The project is expected to leverage its results in multiple sectors. The work of this
thesis happens in the scope of Augmanity PPS3: Industrial Internet of Things and connectivity,

3

4 Chapter 1. Introduction

a sector focused on putting I4.0 and edge technology at the service of people and corporations.
In this overall context, there is the specific problem of developing an indoor location for tracking
devices (e.g. robotic vehicles) or other physical assets (e.g. product packages) in a factory floor
environment. FCUP and other project partners agreed upon an indoor location system that
could make use of a UWB beacon infrastructure and inertial sensors when available and installed
in devices.

In order to create a good indoor localization system, calibration has to be easily achievable,
to quickly adapt to a new environment, and be capable of locating multiple targets. The system
has to ensure that the estimated positions are accurate enough for the intended application and
that the computation times for the estimations are fast enough to precisely estimate the position
of a moving target. The software has to be small, portable and flexible, and have low power
consumption, and since, the system may keep track of humans, and there is a risk of violating
their integrity, safety is a must. The development and testing of indoor localization systems,
starting from the prototype stage, must address all these needs.

This thesis addresses the concern of developing a framework for the development and testing
of indoor localization algorithms in the scope of the Augmanity project. It proposes AugBot,
implemented using the Robot Operating System (ROS) [25, 27] that enables a modular separation
of code for distinct concerns like sensor readings, communication, as well as the localization
algorithms themselves. AugBot has been deployed in a real-world physical environment for
indoor location that includes the AlphaBot2 robot [32] and UWB beacons [8], as well as in a
simulation environment enabled using the Gazebo simulation engine [26]. In both environments,
we implemented and evaluated two different types of indoor location algorithms: multi-lateration
feeding on UWB beacon ranges, and dead reckoning feeding on inertial sensor measurements.
The third type of configuration for the system involves the replay of ROS logs containing sensor
measurements, allowing the development of location algorithms fed by data obtained in previous
executions in physical or simulation environments.

The thesis presents the design, implementation, and an evaluation of AugBot. The corre-
sponding source code is available at https://github.com/JoaoCarvalho99/Augbot.

1.3 Thesis structure

Chapter 2 - Background: This chapter provides the necessary background to understand this
thesis including: concepts and technologies in indoor location; information on the software and
hardware components used in the dissertation; a discussion of related work in the state-of-the-art;
and also relevant background information on the Augmanity project.

Chapter 3 - State of Art: This chapter describes some articles related to the work proposed.
These articles were chosen due to similarities to this work regarding indoor location and robotics.

Chapter 4 - Design and Implementation: This chapter presents the design and implementa-

https://github.com/JoaoCarvalho99/Augbot

1.3. Thesis structure 5

tion of AugBot. We identify the main starting requirements and the ROS-based design along with
the relevant implementation details. Three types of deployment are presented regarding the use
of AugBot: one involving the use of the AlphaBot2 robot and a UWB beacon infrastructure; the
second involving a simulation framework for AlphaBot2 using the Gazebo simulation environment;
and, finally, the use of ROS logs in replay mode.

Chapter 5 - Experiments and Results: This chapter presents an evaluation of AugBot
and the associated results. Three case-study experiments are presented in correspondence to
each of the types of deployment described in the previous chapter.

Chapter 6 - Conclusion: This chapter concludes the dissertation with a final discussion of
the contributions and of future work.

Chapter 2

Background

This Chapter will provide an overview of the currently available and studied solutions to
estimate position of target in indoor systems. It will also compare these solutions and how they
fare in indoor location systems.

2.1 Indoor location

The ability to get an accurate location of a person or object has led to a number of so-
called location-based services, mainly in logistics but also in more consumer applications such
as localized weather information and navigation. These services work well when a clear view
of the sky enables GNSS to pinpoint your location with sufficient accuracy. However, in an
indoor environment the signals will be badly disrupted by the material between the user and the
satellites, making it significantly harder to use the system to determine your location [6].

There are many promising technologies to estimate locations in indoor environments such
as: light-based communication, computer vision, Ultra-Wide Band, WLAN, Bluetooth, inertial
sensors, RFID-based solutions and WiFi-RTT.

Probably there will not be a one-technology-fits-all-solution, meaning that several technologies
will coexist, each one with their own purpose and strengths. For these kind of systems, accuracy
and response times are key requirements, but achieving the desired levels of performance may
be challenging in an indoor environment due to the presence of refractive surfaces, interfering
technologies and obstacles. When comparing different indoor positioning systems, several
problems can be seen regarding the performance of said systems.

• Accuracy: critical to ensure that the data received is suitable for the intended application.
Can be seen as the distance between the measured position of the object and the actual
position.

• Latency: when considering a moving target, latency is critical because high latency results
in high inaccuracy.

7

8 Chapter 2. Background

• Power Consumption: needs to be low to make the system small, portable and flexible.

• Scalability: the number of targets that the system can track at the same time and must
easily adapt to different numbers of targets to be tracked.

• Robustness: affects how reliable the accuracy will be. Having low maximum errors and
small disturbances are important factors, and being abe to handle non-line of sight (NLoS)
is needed.

• Complexity: refers to how difficult and time-consuming it is to install or calibrate a
system in a new environment.

• Cost

• Portability: describes how easy the hardware that is used can move around.

• Security and integrity: very important factor since the system keeps track of movements
of human which could be seen as violating their integrity. Since the system keeps track of
people or objects carried by people and may save the movements of persons it might be a
security risk, making the security mandatory.

2.1.1 Important Concepts

This section explains what factors must be addressed in an indoor location system. To begin,
the many aspects that cause difficulty while functioning in indoor locations are outlined, along
with the limits they impose. The methods for estimating the target’s location are then discussed,
as the various ways for obtaining the distance to the target from the reference sites required for
estimating the position.

2.1.1.1 Spectral interference

Any wireless system that uses electromagnetic waves for information transfer must follow
specific criteria governing what frequencies can be utilized to prevent various devices from
interfering with each other’s transmissions. In Europe, these frequency bands are governed by
the Electronic Communications Committee (ECC), which specifies which bands can be used for
particular purposes in order to minimize equipment interference. Since bands are often more
congested in interior contexts, spectral interference is a prevalent concern for most wireless
transmission systems [6].

2.1.1.2 Line of Sight (LoS)

One of the most significant issues with indoor position estimation is that, unlike outdoors,
where a clear view of the sky is almost always guaranteed for satellite communication, the space

2.1. Indoor location 9

between the source and the target is frequently obstructed by people, walls, computers, and
any other object present. This leads to two different situations when performing these types of
distance estimations:

• Line of Sight (LoS): the path between a source and the target is free.

• Non-Line of Sight (NLoS): when the path is obstructed by some obstacle.

Because the LoS scenario is clearly characterized in terms of signal intensity fluctuations
and electromagnetic wave propagation periods, all methods for location estimation operate well
under these conditions, providing no spectrum interference is present. The NLoS example, on
the other hand, is far more difficult to handle since it adds unknowns that are highly reliant on
each environment and technology employed.

Electromagnetic waves may penetrate various things depending on the frequency of the wave
and the substance of the blockage, although they are significantly attenuated and have a longer
propagation time than by air. In rare situations, the signal in the direct channel is entirely
obstructed, leading the target to be reached only by reflections or not at all [6].

NLoS can be described in Figure 2.1 where a tracking system can be seen trying to make
contact with an object but there is an object between them blocking the signal.

Figure 2.1: Communication in indoor location system with NLoS [6]

2.1.1.3 Multipath fading

Another issue brought on by complex indoor environments is a phenomenon known as
multipath fading. The multipath effect is a phenomenon caused by receiving multiple replicas of
the original signal as a result of signal reflections from objects in the environment or on surfaces
between the transmitter and receiver [34]. These reflections arrive shortly one after another at the
receiver, therefore signal’s reflections from different surfaces may interfere with one another and
since the reflected path is longer, determining the original signal from the reflected components
can become difficult, potentially causing the time of flight or signal strength of the signal to
become inaccurate [6].

Effects like these are difficult to predict and may result in inaccuracies for the majority of

10 Chapter 2. Background

position estimation methods and if the pulse has large width (narrow bandwidth) the reflections
will superimpose together, making the detection of the original signal almost impossible [34].

2.1.1.4 Distance estimation

In this section different types of distance measuring, methods are described. These methods
estimate the distance between reference points and the target.

Time of Arrival (ToA) is the most straightforward of the time-based distance estimation
methods. It estimates using one-way communications, which means that units are either dedicated
transmitters or receivers, reducing their complexity. A ranging operation consists of only one
transmission in which the transmitter sends the receiver a timestamp of the current time. The
data is then compared to the time at the receiving instant, and the distance between the
transmitter and the receiver can be calculated because the speed of light is a known constant.
The accuracy of the ToA result, on the other hand, is highly dependent on the accuracy of the
clock in both the transmitters and the receivers, which must be synchronized and have a very
low drift, since a clock error of 1 ns results in an error of roughly 30 centimeters [6].

Time Difference of Arrival (TDoA) is very similar to ToA, but instead of calculating the
time it takes for each message to travel from the transmitting point to the receiver, it uses the
difference in arrival time from several known points to calculate the relative distance between
them. TDoA necessitates strict synchronization between the reference points to ensure that the
measuring signal is sent at the exact same time, but unlike ToA, the receiver is not required to
share this synchronization because the relative difference in arrival time is measured rather than
the absolute difference. Because the reference points are usually fixed in space, they can be linked
with a wire, removing the need for more complex wireless clock synchronization algorithms [6].

Figure 2.2: Message structure for ToF measurement [6]

Time of Flight (ToF) is a further extension of TDoA to remove the need for synchronization
between points in the system. this is achieved by sending the measuring signal from a reference

2.1. Indoor location 11

point to the target, which then responds after a known delay, Figure 2.2. This allows the reference
point to calculate the total time of flight, therefore calculating the distance by:

Distance = C.
(tRx − tT x) − treply

2

Where C is the speed of light at 3x108 (299792458) m/s, tTx and tRx are the transmission time
of the first message and the reception time of the second message respectively, and the difference
between these two becomes the total round-trip time. The distance can be calculated without
any kind of influence of clock offsets between the involved nodes. Using this method, the clock
error can be reduced to the drift that happens between tTx and tRx [6].

Angle of Arrival (AoA) uses the angles of two incoming signals to the receiver to determine
its position relative to the two fixed reference points. This allows a position to be performed
using one less fixed point than using one of the time-based methods, significantly reducing system
hardware required, and also suffering from fewer error sources. However, determining the angle of
an incoming signal with the required precision is significantly more complex than time stamping,
and reflected signals have a significant impact on the accuracy in NLoS situations, so this method
is much less commonly used than its time-based counterparts[6].

Received Signal Strength (RSS) uses reference points or searched objects as transmitters
and the other side as receivers. This allows the receivers to obtain the signal strength in decibels
that was transmitted from the transmitters. Many transceivers using various RF-techniques for
communication are enabled to produce something called Received Signal Strength Indication
(RSSI), which is a normalised value that uses a reference value at a distance of one meter from
the transmitter as a baseline to ensure that the RSS can be easily read and used by a system.
RSS is simple to use because it relies on simple measurements of signal strength, but there
is a problem if the reference points and searched object are NLoS of each other because the
signal can be absorbed by a variety of materials. RSS is usually used in low cost applications
with a lower demand in accuracy since the results are notoriously inconsistent, lacking in either
accuracy or range, and difficulties in handling mixed conditions. To obtain better estimations,
extra algorithms or hardware are needed [6].

2.1.2 Technologies

There are several technologies available to solve the problem of indoor positioning, each with
its own set of advantages and disadvantages. Many of them necessitate that the tracking target
be equipped with some kind of hardware that communicates with the rest of the system in order
to relay the information used to determine the target’s position. This section will provide an
overview of some of the technologies and highlight their key features.

12 Chapter 2. Background

2.1.2.1 GNSS

The term Global Navigation Satellite System (GNSS) refers to any satellite constellation
that provides positioning, navigation, and timing (PNT) services on a global or regional scale
[11]. GNSS can achieve high-precision positioning in the outdoor environment, allowing outdoor
users to receive location-based services such as user positioning and navigation. However, GNSS
signals cannot always arrive in an indoor environment and achieve positioning, or the signals
that do arrive are too weak to achieve high precision positioning [4].

Because of the proliferation of smartphones, positioning technologies are now available to a
wide range of users. GNSS are the most well-known and widely used technologies for outdoor
localization. GNSS provide sufficient position accuracy in open sky conditions for most mass
market applications. However, GNSS positioning accuracy may be significantly reduced inside
buildings or in urban canyons. In such cases, GNSS signals may be affected by multipath effects,
received at low power, or even blocked [10].

2.1.2.2 Bluetooth

Bluetooth can be used to estimate a target’s location by measuring the RSSI. It enables
phone tracking without the need for additional hardware on the tracking target, though a system
of reference points must be installed. The addition of Bluetooth low energy (BLE) enables the
development of small and energy-efficient hardware [6].

2.1.2.3 WiFi-RTT

WiFi Round Trip Time (WiFi-RTT) is a two-way ranging method. One of the most significant
advantages of using WiFi-RTT is that it does not necessitate clock synchronization [4]. It enables
computing devices to determine their indoor location and measure the distance to nearby WiFi
access points with a precision of 1 meter using round-trip delay, by other words, the technology’s
operation principle is based on signal reception and transmission time delays. Basically, WiFi-RTT
protocol allows us to estimate the distance between two WiFi devices [10].

2.1.2.4 UWB

Ultra-Wide Band technology is notable for its precision and robustness. This technology
employs a wide range of frequency bands to allow the transmission of high-energy pulses while
minimizing interference with other RF equipment operating at the same frequencies. To determine
the target position, UWB-based systems typically use time-based methods.

UWB has good accuracy assuming high precision when measuring travel time, and it supports
NLoS conditions because the wide frequency band is resistant to interference caused by reflected
signals, and the signal’s high energy content can penetrate many softer materials. Because

2.1. Indoor location 13

obstruction is common in normal indoor environments, UWB is an excellent choice for general-
purpose systems rather than specialized systems where LoS can be guaranteed. The high-energy
signal’s long range implies excellent scalability, and the technology reduces the need for complex
processing of the obtained results. This precision is due primarily to the fact that signal energy
is dispersed over a wide frequency range, allowing for very accurate time-stamping of incoming
messages. The main disadvantage of UWB is that the technology is not as mature as many of the
others, which raises the cost of specific hardware and limits the amount of support available [6].

The Federal Communications Commission (FCC) has allocated 7.5 GHz of spectrum for
unlicensed use of Ultra-Wide Band devices (UWB) in the 3.1 to 10.6 GHz frequency band.
UWB is emerging as a solution for the IEEE 802.15.3a (TG3a) standard. The purpose of this
standard is to provide a specification for a low-complexity, low-cost, low-power consumption,
and high-data-rate wireless connectivity among devices within or entering the personal operating
space. The data rate must be high enough (greater than 110 Mb/s) to satisfy a set of consumer
multimedia industry needs for wireless personal-area networks (WPAN) communications. The
standard also addresses the quality of service (QoS) capabilities required to support multimedia
data types [2]. Since the signal period of UWB is less than a nanosecond, these short impulses
allow multiple transmitters to operate in parallel while mitigating the multipath effect [34].

2.1.2.5 Visual Light Communication

Visual light communication (VLC) uses different types of light emitters and detectors to
determine the targets position within the area. Indoor positioning systems based on VLC can be
partitioned into two different types. The first type uses a grid of rather basic photodiodes to
receive light from the tracking target, and based on which detectors can see the emitted light the
position can be computed. This allows for a system consisting of cheap hardware, but does not
allow the target to know its position without extra communication, and does not support more
complex setups with multiple targets. The second type uses a camera as a detector on the target
together with stationary emitters which each send a unique ID by blinking a binary sequence,
allowing the target to compute its position based on the angle to each individual emitter. This
method is very exact and allows an almost unlimited amount of targets, however the cameras
are rather expensive and demands LoS, making it unsuitable for dynamic environments [6].

2.1.2.6 Inertial Sensors

Inertial sensors provide information about the movement of the target.

Accelerometer provides the speed of the moving object and Gyroscope gives the angular
velocity to determine the direction of the movement. These units together are called an Inertial
Measurement Unit (IMU), with the possibility of adding:

• Magnetometer to improve gyroscope’s measurements.

14 Chapter 2. Background

• Barometer to get altitude if a position in three dimensions is needed by measuring
pressure.

2.1.3 Algorithms

2.1.3.1 Multi-lateration

Tri-lateration

Figure 2.3: Tri-lateration example

The tri-lateration method uses geometry to estimate the target position of the mobile targets.
For estimating the 2D position using multi-lateration, at least three base stations/anchors are
required as represented in Figure 2.3 [16].

Least Squares

Least Squares is a classic positioning algorithm for multi-lateration [4]. When measuring
distances between multiple transmitters and the target are gathered, the equating can be
established as follows:

(X1 − x)2 + (Y1 − y)2 + (Z1 − z)2 = d2
1

(X2 − x)2 + (Y2 − y)2 + (Z2 − z)2 = d2
2

...

(Xn − x)2 + (Yn − y)2 + (Zn − z)2 = d2
n

(2.1)

Where (Xi , Yi, Zi) i = 1,2,...,n represent the position of the reference points, (x,y,z) the
position of the target and di i = 1,2,...,n is the measured distance between the reference points
and the target.

2.2. Software components 15

2.1.3.2 Dead Reckoning

Dead Reckoning (DR) uses the last known positioning of the target combined with data
collect by Inertial Sensors about its movement to estimate the new position after a short delay.
DR systems are prone to error propagation since every new position is based on the previous
estimation. Therefore, frequent calibrations are necessary to ensure that the position is reliable,
this makes DR systems impractical by itself, and is often used to improve the accuracy of other
technologies [6].

2.1.3.3 Sensor Fusion

In order to improve systems and overcome each technology’s drawbacks, combinations of
technologies may be a good option. WLAN together with BLE manages to get a better
accuracy while still maintaining a better range in comparison to then individually, UWB with
DR would give increased accuracy but requires more hardware, as well as more processing of the
data to estimate the position, UWB and WLAN opens the possibility to utilize the advantages
of WLAN and UWB while canceling most of their respective weaknesses. This allows building
apps and communicating over WLAN while still maintaining the high precision of UWB [6].

2.2 Software components

2.2.1 ROS

Robot Operating System (ROS) is an open-source software development kit for robotics
applications. ROS offers a standard software platform to developers across industries that will
carry them from research and prototyping through to deployment and production [27]. The
fundamental concepts of the ROS implementation are nodes, messages, topics, and services.

Nodes are processes that perform computation. ROS is designed to be modular at a fine-
grained scale: a system is typically comprised of many nodes. This term arises from visualizations
of ROS-based systems at runtime: when many nodes are running, it is convenient to render the
peer-to-peer communications as a graph, with processes as graph nodes and the peer-to-peer
links as arcs [25].

Figure 2.4: Representation of the structure of a ROS-based system. Nodes are oval shaped and
arrows represent ROS topics

16 Chapter 2. Background

Messages are used to communicate between nodes. A message is a data structure that is
precisely typed. Standard primitive types (integer, floating point, boolean, and so on) as well
as arrays of primitive types and constants are supported. Messages can be made up of other
messages, and arrays of other messages can be layered indefinitely deep. A node transmits a
message by publishing it to certain buses known as topics. A node that is interested in a certain
type of data will subscribe to the appropriate topic. A single topic may have several concurrent
publishers and subscribers, and a single node may publish and/or subscribe to numerous topics
as long as they have the appropriate message type. In general, neither publishers nor subscribers
are aware of the presence of the other [25]. This structure can be observed in Figure 2.4, where
the structure of the execution of a ROS-based system is depicted. The nodes are represented in
an oval shape and they communicate through topics, represented as arrows.

Although the topic-based publish-subscribe model is a versatile communication paradigm, its
broadcast routing technique is incompatible with synchronous transactions, which might simplify
the design of some nodes. This is referred to as a service in ROS, and it is defined by a string
name and a pair of strictly typed messages: one for the request and one for the answer.

2.2.1.1 Use Cases

In this section, we will go through some of the features that ROS’s open design offers for the
development of a wide range of tools. In addition to discussing the ROS approach to various use
cases, we will provide a variety of tools intended to be utilized with ROS [25].

Logging and Playback:

Robotic perception research is frequently conducted with recorded sensor data to allow
controlled comparisons of various algorithms and to simplify the experimental approach. ROS
facilitates this technique by offering generic logging and playback capabilities. Any ROS
communication stream can be saved to disk and replayed later. Importantly, all of this can be
done from the command line, with no changes to the source code of any of the applications in
the graph. As previously said, node instantiation may be accomplished simply by initiating a
process and it can be done at the command line, in a debugger, from a script, and so on [25].

A bag file in ROS is used to store ROS message data from topics and services. A bag file
is represented by the extension.bag. Bag files are generated with the rosbag command, which
subscribes to one or more topics and stores the message data in a file as it arrives. This file can
play the same subjects that were recorded, or it can remap the existing topics [15].

Packaged subsystems:

Although each node can be run from the command line, repeatedly typing the commands to
launch the processes could get tedious. To allow for packaged functionality such as a navigation
system, ROS provides a tool called roslaunch, which reads an XML description of a graph and
instantiates the graph on the cluster, optionally on specific hosts. The end-user experience of

2.2. Software components 17

launching the navigation system then boils down to roslaunch file_name.launch and a single
Ctrl-C will gracefully close all five processes. This functionality can also significantly aid sharing
and reuse of large demonstrations of integrative robotics research, as the set-up and tear-down of
large distributed systems can be easily replicated.

Visualization and Monitoring:

It is frequently important to examine some condition while the system is running while
building and debugging robotics software. Although printf is a well-known approach for debugging
programs on a single computer, it might be challenging to adapt this technique to large-scale
distributed systems. Instead, ROS may use the connection graph’s dynamic structure to tap into
any message stream on the system. Furthermore, the separation of publishers and subscribers
enables the development of general-purpose visualizers.

ROS has a variety of tools for troubleshooting, visualizing, and running simulations, such as
tools like rqt_gui, RViz, and Gazebo. ROS supports high-end sensors and actuators since it has
device drivers and interface packages for numerous sensors and actuators used in robotics [15].

Simple programs can subscribe to a particular topic name and plot a particular type of data,
such as laser scans or images. However, visualization software that employs a plugin architecture
is allowed by rviz program, which is supplied with ROS. Rviz allows to display robot positions and
trajectories, and other data types may by dynamically building visualization panels. Similarly, a
tool called rxplot provides the functionality of a virtual oscilloscope, plotting any variable in
real-time as a time series [25].

Transformations:

Robotic systems often need to track spatial relationships for a variety of reasons: between
a mobile robot and some fixed frame of reference for localization, between the various sensor
frames and manipulator frames, or to place frames on target objects for control purposes [25].

To simplify and unify the treatment of spatial frames, a transformation system has been
written for ROS, called tf. The tf system constructs a dynamic transformation tree that relates
all frames of reference in the system. As information streams in from the various subsystems of
the robot (joint encoders, localization algorithms, etc.), the tf system can produce streams of
transformations between nodes on the tree by constructing a path between the desired nodes
and performing the necessary calculations.

For example, the tf system can be used to easily generate point clouds in a stationary “map”
frame from laser scans received by a tilting laser scanner on a moving robot. As another example,
consider a two-armed robot: the tf system can stream the transformation from a wrist camera
on one robotic arm to the moving tooltip of the second arm of the robot. These types of
computations can be tedious, error-prone, and difficult to debug when coded by hand, but the
tf implementation, combined with the dynamic messaging infrastructure of ROS, allows for an
automated, systematic approach [25].

18 Chapter 2. Background

ROS Master:

ROS Master functions like a DNS server, associating unique names and IDs to ROS elements
active in our system. When any node starts in the ROS system, it will start looking for the
ROS Master and register the name of the node in it. So, the ROS Master has the details of
all the nodes currently running on the ROS system. When any details of the nodes change, it
will generate a callback and update with the latest delays. These node details are useful for
connecting with each node. When a node starts publishing a topic, the node will give the details
of the topic, such as name and data type, to the ROS Master. The ROS Master will check
whether any other nodes are subscribed to the same topic. If any nodes are subscribed to the
same topic, the ROS Master will share the node details of the publisher with the subscriber node.
After getting the node details, these two nodes will interconnect using the TCPROS protocol,
which is based on TCP/IP sockets. After connecting the two nodes, the ROS Master has no
role in controlling them. If one of the nodes stops, the others will check with the ROS_Master
once again. The same method is used for ROS Services. The ROS_MASTER_URI environment
variable contains the IP and port of the ROS Master. Using this variable, ROS nodes can
locate the ROS Master. In a distributed network, in which computation is on different physical
computers, we should define ROS_MASTER_URI properly, only then the remote nodes will be
able to find each other and communicate with each other. ROS Master should run on a computer
in which all other computers can ping properly to ensure that remote ROS nodes can access the
MASTER [15].

2.2.2 Gazebo

Gazebo allows the simulation of robotic and sensor applications in 3D indoor and outdoor
environments. It has a Client/Server architecture and has a topic-based Publish/Subscribe
model. The Gazebo clients can access its data through shared memory. Each simulation object
in Gazebo can be associated with one or more controllers that process commands for controlling
the object and generating the state of that object. The Client sends control data and simulated
objects’ coordinates to the Server which performs the real-time control of the simulated robot. It
is possible to realize a distributed simulation by placing the Client and the Server on different
machines. Deploying ROS Plugin for Gazebo helps to implement a direct communication interface
to ROS, thus controlling the simulated and the real robots using the same software. This provides
an effective simulation tool for testing and development of real robotic systems [28].

2.2.3 MQTT

MQTT is an OASIS standard messaging protocol for the Internet of Things (IoT). It is designed
as an extremely lightweight publish/subscribe messaging transport that is ideal for connecting
remote devices with a small code footprint and minimal network bandwidth. MQTT allows
for messaging between device to cloud and cloud to device. This makes for easy broadcasting

2.3. Hardware components 19

messages to groups of things, can scale to connect with millions of IoT devices, guarantees
reliability, and allows easy encryption by using TLS and authenticating clients using modern
authentication protocols. Messages are published to a broker on a topic, then the MQTT broker
filters messages based on the topic, and then distributes through the subscribers and does not
store messages. A client can receive these messages by subscribing to that topic on the same
broker, therefore there is no direct connection between a publisher and subscriber. All clients
can publish (broadcast) and subscribe (receive) [21].

2.3 Hardware components

2.3.1 AlphaBot2-Pi

Figure 2.5: AlphaBot2-pi [32]

AlphaBot2-Pi, Figure 2.5, is a compact two-wheeled robot with a Alphabot2-Base chassis
and an AlphaBot2-Pi adapter board. It features rich common robot functions including line
tracking (due to 5 Infrared sensors in the lower part of the chassis), obstacle avoiding (due to
2 Infrared sensors in the upper part of the chassis), Bluetooth/Infrared/WiFi remote control,
video monitoring and more. The highly integrated modular design and available source demo
code, makes this robot easy to get started with [32].

2.3.2 Micro:bit

The BBC micro:bit, Figure 2.6, is a pocket-sized computer. It has an LED light display,
buttons, sensors and many input/output features, such as: [18]

20 Chapter 2. Background

Figure 2.6: micro:bit [18]

• Temperature sensor

• Compass: It can measure magnetic fields in three dimensions

• Accelerometer: measures forces in 3 dimensions, including gravity

2.3.3 Pi Pico

Figure 2.7: Raspberry Pi Pico [22]

Raspberry Pi Pico, Figure 2.7, is a low-cost, high-performance micro controller board with
flexible digital interfaces. It has the RP2040 micro controller chip, which was designed by
Raspberry Pi and features a dual-core Arm Cortex-M0+ processor with 264kB internal RAM
and support for up to 16MB of off-chip flash. A wide range of flexible I/O options includes I2C,
SPI, and Programmable I/O (PIO) and is programmable in C and MicroPython [22].

2.3.3.1 Pico 10DOF IMU

The Pico-10DOF-IMU, Figure 2.8, is an IMU sensor expansion module specialized for
Raspberry Pi Pico. It incorporates sensors including a gyroscope, accelerometer, magnetometer,
and baroceptor, and uses an I2C bus for communication. Combined with the Raspberry Pi Pico,

2.3. Hardware components 21

Figure 2.8: Pico 10DOF IMU [31]

it can be used to collect environment sensing data like temperature and barometric pressure or
to detect motion gestures and orientations [31].

2.3.4 DWM1001

Figure 2.9: DWM1001 [8]

The DWM1001 Ultra-Wide Band (UWB) transceiver module, shown in Figure 2.9, allows users
of this development board to easily assemble a fully wireless real time location system without
designing any hardware or writing a single line of code and quickly progress into developing
an application. In this thesis we used the MDEK1001 Ultra-Wide Band (UWB) Transceiver
Development Kit, which brings 12 DWM1001-DEV development boards with embedded firmware
binaries, with a UWB cable for flashing and APIs to configure and control the module via
UART/SPI/Bluetooth, through a gateway or a tablet/smartphone.

The Qorvo DWM1001 module, Figure 2.10, is based on the DW1000 Ultra-Wide Band (UWB)
transceiver IC which is IEEE 802.15.4-2011 UWB compliant. The module integrates a UWB
and BLUETOOTH® antenna, all RF circuitry, Nordic Semiconductor nRF52832, and a motion
sensor. The DW1000 uses a 38.4MHz reference crystal to reduce the initial frequency error to
approximately 3ppm [8].

The DWM1001 module can be configured to behave as an anchor, a fixed node in the system,
or as a tag, the mobile module to be located in the system. There are also 2 other modes, a
listener, which collects the position of every tag in the system, and gateway, which supposedly
can get every information possible from the system. Since the main goal of using this device was
to collect the estimated distance from the anchors to the tags, the listener configuration was
discarded, since it only provided the estimated location.

22 Chapter 2. Background

The minimal configuration needed in order to get estimations is with 4 devices, 3 of them
configured as anchors and 1 as a tag and the configuration of the module may be achieved either
via Bluetooth using the Decawave DRTLS Manager Android App, via SPI or UART connection
from an external host or via USB serial port connection, and these modules estimate the distance
between two devices with the Time-Of-Flight method.

Figure 2.10: DWM1001 module [8]

2.4 The Augmanity project

The Augmanity (Augmented Humanity) Project (reference POCI-01-0247-FEDER-046103)
is a project led by Bosch Termotecnologia, S.A, with the participation of many partners/co-
promoters/participating institutions including FCUP and FEUP, but also for instance University
of Aveiro, Franhaufer Portugal, Altice Portugal, among several others. It is funded by Portugal
2020 under the POCI and by European Regional Development Fund (ERDF).

The project is centered on the development of user-friendly, immersive, and supportive
technologies in industrial production environments in different realms [7, 9, 24], e.g., industrial
IoT, artificial vision and augmented reality, big data and predictive analysis of industrial processes,
or worker health.

FCUP is involved in a work package identified as PPS3 and with the title “Industrial Internet
of Things and connectivity” [1]. Within PPS3, FCUP is responsible for tasks concerning the
development of low latency, high availability, and high accuracy solutions for indoor location.
Indoor location is required for tracking moving assets (e.g., packages, AGVs, workers) in the
factory floor.

In particular, FCUP is responsible for a task identified as T17.3 and titled “Development
of geolocation modules” [1] that relates to the development of a physical IoT geo-location
environment suitable for development and prototyping, comprising:

• physical IoT devices amenable to lab and factory floor testing, including small-size, low-cost
AGVs and wearables that require location estimates with high precision;

• end-device and infra-structural sensors for geo-location, including UWB-based hardware;

2.4. The Augmanity project 23

• and a simulation environment for test and development purposes, able to mimic AGV
movement.

These requirements are in direct correspondence to the developments in this thesis.

In addition to these general requirements, our choice of UWB hardware is motivated by the
development of a special hardware device known as the “5G Tag” [23], to be used for a number
of purposes in the project including indoor location. The 5G Tag, of which a prototype is shown
in Figure 2.11, is being developed by Globaltronic, one of the partners in project. The UWB
hardware incorporated in the 5G Tag is based on the DWM1000 UWB transceiver from Decawave
described earlier in this chapter. Accounting for future hardware-software integration tasks in
the project, our developments employs the same type of UWB hardware. The 5G tag is also
planned to include inertial measurement sensors that can be used by indoor location algorithms.

Figure 2.11: 5G Tag prototype [23]

Chapter 3

State of Art

System Sensors Algorithms Robot(s)
ROS-
based

Simulation
Support

Open-
source

AugBot
UWB, inertial
sensors

Multi-lateration (least
squares) and dead
reckoning

AlphaBot2 Yes Yes Yes

Atlas [29]
UWB and optical
reference system

TDoA for UWB mea-
surements

Dr. Robot
Jaguar V2

No No Yes

Atlas
FaSt [30]

UWB and optical
reference system

TDoA for UWB mea-
surements

Dr. Robot
Jaguar V2

Yes No Yes

Bostanci
et al. [3]

UWB and LiDAR

Multi-lateration (least
squares) and
light detection initial-
ization algorithm

TurtleBot 3 Yes Yes Yes

Guan et
al. [12]

VLC

Kalman Filter Track-
ing Algorithm based
on improved Camshift
Algorithm

TurtleBot3 Yes No No

Okumus
et al. [20]

Odometry
Algorithms based
on linear and
angular accelerations

TurtleBot2 Yes Yes No

Mishra et
al. [19]

Microsoft Kinect
XBOX 360

Adaptive Monte Carlo
Localization

TurtleBot Yes Yes No

Cheng et
al. [5]

ZigBee

Least squares and
Cramer-Rao bound to
hybrid
RSSI and TDOA mea-
surements

? No Yes No

Table 3.1: Comparision of AugBot framework with some related systems

In this Chapter, some state-of-the-art articles are discussed in regard to similarities to the
framework developed in this thesis concerning indoor location and robotics, and particularly

25

26 Chapter 3. State of Art

systems that use UWB for indoor location and are implemented using ROS. Table 3.1 provides a
comparative overview between systems. We discuss each individual work in a separate section.

3.1 ATLAS

ATLAS [29] is an Open-Source TDOA-based Ultra-Wide Band Localization System that
proposes and demonstrates a unique technique for a multi-user TDOA-based localization system
using wireless clock synchronization. A sophisticated experiment involving robotic movement
and an optical reference system as ground truth is used to test system accuracy. The Dr.
Robot Jaguar V2 robot was the robot employed for the studies. The UWB firmware utilized
in the ATLAS experiment, like in this thesis, was a Decawave module, in this instance the
DWM1000, and the robot’s velocity is similarly controlled by PID. This study demonstrates that
the accuracies achieved by TDOA positioning with wireless clock synchronization are equivalent
to similar TWR-based techniques, and all raw samples, reference data, and processed positions
are provided with the software for comparability.

Fig. 3. Experimental setup showing the optical reference system, the UWB
synchronization node, the UWB anchor nodes, the localization server, the
reference trajectory and the mobile robot equipped with the UWB tag node
and the optical reference markers.

III. EXPERIMENTAL SETUP

To achieve repeatable results and quantify the accuracy of
the proposed approach, a rather complex experiment was set
up. As depicted by Fig. 3, a mobile robot follows a predefined
trajectory. The robot is mechanically based on the Dr Robot®
Jaguar V2 [15]. However, to enable precise control of the
actuators, an advanced motor control loop was integrated in
the system. The velocity of the tracks are controlled using
a cascaded PID track position control loop. The position of
the robot is tracked using an OptiTrack® motion capture
system equipped with eight Flex 13 cameras [16]. The 6D
vehicle position is updated with a frame rate of 120 Hz. The
position information is live-streamed to the embedded system
on the robot, to allow for precise trajectory following. For
statistical relevance, the trajectory was repeated ten times. The
motion capture residuals of the individual rays were in the
submillimeter range throughout the experiments. The anchor
constellation used for the UWB localization is listed in Tab. III.
The sync node is placed at [xs, ys, zs] = [-1.05, 0.77, 1.96].

For error analysis, the localization system had to be
matched against a reference system. Since the localization
system and the optical tracking were executed on different
machines, the clocks were synchronized using the network
time protocol (NTP). Due to the high frame rate of the
motion capture system, and the non-periodic samples of the
localization system the temporally closest subset of motion
capture frames was chosen for comparison.

TABLE Ill. POSITIONS OF THE ANCHORS USED IN THE EXPERIMENTS.
anchor 2 3 4 5 6 7 8

x [m] -1.11 -1.17 1.20 3.54 3.54 3.42 1.20 -1.17
Y [m] 0.00 -3.49 -3.49 -3.45 0.02 3.52 3.49 3.49
z [m] 2.05 0.29 2.43 2.55 2.08 0.28 2.16 2.17

2.4

1.8

1.2 E
x 0.6

0.0

-0.6 �--�--�--�--�--�----�--�--� 2.4 1.8 1.2 0.6 0.0 -0.6 -1.2 -1.8 -2.4
y[m]

Fig. 4. Top-view of the experimental results. Depicted is the trajectory from
the optical reference system as well as the localization results from the ten
trajectory repetitions. Note the repeating strong deviations from the reference.

IV. EXPERIMENTAL RESULTS

To increase the repeatability and comparability of the
experiments, the raw TOA samples, the localization results
and the reference data from the optical reference system are
provided alongside this work under a permissive license [l7].

A first qualitative horizontal comparison of the localization
results and the ground truth is depicted in Fig. 4. The ten
repetitions of the experiments are clearly visible. The deviation
of the x component appears to be stronger than the y com
ponent. However, the deviation appears to have a systematic
component. It is assumed that those systematic, repeatable
deviations follow a pattern based on the antenna characteristics
of the transceivers. Therefore further research may hold the
potential for fingerprinting or similar approaches.

A time series of a single trajectory run is depicted in Fig. 5.
The y-axis shows good matching with the reference system,
which is expected, due to the linear movement. The deviation
from the z-axis is stronger due to the chosen anchor constella
tion optimized for horizontal positioning. The horizontal error
X is under 20 em most of the time. The strongest horizontal
errors resemble the deviations already depicted in Fig. 4.

To assess the effect of calibration discussed in section II-E,
the individual errors of the TDOAs in meters of each anchor n
compared to the reference anchor �tn,l are depicted in Fig. 6.
The TDOA errors are obtained as follows:

The measurements of the optical reference system are used
to calculate the euclidean distance between the tag and the
n'th anchor Pn,t as well as the first anchor Pl,t that acts as the
reference for the TDOAs. The distance between each anchor

TABLE IY. WAYPOINTS OF THE REFERENCE TRAJECTORY
waypoint 2 3 4 5 6 7 8

x [m] -2.10 1.80 1.80 -1.80 -1.80 1.80 1.80 -2.10
y [m] 0.00 0.00 0.60 0.60 1.20 1.20 1.80 1.80

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on September 15,2022 at 15:14:44 UTC from IEEE Xplore. Restrictions apply.

Figure 3.1: Top-down illustration of the scenario used for experimental evaluation of the system
accuracy.

The ATLAS localization system is composed of modular components. A collection of static
nodes (anchors) is dispersed along the localization environment, which can be observed in Figure
3.1. These nodes are linked by a wired backbone, which is controlled by a single micro-controller
unit (MCU) and allows the nodes to connect to the localization server via serial connection.

Clock synchronization is required at the reception nodes due to the distinct clock drift of each
anchor node and to comply with the accuracy required for reliable TOA measurements. The
synchronization node broadcasts precisely timed periodic synchronization frames at a frequency
of 10 Hz and due to the periodicity of those frames, a reference clock is can be generated to
estimate the clock drift of the receiving anchors.

As depicted by Figure 3.2, the ATLAS localization server is the central application used for

3.1. ATLAS 27

positioning and is in charge of managing and configuring synchronization nodes and anchors,
receiving, matching, and assembling samples, clock correction, and positioning, and ultimately
logging and reporting samples and results.

r--------------, I I I I I I I I I I I I I I I : I
l_��_ S�n����!._J

r--------------, I I I I I I I I I I I I I I I • : I
l __ �! �n_ch�!1 __ J

Raw Samples

•

r--------------, I I I I I I I I I I I I I I I : I
l_.!J� A-":h��� __ J

Calculated Positions (--I I IF I
',' I __________________________ !���!i��_S.!!!.� __________________________ J

Fig. 2. Topology of the TDOA based localization system. The synchronization
node is periodically transmitting a sync packet. The anchor nodes receive this
broadcast and communicate the received timestamps to the localization server.
Note that the wired backbone is not distributing a common clock.

II. PROPOSED SYSTEM IMPLEMENTATION

The ATLAS localization system consists of a set of mod
ular parts. A set of static nodes detailed in section II-A is dis
tributed in the desired localization environment. Those nodes
are connected over a wired backbone further described in
section II-B to the localization server detailed in section II-C.
The system topology is depicted in Fig. 2.

Due to the individual clock drift of each anchor node and
the precision needed for accurate TOA measurements, clock
synchronization is needed at the receiver nodes. The specific
need to enable flexible backbone configuration without timing
critical wiring led to the decision to implement wireless clock
synchronization. In this configuration the synchronization node
transmits precisely timed periodic synchronization frames at a
frequency of 10 Hz. Due to the known periodicity of those
frames, a reference clock to estimate the clock drift of the
receiving anchors is created.

A. UWB Nodes

The hardware design is based on the DWM1000 module
from decaWave® [11]. It is driven by the need for a flexible,
integrated and portable solution for scientific purposes. A
single microcontroller unit (MCU) was chosen with integrated
USB functionality for backbone communication. The hardware
design files are provided alongside this work [12].

TABLE I.

type

uintI 6_t
uintI 6_t
uintI6_t
uint8_t[]
uintI 6_t

STRUCTURE OF A BACKBONE PROTOCOL PACKET.
name

pream
msgld
length
payload
checksum

description

Preamble of a binary packet
Message id of the binary packet
Payload length
Payload with variable length
Checksum

B. Wired Backbone

The nodes connect to the localization server via a serial
connection of any type. The default configuration uses direct
connection over a virtual USB serial port. Due to the wireless
clock synchronization, the wired backbone is not timing crit
ical. Therefore, configurations with many relays are possible,
providing the flexibility to use existing infrastructure.

The backbone protocol is based on the packet structure
listed in Tab. I. A binary format was chosen to increase the
efficiency of backbone communications. Furthermore, check
summing was added to account for errors during transmission.
Received frames are reported to the localization server using
the structure listed in Tab. II.

C. Localization Server

The central application used for positioning is the ATLAS
Localization Server. The source code of this application is
provided alongside our work at [13]. It is based on C++ 11
using cmake as a build system. Tasks of this central application
are:

• Management and configuration of sync nodes and anchors

• Reception, matching and assembly of samples

• Clock correction and positioning

• Logging and reporting of samples and results

As depicted by Fig. 2, the localization server opens con
nections to the nodes over the wired backbone. Using the
binary protocol, described in section II-B, the sync node and
the anchors are configured based on unique identifiers of
the individual MCUs used by the nodes. After configuration
the anchors start reporting received frames with precise TOA
timestamps and transmitter extended unique identifier (EUI) to
the sample assembly engine. Server-side whitelisting is used to
ensure that only tags belonging to the system are processed.
The transmitter EUI, the received sequence number and the
local server system clock are used to linearize the sequence
number. This is neccessary since the transmitted sequence
number is limited to 28. A sample is complete, when either
all anchors received a packet with the same sequence number
and transmitter EUI or a local timeout in the lower millisecond
range occures dispatching the sample for further processing.

Based on the transmitter EUI, the frame is differentiated
if it is a synchronization frame or a positioning frame. The
synchronization frames are used to model the individual anchor
clocks. Therefore the TOA timestamps need to be linearized
and converted first. The TOA timestamp is a 40-bit integer,
where one bit corresponds to 18/(128 . 499.2 . 106) which
is approximately 15.65 ps. The local clock overruns every
15.56p8 . 240 � 17.218. Due to this, the TOA timestamps
have to be linearized at the localization server for accurate

TABLE II.

type name

uint64_t txEui
uint64_t rxEui
uint64_t rxTs
uint8_t seq

STRUCTURE OF RECEIVED FRAME PAYLOAD.
description

EUI of the transmitting node
EUI of the receiving node
Precise timestamp of frame reception
Sequence number locally increased by the anchor

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on September 15,2022 at 15:14:44 UTC from IEEE Xplore. Restrictions apply.

Figure 3.2: Schematic illustration of the system architecture for the ATLAS localization system.

The anchors, after configuration, start reporting received frames with precise TOA timestamps
and a unique identifier to the sample assembly engine, while the server-side ensures that only tags
beloging to the system are processed. Each anchor has its own clock model, which is updated
whenever a synchronization frame is received. If a positioning frame is received, that model is
used to calculate the corrected TOA with respect to the synchronization node clock.

Because early experiments revealed static offsets in the receiver’s TOA measurements, the
option to initially calibrate the system using a calibration node at a known point was added in
the system. Since the node’s location is known, the predicted TDOAs can be determined. By
comparing the predicted and the measured TDOAs, a calibration offset for each anchor may be
calculated. This offset is then deducted from the tags’ measured TDOAs.

For error analysis, the localization system had to be matched against a reference system,
therefore an OptiTrack motion capture system was implemented. Since the localization system
and the optical tracking were executed on different machines, the clocks had to be synchronized,
and because the motion capture system’s frame rate is much higher than the UWB rate, the
temporally closest subset of motion capture frames was chosen for comparison to the estimated
position by UWB.

ATLAS FaSt: [30] Fast and Simple Scheduled TDOA for Reliable Ultra-Wide Band Local-
ization, is an extension for the previously introduced ATLAS localization system, implementing
the previously developed system in ROS to increase the capabilities of the system in terms of
scalability and real-time capabilities, without degrading the performance of the localization

28 Chapter 3. State of Art

results, and as observable in Figure 3.3, since the system is built upon ROS, the modules have no
inter-dependencies between localization and scheduling. The software is once again open-source
and the raw data and system configurations of the experimental analysis is also provided as
a ROSbag to replayability. Another functionality introduced was the possibility of obtaining
motion vectors, by integrating an IMU to the mobile node.

����

���	
�����
���������������

�������������
�������������� ��!"����
�������"������ ���
��������������������#�
������������������$����

%

%&�����������������������������������#��������������!"�������������������� ����� ���������������"����

Fig. 5. Schematic illustration of the system architecture for the ATLAS localization system using FaST scheduling. Note that the system is built upon
the Robot Operating System (ROS) and is highly modular having no inderdependencies between localization and scheduling.

that assignment a clock sync graph can be constructed. For
processing, each master anchor will generate a slave list.
Based on the graph, a clock correction path can be built
for each anchor. Through this path the global clock can
be re-obtained by iterating through the clock offsets and
drifts of all anchors in the list. In this step, the individual
absolute offsets and drift-induced extrapolated offsets would
be accumulated.

Fig. 6. Schematic illustration of the distributed wireless clock synchro-
nization. A sync graph is used to obtain the slave list of each sync anchor
and hence the clock correction path of all participating anchors.

E. Implementation and Architecture of ATLAS FaST
Based on the previously developed ATLAS wireless lo-

calization system [12], this work presents the second release
by building upon the widely used robot operating system
(ROS) [14]. In contrast to previous work which focussed
mainly on plain localization aspects, this work provides a
significant increase in scalability and real-time capabilities,
presenting a method that allows for scalable localization
without degradation in the performance of the localization
results. The proposed system architecture is depicted in
Fig. 5. The ATLAS Concentrators are capable of connecting
to multiple anchors and sync anchors over a proprietary
binary protocol over USB. To allow for widespread adoption,
the hardware design files, for an easy to solder UWB node
used in this work are provided as a supplement to this work,
see [15]. Furthermore, the ROS-based source-code for the
system implementation is provided, see [16].

III. ATLAS FAST EVALUATION

In order to assess the performance of the proposed ap-
proach a combination of analytical, simulative and exper-
imental evaluation is conducted. The raw data and sys-
tem configuration of the experimental analysis are provided
alongside this work [17]. Using the open-source implemen-
tation, the raw data allows for an interactive demo, which
will be further highlighted in section III-E.

A. Scalability Evaluation

Due to the slotted approach and the competition-free chan-
nel access in the scheduled slots, the successful positioning
throughput scales linearily with the positioning frame load
as depicted in Fig. 7. Non-reception due to noise induced
frame error rates were neglected in this analysis as this will
highly depend on the link budget the wireless localization
system planner will provide for the given setup. However, the
variation of the number of random access slots will define the
upper bound of the systems capacity. To compare the multi-
user scalability of the proposed approach to the previous

0 256 512 768 1024 1280 1536 1792 2048

Positioning Frame Load [Hz]

0

512

1024

1536

2048

P
o

si
tio

n
in

g
 T

h
ro

u
g

h
p

u
t

[H
z] ATLAS FaST capacity limited

by number of random
access slots

Proposed approach
enabling a high count
of low frequency tags

Idealized Maximal Number of Tags at 1Hz for FaST vs. rand. R-TDOA

!"#$%"&%!"#'
1

2

3

4

5

6

R-TDOA:

model

experiment

R-TDOA:R OOOO

modeldddd

experimenteee ei

R-TDOA:

model

experiment

Fig. 7. Exemplary analytical analysis of the successful positioning
throughput under a varied positioning frame load. Note that the throughput
of the random R-TDOA approach is based on experiments conducted in
previous work [10].

2557

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on September 15,2022 at 15:21:05 UTC from IEEE Xplore. Restrictions apply.

Figure 3.3: Schematic illustration of the system ROS-based architecture for the ATLAS
localization system using FaST scheduling.

The current implementation only supports a static number of devices, however, FaST easily
supports more than 1000 mobile units at 1 Hz. Energy consumption was also one of the main
goals of this project, therefore a study was conducted to compare the energy consumption to
other channel access schemes. By calculating the power per transmitted and received UWB
frames, the maximal battery lifetime can be calculated, and the results were close to those of
random-acces, which are the baseline for low power consumption. Therefore, FaST is capable of
tracking many low-power devices without interfering with real-time requirements.

To evaluate the system performance, an experiment in an industrial environment was
conducted. The experimental setup comprises a set of three mobile robots (based on Dr.
Jaguar V2), 38 cameras for the optical reference system, and the proposed wireless localization
system with one synchronization anchor and 8 passive anchors nodes (DWM1000 modules from
Decawave).

3.2 Bostanci et al.

Bostanci et al. [3] proposes LiDAR and UWB-based source localization and initialization
algorithms for autonomous robotic systems. This work discusses the source localization algorithm
based on least squares approaches and the squared range measurements derived from UWB sensors
for multi-lateration to locate the robot in an indoor environment, as well as the initialization
algorithms based on LiDAR scans. The software is open-source and developed in ROS, with
ROS modules for both real and simulated environments. The robot utilized in this experiment
was the TurtleBot3.

The procedure starts in an initial starting pose and the goal destination is set manually on

3.3. Guan et al. 29

�����.?<�8C>FI@K?D�LJ<J�/1��I8E><�D<8JLI<D<EKJ�KF�<JK@D8K<�K?<�
IF9FK� CF:8K@FE� 8E;� K?<� '@��,� 8E;� K?<�D8G� ;8K8� KF� ;<K<:K� K?<�
;@I<:K@FE�@KUJ�=8:@E>��!@>���8�8E;��9�J?FN�K?<�;<:<EKCP�@E@K@8C@Q<;�
CF:8K@FE�8E;�K?<�98;CP�@E@K@8C@Q<;�CF:8K@FE	�I<JG<:K@M<CP��.?<�>I<<E�
;FKK<;� C@E<J� ?<I<� I<GI<J<EK� K?<�'@��,� J:8E�;8K8� FE� KFG� F=� K?<�
GI<M@FLJCP�F9K8@E<;�D8G���J�:8E�9<�J<<E	�K?<�!@>���8�?8J�8CDFJK�
8�G<I=<:K�@E@K@8C@Q@E>�N?@:?�D<8EJ�K?8K�K?<�GFJ@K@FE�F=�K?<�IF9FK�
8E;�@KJ�8C@>ED<EK�N@K?�I<JG<:K�KF�K?<�I<8C
NFIC;�D8K:?�N@K?�K?<�
D8G� @E=FID8K@FE�� *E� K?<� :FEKI8IP	� K?<� I<JLCKJ� @E� !@>�� �9�
;<DFEJKI8K<�K?<�98;�D8K:?@E>�F=�K?<�C8J<I�;8K8�N@K?�K?<�D8G�;8K8�
;L<�KF�98;�CF:8K@FE�8E;�;@I<:K@FE�<JK@D8K@FE�F=�K?<�IF9FK��

�+)������8���.?<�I<8C�K<JK�<EM@IFED<EK��9��.?<�D8G�F=�K?<�
<EM@IFED<EK�F9K8@E<;�N@K?�'@��,��

������+)�����8��.?<�>FF;�@E@K@8C@Q8K@FE��9��.?<�98;�@E@K@8C@Q8K@FE��
�
�����*E:<� K?<� @E@K@8C� GFJ<� F=� K?<� IF9FK� @J� F9K8@E<;	� K?<� IF9FK�
8LKFEFDFLJCP�>F<J�KF�K?<�>F8C�GFJ@K@FE��U�9P�<OGCF@K@E>�K?<�����
�����8C>FI@K?D�@E�K?<�E8M@>8K@FE�JK8:B�F=�,*-��.?<�!@>LI<��8�8E;�
�9�J?FNJ�K?<�=@E8C�GFJ<�F=�K?<�IF9FK�N?@:?�?8J�JK8IK<;�N@K?�8�>FF;�
@E@K@8C@Q8K@FE�FE�K?<�D8G�8E;�@E�K?<�I<8C�<EM@IFED<EK�I<JG<:K@M<CP��
.?<�IF9FK�?8J�G<I=<:KCP�I<8:?<;�K?<�>F8C�8J�:8E�9<�M8C@;8K<;�=IFD�
K?<� J:8EJ� F=� K?<� '@��,� FE� K?<� D8G�� .?<� I<JLCKJ� F=� 8� 98;�
@E@K@8C@Q8K@FE� :8E� 9<� F9J<IM<;� @E� !@>� �:� 8E;� �;� 8E;� K?<�
8;M8EK8><FLJ� F=� ?8M@E>� 8� >FF;� <JK@D8K<� FE� K?<� @E@K@8C� GFJ<� @J�
F9M@FLJ� K?8K� K?<� IF9FK� @J� HL@K<� =8I� 8N8P� =IFD� K?<�>F8C� 8E;� K?<�
'@��,�;8K8� @J� EFK�D8K:?<;�N@K?� K?<�D8G�8K� 8CC��.?FIFL>?� K?<�
K<JKJ	�N<�?8M<�F9J<IM<;� K?8K� K?<�<IIFI�89FM<���;<>I<<J�FE� K?<�
@E@K@8C�;@I<:K@FE�<JK@D8K<�F=�K?<�IF9FK�:8LJ<J�K?<�IF9FK�CF:8K<J�@E�8�
KFK8CCP�NIFE>�=@E8C�GFJ<��.?<I<=FI<	�K?@J�<DG?8J@Q<J�K?<�E<:<JJ@KP�
F=�K?<�J<EJ@K@M<�<JK@D8K<�FE�K?<�@E@K@8C�GFJ<��
�
��
��0%#-+:#5+0/� '454�
�
�����!FI� 9FK?� @E@K@8C@Q8K@FE� 8E;� CF:8C@Q8K@FE� K<JKJ	� =FLI� /1��
8E:?FIJ�8I<�@EJK8CC<;�@E�K?<�K<JK@E>�<EM@IFED<EK��!@>�����N?@:?�@J�
=LCC�F=�:?8@IJ�8E;�K89C<J�@E�8���D�9P���D�8I<8��.?<�/1��K8>�FE�
KFG�F=�K?<�IF9FK�:FDDLE@:8K<J�N@K?�K?<J<�8E:?FIJ�KF�><K�K?<�I8E><�
@E=FID8K@FE��1<�DFM<;�K?<�IF9FK�I<DFK<CP�=IFD�GF@EK���KF���K?<E�
��8E;���@E�!@>���9��.?<�CF:8C@Q8K@FE�I<JLCKJ�8I<�J?FNE�@E�!@>�����
.?<�P<CCFN�;FKJ�I<GI<J<EK�K?<�/1��8E:?FIJ�N?@C<�K?<�:P8E�FE<J�

I<GI<J<EK�K?<�IF9FK�KI8A<:KFIP��1?<E�K?<�IF9FK�@J�=8I�8N8P�=IFD�
:?8@IJ�8E;�K89C<J�8E;�@EJ@;<�K?<�:FEM<O�?LCC�F=�K?<�8E:?FIJ	�K?<�
<JK@D8K<;�G8K?�@J�GI<KKP�>FF;��#FN<M<I	�N?<E�K?<�I8;@F�J@>E8CJ�
8I<�9CF:B<;�;L<�KF�K?<�:?8@IJ�FI�K?<�K89C<J	�K?<�G<I=FID8E:<�><KJ�
NFIJ<��.?<�8::LI8:P�@J�8GGIFO@D8K<CP���:D��

�+)�����.?<�=@E8C�GFJ<�F=�K?<�IF9FK�N@K?�8�>FF;�@E@K@8C@Q8K@FE�@E�8��
8E;�9�	�N?<I<8J�N@K?�8�98;�@E@K@8C@Q8K@FE�@E�:��8E;�9���

�+)�����8��/1��8E:?FIJ��9��.?<�K<JK�<EM@IFED<EK�8E;�K?<�G8K?�

�

�+)��	���.?<�<JK@D8K<;�KI8A<:KFIP�F=�K?<�IF9FK�

�
8�� ��9��

� �
8�� ��������������������������������������9��

� �
:���;��

� �
8���9��

� �
8�� ��9��

���

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on September 19,2022 at 09:54:06 UTC from IEEE Xplore. Restrictions apply.

Figure 3.4: The left picture represents the map obtained by LiDAR in the graphical interface
Rviz. Both pictures present the final position of the TurtleBot3.

rviz, which is a ROS graphical interface. To successfully reach the goal location as in Figure 3.4,
the initialization, which uses both UWB and LiDAR data, has to be accurate. The variation of
iterative closest point algorithms is used to math to the previously obtained map data and the
current LiDAR scans, however, if the map data is quite big and has similar points, the matching
process can be time-consuming and erroneous.

The UWB sensors are used to determine the robot’s current position, and LiDAR scans are
used to determine the direction the robot is facing. This is why proper LiDAR initialization
is critical for the robot to arrive at the objective location, since if the robot does not know its
right beginning position and where it is aimed, major mistakes will occur. Reference points are
established throughout the scenario to corroborate the map data scanned by LiDAR and the
estimated locations by UWB.

There were chairs and tables in the real experimental test setup, and whenever the robot got
close to them, the localization performance declined dramatically, exactly as it did in this thesis.

The UWB simulation node in the ROS simulation environment subscribes to the gazebo/model
states topic to obtain the robot’s real position on the simulation. The range between the anchor
and the robot’s true location is then determined, and gaussian noise is added to give realism.
The range is then published, allowing another ROS node to estimate the robot’s position via
multi-lateration. This approach is pretty similar to the UWB simulation used in this thesis.

3.3 Guan et al.

Guan et al. [12] presents an indoor robot localization system based on ROS and Visible
Light Communication (VLC). To obtain dynamic positioning, this work provides a Kalman Filter
Tracking Algorithm based on an improved Camshift Algorithm and an algorithm based on video
target tracking. The purpose of this experiment is to address the low positioning accuracy and
poor real-time capability of standard VLC positioning systems that rely on the AOA of visible
light or the RSS of the light to determine the distance to each target.

Visible light wireless communication, also known as Light Fidelity (LiFi) technology is a

30 Chapter 3. State of Art

wireless transmission technology that uses visible light spectrum for data transmission. It uses
electrical signals to control the high-speed flashing LEDs to transmit information. Visible light
positioning is then a positioning technology based on VLC. In this experiment, VLC was exploited
for indoor robot positioning based on a double-lamp experiment platform and a TurtleBot3.

To acquire precise three-dimensional coordination of the object, the dynamic tracking detection
of the Camshift algorithm, which is a high-precision VLC image positioning algorithm, is proposed.
The TurtleBot3 receives the LED signal, converts the images to ROS image messages, and then
publishes the message to a topic, which is listened by a node responsible for obtaining the LED
coordinates and ID. The picture is then processed by another node, which computes the robot’s
location. Because the TurtleBot3 single board computer’s CPU capability is insufficient for image
processing and positioning computations, the camera node runs on the TurtleBot and the locator
node on a remote controller. This is simple since the ROS platform simplifies a distributed
design.

21: {
22: pose_value=Get_coordinate(LED A, LED B, LED C);// positioning according to lamp information
23: pub.publish(msg); // publish location information;
24: }
25: ros::spin();
26: }
27: }

3. �¡��������
řǯŗǯȱ�¡��������ȱ�����

���ȱ �����ȱ ��ȱ �¡��������ȱ ��ȱ ��� �ȱ ��ȱ �����ĉǯȱ ���ȱ ������ȱ ��ȱ ����ȱ ���ȱ ����ȱ �¢ȱ
����������ȱ ��-řŖŖȱ ����������ȱ ������ȱ ���ȱ �����������ȱ �¢ȱ ��������¢ȱ ��ȱ řȱ �����ȱ �ȱ ���ȱ
����ȱ���ȱ�����¡-�śřȱ����ȱ ŗǯŘ	
£ȱ��������ȱ���ŘŞřŝȱ ���ȱ ŜŚ���ȱ���ȱ���ȱŗ	�ȱ���ȱ
ǽřśǾǯȱ�������ȱ���ȱ��������¢ȱ��ȱřȱ�����ȱ�ȱ��ȱ���ȱ������ȱ�����ȱ���������ȱ��ȱ���������řȱ������ǰȱ
 ����ȱ ���ȱ ���ȱ ���������ȱ �����������ǰȱ ��ȱ ��ȱ ���ȱ ��������ȱ ���ȱ �����ȱ ����������ȱ ���ȱ
�����������ȱ ������������ȱ ��ȱ ��ȱ �¡������ȱ ��ȱ ���������ǯȱ �����ȱ ��ȱ �����������ȱ ������ȱ ��ȱ ���ȱ
���ȱ��������ǰȱ�����ȱ����������ȱ���ȱ�����������ȱ���������ȱ��������ȱ���ȱ��ȱ�����¢ȱ���ȱ��ȱ
������ȱ ����������ǯȱ ���ȱ ���������ȱ ���ȱ ����������ȱ �¡���������ȱ ���ȱ ���������ȱ ��ȱ ������ȱ
����������ȱ ȱ ����ȱ��ŝ-śşř	ȱ ���ȱ�ŝ-ŝŝŖŖ
�ǰȱřǯŚŖȱ	
£ȱ�����ȱ����ȱǻ������ȱ�����ȱ��������¢Ǽȱ
���ȱ ŗŜ	ȱ ���ǯȱ ���ȱ��ȱ ��ȱ ���ȱ ���������ȱ řȱ ��ȱ ������ȱ����ȱ ŗŜǯŖŚǰȱ ���ȱ ���ȱ��ȱ ��ȱ ������ȱ
����������ȱ ��ȱ������ȱŗŜǯŖŚȱ�������ǯȱ ��ȱ ���ȱ�¡��������ǰȱ ���ȱ���������ȱ���ȱ������ȱ ����������ȱ
���ȱ ���������ȱ ��ȱ ���ȱ ����ȱ����ǰȱ������ȱ ��ȱ ���¢ȱ ��ȱ ���ȱ ������ȱ ��ȱ ���ȱ �����ȱ ����ȱ��� ���ȱ
ǻ���Ǽǯȱ��ȱ�����¢ȱ���ȱ����������¢ȱ��ȱ���ȱ��������ȱ������ȱ����������ȱ�¢����ǰȱ���ȱ�¡���������ȱ
 ���ȱ���������ȱ��ȱ��ȱ�¡����������ȱ��������ȱ ���ȱŚȱ����ȱ ����ȱ��� �ȱ��ȱ���ǯȱŜȱǻ�����ȱ���ȱ
�����ȱ������ȱ�������ȱ�����ȱ��ȱ���ȱ���ȱ����ȱ��ȱ���ȱ����ǰȱ �ȱ����ȱ�����ȱ��ȱ����ȱ���ȱ����������ȱ
��ȱ ���ȱ �¡��������ȱ ��ȱ ������ȱ ���ȱ ������ȱ ����ȱ ��ȱ ����ȱ ���ȱ �����ȱ ���ȱ�������ȱ ��ȱ �����ȱ � �ȱ���ȱ
����������ȱ��ȱ�������ȱ���������Ǽȱǯȱ��ȱ��ȱ���ȱ��ȱ��ȱ��ȱŗ-�����ȱ����ǰȱŗ-�����ȱ ���ȱ���ȱŗǯś-�����ȱ
����ǰȱ���ȱ���ȱ���������ȱ����ȱ ���ȱ���ȱ�����������ȱ ��ȱ�ȱ ������ȱ ���ȱ�ȱ����ȱ ������ȱ��ȱŗȱ�����ǯȱ
���ȱ �¡��������ȱ ����ȱ ����������-����ȱ ������ǰȱ ����ȱ ���� ��ȱ ��ȱ ��ȱ ������ȱ ������ȱ �������ȱ
�������ȱ ������ȱ����������ȱ������ȱ����������ǯ

���ǯȱŜǯȱ�¡����������ȱ��������ȱ��ȱ���ȱ�����ȱ���ȱ�¢����ǯ

��ȱ���������ȱ��ȱ���ȱ�������ȱ�¢����ȱ���������ǰȱ ���ȱ���ȱ���ȱ�������ȱ������ǰȱ �ȱ���ȱ���ȱ

������ȱ ����ȱ ��ȱ ���ȱ ���������ȱ ���ȱ ����ȱ ���ȱ ���ȱ �������ȱ ����ȱ ��ȱ ������ȱ ����������ǯȱ
����� ����ǰȱ���ȱ������ȱ����ȱ���������ȱ�����ȱ��ȱ���ȱ�����ǰȱ���ȱ���ȱ�������ȱ����ȱ���������ȱ��ȱ
���ȱ�����ȱ��ȱ�������ȱ�����ǰȱ���ȱ����ȱ���ȱ���ȱ�����ȱ��ȱ�������ȱ���ȱ��������ȱ��ȱ���������ǯ

Figure 3.5: Top-down illustration of the scenario used for experimental evaluation of the system.

The experiment, represented in Figure 3.5, was carried out on an experimental platform with
four LEDs, and since the robot cannot detect light on the far side at the edge, three or four
LED luminaires were employed so that the robot could observe at least two LED luminaires at
various positions. The information was shown in real-time using the 3D visualization tool rviz.
The experiment begins with the robot at coordinate (0,0), and then the results of the positioned
coordinate are obtained. When the robot is static, the dispersion radius of the estimations is
utilized to characterize the positioning accuracy. As a result, the smaller the dispersion circle, the
denser the data distribution, the higher the accuracy. The positioning error may be represented
as the Euclidean distance between the data and the center of the dispersion circle if the center
of the dispersion circle corresponds with the coordinates of the origin after adjustment. If the
dispersion radius is narrow enough, after proper calibration of the camera, accurate data can be
achieved.

3.4. Okumus et al. 31

3.4 Okumus et al.

Okumus et al. [20] presents a Cloud Based Indoor Navigation and Communication for
ROS-enabled Automated Guided Vehicles. ROS is used to send and manage commands to
TurtleBot 2, which has been the AGV used in the study. In this study, an application to manage
multiple robots over a cloud-based system has been conducted. The technique used to estimate
the position of the robot was based on the robot’s odometry.

Figure 3.6: Architecture of System presented

To ensure that the AGV navigates toward the goal, the environment in which the robot is
operating is mapped in the cloud system, where an optimum path is found by using path planning
algorithms, since localization, mapping the environment, and detecting obstacles are required
to control and navigate AGVs. When the map changes or obstacles move, the information
is uploaded to the cloud system, updating the map. As described in Figure 3.6 the AGV
communicates with cloud cloud via ROS installed on the Raspberry Pi.

To address localization issues, the odometry of the robot is picked up with the information
obtained from the wheel encoders of the robot. This is one of the basic approaches for robot
navigation that allows one to estimate the distance traveled by the robot by counting the number
of wheel turns. Tests were done in both a simulated and a real-world environment to evaluate
this strategy, and they appeared to be effective.

32 Chapter 3. State of Art

3.5 Mishra et al.

Mishra et al. [19] proposes a ROS-based service robot platform for mapping, localizing,
and navigating in an indoor environment that aims to simulate a low-cost service robot platform
that is capable of mapping an unknown environment using a RGB-D camera, the Microsoft
Kinect XBOX 360. The approach used for mapping was based on Real Time Appearance Based
Mapping and a TurtleBot robot model was used for visualization.

Microsoft Kinect XBOX 360 was the sensor chosen because it is a low-cost 3D RGB-D sensor
that can effectively be used for Simultaneous Localization and Mapping (SLAM). It provides
both the depth data with the color image. It can be used to capture 3D point cloud data from
the target environment and can be further used for indoor navigation.

The first step is mapping a 2D projection of the indoor environment with the sensor Microsoft
Kinect, then, in Gazebo, the autonomous navigation of the robot model to the desired location
is performed to find the best path possible. In order to navigate successfully, the robot is located
with the Adaptive Monte Carlo Localization algorithm, a Bayesian probabilistic based algorithm
that uses pre-existing 2D maps.

3.6 Cheng et al.

Cheng et al. [5] describe an indoor robot localization based on wireless sensor networks
and proposes a hybrid RSSI and TDOA approach to mitigate the substantial errors observed
during indoor RSSI localization and the high cost associated with TDOA localization.

This research demonstrates how combining RSSI and TDOA data may result in reliable
location calculations. This research utilizes two different node types: the ZigBee node, which
employs a 2.4 GHz low-power radio chip and measures RSSI values, and a TDOA node, which
measures TDOA values as despicted in Figure 3.7.

When the beacon node gets 50 packages, it filters RSSI values using an iterative recursive
weighted average filter. Then, a polynomial fitting algorithm is used to convert RSSI to distance,
and finally, polynomial parameters are defined using maximum likelihood estimation and statistical
test methods. To obtain hybrid RSSI/TDOA localization, least squares and Cramer-Rao bound
are calculated.

3.6. Cheng et al. 33

Figure 3.7: Floor plan of experimental site

Chapter 4

Design and Implementation

This chapter presents the design and implementation of the AugBot framework. Section 4.1
begins by listing the primary requirements for the AugBot framework. Section 4.2 provides a
quick summary of the framework’s primary parts as well as the three existing configurations
assembled in the framework. The modules that are shared by all three configurations will be
discussed first, followed by the modules that are used in the Robot configuration. The modules
used in the Simulation configuration are next, followed by the modules used in the Replay
configuration. The organization of the AugBot package will be explained in the final Section 4.3,
with a brief description of each folder and the communication topology employed.

4.1 Framework Requirements

Figure 4.1: Framework requirements

The Augmented Humanity (Augmanity) project [9] consortium seeks to foresee the future by
creating user-friendly, immersive, and helpful technology in industrial manufacturing environments.

35

36 Chapter 4. Design and Implementation

The project’s outcomes are planned to be leveraged across numerous industries. This thesis is
part of Augmanity PPS3: Industrial Internet of Things and Connectivity, a sector devoted to
putting I4.0 and edge technologies to work for individuals and corporations. In this context, there
is the specific issue of providing an indoor location for tracking devices (e.g., robotic vehicles)
or other physical assets (e.g., product bundles) on a manufacturing floor. FCUP and the other
project partners decided on an indoor positioning system that would employ a UWB beacon
infrastructure and inertial sensors as they were available and installed in devices.

We considered the following requirements for the AugBot framework, illustrated in Figure
4.1:

• study and experiment algorithms capable of performing indoor localization, using UWB is
mandatory to comply with the work performed by other partners of the Augmanity project;

• develop a system with low latency, high availability and highly accurate that is capable of
locating embedded devices, especially AGVs, in real-time;

• have the possibility in the system to send information about the tracking devices to the
network;

• keep software with low execution footprint in terms of resource consumption, highly portable
and easy to install and calibrate to be easily adapted to a new environment;

• develop a simulation environment for testing and development, while ensuring that the
movement from simulated AGVs approximates to real ones.

4.2 Approach

Figure 4.2: General representation of framework functionalities

To comply with the needs of the Augmanity Project, this thesis developed AugBot, a ROS-
based framework capable of locating a robot in both real and simulated environments. The
localization system is based on UWB measurements for multi-lateration plus inertial sensors to
obtain motion vectors of the robot’s movement for dead reckoning. In Figure 4.2 we can observe
the approach of the framework, which consists in feeding location estimation algorithms with
data, such as UWB ranges and motion vectors from sensors. Then, the positions estimated are

4.2. Approach 37

both broadcasted to the network and stored in log files for further analysis. Finally, to move the
robot, a robot controller is also defined.

The least squares algorithm estimates the robot’s position doing multi-lateration with the
positions of the UWB anchors and the respective estimated ranges to the robot. Dead reckoning
estimates a new robot position, applying the motion received by the IMU to the previously
estimated position. In the simulation, the actual position of the robot is always known. As in
the real case, this doesn’t occur, for ground truth 4 cardboard boxes were employed as control
points. These control points have the function of detecting the instant of the passage of the robot
in certain positions for subsequent analysis and comparison of position estimation algorithm
outcomes.

Figure 4.3: General representation of each configuration

To achieve these requirements, three different configurations are defined as shown in Figure
4.3. The first configuration allows the execution of the localization system in a real scenario with
Decawave DWM1001 Development Kit to obtain UWB range measurements and Micro:bit to
obtain motion vector data about the robot. The second configuration is a simulated AlphaBot2
moving in a Gazebo world while being tracked by simulated UWB ranges and simulated inertial
sensors. This configuration allows us to experiment and test algorithms before implementing
them in real scenarios. Finally, the third configuration allows replaying logs from previous
experiments to replicate tests and compare results from different algorithms under the same
circumstances.

Associating the modules in Figure 4.3 with the general operation shown in Figure 4.2, we
have MQTT bridge to provide Networking capabilities, ROS bag output as the node responsible
for Logging data, and the Least Squares and Dead Reckoning as position estimation algorithms
in the common nodes. Then, in the Robot configuration, we have an AlphaBot2, and in the
Simulation configuration, we have a simulated AlphaBot2. In these two setups, we have a module
for controlling the robot, lineFollow in the Robot configuration, and Gazebo Control in the
Simulation configuration, as well as a module to detect control points. The IMU Data Reader and
UWB Data Reader read data from sensors in the Robot configuration, while in the Simulation
the sensors are simulated. Since the Replay configuration replays logs from the prior experiments

38 Chapter 4. Design and Implementation

from the other two setups, it only requires one extra module.

4.2.1 Common modules

The common modules for every configuration are MQTT bridge, ROS bag output, Dead
Reckoning, and Least Squares.

MQTT bridge is responsible to broadcast information from and to the outside of the system
by MQTT. The main goal is to broadcast every estimated position from every algorithm by
MQTT to the cloud.

ROS bag output listens to a variety of ROS topics during the experiments and writes them
into two different ROSbags. One of them has the full data from topics during the experiment:
data from IMU, every variant of Dead Reckoning, every variant of Least Squares, data from
UWB, and timestamps of detection of the control points. The other ROSbag has the purpose of
saving the sensor data of the experiment to use for a future experiment, detailed in Subsection
4.2.4, therefore it only contains the information from UWB, IMU, and control points.

Dead Reckoning listens to /imu to obtain the movement’s orientation and to /synchPoint.
Every time deadReckoning receives a message from imu it estimates 3 positions of the robot:
one with constant speed to /deadReckoning (0.15 m/s), other to /deadReckoningSP with
constant speed (0.15 m/s) as well, but listens from /synchPoint and every time that the
synchronization point (control point A) is detected, the position is adjusted, and the last one
uses the accelerations from /imu to estimate the speed of the robot to /deadReckoningACC.

leastSquares is the node responsible to estimate the position of the robot using the UWB’s
ranges with multi-lateration. Every time a message is listened from /UWB, one Least Squares
estimation is sent to /leastSquares and another with moving average (the average of the last
10 leastSquares estimations) is sent to /leastSquaresMA.

4.2.2 Robot Configuration

The robot configuration is illustrated in Figure 4.4.

AlphaBot2 is controlled by a Raspberry Pi, therefore the most logical Operative System to
flash would be Raspbian. The problem was that ROS Noetic was not compatible with Debian
armhf, so Ubuntu was the chosen Operative System. AlphaBot2 comes with a demo code API
from waveshare which was used to develop the code to control the robot’s movement and detect
the control points.

Micro:bit and Pi Pico were the available sensors to work as inertial sensors. Micro:bit was
the first sensor used to obtain information about the AlphaBot2 movement. The objective was
to collect both the accelerations and the orientation of the movement, but the accelerations
were not precise enough, since the interval of the measurements was 1 millig which is about 0.15

4.2. Approach 39

Figure 4.4: Diagram of Robot configuration

m/s2, so only the orientations were used. A good calibration of the micro:bit was a must to
obtain a precise orientation of the robot. This calibration was quite tricky due to the existence
of metallic tables and chairs scattered across the room and the magnetic field created by the
robot’s batteries. Pi pico was not used in the latter stages of the thesis, due to difficulty in
achieving both accurate accelerations and orientations. This was due to the lack of the option to
correctly calibrate the sensor.

The configuration illustrated in Figure 4.4 runs on AlphaBot2, although it is possible to
separate it in order to reduce the power consumption and computing requirements of the AGV.
For example, in the experiments performed, we separated the computation as follows: in the
server, we have ROS_MASTER running and writeRosbag. writeRosbag is the node responsible
for the ROS bag output and in the second device (AlphaBot2), we have the nodes that are
responsible to collect and process data.

From the bottom to the top, we have UWB Reader that reads and parses the data collected
from DWM1001 configured as a tag to obtain the estimation of position by the UWB system
and the ranges between the robot and the anchors. After parsing the data, it writes a tagFull

message to the /UWB topic.

IMU Reader has similar functions to UWB Reader. It reads and parses data collected
from micro:bit, to be more precise, accelerations and the orientation of the robot’s movement.
Converts the heading estimated by Micro:bit to a quaternion and converts the acceleration from

40 Chapter 4. Design and Implementation

millig to m/s2 and sends both in a sensor_msgs/Imu message to /imu.

lineFollow moves the robot, determining the force to apply to each wheel according to
the data received by AlphaBot2’s ITR20001/T reflective infrared photoelectric sensor. The
Line Follow program consisted in a proportional–integral–derivative controller (PID), which is
a control loop mechanism that continuously calculates an error value and applies a correction
based on proportional, integral, and derivative terms, hence the name. PID automatically applies
an accurate and responsive correction to a control function. This algorithm with the position
gathered by the Infrared Sensors of the robot manages the force to apply to each wheel, therefore
forcing the robot to move forward when both wheels were submitted to the same force, and
turn when different speeds were set. The value used for proportional was 0.6, integral was set to
0.00005, and derivative to 0. If the sensor estimates a position less than 2000, the black line is
on the left side of the robot, and greater than 2000 is on the right.

Synch. Point Detection detects objects along the path. These objects are control points,
and there are 4 along the course. When a control point is met, a synchPoint message is sent to
/synchPoint with the timestamp of detection and the differential time between this control
point and the previous one. The obstacles are detected with the Infrared photoelectric sensor
(ST188) for obstacle avoidance and they can detect obstacles up to 10 centimeters away from
them.

4.2.3 Simulation Configuration

The simulation configuration is illustrated in Figure 4.5. From bottom to top, we have the
Gazebo Simulation, including a GUI where we can observe the Simulated AlphaBot2 moving.
The simulated AlphaBot2, represented in Figure 4.6, moves according to geometry_msgs/Twist
messages sent to the topic /alphabot2/control. These messages contain linear and angular
velocities, in m/s, to move the robot. These messages are sent by AlphaBot2 control which is
responsible to move the AlphaBot2 in the simulation and to simulate synchronization points.
The robot, after completing each turn simulates a synchronization point and sends a message to
/synchPoint. The robot’s movement consists in turning 90 degrees after moving for 10 meters,
adjusting the linear and angular velocities as necessary to keep a fluent movement.

The simulation is based on Alphabot2 ROS Package and Simulator [26]. However, since the
track previously used in the simulation was too short for the intended, a script to move the robot
was developed, executing loops in the shape of squares with 10 meters length.

IMU simulation simulates an imu with configurable orientation error. Just as the IMU node
from the robot configuration in Section 4.2.2, it sends to /imu, the information about the robot’s
orientation, in quaternion form and the accelerations in m/s2, using a sensor_msgs/IMU

message. The IMU plugin used in the simulation is from Hector Gazebo Plugins [17].

UWB simulation, as the same suggests, simulates UWB. From the real position of the
simulated robot obtained from the ROS topic /tf and the positions of the anchors set in the

4.2. Approach 41

Figure 4.5: Diagram of Simulation

Figure 4.6: Simulated AlphaBot2 on Gazebo

configuration file (config/uwb_simulation.yaml), ranges are calculated between the robot
and the anchors. To simulate noise in the simulation, in the same configuration file, there are
two parameters to define the values for the mean and variance of the Gaussian Noise. According
to these values, noise is added to every range calculated. The position from /tf and the ranges
calculated are sent to /UWB in a tagFull message.

Then we have the common modules previously detailed in Section 4.2.1. MQTT bridge,
in this case, has another function, which is to allow to change the positions of the simulated
anchors through MQTT in real-time, by sending a ROS message to /anchor_config topic.

42 Chapter 4. Design and Implementation

4.2.4 Replay Configuration

Figure 4.7: Diagram of Replay

In this last scenario, illustrated in Figure 4.7, the only new node is Rosbag play, that replays
ROSbag containing /imu, /UWB, and /synchPoint data. By replaying these three topics in the
same temporization as they were collected, we can redo the experiment and try new localization
algorithms under the exact same conditions. Then we have the common modules described in
Section 4.2.1.

4.3 Framework Structure

AugBot is developed using the ROS Noetic toolkit. It is organized as a ROS package, with
the C++ source code in the src folder and the executable Python scripts in the script folder.
In the AugBot package, we have the usual CMakeLists.txt and package.xml, along with
a launch/ folder, a msg/ folder, and a config/ folder. In CMakeList.txt we have the
compilation directives for the package, the system’s dependencies, and the message files created
in the package.

The system depends on:

• roscpp and rospy, C++ and Python packages respectively;

• std_msgs to use ROS standard messages;

• roslaunch to launch .launch files to execute one or more ROS nodes with the necessary
configuration file (.yaml file);

4.3. Framework Structure 43

• the package ROS Serial for C++ [33], serial is a cross-platform library for using serial
ports on computers;

• ROS MQTT bridge [13] that provides the functionality to bridge between ROS and
MQTT bidirectionally. MQTT bridge uses ROS message as its protocol and the messages
from ROS are serialized by JSON for MQTT, and messages from MQTT are deserialized
for ROS topic, therefore MQTT messages should be ROS compatible.

4.3.1 src/ folder

In the src/ folder we have the C++ programs described in Table 4.1.

File name Description

UWB_Reader.cpp
source code for reading and parsing UWB data from Decawave
firmware

IMU_Reader.cpp source code for reading and parsing IMU data

deadReckoning.cpp
source code to estimate the new position of the robot with the dead
reckoning algorithm

Table 4.1: C++ files in src/ folder

4.3.2 script/ folder

File name Description

uwb_simulation.py
simulates UWB data (substitutes UWB_Reader.cpp in the Simulation
configuration)

least_squares.py calculates multi-laterations with UWB range measurements
rosmqtt_node.py initiates MQTT connection

mqttBridge.py
broadcasts information bidirectionally from and to the system and
the cloud

writeRosbag.py stores log from the experiments into ROSbags
rosbag2scv.py converts ROSbags into CSV files
AlphaBot2/python/

lineFollow.py
to control the robot’s movement in the real robot configuration

AlphaBot2/python/

obstacleDetection.py
detect the control points

AlphaBot2_Control.py

control the simulated AlphaBot2 in the Gazebo World, it defines
the robot’s movements, and simulates the detection of the simulated
control points

Table 4.2: Python executables in scripts/ folder

44 Chapter 4. Design and Implementation

The script/ folder contains the Python executables developed in the thesis and a description
can be found in Table 4.2.

4.3.3 launch/ and config/ folders

In folder launch/ we have the launch files to start each configuration of the frame-
work (real.launch, simulation.launch, replay.launch), writeRosbag.launch,
and ROSmqtt.launch, and in the config/ folder the parameters for the initialization of
some nodes.

4.3.4 msg/ folder and communication

To achieve the communication between the framework modules, 6 ROS message were created
and all of them have the correspondent ROS MQTTbridge message to broadcast information
from and to the cloud. These messages are defined in the msg/ folder, each one in their respective
file.

The position message is defined in position.msg and contains the coordinates x,y,z of the
position of either the robot or of an anchor. This message type is used inside of other messages
or simply to send the estimated position by one of the location estimation algorithms at that
instant.

Type Variable Description
float64 timestamp timestamp
string ID ID of the anchor which is unique for each anchor
position position position of the anchor
float64 range range to the tag

Table 4.3: Structure of anchor message

The anchor message defined in anchor.msg was created to contain the information about
each anchor, and its structure is described in Table 4.3.

The estimate message, defined in estimate.msg, contains the information about the
estimation of the position of the robot by Decawave firmware, described in Table 4.4. This
message is solely used inside of a tagFull message. tagFull is the message designed to contain
data read from the Decawave firmware configured as tag and its structure is depicted in Table 4.5.
This message is used in the ROS topic /UWB, to broadcast to the system the estimated position
by Decawave firmware with the UWB range measurements used to calculate the position.

The next message is only used in the simulation context. anchorConfig, defined in
anchorConfig.msg, is a message that is used to change the anchors setting in the simulation
in real-time. It contains the number of anchors and the array of anchors, including their IDs and

4.3. Framework Structure 45

Type Variable Description
float64 timestamp timestamp of the UWB estimation

int32 le_us
time of computation that was needed to calculate the
estimation of the position in microseconds

int32 accuracy quality factor considered by the firmware

bool valid
valid is TRUE whether an estimation was achieved and
FALSE if not

position position contains the robot’s estimated position

Table 4.4: Structure of the estimate message

Type Variable Description
float64 timestamp timestamp of the UWB estimation
anchor[] anchors array of anchor message
uint8 nAnchors amount of anchors in the array
estimate estimate estimate message

Table 4.5: Structure of message type tagFull

their positions. This message type is used in the ROS topic /anchor_config.

Type Variable Description

float64 timestamp
timestamp of the instant that the synchronization point is
detected

float64 diff
time that passed from the previous synchronization point to
the current one

Table 4.6: Structure of message type synchPoint

Whenever a synchronization Point is detected, synchPoint is sent and has the following
structure depicted in Table 4.6. This message is used in the ROS topic /synchPoint and is
defined in synchPoint.mnsg.

In addition to these implemented messages, four ROS standard messages were utilized:

• sensor_msgs/Imu includes IMU data rather than Decawave data and contains the
linear acceleration, angular velocity, and a quaternion indicating the robot’s orientation.
Accelerations should be expressed in m/s2, and rotational velocity in rad/s.

• geometry_msgs/Twist to control the simulated robot in Gazebo in the topic /alphabot2/control.
This message expresses velocity in space broken into its linear and angular components.

• tf2_msgs/TFMessage to retrieve the position of the actual position of the robot in the
simulation from the topic /tf.

46 Chapter 4. Design and Implementation

• gazebo_msgs/ModelState message is sent to /gazebo/set_model_state when the
simulation begins to reset the robot’s location and orientation.

Chapter 5

Experiments and Results

This chapter presents an evaluation of the framework developed. We begin with results for
a case-study experiment in Section 5.1 with a real AlphaBot2, then a simulation experiment
in Section 5.2, where a simulated AlphaBot2 moves in a Gazebo World. This last experiment
has two variants, one without any noise on the sensor data and the other with simulated noise.
Finally, a case study where the sensor logs from a previous experiment are played, to perform
the same experiment to validate whether the results remain the same in Section 5.3.

For each experimental case, results of the position estimated by various algorithms will be
presented:

• Decawave, which is the robot position estimated by the Decawave firmware.

• leastSquares, the estimation of the robot’s position using multi-lateration with the
positions of the UWB anchors and the respective UWB ranges to the robot, determined by
Decawave firmware.

• leastSquaresMA, a variant of leastSquares that contains moving average. It uses the
average of the last 10 leastSquares estimations to estimate the current position.

• deadReckoning, estimates the position of the robot using a constant velocity (0.15 m/s)
applied to the orientation estimated by the IMU.

• deadReckoningSP, a variant of deadReckoning. Like deadReckoning, it uses a constant
speed (0.15 m/s) applied to the orientation received from the IMU, but whenever the robot
detects the synchronization point (control point A), the position is adjusted.

• deadReckoningACC, the original variant of deadReckoning. It no longer uses a constant
velocity, calculating the motion vector from the accelerations and orientations debited by
the IMU.

The position estimates will be analyzed and compared to determine if they are indeed effective in
determining the robot’s position and in case of incorrect estimations, possible reasons to justify
the errors will be mentioned.

47

48 Chapter 5. Experiments and Results

5.1 Real AlphaBot2 case-study

5.1.1 Setup

For this experimental case, a track was elaborated in the Embedded Systems room of the
Computer Science Department of the Faculty of Sciences of the University of Porto. To make
the path, multiple white sheets of paper were placed on the floor of the room. Then, insulating
tape was glued to the white sheets, to outline the robot’s path. To calculate the error of the
estimations, it was needed to obtain information about the real position of the robot during the
experiment, in order to do that, 4 pieces of cardboard box were placed along the path, which
work as control points. We used 6 UWB devices in this experiment, 5 of them were scattered
around the room configured as anchors (DW0AAA as the initiator) and another one configured
as tag, which moves along with the AlphaBot2. These configurations can be observed in detail
in Figure 5.1, together with their respective positions.

Figure 5.1: AlphaBot2 setup, with UWB anchors (DW...) and control points (CP) with their
respective positions. It also includes the AlphaBot2 route that starts at the S point and moves
according to the yellow arrows

AlphaBot2 follows the path outlined with the insulating tape, using the reflective infrared
photoelectric ITR20001/T sensores for line tracking. The robot starts at (0, 0), then moves
towards control point A, then to control point B, C, D, and back to A, B, C, D, and A until the
end of the test. To obtain information about the UWB ranges as well as the positions estimated
by the Decawave firmware, the UWB device configured as tag was placed on top of the robot
adapter board. In addition to the UWB device, a micro:bit was also placed on top of the robot
adapter board to collect data about the orientation and acceleration of the robot during the
experiment. The sensor placements, can be observed in Figure 5.2.

Each time the robot detects a control point, with the Infrared photoelectric sensor (ST188)
for obstacle avoidance, it beeps and sends a ROS message with the timestamp and how much

5.1. Real AlphaBot2 case-study 49

Figure 5.2: AlphaBot2 setup

time passed since the last control point. It is important to mention that the control points are
30 centimeters length boxes and that the robot can detect obstacles up to 10 centimeters away.
Since the control point’s job is to allow to estimate the error of each algorithm, the error is the
distance between the robot’s estimated position (at the instant that the control point is detected)
to the center of the box, therefore the error calculated may be different than the real one. The
framework received data from Decawave at about 10Hz and IMU data at about 50Hz.

5.1.2 Results

The results for the real-case experiment can be observed in Figures 5.3. From there, we can
observe the error at each control point in Figure 5.3a and the estimations of the positions of the
robot by each algorithm:

• Decawave firmware estimation, Figure
5.3b

• Least Squares with moving average, Fig-
ure 5.3c

• Dead Reckoning with constant speed
(0.15 m/s) and adjusting position on
synchronization point - (control point A)
(deadReckoningSP), Figure 5.3d

Overall, we can observe that every algorithm that is based on UWB range measurements is
very proximate to the real position of the robot during the experiment, while Dead Reckoning’s
estimations are a bit off, due to incorrect orientations.

Decawave firmware estimations, Figure 5.3b, were highly accurate over the entire experiment,
the only time the estimations were a bit off, was at the beginning, from (0, 0) to the first control
point (0, -1.5). This was probably due to the proximity of metallic tables, and because at the
start of the course, the robot was right below an anchor.

Since Least Squares with moving average, Figure 5.3c, is based on Decawave UWB

50 Chapter 5. Experiments and Results

A0 B0 C0 D0 A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4 A5
Control Point

0.0

0.5

1.0

1.5

2.0

er
ro

r (
m

)
leastSquaresMA deadReckoningSP Decawave

(a) Error of each algorithm estimation at each
control point over the first 5 laps

4 3 2 1 0
x (m)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

y
(m

)

(b) Estimated positions by Decawave over 8 laps

4 3 2 1 0
x (m)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

y
(m

)

(c) Estimated positions by Least Squares with
moving average over 8 laps

7 6 5 4 3 2 1 0
x (m)

4

3

2

1

0

y
(m

)

(d) Estimated positions by Dead Reckoning algo-
rithm with constant speed and position adjustment
on synchronization point over 8 laps

Figure 5.3: Real case-study estimations

ranges, the path is very similar, though since it makes the estimation based on the average of
the last 10 estimations, the errors are a lot smoother than Decawave.

Least Squares estimations, Figure 5.4a, have very big variations in a short period of time,
therefore the graph generated is trickier to analyze than with moving average, which shows a
much cleaner movement path, generating a plot much easier to analyze, but as shown in Figure
5.4b, errors are propagated to the next estimations, while without moving average it does not
happen.

Due to the variations observed in Figure 5.5a, Dead Reckoning with position adjustment on
synchronization point (control point A), Dead ReckoningSP, was developed, which can be
observed in Figure 5.3d. These variations could be caused due to many reasons, such as battery

5.1. Real AlphaBot2 case-study 51

5 4 3 2 1 0 1
x (m)

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

y
(m

)

(a) Estimated positions by Least Squares over 8 laps

A0 B0 C0 D0 A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4 A5
Control Point

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

er
ro

r (
m

)

leastSquares leastSquaresMA

(b) Comparison of Least Squares error with and
without moving average at each control point over
the first 5 laps

Figure 5.4: Comparison of Least Squares algorithms

drainage, which reduces the velocity of the robot over time, which can be observed in the almost
linear increase of the error in Figure 5.5b. Another reason is the existence of errors and drift in
the orientations estimated by micro:bit. As observed in Figure 5.5, Dead Reckoning algorithms
provide much less accurate estimations than UWB-based algorithms from Figure 5.4.

14 12 10 8 6 4 2 0
x (m)

4

2

0

2

4

6

8

10

y
(m

)

(a) Estimated positions by Dead Reckoning with
constant speed over 8 laps

A0 B0 C0 D0 A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4 A5
Control Point

2

4

6

8

er
ro

r (
m

)

deadReckoning

(b) Error of Dead Reckoning with constant speed
over the first 5 laps

Figure 5.5: Dead Reckoning results

deadReckoningACC, the Dead Reckoning with the actual accelerations instead of using
constant speed, was the original Dead Reckoning algorithm used. Without any errors from the
sensors, it worked perfectly with minimal error, but since, the accelerations and orientations
from micro:bit weren’t 100% accurate, the estimations of Dead Reckoning using the accelerations
given were very bad, therefore a constant speed had to be determined for the robot.

52 Chapter 5. Experiments and Results

5.2 Simulation case-study

5.2.1 Setup

For the simulation case-study experiment, a simulated AlphaBot2 moves, in a Gazebo world,
forward for 10 meters, then rotates 90º to the right and moves for another 10 meters, making
square alike movements as observed in Figure 5.6, starting at (0, 0), then moving towards A, then
to B, C, D and then to A again to finish 1 lap. In Subsection 5.2.2 5 laps without introducing
any kind of noise is presented, and in the Subsection 5.2.3 for another 5 laps with noise in both
orientation and in ranges measurements.

Figure 5.6: Simulation course with simulated control points (black dots) and anchors (purple
triangles). Robot starts at point S (0,0) and moves according to the red arrows.

In order to obtain similar results to the previous experimental case, the same conditions
were applied to this one. The simulation will also have 6 UWB devices, 5 of them configured as
anchors scattered around the scenario and 1 as a tag placed on the robot. Besides the simulated
anchors, we determined 4 control points A,B,C and D, positioned at the end of each turn. In
Figure 5.6 we can visualize the positions of the anchors represented as purple triangles and the
control points represented as black dots. The simulated UWB and IMU data will keep the rates
of the real experimental case, so 10Hz and 50Hz respectively.

In the simulation, a UWB range is the calculation of the distance between the anchor and
the real position of the robot. For the results with Noise in the Subsection 5.2.3, Gaussian Noise
of (0.5m, 0.5m) is added to each range. The IMU data is calculated by a Gazebo plugin and for

5.2. Simulation case-study 53

Subsection 5.2.3 (0, 4º) Gaussian Noise was added to the orientations estimated.

Since in the simulation, the actual position of the robot is known at every instant during the
entire duration of the experiment, the error calculated in this section is the actual error during
the experiment, rather than the relative error at the instant the robot detects the control points.

5.2.2 Results without noise

0 200 400 600 800 1000 1200 1400
time (s)

0.0

0.1

0.2

0.3

0.4

er
ro

r(m
)

deadReckoningSP leastSquaresMA deadReckoning

(a) Error of each algorithm estimation

10 8 6 4 2 0
x (m)

10

8

6

4

2

0

y
(m

)

(b) Estimated positions by Least Squares with
moving average over 5 laps

10 8 6 4 2 0
x (m)

10

8

6

4

2

0

y
(m

)

(c) Estimated positions by Dead Reckoning algo-
rithm with constant speed and position adjustment
on synchronization point over 5 laps

10 8 6 4 2 0
x (m)

10

8

6

4

2

0

y
(m

)

(d) Estimated positions by Dead Reckoning algo-
rithm with constant speed over 5 laps

Figure 5.7: Simulated estimations without noise

In order to obtain similar results to the previous experimental case, the In this experiment,
in Figure 5.6 we can observe the actual positions of the robot during the experiment, and in
Figure 5.7 the estimations of the positions of the robot by each algorithm for the full experiment
(5 laps):

54 Chapter 5. Experiments and Results

• Least Squares with moving average, Fig-
ure 5.7b

• Dead Reckoning with constant speed
(0.15 m/s) adjusting the position in the

synchronization point - (control point A)
(deadReckoningSP), Figure 5.7c

• Dead Reckoning with constant speed (0.15
m/s) (deadReckoning), Figure 5.7d

By observing Figure 5.7a it is possible to conclude that every algorithm is working as intended
and giving good estimations of the robot’s location, with deadReckoning being the one with
worse results. We can also observe that adjusting the position of the robot is beneficial to the
estimation since deadReckoningSP had less error over time than deadReckoning. Once
again leastSquaresMA 5.7b gives the most proximate estimations.

5.2.3 Results with noise

In this experiment, (0.5m, 0.5m) Gaussian noise was added to UWB Simulation ranges and
to IMU orientation (0, 4º). From Figure 5.8, we can observe the estimations of the positions of
the robot by each algorithm over the 5 laps:

• Dead Reckoning with constant speed (0.15
m/s) (deadReckoning), Figure 5.8d

• Least Squares with moving average, Fig-
ure 5.8b

• Dead Reckoning with constant speed
(0.15 m/s) adjusting position in the syn-
chronization point - (control point A)
(deadReckoningSP), Figure 5.8c

By observing 5.8 it is possible to once again validate Least Squares, with minimal error,
and to conclude that Dead Reckoning algorithms suffer a lot from errors, even if small ones.
In Figure 5.8a we can observe the error of these 3 algorithms during the experiment.

5.3. Replay case-study 55

0 200 400 600 800 1000 1200 1400
time (s)

0

1

2

3

4

er
ro

r(m
)

deadReckoningSP leastSquaresMA deadReckoning

(a) Error of each algorithm estimation

10 8 6 4 2 0 2
x (m)

12

10

8

6

4

2

0

y
(m

)

(b) Estimated positions by Least Squares with
moving average over 5 laps

10 8 6 4 2 0 2
x (m)

10

8

6

4

2

0

y
(m

)

(c) Estimated positions by Dead Reckoning algo-
rithm with constant speed and position adjustment
on synchronization point over 5 laps

10 8 6 4 2 0 2
x (m)

10

8

6

4

2

0

y
(m

)

(d) Estimated positions by Dead Reckoning algo-
rithm with constant speed over 5 laps

Figure 5.8: Simulated estimations with noise

5.3 Replay case-study

In this last case study, an experiment was performed by replaying the logs of the sensors of
the simulated case study from Section 5.2.3 in order to validate if replaying the logs produces
the same results, in other words, to check whether the replay has the same temporization as the
original experiment.

56 Chapter 5. Experiments and Results

5.3.1 Setup

Finally, in the replay case study, the logs from the sensors (UWB, IMU, and synchronization
points) of previous experiments are replayed, to perform the same experiment to validate if
replaying the logs produces the same results.

5.3.2 Results

A0 B0 C0 D0 A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4
Control Point

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

di
ffe

re
nc

e
 (m

)

leastSquaresMA deadReckoning deadReckoningSP

(a) Comparison between estimations at each control
point from the experiment that generated the
sensor logs (Simulation with noise 5.2.3) and the
estimations from replaying the logs

A0 B0 C0 D0 A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4 A5 B5
Control Point

0.000

0.005

0.010

0.015

0.020

0.025

di
ffe

re
nc

e
 (m

)

leasSquaresMA deadReckoning

(b) Comparison between estimations at each control
point from a experiment with the Robot Configura-
tion and the estimations from replaying the sensor
logs (ajustes necessários (todo)

Figure 5.9: Plots that validate the Replay Configuration

We can see a tiny discrepancy between the estimated positions acquired in the real result
and by replaying the logs in Figure 5.9. The estimates using leastSquaresMA are quite near
to each other in both trials, with a difference very close to 0m. Dead Reckoning estimates, on
the other hand, contain a substantial inaccuracy. This gap might occur when a new location is
determined by Dead Reckoning at 50Hz but only published at around 10Hz, implying that there
might be a difference in the publication timer between them. Since leastSquares estimates a fresh
position for each UWB log, the methods give 0 errors during the trial. The difference in scale
between replaying logs from a simulation experiment and replaying from the robot configuration
might be due to the greater distance traveled by the robot in the simulation compared to the
real route.

If each algorithm, for each log of data received by the sensors, estimates and publishes a new
position, it should be possible to obtain a near-perfect replication of the experiment. With the
current operation of the framework, even with a small error in the deadReckoning estimations,
the replay configuration appears to be feasible to replicate experiments, although it can still be
improved.

5.4. Summary 57

5.4 Summary

In this chapter, we present an evaluation of the implemented algorithms in both simulation
and reality. The aim was to allow an analysis that can prove that simulation can indeed represent
real scenarios and to analyze the behavior of each algorithm in each case.

UWB measurements are highly accurate and both least squares algorithms can estimate very
approximately the target position. Least Squares with moving average accumulate errors from
previous estimates, which are very difficult to recover. On the other hand, Least Squares without
moving average can give very wrong estimates from time to time, but in general, has a smaller
average error.

Dead Reckoning algorithms, suffer a lot from noise, while Dead Reckoning acceleration is the
most accurate in a perfect scenario, with errors however small, it starts giving completely wrong
estimates. Dead Reckoning with constant speed adjusting the position occasionally seems a very
good option to reduce the errors of this algorithm.

During the real experiment, there were some limitations. When it came to the robot, there
was a large amount of time devoted to getting a more regular movement. Another problem was
to determine a distance between the robot track and the control points that would cause the
robot to get stuck, to avoid that, the solution was to cut the boxes at a height that the cables
connecting the sensors to the AlphaBot2’s raspberry could pass over. Another great difficulty
was calibrating the orientation of the IMUs. With the micro:bit, a calibration that allowed the
collection of enough data to estimate the Dead Reckoning was achieved, although with a small
drift and some irregularities, while with the pi pico, this calibration was not achieved, not allowing
its use in the tests. With these sensors, it was also not possible to collect accelerations that
would allow their use. The accelerations estimated by the micro:bit had a minimum error of 16
millig (0.1569064 m/s2) and even with the robot stopped, returned somewhat high accelerations.
The accelerations given by pi pico had no congruence at all, as did the orientations.

Chapter 6

Conclusion

In this chapter we conclude with a final discussion of the contributions of the dissertation
and of a few directions for future work.

In this dissertation, we presented AugBot, a ROS-based framework for developing and testing
indoor location algorithms that can be deployed on embedded software systems, robots in
particular as illustrated for the AlphaBot2 robot, or in combination with physical simulation
engines as we did with Gazebo. AugBot’s architecture is modular, allowing for a clear separation of
logic regarding aspects such as sensor readings, algorithms for indoor position, and communication.
Thanks to this, the code for an indoor location algorithm can run without changes across different
deployment environments (physical, simulated, or replay-based). This has been achieved for UWB-
based multi-lateration using the Least Squares algorithm and also dead reckoning algorithms
that feed on inertial sensor readings.

AugBot addresses key requirements of some use cases in the Augmanity project regarding
indoor location such as the use of AGVs and UWB-based indoor location. We expect AugBot to
be a basis for hardware/software integration in the project tasks in collaboration with FCUP
partners, in particular regarding the use of the 5G tag devices described in Chapter 2.

Overall, we believe the work of this thesis may motivate several interesting directions for
future work. AugBot is suitable for the development and testing of more complex algorithms
for indoor location and different use cases in indoor location. Regarding algorithms, sensor
fusion algorithms that can integrate different types of sensor readings are of particular interest.
Regarding use-cases, this work considered on-device location tracking, but not the more complex
use-case of external tracking of devices in a physical environment at the network level, this is in
principle doable for instance using the same UWB infrastructure by configuring UWB anchors
as tags and vice-versa so that UWB ranges are received at static node locations. Overall, we
believe these goals can be attained without architectural changes and reusing all the current
code in place for other concerns.

The integration of the framework into more AGVs is another challenge to be taken into
account for future work. The Jetbot [14] is an open-source robot based on NVIDIA Jetson Nano,

59

60 Chapter 6. Conclusion

and it is a portable, battery-powered AI computer with a camera. This makes it the perfect
platform for trying new ideas related to AI, image processing, and robotics. JetBot includes a set
of Jupyter notebooks that cover basic robotics concepts like programmatic motor control, to more
advanced topics like training a custom AI for avoiding collisions. To provide more information
and a bigger variety of data for more accurate estimations, more technologies should be included
in the system. The first technology that should be included is WiFi-RTT, which would be another
technology to provide ranges from the targeted AGV to nearby RTT-capable WiFi access points.
That way, the multi-lateration-based algorithms could estimate better positions.

One of the main limitations of the real case study environment was the control point scheme.
For better detection and better ground truth data, my suggestion is to use it in upcoming
experiences, QR codes as a more robust and portable alternative as long as the robot has a
camera. The primary issue of the currently used control points (30 centimeter length boxes) is
that the detection does not always occur in the same places, therefore the ground truth is not
always optimal, with this alternative, it is believable that the detection would be more precise
and more controlled.

Bibliography

[1] AUGMENTED HUMANITY - APPLICATION PROPOSAL PART B (TECHNICAL
ANNEX). CALL 14/SI/2019 - Portugal 2020, 2019.

[2] G.R. Aiello and G.D. Rogerson. Ultra-wideband wireless systems. IEEE Microwave Magazine,
4(2):36–47, 2003. doi:10.1109/MMW.2003.1201597.

[3] Bekir Bostanci, Sercan Tekkok, Emre Soyunmez, Pinar Oguz-Ekim, and Faezeh Yeganli. The
LiDAR and UWB based Source Localization and Initialization Algorithms for Autonomous
Robotic Systems. In 2019 11th International Conference on Electrical and Electronics
Engineering (ELECO), pages 900–904, 2019. doi:10.23919/ELECO47770.2019.8990648.

[4] Hongji Cao, Yunjia Wang, Jingxue Bi, Shenglei Xu, Minghao Si, and Hongxia Qi. Indoor
positioning method using WiFi RTT based on LOS identification and range calibration.
ISPRS International Journal of Geo-Information, 9(11):627, 2020.

[5] Long Cheng, Cheng-dong Wu, and Yun-zhou Zhang. Indoor robot localization based on
wireless sensor networks. IEEE Transactions on Consumer Electronics, 57(3):1099–1104,
2011. doi:10.1109/TCE.2011.6018861.

[6] Sebastian Dädeby and Joakim Hesselgren. A system for indoor positioning using ultra-
wideband technology. Master’s thesis, 2017.

[7] Universidade de Aveiro. Bosch and UA present first results of the project for Industry 4.0.
https://www.ua.pt/en/news/9/76116. Last access: July 2022.

[8] Decawave. MDEK1001 Kit User Manual Module Development Evaluation Kit for the
DWM1001. https://eu.mouser.com/datasheet/2/412/MDEK1001_System_User_Manual-
1.1-1878639.pdf. Last access: July 2022.

[9] Aicos Fraunhofer. Augmanity. https://www.aicos.fraunhofer.pt/en/our_work/projects/
augmanity.html. Last access: February 2022.

[10] Christian Gentner, Markus Ulmschneider, Isabel Kuehner, and Armin Dammann. WiFi-
RTT Indoor Positioning. In 2020 IEEE/ION Position, Location and Navigation Symposium
(PLANS), pages 1029–1035, 2020. doi:10.1109/PLANS46316.2020.9110232.

61

http://dx.doi.org/10.1109/MMW.2003.1201597
http://dx.doi.org/10.23919/ELECO47770.2019.8990648
http://dx.doi.org/10.23919/ELECO47770.2019.8990648
http://dx.doi.org/10.23919/ELECO47770.2019.8990648
http://dx.doi.org/10.1109/TCE.2011.6018861
http://dx.doi.org/10.1109/TCE.2011.6018861
https://www.ua.pt/en/news/9/76116
https://eu.mouser.com/datasheet/2/412/MDEK1001_System_User_Manual-1.1-1878639.pdf
https://eu.mouser.com/datasheet/2/412/MDEK1001_System_User_Manual-1.1-1878639.pdf
https://www.aicos.fraunhofer.pt/en/our_work/projects/augmanity.html
https://www.aicos.fraunhofer.pt/en/our_work/projects/augmanity.html
http://dx.doi.org/10.1109/PLANS46316.2020.9110232
http://dx.doi.org/10.1109/PLANS46316.2020.9110232

62 Bibliography

[11] GPS gov. Other Global Navigation Satellite Systems (GNSS). https://www.gps.
gov/systems/gnss/#:~:text=Global%20navigation%20satellite%20system%20(GNSS,a%
20global%20or%20regional%20basis.. Last access: July 2022.

[12] Weipeng Guan, Shihuan Chen, Shangsheng Wen, Wenyuan Hou, Zequn Tan, and Ruihong
Cen. Indoor Localization System of ROS mobile robot based on Visible Light Communication,
2020. doi:10.48550/ARXIV.2001.01888.

[13] Junya Hayashi. MQTT bridge. https://github.com/groove-x/mqtt_bridge, 2021.

[14] NVIDIA AI IOT. JetBot. https://jetbot.org/master/index.html. Last access: September
2022.

[15] Lentin Joseph and Jonathan Cacace. Mastering ROS for Robotics Programming: Design,
build, and simulate complex robots using the Robot Operating System. Packt Publishing Ltd,
2018.

[16] Ghazaleh Kia, Jukka Talvitie, and Laura Ruotsalainen. RSS-based fusion of UWB and
WiFi-based ranging for indoor positioning. In 11th International Conference on Indoor
Positioning and Indoor Navigation-Work-in Progress Papers, IPIN-WiP 2021. CEUR-WS,
2021.

[17] Stefan Kohlbrecher and Johannes Meyer. Hector Gazebo Plugins. https://github.com/tu-
darmstadt-ros-pkg/hector_gazebo, 2022.

[18] Micro:bit. Bit educational foundation. https://microbit.org/. Last access: July 2022.

[19] Ruchik Mishra and Arshad Javed. ROS based service robot platform. In 2018 4th
International Conference on Control, Automation and Robotics (ICCAR), pages 55–59,
2018. doi:10.1109/ICCAR.2018.8384644.

[20] Fatih Okumuş and Adnan Fatih Kocamaz. Cloud Based Indoor Navigation for ROS-enabled
Automated Guided Vehicles. In 2019 International Artificial Intelligence and Data Processing
Symposium (IDAP), pages 1–4, 2019. doi:10.1109/IDAP.2019.8875993.

[21] MQTT org. The standard for IOT messaging. https://mqtt.org/. Last access: July 2022.

[22] Raspberry Pi. Raspberry pi documentation. https://www.raspberrypi.com/documentation/
microcontrollers/raspberry-pi-pico.html. Last access: July 2022.

[23] Augmanity Project. 5G Tag - D17.2 Base Hardware platform with 5G com-
munication. https://www.augmanity.pt/sites/default/files/inline-files/D17.2%20Base%
20Hardware%20platform%20with%205G%20%20communication.pdf, . Last access: July
2022.

[24] Augmanity Project. Augmanity - About Us. https://www.augmanity.pt/about, . Last
access: July 2022.

https://www.gps.gov/systems/gnss/#:~:text=Global%20navigation%20satellite%20system%20(GNSS,a%20global%20or%20regional%20basis.
https://www.gps.gov/systems/gnss/#:~:text=Global%20navigation%20satellite%20system%20(GNSS,a%20global%20or%20regional%20basis.
https://www.gps.gov/systems/gnss/#:~:text=Global%20navigation%20satellite%20system%20(GNSS,a%20global%20or%20regional%20basis.
http://dx.doi.org/10.48550/ARXIV.2001.01888
https://github.com/groove-x/mqtt_bridge
https://jetbot.org/master/index.html
https://github.com/tu-darmstadt-ros-pkg/hector_gazebo
https://github.com/tu-darmstadt-ros-pkg/hector_gazebo
https://microbit.org/
http://dx.doi.org/10.1109/ICCAR.2018.8384644
http://dx.doi.org/10.1109/IDAP.2019.8875993
http://dx.doi.org/10.1109/IDAP.2019.8875993
https://mqtt.org/
https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html
https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html
https://www.augmanity.pt/sites/default/files/inline-files/D17.2%20Base%20Hardware%20platform%20with%205G%20%20communication.pdf
https://www.augmanity.pt/sites/default/files/inline-files/D17.2%20Base%20Hardware%20platform%20with%205G%20%20communication.pdf
https://www.augmanity.pt/about

Bibliography 63

[25] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, Andrew Y Ng, et al. ROS: an open-source Robot Operating System. In ICRA
workshop on open source software, volume 3, page 5. Kobe, Japan, 2009.

[26] Ana Rafael, Cássio Santos, Diogo Duque, and Sara Fernandes. Alphabot2 ROS Package
and Simulator. https://github.com/ssscassio/alphabot2-simulator, 2019.

[27] Robot Operating System. Robot operating system. https://www.ros.org/. Last access: July
2022.

[28] Kenta Takaya, Toshinori Asai, Valeri Kroumov, and Florentin Smarandache. Simulation
environment for mobile robots testing using ROS and Gazebo. In 2016 20th International
Conference on System Theory, Control and Computing (ICSTCC), pages 96–101. IEEE,
2016.

[29] Janis Tiemann, Fabian Eckermann, and Christian Wietfeld. Atlas-an open-source tdoa-based
ultra-wideband localization system. In 2016 International Conference on Indoor Positioning
and Indoor Navigation (IPIN), pages 1–6. IEEE, 2016.

[30] Janis Tiemann, Yehya Elmasry, Lucas Koring, and Christian Wietfeld. ATLAS FaST:
Fast and Simple Scheduled TDOA for Reliable Ultra-Wideband Localization. In 2019
International Conference on Robotics and Automation (ICRA), pages 2554–2560, 2019.
doi:10.1109/ICRA.2019.8793737.

[31] Waveshare. Pico 10DOF IMU. https://www.waveshare.com/wiki/Pico-10DOF-IMU. Last
access: September 2022.

[32] Waveshare. AlphaBot 2 User Manual - Mouser Electronics. https://www.mouser.com/
pdfdocs/Alphabot2-user-manual-en.pdf, Aug 2017. Last access: July 2022.

[33] William Woodall. Serial Communication Library. https://github.com/wjwwood/serial,
2022.

[34] Reza Zandian. Ultra-wideband based indoor localization of mobile nodes in ToA and TDoA
configurations. PhD thesis, Dissertation, Bielefeld, Universität Bielefeld, 2018, 2019.

https://github.com/ssscassio/alphabot2-simulator
https://www.ros.org/
http://dx.doi.org/10.1109/ICRA.2019.8793737
http://dx.doi.org/10.1109/ICRA.2019.8793737
https://www.waveshare.com/wiki/Pico-10DOF-IMU
https://www.mouser.com/pdfdocs/Alphabot2-user-manual-en.pdf
https://www.mouser.com/pdfdocs/Alphabot2-user-manual-en.pdf
https://github.com/wjwwood/serial

	Declaração de Honra
	Abstract
	Resumo
	Acknowledgements
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Problem statement and contributions
	1.3 Thesis structure

	2 Background
	2.1 Indoor location
	2.1.1 Important Concepts
	2.1.2 Technologies
	2.1.3 Algorithms

	2.2 Software components
	2.2.1 ROS
	2.2.2 Gazebo
	2.2.3 MQTT

	2.3 Hardware components
	2.3.1 AlphaBot2-Pi
	2.3.2 Micro:bit
	2.3.3 Pi Pico
	2.3.4 DWM1001

	2.4 The Augmanity project

	3 State of Art
	3.1 ATLAS
	3.2 Bostanci et al.
	3.3 Guan et al.
	3.4 Okumus et al.
	3.5 Mishra et al.
	3.6 Cheng et al.

	4 Design and Implementation
	4.1 Framework Requirements
	4.2 Approach
	4.2.1 Common modules
	4.2.2 Robot Configuration
	4.2.3 Simulation Configuration
	4.2.4 Replay Configuration

	4.3 Framework Structure
	4.3.1 src/ folder
	4.3.2 script/ folder
	4.3.3 launch/ and config/ folders
	4.3.4 msg/ folder and communication

	5 Experiments and Results
	5.1 Real AlphaBot2 case-study
	5.1.1 Setup
	5.1.2 Results

	5.2 Simulation case-study
	5.2.1 Setup
	5.2.2 Results without noise
	5.2.3 Results with noise

	5.3 Replay case-study
	5.3.1 Setup
	5.3.2 Results

	5.4 Summary

	6 Conclusion
	Bibliography

