56 research outputs found

    Planar Microwave Sensors for Accurate Measurement of Material Characterization: A Review

    Get PDF
    Microwave sensor is used in various industrial applications and requires highly accurate measurements for material properties. Conventionally, cavity waveguide perturbation, free-space transmission, open-ended coaxial probe, and planar transmission line technique have been used for characterizing materials. However, these planar transmission lines are often large and expensive to build, further restricting their use in many important applications. Thus, this technique is cost effective, easy to manufacture and due to its compact size, it has the potential to produce sensitivity and a high Q-factor for various materials. This paper reviews the common characteristics of planar transmission line and discusses numerous studies about several designs of the microstrip resonator to improve the sensor performance in terms of the sensitivity and accuracy. This technique enables its use for several industrial applications such as agriculture and quality control. It is believed that previous studies would lead to a promising solution of characterizing materials with high sensitivity, particularly in determining a high Q-factor resonator sensor

    A Miniaturized and Highly Sensitive Microwave Sensor Based on CSRR for Characterization of Liquid Materials

    Get PDF
    In this work, a miniaturized and highly sensitive microwave sensor based on a complementary split-ring resonator (CSRR) is proposed for the detection of liquid materials. The modeled sensor was designed based on the CSRR structure with triple rings (TRs) and a curve feed for improved measurement sensitivity. The designed sensor oscillates at a single frequency of 2.5 GHz, which is simulated using an Ansys HFSS simulator. The electromagnetic simulation explains the basis of the mode resonance of all two-port resonators. Five variations of the liquid media under tests (MUTs) are simulated and measured. These liquid MUTs are as follows: without a sample (without a tube), air (empty tube), ethanol, methanol, and distilled water (DI). A detailed sensitivity calculation is performed for the resonance band at 2.5 GHz. The MUTs mechanism is performed with a polypropylene tube (PP). The samples of dielectric material are filled into PP tube channels and loaded into the CSRR center hole; the E-fields around the sensor affect the relationship with the liquid MUTs, resulting in a high Q-factor value. The final sensor has a Q-factor value and sensitivity of 520 and 7.032 (MHz)/Er) at 2.5 GHz, respectively. Due to the high sensitivity of the presented sensor for characterizing various liquid penetrations, the sensor is also of interest for accurate estimations of solute concentrations in liquid media. Finally, the relationship between the permittivity and Q-factor value at the resonant frequency is derived and investigated. These given results make the presented resonator ideal for the characterization of liquid materials.Publicad

    Nano-Fluidic Millimeter-Wave Lab-on-a-Waveguide Sensor for Liquid-Mixture Characterization

    Get PDF
    This paper reports on a miniaturized lab-on-a-waveguide liquid-mixture sensor, achieving highly-accurate nanoliter liquid sample characterization, for biomedical applications. The nanofluidic-integrated millimeter-wave sensor design is based on near-field transmission-line technique implemented by a single loop slot antenna operating at 91 GHz, fabricated into the lid of a photolaser-based subtractive manufactured WR-10 rectangular waveguide. The nanofluidic subsystem, which is mounted on top of the antenna aperture, is fabricated by using multiple Polytetrafluoroethylene (PTFE) layers to encapsulate and isolate the liquid sample during the experiment, hence, offering various preferable features e.g. noninvasive and contactless measurements. Moreover, the sensor is reusable by replacing only the nanofluidic subsystem, resulting a cost-effective sensor. The novel sensor can measure a liquid volume of as low as 210 nanoliters, while still achieving a discrimination accuracy of better than 2% of ethanol in the ethanol/deionized-water liquid mixture with a standard deviation of lower than 0.008 from at least three repeated measurements, resulting in the highest accurate ethanol and DI-water discriminator reported to date. The nanofluidic-integrated millimeter-wave sensor also offers other advantages such as ease of design, low fabrication and material cost, and no life-cycle limitation of the millimeter-wave subsystem

    A Review of Characterization Techniques for Material's Properties Measurement using Microwave Resonant Sensor

    Get PDF
    This paper presents a compilation of important review in the development of microwave resonant sensor technology used in previous years. The major research work for each year is reviewed. Most of the resonators are designed for material characterization in specific application areas such as food quality control, medical, bio-sensing and subsurface detection.  In the last few years, several resonant sensors based on the planar and non-planar structure are compared and examined in order to propose a new topology of microwave sensors designed. The weaknesses of conventional sensors such as bulky size, high cost manufacturing and consume high volumes of detectable sample have been reviewed. Most significantly, this new proposed structure must gain high quality factor to gain improvement in an accuracy of the sensing capability and can overcome previous design weaknesses. This device will discriminate the composition and properties of samples based on scattering parameters in certain operating frequency. The proposed system outlined in this paper, featuring new innovation in resonator structure as well as providing advanced capability design of future research works. The contribution of this study is useful for various types of applications where the characterizing of materials is very important, while improving its performance especially in terms of accuracy and sensitivity. The previous studies will be reviewed and critically compared in order to gain a better understanding in microwave resonant sensors and new ideas for further research improvement in application, which require characterizing of materials

    Enhanced fluid characterization in the millimeter-wave band using Gap Waveguide Technology

    Full text link
    [EN] Microfluidic systems have been emerged as a promising technology for molecular analysis, biodefence and microelectronics. The properties of the microfluidic devices, such as rapid sample processing and the precise control of fluids, have made them attractive candidates to replace traditional experimental approaches. Microfluidic devices are characterized by fluidic channels with dimensions on the order of tens to hundreds of micrometers. Structures with this size enable the integration of lab-on-chip technology, which allows processing miniaturized devices for fluid control and manipulation. Fluid sensing by microwave sensors based on the RF analysis offers new possibilities for the characterization of mediums by non-invasive methods. Dielectric measurement of fluids is important because it can provide the electric or magnetic characteristics of the materials, which proved useful in many research and development fields, such as molecular biology and medical diagnosis. Several techniques are available in the frequency domain for analyzing the dielectric properties of liquids and their composition. We are focused in resonant cavity techniques for fluid characterization in the millimeter-wave range. However, these techniques are incompatible with lab-on-chip process due its dimensions in this frequency range. In this context, a new structure called gap waveguide appears as a good candidate to overcome the principal drawbacks of the classical resonant cavities. This thesis presents the development of the gap waveguide technology in the millimeter-wave band. Other conventional technologies are discussed as well, to compare them with the performance in terms of losses of the gap waveguide. We also present the resonator design based on gap waveguide with the purpose of making the gap waveguide a technology capable of working in the microfluidic sensing domain. In this context, we propose a comparative study between gap waveguide and Substrate Integrated Cavity (SIC) with the aim to characterize the fluid permittivity at 60 GHz. With this purpose, several prototypes have been manufactured with PCB ("Printed Circuit Board") and Low Temperature Co-fired Ceramic (LTCC) technologies. A work in the LTCC laboratory has been done with the purpose of validating some steps in the LTCC process which are key in the gap waveguide manufacturing, especially those related with the creation of cavities (external and internal) using LTCC materials.[ES] Los sistemas microfluídicos han emergido como una tecnología prometedora para el análisis molecular, biodefensa y microelectrónica. Las propiedades de los dispositivos microfluídicos tales como el procesamiento rápido de las muestras y el control de los fluidos, les han hecho atractivos candidatos para reemplazar los tradicionales métodos experimentales. Los dispositivos microfluídcos están caracterizados por canales fluídicos con dimensiones del orden de decenas a centenares de micrómetros. Las estructuras con estos tamaños permiten la integración de la tecnología "lab-on-chip", la cual permite el procesamiento de dispositivos miniaturizados para el control y la manipulación de fluidos. La detección de fluidos a través de sensores de microondas basados en el análisis de radiofrecuencia ofrece nuevas posibilidades para la caracterización de medios a través de métodos no invasivos. Las medidas dieléctricas de los fluidos son importantes debido a que pueden proporcionar información las características eléctricas o magnéticas de los materiales, siendo útil en muchos campos de investigación y desarrollo tales como biología molecular o para realizar diagnósticos médicos. En el dominio frecuencial, varias tecnologías están disponibles en el mercado para analizar las propiedades dieléctricas y la composición de los líquidos. En esta tesis, estamos enfocados en las técnicas basadas en cavidades resonantes para la caracterización de fluidos en el rango de las ondas milimétricas. Sin embargo, estas técnicas son incompatibles con los procesos "lab-on-chip" debido a sus dimensiones en esta banda de frecuencia. En este contexto, una nueva estructura guía onda denominada "gap waveguide" aparece como un buen candidato para solventar los principales inconvenientes de las clásicas cavidades resonantes. En esta tesis se ha desarrollado la tecnología "gap waveguide" en la banda de ondas milimétricas. Otras tecnologías convencionales serán estudiadas para comparar el rendimiento de todas ellas en términos de pérdidas. También se presenta en esta tesis, el diseño de resonadores basados en la tecnología "gap waveguide" con el propósito de hacer esta tecnología compatible con la detección microfluídica. En este contexto, proponemos un estudio comparativo entre las tecnologías "gap waveguide" y "Substrate Integrated Cavity" (SIC) con el objetivo de caracterizar la permitividad de los fluidos a 60 GHz. Con este propósito, varios prototipos han sido fabricados usando las tecnologías PCB ("Printed Circuit Board") y LTCC ("Low Temperature Co-fired Ceramic". Un importante trabajo en el laboratorio LTCC se realizó para validar algunas de las etapas del proceso LTCC que eran la clave para la fabricación de prototipos basados en "gap waveguide", como la creación de cavidades (externas e internas) usando materiales LTCC.[CA] Els sistemes microfluídics han emergit com una tecnologia prometedora per a l'anàlisi molecular, biodefensa i microelectrònica. Les propietats dels dispositius microfluídics com el processament ràpid de les mostres i control dels fluids, els han fet atractius candidats per a reemplaçar les tradicionals aproximacions experimentals. Els dispositius microfluídcs estan caracteritzats per canals fluídics amb dimensions de l'orde de desenes a centenars de micròmetres. Les estructures amb estes grandàries permeten la integració de la tecnologia "lab-on-chip", la qual permet el processament de dispositius miniaturitzats per al control i la manipulació de fluids. La detecció de fluids a través de sensors de microones basats en l'anàlisi de radiofreqüència oferix noves possibilitats per a la caracterització de sistemes a través de mètodes no invasius. Les mesures dielèctriques dels fluids són importants pel fet que poden proporcionar informació sobre les característiques elèctriques o magnètiques dels materials, sent útil en molts camps d'investigació i desenvolupament com biologia molecular o per a realitzar diagnòstics. En el domini freqüencial, diverses tecnologies estan disponibles en el mercat per analitzar les propietats dielèctriques i la composició dels líquids. En aquesta tesi, estem enfocats en les tècniques basades en cavitats ressonants per a la caracterització de fluids en el rang de les ones mil·limètriques. No obstant això, aquestes tècniques són incompatibles amb els processos "lab-on-chip" a causa de les seues dimensions en aquesta banda de freqüència. En aquest context, una nova estructura guia onda denominada "gap waveguide" apareix com un bon candidat per a resoldre els principals inconvenients de les clàssiques cavitats ressonants. En aquesta tesi s'ha desenvolupat la tecnologia "gap waveguide" en la banda d'ones mil·limètriques. Altres tecnologies convencionals seran estudiades per a comparar el rendiment de totes elles en termes de pèrdues.També es presenta en esta tesi el disseny de ressonadors basats en la tecnologia "gap waveguide" amb el propòsit de fer esta tecnologia compatible amb la detecció microfluídica. En aquest context, proposem un estudi comparatiu entre les tecnologies "gap waveguide" i "Substrate Integrated Cavity" (SIC) amb l'objectiu de caracteritzar la permitivitat dels fluids a 60 GHz. Amb aquest propòsit, diversos prototips han sigut fabricats usant les tecnologies PCB ("Printed Circuit Board") i LTCC ("Low Temperature Co-fired Ceramic". Un important treball en el laboratori LTCC es va realitzar per a validar algunes de les etapes del procés LTCC que eren la clau per a la fabricació de prototips basats en "gap waveguide", com la creació de cavitats (externes i internes) usant materials LTCC.Arenas Buendia, C. (2016). Enhanced fluid characterization in the millimeter-wave band using Gap Waveguide Technology [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/62781TESI

    Antennas And Wave Propagation In Wireless Body Area Networks: Design And Evaluation Techniques

    Get PDF
    Recently, fabrication of miniature electronic devices that can be used for wireless connectivity becomes of great interest in many applications. This has resulted in many small and compact wireless devices that are either implantable or wearable. As these devices are small, the space for the antenna is limited. An antenna is the part of the wireless device that receives and transmits a wireless signal. Implantable and wearable antennas are very susceptible to harmful performance degradation caused by the human body and very difficult to integrate, if not designed properly. A designer need to minimize unwanted radiation absorption by the human body to avoid potential health issues. Moreover, a wearable antenna will be inevitably exposed to user movements and has to deal with influences such as crumpling and bending. These deformations can cause degraded performance or a shifted frequency response, which might render the antenna less effective. The existing wearable and implantable antennas’ topologies and designs under discussion still suffer from many challenges such as unstable antenna behavior, low bandwidth, considerable power generation, less biocompatibility, and comparatively bigger size. The work presented in this thesis focused on two main aspects. Part one of the work presents the design, realization, and performance evaluation of two wearable antennas based on flexible and textile materials. In order to achieve high body-antenna isolation, hence, minimal coupling between human body and antenna and to achieve performance enhancement artificial magnetic conductor is integrated with the antenna. The proposed wearable antennas feature a small footprint and low profile characteristics and achieved a wider -10 dB input impedance bandwidth compared to wearable antennas reported in literature. In addition, using new materials in wearable antenna design such as flexible magneto-dielectric and dielectric/magnetic layered substrates is investigated. Effectiveness of using such materials revealed to achieve further improvements in antenna radiation characteristics and bandwidth and to stabilize antenna performance under bending and on body conditions compared to artificial magnetic conductor based antenna. The design of a wideband biocompatible implantable antenna is presented. The antenna features small size (i.e., the antenna size in planar form is 2.52 mm3), wide -10 dB input impedance bandwidth of 7.31 GHz, and low coupling to human tissues. In part two, an overview of investigations done for two wireless body area network applications is presented. The applications are: (a) respiratory rate measurement using ultra-wide band radar system and (b) an accurate phase-based localization method of radio frequency identification tag. The ultimate goal is to study how the antenna design can affect the overall system performance and define its limitations and capabilities. In the first studied application, results indicate that the proposed sensing system is less affected and shows less error when an antenna with directive radiation pattern, low cross-polarization, and stable phase center is used. In the second studied application, results indicate that effects of mutual coupling between the array elements on the phase values are negligible. Thus, the phase of the reflected waves from the tag is mainly determined by the distance between the tag and each antenna element, and is not affected by the induced currents on the other elements

    Modelling and characterisation of antennas and propagation for body-centric wireless communication

    Get PDF
    PhDBody-Centric Wireless Communication (BCWC) is a central point in the development of fourth generation mobile communications. The continuous miniaturisation of sensors, in addition to the advancement in wearable electronics, embedded software, digital signal processing and biomedical technologies, have led to a new concept of usercentric networks, where devices can be carried in the user’s pockets, attached to the user’s body or even implanted. Body-centric wireless networks take their place within the personal area networks, body area networks and body sensor networks which are all emerging technologies that have a broad range of applications such as healthcare and personal entertainment. The major difference between BCWC and conventional wireless systems is the radio channel over which the communication takes place. The human body is a hostile environment from radio propagation perspective and it is therefore important to understand and characterise the effect of the human body on the antenna elements, the radio channel parameters and hence the system performance. This is presented and highlighted in the thesis through a combination of experimental and electromagnetic numerical investigations, with a particular emphasis to the numerical analysis based on the finite-difference time-domain technique. The presented research work encapsulates the characteristics of the narrowband (2.4 GHz) and ultra wide-band (3-10 GHz) on-body radio channels with respect to different digital phantoms, body postures, and antenna types hence highlighting the effect of subject-specific modelling, static and dynamic environments and antenna performance on the overall body-centric network. The investigations covered extend further to include in-body communications where the radio channel for telemetry with medical implants is also analysed by considering the effect of different digital phantoms on the radio channel characteristics. The study supports the significance of developing powerful and reliable numerical modelling to be used in conjunction with measurement campaigns for a comprehensive understanding of the radio channel in body-centric wireless communication. It also emphasises the importance of considering subject-specific electromagnetic modelling to provide a reliable prediction of the network performance

    Study of Dual Band Wearable Antennas Using Commonly Worn Fabric Materials

    Get PDF
    In recent years, body-centric communication has become one of the most attractive fields of study. The versatile applications of body-centric communication not only being used for health monitoring, but also for real-time communication purposes in special occupations. They are important for supporting a population with increasing life expectancy and increase the probability of survival for the people suffering from chronic illness. For both wearable and implantable form of body-centric communication, characterizing the system electromagnetically is very important. Given the constraints in power, size, weight and conformity, one of the most challenging parts become the designing antenna for such communication systems. Wearable antennas are the most popular option regarding these issues. Wearable antennas are easier and simpler to mount on clothing when they are made of textile materials. In the process of designing a textile antenna, the availability of the fabrics is pivotal to mount on regularly worn clothes. In this report, several designs of a co-planar waveguide microstrip patch antenna are presented. Instead of felt fabric, the antenna was modified using 100% polyester and cotton fabric for the substrate material. A parasitic patch slot was created on the co-planar ground plane to achieve the dual band resonance frequencies at 2.4 GHz and 5.15 GHz. The geometrical modifications of the antennas were described and their performances were analyzed. The antenna achieved resonating frequency with a thinner substrate as the dielectric constant went higher for the fabrics. The design with different fabric materials was first simulated in CST Microwave Studio, then fabricated and measured in a regular environment. They were also mounted on a 3-D printed human body model to analyze the bending effect. The design of the antennas shows satisfactory performance with a good -10dB bandwidth for both the lower and higher desired resonating frequency bandElectrical Engineerin

    Design and implementation of a microstrip filter biosensor for healthcare applications

    Get PDF
    PhD ThesisThe aim of this research was to develop high-frequency biosensors by a combination of traditional microstrip filters and microfluidics. Lowpass and bandpass microstrip filters were designed for operational frequencies less than 3 GHz. Analytical modelling was used to initially determine microstrip filter geometry and then 3D electromagnetic simulation software utilised to examine their performance. Once the design was optimised, devices were fabricated using traditional PCB manufacturing approaches and clean room evaporation techniques. The fabricated filters were compared with the simulation results. The characteristic filter features at 0.66 GHz, 0.80 GHz, and 1.60 GHz demonstrated good agreement to within 90% of the simulated models. Microfluidic reservoirs were then attached to the microstrip filters prior to biological testing. The targeted biomolecules for detection were prostate specific antigen (PSA). A vector network analyser was used to measure the S-parameters of the filters at each stage of functionalisation and immobilisation. Biosensor performance was assessed by measurement of the resonant amplitude and frequency shifts at the characteristic operational frequencies as a function of concentration of the immobilised PSA. The efficacy test of the produced biosensors demonstrated label-free detection down to a minimum analyte concentration of 6.125 ng/ml, this corresponding to an amplitude change of 9 dB and a frequency shift of 10 MHz in the characteristic feature of the S11 signal. This work has demonstrated the applicability of both lowpass and bandpass microstrip filters, with an operational frequency range less than 3 GHz and with suitably integrated microfluidics, to perform as biosensors. This is the first experimental assessment report of this type of radio frequency-based biosensor showing the real-time detection of PSA biomarkers

    Antennas and Propagation

    Get PDF
    This Special Issue gathers topics of utmost interest in the field of antennas and propagation, such as: new directions and challenges in antenna design and propagation; innovative antenna technologies for space applications; metamaterial, metasurface and other periodic structures; antennas for 5G; electromagnetic field measurements and remote sensing applications
    corecore