6,836 research outputs found

    A New Calibration for Function Point Complexity Weights

    Get PDF
    Function Point (FP) is a useful software metric that was first proposed twenty-five years ago, since then, it has steadily evolved into a functional size metric consolidated in the well-accepted Standardized International Function Point Users Group (IFPUG) Counting Practices Manual - version 4.2. While software development industry has grown rapidly, the weight values assigned to count standard FP still remain same, which raise critical questions about the validity of the weight values. In this paper, we discuss the concepts of calibrating Function Point, whose aims are to estimate a more accurate software size that fits for specific software application, to reflect software industry trend, and to improve the cost estimation of software projects. A FP calibration model called Neuro-Fuzzy Function Point Calibration Model (NFFPCM) that integrates the learning ability from neural network and the ability to capture human knowledge from fuzzy logic is proposed. The empirical validation using International Software Benchmarking Standards Group (ISBSG) data repository release 8 shows a 22% accuracy improvement of mean MRE in software effort estimation after calibration

    Calibrating Function Point Backfiring Conversion Ratios Using Neuro-Fuzzy Technique

    Get PDF
    Software estimation is an important aspect in software development projects because poor estimations can lead to late delivery, cost overruns, and possibly project failure. Backfiring is a popular technique for sizing and predicting the volume of source code by converting the function point metric into source lines of code mathematically using conversion ratios. While this technique is popular and useful, there is a high margin of error in backfiring. This research introduces a new method to reduce that margin of error. Neural networks and fuzzy logic in software prediction models have been demonstrated in the past to have improved performance over traditional techniques. For this reason, a neuro-fuzzy approach is introduced to the backfiring technique to calibrate the conversion ratios. This paper presents the neuro-fuzzy calibration solution and compares the calibrated model against the default conversion ratios currently used by software practitioners

    Watershed rainfall forecasting using neuro-fuzzy networks with the assimilation of multi-sensor information

    Get PDF
    The complex temporal heterogeneity of rainfall coupled with mountainous physiographic context makes a great challenge in the development of accurate short-term rainfall forecasts. This study aims to explore the effectiveness of multiple rainfall sources (gauge measurement, and radar and satellite products) for assimilation-based multi-sensor precipitation estimates and make multi-step-ahead rainfall forecasts based on the assimilated precipitation. Bias correction procedures for both radar and satellite precipitation products were first built, and the radar and satellite precipitation products were generated through the Quantitative Precipitation Estimation and Segregation Using Multiple Sensors (QPESUMS) and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS), respectively. Next, the synthesized assimilated precipitation was obtained by merging three precipitation sources (gauges, radars and satellites) according to their individual weighting factors optimized by nonlinear search methods. Finally, the multi-step-ahead rainfall forecasting was carried out by using the adaptive network-based fuzzy inference system (ANFIS). The Shihmen Reservoir watershed in northern Taiwan was the study area, where 641 hourly data sets of thirteen historical typhoon events were collected. Results revealed that the bias adjustments in QPESUMS and PERSIANN-CCS products did improve the accuracy of these precipitation products (in particular, 30-60% improvement rates for the QPESUMS, in terms of RMSE), and the adjusted PERSIANN-CCS and QPESUMS individually provided about 10% and 24% contribution accordingly to the assimilated precipitation. As far as rainfall forecasting is concerned, the results demonstrated that the ANFIS fed with the assimilated precipitation provided reliable and stable forecasts with the correlation coefficients higher than 0.85 and 0.72 for one- and two-hour-ahead rainfall forecasting, respectively. The obtained forecasting results are very valuable information for the flood warning in the study watershed during typhoon periods. © 2013 Elsevier B.V

    Building Fuzzy Elevation Maps from a Ground-based 3D Laser Scan for Outdoor Mobile Robots

    Get PDF
    Mandow, A; Cantador, T.J.; Reina, A.J.; Martínez, J.L.; Morales, J.; García-Cerezo, A. "Building Fuzzy Elevation Maps from a Ground-based 3D Laser Scan for Outdoor Mobile Robots," Robot2015: Second Iberian Robotics Conference, Advances in Robotics, (2016) Advances in Intelligent Systems and Computing, vol. 418. This is a self-archiving copy of the author’s accepted manuscript. The final publication is available at Springer via http://link.springer.com/book/10.1007/978-3-319-27149-1.The paper addresses terrain modeling for mobile robots with fuzzy elevation maps by improving computational speed and performance over previous work on fuzzy terrain identification from a three-dimensional (3D) scan. To this end, spherical sub-sampling of the raw scan is proposed to select training data that does not filter out salient obstacles. Besides, rule structure is systematically defined by considering triangular sets with an unevenly distributed standard fuzzy partition and zero order Sugeno-type consequents. This structure, which favors a faster training time and reduces the number of rule parameters, also serves to compute a fuzzy reliability mask for the continuous fuzzy surface. The paper offers a case study using a Hokuyo-based 3D rangefinder to model terrain with and without outstanding obstacles. Performance regarding error and model size is compared favorably with respect to a solution that uses quadric-based surface simplification (QSlim).This work was partially supported by the Spanish CICYT project DPI 2011-22443, the Andalusian project PE-2010 TEP-6101, and Universidad de Málaga-Andalucía Tech

    A novel approach for ANFIS modelling based on Grey system theory for thermal error compensation

    Get PDF
    The fast and accurate modelling of thermal errors in machining is an important aspect for the implementation of thermal error compensation. This paper presents a novel modelling approach for thermal error compensation on CNC machine tools. The method combines the Adaptive Neuro Fuzzy Inference System (ANFIS) and Grey system theory to predict thermal errors in machining. Instead of following a traditional approach, which utilises original data patterns to construct the ANFIS model, this paper proposes to exploit Accumulation Generation Operation (AGO) to simplify the modelling procedures. AGO, a basis of the Grey system theory, is used to uncover a development tendency so that the features and laws of integration hidden in the chaotic raw data can be sufficiently revealed. AGO properties make it easier for the proposed model to design and predict. According to the simulation results, the proposed model demonstrates stronger prediction power than standard ANFIS model only with minimum number of training samples

    The application of ANFIS prediction models for thermal error compensation on CNC machine tools

    Get PDF
    Thermal errors can have significant effects on CNC machine tool accuracy. The errors come from thermal deformations of the machine elements caused by heat sources within the machine structure or from ambient temperature change. The effect of temperature can be reduced by error avoidance or numerical compensation. The performance of a thermal error compensation system essentially depends upon the accuracy and robustness of the thermal error model and its input measurements. This paper first reviews different methods of designing thermal error models, before concentrating on employing an adaptive neuro fuzzy inference system (ANFIS) to design two thermal prediction models: ANFIS by dividing the data space into rectangular sub-spaces (ANFIS-Grid model) and ANFIS by using the fuzzy c-means clustering method (ANFIS-FCM model). Grey system theory is used to obtain the influence ranking of all possible temperature sensors on the thermal response of the machine structure. All the influence weightings of the thermal sensors are clustered into groups using the fuzzy c-means (FCM) clustering method, the groups then being further reduced by correlation analysis. A study of a small CNC milling machine is used to provide training data for the proposed models and then to provide independent testing data sets. The results of the study show that the ANFIS-FCM model is superior in terms of the accuracy of its predictive ability with the benefit of fewer rules. The residual value of the proposed model is smaller than ±4 μm. This combined methodology can provide improved accuracy and robustness of a thermal error compensation system

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work
    corecore