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Abstract— The fast and accurate modelling of thermal errors 
in machining is an important aspect for the implementation of 
thermal error compensation. This paper presents a novel 
modelling approach for thermal error compensation on CNC 
machine tools. The method combines the Adaptive Neuro Fuzzy 
Inference System (ANFIS) and Grey system theory to predict 
thermal errors in machining. Instead of following a traditional 
approach, which utilises original data patterns to construct the 
ANFIS model, this paper proposes to exploit Accumulation 
Generation Operation (AGO) to simplify the modelling 
procedures. AGO, a basis of the Grey system theory, is used to 
uncover a development tendency so that the features and laws of 
integration hidden in the chaotic raw data can be sufficiently 
revealed. AGO properties make it easier for the proposed model 
to design and predict. According to the simulation results, the 
proposed model demonstrates stronger prediction power than 
standard ANFIS model only with minimum number of training 
samples.   

Keywords— Adaptive Neuro Fuzzy Inference System; Grey 
system theory; thermal errors. 

I.  INTRODUCTION  

High value manufacturing requires machine tools that can 
produce consistently high accuracy parts. Deformations due to 
the changes in the temperature of the machine tool structure 
create relative displacement between the tool tip and the 
workpiece during the machining process, which affects the 
dimensional accuracy of manufactured parts; these are known 
as the thermal errors [1], which have been reported to be 
approximately 70% of the total positioning error of the CNC 
machine tool [2]. Artificial Intelligence models have been 
shown to be efficient in thermal error modelling [3-5], since 
those methods are able to learn complex nonlinear relations 
and to treat imprecise data. However, these models are based 
on the input-output data patterns of the system under 
consideration. The size of the input-output data set is very 
crucial when the generation of data is a costly affair (machine 
downtime). For instance, the process of obtaining such data can 
take several hours for internal heating tests and many days or 
more for the environmental tests [6]. This is unacceptable in 
many production environments. Therefore, success in obtaining 
a reliable and robust model depends heavily on the choice of 

system variables involved as well as the available data set and 
the domain used for training purposes. 

The Adaptive Neuro Fuzzy Inference System (ANFIS) has 
become an attractive powerful modelling technique, combining 
well established learning laws of Artificial Neural Networks 
(ANNs) and the linguistic transparency of fuzzy logic theory 
[7]. In the ANFIS models, different methods can be used to 
train the model for optimisation of the fuzzy rules [8]. A 
sufficient number of data samples should be used to obtain an 
accurate model. There is no formula to estimate the number of 
data sample needed to train the ANFIS network. The number 
can vary greatly depending on the complexity of the system 
under consideration [9]. However, many ANFIS networks have 
been trained successfully with small amounts of training data 
[10] [11] [9]. Buragohain and Mahanta [9] have proposed an 
ANFIS based modelling method where the number of data 
samples employed for training was minimized by application 
of an engineering statistical technique called full factorial 
design. Furthermore in [10] [11] they have applied another 
method called V-Fold technique. Although, their techniques 
were able to construct an ANFIS model with a small number of 
training samples (as few as 7), they still used all the 
experimental samples in order to select the optimal ones. Data 
transformation can also change the smoothness and 
comparability of the data. For instance, Huang and Chi Chu 
[12] have proposed a data transformation technique to simplify 
the fuzzy modelling procedures. The transformation method 
allows the whole raw data to be mapped to another domain 
such that there is no need to adjust the membership functions, 
and the fuzzification process is simply taking place on the fixed 
ones.  Shmilovici and Aguilar-Martin [13] have also utilised 
Box-Cox transform to improve the quality of the fuzzy model, 
before parameter optimization occurs. Therefore, optimisation 
in the number of training patterns and data domain used for 
training are of prime concern in the field of fuzzy modelling. 

The Grey systems theory, introduced by Deng in the early 
1980s [14], is a methodology that focuses on solving problems 
involving incomplete information or small samples. The 
technique works on uncertain systems with partially known 
information by generating, mining, and extracting useful 
information from available data. Its most significant advantage 
is that it needs a small number of experimental data for 



accurate prediction. Furthermore, assumptions regarding the 
statistical distribution of data are not needed when the Grey 
theory is used [15]. Grey theory considers that although the 
objective system appears complex, with a small amount of 
data, it always has some internal laws governing the existence 
of the system and its operation [15]. The Accumulated 
Generating Operation (AGO) is the most important 
characteristic of the Grey system theory, and its benefit is to 
increase the linear characteristics and reduce the randomness of 
the samples. As a result of accumulation, one can potentially 
uncover a development tendency existing in the process of 
Grey accumulation so that the changing trend becomes more 
apparent and laws of integration hidden in the raw data can be 
sufficiently revealed [15]. Nowadays, it is combined with 
intelligent computational techniques such as neural networks 
[3, 16], genetic algorithm [17], and fuzzy logic [18]. These 
successful applications inspire us to explore Grey system 
characteristics to systematically address ANFIS modelling. 

To supplement the ANFIS model, we use the AGO to 
increase the linear characteristics and reduce the randomness 
from the measuring samples. This simple but effective 
technique allows us to build the thermal model under the 
condition of small training data. In short, the proposed model 
incorporates the AGO method into the ANFIS model to 
improve its prediction accuracy and robustness with minimal 
efforts. The experimental results show that the proposed model 
has excellent performances in terms of the accuracy of its 
predictive ability and reduction of machine downtime when 
compared against traditional and other self-learning techniques. 

II. MATERIAL AND METHODS 

A. Accumulation Generation Operation (AGO) 

Accumulation generation is a technique used to uncover a 
development tendency existing in the process of accumulating 
Grey quantities so that the features and laws of integration 
hidden in the raw data can be discovered [19]. The dynamic 
characteristic of the proposed model results from the 
accumulation generation operation (AGO). The technique 
transforms the original data to first order 1-AGO data, which 
has a manageable approach to reduce the randomness of the 
samples, making it easier for the proposed model to be 
designed and to predict. The procedure of AGO is summarised 
as follows: 

• Step 1: Consider the original series as �(0) = �(0)(1), �(0)(2), … �(0)(� − 1), �(0)(�).              (1)   

• Step 2: from the original series, selecting the first value 
as the first value of the new series, selecting the first 
value plus the second one of the original series as the 
second value of the new series, selecting the sum of the 
first three values of the original series as the third value 
of the new series, and so on, as follows: �(1) = �(1)(1), �(1)(2), … �(1)(� − 1), �(1)(�).             (2)    

By so doing, we obtain the new 1-AGO series �(1) of the 
original data �(0), which has more regular series for the benefit 
of modelling instead of modelling with original data.  

Inverse accumulating generators operation (IAGO) can be 
applied to obtain the original series, selecting the first value as 
the first value of the new series, selecting the second value 
minus the first one of the original series as the second entry of 
the new series, selecting the third value minus the second one 
of the original series as the third value of the new series, and so 
on. The mathematical expression is as the following. �(0) = �(1)(�) − �(1)(� − 1),          

Where     � = 2,3, … ,�.   �(0)(1)=�(1)(1)                         (3) 

Therefore, by applying AGO transformation, the following 
important advantages can be obtained: (i) removing extreme 
fluctuation and noise so that the new series is more stable for 
modelling, (ii) the new series has a linear characteristic which 
makes it easier to model instead of modelling with the original 
data, (iii) and it has the characteristic of determining realistic 
governing laws from the available data [15]. The emphasis is to 
discover the true properties of the system under the condition 
of small training data. 

B. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

The Adaptive Neuro Fuzzy Inference System (ANFIS), was 
first introduced by Jang [7]. According to Jang, the ANFIS is a 
neural network that is functionally the same as a Takagi-
Sugeno type inference model. The ANFIS is a hybrid 
intelligent system that takes advantages of both ANN and 
fuzzy logic theory in a single system. By employing the ANN 
technique to update the parameters of the Takagi-Sugeno type 
inference model, the ANFIS is given the ability to learn from 
training data, the same as ANN. The solutions mapped out onto 
a Fuzzy Inference System (FIS) can therefore be described in 
linguistic terms. In order to explain the concept of ANFIS 
structure, five distinct layers are used to describe the structure 
of an ANFIS model.  The first layer in the ANFIS structure is 
the fuzzification layer; the second layer performs the rule base 
layer; the third layer performs the normalization of 
membership functions (MFs); the fourth and fifth layers are the 
defuzzification and summation layers, respectively. More 
information about the ANFIS structure is given in [7]. Fig. 1 
shows basic structure of the ANFIS with two inputs.  

 
Fig. 1. Basic structure of ANFIS model. 

ANFIS model design consists of two sections: constructing 
and training. Construction involves selecting the input 
variables, input space partitioning, choosing the number/type 
of MFs for inputs, generating fuzzy rules, premise and 
conclusion parts of fuzzy rules and selecting initial parameters 



for MFs. Training data patterns should first be generated to 
build an ANFIS model. These data patterns consist of ANFIS 
model inputs and the desired output. However, the size of the 
input-output data pattern is very crucial when the generation of 
data is a costly affair (machine downtime). Furthermore, 
success in obtaining a reliable and robust model depends 
heavily on the choice of the domain used for construction and 
training purposes. To simplify the fuzzy modelling, we present 
a new scheme which maps the raw training data from their 
domain into another domain and in turn to simplify the 
fuzzification process. In this paper, we will use the AGO 
method to transfer the given data patterns to another domain as 
discussed earlier, which has linear characters. So, system 
behaviours and their hidden laws of evolution and motion of 
events can be accurately described. As a result, the most 
important characteristic of Grey theory can be implemented 
into ANFIS modelling. 

Construction of the ANFIS model requires the division of 
the input-output data into rule patches. This can be achieved by 
using a number of methods such as grid partitioning, 
subtractive clustering method and fuzzy c-means (FCM) [20]. 
According to Jang [7], grid partition is only suitable for 
problems with a small number of input variables (e.g. fewer 
than 6). A model with three inputs with three fuzzy sets per 
input produces a complete rule set of 27 rules, whereas a model 
with six inputs requires 729 (36) rules. Clearly standard ANFIS 
models are practically limited to low dimensional modelling. It 
is important to note that an effective partition of the input space 
can decrease the number of rules and thus increase the speed in 
both learning and application phases. In order to obtain a small 
number of fuzzy rules, a fuzzy rule generation technique that 
integrates ANFIS with FCM clustering will be applied in this 
paper, where the FCM is used to systematically create the 
fuzzy MFs and fuzzy rules base for ANFIS. In addition, it also 
helps to determine the initial parameters of the fuzzy model. 
This is important because an initial value, which is very close 
to the final value, will eventually result in the quick 
convergence of the model towards its final value during the 
training process [21]. 

In order to maximise the model performance, a learning 
procedure is followed to refine the model parameters. In the 
training section, the membership function parameters are able 
to change through the learning process. The adjustment of 
these parameters is assisted by a supervised learning of the 
input-output dataset that are given to the model as training data. 
Different learning techniques can be used, such as a hybrid-
learning algorithm combining the least squares method, and the 
gradient descent method is adopted to solve this training 
problem. 

III.  RESULTS AND DISCUSSION 

To verify the applicability of the proposed model, an 
example simulating thermal error compensation (by the same 
authors) in [4] is investigated. The experiments were 
performed on a small vertical milling centre (VMC). Three 
noncontact displacement transducers (NCDTs) were used to 
measure the drift of the tool in the X, Y and Z axes. The 
thermal data were measured using 58 temperature sensors 
placed in strips at the carrier and spindle boss surfaces. Another 

eleven ambient temperature sensors were placed around the 
machine to pick up the ambient temperature. A general 
overview of the experimental setup is shown in Fig. 2. 

 
Fig. 2. A general overview of the experimental setup. 

The machine was examined by running the spindle at a 
speed of 4000 rpm for 180 minutes to excite the thermal 
behaviour. It was then stopped for 120 minutes for cooling. 
The temperature sensors on the machine tool and the thermal 
drift of the spindle were measured every 10 seconds 
simultaneously. The maximum drift of the X-axis is 2 μm, the 
Y-axis is 30 μm, and the Z-axis is 10 μm. In this paper, the X-
axis thermal drift is much smaller than that of Y-axis and Z-
axis due to mechanical symmetry and therefore can be ignored; 
only the Y-axis and Z-axis will  be considered. The thermal 
drift of the Y-axis was investigated as an example for the 
modelling, and error compensation. 

The representative temperature sensors for modelling were 
selected from each group (Surface sensors and ambient 
sensors) according to their influence coefficient value using 
Grey model GM(0, N), more details about this model is given 
in our work [4]. The representative thermal sensors T2, T11, 
T44, T64, T65 and T67, which are located on the column, 
carrier, spindle boss, and base, are selected as the thermal key 
sensors for modelling. 

Normally, an ANFIS model can be directly constructed 
from the given data patterns, which involves all operation 
conditions if possible. To obtain a satisfactory performance, 
both the structure and parameter identifications of the ANFIS 
model are indispensable. A total of 1795 samples 
(approximately: 300 minutes) were obtained from the previous 
experiment. The experimental samples are divided into two 
separated sets: the training set and the testing set. The training 
set is used to calibrate/train the model using a FCM and ANFIS 
algorithm, and the testing set is used to verify the accuracy and 
the effectiveness of the trained model. Among these samples, 
only 10 samples were used for calibration, while 1785 samples 
were used for testing purposes. The AGO was used to 
transform these samples to another domain as discussed in 
Section II . The 10 samples were chosen at the beginning of the 



test (TABLE I and Fig. 3); six temperature sensors are used as 
inputs and the Y-axis displacement as output. 

TABLE I. The training data from first 10 readings. 

No T2 T11 T44 T64 T65 T67 Output  

0 0 0 0 0 0 0 0 

1 0.101 1.082 0.755 1.250 1.292 0.069 4.984 

2 0.202 2.164 1.510 2.501 2.585 0.138 9.972 

3 0.303 3.247 2.265 3.753 3.879 0.208 14.96 

4 0.405 4.331 3.021 5.005 5.173 0.278 19.96 

5 0.506 5.414 3.777 6.258 6.468 0.347 24.96 

6 0.608 6.498 4.534 7.511 7.763 0.417 29.97 

7 0.710 7.583 5.290 8.764 9.059 0.487 34.98 

8 0.812 8.667 6.047 10.01 10.35 0.557 39.99 

9 0.914 9.752 6.805 11.27 11.65 0.627 45.01 

10 1.016 10.83 7.562 12.52 12.94 0.697 50.04 

Fig. 3. The training data from first 10 readings in AGO domain. 

Hence, six temperature sensors were selected as input for 
the model and the thermal drift in Y direction was chosen as a 
target variable. The MATLAB function (genfis3) was used to 
generate the initial fuzzy model by using fuzzy c-means (FCM) 
clustering with extracting a set of rules that models the training 
data behaviour. By doing so, the FCM clustering function is 
automatically evoked to determine the number of rules and 
MFs for the FIS model. The Gaussian functions are used to 
describe the membership degree of these inputs, due to their 
advantages of being smooth and nonzero at each point; this 
type of MF has been used successfully in our previous work 
[4]. After setting the initial parameter values in the ANFIS 
model, the input membership functions are adjusted using a 
hybrid learning scheme. In Fig. 4, an example of MFs for one 
input before and after learning is presented. From Fig. 4 we 
observe that MFs being initialized with FCM change slightly 
even after training. It reveals the fact that the initial MFs are 
quite adaptive to the characteristics of the model and thus 
speed up the convergence. 

 
Fig. 4. Membership functions obtained through ANFIS and FCM clustering. 

The performance of the model was computed using three 
performance criteria, including Root-Mean-Square Error 
(RMSE), Nash-Sutcliffe efficiency coefficient (E), correlation 
coefficient (R) and also residual value. The equations of first 
two are defined as: 

���� = �∑ (� − �)2��=1 �                                                           ( 4) 

� = 1 −∑(� − �)2∑(� − �̅)2                                                                       (5) 

Where, 

Z: is thermal drift. 
P: is the predicted thermal drift. 
Z�: is average of the thermal drift. �: is the number of measured data. 

Next, different ANFIS models were evaluated using Root-
Mean-Square Error (RMSE), in order to measure the deviation 
between the measured and predicted values. In Fig. 5 the 
RMSE of ANFIS model for the training data is plotted versus 
the epochs. It is observed that after 5 epochs were used, the 
performance does not improve any further. Before generating 
the final model, it is essential to obtain the optimum number of 
clusters. For this purpose, several ANFIS models can be 
constructed with a different number of clusters. The optimum 
size of the model structure was determined, and the results are 
summarised in TABLE II . It was found that the ANFIS model 
with 6 clusters exhibited the lowest error RMSE=1.4805 for 
testing dataset. The corresponding rules of the optimum model 
are provided in TABLE III .   
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Fig. 5. RMSE of the ANFIS model during training process. 

TABLE II . Performance of ANFIS models-based FCM clustering. 

Model 
Number 
of 
clusters 

Convergence 
epochs 

RMSE of the 
training data 

RMSE of 
the testing 
data 

1 2 1 10.3861×10-006 1.9220 
2 3 3 4.45636×10-005 1.4843 
3 4 4 1.55172×10-005 1.4866 
4 5 5 1.1104×10-005 1.4854 
5 6 5 1.10424×10-005 1.4805 

TABLE III . Linguistic rules. 

Linguistic rules 

1. If (T2 is T2cluster1) and (T11 is T11cluster1) and (T44 is T44cluster1) 
and (T64 is T64cluster1) and (T65 is T65cluster1) and (T67 is 
T67cluster1) then (displacement is displacement1cluster1)  
2. If (T2 is T2cluster2) and (T11 is T11cluster2) and (T44 is T44cluster2) 
and (T64 is T64cluster2) and (T65 is T65cluster2) and (T67 is 
T67cluster2) then (displacement is displacement1cluster2)  
3. If (T2 is T2cluster3) and (T11 is T11cluster3) and (T44 is T44cluster3) 
and (T64 is T64cluster3) and (T65 is T65cluster3) and (T67 is 
T67cluster3) then (displacement is displacement1cluster3)  
4. If (T2 is T2cluster4) and (T11 is T11cluster4) and (T44 is T44cluster4) 
and (T64 is T64cluster4) and (T65 is T65cluster4) and (T67 is 
T67cluster4) then (displacement is displacement1cluster4)  
5. If (T2 is T2cluster5) and (T11 is T11cluster5) and (T44 is T44cluster5) 
and (T64 is T64cluster5) and (T65 is T65cluster5) and (T67 is 
T67cluster5) then (displacement is displacement1cluster5)  
6. If (T2 is T2cluster6) and (T11 is T11cluster6) and (T44 is T44cluster6) 
and (T64 is T64cluster6) and (T65 is T65cluster6) and (T67 is 
T67cluster6) then (displacement is displacement1cluster6)  

After finishing the clustering and training process, the 
proposed ANFIS model can predict the thermal error from a 
relatively small training sample as shown in Fig. 6.  Although 
the correlation coefficient between measured values and 
predicted values was closed to 1 (98%), the result is not as 
good as required in terms of accuracy, especially in the cooling 
down cycle (the maximum residual value is approximately 
±4 μm). It is anticipated that further improvement in accuracy 
could be achieved by including cooling cycle data as part of the 
training data. Fig. 7 shows the output results of the simulation. 
The correlation coefficient is 99% and the maximum residual 

value is approximately ±2 μm. In practice, the training data 
could be also obtained by carrying out a short heating and 
cooling test before the stage of a manufacturing process. 

 
Fig. 6. ANFIS model output vs the actual thermal drift (4000 rpm, 5h test). 

 
Fig. 7. ANFIS model output vs the actual thermal drift (4000 rpm, 5h). 

Furthermore, different ANFIS models can be constructed 
using only 8 samples at any time of the heating cycle. TABLE 
IV illustrates 5 models that were constructed at different times 
during the test. From these results, it can be observed that all 
the models have promising values during the testing stage. 
Thus, the proposed model is a powerful and precise predictor 
of the thermal errors of the machine tool but requiring less 
training data and converging epochs. 

TABLE IV. The characteristics of the Grey-ANFIS models. 

Model 
8 samples 

after 

Testing stage 

RMSE R E Residual 

Model-1 30 min 1.1885 0.9971 0.9743 2.5 μm 
Model-2 50 min 1.1848 0.9979 0.9774 2.2 μm 
Model-3 70 min 1.0989 0.9969 0.9806 2.5 μm 
Model-4 90 min 1.1321 0.9959 0.9812 2.4 μm 
Model-5 110 min 1.1988 0.9941 0.9705 2.3 μm 
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For the purpose of comparison, another test was carried out 
on the same machine in an operational cycle as follows: It was 
allowed to run at spindle speed 4000 rpm for 120 minutes, and 
then paused for 60 minutes before running for another 120 
minutes; and then stopped for 180 minutes. Here the standard 
ANFIS model is derived by using the first 1080 samples (first 3 
hours; 120 minutes heating and 60 minutes cooling) for 
training purpose. As earlier, T2, T11, T44, T64, T65 and T67 
sensors were selected as inputs. The number of the membership 
function is three for each input and in total 729 rules can be 
obtained to define their relationship with thermal displacement. 
After setting the initial parameter values in the standard ANFIS 
models, the input membership functions are adjusted using a 
hybrid learning scheme. We next use 6 training data at the 
beginning of the test and another 6 samples from the cooling 
cycle (1 minute heating and 1 minute cooling) to construct 
another ANFIS model based on AGO transform. Predictive 
results using both models are presented in Table 6, where the 
two models are examined by the same testing dataset. A 
simulation test on the standard ANFIS model and the proposed 
ANFIS model are shown in Fig. 8 and Fig. 9 respectively. It is 
observed that the proposed model with only 12 training data 
samples has small residual value than the standard ANFIS 
model using 3 hours test (1080 training samples). Furthermore, 
the standard ANFIS model established by only 12 training data 
set has high residual value due to complexity of the network, as 
a result of large number of parameters, which have to be 
trained. According to evaluation criteria values in TABLE V, it 
is very clear that the proposed model has a smaller RMSE, 
residual value (±2 µm), higher efficiency E, and fewer rules 
contrasting with the standard ANFIS model. Therefore, the 
proposed ANFIS model is an excellent modelling choice for 
predicting the thermal error of the machine tools with the 
benefit of a small amount of training samples. 

TABLE V. Performance calculation of the used models. 

Models 
Standard ANFIS 

model 

Proposed ANFIS 

model 

Number of 

training data 
1080 12 

Convergence 
epochs 300 3 

Number of rules 729 5 

P
er

fo
rm

an
ce

 

in
di

ce
s 

E 0.86 0.98 

RMSE 3.16 1.11 

Residual ±6 μm ±2 μm 

 

 
Fig. 8. Standard ANFIS model output vs the actual thermal drift (4000 rpm, 
8h). 

 
Fig. 9. Proposed ANFIS model output vs the actual thermal drift (4000 rpm, 
8h). 

Consequently, this paper develops a simple, less 
computationally intensive and low-cost approach with a high 
adaptation rate based on ANFIS model and Grey system theory 
to predict the thermal error compensation on CNC machine 
tools. The results obtained from the proposed model exhibit 
better performance than conventional ANFIS model in [4], 
with far fewer training samples. 

During manufacturing processes, the temperature signals 
are collected in real time and the errors are estimated with the 
ANFIS model. The calculated compensation values will be 
used to modify the axis positions to maintain the end of the tool 
at the datum position. An example of such a model for a CNC 
machine tool is given by White et al. [22]. 

IV.  CONCLUSION 

In this contribution, we successfully used an ANFIS model 
and Grey system theory to predict thermal errors of a small 
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vertical milling centre with a limited amount of data for 
calibrate the model. The small amount of training data is a key 
performance variable since it directly impacts the amount of 
non-production testing time on the machine. To supplement the 
ANFIS model, we have used the AGO to increase the linear 
characteristics and reduce the randomness from the measuring 
samples. This simple but effective technique allows us to build 
the thermal model with a minimum amount of temperature and 
displacement data in a very short time scale. As a result of the 
proposed method, the initial ANFIS model can be sufficiently 
well defined to the point that it might only need a small number 
of training iterations. Thus, the proposed ANFIS model does 
not require time-consuming iterative learning procedure or 
prohibitive downtime required to conduct the tests. The 
proposed model not only preserves a fast learning characteristic 
but also has an excellent prediction capability. Simulation 
results show that the thermal error in the Y direction can be 
significantly reduced to less than ±2 μm using testing dataset. 
The work presented here is to provide the reader a novel 
direction to ANFIS modelling. 
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