-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by University of Huddersfield Repository

M

University of
HUDDERSFIELD

University of Huddersfield Repository
Abdulshahed, Ali, Longstaff, Andrew P and Fletcher, Simon

A novel approach for ANFIS modelling based on Grey system theory for thermal error
compensation

Original Citation

Abdulshahed, Ali, Longstaff, Andrew P and Fletcher, Simon (2014) A novel approach for ANFIS
modelling based on Grey system theory for thermal error compensation. In: 14th UK Workshop on
Computational Intelligence. UKCI (2014). IEEE, Bradford, :UK. ISBN 978-1-4799-5538-1 (In
Press)

This version is available at http://eprints.hud.ac.uk/21540/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

* The authors, title and full bibliographic details is credited in any copy;
* A hyperlink and/or URL is included for the original metadata page; and
* The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox @hud.ac.uk.

http://eprints.hud.ac.uk/


https://core.ac.uk/display/30729915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A novel approach for ANFIS modelling based on
Grey system theory for thermal error compensation

Ali M Abdulshahed Andrew P Longstaff Simon Fletcher
Centre for Precision Technologies Centre for Precision Technologies Centre for Precision Technologies
University of Huddersfield University of Huddersfield University of Huddersfield
Huddersfield, UK Huddersfield, UK Huddersfield, UK
Ali.Abdulshahed@hud.ac.uk a.p.longstaff@hud.ac.uk s.fletcher@hud.ac.uk

Abstract— The fast and accurate modelling of thermal errors  system variables involved as well as the available data set and
in machining is an important aspect for the implementation of the domain used for training purposes.
thermal error compensation. This paper presents a novel The Adaptive Neuro Fuzzy Inference Syst@hNFIS) has
modelling approach for thermal error compensation on CNC  pecome an attractive powerful modelling tecfug, combining
machine tools. The method combines the Adaptive Neuro Fuzzy el| established learning laws of Artificial Neural Networks
Inference System (ANFIS) and Grey system theory to predict (ANNs) and the linguistic transparency of fuzzy logic theory
thermal errors in machining. Instead of following a traditional [7]. In the ANFIS models, different methodan be used to
approach, which utilises original data patterns to construct the 30 the model for optimisation of the fuzzy rulggl. A
ANFIS model, this paper proposes to exploit Accumulation g ginient number of data samplshould be used to obtain an
Generation  Operation (AGO) to simplity the ‘modeling 5.0\ rate model. There is no formula to estimate the number of
procedures. AGO, a basis of thésrey system theory, is used to data sample needed to train the ANFIS network. The number

uncover a development tendency so that thieatures and laws of v d di h lexi f th
integration hidden in the chaotic raw data can be sufficiently can vary greatly depending on the complexity of the system

revealed. AGO properties make it easier for the proposed model Under consideratiof9]. However, many ANFIS networks have
to design and predict. According to the simulation resuilts, the Peen trained successfully wiimall anouns of training data

proposed model demonstrates stronger prediatn power than  [10] [11] [9]. Buragohain and Mahan{8] have proposed an
standard ANFIS model only with minimum number of training ANFIS based modellingnethod where the number of data
samples. sampls employed for training was minimized by application
of an engineering statistical technique called full factorial

Keywords— Adaptive Neuro Fuzzy Inference System; Grey desgn. Furthermore if10] [11] they have applied another
system theory; thermal errors. method called Wold technique. Although, their techniques
were able to construct an ANFIS model witsnaallnumber of
training samples (as few as 7), they still usall the

High value manufacturing requires machine tools that capxperimental samples in order to select the optimal ones. Data
produce consistently high accuracy pafisformations due to transformation can also change the smoothness and
the changes in the temperature of the machine tool structucemparability of the data. For instance, Huang and Chi Chu
create relative displacement between the tool tip and thdZ2 have proposed a data transformation technique to simplify
workpiece during e machining process, which affects thethe fuzzy modelling procedures. The transformation method
dimensional accuracy of manufactured parts; these are knovatlows the whole raw dati be mappedo another domain
as the thermal errorfl], which have been reported to be such that there is no need to adjust the membership functions,
approximately 70% of the total positioning error of the CNCand the fuzzification process is simply taking place on the fixed
machine tool[2]. Artificial Intelligence models havdeen ones.Shmilovici and AguilaiMartin [13] have also utilised
shown to be efficient in thermal error modellifg}5], since  Box-Cox transform to improve the quality of the fuzzy model,
those methods are able to learn complex nonlineariamdat before parameter optimization occurs. Therefore, optimisation
and to treat imprecise data. However, these models are basedhe number of training patterns and data domain used for
on the inpubutput data patterns of the system undeitraining are of prime concern in the field of fuzzy modelling.

consideration. The size of the inpuitput data set is very . .
crucial when the generation of data is a costly affair (machin The Grey systems theory, introduced by Denthinearly

downtime).For instance, the process of obtaining such data cd 980s[14], is a methodology that focuses on solving problems

take several hours for internal heating tests and many days ;%Péﬂlr\:imge wgﬁ(?péiteur:géor{;]r?tlsc’nste%sswi?rl: S:r?iqa?l:eslkngvr\]/ﬁ
more for the environmental tssf6]. This is unacceptable in e y P y

. . . -~ . information b enerating, mining, and extracting useful
many production environmentBherefore, success in obtaining 'pformation fro):n gvailable%ata. Its %@gnificantadva%tage

a reliabe and robust model depends heavily on the choice d|s that it needs a small number of experimental data for

. INTRODUCTION



accurate prediction. Furtiraore, assumptions regarding the  Inverse accumulating generators operation (IAG&) be
statistical distribution of data are not needed when the Gregpplied to obtain the original series, selecting the first value as
theory is used15]. Grey theory considers that although thethe first value of the new series, selecting the second value
objective system appears complex, with a small amount ahinus the first one of the original series as the second entry of
datg it always has some internal laws governing the existenaie new series, selecting the third value minus ¢oersd one

of the system and its operatiofi5. The Accumulated of the original series as the third value of the new series, and so
Generating Operation (AGO) is the most importanton. The mathematical expression is as the following.
characteristic of the Grey system theory, andésefit is to
increase the Iineaz‘naractgrisgcand reduc)(/e the randomness of X' = x® (k) —x@(k - 1),

the samples. As a result of accumulation, one can potentially Where k =23,..,n. x®@(1)=x®(1) 3)

uncover a deve_lopment tendency Qxisting in the process of Therefore, by applying AGO transfoation, the following
Grey accumulatin so that the changing trend becomes enor jjnortant advantages can be obtained: (i) removing extreme
apparent and laws of integration hidden in the raw data can B ctyation and noise so that the new series is ratailefor
sufficiently revealed[15. Nowadays, it is combined with moqelling, (ii) the new series has a linear characteristic which
intelligent computano_nal techniques such as neural networksskes it easier to model instead of modellivith the original

[3, 16], genetic algorithn{17], and fuzzy logic[18]. These gata, (jii) and it has the characteristic of determining realistic
successful applications inspire us to explore Grey systeRyyerning laws from the available dfit&]. The emphasis is to
characteristics to systematically address ANFIS modelling.  giscover the true properties of the system under the condition

To supplement the ANFIS model, we use the AGO tdfsmall trainingdata.
increase the linear characteristics and reduce the randomnegs Adaptive Neuro-Fuzzy Inference System (ANFIS)

from the measuring samples. This simple but effective .
9 b P The Adaptive Neuro Fuzzy Inference System (ANFIS), was

technique allows us to build the thermal model under th . . ;
condition ofsmall training data. In short, the proposed model 'St introduced by Janfy]. According to Jang, the ANFIS is a

incorporates the AGO method into the ANFIS model toheural network that is functionally the same as a Takagi
improve its prediction accuracy and robustness with minimap9eno type inference model. The ANFIS is a hybrid
efforts. The experimental results show that the proposed mod Fell|g|en@ s/ﬁtem that tgk(nis advantages of lbof[h Ar’:lN and
has excellent performances in terms of the accuracy of if{§Z2Y logic theory in a single system. By employing the ANN
predictive ability and reduction of machine ddinre when t€chnique to update the parameters of the Taageno type

compared against traditional and other-tedfning techniques. infgr_ence model, the ANFIS is given the ability to learn from
training data, the same as ANThe solutions mapped out onto

. MATERIAL AND METHODS a Fuzzy Inference System (FIS) can therefore be described in
) ) ] linguistic terms. In order to explain the concept of ANFIS
A. Accumulation Generation Operation (AGO) structure, five distinct layers are used to describe the structure

Accumulationgeneration is a technique used to uncover @f an ANFIS model. The first layén the ANFIS structure is
development tendency existing in the process of accumulatirige fuzzification layer; the second layer performs the rule base
Grey quantities so that the features and laws of integratiolayer; the third layer performs the normalization of
hidden in the raw data can be discovefgdl. The dynamic membership functions (MFs); the fourth and fifth layers are the
characteristic of the proposed nebdresults from the defuzzification and summation layers, respetyiveMore
accumulation generation operation (AGO). The techniquaformation about the ANFIS structure is given[f. Fig. 1
transforms the original data to first ordeAGO data, which  showsbasic structure of the ANFIS with two inputs.
has a manageable approach to reduce the randomness of *»~ Layer | Layer 2 Layer 3 Layer 4 Layer 5
samples, making it easier fahe proposed model tde T
desigred andto predict. The procedure of AGO is summarised
as follows:

e Step 1: Considehe original series as
X© = x©(1),x©(2),... xOk — 1), xO(k). €))

e Step 2: from the original series, selecting the first value
as the first value of the new serieglecting the first
value plus the second one of the original series as th
second value of the new series, selecting the sum of th
first three values of the original series as the third value
of the new series, and so on, as follows: Fig. 1. Basic structure of ANFIS model.

@ =, ® DOy — ® . . . .
X =101, x(2), e x P (n = 1), 2 (). (2) ANFIS model design consists of two sections: constructing
By so doing, we obtain the newAGO seriesx® of the ~and training. Construction involves selecting the input

original dataX @, whichhasmore regular series for the benefit Variables, input space partitioning, choosing the number/type

of modelling instead of modelling with original data. of MFs for inputs, generating fuzzy_ ruI_e_s,_ premise and
conclusion parts of fuzzgules and selecting initial parameters




for MFs. Training data patterns should first be generated televen ambient temperature sensors were placed around the
build an ANFIS model. These data patterns consist of ANFIghachine to pick up the ambient temperature. A general
model inputs and the desired output. However, the size of tteverview of the experimental setup is showirig. 2

inputoutput data pattern is vecyucial when the generation of Strip 1 (T08-T32)

data is a costly affair (machine downtime). Furthermore, Strip 2 (T33-T62)
success in obtaining a reliable and robust model depend ~ f%,/

heavily on the choice of the domain used for construaiuh o 2 ] 1

training purposes. To simplify the fuzzy modedlirwe present

a new scheme which maps the raw training data from their s L

domain into another domain and in turn to simplify the Carrler

fuzzification process. In this paper, we will ute AGO o ol teres 1/,

method to transfer the given data patterns to another domain a o

discussd earlier, which has linear characters. So, system | . .mn e

behaviours and their hidden laws of evolution and motion of Te7

events can be accurately described. As a result, the mos{ = T Table Base ambient
important characteristic oBrey theory can be implemented I—LK—ll—l o Te8

into ANFIS modelling.

Constuction of the ANFIS model requires the division of
the inputoutput data into rule patches. This can be achieved by
using a number of methods such as grid partitioning,
subtractive clustering method and fuzzypneans (FCM)20Q. JARN JARN
According to Jang[7], grid partition is only suitable for Fig. 2. A general overview of the experimental setup.
problems with a small number of input variables (e.g. fewer
input produces a complete rule set of 27 rules, whereas a mod@leed of 4000 rpm for 180 minutes to excite the thermal
with six inputs requireg29 (3) rules. Clearly standard ANFIS penaviour. It was then stopped for 120 minutes for cooling.
models are practically limited to low dimensional modelling. ItThe temperature sensors on the machine tool and the thermal
is important to note that an effective partition of the input spacgyift of the spindle were measured every 10 sesond
can decrease the number of rules and thus increase the speegiifuitaneously. The maximum drift of theaxis is 2um, the
both learning and afication phases. In order to obtain a smally_axjs js 30um, and the Z-axis is 10um. In this paper, the X-
number of fuzzy rules, a fuzzy rule generation technique thaixis thermal drift is much smaller than that ofxis and Z
integrates ANFIS with FCM clustering will be applied in this axis due to mechanical symmetry and therefore can be ignored
paper, where the FCM is used to systematically create thgly the Y-axis and Zaxis will be considered. The thermal

fuzzy MFs and fuzzy rules bafer ANFIS. In addition, it also  (rift of the Y-axis was investigateds an example for the
helps to determine thiaitial parameters of the fuzzy model. modelling, and error compensation.

This is important because an initial value, which is very close

Base ) Surface sensor

Q Ambient sensor

to the final value, will eventually result in the quick The representative temperature sensors for modelling were
convergence of the model towards its final value during the selected from each group (Surface sensors and ambient
training procesf§21]. sensors) according to their influence coefficient value using

o . Grey modelGM(0, N), moe details about this model is given
In order to maximse the model performance, a learningin our work[4]. The representative thermal sensors T2, T11,
procedure is followed to refine the model parameters. In the44 T64, T65 and TG7which are located on the column,

training section, the membership ftioo parameters are able carrier, spindle boss, afmhse,are selected as the thermal key
to change through the learning process. The adjustment eénsors for modelling.

these parameters is assisted by a supervised learning of the )

inputoutput dataset that are given to the model as training data. Normally, an ANFIS model can be directly constructed
Different learning techniques can be usedhsas a hybrid ~ from the given data patterns, which involves all operation
learning algorithm combining the least squares method, and ti§@nditins if possible. To obtain a satisfactory performance,

gradient descent method is adopted to solve this trainin@Oth the structure and parameter identifications of the ANFIS
problem. model are indispensableA total of 1795 samples

(approximately: 300 minutes) were obtained from the previous
[ll.  RESULTS AND DISCUSSI®! experiment. The experimentahraples are divided into two
To verify the applicability ofthe proposed model, an sepfarated sets: t'he training set and the testing set. The training
example si%ulating r’iﬁermal tgrrooropepnszgtior(by the same S€tis used to calibrate/train the model using a FCM and ANFIS
authors) in [4] is investigated. The experiments Werealgonthm,_ and the testing set is used to verify the accuracy and
performed on a small vectl milling centre (VMC). Three the effectiveness of the trammbdej. Among these samples,
norcontact displacement transducers (NCDTs) were used é%l?/elz :eag”alfrs ‘{éirtﬁ]gsiirfgg;:s"br_?ﬂgn’ A‘\NGh('l)e \}VZE_S ﬁiéndplfg
measure the drift of the tool in the X, Y and Z axes. Th : X > .
thermal data were measured using 58 temperature sens@@ns{fcrﬁn _It_rrlleSEOsampIFs to ano;]her domaf\:n bas .?!:;Cl‘ssed n
placed in strips at the carrier and spindle bosssestAnother ectionll. The 10 samples were chosen at the beginwiirtige



test TABLE | andFig. 3); six temperture sensors are used as
inputs andhe Y-axis displacement as output.
TABLE |. The training data from first 10 readings. 3
No | T2 T11 | T44 | Te4 | T65 | T67 | Output
0 0 0 0 0 0 0 0
1 | 0101 ] 1.082 | 0.755 | 1.250 | 1.292 | 0.069 | 4.984 .
2 | 0202 | 2.164 | 1510 | 2.501 | 2.585 | 0.138 | 9.972
3 | 0303 | 3247 | 2.265 | 3.753 | 3.879 | 0.208 | 14.96
4 | 0405 | 4331 3.021 | 5.005| 5173 | 0278 | 19.96
5 | 0506 | 5.414 | 3.777 | 6.258 | 6.468 | 0.347 | 24.96
6 | 0.608 | 6.498 | 453% | 7.511 | 7.763 | 0.417 | 29.97 g
7 | 0710 | 7.583 | 5290 | 8.764 | 9.059 | 0.487 | 34.98 £, \ \ \
8 | 0.812 | 8.667 | 6.047 | 10.01 | 10.35 | 0557 | 39.99 \/ / /
9 | 0914 | 9752 | 6.805 | 11.27 | 11.65 | 0.627 | 45.01 / \X K
10 | 1.016 | 10.83 | 7.562 | 12.52 | 12.94 | 0.697 | 50.04 . _ T N
0 5 o (1659 10 15
60 Fig. 4. Membership functions obtained through ANFIS and Fe&b4tering.
The performance of the model was computed using three
50 T2 Column N N A .
T11 Strip 1 performance criteria, including RebteanSquare Error
Ta4 Strip 2 (RMSE), NaskSutcliffe efficiency coefficient (E), correlation
20 T64 Spindle boss coefficient (R) and also residual value. The equations df firs
» T65 Spindle boss two aredefined as:
E T67 Ambient
[ 30 Displacement Y
o)
2 RMSE = (4
20 2
X(Z—-P) )
i L S X@-2y
| __—
T T | Where,
P . .
Chy 5 3 4 = o = s s 10 1 Z:is thermal (_Jlrlft. _
Samples P: is the predicted thermal drlft_.
Fig. 3. The training data from first 10 readings in AGO domain. Z: is average of the thermal drift.

. . % is the number of measured data.
Hence, six temperature sensors were selected as input fOr

the model and the thermal drift in Y direction was chosen as a
target variable. The MATLAB function (genfis3) was used to
generate the initial fuzzy model by using fuzzsneans (FCM)
clustering with extracting a set of rulestthaodels the training
data behaviour. By doing so, the FCM clustering function i%
automatically evoked to determine the number of rules an
MFs for the FIS model. The Gaussian functions are used " it X ; .
describe the membership degree of these inputs, dueito th e final model, it is essential to obtain the optimum number of

adwantages of being smooth and nonzero at each point; thlSters. For this purpose, several ANFIS models can be
type of MF has been used successfully in praviouswork constructed with a different number of clusters. The optimum

. - ; i f the model structure was determined, and thdtsese
[4]. After setting the initial parameter values in the ANFISS!#€ OT U ; !
model, the input membership functions are adjusted using S¢mmarised ITABLE 1. It was found that the ANFIS model
hybrid learning scheme. IFig. 4 an example of MFs for one Wlth_ 6 clusters exhibited the_ lowest error RMSE=1.4805 for
input before and after learning psesented. Fronfig. 4 we testing dataset. The cesponding rules of the optimum model

observe that MFs being initialized with FCéhange slightly '€ Provided iMABLE Il
even after training. It reveals the fact that the initial MFs are

quite adaptive to the characteristics of the model and thus

speed up the convergence.

Next, different ANFIS models were evaluated using Root
MeanSquare Error (RMSE), in order to measure the deviation
between the nssured and predicted values. Fig. 5 the

MSE of ANFIS model for the training data is plotted versus

e epochs. It is observed that after 5 epochs were used, the
erformance does not improve any furthgefore generating
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Fig. 5. RMSE of the ANFIS model during training process.

TABLE Il. Performance of ANFIS modetsased FCM clustering.

value is approximately +2m. In practice, the training data

could be also obtained by carrying out a short heating and
cooling test before the stage of a manufacturing process.
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clusters P 9 data
1 2 1 10.3861x10°% 1.9220 I criiine) i7s]
2 3 3 4.45636x10% 1.4843 o
3 4 4 1.55172x10% 1.4866 - o
4 5 5 1.1104x106% 1.4854
5 6 5 1.10424x10% 1.4805 = 2 Training d
:
TABLE lll. Linguistic rules. 8
® 15
% —6— ANFIS Output
Linguistic rules 0 — 5 Thermal Error |——|
- - - £ —<— Residual value
1. If (T2 is T2clusterl) and (T11 is T11clusterl) and (T4%4i4clusterl) @ f
and (T64 is T64clusterl) and (T65 is T65clusterl) and (T§7 E s
T67clusterl) then (displacement is displacementlcliliste
2. If (T2 is T2cluster2) and (T11 is T11cluster2) and (T4%444cluster2) ob NN
and (T64 is T64cluster2) and (T65 is T65cluster2) and (167 A N
T67cluster2) then (displacement is displacementleRiste
3. If (T2 is T2cluster3d) and (T11 is T11cluster3) and (T4A4igclusterl) -50 s 00 50 200 250 200

and (T64 is T64cluster3) and (T65 is T65clusterd) and (T€7
T67cluster3) then (displacement is displacementlcRiste

4. If (T2 is T2cluster4) and (T11 is T1llcluster4) and (T4%44clusterd)
and (T64 is T64clusterd) and (T65 is T65clusterd) and (T§7
T67cluster4) then (displacement is displacementlcHiste

5. If (T2 is T2cluster5) and (T11 is T11cluster5) and (T484igcluster5)
and (T64 is T64cluster5) and (T65 is T6Ster5) and (T67 i
T67cluster5) then (displacement is displacementlchiste

6. If (T2 is T2cluster6) and (T11 is T11cluster6) and (T4B4igcluster6)
and (T64 is T64cluster6) and (T65 is T65cluster6) and (T§7

T67cluster6) then (displacement is desgmentlcluster6)

Time (Minutes)
Fig. 7. ANFIS model output vihe actual thermal drift (400@m, 5h).

Furthermore, different ANFIS models can be constructed
using only 8 samples at any time of the heating cyioM3LE
IV illustrates 5 modelthatwere constructed at different times
during the testFrom these resultst can be observed that all
the models have promising values during the testing stage.
Thus, the proposed model is a powerful and precise predictor
of the thermal errors of the machine tool but requiring less

After finishing the clustering and training process, thelraining data and converging epochs.

proposed ANFIS model can predict the thermal error from a

relatively small training sample as shownFig. 6. Although

TABLE IV. The characteristics of the GF&NFIS models.

the correlation coefficient between measured values ar
predicted values was closed to 1 (98%), the result is not

good agequiredin terms of accuracy, especially in the cooling
down cycle (the maximurmesidual value is approximately

+4 um). It is anticipated that further improvement in accuracy
could be achieved by including cooling cycle data as part of th

training dataFig. 7 shows the output results of the simulation.

The correlation coefficient is 99% and the maximum res$idua

d 8 samples Testing stage
Model

AS after RMSE R E Residual
Model-1 30 min 1.1885 0.9971| 0.9743 2.5um
Model-2 50 min 1.1848 | 0.9979 | 0.9774 2.2um

oModel-3 70 min 1.0989 | 0.9969 | 0.9806 2.5um
Model-4 90 min 1.1321 | 0.9959 | 0.9812 2.4um
Model-5 110 min 1.1988 | 0.9941 | 0.9705 2.3um




For the purpose of comparison, another test was carried out 4o . . I
on the same machine in an operational cycle as follows: It was W & Standard ANFIS
allowed to run at spindle speed 40@én for 120 minutes, and % jzf &{ 57 Thermal Error
then paused for 60 minutes before running for another 120 3 gy | Residual value
minutes; andhen stopped for 180 minutes. Here the standar¢ k 7
ANFIS model is derived by using the first 1080 samples (first 3z 2 f %/ P k\g
hours; 120 minutes heating and 60 minutes cooling) forg ,, A 3\9
training purpose. As earlier, T2, T11, T44, T64, T65 and T67‘_‘_i_’L \&Dﬁ\g
sensors were selected aguts. The number of the membership .2 15 3‘%%
function is three for each input and in total 729 rules can bee ke
obtained to define their relationship with thermal d|splacement6 %

After setting the initial parameter values in the standard ANFIS=
models, the input membershipnctions are adjusted using a
hybrid learning scheme. We newse 6 training data at the
begnning of the test and another 6 samples from the cooling
cycle (1 minute heating and 1 minute coolintg) construct
another ANFIS model based on AGO transformedittive
results using both models are presented in Table 6, where the

paaali!
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-10
0 50 100 150 200 250 300 350 400 450 500 550

Time (Minutes)

two models are examined by the same testing dataset. A

simulation test on the standard ANFIS model traproposed
ANFIS model are shown iRig. 8 andFig. 9respectively. It is
observed thathe proposed model with only 12 trang data
sampleshas small residual value than the standard ANFIS
model using3 hours testl(080 training samplgsFurthermore,
the standard ANFIS model established by only 12 training data
sethas high residual value due to complexity of the netyawsk 30

a result of large number of parameters, which have to b % Gk,i
trained.According to evaluation criteria valuesTABLE V, it

is very clear thathe propogd model has ansller RMSE,
residual value (x2im), higher efficiency E, and fewer rules
contrasting with the standard AN&-Imodel. Thereforethe
proposed ANFIS model is an excellent modelling choice forg

benefit of a small amount of training samples.

predicting the thermal error of the machine tools with the; 10 %

TABLE V. Performance calculation of the used models.

Standard ANFIS

Proposed ANFIS

Models
model model
Number of
training data 1080 12
Convergence
epochs 300 3
Number of rules 729 5
8 E 0.86 0.98
[}
S o
E ©° RMSE 3.16 1.11
8 B
[}
o Residual +6 um #2 pm

Fig. 8. Standard ANFIS model outpus the actual thermal drift (400@m,
8h).
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Fig. 9. Proposed ANFIS model output tiee actual thermal drift (400@m,
8h).

Consequently, this paper develops a simple, less
computatioally intensiveand lowcost approach with a high
adaptation rate based on ANFIS model @nely system theory
to predict the thermal error compensation on CNC machine
tools. The results obtained frothe proposed model exhibit
better performance than conventional ANFI®dal in [4],
with far fewertraining samples.

During manufacturing processes, the temperature signals
arecollected in real time and the errors are estimated with the
ANFIS model. The calculated compensation values will be
used to modify the axis positions to maintain the end of the tool
at the datum position. An example of such a model for a CNC
machine tools given by White et a[22)].

IV. CONCLUSION

In this contribution, we successfully used an ANFIS model
and Grey system #ory to predict thermal errof a small



vertical milling centre with a limited amount of data for [6] A. P. Longstaff, S. Fletcher, and D. G. Ford, "Practical experience of

calibrate the modellhe small amount of training data is a key
performance variable since it directly impacts the amount

non-productiontesting time on the machine. Sapplement the

9h

ANFIS model, we have used the AGO to increase the linear
characteristics and reduce the randomness from the measuriap
samples. This simple but effective technique allows us to build

the thermal model with aimimum amount of temperatuend

displacementiata in a very short time scale. As a result of th

propogd method, thanitial ANFIS model can bsufficiently
well defined to the point thét might onlyneed asmall number

of training iterations Thus, tke proposed ANFIS model does

not require timeconsumiry iterative learning procedurer

prohibitive downtime required to conduct the tests. Th

proposed model not only preserves a fast learctiagacteristic
but also has an excellent prediction capabilBymulation

o

(10]

J11

(12]

results show that the thermal error in the Y direction can be

significantly reduced to less thar? #m using testing dataset.

The work presented here is to provide the reader a novEr’
direction to ANFIS modelling.
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