10,464 research outputs found

    Secure agent data integrity shield

    Get PDF
    In the rapidly expanding field of E-Commerce, mobile agent is the emerging technology that addresses the requirement of intelligent filtering/processing of information. This paper will address the area of mobile agent data integrity protection. We propose the use of Secure Agent Data Integrity Shield (SADIS) as a scheme that protects the integrity of data collected during agent roaming. With the use of a key seed negotiation protocol and integrity protection protocol, SADIS protects the secrecy as well as the integrity of agent data. Any illegal data modification, deletion, or insertion can be detected either by the subsequent host or the agent butler. Most important of all, the identity of each malicious host can be established. To evaluate the feasibility of our design, a prototype has been developed using Java. The result of benchmarking shows improvement both in terms of data and time efficiency

    Automated Negotiation for Provisioning Virtual Private Networks Using FIPA-Compliant Agents

    No full text
    This paper describes the design and implementation of negotiating agents for the task of provisioning virtual private networks. The agents and their interactions comply with the FIPA specification and they are implemented using the FIPA-OS agent framework. Particular attention is focused on the design and implementation of the negotiation algorithms

    Towards a quantitative concession-based classification method of negotiation strategies

    No full text
    In order to successfully reach an agreement in a negotiation, both parties rely on each other to make concessions. The willingness to concede also depends in large part on the opponent. A concession by the opponent may be reciprocated, but the negotiation process may also be frustrated if the opponent does not concede at all.This process of concession making is a central theme in many of the classic and current automated negotiation strategies. In this paper, we present a quantitative classification method of negotiation strategies that measures the willingness of an agent to concede against different types of opponents. The method is then applied to classify some well-known negotiating strategies, including the agents of ANAC 2010. It is shown that the technique makes it easy to identify the main characteristics of negotiation agents, and can be used to group negotiation strategies into categories with common negotiation characteristics. We also observe, among other things, that different kinds of opponents call for a different approach in making concession

    Coordination approaches and systems - part I : a strategic perspective

    Get PDF
    This is the first part of a two-part paper presenting a fundamental review and summary of research of design coordination and cooperation technologies. The theme of this review is aimed at the research conducted within the decision management aspect of design coordination. The focus is therefore on the strategies involved in making decisions and how these strategies are used to satisfy design requirements. The paper reviews research within collaborative and coordinated design, project and workflow management, and, task and organization models. The research reviewed has attempted to identify fundamental coordination mechanisms from different domains, however it is concluded that domain independent mechanisms need to be augmented with domain specific mechanisms to facilitate coordination. Part II is a review of design coordination from an operational perspective

    An Automated Negotiation-based Framework via Multi-Agent System for the Construction Domain

    Get PDF
    In this paper, we propose an automated multi-agent negotiation framework for decision making in the construction domain. It enables software agents to conduct negotiations and autonomously make decisions. The proposed framework consists of two types of components, internal and external. Internal components are integrated into the agent architecture while the external components are blended within the environment to facilitate the negotiation process. The internal components are negotiation algorithm, negotiation style, negotiation protocol, and solution generators. The external components are the negotiation base and the conflict resolution algorithm. We also discuss the decision making process flow in such system. There are three main processes in decision making for specific projects, which are propose solutions, negotiate solutions and handling conflict outcomes (conflict resolution). We finally present the proposed architecture that enables software agents to conduct automated negotiation in the construction domain

    Consensual negotiation-based decision making for connected appliances in smart home management systems

    Full text link
    Recently, the concept of Internet of Agent has been introduced as a potential technology that pushes intelligence, data processing, analytics and communication capabilities down to the point where the data originates. In this paper, we introduce a novel approach for a Decentralized Home Energy Management System by applying the Internet of Agent concept. In particular, we first present an Internet of Agent framework in terms of sensing, communicating and collaborating among connected appliances. Then, the decentralized management based on consensual negotiation mechanism with several intelligent techniques are proposed for dynamic scheduling connected appliance. Specifically, by applying the Internet of Agent framework, connected appliances are regarded as smart agents that are able to make individual decisions by reaching agreement over the exchange of operations on competitive resources. Furthermore, in this study, the load balancing problem in which load shifting is able to reduce the electricity demand during peak hours is taken into account in order to emphasize the effectiveness of our approach. For the experiment, we develop a simulation of smart home environment to evaluate our approach using NetLogo, a tool which provides real-time analysis in the modeling and simulation domain of complex systems.This research was supported by the Chung-Ang University Research Grants in 2018. In addition, this work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2017R1A2B4010774)

    QoS Contract Negotiation in Distributed Component-Based Software

    Get PDF
    Currently, several mature and commercial component models (for e.g. EJB, .NET, COM+) exist on the market. These technologies were designed largely for applications with business-oriented non-functional requirements such as data persistence, confidentiality, and transactional support. They provide only limited support for the development of components and applications with non-functional properties (NFPs) like QoS (e.g. throughput, response time). The integration of QoS into component infrastructure requires among other things the support of components’ QoS contract specification, negotiation, adaptation, etc. This thesis focuses on contract negotiation. For applications in which the consideration of non-functional properties (NFPs) is essential (e.g. Video-on-Demand, eCommerce), a component-based solution demands the appropriate composition of the QoS contracts specified at the different ports of the collaborating components. The ports must be properly connected so that the QoS level required by one is matched by the QoS level provided by the other. Generally, QoS contracts of components depend on run-time resources (e.g. network bandwidth, CPU time) or quality attributes to be established dynamically and are usually specified in multiple QoS-Profiles. QoS contract negotiation enables the selection of appropriate concrete QoS contracts between collaborating components. In our approach, the component containers perform the contract negotiation at run-time. This thesis addresses the QoS contract negotiation problem by first modelling it as a constraint satisfaction optimization problem (CSOP). As a basis for this modelling, the provided and required QoS as well as resource demand are specified at the component level. The notion of utility is applied to select a good solution according to some negotiation goal (e.g. user’s satisfaction). We argue that performing QoS contract negotiation in multiple phases simplifies the negotiation process and makes it more efficient. Based on such classification, the thesis presents heuristic algorithms that comprise coarse-grained and fine-grained negotiations for collaborating components deployed in distributed nodes in the following scenarios: (i) single-client - single-server, (ii) multiple-clients, and (iii) multi-tier scenarios. To motivate the problem as well as to validate the proposed approach, we have examined three componentized distributed applications. These are: (i) video streaming, (ii) stock quote, and (iii) billing (to evaluate certain security properties). An experiment has been conducted to specify the QoS contracts of the collaborating components in one of the applications we studied. In a run-time system that implements our algorithm, we simulated different behaviors concerning: (i) user’s QoS requirements and preferences, (ii) resource availability conditions concerning the client, server, and network bandwidth, and (iii) the specified QoS-Profiles of the collaborating components. Under various conditions, the outcome of the negotiation confirms the claim we made with regard to obtaining a good solution

    QoS Contract Negotiation in Distributed Component-Based Software

    Get PDF
    Currently, several mature and commercial component models (for e.g. EJB, .NET, COM+) exist on the market. These technologies were designed largely for applications with business-oriented non-functional requirements such as data persistence, confidentiality, and transactional support. They provide only limited support for the development of components and applications with non-functional properties (NFPs) like QoS (e.g. throughput, response time). The integration of QoS into component infrastructure requires among other things the support of components’ QoS contract specification, negotiation, adaptation, etc. This thesis focuses on contract negotiation. For applications in which the consideration of non-functional properties (NFPs) is essential (e.g. Video-on-Demand, eCommerce), a component-based solution demands the appropriate composition of the QoS contracts specified at the different ports of the collaborating components. The ports must be properly connected so that the QoS level required by one is matched by the QoS level provided by the other. Generally, QoS contracts of components depend on run-time resources (e.g. network bandwidth, CPU time) or quality attributes to be established dynamically and are usually specified in multiple QoS-Profiles. QoS contract negotiation enables the selection of appropriate concrete QoS contracts between collaborating components. In our approach, the component containers perform the contract negotiation at run-time. This thesis addresses the QoS contract negotiation problem by first modelling it as a constraint satisfaction optimization problem (CSOP). As a basis for this modelling, the provided and required QoS as well as resource demand are specified at the component level. The notion of utility is applied to select a good solution according to some negotiation goal (e.g. user’s satisfaction). We argue that performing QoS contract negotiation in multiple phases simplifies the negotiation process and makes it more efficient. Based on such classification, the thesis presents heuristic algorithms that comprise coarse-grained and fine-grained negotiations for collaborating components deployed in distributed nodes in the following scenarios: (i) single-client - single-server, (ii) multiple-clients, and (iii) multi-tier scenarios. To motivate the problem as well as to validate the proposed approach, we have examined three componentized distributed applications. These are: (i) video streaming, (ii) stock quote, and (iii) billing (to evaluate certain security properties). An experiment has been conducted to specify the QoS contracts of the collaborating components in one of the applications we studied. In a run-time system that implements our algorithm, we simulated different behaviors concerning: (i) user’s QoS requirements and preferences, (ii) resource availability conditions concerning the client, server, and network bandwidth, and (iii) the specified QoS-Profiles of the collaborating components. Under various conditions, the outcome of the negotiation confirms the claim we made with regard to obtaining a good solution
    corecore