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Abstract 
 
Currently, several mature and commercial component models (for e.g. EJB, .NET, 
COM+) exist on the market. These technologies were designed largely for applications 
with business-oriented non-functional requirements such as data persistence, 
confidentiality, and transactional support. They provide only limited support for the 
development of components and applications with non-functional properties (NFPs) like 
QoS (e.g. throughput, response time). The integration of QoS into component 
infrastructure requires among other things the support of components’ QoS contract 
specification, negotiation, adaptation, etc. This thesis focuses on contract negotiation. 
 
For applications in which the consideration of non-functional properties (NFPs) is 
essential (e.g. Video-on-Demand, eCommerce), a component-based solution demands the 
appropriate composition of the QoS contracts specified at the different ports of the 
collaborating components. The ports must be properly connected so that the QoS level 
required by one is matched by the QoS level provided by the other. Generally, QoS 
contracts of components depend on run-time resources (e.g. network bandwidth, CPU 
time) or quality attributes to be established dynamically and are usually specified in 
multiple QoS-Profiles. QoS contract negotiation enables the selection of appropriate 
concrete QoS contracts between collaborating components. In our approach, the 
component containers perform the contract negotiation at run-time. 
 
This thesis addresses the QoS contract negotiation problem by first modelling it as a 
constraint satisfaction optimization problem (CSOP). As a basis for this modelling, the 
provided and required QoS as well as resource demand are specified at the component 
level. The notion of utility is applied to select a good solution according to some 
negotiation goal (e.g. user’s satisfaction). We argue that performing QoS contract 
negotiation in multiple phases simplifies the negotiation process and makes it more 
efficient. Based on such classification, the thesis presents heuristic algorithms that 
comprise coarse-grained and fine-grained negotiations for collaborating components 
deployed in distributed nodes in the following scenarios: (i) single-client - single-server, 
(ii) multiple-clients, and (iii) multi-tier scenarios. 
 
To motivate the problem as well as to validate the proposed approach, we have examined 
three componentized distributed applications. These are: (i) video streaming, (ii) stock 
quote, and (iii) billing (to evaluate certain security properties). An experiment has been 
conducted to specify the QoS contracts of the collaborating components in one of the 
applications we studied. In a run-time system that implements our algorithm, we 
simulated different behaviors concerning: (i) user’s QoS requirements and preferences, 
(ii) resource availability conditions concerning the client, server, and network bandwidth, 
and (iii) the specified QoS-Profiles of the collaborating components. Under various 
conditions, the outcome of the negotiation confirms the claim we made with regard to 
obtaining a good solution. 
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1 Introduction 

1.1 Motivation 
 
Component-Based Software Engineering (CBSE) allows the composition of complex 
systems and applications out of well defined parts (components). This has a number of 
advantages including effective management of complexity, reduced time to market, 
increased productivity, and improved quality. 
 
Today’s and future applications demand the integration of non-functional requirements in 
order to meet the various needs of stakeholders. For example, video streaming and 
eCommerce applications, which are soft real-time, require the integration of non-
functional requirements to enable the provision of QoS differentiation in the offered 
services. Other application areas like Distributed Real-time and Embedded Systems 
[Wang et al, 2004a] have stringent individual QoS requirements (e.g. bounded response 
time), which must be satisfied simultaneously. Failure to meet these QoS requirements, 
e.g. a missed deadline, often leads to serious consequences even if an application may 
still logically function properly. 
 
Currently, several mature and commercial component models (EJB, .NET, CCM, COM+, 
etc.) exist on the market. These technologies were designed largely for applications with 
business-oriented QoS requirements such as data persistence, confidentiality, and 
transactional support. They provide only limited support for the development of 
components and applications with non-functional properties (NFPs) like QoS and 
security.  
 
In order to address the deficiencies of the mainstream component technologies and bring 
the benefits of CBSE for the development of real-time and multimedia applications, a lot 
of research has been and is currently being done. These efforts range from creating new 
component models [Göbel et al, 2004a] to extending the existing mainstream component 
models [Wang et al, 2004a][Ulbrich et al, 2003] [Vecellio et al, 2002]. To complement 
these ongoing efforts, the OMG has issued a Request for Proposal (RFP) in Quality of 
Service for CORBA Components. The Request for Proposals (RFP) solicits proposals 
that facilitate the support for non-functional requirements in the context of the CORBA 
Component Model [OMG, 2003]. 
 
To support third-party compositions, components must be fully specified in terms of 
functional and non-functional properties [Szyperski, 2002]. Components in the widely 
available component models (EJB, .NET, CCM), are specified with interfaces that 
provide syntactical information about which methods are available and how to invoke 
them. But, this underspecifies the components. In [Beugnard et al, 1999] four different 
levels of contracts have been identified for components in a component-based application. 
These are: syntactic, behavioral, synchronization, and QoS contracts. The explicit 
consideration of component contracts aims at simplifying the development of component-
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based applications with non-functional requirements like QoS and security, but it is also a 
challenging task. 
 
Our focus in this thesis is on addressing issues related to the fourth type of component 
contract, which is the QoS contract. A video decoder component, for instance, in a video 
streaming application has an input interface that expects a stream from a video server 
component. It also has an output interface that offers the received stream to a video 
rendering component. The NFPs associated with the input and output interfaces may be 
frame rate, delay, and resolution. The values of these properties, unlike the functional 
properties, are dependent on the level of available resources and QoS obtained from 
interacting components. Hence, a QoS contract is a dynamic entity unlike a syntactic 
contract that is static. A component’s QoS contract is distinguished into offered QoS 
contract and required QoS contract [OMG, 2005]. The offered QoS contract of a 
component specifies the quality values that the component can provide to its clients 
(other components) while the required QoS contract of a component specifies the QoS 
constraints that the clients of the component must achieve. There is dependency between 
offered and required QoS contracts.  

1.2 Related Work1 
 
The integration of QoS in component infrastructures is a subject of very short history 
[Bouyssounouse and Sifakis (eds.), 2005]. Such integration must deal with a number of 
issues. Some of these are the specification of component contracts, contract negotiation, 
resource management, adaptation, etc. As our focus in this thesis lies on QoS contract 
negotiation, we analyze the various related works only from the view point of negotiation 
and associated features. 
 
Over the last decade, many researchers have been working on static and dynamic QoS 
management mechanisms for distributed applications, which are deployed on object-
oriented middleware like CORBA or Java RMI. The Quality objects (QuO) framework  
offers one of the most advanced concepts and necessary tools to integrate QoS into 
distributed applications based on CORBA [Zinky et al, 1997; Loyall et al, 1998]. QuO 
defines QDL (Quality Description Language) for describing contracts, system condition 
objects, and the adaptive behavior of objects and delegates. But QDL does not properly 
address component QoS contracts as it is not possible to express the context 
dependencies of components [Bouyssounouse and Sifakis (eds.), 2005]. QoS contracts 
specified in QDL describe the adaptive behavior of the application. However, having to 
provide this description explicitly is a burden on the programmer (or more specifically on 
the QoS designer). The solutions proposed in [Miguel, 2001] integrate the resource 
reservation and QoS IP in Java RMI classes. 
 
The work in [Göbel et al, 2004b], which motivated this work to some degree, offers basic 
QoS mechanisms but only in a single container. Their approach ties the container-based 
negotiation to a real-time operating system called DROPS. They have not pursued the 
                                                 
1 Note that some of the researches presented here in brief and also other related work are discussed broadly 
in Chapter 2. 
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case of distributed applications where components are deployed in multiple containers. 
Moreover, no strategies have been proposed for a multiple-clients scenario. 
 
The QuA project [Staehli et al, 2004; Amundsen, et al, 2004] aims at defining an abstract 
component architecture that also includes the semantics for general QoS specifications. 
This work does not explicitly consider component QoS contracts for QoS provisioning. 
Nevertheless, their notion of QoS-driven Service Planning has some similarities to our 
concept of contract negotiation. They do not, however, consider complexity issues in 
their service planning.  
 
In [Ritter et al, 2003] QoS contract negotiation is applied when two components are 
explicitly connected via their ports. In the negotiation, the client component contacts the 
server component by providing its requirement; the server responds with a list of concrete 
contract offers; and the client finally decides and chooses one of the offers. Their 
approach covers only the protocol aspect of the negotiation process. They have not 
pursued the decision making aspects, which are an important element of any automatic 
negotiation research. 

1.3 Problem Statement 
 
As explained with respect to closely related research (subsection 1.2) and also in the 
several related work that will be discussed in Chapter 2, the integration of QoS Contract 
negotiation into a component technology has not been sufficiently addressed in previous 
and current research. This thesis, hence, aims at filling this gap.  
 
For applications in which the consideration of NFPs is essential (e.g. Video-on-Demand 
and eCommerce), a component-based solution demands the appropriate composition of 
the QoS contracts specified at the different ports of the collaborating components. The 
ports must be properly connected so that the QoS level required by one is matched by the 
QoS level provided by the other. This matching requires the selection of appropriate QoS 
contracts at each port. When QoS contracts are known statically, the developer or 
assembler can select the right concrete (provided and required) QoS contracts of each 
component and compose the whole application during design, implementation, or 
deployment time. But, for composing QoS contracts that depend on run-time resource 
conditions (e.g. network bandwidth, CPU) or quality attributes to be fixed dynamically, 
the selection of appropriate QoS contracts must be carried out at run-time by the process 
of QoS Contract Negotiation. In our approach, the run-time environment, in particular the 
component container, performs the selection of the appropriate concrete QoS contracts 
for the components at run-time based on a number of different criteria. 
 
We consider applications whose components are deployed on distributed nodes, for 
example on the service provider and on the client node. The basic client/server 
application scenario we are studying is shown in Figure 1.1. As the figure depicts, the 
problem with QoS contract negotiation is how to find appropriate provided and required 
QoS contracts of the collaborating components on condition that a user’s QoS 
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requirements and preferences, components’ QoS contracts, and resource conditions (not 
shown in the figure) are known.  
 

 
Figure 1.1 depicts a single client – single server scenario. There are more general 
scenarios of the problem such as is the case with (i) multiple-clients, (ii) multi-tier 
(multiple servers), and (iii) peer-to-peer. In the multiple-clients scenario, more than one 
client is engaged in negotiation with a server simultaneously. In the multi-tier scenario, 
chained containers are involved in the provisioning of a service, i.e., a component may 
require the service of another component located in a separate server container in order to 
give the requested service to its clients. In a peer-to-peer case, interacting components 
function both as client and server. Each of the aforementioned scenarios poses its own 
specific challenges as will be explained in subsequent sections. 
 

1.4 Research Challenges 
 
QoS contracts of components are specified with multiple QoS-profiles. The challenges 
concerning the selection of appropriate QoS-profiles are listed below.  
 
1) Find a solution that satisfies a number of different types of constraints. 
 
The selections must fulfil a number of constraints that exist in a single container or across 
containers. For example, there could be resource constraints in the underlying platform, 
i.e. at each node and the network. There also exist conformance constraints between 
required and provided QoS contracts for one or more QoS-dimensions (e.g. delay, frame 
rate, resolution, etc.). Users might have certain minimum QoS requirements towards the 
application. Several users/clients with possibly different requirements may be involved in 
the negotiation. 

 
 
Figure 1.1: Basic Client / Server Application Scenario 
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2) Find a “better” solution. 
 
There could be several solutions that satisfy the different constraints mentioned above. 
But, just fulfilling a user’s minimum QoS requirement might not be enough. A solution 
that maximally satisfies a user’s requirement and preferences may be a more desirable 
choice. The question here is how to choose a “better” solution from the set of possible 
solutions. One of the difficulties with this lies in defining what “better” means. For 
instance, what is “better” for the service provider might not be so for the consumer. 
Problems of this type and those stated in 1) above are known to be NP-hard. Hence, 
heuristics must be applied to determine the appropriate solutions. 
 
3) Find the solution in an efficient way. 
 
As the negotiation is performed dynamically, considering the performance of the 
agreement process is important. For example, it may be preferred to agree on some 
acceptable solution in a reasonable time rather than getting the best solution by taking a 
much longer time. 
 
4) Integrate (at least from architecture point of view) the whole approach into a 

component framework. 
 
One of the tasks involved in the integration is how to incorporate the proposed 
mechanisms used to tackle the challenges listed 1) to 3) above in a component framework. 
The QoS specification languages currently available support only a small aspect of QoS 
contract negotiation. 

1.5 Scope and Approach 
 
The contract negotiation framework to be proposed presupposes that there exists a means 
for the specification of NFPs of individual components. QML [Frølund and Koistinen, 
1998] and CQML [Aagedal, 2001] are examples of such a specification language. This 
thesis uses CQML+ [Röttger and Zschaler, 2003], which is an extension of CQML, to 
specify QoS contracts of components. 
 
Different applications may need to consider several NFPs such as reliability, availability, 
security, performance, etc. Treating all of these together is a complex task and trying to 
come up with unifying solutions is an even more formidable challenge. In this thesis, we 
focus on timing properties. We also consider certain aspects of security properties. 
Furthermore, we target soft real-time applications. 
 
Some of the primary goals of this research are: 

1) To propose a mechanism for QoS contract negotiation in a distributed component 
based application. Similar problems have been proven to be NP-hard [Lee et al, 
1999]. In this regard, we want to propose heuristics that help in making the 
negotiation process efficient. 
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2) To demonstrate the proposed ideas by taking example scenarios from Video 
Streaming and Stock Quote Applications. In particular, our work focuses on a 
componentized version of these applications. 

3) To propose a contract negotiation framework that can be integrated into a 
component framework to enable QoS contract negotiation for distributed 
component based solutions. 

 
One of the guiding principles concerning the integration of QoS management in the 
component architecture is the separation of “business code” from “QoS management 
code.” This relieves the application developer from the system details and concentrates 
on the business domain and at the same time makes the developed components more 
flexible and reusable. This principle of separation is pivotal for our integration of contract 
negotiation into component architecture. 

1.6 Research Contributions 
 

The main contribution of our work is proposing a framework for the QoS Contract 
Negotiation of components in distributed component based applications that are deployed 
in a resource-constrained and dynamic environment. Our whole approach is done in the 
context of CBSE. We use the notion of a component as defined by Szyperski [Szyperski, 
2002]. The following aspects make our work distinct from the related works. 

1) We have demonstrated the applicability of our approach by: (i) specifying the 
QoS Contracts of each interacting component, and (ii) composing the provided 
and required QoS contracts of connected components dynamically through the 
process of QoS contract negotiation according to a certain negotiation goal. We 
have validated these steps by taking different scenarios from componentized 
distributed applications of (i) video streaming (including booking and billing), 
and (ii) stock quote applications.  

2) Our approach addresses the three important topics in automated negotiation 
research, which are Negotiation Objects, Negotiation Protocols, and Decision 
Making Models. 

3) We have generalized our approach for different application scenarios: (i) multi-
tier (chained containers), and (ii) multiple clients. 

4) Our QoS Contract Negotiation Framework addresses issues that have not been 
captured in presently available QoS specification languages (e.g. QML, CQML, 
CQML+, etc.). In fact, the specification languages cannot describe all relevant 
aspects of QoS contract negotiation. 

 
In the process of achieving our research goal, we have introduced some unique ideas that 
would be useful in the integration of QoS in component technologies. These are: 

1) Classification of QoS contract negotiation as a multi-phase process: coarse-
grained and fine-grained negotiation. This helps us to better understand the 
nature of NFPs. Following this classification, NFPs can be categorized as 
coarse-grained and fine-grained properties. 

2) Modeling the component QoS contract negotiation problem as a Constraint 
Satisfaction Problem (CSP); as Partial CSP, when the original problem is found 
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to be over-constrained; and as Constraint Satisfaction Optimization Problem 
(CSOP), when good solutions are required.  

 

1.7 Thesis Overview 
 
This thesis is divided into six chapters. The first chapter elaborates on the motivation for 
the research and outlines the problem statement, the scope of the research and major 
contributions of the thesis. In Chapter 2 we examine the state-of-the-art with regard to the 
integration of component technology and QoS and summarize closely related research 
and projects that are mainly concerned with supporting QoS issues in object-oriented and 
component middleware. The related researches are also analyzed in view of the scopes 
and objectives of this thesis.  
 
In Chapter 3 we look into the core of our approach in detail. Based on the research 
challenges identified in Chapter 1, we formalize QoS contract negotiation as a constraint 
solving problem. We show how a phased negotiation simplifies the agreement process 
and makes it more efficient. Pertaining to such classification, we present different 
algorithms. Chapter 3 concludes with a case study of a componentized video-streaming 
application. We evaluate the proposed approach based on this example. Chapter 4 
extends the single-client – single-server scenario addressed in Chapter 3 into two other 
scenarios: multiple-clients and multi-tier. In each case, after analyzing different examples 
to motivate the scenarios, generalized algorithms will be presented. 
 
Chapter 5 introduces a QoS contract negotiation framework that identifies important 
active components, data entities, and the interaction of different instances of these. The 
framework depicts how the different negotiation mechanisms designed in the previous 
two chapters are applied to realize the framework. In Chapter 6, we summarize the 
findings presented in this thesis and examine how the work can be taken further. 
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2 Foundations and Review of Existing Literature 
 
In this chapter, we briefly highlight the state-of-the-art with regard to the integration of 
component technology and QoS by starting from a discussion on some fundamental 
aspects of the component technology. We also summarize and analyze closely related 
research and projects that are mainly concerned with supporting QoS issues in object-
oriented and component middleware. 

2.1 Component-Based Software Engineering (CBSE)  

2.1.1 Introduction 
 
Component-based software development has recently emerged as a key technology to 
cope with the ever challenging issues of software engineering - the production of 
complex software systems, increased productivity, etc. The technology, however, isn’t 
new and has been recognized in the software community for the past several decades. For 
instance, in 1968, in Garmish, Germany, at the NATO software engineering conference, 
Douglas McIlroy presented a paper with the title Mass Produced Software Components, 
in which he argued that the software industry is weakly founded, and that one aspect of 
this weakness is the absence of a software components sub-industry. 
 
The recent popularity of this technology can be attributed to a number of factors. 
According to [Brown and Wallnau, 1996], advances in (i) the object-oriented 
development approach; and (ii) the economic reality that large-scale software 
development must take greater advantage of existing commercial software; spur the 
renaissance in the component-based approach. It has also been viewed by many that the 
vision of early day components can come to fruition due to the recent advances in 
technology. According to [Clements, 1995], some recent new exciting aspects of CBSD 
are: (i) the availability of off-the-shelf components that have a wide range of 
functionality, (ii) the fact that the coordination and communication infrastructure is being 
acknowledged as a component that is potentially available in pre-packaged form, and (iii) 
the realization and attempt to address non-technical issues that must be solved in order to 
make CBSD work. 
 
It is believed by many experts in the field that the component technology can be 
considered as the natural evolution of object technology [Meyer, 1999]. It is noted in 
[Crnkovic, 2001] that there is a strong relation between object-oriented programming 
(OOP) and components. Component models like COM/DCOM, .NET, EJB, CCM relate 
component interfaces to class interfaces. Moreover, components adopt object principles 
of unification of functions and data encapsulation. There are, however, others who 
advocate a different view. We find in [Brown and Wallnau, 1998] that object technology 
is neither necessary nor sufficient for CBSE. This implies that it is possible to realize 
component technology without employing object technology. 
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The major goals of CBSE are: (i) the provision of support for the development of 
software systems as assemblies of components, (ii) the development of components as 
reusable entities, and (iii) the maintenance and upgrading of systems by customising and 
replacing their components [Heineman and Councill (eds.), 2001]. The object-oriented 
approach emphasizes programming over assembly (composition) and aims at modelling 
real-world applications with objects and their interaction. 
 
It appears that there is not a general consensus on the definition of a component in the 
literature. The most widely used and adopted definition in the software community is the 
one given by Szyperski, which is: a software component is a unity of composition with 
contractually specified interface and fully explicit context dependencies that can be 
deployed independently and is subject to composition by third parties [Szyperski, 2002]. 
Some argue that this definition isn’t general enough as it requires components to be 
binary. Cheesman and Daniels’ classification also gives an interesting insight into the 
notion of a component. According to [Cheesman and Daniels, 2001], a component can 
exist in several forms during its life time: Component Specification; Component 
Implementation; Installed Component; and Component Object. 
 
Szyperski’s notion of “contractually specified interface and explicit context dependencies 
only” signifies that: (i) a component should be specified not only with a provides 
interface, i.e. what it provides to interacting components, but also with a requires 
interface, i.e. what it needs from the interacting components, and (ii) the specification 
should not only include functional properties but also non-functional properties (this 
includes among others QoS properties, resources required from the underlying platform, 
etc.). Current component based technologies usually have a provides interface and 
support the specification of functional properties, but address only limited aspect of non-
functional properties (e.g. transactions). 
 
We will further explore some of the technical concepts underlying component 
technology, notably component models, frameworks, and contracts (especially with 
regard to QoS properties of a component). 

2.1.2 Component Models 
 
A component model specifies the standards and conventions imposed on developers of 
components in terms of the set of component types, their interfaces, and additionally the 
allowable patterns of interaction among component types [Bachman et al, 2000]. A 
closely related concept is a component framework that provides a variety of run-time 
services (e.g. transaction, persistence, etc.) to support and enforce a component model. 
The specifications of the widely used component models like Sun’s EJB or Microsoft’s 
COM+ describe the various standards and conventions to be followed by component or 
container developers of the respective component technologies. The containers serve as a 
component framework.  
 
It is to be noted that none of the mainstream component models (i.e. EJB, .NET, COM+) 
comply with Szyperski’s component definition. For instance, the explicit context 
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dependencies criterion isn’t met by these component models. Components developed 
using these models can contain only a provides interface. That implies these components 
can only specify the services they provide or offer to other components. In our work, we 
require a component to have a uses interface in addition to a provides interface. The uses 
interface specifies services required by the component from other components.  
 
The component model upon which this thesis builds is the COMQUAD component model 
[Göbel et al, 2004a], which extended Sun’s EJB and the OMG’s CORBA Component 
Model (CCM) with the following concepts: (i) the specification of non-functional issues, 
(ii) container-managed instantiation and connection of component implementations based 
on the specific quantitative capabilities of the system, and (iii) streaming interfaces. As 
far as the connection of component implementations through contract negotiation is 
concerned, the features provided by the COMQUAD’s run-time environment are limited as 
explained in section 1.2. 

2.1.3 Component QoS Contracts 
 
Component contract can be taken to mean “component specification” in any form. A 
contract specifies functional or extra-functional properties of a component, which are 
observable in its interface [Bouyssounouse and Sifakis (Eds.), 2005]. This definition 
clarifies the relationship between an interface and a contract in that a contract can be seen 
as specifying constraints on the interface of a component. In [Beugnard et al, 1999] four 
different levels of contracts have been identified for components in a component-based 
application. These are: syntactic, behavioral, synchronization, and QoS contracts.  
 
Syntactic contract specifies (i) the operations a component can perform, (ii) the input and 
output parameters each component requires, and (iii) the possible exceptions that might 
be raised during operation. Behavioral contract constrains values of parameters and of 
persistent state variables, expressed by pre- and post-conditions and invariants. 
Synchronization contract specifies the global behavior of objects in terms of 
synchronizations between method calls. QoS contract makes constraints on the extra-
functional or non-functional properties like response time, throughput, etc. Since our 
focus in this thesis is on the negotiation of QoS contracts, the subsequent discussions 
concentrate only on this type of contract. 
 
A component’s QoS contract is distinguished into offered QoS contract and required QoS 
contract [OMG, 2005]. QoS specification languages are used to describe QoS contracts 
as the discussion in the next section outlines. 

2.1.4 QoS Contract Specification 
 
There exist different description languages for specifying the QoS contract of 
components. In this section we discuss two such languages: QML [Frølund and Koistinen, 
1998] and CQML [Aagedal, 2001] together with CQML+[Röttger and Zschaler, 2003], 
which is an extension of CQML. At the end, we summarize related issues from an 
OMG’s standard document on the subject of QoS specification. 
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2.1.4.1 QML 
 
QML has three main abstraction mechanisms for QoS specification: contract type, 
contract, and profile. A contract type defines the dimensions that can be used to 
characterize a particular QoS category (e.g. performance or reliability). A contract is an 
instance of a contract type and represents a particular QoS specification.  The third 
fundamental concept in QML, i.e. a profile associates contracts with interface entities, 
such as operations, operation arguments, and operation results. An example as adapted 
from [Frølund and Koistinen, 1998] is given below. This example is given only as a 
simple demonstration of the three abstractions used by QML. More complex situations 
can also be specified in QML. 
 
interface SomeService { 
 void SomeFunction(in Argument ar1); 
}; 
 
type Performance = contract { 
 delay: decreasing numeric msec; 
 throughput: increasing numeric mb/sec; 
}; 
 
contract1 = Performance contract { 
 delay < 40msec; 
}; 
 
PerformanceProfile for SomeService = profile { 
 require contract1; 
}; 
 
Although QML is a general-purpose QoS specification language in the sense that it 
separates specification of QoS from specification of functional aspects, it has its own 
limitations. For instance, the profile is used in QML to define QoS offers of service 
providers. But, it is not possible to specify a number of profiles that a service provider 
may offer depending on the prevailing environmental conditions. 

2.1.4.2 CQML and CQML+ 
 
CQML uses four main abstraction mechanisms to specify QoS contracts. These are: (i) 
QoS characteristics, (ii) QoS categories, (iii) QoS statements, and (iv) QoS profiles. QoS 
characteristics are defined as user-defined types. QoS characteristics (e.g. frame rate, 
response time) are then grouped and restricted into specifications of QoS. For this, QoS 
statements that constrain each constituent QoS characteristic within specific ranges of 
values are defined. These two constructs focus on specification of QoS independent of 
what interface it annotates and how the QoS mechanism is implemented. A third 
construct, QoS profiles, relates QoS statements to specific components or parts thereof. 
Finally, QoS categories are used to group any of the three aforementioned concepts. The 
relationship of these abstractions is depicted in Figure 2.1. 



 2. Foundations and Review of Existing Literature 

 13 

 

 
CQML uses the QoS profile construct to specify the non-functional properties of a 
component in terms of what a component requires (through a uses clause) from other 
components and what it provides (through a provides clause) to other interacting 
components. The resource demand by the component from the underlying platform isn't 
captured in the specifications. CQML+, which is an extension of CQML, adds a resource 
clause in the QoS profiles of CQML [Röttger and Zschaler, 2003]. 
 
Figure 2.2 shows the specification of non-functional properties of a component that 
follows Cheesman and Daniel’s classification schemes as used by the COMQUAD 
component model [Göbel et al, 2004a]. CQML+ is used to specify the non-functional 
properties of the component for the COMQUAD model. 
 

 
As shown in Figure 2.2, NFPs are associated with component implementations. There 
can be multiple implementations of the same functional component specification. Each 
implementation provides the same functionality, but may have different NFPs. These 
properties are described using potentially multiple profiles, which represent the 
operational ranges of the component implementation. 

 
Figure 2.1: CQML overview [Aagedal, 2001] 

 
 

Figure 2.2: Correlation of component specifications, implementations, and NFP profiles 
[Göbel et al, 2004a] 
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2.1.4.3 UML Profile for Modeling QoS & Fault Tolerance Characteristics 
and Mechanisms 

 
The OMG’s specification document – UML Profile for Modeling Quality of Service and 
Fault Tolerance Characteristics and Mechanisms [OMG, 2005] - defines a set of UML 
extensions to represent Quality of Service and Fault-Tolerance concepts. In this thesis, 
we are particularly interested in the section that deals with a QoS framework metamodel 
that defines the abstract language that supports modelling general QoS concepts. 
 
One of the functional elements of the QoS model used in [OMG, 2005] is the resource-
consuming component (RCC). RCC is a processing entity that includes a group of 
concurrent units of execution, which cooperate in the execution of a certain activity and 
share common budgets. The budget is an assigned and guaranteed share of certain 
resources. An RCC has the following associated: i) facets (interfaces provided and 
synchronously used by RCC clients); ii) receptacles (interfaces synchronously used by 
this RCC); iii) event sinks (event queues supported by this RCC and asynchronously used 
by RCC clients); and iv) event sources (event queues asynchronously used by this RCC). 
UML can model RCC in different ways; in general, classes, components, and interfaces 
are modeling elements that model the RCCs. 
 
The following have been identified to be important concepts that must be supported in a 
general QoS modelling language and are incorporated in the QoS Framework metamodel. 
These are: (i) Definition of QoS Characteristics, (ii) QoS Constraints, (iii) QoS Levels of 
Execution, and (iv) QoS Adaptation and Monitoring. 
 
QoS Characteristics represent quantifiable characteristics of services such as latency, 
throughput, capacity, scalability, availability, etc. The QoS Characteristics are specified 
independently of the elements that they qualify. QoS Dimensions are dimensions for the 
quantification of QoS Characteristics. QoS dimensions also have units (e.g. sec for delay) 
and direction (an enumeration of increasing, decreasing, and undefined values) that 
defines the type of order relation (e.g. delay is decreasing while throughput is increasing). 
When the number of QoS Characteristics is large, and they are especially complex, some 
mechanisms for grouping are required. Such a grouping is referred to as QoS Category. 
An example of general groupings of quality attributes is performance, which includes 
quality characteristics such as latency, throughput, etc. 
 
A QoS Constraint limits the allowed values of one or more QoS Characteristics. 
Application requirements or architectural decisions limit the allowed values of quality 
and the QoS Constraints describe these limitations. The quality constraints are viewed 
from two points of view: from the client’s point of view and from the provider’s point of 
view. This approach defines two different types of constraints: constraints required and 
constraints offered. This is a common approach in the specification of QoS [Aagedal, 
2001][Miguel et al, 2002]. 
 
Required QoS constraint by a client specifies the non-functional (quality) requirement of 
a client that the service provider has to support. This constraint limits the space of valid 
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values for the QoS characteristics involved in the service. The QoS characteristics are the 
dimensions of the quality space, and the Required QoS defines the valid values of this 
space. Required QoS constraint by a server can be defined either to the client that 
requests a service from the server or to another server onto which the first server relies in 
order to provide its service. In the former, the constraint specifies quality requirements 
that must be achieved by the clients so that the provider can offer the service at a quality 
level as required by the client. One example is the maximum frequency of invocation that 
clients must achieve. In the latter, the specification applies to a software element that 
provides service and uses the service of another provider. 
 
Offered QoS associates the set of QoS characteristics that a software component 
guarantees for the services it provides. The offered QoS often depends on the QoS 
provided by the resources and service providers that the software element uses. Offered 
QoS constraint defined by a provider specifies constraints that the provider must achieve 
while offered QoS constraint by a client represents the constraint that the client must 
achieve to the invoking service. 
 
For collaboration among interacting components, a service provider specifies the quality 
values it supports (provider-Offered QoS) and the requirements that its clients must 
achieve (provider-Required QoS). A client specifies the quality it requires (client-
Required QoS), and the quality that it ensures (client-Offered QoS). In general, the 
allowed values in client-Required QoS must be a subset of values in provider-Offered 
QoS, and the allowed values in provider-Required QoS must be a subset of client-Offered 
QoS. In this case, a QoS Contract will be established between the client and service 
provider, where the selected values in provider-Offered QoS, provider-Required QoS, 
client-Required QoS, and client-Offered QoS constitute the QoS contract. While in 
general it is required to have conformance between a client’s and server’s QoS offers and 
requirements, the bi-directional relationship exists only in certain cases as the subsequent 
sections illustrate. In some cases, the QoS contract cannot be computed statically as it 
may depend on the resources available or quality attributes fixed dynamically. 

2.2 QoS-Enabled Object and Component Middleware 

2.2.1 The QuA Project 
 
QuA (Quality of service-aware component architecture) [Staehli et al, 2004; Amundsen 
et al, 2005] is an open, reflective component architecture that provides an execution 
environment for components and also offers hooks to which QoS-management 
components can be attached in order to meet committed QoS-levels during run-time.  
 
QuA has been designed as a minimalist research component architecture with support for 
QoS-sensitive applications. The QuA architecture is a distributed platform consisting of a 
set of networked capsules. Each capsule provides a run-time environment for local core 
QuA objects and platform managed objects. The minimal QuA core enables it to be 
deployed on a wide range of computers.  
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An essential part of the QuA’s architecture is the Service Planner. Together with the 
resource manager, the service planner creates the notion of platform-managed QoS. The 
service planner is performing what is referred to as QoS-driven service planning: A 
process that identifies components, component configurations, and how to compose 
them; to form a functionally correct service composition, which meets a set of QoS-
requirements, such as accuracy, security and real-time [Amundsen et al, 2004]. 
 
In this approach applications are viewed as a service that is constructed from sub-services, 
which again can be constructed from other sub-services. If a service or a sub-service 
cannot be broken up into services of finer granularity, it is considered an atomic service. 
Each service has a service type, which defines the service name and the provided 
functional services in the format of operation signatures and semantic description. There 
can be one or more alternative implementations for a service type, where the 
implementations have the same functional properties but different QoS characteristics 
[Amundsen et al, 2005; Staehli et al, 2004]  
 
The service plan contains eight information elements as shown in Figure 2.3: 1) 
dependencies: requirements to the execution environment, libraries, and static 
dependencies to front-end or back-end systems; 2) parameter configuration: parameters 
the component composition or component is to be configured with; 3) composition 
specification: a graph specifying the construction of the service, i.e., the composition of 
service types and the bindings between them; 4) role: a role name space and role names 
for service types and component types in the composition. The same role name in two 
alternative service plans will be interpreted during reconfiguration as identical services 
and, hence, not be replaced during dynamic reconfiguration; 5) offered services: 
services/operations that the composition/component offers; 6) input QoS contract: QoS 
values along QoS dimensions that users of this composition/component must adhere to; 
7) QoS model: a model of the QoS characteristics, which is defined using QoS 
dimensions independently of the execution environment. The model specifies the 
possible range of QoS values along the QoS dimensions; and 8) QoS mapping: functions 
that establish the logical relationships between QoS characteristics at different levels. 
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How to choose the correct service composition? 
 
Based on the system resource availability, the service planner [more specifically through 
its error prediction function] predicts error along each error-dimension in the error model 
for the available service compositions, and chooses the service composition that best 
meets the user QoS-requirements (or more formally chooses the plan with the best utility).  
 
The Error Prediction Functions encode the application developer’s knowledge about the 
service, and predict the error level for the service as a function of error in the sub-services 
of the service composition and system resource availability (CPU, disk, network, etc). 
Application developers are free to decide their own format and the complexity of the 
error prediction functions. Examples of error function implementations might be a 
straightforward condition statement or a large table with measured errors. 
 
Analysis 
 
The QuA approach has many similarities to our approach. One such similarity is that in 
the QuA architecture the middleware platform is responsible for the QoS management 
mechanisms. We use the component containers to manage QoS. The container provides a 
run-time environment for QoS contract negotiation. Both approaches facilitate the 
separation of concern between application logic and QoS mechanisms (infrastructure). 
 
In the QuA’s approach, service plans specify service composition and parameter 
configuration of the implementation. The QoS characteristics of the implementation are 
also described in the service plan. The Service Planner selects the correct service 
composition, i.e., the service plan that provides best utility for the user, based on the 
actual context and resource situation. The selected complete service plan is then 
configured and instantiated. Our approach’s central idea is the selection of component 
implementations and QoS-profiles based on the availability of resources and user’s QS 

 
Figure 2.3: Service Plan in QuA’s component architecture [Amundsen et al, 2005] 
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requirement. The aim of this selection process is more or less equivalent to the service 
composition and configuration phase in the QuA’s approach. Neverthless, unlike QuA, 
our approach considers component QoS contracts explicitly and aim to consider the 
complexity of the selection process (through the use of heuristics). 
 
In applications like video-streaming that involves components like VideoServer, 
VideoPlayer, etc., although only few components are involved, the number of possible 
configurations (or in our case component implementations and QoS-profiles) could 
explode exponentially. As an example to this, an application that has four components, 
where two implementations are available for each component and two QoS-profiles exist 
for each implementation, already results in 44 = 256 configurations. This configuration 
or selection problem could be difficult and could even be intractable. We believe, the 
complexity of the problem should be properly considered in order to provide a viable 
solution.  
 
Our approach takes into consideration the interoperability or conformance of interacting 
components in the selection of implementations and QoS-profiles. This is especially non-
trivial for distributed components. Such issues haven’t been considered in QuA. The QuA 
service planner selects the best service composition. The service composition may consist 
of multiple components or even a single component. Services, sub-services, or an atomic 
service (component) are selected based on the predicted error. 

2.2.2 Quality Objects (QuO) Project 
 
The QuO project was motivated by the distributed object middleware’s (e.g. CORBA) 
lack of support in handling QoS requirements and building systems that can adapt to 
different levels of QoS. To address this challenge, the BBN technologies developed the 
QuO framework [Zinky et al, 1997; Loyall et al, 1998; Schantz et al, 2003], which is a 
QoS adaptive layer of middleware that runs on existing DOC middleware (such as Real-
time CORBA and Java RMI) and supports distributed applications that can specify (i) 
their QoS requirements, (ii) the system elements that must be monitored and controlled to 
measure and provide QoS, and (iii) the behavior for adapting to QoS variations that occur 
at run-time. 
 
The QuO framework consists of the following components [Loyall et al, 1998]: (i) a suite 
of Quality Description Languages (QDL) for describing contracts, system condition 
objects, and the adaptive behavior of objects and delegates, (ii) the QuO kernel, which 
coordinates evaluation of contracts and monitoring of system condition objects, and (iii) 
code generators which weave together QDL descriptions, the QuO kernel code, and client 
code to produce a single application program.  
 
Figure 2.4 illustrates the steps that can occur during a remote method call in a Quo 
application (this is an application that adds the QuO framework on top of a traditional 
CORBA application). 
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Adaptation in a QuO application occurs through the evaluation of contracts, which is 
triggered by a method call/return or change in a system condition. The contract 
evaluation may result in a transition from one active region into another and this in turn 
triggers transition behavior, which consists of client callbacks or method calls on system 
condition objects. All these sequences of actions are captured and specified in a QuO 
contract and other mechanisms by a QoS developer. The QoS developers, also refereed as 
QoSketeers, develop QuO contracts, system condition objects, callback mechanisms, and 
object delegate behavior. 
 
A QuO QoS contract between a client and object in an application consists of the 
following components:  

• A set of nested operating regions, each representing a possible state of QoS. The 
nesting could be into two sets of nested regions, an outer nesting called negotiated 
regions and an inner nesting called reality regions. The negotiated regions 
represent the QoS desired by the client and the QoS that the remote object expects 
to provide and their predicates consist of system condition objects that interface to 
the client and object. The reality regions represent the QoS measured in the 
system and have predicates consisting of system condition objects that interface to 
system resources. This grouping distinguishes the QoS associated with operating 
modes of the client and object, which will likely change infrequently, from the 
measured QoS of the system, which will probably change more frequently 

• Transitions for each level of regions, specifying behavior to trigger when the 
active region changes.  

• References to system condition objects for measuring and controlling QoS. These 
are either passed in as parameters to the contract or declared local to the contract. 

 
 

Figure 2.4: Example remote method call in a QuO application [Loyall et al, 1998] 
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System condition objects are used in the predicates of regions to get values of 
system resources, object or client state, etc. and used in transitions to access QoS 
controls and mechanisms.  

• Callbacks for notifying the client or object. Callbacks are passed in as parameters 
to the contract and are used in transitions.  

 
QuO represents an example of Aspect-Oriented Programming (AOP), in which a program 
is divided into aspects of concern, each of which is programmed separately in a language 
suitable for expressing the particular aspect. The application is constructed by weaving 
(using code generators) the aspects together into a single, executable application. QuO 
allows an application developer to separate the aspects of functional behavior, QoS 
contracts, system state monitoring and control, and alternate implementation and 
adaptation which would traditionally be interleaved throughout a critical application. 
 
Analysis 
 
The QuO framework offers advanced concepts and necessary tools in order to integrate 
QoS management into distributed applications based on CORBA. QuO’s aspect 
programming concepts and our container-based approach targets the separation of 
“business code” from “QoS management code”. Nonetheless, there are certain issues that 
make our approach distinct from that of QuO’s. The first is that the ideas of QuO are built 
on top of (or augmenting) existing object middleware (i.e. CORBA) rather than building 
the concepts based on CBSE. It has been noted in [Bouyssounouse and Sifakis (eds.), 
2005] that in order to be useful in component based systems, contract languages must 
include facilities for expressing properties typical of components, that is, their context 
dependencies. 
 
QuO’s QoS contracts describe the adaptive behavior of a distributed application. This is 
made possible by describing all feasible QoS states of the interaction between the client 
and the remote object and also every transition between these states. The QoS developer 
is responsible for specifying all the necessary elements in the QoS contract. This is a 
burden on the QoS developer. Instead of specifying the predetermined adaptive behavior 
in the QoS contract, why don’t we leave the reasoning on adaptation (or negotiation) to 
the component containers, which they could do based on the specifications of the 
interacting components’ provided- and required-QoS contracts? One advantage of the 
container-based approach is that it makes the application development process easier.  
 
The QuO’s approach presupposes a tight coupling in the client-object interaction possibly 
limiting the use of the specified QoS contract only in the anticipated environment and for 
the QoS desired by the client and the QoS that the remote object expects to provide. But, 
dynamic applications, i.e. applications created at run-time based on what each constituent 
component offers and expects requires a loosely-coupled approach. The loose coupling 
makes it easier to incorporate new client’s requirements and also new component 
implementation’s, which may provide new performance advantages (e.g. by 
implementing a different algorithm). 
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2.2.3 CIAO (Component Integrated ACE ORB) 
 
CIAO [Wang et al, 2003] is a QoS-enabled implementation of the CORBA component 
model (CCM) built on top of the ACE ORB (TAO). TAO is an open-source, high 
performance, highly configurable Real-time CORBA ORB that implements key patterns 
to meet the demanding QoS requirements of DRE systems. CIAO is developed at 
Washington University in St. Louis and the Institute for Software Integrated Systems 
(ISIS) at Vanderbilt University, USA. 
 
CIAO is motivated by the limitations of conventional component middleware (e.g. CCM) 
for large-scale DRE systems. Examples of DRE applications include distributed sensor 
networks, flight avionics systems, naval combat management systems, and financial 
trading systems, all of which typically have stringent QoS requirements. DRE 
applications often require prioritization of various tasks to ensure critical tasks are 
handled within their time constraints. Developers are forced to embed QoS provisioning 
mechanisms imperatively in component implementations when using the conventional 
component middleware for DRE systems. This creates dependencies between application 
components and the underlying component framework making the reuse of component 
implementations very difficult. 
 
To ensure that DRE applications can achieve their QoS requirements, various types of 
QoS provisioning must be performed to allocate and manage system computing and 
communication resources end-to-end. QoS provisioning can be performed statically or 
dynamically. Static QoS provisioning involves pre-determining the resources needed to 
satisfy certain QoS requirements and allocating the resources of a DRE system before or 
during start-up time. Dynamic QoS provisioning involves the allocation and management 
of resources at run-time to satisfy application QoS requirements [Wang et al, 2003]. 
 
CIAO extends CCM to support static QoS provisioning as listed below: 

• By extending the CCM component assembly descriptor with features that include 
QoS provisioning specification and implementation for required QoS supporting 
mechanisms.  

• By supporting for client configuration specifications to facilitate the configuration 
of a client ORB to support various QoS provisioning attributes, such as priority 
level policy. Clients can then be associated with named QoS provisioning policies. 

• By enhancing CCM containers to support QoS capabilities, such as various server 
specific Real-time CORBA policies. 

• By supporting installation of meta-programming hooks, such as portable 
interceptors. Such a capability can be used to inject dynamic QoS provisioning 
transparently. 

 
The aforementioned features decouple QoS management from component 
implementations (which are concerned with the business code) and help compose static 
QoS provisioning capabilities into the application via the component assembly and 
deployment phases. 
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Analysis 
 
CIAO’s philosophy is a strong adherence to existing OMG specifications such as RT-
CORBA and CCM, and the extension of those. Hence, CIAO is tied to RT-CORBA. 
CIAO facilitates the development of componentized solution to DRE applications, which 
are hard real-time applications with stringent QoS requirements, by enabling developers 
to declaratively provision QoS policies end to end when assembling the system. Though 
CIAO’S main target is the support of static QoS provisioning, dynamic QoS provisioning 
is also possible by using portable interceptors and other meta-programming hooks. 
 
When we compare DRE systems with other applications such as video-on-demand, which 
is a soft-real time application, we distinguish certain differences in the QoS requirements 
of these applications. For example, video-on-demand applications need the integration of 
non-functional requirements to enable the provision of QoS differentiation in the offered 
services (i.e. to different users). On the other hand, DRE systems have stringent 
individual QoS requirements (e.g. bounded response time), which must be satisfied 
simultaneously. Failure to meet these QoS requirements, e.g. a missed deadline, often 
leads to serious consequences even if an application may still logically function properly. 
These differences in QoS requirements make one solution more specific to a certain area 
of application. 

2.2.4 QoS-Aware Middleware [2kQ and Agilos Projects] 
 
Nahrstedt et al have proposed a QoS-aware middleware for ubiquitous and hetrogenous 
environments [Nahrstedt et al, 2001]. They have also presented an integrated run-time 
framework for distributed multimedia applications [Baochun et al, 2002; Dongyan et al, 
2000a ; Dongyan et al, 2000b].  
 
In [Nahrstedt et al, 2001], they present four key aspects of their QoS-aware middleware 
system. These are: (i) QoS specification to allow description of application behavior and 
QoS parameters; (ii) QoS translation and compilation to translate specified application 
behavior into candidate application configurations for different resource conditions; (iii) 
QoS setup to appropriately select and instantiate a particular configuration; and finally, 
(iv) QoS adaptation to adapt to run-time resource fluctuations. 
 
We are interested in the last two aspects, namely, QoS setup and QoS adaptation phases 
as these are the ones closely related to our QoS contract negotiation. At the stage of run-
time instantiation (QoS setup), the middleware selects a suitable configuration for the 
application which matches the specific resource availability and user preference. They 
use the terms application/service configuration/selection/re-selection in the QoS setup to 
mean more or less the same thing. The run-time instantiation phase has certain 
similarities to our QoS contract negotiation. In our case also, the negotiation is driven by 
the user’s QoS requirement and current end-to-end resource condition. In order to make 
the distinction between our approach and the ones followed Nahrstedt et al clear, let’s 
give some more details. 
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The QoS-aware middleware architecture proposed in [Nahrstedt et al, 2001] [Baochun et 
al, 2002] favors applications modeled by a generic application component model. In this 
model a collection of interconnected application components on a single host are viewed 
as a set of tasks, with input-output dependencies. Beyond a single end host, the entire 
distributed application can be grouped into clients and services. The collection of clients 
and services form another directed graph representing the service provider-consumer 
relations. The graph in Figure 2.5 is called an application functional graph [Baochun et al, 
2002]. 
 

 
 
In ubiquitous and heterogeneous environments, it is desirable for an application to have 
multiple configurations, each suited to a different QoS requirement, resource condition, 
or physical environment of users. Based on this idea, multiple application configurations 
can be defined based on the application functional graph (Figure 2.5). For example, the 
following two configurations may be defined based on Figure 2.5. 
 

• Confg1 involves the following application components: C2, C1, C4, C5, C6 
• Confg2 involves the following application components: C2, C3, C4, C7, C8 

 
Confg1 may be suitable for a high performance client that has sufficient CPU and 
bandwidth while Confg2 may be suitable for a client with weak CPU and low bandwidth 
capability. The selection among the different applications configurations (Confg1, Confg2, 
etc.) is governed by a rule base as exemplified in [Baochun et al, 2002]. For a similar 
problem, a different configuration strategy has been proposed in [Dongyan et al, 2000b]. 
Assume each configuration is associated with an end-to-end resource vector. Hence, R1 
and R2 are the end-to-end resource demand vectors of Confg1 and Confg2 respectively. 
The proper service configuration Confgx is chosen such that Rx < Ravail and there is no 
other configuration Confgy, which has better quality and Ry < Ravail. Confgx or Confgy are 
one of (Confg1, Confg2, etc.). 
 
The basic difference between the approach by Nahrstedt et al as described above and our 
approach can be explained as follows. The multiple service configurations, which are 
derived from the Application Functional Graph (Figure 2.5), are defined for the 

 
 

Figure 2.5: An Application Functional Graph as used in the QoS-
aware middleware architecture (2KQ and Agilos Projects) 
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application as a whole and they involve a different set of service components. Moreover, 
the application is composed prior to run-time. One of the drawbacks of the design-time 
composition is that once the selections have been made it is difficult to accommodate 
unexpected run-time changes, which are common in many distributed applications. In our 
case, we specifically consider the NFPs (QoS contracts) of individual components, which 
are specified in multiple QoS-Profiles. We would then compose the application 
dynamically by selecting concrete QoS contracts of each component at run-time based on 
resource availability, other interacting components’ QoS offers and expectations, and 
user’s QoS requirements and preferences. Our approach, which is based on the principles 
of CBSE, is more general and can be applied to a wider range of application domains.  
 
To explain the flexibility of our approach, let’s consider the case of component changes 
and/or upgrades. How would, for instance, the QoS middleware in [Nahrstedt et al, 2001] 
address the change/upgrade of some components or how does it cope when new 
components are available which are to be used in the application? This might necessitate 
the change of the rule base as explained in [Baochun et al, 2002] (assuming the rule base 
itself is configurable) to form a different application configuration. In our approach, what 
is required is only the NFPs specification of the new or upgraded components. Nothing 
will be affected in our middleware or any of its configurations as the application 
compositions are performed dynamically according to the QoS contract specifications of 
the components.  
 
A dynamic QoS-Aware Multimedia Service Configuration is proposed for ubiquitous 
computing environments in [Xiaohui et al, 2002]. According to [Xiaohui et al, 2002], a 
model that includes two tiers has been proposed. These are: (i) service composition, and 
(ii) service distribution tiers. The former is responsible for choosing a set of suitable 
services, discovered in the current environment, to compose a customized application 
delivery to any client device. This tier also provides a QoS consistency check to discover 
and correct inconsistencies of QoS parameters between any two interacting service 
components. The service distribution tier is responsible for dividing a distributed 
application into several partitions and dispatching them to different devices according to 
the current distributed resource availability. 
 
The fact that compositions of services are made dynamically make the proposal in 
[Xiaohui et al, 2002] similar to our approach. However, in our case, we assume the 
components are already deployed into their respective nodes and try to find appropriate 
QoS contracts. In [Xiaohui et al, 2002], the service composition is performed without the 
knowledge where the components will be deployed. But, what happens when the 
available resources in the nodes cannot provide the required QoS to the user has not been 
addressed. Moreover, their approach is specific to multimedia applications only. 

2.2.5 The OpenORB Project 
 
OpenORB [Blair et al, 2001] is a middleware platform developed by researchers at 
Lancaster University. The OpenORB project was motivated by the lack of flexibility of 
established middleware platforms such as CORBA and DCOM to meet the needs of 
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emerging distributed applications (e.g. safety-critical, real time, etc.), which require 
capability of both deployment-time configurability and run-time reconfigurability. 
 
The design of OpenORB uses component technology thereby enabling the middleware 
itself to be built using components in addition to enabling the development of 
component-based applications (similar to the mainstream component models like EJB). 
Its design is also highly reflective in the sense that the component configurations that 
comprise both the middleware and the applications are associated with causally 
connected data structures (called meta-structures) that represent aspects of the component 
configurations, and offer meta-interfaces through which these represented aspects can be 
inspected, adapted and extended. The reflective middleware architecture of OpenORB 
adopts the following four principles: (i) a component-based model of computation, (ii) a 
procedural (which is a more general approach than declarative) approach to reflection, 
(iii) support per interface (or, sometimes, per component) meta-spaces, and (iv) structure 
meta-space as a number of closely related but distinct meta-space models 
 
In reflective systems, one can classify two types of reflections: structural and 
behavioural. Structural reflection is concerned with the content of a given component 
while behavioural reflection is concerned with activity in the underlying system. These 
and other aspects of reflection are represented and structured in the OpenORB 
architecture into four distinct meta-space models [Blair et al, 2001]: (i) Interface Meta 
Model, (ii) Architecture Meta Model, (iii) Interception Meta Model, and (iv) Resource 
Meta-Model.  
 
The structural reflection is represented by two distinct meta-models, namely the interface 
and architecture meta-models (these have also been termed as encapsulation and 
composition meta-models in [Blair et al, 2000]).The interface meta-model provides 
access to the external representation of a component, i.e. in terms of the set of provided 
and required interfaces, their methods and associated attributes. The architecture meta-
model provides access to the implementation of the component as a software architecture, 
consisting of two key elements: a component graph and an associated set of architectural 
constraints. The component graph represents the composition of components, which itself 
is a component. The architecture meta-model can be used to both discover and also make 
changes to this software structure at run-time. 
 
Concerning behavioral reflection, OpenORB distinguishes between actions taking place 
in the system, and the resources required to support such activity. These two aspects are 
represented by the interception and resource meta-models respectively. The interception 
meta-model enables the dynamic insertion of interceptors. Such interceptors are 
associated with interfaces (more specifically, local bindings) and enable the insertion of 
pre- and post- behavior. Interceptors can also be used to introduce non-functional 
behavior, such as security checks or concurrency control. The resource meta-model offers 
access to underlying resources and resource management. The resources meta-model is 
based around the abstractions of resources and tasks. 
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In combination with the reflective component model, OpenORB uses a component 
framework (CF) based structuring principle as a main ingredient to the integrity 
maintenance across reconfiguration operations [Coulson et al, 2002]. Component 
frameworks are collections of rules and interfaces that govern the interaction of a set of 
components plugged into them. The use of a hierarchically-structured CFs as the natural 
scope for adaptation addresses the issue concerned with constraining the scope and effect 
of reconfiguration, which is one of the fundamental issues in effective reconfiguration 
management. Meta-level manager/managed pattern can be applied within the resultant 
hierarchical scopes to maintain integrity in the face of dynamic change (e.g. when a new 
component is dynamically inserted). According to [Coulson et al, 2002], CF-based 
adaptation is expected to serve most adaptation needs. Nevertheless, it is also possible in 
OpenORB to bypass the CF structure and perform ad-hoc unanticipated adaptations 
directly at the OpenCOM level. 
 
The issues of QoS management with regard to the OpenORB’s architecture has been 
addressed in [Blair et al, 2000] where the paper examines how dynamic QoS 
management functions are supported in a reflective middleware. According to [Blair et al, 
2000], dynamic QoS management can be achieved by introducing management 
components into the component graph structure (accessed via meta-space). 
Communication between management and managed components is achieved by an event 
notification mechanism. The prototype implementation of OpenORB, which has been 
developed in Python, supports the creation of such management components. 
 
The different styles of management components identified in a dynamic QoS 
management are: 

i.) Monitoring – collect statistics on the level of QoS attained by the running system 
and raise events when problems occur. 

ii.) Control – divided into strategy selectors that select an appropriate adaptation 
strategy based on feedback from the Monitoring component, and strategy 
activators that implement a particular strategy, e.g. by manipulating a component 
graph. 

 
The dynamic QoS management as discussed above differs from the traditional QoS 
management approach as it uses the reflective architecture. Firstly, new management 
components can be dynamically introduced into the underlying configuration and 
removed when no longer needed. Secondly, the policy for management is itself open to 
inspection and adaptation through representation of management components. The 
OpenORB approach also provides support for the specification of QoS management 
policies in the formal language of timed automata.  
 
Analysis 
 
OpenORB combines the concepts of reflection and component technology to the design 
and implementation of a generic component-based middleware platform that addresses 
many of the deficiencies of today’s mature component models (e.g EJB or .NET). For 
instance, the issues in QoS management (e.g. monitoring and adaptation) can be handled 
in OpenORB by introducing CFs as building blocks together with the concept of 
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reflection. It has also been demonstrated that dynamic QoS management can be realized 
through management components (which are accessed through the appropriate meta-
models). Our work is more focused on how to support non-functional properties of 
components and component-based applications with non-functional requirements such as 
QoS through QoS contract negotiation (that includes the issues of negotiation protocol 
and decision making). Our prototype applies the interceptor approach (the interceptor 
meta-model is one meta-model developed in OpenORB) in order to realize the QoS 
contract negotiation. 

2.2.6 A QoS Metamodel and its Realization in a CORBA 
Component Infrastructure 

 
[Ritter et al, 2003] describes a QoS meta-model and its realization in a CORBA 
component infrastructure. There are two points where the QoS support has to be plugged 
into the existing CCM architecture. The first is the binding mechanism between two 
components and the second is the interaction between container and component 
implementation (business code). 
 
The Binding takes place when two components are explicitly connected via their ports. 
Ports are externally visible interaction elements. To seamlessly integrate QoS support 
into the CCM infrastructure this binding procedure has to be extended by a negotiation 
phase. But this phase should only be started if the components want to negotiate a certain 
QoS contract. The container of the client component decides on this. The container 
knows whether the hosted component wants to negotiate a certain QoS contract or not. 
 
Thus, a third party will coordinate the initial binding between two components. This 
means the business code of each involved component will not directly influence the QoS 
negotiation. This is done to decouple QoS negotiation from business code. 
 
A QoS-aware component offers the interface Negotiation. Client and server 
components before their connection set-up use this interface to make negotiation. The 
container of each QoS-aware component provides the implementation of the 
Negotiation interface. 
 

interface Negotiation {  
ContractBaseSeq req_contract(in ContractBase min );  
ContractId accept(in ContractBase accept,  

inComponents::CCMObject own_ref)  
raises(AcceptionFailed);  

void terminate_contract(in ContractId contract_id);  
string get_facet_name(in Object facet_ref) raises(NoFacet);  

};  
 
Analysis 
 
A connection set-up (for two components) is preceded by QoS contract negotiation. 
Although a third party coordinates the initial binding, it is the (QoS-aware) components 
which are responsible for the negotiation process. They have to invoke appropriate 
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methods from the Negotiation interface. This implies that QoS-management codes are 
tied to the component implementations.  
 
In our approach negotiation precedes every service invocation of the application. The 
service invocation may involve more than two components and the binding is made based 
on some global user’s QoS requirement. If this global user’s QoS requirement can be 
broken down into a requirement on individual component’s requirement, then this 
amounts to the negotiation between two components. 
 
The work only shows how a QoS Provider (which is similar to our integration of contract 
negotiation into the component framework and with some other differences mentioned 
previously) fits into a QoS-aware Component Middleware and how actually (or even the 
strategy) the contract is managed, monitored, and enforced is absent. 

2.2.7 Worth-Based Multi-Category QoS Negotiation in 
Distributed Object Infrastructures 

 
In [Koistinen and Seetharaman, 1998], QoS negotiation is viewed as one key element to 
dynamic configuration and adaptation. During negotiation two or more distributed agents 
try to reach an agreement on the QoS that they will attempt to provide to each other. The 
negotiation is performed dynamically as the system executes. The proposed negotiation 
mechanisms have the following characteristics: 

– The negotiation is concerned with multi-category negotiation instead of limiting 
the negotiation to specific domains such as multimedia. Category generally refers 
to QoS aspects such as performance, reliability, or security. Categories typically 
consist of multiple dimensions. 

– Worth (sometimes called utility) calculation is applied in the negotiation in 
addition to satisfying conventional constraints. 

– The focus of the negotiation is on QoS for operation invocation rather than for 
data streams 

 
For the client and server applications, which are referred as agents, a constraint profile or 
simply profile is assumed to be specified using QML [Frølund and Koistinen, 1998]. 
More specifically the term server profile and client profile are used for the QoS 
characterization of a server and a client respectively. Both the client and the server have 
their own representations for both profiles. The client-side server profile describes the 
client’s requirements of the server while the client profile describes its own 
characteristics. The server-side server profile describes the server’s QoS guarantees and 
its client profile captures the server’s requirements for the client. 
 
A typical negotiation scenario is given as below. It is assumed that before a negotiation 
can start, the client must have obtained a reference to the server with which it wishes to 
negotiate. 
 

1. The client requests the set of offers that the server supports. It supplies the client 
profile to the server so that the server may present suitable offers. 
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2. If more than one offer satisfies the server profile of the client, the client selects 
the offer with the highest worth and proffers that one to the server. 

3. In this case, let us assume that the server cannot accept the chosen offer. It then 
computes a counter offer that it sends to the client. 

4. If the counter offer was acceptable to the client, it sends a deal message back to 
the server. 

5. The server acknowledges the deal. 
 
Analysis 
 
The scenarios considered in [Koistinen and Seetharaman, 1998] are assumed only for a 
single client – single server negotiations. Multiple-clients negotiation has been left out for 
future consideration. Moreover, the approach doesn’t take into account performance 
implications of a negotiation. We have addressed these two issues in this thesis. 
 
The approach concentrates more on the protocol aspects of negotiation, i.e. the exchange 
of messages and contents of the messages. As far as evaluation of offers is concerned, the 
way to deal with is that when the client receives several QoS offers for a service, it either 
selects one of these offers to propose a deal or it proposes a conflict deal. As part of the 
selection process, the client agent first applies conformance checking to obtain the set of 
server offers that meet its absolute requirements. The approach says little on how, for 
example, the server makes its (possibly multiple) proposal or counter-proposals in the 
first place. 
 
The negotiation mechanisms proposed are based on a distributed object infrastructure (e.g. 
CORBA or DCOM) and the QoS is specified with QML though it is claimed that the 
model is platform or language independent. Nevertheless, the concepts are not directly 
applicable in the context of CBSE. It has been noted in [Bouyssounouse and Sifakis 
(eds.), 2005] that in order to be useful in component based systems, contract languages 
must include facilities for expressing properties typical of components, that is, their 
context dependencies. 

2.2.8 Others 
 
The work in [de Miguel et al, 2002] proposes a QoS-aware component framework that 
extends the EJB container by integrating QoS services such as resource reservation and 
negotiation. The EJB container implements basic negotiation algorithms and isolates the 
business components from reservation services. The approach allows clients to negotiate 
a single QoS dimension of method calls per second. But it does not explain how 
component contracts can be negotiated in the multiple nodes. 
 
In [Menasce et al, 2004] a model is described where a component provides a set of 
interrelated services to other components. These components are QoS-aware and are 
capable of engaging in QoS negotiations with other components of a distributed 
application. The paper attempts to create a framework for software components that are 
capable of negotiating QoS goals in a dynamic fashion using analytic performance 
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models. The QoS negotiation between two components occurs by taking performance as 
a QoS requirement and concurrency level as a means of negotiation element. Our 
treatment of QoS negotiation is more generic and general, which may be applied for a 
larger set of problems. Moreover, the container handles the negotiation between 
components in our case, which enhances the reusability of the components. 
 
Aspects that we believe are important in a framework of the proposed type [Menasce et al, 
2004] but not addressed are: 

i.) The negotiation between the QoS-aware component and the requester (a client 
component) can result in requests being accepted, rejected, or in counter offers 
being made to the requester. It is not clear how the client component makes its 
own decisions with regard to accepting the counter offer proposed by the server 
component. While a decision mechanism (using a performance model solver) has 
been provided for the server component, no mechanism has been proposed for the 
client component. 

ii.) The multiple-clients negotiation is performed one client at a time. No strategies 
have been formulated for cases in which the negotiation is to be done with 
multiple clients in a group. This is essential in order to maximize the total utility 
of the system. The decision making process should not only depend on whether a 
client’s requests can be fulfilled or not or whether already existing clients’ 
commitment will be broken or not but also on meeting the goals of the negotiating 
parties (for e.g., maximizing utility) 

2.3 Web Services 

2.3.1 QoS-Aware Middleware for Web Services Composition 
 
[Zeng et al, 2004] presents a QoS-aware middleware platform that addresses the selection 
of Web services for the purpose of their composition in a way that maximizes user 
satisfaction expressed as utility functions over QoS attributes, while satisfying the 
constraints set by the user and by the structure of the composite service. Two QoS-driven 
selection approaches are described and compared: local optimization approach and global 
planning approach.  
 
The local optimization approach performs optimal service selection for each individual 
task in a composite service without considering QoS constraints spanning multiple tasks 
and without necessarily leading to optimal overall QoS. The global planning approach on 
the other hand considers QoS constraints and preferences assigned to a composite service 
as a whole rather than to individual tasks, and uses integer programming to compute 
optimal plans for composite service executions. 
 
The service composition and the selection are made based on the service description of 
the web service, which contains metadata that describe, among others, the capabilities 
and QoS of a web service. In the scenario discussed in the paper, the QoS dimensions 
considered are: execution price, execution duration, reputation, successful execution rate, 
and availability.  
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In the local optimization, selection is made on a particular web service that executes a 
given task of a composite service. The selection is made as follows: the system collects 
information about the QoS of each of the web services. After collecting this information, 
a quality vector is computed for each of the candidate web services, and based on the 
quality vectors; the system selects one of the candidate web services by applying 
Multiple Criteria Decision Making (MCDM). This selection process is made based on: 

i) The weight assigned by the user to each criterion. 
ii) A set of user-defined constraints (i.e. user’s requirement in each of the QoS 

dimensions of the web-service), which may be specified for a task. In our 
approach, we don’t assume that user’s constraints are given on individual 
components but rather on the whole or composed application. Zeng et al elaborate 
this assumption as follows: examples of constraints that can be expressed on a 
given service include duration constraints and price constraints. However, 
constraints can only be expressed on individual tasks and not on combinations of 
tasks. In other words, it is not possible to express the fact that the sum of the 
durations for two or more tasks should not exceed a given threshold. 

 
In the global planning approach, all possible plans associated to a given execution path 
are generated (at least conceptually speaking) and the one which maximizes the user’s 
preferences while satisfying the imposed constraints is then selected. 
 
Comparison of local optimization and global planning 
 
The computational cost of local optimization is polynomial. The bandwidth cost is very 
limited: for each task, there are two messages that flow between the composite service 
execution engine and the service broker (query and result) and three messages that flow 
between the execution engine and the selected Web services (enable, start, and 
completed). On the negative side, the local optimization approach has two shortcomings: 
It cannot consider global trade offs between quality dimensions; and it cannot consider 
global constraints, 
 
The global planning approach overcomes these shortcomings, but at the price of higher 
computational and bandwidth cost. Indeed, the global planner first needs to select an 
optimal execution plan using an expensive algorithm (exponential in some cases). It then 
needs to monitor all the candidate Web services (whether they are included in the plan or 
not) thereby consuming considerable bandwidth resources. Finally, when it detects 
exceptions or changes, it may need to revise the execution plan, again using an expensive 
algorithm. Another issue with global planning is that users are required to provide 
relatively complex input (i.e., global constraints and trade offs). 
 
Analysis 
 
The concept of service selection in [Zeng et al, 2004] is similar to our profile selection. 
There is a difference between our component’s Quality Model and Web Service Quality 
Model used in the paper. A Web Service’s quality is described through a quality vector 
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attached to its operations. Our component’s quality is described not only by the quality 
that is provided by its operations but also by the quality it requires from the environment. 
Thus, in our approach, we explicitly use the information about the required QoS of 
components – we call these QoS Contracts. This modeling enables components for 
maximum reusability, and independent deployment and third party composition. 
 
The local optimization is not concerned with conformance relation – this emanates from 
explicit specification of context dependencies. It doesn’t consider resources of the client, 
server, or the network (this kind of information might be incorporated in the price). What 
makes the global planning different from the local optimization is that it aims at 
optimizing the overall QoS. In other respects it is the same. The comments given 
concerning local optimization also hold for global planning. 
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3 QoS Contract Negotiation in Multiple Component 
Containers 

3.1 Introduction 
 
The QoS contract negotiation that we want to automate occurs between components in 
distributed component-based software. The theme of negotiation is present in various 
fields and, as a result, several definitions have been proposed for it in the literature. To 
give a wider perspective on what an automated negotiation may involve, we refer to three 
different descriptions. Whereas the first description is a more general one, the last two are 
more specific to a particular environment. In [Rosenschein and Zlotkin, 1994] automated 
negotiation is defined as: the process of several agents searching for an agreement. 
Agreement can be about price, about military arrangements, about meeting place, about 
joint action, or about joint objective. The search process may involve the exchange of 
information, the relaxation of initial goals, mutual concession, lies, or threats. 
 
In [Koistinen and Seetharaman, 1998], QoS negotiation in a distributed object 
infrastructure is defined as a process used by a client and a server to reach an agreement 
on QoS characteristics for their services considering their expected loads, network 
characteristics, and other influential factors. QoS negotiation is necessary for applications 
to adapt to environments in which resource availability and load varies. 
 
Negotiation also exists in the context of a Dynamic e-Business (DeB), which is also 
known as a virtual enterprise, where a DeB consists of a variety of dynamic services, 
offered by different service providers and selected on-demand, that cooperate for a short 
period of time [Keller, 2002]. In DeB the customer, service integrator, and service 
providers negotiate and sign an electronic contract (a.k.a. Service Level Agreement, 
SLA) that specifies the guaranteed quality of the subscribed services and the 
compensating actions in case of a violation. 
 
We are interested particularly in the negotiation between cooperating components and 
between the component containers, in the context of a component-based application. This 
negotiation is driven by a user’s QoS requirement and the available resources. The QoS 
contract negotiation process selects appropriate implementations and QoS-Profiles of the 
interacting components in order to make the requested service available at the required 
level of quality. 
 
All of the aforementioned aspects of automated negotiation have some common basic 
characteristics. Three elements have been identified to be important topics in automated 
negotiation research [Jennings, 2001]. These are Negotiation Protocols, Negotiation 
Objects, and Decision Making Models. The relative importance of these elements varies 
according to the negotiation and environmental context. 
 
Negotiation Protocols define the set of rules that govern the interaction. This covers the 
permissible types of participants, the negotiation states, the events that cause negotiation 
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states to change and the valid actions of the participants in particular states. Negotiation 
Objects define the range of issues over which agreement must be reached. At one 
extreme, the object may contain a single issue (such as price), while on the other hand it 
may cover hundreds of issues (related to price, quality, timings, penalties, terms and 
conditions, etc.). Decision Making Models are the decision making apparatus the 
participants employ to act in line with the negotiation protocol in order to achieve their 
objectives. 
 

 
A minimum requirement of a negotiating agent is the ability to make and respond to 
proposals [Jennings, 2001]. Proposals can be made either independently of other agents’ 
proposals or based on the negotiation history. When one agent makes a proposal, if the 
interacting agents can only accept or reject other’s proposals, then negotiation can be 
very time consuming and inefficient since the proposer has no means of ascertaining why 
the proposal is unacceptable. To improve the efficiency of the negotiation process, the 
recipient needs to be able to provide more useful feedback on the proposals it receives. 
This feedback can take the form of a critique (comments on which part of the proposal 
the agent likes or dislikes) or a counter proposal (an alternative proposal generated in 
response to a proposal). From such feedback, the proposer should be in a position to 
generate a proposal that is more likely to lead to an agreement. A negotiation scenario 
used in [Koistinen and Seetharaman, 1998] is shown in Figure 3.1. In step 3, the client 
selects the offer with the highest worth value from the multiple offers proposed by the 

 

 
 

Figure 3.1: A QoS Negotiation Scenario in a Client / Server Application 
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server. In step 4, it is assumed that the server cannot accept the chosen offer. Hence, it 
computes a counter offer and sends it to the client. 
 

3.2 Our Negotiation Model (in a single container) 
 
We describe and illustrate our negotiation model based on the common building blocks 
identified for any automated negotiation research. In our case the negotiating parties are 
the components, the user, and the containers (run-time environment). The containers have 
a role of arbitration. The collaborating components and the user put forward all their 
proposals (i.e. the multiple QoS-Profiles of the components and the user’s QoS 
requirements and preferences) and the container (arbitrator) analyzes all the problems 
(e.g. constraints) and dictates the solution for the parties (i.e. choose appropriate 
implementations and QoS-Profiles of the components). After a successful negotiation, 
contracts are established and will be monitored and enforced by the container. If no 
agreements can be reached, the user is asked to make a concession (to decrease his/her 
QoS requirements). In the event that no agreement is reached after the user relaxes 
his/her requirement, the negotiation terminates with a “conflict deal”. A simplified 
scenario of our negotiation model that involves only a single container is depicted in 
Figure 3.2. 
 
In steps 3) and 4) of Figure 3.2, it is assumed that the QoS-Profiles are specified by the 
component developers. In steps 9), 10), and 11), contracts are established for interacting 
components or between a user and interacting component. In our model we assume that 
components propose (or specify) all possible offers. The other possibility would have 
been for components to propose an offer and when this is not accepted by the container, 
to make counter-offers. 
 
The negotiation objects in our case are non functional properties (or the so-called extra-
functional properties) of components and containers. Distinction is usually made between 
non-functional properties (NFPs) and functional properties of a certain system. 
Functional properties of a system relate to the specification of what the system should do. 
The extra-functional properties, also called qualities, address how well this functionality 
is (or should be) performed if it is realized. For a general discussion on properties and 
their classification refer subsection 3.4.1.1. 
 
In the sections and chapters that follow, we present an in-depth discussion of the 
aforementioned three elements of automatic negotiation in the context of QoS contract 
negotiation in distributed component-based software. We begin in the next section by 
formalizing the problem and subsequently discuss the proposed solutions. 
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3.3 Problem Formulation 
 
Before formalizing the QoS contract negotiation as a Constraint Satisfaction Problem 
(CSP), we describe briefly the notions of: i) utility value [Lee et al, 1999] of an 
application, and ii) conformance [Frølund and Koistinen, 1999] that should exist between 
constraints of interacting components. 

 
 

Figure 3.2: A simplified scenario of our negotiation model (in a single container) 
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3.3.1 Utility 
 
In [Lee et al, 1999], the notion of utility has been used to represent varying satisfaction 
with QoS changes of an application. A utility value is also defined in [Walpole et al, 
1999] as a measure of usefulness, represented by real numbers in the range [0, 1] where 0 
represents useless and 1 represents as good as perfect. Our usage of the term utility is 
similar to these definitions. We use the utility concept in order to compare different 
potential solutions (resulted from the composition of QoS contracts) in terms of the 
overall quality they provide. 
 
There are two utility values that we should differentiate – the application utility and the 
system utility. The application’s utility represents the quality of the provided service of an 
application as perceived by the user. The system utility is defined for the overall system, 
with multiple applications or clients. 
 
An application’s QoS can be represented by a number of QoS dimensions. For instance, 
in our video streaming scenario (Section 3.5), the application’s quality characteristics are 
specified by frame rate and resolution properties. The VideoServer component’s 
QoS-Profile is defined based on these NFPs (Figure 3.5 and Table 3.1).  
 
A dimension-wise application utility is defined for each QoS dimension specified for the 
application. This definition or mapping can be done by an expert of the application 
domain or the user of the application. In [Lee et al, 1999], dimension-wise utilities are 
defined by the user. We think that in a contract negotiation framework, a default 
dimension-wise utility may be provided by an expert. The user can also be given the 
facility to alter this default, when needed. The QoS mapping on one QoS dimension can 
differ among users and also from application to application.  
 
We refer to our video streaming scenario to briefly explain how a utility can be defined 
for an application that involves multiple QoS dimensions. Let’s assume the values of the 
frame rate property range from 1 frame/s to 30 frames/s (fps). 30 fps is mapped 
to a utility of 1 while 1 fps may be assigned to a utility of 0. If the utility function is to 
be a linear one, these two points are enough to compute the utility function. Accordingly, 
the utility for frame rate is given as: U(frameRate) = (1/29)(frameRate – 1) 
(Figure 3.3). For the resolution property, let’s assume that the possible values are only 
three, as shown in Table 3.1. The assigned utilities are then 0.8 for 352x288, 0.6 for 
176x144, and 0.4 for 128x96. The fact that no 0 value is assigned as a utility for 
resolution implies that none of the choices are considered to be useless. It is possible, 
however, that some users may assign a utility of 0 to 128x96. 
 
It is to be emphasized that neither a user nor an expert can specify the dimension-wise 
utility values for every QoS points of the application as this is simply impractical due to 
the many QoS points. But, as explained in [Lee et al, 1999], the utility of selected QoS 
points could be specified and then these points are interpolated in order to obtain the 
utility function. The example given above for the dimensional utility of frame rate uses 
only two points to define a linear utility function (for e.g. Figure 3.3). If an exponential-
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decay utility function was chosen (for e.g. Figure 3.4), one would have to determine the 
constants from a specification by the user for two points (e.g. a utility of 0.5 for 5fps and 
a utility of 0.95 for 20fps). Having a very slow increasing rate at higher frame rates 
compared to the linear function, the exponential utility function reflects the fact that the 
improvement in quality as perceived by humans diminishes at higher frame rates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In an application with multiple QoS dimensions, there could exist a dependency among 
the QoS dimensions. Two QoS dimensions, Qa and Qb are said to be independent of one 
another if a quality increase along Qa (Qb) does not increase the resource demands to 
achieve the quality level previously achieved along Qb (Qa). A QoS dimension, Qa, is 
said to be dependent on another dimension, Qb, if a change along the dimension Qb will 
increase the resource demands to achieve the quality level previously achieved along Qa 
[Rajkumar et al, 1997]. 
 
In a video streaming application, frame rate and resolution are dependent QoS 
dimensions. The utility function for such an application can be given as a weighted 

 
Figure 3.3: Linear dimensional utility 

 
 

Figure 3.4: Exponential dimensional utility 
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average of the dimension-wise utilities. This technique has been applied in [Lee et al, 
1999] [Rajkumar et al, 1997], which is based on the analytic hierarchical process (AHP) 
[Saaty, 1992] with regard to the computation of weights. We take a user’s relative 
preference towards each NFP as a weight for the corresponding NFP. The sum of all 
weights must be equal to 1. For example, a user who prefers frame rate over 
resolution in a certain video streaming application can assign w1=0.6 for frame rate 
and w2=0.4 for resolution as weights. Note that the determination of weights is an area 
that requires further study and is beyond the scope of this thesis. By using the dimension-
wise utilities and the chosen relative weights, the overall utility is computed as shown in 
Table 3.1. 
 

ICompVideo interface 
 Profile 

Nr. frame rate 
in (s-1) 

resolution 
Overall 
utility 

1. 30  352x288 0.92 
2. 30 176x144 0.76 
3. 30 128x96 0.72 
4. 20 352x288 0.72 
5. 20 176x144 0.56 
6. 20 128x96 0.52 
7. 10 352x288 0.51 
8. 10 176x144 0.35 
9. 10 128x96 0.31 

Table 3.1: Utilities for a VideoServer Component 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

An application may attain the same utility value (for example, same frame rate and 
resolution as perceived by the user) under different resource conditions through what is 
known as resource trade-off. Compression techniques are applied to achieve resource 
trade-off. In our approach, the QoS-Profiles specify the NFPs of components. 
Compression types are considered to be properties of the component together with the 
QoS dimensions. This simplifies the mapping of Utility values to resources as there is 
explicitly the compression type in the association although compression is transparent to 

 
Figure 3.5: NFPs in a VideoServer Component 
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the user (assuming it is lossless). If the compression type were to be implicit, the QoS-
Profiles would have to specify multiple resource assignment in order to achieve a certain 
QoS point.  
 
During negotiation, we are interested in finding a “better” solution among the set of 
possible solutions. This is achieved through appropriate selection of QoS-Profiles of the 
collaborating components. Let’s illustrate what we mean by a “better” solution. A more 
descriptive definition is given to our notion of “better” solution in sub-section 3.3.3. 
Suppose the user’s QoS requirement to be 20 frames/sec and a resolution of 176x144. 
The user’s overall utility is thus (0.6*0.66)+(0.4*0.4)=0.56. While profiles 1 to 5 (in 
Table 3.1) all satisfy the user’s requirement, profiles 1 to 4 constitute the “better” solution 
as their utility is higher than the solution that just fulfills the user’s requirement. In Table 
3.1, the profiles on top give “better” solution than the ones below. Profile 1 represents the 
optimal solution as it has the highest utility. The selection of QoS-Profiles is determined 
by the resource availability and the existence of a matching profile of the interacting 
components. The matching process uses the notion of conformance as discussed in the 
next section. 

3.3.2 Conformance Relationship between Constraints 
 
In QML [Frølund and Koistinen, 1999], a general conformance relation is defined 
between two constraints. For example, the constraint delay<10 “conforms” to the 
constraint delay<20. “Conforms” can be interpreted here as a “stronger than” 
relationship. The relationship between the two constraints is defined in this way due to 
the fact that delay is a decreasing QoS dimension (smaller values are better). 
Conformance can be applied to the QoS-Profile matching of interacting components. A 
QoS-Profile is an association of one or more constraints on a component’s 
implementation. Between two QoS-Profiles of interacting components, a conformance is 
said to exist when the constraints in the server’s provided-QoS contract conforms to the 
constraints in the client’s required-QoS contract. As explained earlier, a QoS-Profile 
defines the provided- and required-QoS contracts and the associated resource demand of 
a component. 
 
When components are distributed across containers, the conformance relationship must 
take into account the influence of the network and containers between the interacting 
components. Consider the example in Figure 3.6. 
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In Figure 3.6, the responseTime<20 is the constraint in the used interface of A (ICompA) 
while responseTime<10 is the constraint in the provided interface of B (ICompB). If the 
delay caused by the network and the containers is estimated to delay<5, 
responseTime<20 still conforms to responseTime<10. In general, responseTime<tA 
(constraint in ICompA) conforms to responseTime<tB (constraint in ICompB) if tA is less 
than the sum of tB and the delay introduced by the network and the containers. 
 
Consider now Figure 3.7 that depicts VideoPlayer and VideoServer components and the 
considered properties – frame rate and resolution – at each interface. The frame rate and 
resolution properties attached to the used stream interface of VideoPlayer constrain what 
the VideoPlayer expects from VideoServer. For the VideoServer, the frame rate property 
is the encoded frame rate of the streamed video. The question now is: how can we check 
whether the constraint in the VideoServer conforms to that required by the VideoPlayer? 
 
 

 

 
 

Figure 3.6: Two distributed interacting components that constrain the response time 
property in their provided and required interface 

 
 
 

Figure 3.7: NFPs of VideoPlayer (at used stream interface) and VideoServer (at 
provided stream interface) deployed on a client and server nodes 
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In the process of streaming, a packet-loss is said to occur when: (i) the packet never 
arrives its destination, or (ii) it arrives later than its scheduled play-out time. In the latter 
case, however, the delayed packet may be useful for subsequently received frames. These 
facts demonstrate that a frame rate property can be dependent on a different parameter, i.e. 
a packet-loss rate as opposed to a response time property, which is dependent only on a 
similar property, i.e., the end-to-end delay due to the network. Deriving a conformance 
relation when a NFP depends on dissimilar parameters is a difficult task. An in-depth 
study of the conformance relationship is beyond the scope of this thesis. 
 
In our modeling of streaming applications, we assume no packet-loss to occur when the 
network is not congested (i.e. there is enough end-to-end bandwidth for the streaming) or 
there is enough buffer size in the VideoPlayer component. We define the conformance 
relationship for the frame rate and resolution properties based on this assumption as 
follows: 

 
frameRate (in ICompVP) = frameRate (in ICompVS) 
resolution (in ICompVP) = resolution (in ICompVS) 

 
Conformance relations for security properties are given in Section 4.2.3. We will next 
formalize the QoS contract negotiation as a constraint satisfaction problem. 

3.3.3 QoS Contract Negotiation as a Constraint Satisfaction 
Problem (CSP) 

 
The objective of the QoS contract negotiation is the selection of QoS-profiles so that the 
composed application meets the user’s QoS requirements and preferences. As a goal, the 
negotiation aims at finding a “better” solution among the set of possible solutions. 
 
A CSP consists of n variables x1, x2, …, xn, whose values are taken from finite, 
discrete domains D1, D2, …, Dn, respectively, and a set of constraints on their values. In 
general, a constraint is defined by a predicate. That is, the constraint pk(xk1, …,xkj) is a 
predicate that is defined on the Cartesian product Dk1 × … × Dkj. This predicate is true iff 
the value assignment of these variables satisfies this constraint. Solving a CSP is 
equivalent to finding an assignment of values to all variables such that all constraints are 
satisfied. Since constraint satisfaction is NP-hard in general, a trial-and-error exploration 
of alternatives is inevitable [Yokoo and Hirayama, 2000]. 
 
For the formalization, we take the variables to be the QoS-Profiles of the collaborating 
components C1, C2, …, Cn. There are n variables – P1, P2, …, Pn – each representing 
the QoS-Profiles in use by C1, C2, …, Cn respectively. The domain of each variable is the 
set of all QoS-Profiles specified for a component. The constraints are classified as 
conformance, user’s and resource. As explained earlier, a QoS-Profile Pi defines the 
provided and required QoS contracts and the corresponding resource demand of a 
component, which we would designate as: Pi.Offered, Pi.Required, and Pi.Resources 
respectively. 
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In the offered and required QoS contracts, one or more QoS characteristics (e.g. delay, 
frameRate) are constrained with values (e.g. delay < 5 or frameRate = 15s−1). 
Suppose d1, d2, ..., dk to be the considered QoS characteristics. The conformance 
constraint between Pi and Pj is valid if there is conformance between each corresponding 
QoS characteristics in Pi and Pj. We designate the conformance requirement as 
(Pi.Required.dj => Pj.Offered.dj). This conformance constraint can apply to a single 
method of the interface implemented by the components or to the entire methods. 
  
As an example, for the application that involves three components as depicted in Figure 
3.8, the QoS contract negotiation problem is formalized as in Table 3.2, where all the 
components are assumed to be deployed in a single container. For multiple containers, 
the conformance and resource constraints must be modified as follows. The influence of 
the network and the containers must be incorporated in the conformance constraint for 
those components connected across containers. For example, for a response time (RT) 
property, the constraint can be modified as: (Pi.Required.RT => Pj.Offered.RT + 
tdelay), where tdelay is the delay due to the network and containers. tdelay is assumed to be 
a constant for the period the negotiation agreement is valid. In the resource constraint, for 
two containers case, three relations must be defined instead of only one relation as shown 
in Table 3.2. These are for components deployed on the client, on the server, and for 
components connected across containers. 
 

 
Variables P1, P2, and P3 (these are QoS-Profiles in use by  C1, C2, and C3 - 

Figure 3.8)  
Domains: for each component, a set of QoS-Profiles are specified by the 

component developer 
User’s 
Constraint 

user’s QoS Requirement on d1 > P1.Offered.d1 
… 
user’s QoS Requirement on dk > P1.Offered.dk 

Conformance 
Constraint 

(P1.Required.d1 => P2.Offered.d1) 
… 
(P1.Required.dk => P2.Offered.dk) 
(P2.Required.d1 => P3.Offered.d1) 
… 
(P2.Required.dk => P3.Offered.dk) 

Resource 
Constraint 

P1.Resources + P2.Resources + P3.Resources ≤ Resourcesavail 

Table 3.2: Formalizing QoS contract negotiation as a constraint satisfaction problem 

 
Figure 3.8: Example Component-Based Application 
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Resource types specified in a certain QoS-Profile, Pi, could be CPU, memory, and 
network bandwidth. The resource constraint is based on the following assumption. 
Suppose there are n components - C1, C2, …, Cn - deployed in a container and these 
components need m different resource types. Let Ri be the resource demand of Ci, Rall is 
the resource demand of the n components, and Ravail is the available resource. That is, 
 
 ],...,,[ 21 imiii rrrR =  where ijr is the resource demand of Ci for the jth resource type 

 ],...,,[ 21
avail

m
availavail

avail rrrR =  

nall RRRR +++= ...21  
]...,...,...,...[ 212221212111 nmmmnnall rrrrrrrrrR +++++++++=  where the addition 

used is arithmetic 
 
The resource constraint is said to be met under the following conditions. 
 

121111 ... n
avail rrrr +++≥  

222122 ... n
avail rrrr +++≥  

… 
nmmm

avail
m rrrr +++≥ ...21  

 
There are enough resources for the n components if and only if for each type of resource, 
the resource requirement is not larger than the corresponding available resource. 
 
In CSP there can be several solutions that satisfy all the constraints. Each solution is 
assumed to be as good as any other one. But, when considering the QoS of applications, 
some solutions may be “better” than others. One of the challenges we face in the QoS 
contract negotiation is the choice of a “better” solution according to some goal (for 
example, user’s satisfaction). In order to address this challenge, modelling the negotiation 
as a Constraint Satisfaction Optimization Problem (CSOP) would be helpful.  
 
The term Constraint Satisfaction Optimization Problems (CSOP) is used to refer to the 
standard CSP plus the requirement of finding optimal solutions [Tsang, 1993]. A CSOP 
is defined as a CSP together with an optimization function f (this function is also called 
objective function) which maps every solution to a numerical value. The task in a CSOP 
is to find the solution with the optimal (minimal or maximal) value with regard to the 
application-dependent optimization function f.  
 
We use as an objective function, f, the utility function that is described in sub-section 
3.3.1. Defining a utility function is a difficult task due to the inter-dependency of QoS-
dimensions. In this thesis, we simply assume that f is given as a weighted sum of 
dimension-wise utilities. An in-depth treatment of utility functions for applications with 
multiple QoS-dimensions is beyond the scope of this thesis and is still an open problem. 
 
We define next certain terms to clarify their usage in this thesis. 
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Definition 1: a solution to a QoS contract negotiation constitutes a selection of 
implementations and QoS-Profiles of the cooperating components that fulfils the 
conformance, user’s, and resource constraints. 
 
Definition 2: a solution A is a “better” solution than another solution B if A’s utility is 
higher than that of B. The successive improvement on a “better” solution would 
ultimately lead to an optimal solution. 
 
Definition 3: an optimal solution is a solution to the QoS contract negotiation problem 
that gives the highest utility. 
 
The aim of finding a “better” solution is to find a good solution rather quickly as 
compared to finding the optimal solution, which is usually NP-hard. Multiple parties are 
normally involved in a negotiation and what is “better” for one (e.g. the service provider) 
might not be so for the other (e.g. consumer). In this section, our notion of a “better” 
solution is based on a user’s satisfaction. We will explain how to incorporate the interests 
of two parties in the negotiation when we address the multiple-clients scenario in sub-
section 4.1. 
 
It might not be possible to find a solution at all as per Definition 1 above. In this case, the 
CSP is said to be over-constrained and how this situation is treated is explained in sub-
section 3.4.5. 

3.4 The Proposed Approach 
 
To find an optimal solution for the resulting CSP (Table 3.2), in a naïve approach, all 
possible assignments of the variables (QoS-Profiles) must be considered. Then, QoS-
profiles that give the highest utility and where all constraints are met are selected. This 
approach requires an exhaustive search of all possible configurations. In general, 
constraint satisfaction is NP-hard [Yokoo et al, 1998]. For applications with few possible 
configurations, the naïve approach can be used. In other cases, heuristics must be applied 
to find good or what we call “better” solutions quickly. We tailor general-purpose 
heuristic mechanisms to help us find the “better” solution faster. We also propose our 
own problem-specific heuristics that help in decreasing the search space. Before 
discussing the various heuristics, we argue why the QoS contract negotiation should be 
performed in multiple phases. 

3.4.1 The need for multiple phases in the QoS contract 
negotiation 

 
While investigating QoS contract negotiation in various componentized application 
scenarios, we realize that the negotiation process is complex and less efficient unless 
some kind of phasing or ordering is applied. The complexity arises from the complex 
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dependency2 exhibited by component properties and from the different nature of these 
properties as illustrated below. 
 

1. Compression algorithms affect the QoS contract of components. For instance, in 
video streaming applications, for different video coding types, the frame rate and 
resolution properties take different values under the same resource allocation of 
each component. Actually the purpose of having various coding types is to 
achieve resource trading between the network bandwidth and the client or server 
CPU time in order to target environments with certain resource availability levels. 
If the negotiation between interacting components were to be performed on the 
three properties (coding type, frame rate, and resolution) together in a single 
phase, the negotiation would be more complex because of the resource trading. 
Our desire to find a “better” solution under conditions of resource constraints on 
clients, server, and network bandwidth further increases the complexity.  

2. Components may be implemented to use different communication protocols. 
Cooperating components must ensure their protocols agree in order to interact 
with one another. For instance, in a video streaming scenario, a component’s 
implementation may use RTP/UDP, or UDP, or TCP, or custom protocols. For 
applications with request/reply kind of communication too, different protocols 
may be specified for each of a component’s implementation. To simplify the QoS 
contract negotiation process, we require the negotiation on protocols be 
accomplished separately. Moreover, negotiation on the communication service 
models (e.g. RSVP, best-effort) that should exist between the multiple containers 
hosting the components must be performed before the QoS contract negotiation. 

3. When considering security properties, a component’s port may be specified with 
security protection goals and associated security mechanisms. In [Franz and Pohl, 
2004], a five level gradation (unconditional, if_possible, dont_care, if_necessary, 
on_no_condition) has been suggested to express protection demands for 
component interaction. Associated to certain levels of gradation, security 
mechanisms must also be specified. This can be on key type, key length, 
encryption algorithm, etc. Negotiating protection goals together with security 
mechanisms make the agreement process complex. 

 
The above three points demonstrate why a possible classification of properties and their 
negotiation can simplify the negotiation process. Let’s see how efficiency can be 
achieved through our classification scheme. Consider the application in Figure 3.9, which 
also shows the considered properties of the cooperating components. 
 
 

                                                 
2 The dependency here is different from the one that exists between provided- and required-QoS contracts, 
which is captured in a QoS-Profile; or the one that exists between two properties like security and response 
time, which we also assume to be captured in a QoS-profile. 
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The NFP specification of the components in Figure 3.9 will be done in such a way that 
for a certain value of coding type multiple values of frame rate and resolution are 
specified. If all properties were treated at the same level, the conformance constraint 
checking between provided-QoS contract and required-QoS contract of interacting 
components would have to be evaluated on all the properties in an atomic manner. 
Suppose VideoServer is specified by considering 3 coding types, and for each coding type 
10 different frame rates and 5 different resolutions are specified, respectively. This gives 
a total of 150 different alternatives in the component implementations and QoS-Profiles 
of VideoServer alone. Similarly VideoDecoder is specified with the same number of the 
three properties (whose values don’t necessarily match those of the VideoServer’s). 
Finally, PostProcessor is specified with only one coding type and the same number of 
frame rates and resolutions to those of the other two components. The search space in the 
conformance constraint checking between the three components constitutes 
150*150*50=1125000 possibilities. If classification is considered, i.e. during the first 
phase negotiation is made on coding type, and in the second phase on the frame rate and 
resolution, then the search space would be 1*3*3 + 50*50*50 = 125009. The 
computation of the search space in the second phase is made by assuming that only an 
agreement is made on one coding property during the first phase. For the above specific 
example, the reduction in the search space is about 89%. It has to be emphasized, 
however, that this approach aims at finding a “better” solution with respect to a user’s 
preferences. This may lead to missing out “better” solutions with respect to global optima. 
 
Next, we will give a general discussion on the classification of properties before 
describing the multiple phases that aim at simplifying the negotiation process and making 
it more efficient. 

3.4.1.1 On Properties and Their Classification 
 
Properties of either components or applications are usually classified along functional 
and non-functional lines. The functional properties describe what the system does and the 
NFPs describe how the system does it. The division of properties into functional and non-
functional isn’t always clear-cut and can depend on the user’s requirement toward the 
system’s services. Usually NFPs of a system encompass the following aspects: QoS-

 
 

Figure 3.9: Components and considered properties in a video streaming scenario 
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properties (e.g. timeliness, accuracy), security properties (e.g. integrity, confidentiality), 
and also higher level end-user properties (e.g. fees for used services). In the literature we 
usually find the terms non-functional properties, extra-functional properties, QoS 
attributes/properties, Ilities used interchangeably. NFPs are classified in a number of 
different ways depending on the context of use. We will next explore the different 
approaches on the classification of these properties.  
 
Probably many of the classification schemes base their approach on the ISO’s quality 
model [ISO/IEC, 1999], which provides a standard for a software quality model that can be 
applied to any software product by tailoring it to a specific purpose. This standard defines 
a two-part model for software product quality: (i) internal and external quality, and (ii) 
quality in use. The first part identifies six quality characteristics (functionality, reliability, 
usability, efficiency, maintainability, and portability) that are further subdivided into sub-
characteristics appropriate for internal and external quality. These characteristics are 
attributes of the software product that can be measured irrespective of context of use. The 
second part, i.e. quality in use, represents the user’s view of the quality of the system. It is 
measured in terms of results of using the system, as opposed to measurements of the 
software product itself. It identifies four characteristics (effectiveness, productivity, 
safety, and satisfaction) appropriate to characterize quality in use. 
 
QoS characteristics and categories have also been classified in [OMG, 2005] with the 
purpose of integrating them with the UML specification language and models. It defines 
particularly those characteristics important to real-time and high confidence systems, 
which describe the fundamental aspects of the various specific kinds of QoS and create a 
common framework that relates all of them. Standards like [ISO/IEC, 1999] [OMG, 2005] 
provide very general quality models and guidelines independent of domains and 
problems. They are rather more abstract and aim at the identification of characteristics 
and their grouping into higher level, say category, and lower level, say other category or 
sub-characteristics. These classification schemes usually say little or nothing about the 
correlation or dependencies of characteristics, which is usually the concern in a particular 
domain or problem.  
 
We find also in the literature [Preiss et al, 2001] quality attributes classified as run-time 
and life-cycle attributes. The run-time properties are the quality attributes that are 
discernable at system execution time. Performance, dependability, usability, etc. are 
categorized as run-time properties. Each property may also be further classified as main-
category – sub-category. For instance, the sub-categories identified for performance are: 
responsiveness, accuracy, footprint, timeliness, schedulability, etc. Life-cycle attributes 
(e.g. maintainability, portability) cannot be observed at run-time. They characterize 
different phases in a development and maintenance process. For maintenance, the sub-
categories identified are: evolvability, extensibility, modifiability, upgradeability, etc. 
The classifications made in [Preiss et al, 2001] and [ISO/IEC, 1999] are essentially the 
same with the former using the terminologies run-time and life-cycle to mean external 
and internal properties respectively. The characteristic – subcharacteristic categorization 
in the latter is the same as the main-category – sub-category categorization in the former. 
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In [Rosa et al, 2002] a language for describing non-functional properties, called 
ProcessNFL, has been proposed. ProcessNFL has been designed in order to support 
particular characteristics of non-functional requirements such as their strong correlations, 
often conflicts and non-direct implementation nature. We are particularly interested in 
ProcessNFL due to its abstractions for the relationships of properties. Non-functional (NF) 
issues are modelled by ProcessNFL with the following abstractions: NF-Attribute, NF-
Property, and NF-Action. 
 
NF-Attributes model non-functional characteristics that can be categorized in any of the 
following classes: (i) ones precisely measured (e.g. performance), (ii) ones stated through 
levels (e.g. security), and (iii) ones just present in the final product (e.g. transaction). A 
NF-Attribute is usually decomposed into primitive NF-Attributes that are more detailed 
or closer to implementation elements. This aspect of decomposing an attribute into 
several primitive ones resembles the characteristic-subcharacteristic categorization used 
in [ISO/IEC, 1999] [Preiss et al, 2001]. 
 
A Non-Functional Action (NF-Action) models either any software aspect or any 
hardware characteristic that affect the NF-Attributes described earlier. Software aspects 
mean design decisions, algorithms, data structures, etc. while hardware characteristics 
concern computer resources available for running the software system. Considering the 
software aspect, an algorithm used to compress data has a direct influence on the NF-
Attribute performance. The NF-Attribute security is not only affected by encryption 
algorithms but it is actually implemented by them. The notion of “correlation” is also 
captured in NF-Actions. Correlation refers to the fact that a NF-Action implementing or 
affecting a NF-Attribute may also have an effect over other NF-Attributes. For example, 
the NF-Action encryption algorithm implements elements of the NF-Attribute security. 
Furthermore, it also interferes in the NF-Attribute performance. Hence, the NF-Attributes 
performance and security are correlated. 
 
A Non-Functional Property (NF-Property) models constraints over NF-Attributes. In 
practical terms, the constraint defines a subset of NF-Actions that must be actually 
implemented in order to satisfy the NF-Property. For example, the NF-Property good 
performance expresses a constraint over the NF-Attribute (“be good”). In this particular 
case, only NF-Actions that contribute to achieve a good performance must be taken into 
account. 
 
Although ProcessNFL enables capturing the relationship between non-functional 
properties and the implementation elements and also correlations between properties, this 
has been done somewhat qualitatively (e.g. with the notions of in favour and against; or 
through levels like high, medium, and low). ProcessNFL uses a more general approach that 
isn’t directly applicable in the context of CBSE (which for e.g. demands notions that 
capture the relationship between provided and required QoS contracts as discussed in 
[Reussner et al, 2003]). 
 
On a different spectrum, there have been researches that in one or another aspect reasons 
about the characteristics of properties and their relationships. For instance, [Larsson, 
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2004] classifies properties based on composability. This classification is made according 
to the principles applied in deriving the system properties from the properties of 
components involved. A list of such classifications is directly-composable properties, 
architecture-related properties, derived properties, usage dependent properties, and 
system environment context properties. 

3.4.1.2 Coarse-grained and fine-grained properties/negotiation 
 
A coarse-grained property is a component implementation’s property that can be 
associated with one or multiple fine-grained properties. This association is created by the 
fact that for a certain value of the coarse-grained property the fine-grained properties can 
possibly take different values depending on the allocated resource (e.g. CPU, bandwidth, 
memory). Referring to the justifications we make for the phasing of negotiations, coding 
type and protocol qualifies to be coarse-grained properties while frame rate, resolution, 
and smoothness are fine-grained properties. Moreover, according to our classification, 
security goals specified for the component interfaces represent the coarse-grained 
properties while associated security mechanisms are fine-grained properties. 
 
Different values of a coarse-grained property are usually realized in different component 
implementations, while the associated fine-grained properties are specified in the QoS-
profiles (which describe different operating modes that can be chosen depending on their 
resource demands and the availability of the underlying resource). But this rule cannot be 
enforced. Such a rule can be a part of a component model that also incorporates different 
mechanisms of contract negotiation. 
 
Coarse-grained negotiation is the negotiation on coarse-grained properties while fine-
grained negotiation is the one on fine-grained properties. Both negotiations can be done 
between components and between the component containers. During the negotiation of 
properties between interacting components, a negotiation dependency exists between a 
coarse-grained property and its associated fine-grained properties. By this dependency we 
mean that the negotiation on the associated fine-grained properties should be performed if 
there is an agreement between the components on the coarse-grained property. A detailed 
discussion of these negotiation types is given in subsequent sections. 

3.4.1.3 Negotiation Ordering 
 
As pointed out earlier, the purpose of classifying negotiation objects (or NFPs) as coarse-
grained and fine-grained is to bring about negotiation orderings, thereby simplifying the 
negotiation process and making it more efficient. A graph that represents such ordering is 
shown in Figure 3.10. Properties A and B are coarse-grained while C, D, and E are fine-
grained properties. 
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In the first part of Figure 3.10, the fact that A and B are enclosed in a bigger circle 
indicates that properties A and B are negotiated together. The same thing applies to C, D, 
and E. The reason for negotiating several properties simultaneously is due to the fact that 
the QoS-Profiles of components define the multiple QoS properties collectively (this is of 
course specification language dependent). 
 
In order to achieve efficiency, we can introduce negotiation orderings between fine-
grained properties. This is possible, for instance, when certain properties are specified 
only for some components. Referring to Figure 3.9, the smoothness property is specified 
only for PostProcessor while frame rate and resolution are specified for all components. 
Under this condition, our strategy is to negotiate first properties that are common to all 
components to be followed by a negotiation on properties specified for some components. 
This is depicted in the second part of Figure 3.10 where among the fine-grained 
properties (C, D, and E), C and D are the common properties that are to be negotiated 
before E. 

3.4.2 Coarse-Grained Negotiation 
 
Container-Container negotiation 
 
In our approach, negotiation exists not only among distributed components, but also 
between containers. The container-container negotiation must precede the component 
negotiation. The containers may need to agree on the type of communication service 
model (which also has to be supported by the network between them), like guaranteed, 
priority-based, or best-effort. A client may not support RSVP (Resource Reservation 
Protocol) [Braden et al, 1997] while the server supports it. Hence, in such a case, RSVP 
based guaranteed connections cannot be used and the parties need to agree on a different 
communication service model. 
 

 
 

Figure 3.10: Negotiation ordering between coarse-grained (A and B) and fine-grained 
(C, D, and E) properties 
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Coarse-grained Negotiation between Components 
 
As explained in subsection 3.4.1, some examples of coarse-grained properties a 
component may have are: compression (coding) types, protocol, and security protection 
goals. In general, a coarse-grained property of a component is generally assumed to be 
specified with multiple values, which may be ordered or unordered. Ordering is followed 
to associate a preference with the various values. In our video streaming application 
scenario, video coding type is taken as a coarse-grained property for the interacting 
components. An example of a coding type property specification for a VideoPlayer 
component is shown in Table 3.3. 
 

 Video Coding 
1. H.264 
2. H.263 
3. MPEG 

Table 3.3: A specification for the video coding type property of a VideoPlayer 
component 

 
Similarly specifications are made for components that interact with VideoPlayer. For two 
interacting components, the list of values specified for a certain coarse-grained property 
might not match. The most preferred value for a client component may be the least 
preferred for a server component. Whose preference to take in the negotiation (client or 
server) is thus something to be decided before the negotiation starts. In our present 
strategy, we first take the client’s preference and give priority to it.  
 
To draw a comparison on preferences of values, let us take an analogy from a scenario 
where a customer buys a shoe from a shoe store. The customer has preferences on the 
colors of the shoe in the order: black, brown. The seller may also have preferences for 
selling a shoe of the particular brand desired by the customer as: brown, black, white. 
Following the customer’s preference, the black color is selected. Had we prioritized the 
seller’s preference, we would have a different selection, i.e. brown. In the shoe buying-
selling example, a number of attributes may be considered for negotiation like style, color, 
quantity, and price. For this particular example, a negotiation order can be followed such 
that first agreements must be reached on style, color, and quantity and when these are 
agreed upon, there is price negotiation. The three properties may be taken as coarse-
grained properties while price can be taken as a fine-grained property. 
 
Coarse-grained negotiation is successful when offer and expectation of the interacting 
components conform or match on the concerned property. In general, a conformance 
relationship is defined for each property to test whether the values of the corresponding 
properties match to each other. The idea of conformance (see subsection 3.3.2) in coarse-
grained and fine-grained properties is the same.  
 
If the negotiation results in the choice of a single value of the particular coarse-grained 
property, then we say a final decision has been reached on the property’s negotiation at 
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this phase. However, if the negotiation leads to an agreement on multiple values (both for 
ordered and unordered lists), the final decision on the values will have to be postponed 
until after the fine-grained negotiation. In the shoe buying-selling analogy discussed 
previously, a final decision is reached after the negotiation of the price, if the buyer and 
seller agree, say, on black and brown shoes. 
 
Algorithm 3.1 outlines the steps to be executed in the coarse-grained negotiation between 
a client and server component. It assumes that the multiple values of a property are 
ordered. The algorithm can be applied for the unordered case as we can always introduce 
temporary ordering on the unordered list. When multiple coarse-grained properties are 
specified, Algorithm 3.1 must be applied for each property individually. 
 
 
Algorithm 3.1: Coarse-grained negotiation algorithm between a client and server 
component 
 
/* INPUT:  
Specification of a coarse-grained property for a client and a server component 
 
 OUTPUT: agreed value(s) of a property stored in coarseAgreementList  
*/ 
 
List coarseAgreementList; 

 
void CoarseGrainedNegotiation() 

{ 

 coarseAgreementList  Empty;  
for(int I=1; I <= total number of values specified for the coarse-grained property in 

the client component; I++) { 

 Take the Ith preference of the client component; 
 if( there exists a conformant value specified for the server component ) { 

  coarseAgreementList  the Ith preference of the client component; 

 } 

 } 

} 

 
After executing Algorithm 3.1, coarseAgreementList may: 

i.) be empty – the whole negotiation process terminates with no agreement; or 
ii.) have a single value – final decision is reached on the property’s value at this 

phase; or 
iii.) have multiple values – final decision on the property’s value will have to be made 

during the fine-grained negotiation phase. 
 

3.4.3 Fine-grained Negotiation 
 
Fine-grained negotiation is the second and last phase of the contract negotiation process 
where appropriate implementations and QoS-Profiles are selected. This negotiation is 
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performed on the fine-grained properties like frame rate, resolution, delay, and security 
mechanisms corresponding to the agreed values of the coarse-grained properties in the 
first phase of the negotiation. 
 
The fine-grained negotiation is also responsible for finding a “better” solution in addition 
to just picking a solution that satisfies all the constraints. In order to accomplish this task, 
we extend the CSP into a CSOP framework as explained in subsection 3.3.3. Among the 
methods for tackling CSOPs are branch and bound (B&B) and genetic algorithms. 
 
To apply the B&B to CSOP, one needs a heuristic function h which maps every partial 
labelling to a numerical value. Let this value be called the h-value of the partial label 
(partial assignment). A global variable, referred here as BOUND, will be initialized to 
minus infinity in a maximization problem. The algorithm searches for solutions in a depth 
first manner. It behaves like chronological backtracking except that before a partial 
labelling is extended to include a new label, the h-value of the current partial labelling is 
calculated. If this h-value is less than BOUND in a maximization problem, then the sub-
tree under the current compound label is pruned. Whenever a solution is found, the 
optimization function, referred as f-value, is computed. This f-value will become the new 
BOUND (i.e. the best solution so far) if and only if it is greater than the existing BOUND 
in a maximization problem. After all parts of the search space have been searched or 
pruned, the best solution recorded so far is the solution to the CSOP [Tsang, 1993]. 
 
B&B is a very general framework. To completely specify how a process that applies 
B&B proceeds, we need to define policies concerning selection of the next variable and 
selection of the next value, which are usually chosen on the basis of efficiency. 
Moreover, we must also specify the objective and heuristic functions. We propose next a 
B&B technique for the fine-grained negotiation by explaining the schemes we used to 
define: 

1. Variable and value selection policies 
2. Objective function, f 
3. Heuristic function, h 

 
1. Variable and value selection policies 
 
A variable and value ordering is a general purpose heuristics used to solve CSPs 
efficiently [Russell and Norvig, 2002]. In this method, the variable to assign next is 
appropriately selected. After choosing the variable for assignment, the value to assign to 
must also be appropriately singled out. We employ this heuristic to make the B&B 
method more efficient. 
 
The variables (QoS-profiles) are ordered for assignment by topologically sorting the 
network of cooperating components. By such ordering, the front-end component (e.g. C1 
in Figure 3.8) becomes the minimal element. Users interact with a front-end component. 
The assignment starts from the minimal element and from there continues to the 
connected components, and so on. We assume that the cooperating components form 
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only a tree. Thus, the ordering also forms a partial order. As will be pointed out later, this 
particular variable ordering simplifies the definition of the heuristic function, h. 
 
The possible values of each variable, i.e. the QoS-profiles specified for each component, 
must be ordered from higher to lower quality. As contracts involve multiple QoS 
properties, the ordering is first based on the QoS property that is the most preferred by 
the user, then the next preferred, etc. Generally, we assume user’s preferences are 
different for each QoS property. This value ordering scheme is similar to lexicographic 
ordering. As an example, let’s assume (d1,d2,d3) and (e1,e2,e3) represent the QoS 
points in the provided QoS contract of two QoS-Profiles of a component that defines 
contracts for three properties. Then, (d1,d2,d3) is ordered on top of (e1,e2,e3) if d1>e1; 
or d1=e1 & d2>e2; or d1=e1 & d2=e2 & d3>e3. 
 
2. Objective function, f 
 
The objective function, f, is the utility function that has been described in subsection 
3.3.1. The utility value is obtained by computing the utility function at the selected 
quality points of the application. 
 
3. Heuristic function, h 
 
At any point during the assignment of values to variables, the QoS property of the 
partially completed solution can be taken as the provided-QoS contract of the front-end 
component. Hence, h can be calculated based on the utility function by taking the QoS 
points in the provided-QoS contract of the front-end component. Because of the ordering 
strategy of variables we followed, h need to be computed only at the beginning of each 
iteration, that is, when the front-end component is assigned a new value. If the new 
assignment to the front-end component violates the user’s constraint, the choice is 
retracted and the sub-tree under the particular assignment will be pruned. The process 
will then re-start with a new assignment. 

3.4.3.1 On the Algorithm Design 
 
Based on the problem formalization (subsection 3.3.3), three different types of constraints 
exist in the QoS contract negotiation. These are: user, conformance, and resource 
constraints. The conformance constraint is defined for two connected components while 
user’s constraint is specified between a front-end component’s provided QoS contract 
and the user’s QoS requirement. Hence, both conformance and user’s constraints are 
binary constraints. The resource constraint on the other hand is an n-ary constraint, which 
is specified for a group of components. Figure 3.11 shows the categorization of 
components where a resource constraint can be specified for each of the groups. For 
instance, the resource demand of profiles of components deployed in the client container 
must not be greater than the available resource in the client node. Or, for components 
connected across containers, the network bandwidth demand in the selected profiles must 
be smaller than the available bandwidth. As depicted in Figure 3.11, we assume that the 



 3. QoS Contract Negotiation in Multiple Component Containers 

56 

components that collaborate to provide the requested service to the user must be known 
to the algorithm. 
 

The fact that there exist different types of constraints (binary and n-ary) and components 
are deployed in multiple containers brings about some unique issues that have to be 
considered while designing the algorithm. One such issue is the decision on when to 
check the validity of resource constraints. For this, one possibility is to check the resource 
constraint after conformant profiles of all components have been selected. But, breaking a 
problem into sub-problems usually helps in finding the solution quickly [Russell and 
Norvig, 2002]. Applying this notion, the algorithm will check the resource constraints at 
three instances – i.e. after conformant profiles have been found for: (i) components 
deployed in the client container, (ii) components connected across containers, and finally 
(iii) for components deployed in the server container. 
 
As the components are distributed in a client and server containers, one approach to 
follow in the algorithm would be to first find QoS-Profiles of components deployed on 
the client container, which satisfy the three constraints and at the same time give a 
“better” solution. Then apply the same procedure to components connected across 
containers and lastly to components deployed on the server container. This approach 
would have a shortcoming as it could lead to more backtrackings if the bottleneck 
resource were either the network bandwidth or server resources. What we will follow in 

 
 

Figure 3.11: Components deployed in a client and server container to provide a 
service to the user 
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the algorithm is to find conformant profiles for components deployed on both containers 
and check the resource constraints three times as explained above. This is done iteratively 
– from low to high quality – in search of a “better” solution. When a bottleneck resource 
is found, the algorithm stops (unless some refinements have to be made, which is possible 
by appropriately choosing ordering on the negotiation of the multiple properties). We will 
next give the algorithm together with some descriptions. 
 

Algorithm 3.2: Fine-grained negotiation algorithm for components deployed in client and 
server containers 

 
/* 
INPUT:  
1. The QoS-Profiles of each component that are ordered from low to high quality. The     
collaborating components are assumed to be ordered too as C1, C2, …,Cn following the 
variable ordering strategy explained in subsection 3.4.3. 
2. User’s QoS requirements and preferences 
3. Available resources at the client and server nodes and the end-to-end bandwidth 
 
OUTPUT: 
A QoS-Profile for each component that satisfy the user’s, conformance, and resource 
constraints. In addition to fulfilling all the constraints, the selected QoS-Profiles provide 
a “better” solution (see Definition 2. in subsection 3.3.3) 
 
*/ 
 
// constants used as return types 
   public static final int NO_RESOURCE = 0; 
   public static final int SUCCESSFUL = 1; 
 
   List<QoSProfiles> selectedQoSProfiles; 
5 

   enum CG { ON_CLIENT, ON_SERVER, ACROSS_CONTAINERS } // CG is short for component group 
 
   boolean FineGrainedNegotiation() 

   { 
10 if(ConformanceConsistencyCheck()== false) return false; 

 selectedQoSProfiles ← Empty; 

 BOUND ← user’s QoS requirement; 

 for(int i=0; i<components[0].profiles.size(); i++) { 

  Quality-Point ← provided QoS contract of the ith profile of components[0]; 
15  if((h(Quality-Point) ≥ BOUND) && (Quality_Point fulfils user’s constraint)) 

  { 

   int result = FindAppropriateProfiles(); 
   if(result == SUCCESSFUL) { 

    selectedQoSProfiles ← the newly selected QoS-Profiles; 
20    BOUND ← the newly computed BOUND; 

    continue; // try further for a better solution 

   } 
   else if(result == NO_RESOURCE) { 
    break; // this is a termination condition 
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25   } 

  } 

 } 
 if(selectedQoSProfiles is Empty) return false else return true; 

   } 
30 
   int FindAppropriateProfiles() 

   { 

 FindConformantProfiles(CG.ON_CLIENT); 
 if(CheckResourceConstraints(CG.ON_CLIENT)) { 
35  FindConformantProfiles(CG.ACROSS_CONTAINERS\CG.ON_CLIENT); 

  if(CheckResourceConstraints(CG.ACROSS_CONTAINERS)) { 

   FindConformantProfiles(CG.ON_SERVER\CG.ACROSS_CONTAINERS); 
   if(CheckResourceConstraints(CG.ON_SERVER))      

    return SUCCESSFUL; 
40   else return NO_RESOURCE; 

  } 

  else return NO_RESOURCE;   

 } 
 else return NO_RESOURCE; 
45 } 

 
 
The following is a short description of the variables and functions used in Algorithm 3.2. 
 

Variables or Functions used in 
Algorithm 3.2 

Description 

selectedQoSProfiles 
(Lines 4, 11, 19, 28) 

A list data structure that stores the QoS-Profiles of all 
components, which fulfil all the constraints 

CG, 
CG.ON_CLIENT, 
CG.ACROSS_CONTAINERS, 
CG.ON_SERVER 
(Lines 6, 33-38) 

CG.ON_CLIENT, CG.ON_SERVER, and CG.ACROSS_CONTAINERS 
refer to components on the client, components on the server, 
and components connected across containers respectively 
(Figure 3.11). Two functions in this algorithm take a type of 
CG as input argument. 

ConformanceConsistencyCheck() 

(Line 10) 
Performs consistency check (i.e. for the conformance 
constraint) to every connected pair of components. In doing 
so, it would remove QoS-Profiles from a component if no 
conformant profile were specified for the connected 
component. 

BOUND 
(Lines 12, 15, 20) 

The best Quality-Point so far obtained. BOUND is initialized to 
the user’s QoS requirement as the algorithm aims at finding a 
solution that just meets the requirement or even a better one.  

Components[0] 
(Line 13) 

the front-end component 

components[0].profiles.size() 
(Line 13) The total number of QoS-Profiles specified for Components[0]. 

QoS-Profiles associated with each component are stored in 
profiles, which is a list data structure contained within each 
component.  

Quality-Point 
(Lines 14, 15) 

Represents the quality points in terms of the considered 
properties (e.g. (20fps, 352x288)). This information is 
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Variables or Functions used in 
Algorithm 3.2 

Description 

extracted either from the provides or uses part of a QoS-
Profile. 

h 
(Line 15) The heuristic function that is explained in subsection 3.4.3. h 

is computed only at the beginning of each iteration and  
h(Quality-Point) = Quality-Point 

FindConformantProfiles() 
(Lines 33, 35, 37) 

Finds QoS-profiles, which are conformant to one another for 
all the components specified in the input argument. At each 
iteration this function improves the solution by one step based 
on the specified QoS-profiles. 

CheckResourceConstraint() 
(Lines 34, 36, 38) 

Checks whether there are enough resources for the current 
selection. 

 
 

A component may belong to two groups in CG (ComponentGroup). For example, a 
component deployed on the client container and that also communicates across containers 
belongs to ON_CLIENT and ACROSS_CONTAINERS. The notation “\” in Algorithm 3.2 is 
read as “less”. 

3.4.3.2 Algorithm Termination and Complexity 
 
FineGrainedNegotiation() in Algorithm 3.2 iteratively searches for a “better” solution. It 
starts by selecting appropriate profiles from the first component, which is the front-end 
component, until the last one following the designated component ordering. At each 
iteration, the conformance checking between two connected components (Ci, Cj) where 
Ci is the parent of Cj is performed as follows. Starting from (C1, C2) where C1 is the front-
end component, a new QoS-Profile is chosen for C1 at the beginning of the iteration each 
time selecting a QoS-Profile with a better quality (Lines 13-14). For selecting a profile 
for C2, not all of its profiles have to be checked for conformance consistency with that of 
the already chosen profile of C1. The checking, nevertheless, is performed starting from 
the profile of C2 selected in the previous iteration and moving upwards in the array of 
profiles from lower to higher quality. This step is repeated for (C2, C3) and in general for 
(Ci, Cj). That is, a profile for Cj is chosen using a similar procedure provided that a profile 
for Ci has been selected in the previous steps. The termination of the algorithm is 
guaranteed because of the fact that the network of components constitutes only a tree and 
the number of QoS-Profiles of each component is finite. 
 
The algorithm could terminate by finding a solution or without finding one. If the list 
selectedQoSProfiles (Lines 4,11,19,28) is non-empty after the execution of 
FineGrainedNegotiation(), then a solution has been found. In this case, 
selectedQoSProfiles contains QoS-Profiles of each component that satisfy user’s, 
conformance, and resource constraints for chosen values of coarse-grained properties. 
Moreover, the solution obtained gives at least the utility that is required by the user. If 
selectedQoSProfiles remains empty, then there exists no solution that satisfies all the 
three constraints, which is an over-constrained situation. 
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In the algorithm design, we assumed that the collaborating components form only a tree. 
ConformanceConsistencyCheck()(Line 10) performs a consistency check to connected 
components -  (Ci, Cj) where Ci is the parent of Cj. The conformance consistency 
checking runs from j=n down to 2 assuming the components are designated as C1, C2, …, 
Cn. This step removes QoS-profiles from the domain of Ci for which no conformant 
profiles have been specified in Cj. The purpose ConformanceConsistencyCheck() is to 
achieve node- and arc-consistency in terms of the user’s and conformance constraints and 
thus enables the remaining part of the algorithm to run with no backtracking. It has been 
proved that a search in a binary CSP is backtrack-free if the constraint graph of a problem 
forms a tree and both node- and arc-consistency are achieved in the problem [Freuder, 
1982]. Assuming the total number of components is n and the number of QoS-Profiles 
specified for each component is d, the complexity of ConformanceConsistencyCheck () is 
O(nd2). As a solution can be found without backtracking, the complexity of finding the 
first solution in FineGrainedNegotiation() is O(nd2+nd) = O(nd2). The solution can then 
be improved to the next higher utility with O(nd). 

3.4.4 Combining Coarse-grained and Fine-grained negotiations 
 
As explained earlier, the whole negotiation is performed in two phases: coarse-grained 
and fine-grained. The following algorithm combines these two phases. 
 

Algorithm 3.3: Negotiation algorithm for components deployed in client and server 
containers 

 
void Negotiation() 

{ 
CoarseGrainedNegotiation(); // Algorithm 3.1 

 
if( there is agreement in at least one value on coarse-grained properties ) { 

for( each agreed value in the coarse-grained negotiation) { 
  FineGrainedNegotiation(); // Algorithm 3.2 

} 

  

Compare the utility of the solutions obtained for the different coarse-

grained property values; 

 

Choose the solution that gives the highest utility. If two or more 

solutions have the same highest utility, choose the one that consumes less 

client resource pertaining to the assumed negotiation goal; 

 } 

} 

 
Multiple values could be agreed upon during the coarse-grained negotiation. A good 
example is the use of different compression algorithms whose purpose is to achieve 
resource trading between the network bandwidth and the client or server CPU time. This 
resource trading is one of the reasons for change of quality or utility in the solutions 
obtained in the fine-grained negotiation. 
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The choice between multiple solutions is made based on a negotiation goal. Users and 
service providers usually have conflicting interests. Each wants to maximize its interest. 
As we are dealing in this Section with a single client – single server negotiation, we take 
the user’s satisfaction as the goal that drives the negotiation. In the multiple clients – 
single server scenario (subsection 4.1), we show how the service provider’s interest can 
be incorporated. In general, however, the negotiation goal itself may be the subject of 
prior negotiation. In this thesis, we limit the negotiations only on the NFPs by assuming 
the goals have already been agreed upon. 

3.4.5 Dealing with Over-constrained Situation 
 
In Algorithm 3.2, the QoS Contract negotiation has been modeled with hard constraints. 
The algorithm is always expected to give a solution that meets all the constraints. No 
solution will be provided (i.e. selectedQoSProfiles in Algorithm 3.2 remains empty), 
if at least one constraint is violated. This is inflexible as far as the user is concerned, who 
may prefer to get a solution, though a degraded one. For instance, if a user requires a 
response time to a certain operation be less than 5 sec and no configuration can be found 
that fulfills this demand, then the user could opt for a response of, say, 6 sec rater than no 
solution. In some instances, it may be difficult to find a solution that meets all constraints 
whatever the user’s requirement may be. Under all these situations, the CSP is said to be 
over-constrained. We discuss next how to generalize Algorithm 3.2 to handle some of the 
over-constrained cases. 
 
One of the approaches used to deal with an over-constrained CSP is to extend the CSP 
framework into what is called Partial Constraint Satisfaction Problem (PCSP) [Freuder, 
1989]. In [Freuder, 1989] maximal constraint satisfaction algorithms, which seek a 
solution that satisfies as many constraints as possible, have been given. The algorithms 
compare potential partial solutions based on the number of constraints violated and 
choose the one that results in minimum number of constraint violations. But these are 
some general metrics. The particular nature of the problem at hand should dictate the type 
of strategy to be used in finding the partial solution. 
 
In our case, we have three different types of constraints: user, conformance, and resource. 
When considering multiple QoS-dimensions, the conformance constraint applies to each 
dimension. Violating a resource constraint cannot be compared with that of conformance 
constraint violation and hence simply counting the violated constraints is not applicable 
to our problem. In search of a partial solution, which is achieved by weakening the 
problem, we have to examine how each violation affects the outcome and try to identify 
the constraints that can be tolerated for violation. Allowing either resource or 
conformance constraints to be violated would make it difficult to predict the QoS 
property of the whole application. We currently follow the strategy where the user’s 
constraint is systematically violated to reach to a solution. This in effect means, the user’s 
QoS requirement is relaxed in such a way that the QoS property of the application is a 
degraded one in order to obtain a solution that satisfies the conformance and resource 
constraints.  
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Algorithm 3.2 terminates without finding a solution under the following cases: 

(i) User’s constraint is always violated even though a configuration that meets the 
resource and conformance constraints exists. 

(ii) Resource constraints cannot be met although a configuration that meets the user’s 
constraint exists. 

(iii) Conformant constraints cannot be met when trying to find a solution that satisfies 
the user’s constraint. 

 
In the above cases, (i) and (iii) are similar except that we treat the conformance of the 
user’s requirement and the provided QoS contract of the front-end component different 
from the conformance between required- and provided-QoS contract of any two 
interacting components of the application. User’s constraint relaxation is applied in 
finding a partial solution for the three cases mentioned above. 
 
For the non over-constrained problem, the algorithm in Algorithm 3.2 improves a 
solution step-by-step by going one level up in the available QoS-profiles. The relaxation 
step in the over-constrained case uses a similar approach to get a “better” solution from 
the available partial solutions. It successively goes one step down on the list of QoS-
profiles3 of the front-end component to degrade the user’s QoS requirements. Algorithm 
3.2 is then applied to the weakened problem. If this step also terminates without 
producing a solution, the user’s QoS requirement is relaxed further and the above process 
is repeated. This step runs until a solution is obtained or the user’s requirement cannot be 
further relaxed. The algorithm that incorporates these steps is shown in Algorithm 3.4.  
 
The assumptions we have made concerning how user’s requirements and preferences are 
captured are as follows. A user can define the relative weight of the different QoS 
properties; and a user can define the minimum quality of each property below which is 
unacceptable. A more robust user interface can be designed but this is beyond the scope 
of this thesis. It should however be emphasized that it is essential not to make the user 
interface complex when trying to make it more robust. One possible user input 
mechanism that can be incorporated in Algorithm 3.4 in the future is the prioritization of 
a user towards the QoS properties. Out of the n QoS-dimensions considered in the 
application, the user may be interested only in m (where m < n) properties. This might 
imply that the negotiation can continue even if there are contract violations in the n − m 
QoS properties. 
 

Algorithm 3.4: A fine-grained negotiation algorithm that performs user’s QoS 
requirement relaxation during an over-constrained situation 

 
/* 
INPUT:  
1. The same inputs as Algorithm 3.2.  

                                                 
3 The QoS-Profiles are sorted from low to high quality based on user’s preference 
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OUTPUT: 
A QoS-Profile for each component that satisfy user’s, conformance, and resource 
constraints. The user’s constraint may be relaxed systematically in case of an over-
constrained situation.  
*/ 
 

   List<QoSStatement> userProfile; 

 
   boolean RelaxedFineGrainedNegotiation() 

   { 
5 userProfile  user’s QoS requirement;    

   if(FineGrainedNegotiation() == false) { // Algorithm 3.2 
  while(RelaxUserQoSRequirement()) { 
   if(FineGrainedNegotiation())// Algorithm 3.2 
    return true; 
10  } 

  return false;    

 } 
 return true; 

   } 
15 
   boolean RelaxUserQoSRequirement()  

   { 

 List<QoSStatement> frontEndProfile; 
 for(int i=0; i<components[0].profiles.size(); i++) { 
20  frontEndProfile  provided-QoS contract of the ith profile of components[0];  
  if(IsConformant(userProfile, frontEndProfile)) { 
  if(i > 0) { // relaxation can be performed 

   userProfile  provided-QoS contract of the (i-1)th profile of components[0]; 
   return true; 
25  } 

  else return false; // no more relaxation possible 

  } 

 } 

 return false; 
30 } 

 
The following is a short description of the variables and functions used in Algorithm 3.4. 
 

Variables or Functions used 
in Algorithm 3.4 

Description 

components[0]  
(Lines 19, 20, 23) The front-end component. 

components[0].profiles.size() 
(Line 19) The total number of QoS-Profiles specified for Components[0]. 

QoS-Profiles associated to each component are stored in 
profiles, which is a list data structure contained within each 
component.  

frontEndProfile  
(Lines 18, 20, 21) Stores the provided-QoS contract of the front-end component of 

a particular QoS-Profile. 
userProfile This global variable is initialized first with the user’s QoS 
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Variables or Functions used 
in Algorithm 3.4 

Description 

(Lines 1, 5, 21, 23) requirement, which may be specified for one or more QoS 
properties. Whenever RelaxUserQoSRequirement() is invoked, it 
is updated with a QoS Statement that is one step inferior to its 
previous value. 

IsConformant() 
(Line 21) The function takes two arguments of type QoS Statement (this 

describes a QoS constraint to one or more QoS properties). It 
returns true if the constraint in the second argument conforms 
to that of the first. 

 
FineGrainedNegotiation() can be replaced by RelaxedFineGrainedNegotiation() 
in Algorithm 3.3 to take advantage of over-constrained considerations. 

3.4.6 Centralized, Distributed, and Hybrid Solutions 
 
The algorithms listed in Algorithm 3.1 and Algorithm 3.2 are centralized algorithms. In 
general, we can identify three approaches for performing the coarse-grained and fine-
grained negotiations. These are: 
 

i.) Centralized Solution: Only one of the containers makes the selection of 
QoS-profiles. 

ii.) Distributed Solution: Both the client and server containers are responsible 
for the selection of appropriate QoS-profiles. 

iii.) Hybrid Solution: Both the client and server containers are responsible for 
the selection of appropriate QoS-profiles. It differs from the pure distributed 
case as it tries to harness local or concurrent executions after determining 
bottleneck resources with a centralized approach. 

 
In the centralized solution, the responsible container must have access to the 
configuration information (meta-data) of all components deployed on the client and 
server containers. The distributed solution doesn’t require this as each container is 
responsible for the selection of the components’ profiles it hosts and communicates with 
the other container to resolve constraints that concern both of them.  
 
Owing to the nature of our problem, a pure distributed solution results in large inter-
container communication overhead and hence we do not consider it as an option. To 
elaborate on this let us consider the example in Figure 3.12. Assume the client container 
hosts 2 components C1 and C2 and the server container hosts C3 and C4. Assume C2 
interacts with C3 across containers. In the pure distributed solution, the client container 
finds appropriate profiles for C1 and C2. So does the server container for C3 and C4. The 
client must communicate with the server about the selected profile of C2 as this profile 
has to match the selection for C3 and the resource demand of the interaction between C2 
and C3 must be met by the available network bandwidth. Assume the server finds out that 
the selected profiles of C2 and C3 do not match. In this case, either the client or server has 
to change their previous selection. Suppose the server changes its selection to match the 
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client’s profile and communicates this to the client. It may happen that no matching 
profiles exist on the client. Even if a matching profile for C2 can be found, no profile for 
C1 might exist that matches the new selection for C2. In a nutshell, there is no guarantee 
on the number of communications required to reach an agreement. 
 

 
 
In the hybrid solution, the bottleneck resource is first isolated with a centralized approach. 
Thereafter further negotiations could continue on local containers. The main idea is that 
some NFPs might be specified only for local components and hence negotiating on these 
properties only locally helps in speeding up the negotiation process. For example, let’s 
assume that in a video streaming application frame rate and resolution properties are 
specified for both VideoPlayer and VideoServer, which are deployed in client and server 
containers respectively. However, in addition to these NFPs, smoothness property might 
be specified for VideoPlayer. In Algorithm 3.2, all the fine-grained properties are 
negotiated atomically. That implies for the aforementioned example, Algorithm 3.2 
negotiates frame rate, resolution, and smoothness at the same time. The other possibility 
is to make negotiation orderings on the fine-grained properties such that negotiation is 
performed first on frame rate and resolution and then on smoothness. This ordering 
doesn’t happen arbitrarily. One notable difference between the three properties is that 
while frame rate and resolution are specified for components deployed in both containers, 
smoothness is specified for a component deployed only on one of the containers. 
 
We can think of the hybrid solution as consisting of the following two steps: (i) 
Centralized solution applied on part of the fine-grained properties; and (ii) localized 
negotiation applied to client and/or server containers alone. The hybrid solution could 
speed up the negotiation process under the following conditions: (i) the bottleneck 
resource is isolated faster (if for e.g. the bottleneck is the network bandwidth), and (ii) the 
second negotiation step is applied only locally, thereby to a reduced search space.  
 
In order to make comparisons between the centralized and hybrid solutions, we divide the 
time of negotiations into two phases. Phase 1 is the initial negotiation process where 
contracts are to be established for the first time. Phase 2 is for re-negotiations that take 
place after contracts have already been established. Negotiations in Phase 2 are 
performed to adjust the occurrence of contract violations or to achieve better contracts in 
case more resources are available.  
 

 
 

Figure 3.12: Example application in which components are deployed in two containers 
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When considering initial negotiations, both solutions can be advantageous in different 
aspects. Here, we use the number of inter-container communication and level of 
concurrency/computation as measures for the comparison. For the centralized solution, 
inter-container communication is required when:  

(i) the QoS-Profiles of interacting components and local resource conditions are 
exchanged just before the negotiation, and  

(ii) the established contracts are communicated finally. 
 
For the hybrid solution, inter-container communication is required when:  

(i) the QoS-Profiles of interacting components and local resource conditions are 
exchanged just before the negotiation (this is used to determine the bottleneck 
resource),  

(ii) the two containers agree to do local negotiations to refine the solution, and  
(iii) each container confirms the completion of the independent negotiations and 

exchanges relevant contracts. 
 
Therefore, as far as minimizing the inter-container communication is concerned, the 
centralized solution is better than the hybrid solution. On the other hand, the hybrid 
solution can take advantage of the multiple step negotiation that includes local 
negotiation and find a solution faster, especially if the required level of computation is 
high. 
 
When we see this from a different angle, the centralized solution relieves the burden of 
negotiation for one of the containers (of course at the expense of the other container!) and 
it could also be simpler for implementation. If there is a shortage of resources in one of 
the containers while there is abundance on the other, the centralized solution can be more 
efficient.  
 
The other difference between the two solutions comes in Phase 2, i.e. for negotiations 
after contracts have been established. As contracts can be violated, monitoring of 
contracts is constantly performed. For instance, if a contract is established between a 
VideoPlayer and a VideoServer component, the contract contains such terms as the frame 
rate the VideoPlayer expects from the received stream and the frame rate the VideoServer 
provides. The contract monitoring checks whether the received stream is not in violation 
of the contract. When there is a contract violation, re-negotiations are usually performed 
to gracefully adapt the contract. In a different spectrum, once contracts are established, 
resources are monitored to see if more resources become available. When this happens, 
contracts can be upgraded for more quality output through re-negotiations. 
 
In the centralized solution, communication between containers is required to exchange 
the following information:  

(i) any contract violation detected, and  
(ii) the monitoring of available resources (which is a periodic activity). 

 
This results in increased communication between containers, thus taking up some of the 
useful network bandwidth. 
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However, for the hybrid solution, no such communication is required so long as the 
solution can be provided locally. The communication would be required if the 
responsible container cannot perform the negotiations on its own and needs assistance 
from the other container. Suppose a contract between components in the client is violated 
because of less available resource in the client node, then other contracts in the server or 
for components connected across containers aren’t affected. Thus the renegotiation can 
be done only for the contracts in the client. We apply here the idea of contract re-
negotiation dependency. This dependency captures the effect of violation of one contract 
on another. 
 
According to [Yokoo et al, 1998], a negative point for a centralized solution is (i) there 
can be a cost of translating one’s knowledge into an exchangeable format and (ii) with 
some problems, gathering all information to one agent is undesirable or impossible for 
security/privacy reasons. But, in our case we assumed these as less critical due to the 
nature of our problem. In the first place, for our problem, privacy issues are not that 
relevant. Data to be exchanged are QoS-Profiles of collaborating components, and 
possibly the processor and other pertinent information of the client node, which may be 
needed to convert the resource demand of components that have been measured in a 
different environment. We compared the various solutions based on concurrency level 
and number of inter-container communications. 
 
We conclude this section by summarizing the ultimate approach we are following. Owing 
to the nature of our problem, which is tightly coupled, we don’t consider a pure 
distributed solution. The main reason is that it results in an undetermined number of 
inter-container communication, which usually influences the efficiency of the negotiation 
process. The choice between centralized and hybrid solutions is also not clear-cut. It 
depends on the number of components and QoS-Profiles involved and the environment 
conditions. The decisions as to whether to apply the centralized or the hybrid approach 
can be made just before the start of the negotiation based on some input conditions. The 
particular choice depends on the cost of inter-container communication and the required 
level of computation. If the former is expensive, a centralized solution would be better. 
Nevertheless, if the problem at hand requires a lot of computation and the environment 
offers faster inter-container communication, the hybrid solution would be the more 
efficient approach. During run-time re-negotiations, the hybrid solution is the more 
preferable choice as it avoids unnecessary overheads when it is applicable to make re-
configurations locally. 

3.5 Example and Validation 
 
The contract negotiation algorithms and protocols that we proposed can be validated by 
considering various scenarios in the distributed componentized applications (e.g. video 
streaming and stock quote) that we studied. We generally assume that component 
developers specify QoS-Profiles through: (i) extensive measurements, or (ii) some 
analytical means, or (iii) the combination of the two.  
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In order to validate the proposed approach, we have to produce QoS-Profiles of 
components. QoS-Profiles contain offered QoS contract, Required QoS contract and 
resource demand at a component level. In this section, we analyze a video streaming 
application and examine different scenarios in order to validate our contract negotiation 
approach for a single client – single server setting. 

3.5.1 Video Streaming 
 
In this application scenario, the following assumptions have been made: 

• A high quality media file is pre-encoded and available for streaming to the clients. 
The media file is assumed to have a constant bit rate. 

• Component’s QoS-Profiles are provided by the component developer in a kind of 
tabular form.  

 
Components that are identified to exist in the Video Streaming application are: 
VideoServer and VideoPlayer. The network and the container that exists between the 
interacting components can be modeled by a connector abstraction. A component 
assembly diagram depicted in Figure 3.13 shows the NFPs considered in the video 
streaming application. For VideoServer, we assume packets are equally spaced and 
transmitted in a regulated fashion (in equal space). This removes jitter from the output of 
VideoServer. In actual case, where many video streams are transmitted from a video 
server, some jitter may be introduced. 
 
VideoServer 
 
This component reads pre-encoded media files from the server or directly reads from a 
capturing device and streams video and audio to clients. For a given input source (e.g. 
mpeg1 at 30fps and 640X480), VideoServer is capable of streaming at different frame 
rate, resolution, and coding. Moreover, this component may stream the media in different 
protocols (e.g. RTP/UDP, UDP, or a custom transport protocol). The component’s 
coarse-grained and fine-grained properties are specified in Figure 3.14 to Figure 3.16. 
VideoServer is abstracted with multiple implementations, which, as is usually the case, 
differ on the supported coarse-grained properties (Figure 3.14 & Figure 3.15). Within 
each implementation, a number of different QoS-Profiles can be defined (Figure 3.16). 
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 Protocol   Coding 
1. RTP/UDP  1. Mpeg 
2. UDP  2. Mpeg4 
3. TCP  3. h264 
   4. h263 

 
 

Profile 
Nr. 

Provides 
ICompVideo 
(frameRate, resolution) 

Resource (bandwidth in Kbps) 

1. 30 s-1, 352X288 450 
2. 30 s-1, 176X144 250 
3. 10 s-1, 352X288 200 
4. 10 s-1, 176X144 150 

 
The QoS-Profiles of VideoServer in Figure 3.16 is shown for specific value of coarse-
grained properties. Similar specifications should be given for each protocol and coding 
properties. In this case, we expect to have a maximum of 12 [3 (for protocol) × 4 (for 
coding)] specifications similar to the one in Figure 3.16. In addition to the coarse grained 
properties, these specifications would differ in their resource demand. In general, the 
values of fine-grained properties defined for each coarse-grained property may be 
different. For instance, not all coding algorithms support similar resolutions in video 
streaming. 
 

 
 

Figure 3.13: A component diagram showing considered NFPs in a componentized 
video streaming application 

Figure 3.14: VideoServer’s protocol 
properties 

Figure 3.15: VideoServer’s coding 
properties 

Figure 3.16: The QoS-Profile of VideoServer for mpeg4 coding and 
RTP/UDP protocol 
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VideoPlayer  
 
The VideoPlayer component reads media data streamed by VideoServer for playback at 
the client node. It then passes the uncompressed audio and video data for rendering it 
over screen and microphone. Two stream interfaces (a sink and a source) are identified 
for this component. This component, like VideoServer, is also capable of receiving 
streams at different frame rate, resolution, coding, and protocol.  
 
The VideoPlayer starts the playback only after the buffer associated with it is filled with 
the streamed data. During playback, the buffer can get completely emptied (buffer 
starvation). In this case, the playback is halted until there is complete re-buffering. In our 
approach, before this happens, a contract violation is encountered. To cope with this 
violation, a contract re-negotiation must be initiated, which possibly results in a degraded 
output. 
 
Similar to the properties of VideoServer, the various properties of VideoPlayer are 
depicted in Figure 3.17 to Figure 3.19. 
 
 

 Protocol   Coding 
1. RTP/UDP  1. Mpeg 
2. UDP  2. mpeg4 
3. TCP  3. h264 
   4. h263 

 

 
 

Profile 
Nr. 

uses ICompVideo 
(frameRate, resolution) 

provides ICompVideo 
(frameRate, resolution) 

Resource (bandwidth in Kbps, 
CPU time in, memory) 

1. 30 s-1, 352X288 30 s-1, 352X288  
2. 30 s-1, 176X144 30 s-1, 176X144  
3. 10 s-1, 352X288 10 s-1, 352X288  
4. 10 s-1, 176X144 10 s-1, 176X144  

 
We have not included jitter in our analysis. We could have considered jitter by including 
it as a property in the input of the VideoPlayer. For minimizing or removing this jitter 
from the output stream, the component’s memory (buffer) requirement is high. This 
conforms to the fact that the buffer in the player is used to remove the network jitter. To 
decrease the starting delay of VideoPlayer, the memory requirement should be minimized 

Figure 3.17: VideoPlayer’s 
protocol properties Figure 3.18: VideoPlayer’s coding 

properties 

Figure 3.19: The QoS-Profile of VideoPlayer for mpeg4 coding and RTP/UDP 
protocol 
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but this happens at the expense of increased jitter in the output. Depending on the 
particular application (user’s requirement), users could prefer a small starting delay at the 
expense of jitter or otherwise. 
 
Connector 
 
A connector is an abstraction to model the network and containers that exist between 
interacting components. One way of finding the properties of a connector is through 
measurements performed off-line at light load conditions in the network and the nodes. A 
second approach is to obtain the property through run-time probing and prediction just 
before the contract negotiation begins.  
 
The connector is assumed to have the properties: end-to-end delay and packet-loss rate. 
Each property could depend on a number of parameters. For instance, end-to-end delay 
depends on: 

• the data rate of the video stream, and  
• the load conditions of the network - the higher the load the higher is the delay due 

to an increase in the queuing delay at the routers. 
 
The packet-loss rate depends on: 

• The load conditions of the network – the higher the load the higher the loss rate. 
 
One can see the dependence of the end-to-end delay to the throughput of the video stream 
from the requirement of a video conferencing application. For example for a video 
streaming at 30 frames/s, each frame must be delivered, decoded, and displayed in less 
than 33ms. For a video of 10 frames/s, this time is 100ms. 
 
How to measure/estimate the connector properties? 
 
Just before the contract negotiation begins, the end-to-end delay (either in the form of 
RTT (round-trip time) or one-way delay) is measured. The same setup to measure the 
end-to-end available bandwidth can be used. 
 
Theoretically speaking, an end-to-end delay has a fixed and variable component. When 
sending a packet from some source to some sink, the delays encountered in the path are 
classified as: serialization delays (fixed); propagation delays (fixed); and queuing delays 
(variable) [Prasad et al, 2003]. The end-to-end delay is the sum of serialization, 
propagation, and queuing delays. 
 
The serialization delay of a packet of size L at a link of transmission rate C is the time 
needed to transmit the packet on the link, equal to L/C. The propagation delay of a 
packet at a link is the time it takes for each bit of the packet to traverse the link (this value 
depends on the length of the path), and is independent of the packet size. Finally, queuing 
delays can occur in the buffers of routers or switches when there is contention at the input 
or output ports of these devices. 
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If we assume there is no congestion in the network, the end-to-end delay measurement 
doesn’t depend on the current load of the network (and also on the data rate as the end-to-
end delay is defined on packets and not on frames) and it depends on the packet size of 
the probe that is used in the measurement and on the length of the path (number of hops). 
To have a realistic value either the packet size used in the probing is made equal to the 
packet size of the video packets to be streamed or some kind of estimation should be 
made. Usually, applications use some default maximum value for the size of the packets. 
Hence, as a starting point, even without measurement, we can calculate the end-to-end 
delay by assuming no congestion and from the given values of the packet size and link 
capacities of each hop. 

3.5.2 Demonstrating the Proposed Approach 
 
We first conducted an experiment to specify VideoPlayer and VideoServer. The 
VideoPlayer component was developed using the JMF [Sun Microsystems, 2001] 
framework, and VideoServer abstracts the video media file, where the streams are pull 
data sources. The original media file (a 10 minute video clip) was encoded into many 
files with different frame rate, resolution, and encoding algorithm. This was achieved 
with the tools: JMF Studio and Framerate Converter (evaluation version). When 
converting the frame rate, the parameters used in Framerate Converter were: 
Interpolation Method – Linear (fast); Interpolation range – 50; and Resample method – 
Linear (good). 
 
The PC on which VideoPlayer ran and the measurement was conducted had a 
configuration of: AMD Athlon(tm) XP 1600+, 1GB RAM, Windows 2000 Professional, 
and Java 2 version 5. The PC was connected through a 100 Mbps LAN to the PC that 
hosted VideoServer. The purpose of the whole measurement was not ultimate accuracy 
but to obtain approximate data, which would enable us to validate our contract 
negotiation protocol and algorithms. Windows Performance Monitor was used to 
measure the resource usage of the components. Average bandwidth and CPU percentage 
time were considered. No anomalous behavior was observed during the experiment. 
 
The measured QoS-Profiles of VideoPlayer, with coarse-grained properties coding=mp42, 
protocol=UDP, are shown in Table 3.4. Similarly, the measured data for VideoServer for 
the same coding and protocol properties are shown in Table 3.5. As the measurements 
were taken under light load conditions, it is assumed that the network bandwidth 
requirement of VideoServer was taken to be the same as that for VideoPlayer. Moreover, 
the measured CPU requirements of VideoServer are too small (in the range of 0.1%). 
Hence, the CPU time has been left out from Table 3.5 as it is too small to have influence 
in our validation.  
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VideoPlayer  VideoServer 
 uses 

ICompVideo 
(resolution, 
frame rate in 
s-1) 

provides 
ICompVideo 
(resolution, 
frame rate 
in s-1) 

resource  
(CPU in %, 
bandwidth in 
Kbps,  memory 
KB) 

 provides 
ICompVideo 
(resolution, 
frame rate in 
s-1) 

resource  
(bandwidth 
in Kbps) 

1. 352x288, 30 352x288, 30 13.23, 2165, 31.6  352x288, 30 2165 
2. 352x288, 15 352x288, 15 8.90, 2146,  30  352x288, 15 2146 
3. 352x288, 10 352x288, 10 8.91, 2076, 30.2  352x288, 10 2076 
4. 352x288, 5 352x288, 5 5.90, 1852, 29.5  352x288, 5 1852 
5. 352x288, 1 352x288, 1 2.31, 1644, 29.2  352x288, 1 1644 
6. 176x144, 30 176x144, 30 0.97, 321, 25.6  176x144, 30 321 
7. 176x144, 15 176x144, 15 0.90, 252, 18.8  176x144, 15 252 
8. 176x144, 10 176x144, 10 0.62, 208, 24.4  176x144, 10 208 
9. 176x144, 5 176x144, 5 0.39, 135, 24.0  176x144, 5 135 
10. 176x144, 1 176x144, 1 0.11, 34, 24.4  176x144, 1 34 
11. 128x96, 30 128x96, 30 0.51, 152, 26.1  128x96, 30 152 
12. 128x96, 15 128x96, 15 0.38, 120, 25.1  128x96, 15 120 
13. 128x96, 10 128x96, 10 0.64, 108, 24.5  128x96, 10 108 
14. 128x96, 5 128x96, 5 0.19, 70, 24.2  128x96, 5 70 
15. 128x96, 1 128x96, 1 0.04, 24, 22.9  128x96, 1 24 

 
 
 
Table 3.6 and Table 3.7 show similar measurements with the h263 coding. One can 
observe from the measurements for h263 and mp42 coding that for the same values in 
frame rate and resolution the h263 coding demands more CPU time and less network 
bandwidth as compared to the mp42 coding. 
  

VideoPlayer  VideoServer 
 uses 

ICompVideo 
(resolution, 
frame rate 
in s-1) 

provides 
ICompVideo 
(resolution, 
frame rate 
in s-1) 

resource  
(CPU in %, 
bandwidth in 
Kbps,  memory 
KB) 

 provides 
ICompVideo 
(resolution, 
frame rate in 
s-1) 

resource  
(bandwidth 
in Kbps) 

1. 352x288, 30 352x288, 30 26.75, 2220, 30.3  352x288, 30 2220 
2. 352x288, 15 352x288, 15 14.36, 1906, 29.8  352x288, 15 1906 
3. 352x288, 10 352x288, 10 9.86, 1546, 29.3  352x288, 10 1546 
4. 352x288, 5 352x288, 5 4.64, 1572, 28.8  352x288, 5 1572 
5. 352x288, 1 352x288, 1 1.84, 1569, 28.8  352x288, 1 1569 
6. 176x144, 30 176x144, 30 2.27, 164, 32.2  176x144, 30 164 
7. 176x144, 15 176x144, 15 1.04, 86, 25.7  176x144, 15 86 
8. 176x144, 10 176x144, 10 1.02, 55, 25.3  176x144, 10 55 
9. 176x144, 5 176x144, 5 0.38, 29, 25.1  176x144, 5 29 
10. 176x144, 1 176x144, 1 0.20, 7.8, 24.6  176x144, 1 7.8 
11. 128x96, 30 128x96, 30 0.68, 85, 25.8  128x96, 30 85 
12. 128x96, 15 128x96, 15 0.48, 42, 25.1  128x96, 15 42 

Table 3.4: QoS-Profiles of VideoPlayer for a UDP 
protocol and mp42 encoding  

Table 3.5: QoS-Profiles of 
VideoServer for a UDP protocol 
and mp42 encodingTable 3.4b  
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VideoPlayer  VideoServer 
 uses 

ICompVideo 
(resolution, 
frame rate 
in s-1) 

provides 
ICompVideo 
(resolution, 
frame rate 
in s-1) 

resource  
(CPU in %, 
bandwidth in 
Kbps,  memory 
KB) 

 provides 
ICompVideo 
(resolution, 
frame rate in 
s-1) 

resource  
(bandwidth 
in Kbps) 

13. 128x96, 10 128x96, 10 0.42, 28.8, 25.1  128x96, 10 28.8 
14. 128x96, 5 128x96, 5 0.25, 16, 24.5  128x96, 5 16 
15. 128x96, 1 128x96, 1 0.16, 4, 24.0  128x96, 1 4 

 

 
 
 
Let the coarse-grained properties specified for both VideoPlayer and VideoServer be as 
listed in Table 3.8 & Table 3.9. Furthermore, the values of these properties are assumed 
to be ordered as presented there. For each component, QoS profiles that specify different 
frame rates and resolution are expected to be specified for all combinations of coarse-
grained property values. 
 

VideoPlayer  VideoServer 
 Protocol   Coding   Protocol   Coding 
1. RTP/UDP  1. mp42  1. RTP/UDP  1. mp43 
2. UDP  2. mpg4  2. UDP  2. mp42 
3. TCP  3. h263  3. TCP  3. mpg4 
         4. h264 

 
The containers (nodes) at the client and server side likewise have supported properties as 
shown in Table 3.10 and Table 3.11. 
 

Client container  Server container 
Communication 
model 

Protocol  Communication 
model 

Protocol 

Best-effort RTP/UDP  Guaranteed RTP/UDP 
 UDP  Best-effort UDP 
 TCP   TCP 
 HTTP   HTTP 
    FTP 

 

 

Table 3.6: QoS-Profiles of VideoPlayer for a UDP 
protocol and h263 encoding  

Table 3.7: QoS-Profiles of 
VideoServer for a UDP protocol 
and h263 encodingTable 3.4b  

Table 3.8: Protocol and coding 
properties of VideoPlayer  

Table 3.9: Protocol and coding 
properties of VideoServer 

Table 3.10: Communication model and 
protocol properties of client container 

Table 3.11: Communication model and 
protocol properties of server container 
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The contract negotiation is performed in three steps, at each step selecting appropriate 
values for the specified properties. Steps II. and III. are combined in Algorithm 3.3. 

I. Container-Container Negotiation (subsection 3.4.2) 
II. Coarse-grained Negotiations between Components (Algorithm 3.1) 

III. Fine-grained Negotiations between Components (Algorithm 3.2) 
 
I. Container-Container Negotiation (subsection 3.4.2) 
 
The properties specified for the two containers are communication model and protocol 
(Table 3.10 and Table 3.11). The negotiation at this step could affect the result of 
subsequent negotiations. For instance, if the two containers cannot agree on the 
RTP/UDP protocol, the next negotiation step wouldn’t select this protocol even though 
both VideoPlayer and VideoServer support RTP/UDP. 
 
This negotiation results in the selection of: 

• one communication model type, i.e., best-effort, and  
• four protocols: RTP/UDP, UDP, TCP, and HTTP. 

 
II. Coarse-grained Negotiations between Components (Algorithm 3.1) 
 
We refer to Table 3.8 and Table 3.9 for this negotiation. The algorithm starts from the 
highest preference of the particular property of the client component (VideoPlayer in this 
case), and searches for a value in the corresponding property of the server component that 
is conformant to the chosen property. The negotiation culminates in the selection of: 

• coding: mp42 and mpg4 
• protocol: RTP/UDP, UDP, and TCP. 

 
In both properties, multiple values have been selected and the final decision is made after 
the fine-grained negotiation is performed for each combination of coding and protocol 
types. Supposing the protocol RTP/UDP and UDP were not selected during the 
container-container negotiation, the choices of these protocols would have been dropped 
at this step. 
 
III. Fine-grained Negotiations between Components (Algorithm 3.2) 
 
This is the final stage in the contract negotiation process. For the sake of clarity, we have 
divided the fine-grained negotiation into two stages: (i) a pre-processing step, and (ii) the 
main step. During the pre-processing step, necessary actions must be taken to get the 
input data and properly format them as required by the main step. 
 
Pre-processing Step: 
 
1. Get user’s QoS requirement and preference. 

 
Requirement and preference: 
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frame rate > 12fps, resolution = 176x144 
frame rate is preferred to resolution. 

 
2. Get configuration of all components. 
 

Some configurations have already been given in Table 3.4 to Table 3.7. We 
expect to have more of similar data specified for every agreed value of the coarse-
grained properties. 
 

3. Get available CPU and memory of all nodes and the end-to-end bandwidth 
between containers. 

 
For example, let the available resources be: 

Client: CPU 80%; Memory 500KB 
Server: CPU 50%; Memory 8000KB 
End-to-end bandwidth: 1Mbps 

 
Data on the microprocessor type and capacity and other pertinent information of 
each node need to be communicated as well. QoS-Profiles are generally measured 
on a node different from the one on which the components will be deployed. This 
makes the specification dependent on the processor speed, particular operating 
system, etc. of the node on which the measurements have been taken. In order to 
account for this dependency, either the values in the QoS-Profile must be 
converted to correspond to the new environment, or the available resources of the 
node on which the components are deployed should be changed to be consistent 
to the environment where the measurements have been taken. If the latter is opted 
for, the available CPU of the client and server given above as available resources 
have to be obtained after converting to the CPU time where the measurements of 
the QoS-Profiles of VideoPlayer and VideoPlayer have been taken respectively. 

 
4. Sort QoS-Profiles of each component according to user’s preferences 
 
To demonstrate this step, we take the specifications given in Table 3.4 and Table 3.5. The 
sorted profiles of VideoPlayer and VideoServer are shown in Table 3.12 and Table 3.13. 
 

VideoPlayer  VideoServer 
 uses 

ICompVideo 
(resolution, 
frame rate 
in s-1) 

provides 
ICompVideo 
(resolution, 
frame rate 
in s-1) 

Resource  
(CPU in %, 
bandwidth in 
Kbps,  memory KB) 

 Provides 
ICompVideo 
(resolution, 
frame rate 
in s-1) 

Resource 
(bandwidth 
in Kbps) 

1. 30, 352x288 30, 352x288 13.23, 2165, 31.6   30, 352x288 2165 
2. 30, 176x144 30, 176x144 0.97, 321, 25.6  30, 176x144 321 
3. 30, 128x96 30, 128x96 0.51, 152, 26.1  30, 128x96 152 
4. 15, 352x288 15, 352x288 8.90, 2146,  30  15, 352x288 2146 
5. 15, 176x144 15, 176x144 0.90, 252, 18.8  15, 176x144 252 
6. 15, 128x96 15, 128x96 0.38, 120, 25.1  15, 128x96 120 
7. 10, 352x288 10, 352x288 8.91, 2076, 30.2  10, 352x288 2076 
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VideoPlayer  VideoServer 
 uses 

ICompVideo 
(resolution, 
frame rate 
in s-1) 

provides 
ICompVideo 
(resolution, 
frame rate 
in s-1) 

Resource  
(CPU in %, 
bandwidth in 
Kbps,  memory KB) 

 Provides 
ICompVideo 
(resolution, 
frame rate 
in s-1) 

Resource 
(bandwidth 
in Kbps) 

8. 10, 176x144 10, 176x144 0.62, 208, 24.4  10, 176x144 208 
9. 10, 128x96 10, 128x96 0.64, 108, 24.5  10, 128x96 108 
10. 5, 352x288 5, 352x288 5.90, 1852, 29.5  5, 352x288 1852 
11. 5, 176x144 5, 176x144 0.39, 135, 24.0  5, 176x144 135 
12. 5, 128x96 5, 128x96 0.19, 70, 24.2  5, 128x96 70 
13. 1, 352x288 1, 352x288 2.31, 1644, 29.2  1, 352x288 1644 
14. 1, 176x144 1, 176x144 0.11, 34, 24.4  1, 176x144 34 
15. 1, 128x96 1, 128x96 0.04, 24, 22.9  1, 128x96 24 

 

 
 
Main Step: 
 
1. Invoke FineGrainedNegotiation() (Algorithm 3.2).  
 

ConformantConsistencyCheck() performs arc consistency to connected 
components as explained in subsection 3.4.3.2. For the specifications given in 
Table 3.12 and Table 3.13, for every QoS-Profile of VideoPlayer, there exists at 
least one QoS-Profile of VideoServer that is conformant. Thus, the given 
specifications remain the same after executing ConformantConsistencyCheck(). 
After this step, BOUND is initialized to the user’s QoS requirement (i.e. 176x144, 
12fps) and the selectedQoSProfiles list is initialized to empty. 

 
The selection of profiles is performed step by step starting from the front-end 
component, i.e. VideoPlayer, and going though all other components according to 
the ordering of the components. For the front-end component, unlike other 
components, we assume a conformance constraint to exist (which is actually the 
user’s constraint), between its offered QoS contract and the user’s QoS 
requirement. The solution is then improved in iterations.  
 
Next, we will describe the outcome at each iteration to demonstrate how the 
algorithm operates. Only iterations that invoke FindAppropriateProfiles() are 
analyzed below. 

 
1st Iteration 
 
(i) Quality-Point ← 176x144, 15fps 
 
(ii) FindConformantProfiles(ON_CLIENT) gets a QoS-Profile for VideoPlayer as: 

Table 3.12: Sorted profiles of VideoPlayer 
according to frame rate, resolution 

Table 3.13: Sorted profiles of 
VideoServer according to frame 
rate, resolution 
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profile selectedProfile for VideoPlayer { 

uses frameRate=15, resolution=176x144; 
provides frameRate=15, resolution=176x144; 
resources CPU=0.9% Memory=18.8KB Bandwidth=252Kbps; 

} 
 
(iii) CheckResourceConstraint(ON_CLIENT) is successful. 
 
(iv) FindConformantProfiles(ACROSS_CONTAINERS\ON_CLIENT) will select QoS-Profiles 

for VideoServer as: 
 
profile selectedProfile for VideoServer { 

provides frameRate=15, resolution=176x144; 
resources Bandwidth=252Kbps; 

} 
 
(v) CheckResourceConstraint(ACROSS_CONTAINERS) is successful. 
 
(vi) FindConformantProfiles(ON_SERVER\ACROSS_CONTAINERS) will not add any 

additional selected profiles as there are no components on the server other than 
VideoServer. 

 
(vii) CheckResourceConstraint(ON_SERVER) is successful in this iteration. 
 
(viii) The selectedQoSProfiles list will be updated with the selected QoS-Profiles of 

VideoPlayer ((ii) above) and VideoServer ((iv) above). BOUND is also updated with 
176x144, 15fps. 

 
2nd Iteration 
 
(i) FindConformantProfiles(ON_CLIENT) gets a new valid QoS-Profile for 

VideoPlayer as: 
 

profile selectedProfile for VideoPlayer { 
uses frameRate=15, resolution=352x288; 
provides frameRate=15, resolution=352x288; 
resources CPU=8.90% Memory=30KB Bandwidth=2165Kbps; 

} 
 
(ii) CheckResourceConstraint(ON_CLIENT) is successful. 
 
(iii) FindConformantProfiles(ACROSS_CONTAINERS\ON_CLIENT) will select a QoS-

Profile for VideoServer as: 
 

profile selectedProfile for VideoServer { 
provides frameRate=15, resolution=352x288; 
resources Bandwidth=2165Kbps; 

} 
 

CheckResourceConstraint (ACROSS_CONTAINERS) is NOT successful.  
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This implies the bottleneck resource is identified to be the network bandwidth. 
The temporarily selected QoS-Profiles in this iteration (steps (i) and (iii)) are 
invalidated. The appropriate configurations, hence, are those selected in the 
previous iteration, i.e. 1st iteration. 

 
2. The fine-grained negotiation (Step 1 above) is repeated corresponding to other 

values that have been agreed to during the coarse-grained negotiation. A final 
decision is made by comparing the results of the multiple fine-grained 
negotiations as explained in Algorithm 3.3. For the sake of brevity, let’s assume 
the only coding type agreed during the coarse-grained negotiation is mp42. Thus, 
the whole negotiation process ends at this step. The run-time contracts created are 
shown in Figure 3.20. These contracts contain information about the selected 
profiles and user’s requirements. A contract also contains other attributes as 
described in subsection 4.1.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Next, we will see how the negotiation performs for a different input condition. Let’s 
assume the user’s QoS requirement to be the same but the preference to be different, i.e. 
the resolution to have a higher preference over the frame rate. The one change in the pre-

Contract: User-VideoPlayer 
 

UserQoSRequirement { 
uses frameRate>12, resolution=176x144; 

} 
 
profile selectedProfile for VideoPlayer { 

uses frameRate=15, resolution=176x144; 
provides frameRate=15, resolution=176x144; 
resources CPU=0.9% Memory=18.8KB Bandwidth=252Kbps; 

} 
 
Contract: VideoPlayer-VideoServer 
 

profile selectedProfile for VideoPlayer { 
uses frameRate=15, resolution=176x144; 
provides frameRate=15, resolution=176x144; 
resources CPU=0.9% Memory=18.8KB Bandwidth=252Kbps; 

} 
 

profile selectedProfile for VideoServer { 
provides frameRate=15, resolution=176x144; 
resources Bandwidth=252Kbps; 

} 

 

Figure 3.20: User-VideoPlayer & VideoPlayer-VideoServer contracts  
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processing step is that the profiles are sorted based on first resolution and then frame rate 
as shown in Table 3.14 and Table 3.15. Following similar steps as the previous example, 
the algorithm would select 30fps, 176x144 as the VideoPlayer’s offered QoS contract. 
This also turns out to be the optimal solution. 
 

VideoPlayer  VideoServer 
 uses 

ICompVideo 
(resolution, 
frame rate 
in s-1) 

provides 
ICompVideo 
(resolution, 
frame rate 
in s-1) 

Resource  
(CPU in %, 
bandwidth in 
Kbps,  memory 
KB) 

 provides 
ICompVideo 
(resolution, 
frame rate in 
s-1) 

Resource  
(bandwidth in 
Kbps) 

1. 352x288, 30 352x288, 30 13.23, 2165, 31.6   352x288, 30 2165 
2. 352x288, 15 352x288, 15 8.90, 2146,  30  352x288, 15 2146 
3. 352x288, 10 352x288, 10 8.91, 2076, 30.2  352x288, 10 2076 
4. 352x288, 5 352x288, 5 5.90, 1852, 29.5  352x288, 5 1852 
5. 352x288, 1 352x288, 1 2.31, 1644, 29.2  352x288, 1 1644 
6. 176x144, 30 176x144, 30 0.97, 321, 25.6  176x144, 30 321 
7. 176x144, 15 176x144, 15 0.90, 252, 18.8  176x144, 15 252 
8. 176x144, 10 176x144, 10 0.62, 208, 24.4  176x144, 10 208 
9. 176x144, 5 176x144, 5 0.39, 135, 24.0  176x144, 5 135 
10. 176x144, 1 176x144, 1 0.11, 34, 24.4  176x144, 1 34 
11. 128x96, 30 128x96, 30 0.51, 152, 26.1  128x96, 30 152 
12. 128x96, 15 128x96, 15 0.38, 120, 25.1  128x96, 15 120 
13. 128x96, 10 128x96, 10 0.64, 108, 24.5  128x96, 10 108 
14. 128x96, 5 128x96, 5 0.19, 70, 24.2  128x96, 5 70 
15. 128x96, 1 128x96, 1 0.04, 24, 22.9  128x96, 1 24 

 
 
 
In another scenario, let’s take a case where the client resource is the bottleneck with all 
other conditions being unchanged. The user has still a higher preference for frame rate. 
 
Available resources: 

Client: CPU 8%; Memory 500KB 
Server: CPU 50%; Memory 8000KB 
End-to-end bandwidth: 10Mbps 

 
The CPU times shown above as available resources have been obtained after converting 
to the CPU time where the measurements of the QoS-Profiles have been taken. Following 
similar steps as done previously, the final outcome is: 176x144, 30fps as the 
VideoPlayer’s offered QoS contract. The bottleneck is felt first at the client. 
 
Finally, we will consider a case of an unsuccessful scenario. This may arise when we 
need to fulfill user’s QoS requirements while resource or/and conformance constraints 
cannot be met. 

Table 3.14: Sorted profiles of VideoPlayer 
according to resolution, frame rate 

Table 3.15: Sorted profiles of 
VideoServer according to 
resolution, frame rate 
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Let the input conditions be as follows: 
 
User’s requirement and preference: 

frame rate > 12fps, resolution = 176x144 
resolution is preferred to frame rate 

 
Available resources: 

Client: CPU 80%; Memory 500KB 
Server: CPU 50%; Memory 8000KB 
End-to-end bandwidth: 200Kbps 

 
The 1st iteration of Algorithm 3.2 cannot be completely executed as 
CheckResourceConstraint(ACROSS_CONTAINERS) returns an unsuccessful result. To 
handle this over-constrained condition, the user’s requirement will be relaxed in 
succession. This step depends on the QoS-Profiles of VideoPlayer (Table 3.14). In the 
first iteration of the relaxation step, the chosen degraded requirement is: resolution = 
176x144 and frame rate = 10fps. The negotiation results once more in an unsuccessful 
outcome. The relaxation is performed to reduce the requirement further to: resolution = 
176x144 and frame rate = 5fps. At this step, the negotiation turns out to be successful 
with selected profiles as below. 
 

profile selectedProfile for VideoPlayer { 
uses frameRate=5, resolution=176x144; 
provides frameRate=5, resolution=176x144; 
resources CPU=0.39% Memory=24KB Bandwidth=135Kbps; 

} 
profile selectedProfile for VideoServer { 

provides frameRate=5, resolution=176x144; 
resources Bandwidth=135Kbps; 

} 
 
 
If the user’s requirement had been given in a range (like frame rate 5 – 15 fps), this 
information would have been used in the relaxation step not to further relax the user’s 
requirement below the given minimum. 
 

3.6 Chapter Summary and Conclusions 
 
This chapter discussed the core of our approach. We started by drawing an analogy 
between QoS contract negotiation with the findings of the automated negotiation research. 
We described our model in a simplified form as follows: the negotiating parties are the 
components, the user, and the containers, with the latter having the role of arbitration. 
The collaborating components and the user put forward all their proposals (i.e. the 
multiple QoS-Profiles and the user’s QoS requirements and preferences) and the 
container analyzes the problems (i.e. the constraints) and dictates the solution for the 
parties. After a successful negotiation, contracts are established and will be monitored 
and enforced by the container. When no agreements can be reached, the user makes 
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concessions by way of automatic relaxation of his/her requirements. In the event that no 
agreement is still to be reached, the negotiation terminates with a “conflict deal”. 
 
We have formalized QoS contract negotiation as a constraint satisfaction problem (CSP). 
In the CSP modeling, the variables are taken to be the QoS-Profiles of the collaborating 
components. The domain of each variable consists of the set of all QoS-Profiles specified 
for a given component. The constraints are classified as conformance, user’s and 
resource. Furthermore, we have shown how to extend the CSP into a CSOP (Constraint 
Satisfaction Optimization Problem) in order to help us mainly address one of the 
challenges we face in the negotiation, i.e. the selection of a good solution. The notions of 
conformance and utility that are crucial to the problem formalization have been discussed 
by giving examples. 
 
Central to our solution is the classification of the QoS contract negotiation in multiple 
phases. We have argued that performing negotiation in multiple phases makes the process 
less complex and more efficient. The various phases we have identified are: coarse-
grained and fine-grained negotiations both for the collaborating components deployed in 
distributed nodes and for the respective component containers. This classification, we 
believe, helps better understand the nature of NFPs as illustrated by our categorization of 
NFPs as coarse-grained and fine-grained properties. A coarse-grained property is a 
component implementation’s property that can be associated with one or multiple fine-
grained properties. This association is created by the fact that for a certain value of the 
coarse-grained property the fine-grained properties can possibly take different values 
depending on the allocated resource (e.g. CPU, bandwidth, memory). As an example, we 
can take coding type and protocol properties as coarse-grained properties corresponding 
to frame rate, resolution, smoothness, and delay properties, which are the fine-grained 
properties. 
 
Pertaining to the classification scheme described above, we have proposed algorithms 
both for coarse-grained and fine-grained negotiations that aim to find a “better” solution. 
We have also shown how the two algorithms can be combined into a single algorithm 
that may be regarded as the main negotiation algorithm. The fine-grained negotiation 
algorithm has been developed based on the standard branch-and-bound (B&B) algorithm. 
As B&B is a very general framework, certain policies and functions must be defined in 
order to make use of it in the particular problem domain. For this, we have proposed 
appropriate variable and value selection policies, objective, and heuristic functions. We 
have also put forward a mechanism for relaxing constraints when the contract negotiation 
cannot produce a solution. This has been achieved by extending the CSP framework into 
a partial CSP. 
 
We also discussed the possible architectures for implementing the proposed algorithm. 
We discussed the pros and cons of three approaches: centralized, distributed, and hybrid. 
We concluded that owing to the nature of our problem we don’t consider a pure 
distributed solution as an option. The choice between centralized and hybrid solutions is 
also not clear-cut. It depends on the number of components and QoS-Profiles involved 
and the environment conditions. The decisions as to whether to apply a centralized or a 
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hybrid approach can be made just before the start of the negotiation based on certain 
input conditions. The particular choice depends on the cost of inter-container 
communication and the required level of computation. If the former is expensive, a 
centralized solution would be better. Nevertheless, for a case that requires a lot of 
computation and the environment offers relatively faster inter-container communication, 
the hybrid solution would be the more efficient approach. During run-time re-
negotiations, the hybrid solution is the more preferable choice as it avoids unnecessary 
overheads when it is applicable to make re-configurations locally. 
 
Finally, we validated the contract negotiation algorithms and protocols that we proposed 
by considering various scenarios in the distributed componentized video streaming 
application. In order to perform the validation, we have conducted first an experiment to 
specify the QoS contracts of the two collaborating components in the application: 
VideoPlayer and VideoServer. Then, based on the specified data, we have shown with the 
help of our algorithms how the contract negotiation can be performed in three phases: 
Container-Container Negotiation between the client and server containers, Coarse-
grained Negotiations between VideoPlayer and VideoServer, and Fine-grained 
Negotiations between VideoPlayer and VideoServer. 
 
This chapter has mainly dwelt upon QoS contract negotiation for the single client – single 
server scenario. As we pointed out in section 1.2, there are other important scenarios that 
need investigation. Two such scenarios - multiple-clients and multi-tier - are the subject 
of discussion of the next chapter. The general approach we have been following from the 
outset has been to fully or adequately address the issues for the single client – single 
server case and propose mechanisms for generalizing the solution to other scenarios. 
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4 Generalizing to Other Scenarios 
 
The contract negotiation algorithms and protocol we proposed earlier are based on the 
single client – single server scenario. There are other interesting scenarios in the real 
world applications. Some of these are: (i) multiple clients (users), (ii) multi-tier (e.g. a 
server component uses the service of another component deployed in a different 
container), and (iii) peer-to-peer. In this section, we would propose mechanisms for 
extending or adapting our solution to other scenarios. 

4.1 Multiple-Clients Scenario 
 
In the real world, service providers offer their service to multiple clients at the same time. 
In this respect, the single-client scenario that we have already addressed in Chapter 3 
isn’t directly applicable to real world problems. However, as we will demonstrate in the 
subsequent sections, the single client case can be taken as a basis for the multiple-clients 
scenario, which is the subject of discussion of this section. A pictorial representation of a 
multiple-clients scenario is shown in Figure 4.1. 
 

 
 

 
 

Figure 4.1: Multiple-Clients Scenario 
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We motivate our discussion of the multiple-clients scenario based on two example 
distributed applications: video streaming and stock quote. For the former, two different 
sub-scenarios can be identified.  

 
(i) Each client negotiates with the server about its requirement at a convenient 

time and in an independent manner (a case of video-on-demand). The content 
and quality of each stream might vary among the clients.  

 
(ii) The server broadcasts the same video stream to the clients. In this case, the 

broadcast has to account for the variations of clients in supporting video of 
different quality, coding, and protocol. 

 
One difference between the above two cases is that in (i) an independent contract 
between each client and the server is required while in (ii) there is a kind of group 
contract between the server and a set of clients. In (ii) a negotiation could take place 
between the server component and other intermediate components that convert the stream 
quality according to the capabilities of the various clients. 
 
The multiple-clients scenario poses new challenges which didn’t exist in our single-client 
scenario. Some of these are: 
 

(i) New clients constantly send requests for a service. During this period, some 
contracts of clients haven’t yet expired while certain clients leave the system. 
The new requests might follow a particular pattern or they could even occur in 
bursts. 

 
(ii) Multiple clients usually have varying requirements and expectations about the 

QoS delivered by the service provider. 
 

(iii) There is a need for considering new parameters like contract duration and 
time of service delivery. 

 
The first characteristic above has an impact on the server’s decision making process 
during the negotiation. The input about existing active contracts and probably future 
agreed contracts between the service provider and clients together with the new clients 
request pattern and rate should aid the service provider to forecast its resource availability 
or workload. This in turn helps the service provider to make appropriate (intelligent) 
decisions during contract negotiation. The decision might necessitate re-negotiation or 
even termination of certain active contracts in order to establish new contracts if the 
existing contracts have actually a lower priority/class. 
 
The second characteristic above emanates from the fact that some customers are willing 
to pay more for getting high quality service while others are content to get less quality for 
the amount they pay. For example, a stock quote service could report prices with different 
levels of timeliness, ranging from real-time to a fifteen minute delay to a 24-hour time lag. 
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This characteristic might in some cases stem due to variations in the client resources 
capacity, which is also termed in some literature as client heterogeneity. 
 
Contract duration (validity period) was not considered in our single-client scenario. The 
reason for this assumption is that it doesn’t influence the negotiation process as only one 
client is assumed to be involved. But, in the multiple-clients case, its consideration does 
have an impact in light of the first characteristic mentioned above. Next, we will address 
the three characteristics in more detail and propose a QoS contract negotiation approach 
for a multiple-clients scenario. 

4.1.1 Classes of users and service class 
 
Service providers can offer differentiated QoS to clients/users based on the amount the 
users pay at the service request time. Decisions on specific payment methods in QoS 
negotiation may require analyzing different business model options. In this thesis, we do 
not consider payment properties for handling differentiation in the quality of provided 
service. We would rather realize the differentiation by assuming the existence of different 
classes of users who are entitled to get “premium” or “normal” service; or users having 
golden, silver, or bronze cards, etc. The actual determination of how to classify a user, 
which could be based on a monthly user fee to the service provider, is out of the scope of 
this thesis. We simply assume that different classes of users exist. 
 
In order to be able to define classes of users and hence make a QoS differentiation, the 
services rendered by the service provider must be classified into different service classes. 
We define a service class as a service with a common functionality but different quality 
(e.g. response time, frame rate). The QoS property of the service classes depends on the 
specified QoS-Profiles of the collaborating components deployed on the server. For 
instance, if there is only one component on the server, its QoS-Profiles are used to derive 
the QoS properties of the service classes. 
 
Considering our video streaming scenario, only VideoServer is deployed on the server 
side. If the QoS-Profiles of VideoServer are specified for a combination of 5 different 
frame rates and 5 different resolutions, there are 25 different QoS-Profiles. In principle, 
25 different service classes can be defined based on the 25 QoS-Profiles. But, defining 
large number of service classes might make the management of client requests difficult. 
Moreover, the rationale for such a large number of service classes in the real world 
applications is questionable. Besides, it is advantageous to define the quality level of a 
service class in a range where chosen QoS points can deteriorate within this range 
reflecting the load conditions on the server. Hence, the 25 different QoS-Profiles can be 
grouped into 5 service classes (two of them are listed in Table 4.1). 
 
In addition to the QoS, certain other attributes can be associated with a service class, like 
priority, guarantee, etc. One service class may have a higher priority than the other. This 
would have an effect on the negotiation when more clients exist than the service 
provider’s capacity allows.  
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To demonstrate the concept of service class, we take an example from our video 
streaming scenario. Let’s assume that the video streaming provider classifies two service 
classes: High Quality and Low Quality. There is a one-to-one mapping between the 
service class and the user class, which we can identify as premium and normal. The user 
associated with premium class is entitled to get High Quality service while normal users 
get Low Quality service. In the subsequent discussions, we use High Quality and Low 
Quality interchangeably with premium and normal respectively. Table 4.1 shows the 
quality of service available in the two service classes. 
 
 

 premium service class 
(resolution, frame rate in s-1) 

normal service class 
(resolution, frame rate in s-1) 

1. 352x288, 30 176x144, 30 
2. 352x288, 25 176x144, 15 
3. 352x288, 20 176x144, 10 
4. 352x288, 15 176x144, 5 

Table 4.1: QoS points in a premium and normal service class 

 
The minimum quality assigned to premium and normal is 352x288, 15fps, and 176x144, 
5fps respectively. The service provider has the obligation to provide the minimum 
qualities specified in Table 4.1 in both service classes. Nevertheless, a client may prefer 
to get the service even if it is inferior to the promised quality (e.g. at 128x96, 10fps) 
rather than not getting a service at all (see subsection 3.4.5). Hence, more service classes 
could be defined based on the classification in Table 4.1. The following four classes are 
such an example: (i) premium, (ii) premium for which the minimum can be violated in 
some narrow range, (iii) normal, and (iv) normal for which the minimum can be violated. 
Under light load conditions, the service provider could agree to make a contract with 
176x144, 30fps (the maximum possible in the service class) as there is no shortage of 
resources. 

4.1.2 More Parameters Considered 
 
The additional parameters that we discuss here are service duration (contract duration or 
contract validity period) and time of service delivery. Still there could be other parameters 
that might affect the negotiation process. For example, when a customer/client requests a 
service for the first time, the service provider might want to attract him or her by making 
some concessions. In the rest of the discussion, we consider only service duration and 
time of service delivery. We give an example as to how these parameters can affect the 
negotiation process. 
 
i) Service or Contract Duration  
 
Service or contract duration refers to the time interval between the start and end time of 
the provided service. If an agreement is reached between the service provider and the 
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customer, service duration is the valid period of the contract in which both parties agree 
to fulfill their obligation. 
 
In our video streaming scenario, VideoServer might stream videos of various lengths, 
which ranges from very short video clips to long movie clips that may last hours. This 
implies that if the streaming rate is equal to the real-time play back rate, the resource 
demand of the particular instance of VideoServer must be available throughout the length 
of the video. That is, the contract validity period should be equal to the video length. The 
service duration also applies to the Stock Quote application scenario in which case 
customers may specify the time span they need to receive the stock quotes. In general, it 
is not always possible to know the service duration for some applications. For example, 
in a VoIP (or video conferencing) system, it is not known beforehand how long the voice 
and video communication will last. 
 
ii) Time of Service Delivery (waiting time) 
 
Time of service delivery refers to the point in time when the service is available to the 
customer with reference to the service request time. This can be in the immediate time or 
after some delay. The users could specify their preferences and give different weights on 
the QoS attributes and time of delivery.  
 
The consideration of the two parameters described above help the contract negotiation 
process to be performed in a more flexible and efficient way. For example, the service 
provider could propose the user multiple offers. This requires knowledge of the available 
resources at the time of service request and in future times. The available resources can 
be derived based on the currently active contracts and already agreed future contracts, if 
there are any. During the negotiation, if there is not enough resource for the requested 
service, two possible offers from the server’s side are: (i) to deliver the service at a 
degraded quality at the time of the service request, or (ii) to deliver the service at the 
requested (or even better) quality at a designated later time. The decision between the two 
offers can be made based on the preferences (relative weights) of the user towards the 
quality attributes and the time of service delivery. Users may get encouraged to agree to 
future contracts in order to get a superior quality.  
 
To elaborate further the effect of contract duration and time of service delivery on the 
contract negotiation process, we will discuss a case from our video streaming application. 
Let us assume five contracts exist between the service provider and five different clients 
at present. Cont1, Cont2, and Cont3 are active contracts while Cont4 and Cont5 are future 
agreed contracts. Each contract can be represented by the attributes shown in Figure 4.2. 
Additional attributes like terms of penalty (financial consequences when breaking 
contracts) may need to be included in the contracts. For our purpose, we focus only on 
the described elements of the contract. 
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Figure 4.2 also depicts how part of the attributes of a contract between a user and service 
provider can be derived from the selected QoS-Profiles of the collaborating components. 
Some of the attributes in Figure 4.2 (e.g. the resources) might not be required to be 
visible to the end-user. Nevertheless, they are important for the contract enforcement and 
monitoring modules of the system. 
  
In Figure 4.2, the first and third attributes represent the involved parties, i.e., customer 
and service provider. The second attribute describes the service class (or equivalently the 
user class). The fourth element represents the agreed quality attributes of the service as 
received by the user. The fifth attribute represents the client resources allocated for all 
components deployed on the client node. The sixth element specifies the server resources 
allocated for the service (components deployed on the server). The end-to-end bandwidth 
is included as server resource for the sake of simplicity. The last attribute is the contract 
duration, which may have two parts – the start time of the contract and the contract length. 
Some precautions must be taken when representing contract duration due to problems of 
time synchronization of distributed nodes. It is assumed that during the contract validity 
period all of the resources are required. 
 
Let us assume that the five contracts: Cont1, …, Cont5 are as given below. For the sake of 
generality, the duration of each contract is shown to take different values. 
 
Cont1(C1, premium, SP, Quality{352X288, 30fps}, clie{13%CPU,32KB}, 

serv{0.1%CPU,20KB,2.2Mbps}, {tjj, 20min}) 
Cont2(C2, premium, SP, Quality{352X288, 10fps}, clie{9%CPU,30KB}, 

serv{0.1%CPU,20KB,2Mbps}, {tii, 10min}) 
Cont3(C3, normal, SP, Quality{176X144, 30fps}, clie{1%CPU,26KB}, 

serv{0.1%CPU,20KB,0.3Mbps}, {tmm,15min}) 
Cont4(C4, premium, SP, Quality{352X288, 30fps}, clie{13%CPU,32KB}, 

serv{0.1%CPU,20KB,2.2Mbps}, {tk, 10min})  future contract! 
Cont5(C5, premium, SP, Quality{352X288, 10fps}, clie{9%CPU,30KB}, 

serv{0.1%CPU,20KB,2Mbps}, {tl, 20min})  future contract! 
 

 
 

Figure 4.2: Some attributes of a Contract between a service provider and a user 
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Figure 4.3 depicts the bandwidth resource4 allocated for each contract with respect to 
time. The current time is represented as tcurrent. Similar diagrams can be drawn for each 
resource type (e.g. CPU, memory) allocated for the contract. 
 

 
Figure 4.3 is used to derive and forecast available bandwidth at the time of the 
negotiation and in the future. Similar computations can be made for the other resource 
types. Diagrams of the total bandwidth usage and available bandwidth as derived from 
Figure 4.3 are depicted in Figure 4.4. We assumed a maximum of 100Mbps is supported 
at the server’s side in Figure 4.4. 
 

 
 
In Figure 4.4, it is assumed that no resources are shared among the contracts. That is, 
each contract exclusively requires the resources described in the contract. However, in 
some applications like multicasting or broadcasting, different contracts may share server 
                                                 
4 Strictly speaking, bandwidth is given in [Hz] while data rate is given in [bps] 

 
 

Figure 4.3: Bandwidth usage of active contracts and future agreed contracts 

 
 

Figure 4.4: Total bandwidth usage of active and future contracts and available bandwidth 
at the server 
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resources. An additional attribute may be required in Figure 4.2 to represent which 
contracts share resources. The significance of the diagrams in Figure 4.4 is that the 
service provider can forecast the available resources at the time of negotiation and 
thereafter in order to make multiple proposals during resource shortages. 

4.1.3 QoS Contract Negotiation in a Multiple-Clients Scenario 
 
In a negotiation between a client (customer) and a server (service provider), the choice of 
a concrete contract is guided by the negotiation goals of both the client and server. The 
customer desires to get the maximum possible quality at a given price or service class. On 
the other hand, the service provider aims at maximizing its revenue through higher and 
efficient resource utilization. Favoring one client over another (even if both are in the 
same user class) may also be considered by the service provider due to one client’s long-
term relationship with the service provider. In this thesis, a service provider’s negotiation 
goal is taken to be efficient (maximum) resource utilization while at the same time 
fulfilling user’s minimum QoS requirements in each service class. 
 
When multiple clients are involved in the contract negotiation, the key question is how to 
allocate resources to each client. The allocation then determines the QoS points for each 
client. In the literature, we find many resource allocation approaches for QoS-aware 
distributed systems [Lee et al., 1999] [Abdelzaher et al, 2003] [Levy et al., 2003] [Park et 
al., 2001]. In [Lee et al., 1999], a QoS management framework that enables to 
quantitatively measure QoS, and to analytically plan and allocate resources has been 
presented. In this model, the quality preferences of the end users are considered when 
system resources are apportioned across multiple applications such that the net utility that 
accrues to the end-users is maximized. In [Abdelzaher et al, 2003] a communication 
server architecture that maximizes the aggregate utility of QoS-sensitive connections for 
a community of clients even in the case of over-load has been proposed. In this model, 
the optimal resource allocation policy will always keep the clients with the largest utility 
for the same resource consumption. In [Levy et al., 2003], a resource allocation strategy 
is discussed for a clustered web-service environment. In [Park et al., 2001], resource 
allocation is discussed in the management of service level agreements for multimedia 
Internet service. 
 
The findings of all of the aforementioned research are important to our problem though 
our context and emphasis is different. We have found it important to employ in our 
approach the utility model, which has been applied in all of the mentioned literature. The 
work in [Abdelzaher et al, 2003] uses the notion of QoS Contract although its usage is 
slightly different from ours. There are basically two reasons that make our work different 
from those mentioned above. Firstly, none of them approached the problem in the context 
of CBSE. For example, in our case, the contract between a customer and a service 
provider (also known as SLA) depends on and are derived from the selected QoS-Profiles 
of the collaborating components. Besides, the service classes are defined based on the 
specified QoS-Profiles of the components. Secondly, the focus of most related 
approaches is the allocation of server resources. Clients’ properties haven’t been 
considered together with the servers’ properties. In [Lee et al., 1999], however, there is 
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no such restriction as server side. But, it treats the allocation problem for resources which 
are shared. 
 
A utility function is defined for each service class. As applications can involve multiple 
QoS-dimensions, the utility function of an application is defined as a weighted average of 
the dimension-wise utility functions (see Section 3.6.1). If the application has d QoS-
dimensions, the utility of the service class is , 

isU is given as: 
 

 ∑
=

=
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j
jjs qUwU i

1
)(    (1) 

 
In Eq(1), Uj(q) is the dimension-wise utility, q designates the chosen QoS point, and 
∑wj=1. The weights, wj, define the relative importance of each dimension-wise utility 
function. For the example in Table 4.1, two utility functions must be defined for the two 
service classes. The fact that the qualities in “normal” service class are inferior to those in 
the “premium” service class doesn’t mean that utility values of the former are lower than 
those of the latter. For users of each class, quality expectations are different and thus the 
maximum quality in each service class can be assigned utilities of 1. 
 
The overall system utility, U, is defined as a weighted average of the utilities of each user. 
A user’s utility is associated to one of the service classes (Eq(1)). The relative weightings 
(αi) assigned to the different service classes capture how important that service class is to 
the service provider.  

 ∑=
clients

si i
UU α    (2) 

 
The required analytical solution is to find QoS points (which depend on the QoS-Profiles 
of the collaborating components) that maximize U in Eq(2). This solution must be found 
under the assumption that the following conditions are fulfilled. 

(i) the resource demands of all distributed components are met at the server node, 
the network, and at each client’s node; 

(ii) user’s minimum QoS requirements are met; 
(iii) conformance constraints of the QoS-Profiles of the collaborating components 

are met; 
(iv) the chosen solution must maximize U per resource consumption at the server 

side. 
 
The fourth condition above is especially important for the service provider in order to 
meet its negotiation goals. To clarify this, let’s refer to our video streaming scenario. 
Let’s assume there are two different selections of QoS-Profiles of VideoServer and 
VideoPlayer, which result in the same stream quality (i.e. in frame rate and resolution) as 
perceived by the end-user. As far as resource demands are concerned, one of the solutions 
demands more network bandwidth while the other needs lesser bandwidth at the expense 
of more CPU time at the client’s side. According to Eq(1), both contracts have the same 
utility value. But, looking from the service provider’s interest, the one that requires lesser 
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bandwidth is chosen so that the server can increase its revenue by negotiating with 
another client.  
 
Problems of the type in Eq(2) are known to be NP-hard [Lee et al., 1999]. To cope with 
this difficulty, we resort to a heuristic solution, which we will discuss next. Our solution 
also considers dynamic situations at the server side like change of the number of clients. 
We propose the following procedure, which uses our single-client solution as one of its 
steps.  A more formal algorithm will be given at the end of this subsection once we 
discuss the details listed below. Figure 4.5 depicts the various steps of the procedure. 
 

1. Customers input QoS requirements and quality preferences on the service. 
2. Clients send requests for a service. 
3. The server containers estimate server resources (e.g. CPU, memory, network 

bandwidth) to be allocated to each client (or group of clients). 
4. A contract negotiation is performed between each client and the server on an 

individual basis (or group basis). This would result in establishing contracts 
among the collaborating components and between the customer and service 
provider.  

5. The server checks if some resources are left unutilized after Step 4. If some 
resources are still available, the server will be engaged in a negotiation with new 
clients. (Then, Go to Step 3) 

 
 
 
From the five steps stated above, the important ones are the third and the fourth. The 
fourth step takes into account the particular characteristics of each client like the client’s 

 
 

Figure 4.5: Steps in the QoS Contract Negotiation in a Multiple-Clients Scenario 
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resource conditions and the components deployed on the client container. We have 
already proposed algorithms that can be applied for Step 4 (see Section 3.6.4). Step 3, i.e. 
estimating the resources to be allocated to the clients, which are currently negotiating or 
which are anticipated to arrive at a later time, depends on the current and future resource 
availability at the servers. Next, we discuss this third step in detail. 

4.1.3.1 Resource Allocation Strategy 
 
The resource allocation to the multiple clients depends on the availability of server 
resources. Instead of treating the allocation in a First Come First Served (FCFS) manner, 
the decision should be influenced by the total number of clients placing requests and the 
rate of new arrivals. When only few clients make requests and there is abundant resource, 
maximum resource is allocated (services are offered at maximum quality). On the other 
hand, when there are many clients and the available resource is meager, minimum 
resource is allocated (services are offered with lesser quality). 
 
To elaborate the distinctions between different load conditions, let’s see the factors that 
affect the maximum number of clients (N) that can be supported by the service provider 
concurrently. As far as the service provider is concerned, N must be large enough to 
efficiently utilize the server’s physical resources, but small enough to prevent overload 
and performance degradation, and at least fulfill the minimum QoS for each service class 
and each client as promised in the contract. In general, N depends on the type of service 
class selected (e.g. premium or normal, Table 4.1), the service mix (how many clients 
from each service class), etc. Let’s assume the server’s bandwidth capacity is 100 Mbps, 
and premium and normal class’ minimum bandwidth requirement are 2 and 0.3Mbps 
respectively. If only premium class is supported, then N=50. If only normal class is 
supported, N=333. N falls between 50 and 333 when mixing service classes. Different 
alternatives (policies) can be taken as to this mixing as discussed later in over-load case. 
It is to be noted that N has been estimated above only based on the bandwidth 
requirement of each service class. Nevertheless, N can be determined based on only the 
CPU requirement for instance for CPU-bound applications. In some cases, the 
combination of all resource type requirements can decide on the size of N. The 
resource(s) that determine the size of N are termed as bottleneck resource(s). 
 
In light of the dynamic nature of the load conditions, it would be appropriate to discuss 
resource allocation under different load conditions and load dynamics. For this reason, 
we will consider the following three cases:  

(i) light-load conditions,  
(ii) conditions where the clients’ request rate is known, and 
(iii) over-load conditions. 

 
I. Light-Load Case 
 
Light-load is a situation where few clients make requests and there is enough server 
resource for all of them. During this condition, the total number of clients (those making 
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requests and those already accepted) is much less than N (or some percentage of N, e.g. 
80%N). 
 
At light load all clients are offered the maximum resource that is allocated for each 
service class. That is, the application’s utility (on a per client basis) takes the maximum 
value. Referring to Table 4.1, for premium clients, the offered quality is 352x288, 30fps 
and for normal clients this is 176x144, 30fps. It is to be noted that these maximum 
offered qualities might not last the whole contract period, when for example there is a 
burst of client requests. The obligation of the service provider is to provide the minimum 
quality in each service class. 
 
II. Known Clients’ Request Rate Case 
 
At light load conditions, we assumed that the server resource conditions remain always 
abundant. Therefore, each client is provided with the maximum quality. But, when the 
number of new clients increases more than those leaving the system, the resources will no 
longer be abundant. What the server must do in this situation is to re-negotiate the 
previously agreed contracts to a lower level whereby some resources are released for new 
clients. This calls for a systematic approach for handling these dynamic conditions to 
ultimately meet the negotiation goals of the clients and server. Some of the questions to 
be answered are: do we have to re-negotiate already established contracts whenever new 
clients request a service? To what level should we re-negotiate established contracts? For 
example, in Table 4.1, each service class defines four levels. How important is it for the 
server to know how many clients are anticipated in the future?  
 
Answering some of these questions is important for the overall negotiation process. 
Simply doing negotiations for all clients (requesting and existing), whenever new clients 
arrive or with some periodicity, could have an adverse effect on the system. Such 
schemes make the system less stable due to the frequent changes in the offered QoS level. 
The answers to some of the aforementioned questions depend on the request rate of 
clients and the rate at which existing clients leave the system as explained below. 
 
Let’s assume the clients’ request rate, Creq-rate (in min-1), and contract duration, D (in min) 
are constants. A given service class’ resource requirement depends on the selected QoS 
point. Let the maximum requirement is Rmax and the minimum is Rmin. When Rmax (Rmin) 
is allocated to a single client, the maximum (minimum) quality in the service class is 
offered to the respective client. In between Rmax and Rmin, other intermediate qualities can 
be served. For Rmax or Rmin, m different resource types (e.g. CPU, network bandwidth, 
disk bandwidth, etc.) are assumed to exist. Let the server’s total capacity, Rcapacity, be also 
given in all dimensions of the resource types. 

 
),...,,( max,max,,2max,1max mrrrR =  
),...,,( min,min,,2min,1min mrrrR =  

),...,,( ,,,2,1 capacitymcapacitycapacitycapacity rrrR =  
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Given Creq-rate, and D, the maximum number of contracts active at any one time can be 
computed as: 
 DCtsrOfContracTotalNumbe ratereq ×= −   (3) 
 
A condition for the client’s request rate, where maximum quality can be served for all 
clients can be derived based on the resource constraint at the server’s side, which is given 
below. 
 capacityratereq RRDC ≤××− max    (4) 

 
maxRD

R
C capacity

ratereq ×
≤−     (5) 

 
The Creq-rate in Eq(5) is determined by the bottleneck resource. For example, in video 
streaming application, the network bandwidth is usually the bottleneck resource. 
Considering m-resource types, Eq(5) can be re-written as: 
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Thus, if Eq(6) is satisfied, 

• all clients can be allocated the maximum resource – i.e. the maximum 
requirement of each class can be fulfilled by the service provider 

• there is no need of re-negotiating established contracts at any time 
 
Considering our video streaming scenario, let the total available bandwidth at the server’s 
side, ri,capacity, be 100Mbps, D=2min, and the bandwidth requirement of the maximum 
quality in the given service class, ri,max be 2Mbps. Thus, if Creq-rate≤25min-1, then all 
clients can be offered the maximum service with no need of contract re-negotiations. 
 
Depending on the value of Creq-rate two other cases might occur as shown in the following 
relations. 
 

  
minmax RD

R
C

RD
R capacity

ratereq
capacity

×
≤≤

× −    (7)  or 

 

 
minRD

R
C capacity

ratereq ×
>−     (8) 

 
If Eq(7) holds true, all client requests can be fulfilled with no request waiting. But, the 
offered qualities can be as low as the minimum in each service class. A part of the clients 
can, however, be served a quality higher than the minimum. This can be decided through 
policing that may favor one client over another. For Eq(8), not all clients’ requests can be 
fulfilled, even with the minimum quality. This condition leaves the system in an 
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overloaded situation where some clients must always be rejected. For a request rate of 
Creq-rate that satisfies Eq(8), the rejection rate (by the server) can be computed as: 
 

  )min(
minRD

R
CaterejectionR capacity

ratereq ×
−= −   (9) 

 
In our analysis of known clients’ request rate case, we assumed the existence of only a 
single service class. This assumption is necessary only if the system transitions into an 
overload condition. It is possible to relax the assumption if we know how much of the 
server capacity is allocated to clients of each service class. 
 
III. Over-Load Case 
 
Over-load is a situation where the capacity of the service provider isn’t sufficient to 
establish contracts with all of the clients requesting service. Under this condition, the 
total number of clients (those making requests and those whose contracts haven’t 
expired) is greater than N (or some percentage of N, e.g. 80%N). 
 
Suppose the number of requesting and existing clients is N’ where N’>N. Then, (N’-N) 
clients must wait for some period until they get the required service. Let’s also assume 
that the size of the queue length (in number of clients) is S. A relation can be derived for 
S where a maximum waiting time for clients can be guaranteed. If twait is the maximum 
waiting time before a client’s request is served, then: 
 

   D
N
Stwait ×=     (10) 

 
For a desired minimum waiting time, the queue length can be fixed using the relation 
given below. 
 

 
D
tNS wait×

=     (11) 

 
If N’-N>S, then N’-N-S clients must be rejected. Before rejecting these clients, offers 
must be proposed to the S clients. The offers include the interval clients must wait before 
getting the service in addition to the QoS. Some clients may reject this offer. The 
decision on whether or not to accept the offer can be done by the containers if a user’s 
preference on waiting time has been available.  
 
When the system transitions its state from a light-load to over-load condition in an abrupt 
manner, which may be a result of sudden increase in new client requests, the already 
established contracts in all service classes must be re-negotiated to the minimum quality 
in each class. The reason for this is that during light-load conditions maximum resources 
are allocated to each client. When the system already anticipates overload conditions 
beforehand, some appropriate re-negotiations times must be chosen.  
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In general, during the over-load case, termination of some contracts may need to be made 
in order to create contracts with higher level service classes. Referring to Table 4.1, in 
order to create a contract with one premium client, 7 normal clients must be terminated. 
If the utility functions define contract termination costs, it can be calculated what benefits 
the service provider most. But, this may create bad impressions to certain groups of 
clients and thus, the parameters that determine termination should not solely be made in 
terms of monetary benefits (unless the utility values capture all relevant parameters). This 
is one interesting area that needs further research. 
 
One problem to be solved in the overload case is how to choose the proportions of the 
various service classes. Different alternatives (strategies) can be taken when mixing the 
two service classes (e.g. in Table 4.1) under over-load conditions. One option is to select 
as many clients as the provider could support from a higher priority service class (e.g. 
premium having higher priority over normal) and when there is enough resource, 
negotiate with the lower priority clients. This is a strict priority policy. However, in order 
to be responsive to clients of all classes, a different policy may be followed, where a 
certain percentage of the resources may be allocated to each class. As an example, 80% 
of the (bottleneck) resource can be allocated for the higher-priority class and the rest for 
the lower-priority class. The third possibility is to use utility functions for each service 
class and choose proportions that would maximize the total utility [Levy et al., 2003]. 
The percentage in the second policy can be improved through time until a near-optimal 
solution is found (which is equivalent to analytical means). Owing to the difficulty in 
defining utility functions that incorporate the effects of all relevant parameters, we 
recommend choosing the proportions of various classes through experiments of past 
measurements. 

4.1.3.2 Policy Constraints 
 
There are certain behaviors in our system model that cannot be captured in either the 
utility functions or the negotiation goals. We model these behaviors by policy constraints. 
Some policies have already been suggested in the previous sub-section, in the case of 
percentage allocation of resources to each service class. 
 
In this thesis, we define a negotiation policy as an explicit representation of the desired 
behavior of the system during the process of selecting concrete contracts of collaborating 
components and also the contract (which is also known as SLA) between the user and the 
service provider. Each negotiation policy is represented in the form of policy constraints 
and included to our model that already incorporates other constraints (user’s, 
conformance, and resource) for the single-client case. The negotiation policies are 
assumed to be specified by a Negotiation Expert. This is a new role besides the already 
existing ones: component developer, container developer, etc.  
 
The different policies that need to be defined and incorporated in the negotiation process 
concern the following areas. 
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• How to make a choice on the proportions of the various service classes to 
negotiate during over-load conditions? This can be something to be 
experimentally re-adjusted so as to reflect the service provider’s negotiation goals. 

• How to move from one quality level into another when the system gradually 
transitions from light-load to over-load conditions? The various options are: (i) 
not to change levels by choosing the minimum quality from the start, (ii) choose 
maximum first then at some point choose minimum, and (iii) go through all (or 
part of) the available levels starting from maximum to minimum. A choice of the 
particular option is made by weighing the cost and benefit of switching levels for 
the specific application.  

• How to favor clients of the same class when re-negotiating contracts? This case is 
relevant when some resources are released and re-negotiations can be done so as 
to increase the quality levels of existing contracts. In this case, the resource 
availability is such that it is not enough to offer maximum quality to all clients. 

4.1.3.3 Algorithm 
 
The following algorithm is based on the discussion in subsections 4.1.3.1 and 4.1.3.2 
together with the negotiation algorithms developed for the single-client scenario. 
 

Algorithm 4.1: Negotiation algorithm between multiple clients and a server 

 
– Clients send requests for a service. 
– Server container performs policy constraint checks (subsection 4.1.3.2) 

if there is a need to reallocate resources to active contracts. 
– Server allocates resources to the new clients (subsection 4.1.3.1). 
– Server makes a one to one negotiation with the new clients and also with 

existing clients whose contracts have to be renegotiated using Algorithm 
3.3. This would result in establishing contracts between the 
collaborating components and between the user and service provider. 

– If there are clients waiting in the queue, the server proposes an offer 
that contains the quality and the maximum waiting time to these clients. 
If any client would not accept the offer, it is rejected. All clients 
that cannot be allocated resource are rejected. 

 

4.2 Multi-tier Scenario 
 
In a multi-tier scenario, a component requires the service of another component located in 
a separate server container in order to give the requested service to its clients. The first 
server component is acting as a client to the second server. Figure 4.6 shows this scenario 
where B requires the service provided by C in order to be able to give its service to A. 
Our single-client – single-server scenario already discussed in Section 3 is general 
enough for the chain of components deployed in a single container. The main difference 
that lies in the multi-tier scenario is that the chains of components are deployed in 
different containers. 
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4.2.1 Example 
 
We use a Stock Quote Application (Figure 4.7) to motivate the generalization of our 
approach to the multi-tier scenario. In this application, stock quotations are monitored by 
customers/brokers. Stock Quote is a small part of the Stock Trading Application. In stock 
trading, orders need to be issued to buy or sell shares. 
 
 

 
 
As shown in Figure 4.7, the customers/brokers get stock quotes from the quote server. 
They may have different requirements on the QoS of the delivered service. Some of the 
interesting NFPs in this application are: (i) the rate at which the stock quotes are 
delivered, (ii) the response time of the delivered service, and (iii) the stock quote symbols 
for which the service has to be provided. If the service is available with a price, different 
customers are willing to pay different values. The service may be delivered with rate 

 
 

Figure 4.6: A multi-tier scenario 

 
 

Figure 4.7: A simplified architecture of a stock quote application 
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updates of 1 sec or less (this is real-time delivery), every 1 minute (a one minute delay), 
every 15 minutes (a fifteen minute delay), etc. 
 
The application can be implemented to use different communication models such as 
request/reply (polling) and publish/subscribe models. When comparing the two models, 
request/reply could lead to higher bandwidth usage as it can saturate the server and the 
network by making many requests, even if the value of the stock has not changed. But, 
such unnecessary saturations could be minimized if the server and the customer had made 
prior agreements on each other’s requirements and expectations. This can be achieved 
with our contract negotiations of the components at the client and server. 
 

 
 
The Stock Quote Scenario we discuss involves three components; StockClient, 
StockDistributor, and StockDatabase as shown in Figure 4.8. We will next describe these 
components and specify their non-functional properties at the various interfaces. 
 
StockDatabase 
 
The StockDatabase component is installed on a node where the database server is located. 
This component provides access to the stock database and guarantees a certain response 
time when providing this service to its clients. Whenever there are changes in the stock 
prices (which can happen at arbitrary time), the pertinent values are updated to the 
StockDistributor. Various models can be used for the update. Either the StockDistributor 
polls the StockDatabase at different frequencies using the request/response model; or the 
StockDatabase pushes the changes to StockDistributor using its event interface. Even if 
StockDatabase handles the updates of a number of stock symbols, the agreement with 
StockDistributor could be only on a certain proportion of the total number of stock 
symbols. The total number of stock symbols used in the update affects the resource 
requirement as shown in Table 4.2. Let’s arbitrarily assume that StockDatabase is 
responsible for updates of a total of 30 stock symbols (e.g. IBM, MSFT, GM, YHOO, 
etc.). 
 

 
 

Figure 4.8: Components deployed in three different nodes for a stock quote 
application 
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In Table 4.2, it is assumed that StockDatabase updates stocks every 150ms. In reality, all 
stock prices might not change at this interval. Nonetheless, we take the worst case 
scenario. In order to specify the QoS-Profiles of each component in Figure 4.8, some 
measurements or analytical methods must be employed. We don’t claim to have a 
methodology for precisely specifying the profiles as this is out of the scope of this thesis. 
Nevertheless, we will suggest some techniques for computing the throughput 
requirements of the components. To calculate the throughput, let’s assume that (i) for 
each update a data volume of 1KB is transported per stock symbol, and (ii) all the 
required data is to be transported within 100msec at every update. The bandwidth 
demand in Table 4.2 is computed based on these assumptions. The specification in Table 
4.2 assumes that updates to StockDistributor can be agreed in a stack of 10 symbols or 30 
symbols. Nevertheless, when the need arises, StockDistributor and StockDatabase may 
negotiate on update of a single symbol. For the sake of completeness, Table 4.2 may need 
to incorporate specifications for every symbol. 
 

StockDatabase 
 Stock 

symbol 
provides IStock 
(response time in msec, 
update frequency in sec-1) 

Resource  
(CPU in %, bandwidth in 
Kbps, memory KB) 

1. 1st to 10th 10, 150 50%, 800, 40  
2. 11th to 20th 10, 150 50%, 800, 40 
3. 1st to 30th 15, 150 80%, 2400, 60 

 

Table 4.2: QoS-Profiles of StockDatabase 
 
 
StockDistributor 
 
StockDistributor gets the required data from StockDatabase and distributes its service to 
clients at different delays, for example, starting from real-time to delays in minutes and 
hours. StockDistributor also expects a certain response time from StockDatabase. The 
StockDistributor can make agreements with its clients for a periodic update of the stocks, 
for example, every 100ms, every second, every minute, etc. The update frequency of 
100ms is effectively a real-time update. The StockClient may be interested in one or more 
stock symbols. As in the case of StockDatabase, the resource demand shown in Table 4.3 
depends on the number of requested stock symbol updates. 
 
The resource demand in Table 4.3 has been specified for the two interfaces (IStock and 
IStockQuote) separately. The distinction is made concerning the bandwidth requirement. 
The CPU and memory demands are shown to be the same, i.e. some maximum 
requirement is taken when StockDistributor is engaged in receiving updates for 10 
symbols and distributing updates for a single stock symbol. It is assumed that the update 
data to be transported to a client is at 100ms, 150ms, 1000ms, and 1000ms for update 
frequencies of 120min-1, 20min-1, 1min-1, and 0.05min-1 respectively. The total number of 
QoS-Profiles to be specified for StockDistributor would have been much larger if each 
and every combination of properties at the two interfaces were to be listed. 
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StockDistributor 
uses IStock 
(response 
time in msec) 

Provides IStockQuote 
(response time in sec, 
invocation frequency in 
min-1) 

Resource (IStock) 
(CPU in %, bandwidth 
in Kbps,  memory KB) 

Resource 
(IStockQuote) 
(CPU in %, bandwidth 
in Kbps,  memory 

20 80, 120 5, 800, 20 5, 80, 20 
20 100, 20 5, 800, 20 5, 53, 20 
20 500, 1 5, 800, 20 5, 8, 20 
20 500, 0.05 5 800, 20 5 8, 20 

 

Table 4.3: QoS-Profiles of StockDistributor 

 
StockClient 
 
The StockClient needs to connect to StockDistributor and get periodic updates of stock 
values for one or more symbols. StockClient captures various expectations of stock 
updates as required by customers. This is shown in Table 4.4. The same assumption holds 
as in Table 4.3 as far as the bandwidth requirement is concerned. 
 
The QoS provided by StockDistributor could depend on the way its clients use the service. 
For example, the throughput that StockDistributor can provide may depend on how 
frequently a client calls the service. In order to account for this dependency, a QoS 
contract needs to include requirements and properties for both clients and service 
providers. This implies that the StockClient and StockDistributor components should 
incorporate the amount of invocation to be provided (for StockClient) and to be expected 
(for StockDistributor). This is achieved by considering the update/invocation frequency 
property as described in Table 4.3 and Table 4.4. 
 

StockClient 
 Stock symbols uses IStockQuote 

(response time in msec, invocation 
frequency in min-1) 

Resource  
(CPU in %, bandwidth in 
Kbps, memory KB) 

1. 1st symbol 150, 120 5, 80, 20 
2. 1st symbol 200, 20 5, 53, 20 
3. 1st symbol 1500, 1 5, 8, 20 
4. 1st symbol 1500, 0.05 5, 8, 20 
5. 1st to 10th symbols 150, 120 10, 800, 80  
6. 1st to 10th symbols 200, 20 10, 530, 80  
7. 1st to 10th symbols 1500, 1 10, 80, 80  
8. 1st to 10th symbols 1500, 0.05 10, 80, 80  

 

Table 4.4: QoS-Profiles of StockClient 

 
Now, let’s examine some negotiation scenarios in the componentized stock quote 
application (Figure 4.8). The StockClient sends requests to StockDistributor for a quote 
on one or more stock symbols at a particular update frequency (for example, every 
500ms) and for a certain response time (for example, 150ms). If data about the requested 
stock symbols is already available at StockDistributor, this case is reduced to the single 
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client – single server scenario that we have addressed in subsection 3.4.  But, if the 
requested data is not available at StockDistributor, the negotiation must include all three 
component containers. In this section, we particularly are interested on how to handle the 
QoS contract negotiations when more than two containers are involved in the negotiation. 

4.2.1.1 Discussion 
 
It is insightful to compare our componentized stock quote application scenario with 
implementations of the same application scenario that use a different infrastructure. The 
stock quote application scenario has been persistently used in [Schmidt and Vinoski, 
2004][Natarajan et al, 2004] and in several of their columns to demonstrate how 
applications are developed with the CORBA Component Model (CCM). CCM is a 
component middleware that addresses limitations with earlier generations of CORBA 2.x 
Distributed Object Computing (DOC) middleware.  
 

 
 
The component diagram in Figure 4.9 illustrates how the stock quote application can be 
designed using CCM [Schmidt and Vinoski, 2004]. This application operates as follows. 
The StockDistributor component publishes events to indicate that a particular stock's 
value has changed. This component will monitor the real-time stock database and, when 
the values of particular stocks change, will push a CCM eventtype containing the stock 
name via a CCM event source (notifier_out) to the corresponding CCM event sink 
(notifier_in) of one or more StockBroker components. The StockBroker components 
that consume this event will then examine the stock name stored in the event. If they are 

 
 

Figure 4.9: StockBroker and StockDistributor component ports 
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interested in the stock, they can invoke a request/response operation via their CCM 
receptacle (quoter_info_in) on a CCM facet (quoter_info_out) exported by the 
StockDistributor component to obtain more information about the stock. The 
notification_rate attribute is used to control the rate at which the StockDistributor 
component checks the stock-quote database and pushes changes to StockBroker 
subscribers. 
 
Both our scenario and the one realized with the CCM components in Figure 4.9 follow 
the CBSE principles. But, the basic difference of the two approaches lies in the handling 
of NFPs (QoS contracts). The components in Figure 4.9 are specified with syntactic 
contracts only. In our case components’ QoS contracts (NFPs) are specified in addition to 
the syntactic contracts. The incorporation of QoS makes the component specification 
more robust and brings about a number of advantages to the application. But, it is also a 
challenging task. Some of the differences between our scenario and the one in Figure 4.9 
are listed below. 

i.) The ports of the components in Figure 4.9 can be directly connected. The CCM 
deployment and configuration (D&C) tools can alleviate the need for developers 
of application components to perform connection “plumbing” programmatically 
[Schmidt and Vinoski, 2004]. But, the D&C doesn’t perform QoS contract 
negotiations. In our case, the connection of components’ ports must be 
performed by a QoS contract negotiation process. 

ii.) A differentiation of QoS of the provided service can be achieved in our 
approach. This is made possible by the robust specification of components and 
the automatic run-time QoS contract negotiation process we proposed. In the 
application in Figure 4.9, such QoS differentiation isn’t possible. There is only a 
very limited flexibility in this regard. The system administrators can use the 
notification_rate attribute to control the rate at which the StockDistributor 
component checks the stock-quote database and pushes changes to StockBroker 
subscribers. 

iii.) In our approach, the components can be deployed in environments with 
different resource availability conditions and they perform their functions 
properly. But, the application in [Schmidt and Vinoski, 2004] cannot cope with 
such changes. 

 

4.2.2 QoS Contract Negotiation in a Multi-tier Scenario 
In order to handle negotiations among three or more containers, we can extend the 
algorithm proposed for the two containers case (Sections 3.5 and 3.6). Three groupings of 
components have been identified for the two containers case, as shown in Figure 3.11. 
The three groups, which have been classified based on the resource constraint relation, 
are components deployed in the client container, components connected across containers, 
and components deployed in the server container. By the same token, more groupings can 
be created when there is more chaining of containers. For instance, the following five 
groupings are identified for the three containers (Figure 4.8). 

i.) Components deployed in clientNode (e.g. StockClient), 
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ii.) Components connected across clientNode and serverNode1 (e.g. StockClient and 
StockDistributor), 

iii.) Components deployed in serverNode1 (e.g. StockDistributor), 
iv.) Components connected across serverNode1 and serverNode2, (e.g. 

StockDistributor and StockDatabase) and 
v.) Components deployed in serverNode2 (e.g. StockDatabase) 

 
Algorithm 3.2 can be systematically modified as in Algorithm 4.2 to handle negotiations 
on the three containers where the deployed components have been categorized into five 
groups. As can be seen from Algorithm 4.2, the modification applied on Algorithm 3.2 is 
only the inclusion of lines 19-26 in the FindAppropriateProfiles(). The whole 
approach can be easily generalized to cases that involve more than three containers in the 
chain. 
 

Algorithm 4.2: Fine-grained negotiation algorithm for components deployed in a client 
and two-tiered server containers 

 
// constants used as return types 
   public static final int NO_RESOURCE = 0; 
   public static final int SUCCESSFUL = 1; 
 
   enum CG { ON_CLIENT, ON_SERVER, ACROSS_CONTAINERS } // CG is short for component group 
5 

   boolean FineGrainedNegotiationMultiTier() 

   { 
 // the same code as FineGrainedNegotiation() in Algorithm 3.2 

   } 
10 
   int FindAppropriateProfiles() 

   { 

 FindConformantProfiles(CG.ON_CLIENT); 
 if(CheckResourceConstraints(CG.ON_CLIENT)) { 
15 FindConformantProfiles(CG.ACROSS_CONTAINERS1&2\CG.ON_CLIENT); 

 if(CheckResourceConstraints(CG.ACROSS_CONTAINERS1&2)) { 

 FindConformantProfiles(CG.ON_SERVER1\CG.ACROSS_CONTAINERS1&2); 
 if(CheckResourceConstraints(CG.ON_SERVER1)) { 

  FindConformantProfiles(CG.ACROSS_CONTAINERS2&3\CG.ON_ SERVER2); 
20 if(CheckResourceConstraints(CG.ACROSS_CONTAINERS2&3)) { 

 FindConformantProfiles(CG.ON_SERVER2\CG.ACROSS_CONTAINERS2&3); 

 if(CheckResourceConstraints(CG.ON_SERVER2)) 
 return SUCCESSFUL; 
 else return NO_RESOURCE; 
25 } 

 else return NO_RESOURCE;   

 } 

 else return NO_RESOURCE; 

 } 
30 else return NO_RESOURCE; 

 } 
 else return NO_RESOURCE; 

   } 
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4.2.3 Consideration of Security Properties 
 
In Figure 4.10, we extend the video streaming scenario (Figure 3.13) to include a 
payment service provider in the process of video streaming and payment transactions. 
The BookingMgr, MovieMgr and CustomerMgr components are deployed in the same 
server as VideoServer. The approach we proposed for a multi-tier scenario can be applied 
when the components are deployed in separate servers. 
 
 

 
The BookingMgr component receives, through GUI, customer’s request and performs a 
number of operations. The customer provides information about the title of the movie, his 
credential (e.g. name, ID, etc.), the payment method, etc. BookingMgr contacts 
MovieMgr to get information about whether the required movie exists or not. If it exists, 
MovieMgr returns the amount of charge, the mode of payment, etc. to BookingMgr. At 
the same time BookingMgr contacts CustomerMgr to get information about the 
customer’s credit card information. Then BookingMgr sends the customer’s credit card 
number to PaymentProcessor for the latter to process the payment. After successfully 
transacting the payment, the requested movie will be streamed from VideoServer to 
VideoPlayer. 
 
In this section, we concentrate on the use case “order service”, which involves the 
handling of a user’s request for a movie up to the payment process. In order to simplify 
our analysis, we combine BookingMgr, MovieMgr, and CustomerMgr into one 
component Booking, as shown in Figure 4.11. 
 

 
 

Figure 4.10: Interaction of Components in a Video Streaming Application that 
includes Billing 
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We considered in the previous application scenarios only performance related QoS 
properties like response time or frame rate. For the “order service” use case, the 
cooperating components and a user have security requirements. One such requirement by 
a user is the confidential transmission of his/her credit card number to the payment 
processor. We can assume this communication to be implemented with the help of 
encryption techniques. In addition to security, the user may have performance 
requirements as well. 
 
As indicated earlier, the QoS contract specification language that we apply in the 
negotiation is CQML+. But, this language has no features for specifying security offer 
and expectations of components. To handle the contract negotiation for the “order 
service” use case, we have to define the QoS-Profiles of the components with our own 
extension of the CQML+ to represent the security properties of components. For this 
extension, we applied the concepts of a component’s required and ensured security 
properties from [Khan, et al, 2000]. According to [Khan, et al, 2000], a required security 
attribute is an invariant in a sense that it is the required property of a component that 
other interested parties must satisfy during the composition according to the contract. It is 
a precondition the component must ensure that the security attribute is provided, and its 
validity is ensured. Similarly, an ensured security attribute is a post-condition in a sense 
that it is the responsibility of the component to maintain the committed security 
assurance during the composition of the contract. 
 
In Figure 4.11, a user expects his/her performance and security requirements to be 
fulfilled through GUI, the front-end component. When GUI is implemented, it is 
specified to operate in different QoS-Profiles. For its service, GUI relies on Booking, 
which in turn requires a service from the Payment component. Each of the components is 
specified in terms of their NFPs. The Booking component implements two interfaces: a 
uses interface IPayment (to get a service from Payment) and a provides interface IOrder 
(to offer the required service to GUI). Likewise, the Payment and GUI components 
implement a provides interface IPayment and a use interface IOrder respectively. 
 
The specified profiles of components in Figure 4.11 are shown in Table 4.5. PP– is the 
payment provider’s private key whereas Shared is a particular shared secret key between 

 
 

Figure 4.11: Collaborating components for the “order service” use case in the Video 
Streaming Application that includes billing 
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the video and payment providers. RSA, DES, and 3DES are encryption algorithms. Only 
three profiles have been shown. In reality, the number of specified profiles could be much 
more than that, for example when additional keys, key length, and algorithms are 
considered in the encryption/decryption. 
 
Note that the resource demands of each profile haven’t been shown in Table 4.5. One 
possible approach to approximately specify the resource demands is to extend the 
technique described in [Meyerhöfer and Neumann, 2004] for measuring response time. 
This measurement will be done under particular security settings of the components. 
Performance monitoring tools (for example, the one integrated in the Windows Operating 
System) can be used to estimate the average resource requirements while the response 
time is being measured. A precise specification of components is beyond the scope of this 
thesis. 
 
 

GUI  Booking Payment 
uses IOrder 
(response 
time in sec) 

 provides IOrder 
(response time 
in sec) 

uses IPayment 
(key, algorithm, 
response time in 
sec) 

 provides IPayment 
(key, algorithm, 
response time in 
sec) 

7  13 PP-, RSA, 13  PP-, RSA, 10 
9  7 Shared, 3DES, 7  Shared, 3DES, 5 
18  5 Shared, DES, 5  Shared, DES, 3 

Table 4.5: QoS-Profiles of GUI, Booking, and Payment implementations 

 
When performing contract negotiation on the three distributed components (Figure 4.11), 
one of the issues to resolve is the conformance of selected profiles. Conformance can be 
defined both on coarse-grained and fine-grained properties. [Franz and Pohl, 2004] have 
suggested a matrix for the matching of security goals (coarse-grained) but haven’t 
discussed concerns related to the security mechanisms (fine-grained properties) 
implemented by components. Conformance on fine-grained security properties exist 
when the constraints of the interacting components match exactly on all the parameters 
(key type, key length, and algorithm). For matching offer and expectation on response 
time, the “stronger than” relationship described in subsection 3.3.2 is used. This must 
take into account the transmission delay between the customer’s workstation and video 
provider’s server (for GUI and Booking) and between the video provider’s server and the 
payment provider’s server (for Booking and Payment). 
 
One interesting issue is whether there should be order in the negotiation of the NFPs, for 
example security being negotiated before performance (response time). In our earlier 
discussion, we followed order of negotiation between coarse-grained and fine-grained 
properties. For e.g., negotiations on whether or not to do confidential communication 
must precede negotiation on particular security mechanisms. Or, negotiation on protocol 
properties of components in video streaming application must precede frame rate 
negotiation. The strategy we have been following for fine-grained properties (e.g. 
response time, frame rate, resolution) has been to do negotiation of all properties in an 
atomic manner, i.e. without any order, if the distributed components are specified with all 
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these properties. If certain properties were specified only for components deployed in one 
of the containers, ordering of negotiations could be attained on the fine-grained properties. 
The QoS specifications languages we are aware of do not have features that enable the 
application of the different negotiation strategies (e.g. ordering of negotiation). But, our 
contract negotiation framework supports the use of different negotiation strategies. 
 
One requirement in this scenario, however, could be to do negotiation first on security 
attributes and only when this is successful, to proceed to performance negotiations. There 
exists usually a dependency between NFPs of a component. The response time property 
among others is influenced by the security attributes selected. If for e.g. the key length in 
the encryption is large and some sophisticated algorithm is used, the response time will 
be higher. That is why the profiles specified for the components define security and 
performance properties together. Thus, if we followed the strategy of ordering of 
negotiation on security and response time, the result of the first would influence the 
outcome of the second. 
 
Next let us see how we can adapt the two container solutions to the multi-tiered case. In 
the centralized solution, it is one of the containers that performs the contract negotiation. 
The other containers must provide information about QoS-Profiles of hosted components 
and their resource conditions. For the “order service” use case discussed above, let us 
assume that the responsible container is the one in the video provider. The containers in 
the customer and payment provider must send the QoS-Profiles of GUI and Payment 
components, and the available CPU, memory, etc. of each node. Data on end-to-end 
available bandwidth and end-to-end delay must be obtained by the responsible container. 
 
The selection of QoS-Profile of Payment (similar to other components) is determined by: 
(i) the selected QoS-Profile of Booking, (ii) the network bandwidth available for the 
connection of Payment and Booking, and (iii) the resource availability at the payment 
provider node. The QoS contract negotiation proceeds by making use of Algorithm 4.2. 
Finally relevant agreed contracts are sent to each container. Comparisons between the 
centralized, distributed, and hybrid solution made for two container case are valid for 
applications with a higher number of containers. 
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5 A QoS Contract Negotiation Framework 
 
A general contract negotiation framework is needed so that container developers can 
tailor it to fit their purpose. Here the framework can be seen as a reusable design of a 
contract negotiation system in which the design consists of the representation of 
important active components, data entities, and the interaction of different instances of 
these. Figure 5.1 shows the conceptual architecture of our framework represented as a 
UML class diagram. 

5.1 Architecture 
 
 

 
Negotiator coordinates and performs the contract negotiation on behalf of the interacting 
components. In order for Negotiator to decide on the solution (i.e. selection of 
appropriate concrete QoS contracts at the ports of components), it has to make reference 
to: (i) the QoS specification of all the cooperating components, which is assumed to be 
available in the form of one or more QoS profiles, (ii) user’s QoS requirement and 
preferences, (iii) available resource conditions, (iv) network and container properties, and 
(v) policy constraints. After a successful negotiation, Negotiator establishes contracts, 
which will have to be monitored and enforced by the container. Next, we describe the 
different building blocks of our framework. 
 
QoS Profile 
 
Component’s QoS Contracts are specified with one or more QoS profiles. A component’s 
QoS contract is distinguished into offered QoS contract and required QoS contract 
[OMG, 2005]. As indicated earlier, we use CQML+ [Röttger and Zschaler, 2003][Göbel 
et al, 2004a], an extension of CQML [Aagedal, 2001], to specify the offered- and 
required-QoS contract of a component. CQML+ uses the QoS-Profile construct to specify 
the NFPs (provided and required QoS contracts) of a component’s implementation in 
terms of what qualities a component requires (through a uses clause) from other 
components and what qualities it provides (through a provides clause) to other interacting 

 
 

Figure 5.1: Architecture of a Contract Negotiation Framework 
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components, and the resource demand by the component from the underlying platform 
(through a resource clause). The uses and provides clauses are described by a QoS 
statement that constrain a certain quality characteristic in its value range. A simplified 
example shown below depicts these elements. 
 

QoSProfile aProfile for C { 
provides providesClause; 
uses usesClause; 
resources resourcesClause; 

} 
 
It is assumed that the component developer specifies the QoS-Profiles after conducting 
experiments and measuring the provided quality, required quality, and the resource 
demands at the component level. 
 
Connector  
 
Connector is an abstraction of the network and the containers that exist between 
interacting components deployed on multiple nodes. A communication channel may have 
a number of QoS properties. For example, it introduces a delay. The connector properties 
are used when matching conformance between provided- and required-QoS contracts of 
components interacting across containers. 
 
It is assumed that the values of the connector properties are available to Negotiator before 
negotiation starts. Two possible approaches for estimating the values are: (i) Off-line 
measurement - the required properties are measured offline by applying different input 
conditions (e.g. throughput) and load conditions in the network and end-systems; and (ii) 
On-line measurement - the properties are measured during the application launch and/or 
at run-time. 
 
User Profile  
 
UserProfile is used to specify the user’s QoS requirements and preferences. The user’s 
requirement may be specified for one or more QoSdimensions. Additional parameters 
such as user class need to be defined when considering, for example, a multiple-clients 
scenario. UserProfile is assumed to be constructed by the run-time system after obtaining 
the user’s request for a given service. The user might be given the chance to select 
attributes from one of many templates supplied for the application or specify the 
attributes himself. 
 
Resource 
 
Resource is used to store information about the available resources at the nodes and the 
end-to-end bandwidth between nodes in which components are deployed. Monitoring 
functions are used to supply data about a node’s load conditions on CPU, memory, etc. It 
is assumed that the available resources are monitored at run-time. Changes in available 
resources might initiate renegotiation. 
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Negotiator 
 
A user’s request to get a service is first intercepted by the Negotiator on the client node. 
The Negotiator at the client and server side exchange information about the required 
service and the QoS requirement of the user before the negotiation begins. Negotiator is 
also responsible for selecting appropriate QoS-Profiles of the interacting components that 
should satisfy a number of constraints (e.g. user’s, resource, etc.). It is also responsible 
for finding a good solution from a set of possible solutions. Negotiator creates Contract 
after successfully performing the negotiation. For an unsuccessful negotiation, the 
selection process is repeated by relaxing the user’s QoS requirement. 
 
In order to accomplish the stated responsibilities, Negotiator relies on our modeling of 
the QoS contract negotiation as a Constraint Satisfaction Optimization Problem (CSOP) 
[Tsang, 1993]. A CSP consists of variables whose values are taken from finite, discrete 
domains, and a set of constraints on their values. The task in a CSOP is to assign a value 
to each variable so that all the constraints are satisfied and a solution that has an optimal 
value with regard to the objective function is found. The objective function maps every 
solution to a numerical value. 
 
In the above modeling, we take the variables to be the QoS-Profiles to be used for the 
collaborating components. The domain of each variable is the set of all QoS-Profiles 
specified for a component. The constraints identified are classified as conformance, 
user’s, and resource. As an objective function, we use an application utility function [Lee 
et al, 1999], which is represented by mapping quality points to real numbers in the range 
[0, 1] where 0 represents the lowest and 1 the highest quality. 
 
Contract 
 
The creation of contracts proceeds after the selection of appropriate concrete QoS-
profiles of the interacting components. Contracts may exist between components 
deployed in the same or different containers. In the case of a front-end component, a 
contract exists between this component and the user. A simplified abstraction of Contract 
is given below. 
 

public class Contract { 
QoSProfile selectedProfileClient; 
QoSProfile selectedProfileServer; 
Connector selectedConnector 
UserProfile userProfile; 
double contractValidityPeriod; 
//… 

}; 
 
If the contract is made between two components deployed in the same container, the 
clauses of the contract should contain the QoS offers and needs as well as the resource 
demands of the components. That means, the selected QoSprofiles of the client and 
server components would be clauses in the contract (in this case, selectedConnector 
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and userProfile are null). If the contract is made between components across 
containers, a selected connector is also part of the contract. For a contract between a user 
and the front-end component, a user’s profile would become part of the contract 
(selectedProfileClient and selectedConnector are null in this case). Note that 
resources required from the underlying platform are included in the contract through the 
QoS-profiles. Additional parameters such as contract dependencies, etc. also need to be 
defined in the contract in order to facilitate contract monitoring and enforcement. 
 
Monitor  
 
After contracts are established, they can be violated for a number of reasons like a 
shortage of available resources. Monitor constantly monitors contracts to assure that no 
contract violations would occur and in case one occurs, some corrective measures should 
be taken through contract re-negotiations. 
 
Policy Constraints 
 
As described previously, Negotiator uses a CSOP framework to find good solution. The 
CSOP framework in turn relies on the specification of constraints and a utility function in 
order to find appropriate solutions. There are, however, certain behaviors that cannot be 
captured in utility functions. Such behaviors are modeled by PolicyConstraint, which can 
be defined as an explicit representation of the desired behavior of the system during 
contract negotiation and re-negotiation. Negotiator can achieve, for instance, different 
optimization goals based on varying specifications in the policy constraints. For e.g., the 
service provider might want to allocate different percentages of resources to different 
user classes (e.g. premium and normal users). 

5.2 Interaction 
 
The interaction diagram in Figure 5.2 depicts an overall view of the negotiation process 
between the Negotiator’s on client and server. It assumes that the Negotiator on the 
server side has information on the QoS contracts of all components that reside on client 
and server containers. This is a centralized approach of contract negotiation. Figure 5.3 
shows a distributed approach of the contract negotiation process as an activity diagram to 
clearly show the concurrent tasks in the client and server containers. Figure 5.3 assumes 
that the local contract negotiation is performed by the respective containers unlike the 
case in Figure 5.2 where the local contract negotiations are made centrally on the server 
container. 
 
In Figure 5.2 the following is illustrated (note that the figure depicted a successful 
negotiation scenario): 

• A user requests the application for a service by providing the service’s name (e.g. 
playing a given movie or performing payment for usage of a particular operation) 
together with his/her QoS and preference needs, i.e. UserProfile (step 1). 

• The container, upon receiving the user’s requirement, identifies which 
components need to participate in order to provide the required service (step 2). 
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• In the centralized approach (which can be done by either client or server 
container), the container which is responsible for the negotiation, must collect the 
QoS contracts of all collaborating components and resource conditions at each 
node and the network (step 3). 

• The responsible container performs the negotiation (step 4) in two phases. In the 
first phase, negotiation is made on coarse-grained properties (step 5). When this is 
successful, negotiation on fine-grained properties continues (step 6). 

• The responsible container creates all contracts. A contract is established between 
any two interacting components (step 7). 

• The client container retrieves relevant contracts from the server container (step 8). 
These are contracts between components deployed in the client container or 
between components connected across containers. 

 
 

 
Figure 5.3 shows the interaction between the client and server negotiators in a purely 
distributed solution. The different actions are explained as below. 

 
 
 

Figure 5.2: Interaction between client and server containers (Centralized Approach) 
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• A user sends a request for a particular service (step 1). Upon receiving a request, 
the client and server identify the collaborating components deployed in the 
respective containers (step 2a & 2b). In step 3a & 3b, each container accesses the 
repository to get the QoS contracts of the components identified in step 2 and also 
collects information about the local resource conditions. 

• Negotiation is performed by each container locally (step 4a & 4b). Note that this 
step comprises both coarse-grained and fine-grained negotiations. 

• In step 5, the client communicates to the server about the selected QoS-Profiles of 
client components connected across containers. The server checks if these profiles 
conform to the ones it selected and also if there is enough network bandwidth 
(step 6). If all the constraints are met, the negotiation will end by establishing 
contracts (step 13a & 13b). Otherwise, the server repeats the negotiation in view 
of the information it received from the client (step 7). 

• In step 8, the server sends to the client the selected profiles of components that are 
relevant. The client checks for consistency of all constraints in step 9 and if so 
control will move to step 13a & 13b to establish contracts. Otherwise more 
negotiation is done on the client’s side (step 10) that takes into account the 
previous outcome of the server’s negotiation. Steps 6 to 12 are repeated until all 
constraints are satisfied. Finally, in a successful scenario contracts are established 
among collaborating components (step 13a & 13b). 
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Figure 5.4 depicts one possible interaction between a client and server negotiators in a 
hybrid solution, which involves both centralized and distributed approaches. In steps 1 & 
2, the requested service is communicated to the server. Step 3 identifies the collaborating 
components. In Step 4, the server obtains all the required metadata about the component 
and the resource conditions. In step 5, the server performs negotiation on properties 
defined for all components. Selected QoS-Profiles of components are communicated to 
the client (step 6). Steps 7a & 7b continue the negotiation with respect to properties 
specific to the local components. Finally, contracts are established. 
 

 
 

Figure 5.3: Interaction between client and server containers (Pure-Distributed Approach) 
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Figure 5.5 shows one possible interaction in a multiple-clients scenario. It focuses on 
how the client and server containers interact to select concrete contracts (i.e. on the 
decision making process rather than the protocol aspect). The negotiation is started when 
a client makes a request for a particular service. Only a few of the existing clients is 
shown in the diagram. Client_i and Client_k are new clients while Client_x is a client that 
has already established a contract with the server. The particular negotiation scenario in 
Figure 5.5 results in establishing contracts for Client_i and Client_k and a re-negotiated 
contract for Client_x. Steps 3 and 4 are based on the discussions in subsections 4.1.3.1 
and 4.1.3.2 while steps 5, 6, and 8 use Algorithm 3.3 in subsection 3.4.4. 
 

 
Figure 5.4: Interaction between client and server containers (Hybrid Approach)  

 



 5. A QoS Contract Negotiation Framework 

121 

5.3 Negotiation Settings 
 
The negotiation objects, which are the particular NFPs upon which negotiation is to be 
performed, must be specified and available declaratively in an XML configuration file so 
that the contract negotiators carry out the negotiation in a phased manner as demonstrated 
in subsection 3.4. Moreover, policing helps to capture some aspects of negotiation as 
illustrated in subsection 4.1.3.2 and must be available declaratively to the negotiator. Let 
the XML file negotiation.xml contains the aforementioned configuration information. 
Note that the components’ NFPs (QoS contracts) are specified using CQML+ and are 
available in an XML file (cqmlplus.xml) during the negotiation. cqmlplus.xml doesn’t 
contain information about either the precedence (order) of negotiation objects or 
negotiation policies. 
 
Besides, some important negotiation parameters must be captured in negotiation.xml 
as QoS specification languages do not normally support these issues. For instance, the 
relative importance of a QoS-dimension in a multi-QoS dimension negotiation must be 

 
 

Figure 5.5: Possible interaction between multiple clients and a server  
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specified. This is both useful for a satisfied negotiation or in cases where priorities need 
to be taken for an unsatisfied negotiation. 
 
In our video streaming scenario, negotiation settings at the server and client containers 
may be provided as follows. 
 
At the server container: 
 
<Negotiation> 

<component name=”VideoServer”> 
 <coarse-grained name=”coding” value=”mpeg”/> 
 <coarse-grained name=”coding” value=”h261”/> 
 <coarse-grained name=”protocol” value=”rtp”/> 
 <fine-grained name=”frame-rate” weight=”0.4”/> 
 <fine-grained name=”resolution” weight=”0.6”/> 

</component> 
<policy> 
 <service-class name=”normal”> 
  <load-condition name=”over-load”> 
   <property name=”proportion” value=0.3/> 
  </load-condition> 
 </service-class> 
<policy> 

</Negotiation> 
 
At the client container: 
 
<Negotiation> 

<component name=”VideoPlayer”> 
 <coarse-grained name=”coding” value=”h261”/> 
 <coarse-grained name=”protocol” value=”rtp”/> 
 <fine-grained name=”frame-rate” weight=”0.4”/> 
 <fine-grained name=”resolution” weight=”0.6”/> 

</component> 
</Negotiation> 
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6 Conclusions and Outlook 
 
Motivated by the need to support the development of distributed component-based 
applications with non-functional requirements like QoS and security, the main focus of 
this thesis has been to propose a QoS contract negotiation framework that is employed 
when collaborating components with NFPs are connected to provide the required service. 
We summarize below: (i) the most important achievements, the results obtained, and a 
critique of the approach, (ii) the future work that would advance the ideas in the thesis, 
and (iii) a final remark. 

6.1 Conclusions 
 
This thesis presented a general framework for QoS contract negotiation in distributed 
component-based software. In this framework, the component containers perform the 
contract negotiation at run-time when a service is requested by a client. Each 
component’s QoS contracts are assumed to be specified in terms of the provided and 
required QoS as well as the associated resource demand. The QoS contracts generally 
depend on run-time resources and quality attributes fixed dynamically. We have studied 
three componentized distributed applications to motivate the problem as well as to 
validate the proposed approach. The analyzed applications are: (i) video streaming, (ii) 
stock quote, and (iii) billing (to evaluate certain security properties). 
 
We addressed the QoS contract negotiation problem by first modelling it as a constraint 
satisfaction optimization problem (CSOP). As a basis for this modelling, the provided 
and required QoS as well as resource demand are specified at the component level. We 
argued that performing QoS contract negotiation in multiple phases simplifies the 
negotiation process and make it more efficient. Pertaining to this classification, we 
presented heuristic algorithms that comprise coarse-grained and fine-grained 
negotiations for collaborating components deployed in distributed nodes in the following 
scenarios: (i) single-client - single-server, (ii) multiple-clients, and (iii) multi-tier 
scenarios. 
 
The negotiation algorithm in the single-client – single-server scenario (Algorithm 3.3) 
provides a solution that has the highest utility as far as the most preferred QoS dimension 
is concerned with a run-time complexity of O(nd2) where n is the total number of 
cooperating components and d is the number of QoS-Profiles specified for each 
component. Algorithm 3.3 assumes that the cooperating components form a tree to 
achieve a non-backtracking solution. Algorithm 4.1 and 4.2 generalize our approach to 
the case of multiple-clients and multi-tier scenarios respectively. Algorithm 4.1 uses 
heuristics to provide a good solution. Finding a globally optimal solution is left for future 
research. 
 
Under the circumstances that there are not enough resources to satisfy a user’s QoS 
requirements, or conformant QoS-Profiles cannot be found when trying to get a solution 
that meets the user’s constraint, Algorithm 3.4 finds a solution that effectively performs a 
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QoS trade-off. To achieve this trade-off, a user’s preferences towards each QoS 
dimension and the utility function are used. Under these conditions, the selected QoS-
Profiles maximize the most preferred property at the expense of the less preferred ones 
for dependent QoS dimensions. For instance, if a user prefers frame rate over resolution 
then the QoS trade-off is performed by successively trying to maintain the user’s QoS 
requirements on frame rate and look for lower values of resolution and only to go to QoS-
Profiles with lower frame rate after QoS-Profiles that have lower resolution values have 
been exhausted. 
 
Efficiency of the negotiation process was one of the goals we addressed in the heuristic 
algorithms. We treated efficiency from two different aspects. The first is from the point 
of view of the selection of QoS contracts that provide good solutions based on a certain 
negotiation goal (e.g. maximizing user’s satisfaction). This has been achieved in the 
single-client – single-server scenario by appropriate value and variable ordering policies 
in the fine-grained negotiation that employs branch-and-bound techniques. The second is 
from the standpoint of the number of inter-container message exchanges and the level of 
concurrency that can be achieved in the negotiation process. As far as this view is 
concerned, a hybrid solution, that combines centralized and decentralized approaches, has 
been found to perform well for realizing the proposed algorithms while a purely 
distributed solution is inappropriate due to the lack of predictability on the number of 
inter-container communications required to reach an agreement. 
 
We developed a prototype that implements all the proposed negotiation algorithms for the 
purpose of validating the approach. The prototype has been developed with the intention 
of integrating it into a component framework using the interceptor pattern that enables 
adding cross-cutting concerns like contract negotiations. We conducted an experiment to 
specify the QoS-Profiles of the involved components in one of the applications we 
studied. In a run-time system that implements our algorithms, we simulated different 
behaviors concerning: (i) user’s QoS requirements and preferences, (ii) resource 
availability conditions concerning the client, server, and network bandwidth, and (iii) the 
specified QoS-Profiles of the collaborating components. Under various conditions, the 
outcome of the negotiation confirms the claim we made earlier with regard to the outputs 
of Algorithms 3.3, 3.4, and 4.1. 
 
It is to be noted that our entire approach extensively depends on the QoS-Profiles of the 
collaborating components. The component developer specifies the QoS-Profiles after 
conducting experiments and measuring the provided quality, required quality and the 
resource demand at the component level. Because of the negotiable (dynamic) nature of 
QoS properties, multiple QoS-Profiles are needed to specify QoS contracts. Given the 
same application, constituting components, and same environment, the outcome of the 
QoS contract negotiation can depend on the specified QoS-Profiles. One of the 
drawbacks of this is that the solution obtained might not be the optimal one. In order to 
overcome such a discrepancy, there must be some standard way of specifying QoS 
contracts, which might be done by either using measurements or analytical means. This is, 
however, beyond the scope of the thesis. 
 



 6. Conclusions and Outlook 

125 

6.2 Future Work 
 
Globally Optimal Solutions 
 
One area deserving exploration is to give negotiation results by analytically finding 
globally optimal solutions. The optimal solution should take into account the interests of 
users and service providers, which is usually conflicting. In order to accomplish this, the 
nature of utility functions should be examined. Defining a utility function is a difficult 
task due to the inter-dependency of QoS-dimensions and various parameters. In this 
thesis, we simply assumed that a utility function is given as a weighted sum of 
dimension-wise utilities without a further study as to how these weights are determined. 
Additionally, more parameters need to be incorporated into a utility function in the 
context of the multiple-clients scenario (i.e. from the point of view of service providers). 
Some parameters that need to be incorporated concern: how to differentiate two clients of 
the same service class during over-load case and contract termination costs. 
 
Other Scenarios 
 
We have demonstrated our approach basically for client/server applications. But, other 
scenarios for the emerging areas like service-oriented or peer-to-peer computing merit 
further investigation. In a component-based peer-to-peer application, a component is both 
a service consumer and provider. Moreover, next generation peer-to-peer applications are 
highly decentralized and dynamic, which might consist of a large number of peers that 
may join and leave at any time. These and other challenges need to be examined when 
extending our framework to the new computing models. 
 
Consideration of More Properties 
 
Due to the scope of the thesis, we considered only certain QoS properties during 
negotiation. One interesting area that deserves future research is the incorporation of 
cost/price of service in the QoS contract negotiation. This requires examination of 
appropriate resource allocation models, which may be market-based, suitable pricing 
models (e.g. pay-per use), etc. 

6.3 Final Remark 
 
In a nutshell, our work can be taken as an important step forward in the realization of a 
component technology that enables the development of applications with non-functional 
requirements like QoS from components whose QoS contracts have been specified. Our 
QoS contract negotiation framework, which can be integrated in a component container, 
act as a run-time support environment when QoS Contracts are negotiated under different 
scenarios. 
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Appendix A - Abbreviations 
 

AOP Aspect Oriented Programming 
B&B Branch and Bound 
CBSD Component-Based Software Development 
CBSE Component-Based Software Engineering 
CCM CORBA Component Model 
CIAO Component Integrated Adaptive Communication Environment (ACE) 

ORB 
COM Component Object Model 
COMQUAD Components with Quantitative Properties and Adaptivity 
CORBA Common Object Request Broker Architecture 
CQML Component Quality Modeling Language 
CSOP Constraint Satisfaction Optimization Problem 
CSP Constraint Satisfaction Problem 
DCOM Distributed Component Object Model 
DOC Distributed Object Computing 
DRE Distributed Real-Time Embedded 
DROPS Dresden Real-Time Operating System 
EJB Enterprise Java Bean 
IP Internet Protocol 
ISO/IEC International Organization for Standardization / International Electro-

technical Commission 
JMF Java Media Framework 
NFP Non-Functional Property 
OMG Object Management Group 
ORB Object Request Broker 
PCSP Partial Constraint Satisfaction Problem 
QDL Quality Description Language 
QML QoS Modeling Language 
QoS Quality of Service 
QuO Quality Objects 
RCC Resource-Consuming Component 
RMI Remote Method Invocation 
RSVP Resource Reservation Protocol 
RT-CORBA Real-Time CORBA 
RTP Real-time Transport Protocol 
SLA Service Level Agreement 
TCP Transmission Control Protocol 
UDP User Datagram Protocol 
UML Unified Modeling Language 
XML Extensible Markup Language 

 


