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Abstract—Recently, the concept of ‘cognitive networking’ has
been introduced, in which reconfigurable radio networks rely
on self-awareness and artificial intelligence to optimize their
network performance. These cognitive networks are able to
perceive current network conditions and then plan, learn and act
according to end-to-end goals. This paper elaborates on different
methods (network solutions) that can be used by cognitive
networks for deciding on how to optimize the performance of a
large number of co-located devices with different characteristics
and network requirements. To this end, a negotiation based
networking methodology (‘symbiotic networking’) is used that
supports efficient network cooperation between heterogeneous
devices in order to optimize their network performance. In this
paper, the advantages and disadvantages of different reasoning
techniques that can be used during the decision making phase
are discussed.

Index Terms—symbiotic cognitive networks; reasoning meth-
ods; machine learning; game theory;

I. INTRODUCTION

Wireless networks are becoming increasingly complex, het-
erogeneous and dynamic, which motivate the evolution of
the concept of cognitive networks. As it is described in [1]:
”A wireless cognitive network is a network with a cognitive
process that can perceive current network conditions and then
plan, decide and act on those conditions”. The network can
learn from these adaptations and use them to make future
decisions, all while taking into account end-to-end goals.

Cognition process (Fig.1), in this case, is related to machine
learning [2] as any algorithm that: ”improves its performance
through experience gained over a period of time without
the complete information about the environment in which it
operates”. This process can be divided into four stages:

(i) Gather observations of the important aspects (proper-
ties) of the network or, in other words, gather knowledge.
Inside complex systems, with a large number of nodes, it
is more likely that the cognitive process is performed with
an incomplete knowledge about the system status. (ii) Plan
actions according to the network policies and the knowledge
that was gathered. Reasoning is used to decide which scenario
best fits the end-to-end goals. After the decision is made, (iii)
actions are performed accordingly. The (iv) cognitive feedback
loop measures the success of the chosen solution relative to
the defined objectives. This way, when similar circumstances
happen in the future, the cognitive decision maker will have
an idea what decisions are preferred and which ones should
be avoided.

Fig. 1. A four stage cognition cycle: (1) data gathering (DG), (2) planning
(PA), (3) acting (A), (4) collecting feedback (CF)

The fundamental difference between a cognitive network
and a cognitive radio are the end-to-end goals. They give a
cognitive network its network-wide scope, separating it from
other adaptation approaches, which usually have only a local,
single element scope [3].

Cognitive networking solutions can be applied to improve
network performance in situations in which different networks
cooperate in an ad-hoc and dynamic way. For example, co-
located IEEE802.11 WiFi, IEEE802.15.4 sensor and 802.15.1
Bluetooth networks are typically configured independently
from each other: their settings take into account only the
behaviour of their own communication technology and they
typically ignore their influence on each other. By ensuring
that different co-located networks are aware of each other,
they can modify their configuration so that the performance
of all individual networks improves. The cognition loop can be
used as the way to further improve the newly formed symbiotic
network performance. Some of the examples are: improving
reliability, decreasing energy consumption, lowering exposure
etc.

The remainder of the paper is organised as follows: The
SymbioNets use case, a concept of symbiotic wireless sensor
networks cooperation, is presented in Section II. Section III
brings the overview of the most commonly used cognitive
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methods in the context of wireless (sensor) networking. In
Section IV we compare suitability of the above mentioned
approaches, from several different aspects, for the symbiotic
networking. Conclusion is given in Section V.

II. THE SYMBIONETS USE CASE

The need for cognitive networking is also stated in the
SymbioNets project [4]. In this project, different networks
engage in cooperation by activating specific symbiotic network
services (Fig.2), when activating these services result in better
network performance for all involved networks. These symbi-
otic network services are not crucial for the correct operation
of the individual networks, but instead influence the behaviour
of the communication.

Fig. 2. Coexisting networks suitable for symbiotic cooperation with their
negotiation representatives (NE). An example would be: temperature moni-
toring network (black nodes) and a security network (blue hexagons) inside
a facility

By activating a symbiotic network service, the reliability,
energy consumption, exposure, etc. of one or more networks is
influenced. In the SymbioNets project, a number of symbiotic
services is dynamically activated or deactivated based on
the network requirements. Some example symbiotic network
services are the following:
• A network can offer Internet access to other networks
• An ‘interference avoidance’ algorithm can be activated to

reduce interference
• A ‘packet sharing service’ allows cooperating networks

to interpret and route packets from each other
The full SymbioNets cognitive cycle works as follows. Co-

located communities of devices exchange their service profiles
so that each one of them has an idea about the network
preferences of co-located devices. These preferences describe
behavioural aspects of the network (e.g., ‘limit the battery
consumption’) or express the need for additional functionality
(e.g., ‘get Internet access’). There is a negotiation entity (NE)
in every community which collects all service profiles of
neighbouring communities and decides which symbiotic net-
work services should be activated or deactivated. The process

of negotiation is rerun every time a new or an updated profile is
received. Service negotiation messages are exchanged between
negotiation entities to reach a common decision. Then, the
decision is disseminated to every node in the community.

One critical aspect of the SymbioNets approach is that the
networks need to decide which network services to activate
based not only on environment observations, but also in
networks consisting of strongly heterogeneous devices with
diverging communication technologies, diverging application
requirements and diverging computational resources. In the
current implementation, a linear programming algorithm, that
is implemented on the negotiation node [4], is used to auto-
matically calculate the optimal set of network services to be
enabled on every node. However, this solution assumes that
benefits and costs of enabling each service are predefined and
fixed. In a dynamic environment this assumption usually does
not hold. Instead, a more advanced cognitive decision method
is required. In this paper, we describe a number of cognitive
decision methods that can be used and explain the concepts
on which they rely. Most importantly, we point out their major
advantages and drawbacks if applied in heterogeneous, symbi-
otic environments. These cognitive methods are evaluated on
several criteria:
• Complexity. Are they also suitable for use on devices with

low processing power, such as sensor nodes?
• Support for heterogeneity. Suitable for an environment

where different communication technologies and different
types of application requirements coexist.

• Dealing with ”‘malicious”’ behaviour in the network.
For example, what if certain devices try to ‘cheat’ by
falsely reporting that they activated certain services?

• Support for distributed solutions. Suitability for networks
where devices have to make decisions based on local
information, rather than having a full network overview.

III. COGNITIVE METHODS

This section gives an overview of relevant decision making
methods and elaborates on their advantages and suitability for
heterogeneous, symbiotic networks. We discuss the following
decision methods: mathematical methods (including linear
programming), interactive network simulators, game theory
and machine learning.

A. Mathematical methods

In small networks, it may possible to calculate the influence
of a specific network configuration on the network perfor-
mance. As an example, consider queuing theory, that can
be used to derive performance metrics such as the average
waiting time in queues of the system, the expected number
of packets in queues, packet drop probabilities, etc. However,
queuing theory is not capable of predicting end-to-end network
qualities in large-scale and complex networks that use multiple
network protocols.

Other mathematical models were developed to calculate the
performance of higher-layer network protocols. For example,



in [5] a mathematical model is created to optimize the sta-
bility and fairness of rate control algorithms for the Internet.
However, these formulas require in-depth knowledge of the
innerworking of the specific network protocols.

Finally, in [4], a linear program is used to calculate which,
among a list of potential network functions, should be ac-
tivated to best suit the network requirements of several co-
located networks. For example, if energy efficiency of a
smartphone device is an issue and no low-latency applications
are being used, the linear program can activate a packet
aggregation protocol. For its calculations, the linear program
assumes that the influence of network protocols is known in
advance.

All these mathematical methods have the same disadvan-
tages. (i) They do not accurately model the whole networks,
or use abstractions of certain parts of the network. (ii) They
are not suitable for modeling complex cross-layer and cross-
network interactions. (iii) And finally, they assume perfect
knowledge about the network. On the other hand, mathemat-
ical formulas often have a low processing overhead and they
can accurately predict a number of key performance metrics.

B. Network simulators

As an alternative, it is possible to use a network simulator
in the decision making process. The cognitive engine can
recreate (to the best of its abilities) the monitored network
conditions in a network simulator, and use the simulation
to predict the influence of optimization decisions. Existing
network simulators such as ns2/ns3, OPNET, Netsim, etc. have
become increasingly accurate and are capable of taking into
account many cross-layer and even physical layer interactions.
A similar approach is the use of planning tools for decision
making. Planning tools are typically used before deployment
of a network to predict the behaviour of (wireless) networks
in different environments [6]. They are, for example, used to
calculate the optimum number of Wi-Fi access points and com-
munication settings to obtain a certain network performance.

A cognitive reasoning engine can be created by recreating
the network set-up in a network simulator or planning tool, and
running multiple scenarios with different settings. This way,
the decision engine can estimate and select the best network
configuration.

The main disadvantages with this approach are the follow-
ing. (i) Network simulators are typically not designed for
distributed calculations. (ii) Detailed information about the
network is required, such as the location of each device, the
exact network configuration and settings and the application
requirements. (iii) Current network simulators do not take into
account the influence of different co-located communication
technologies that use the same frequency band. Finally, (iv)
network simulators often require heavy processing power.

C. Game theory

Game theory models the behaviour of a system as a game,
played by at least two rational players. Rationality, in this
context, means balancing costs against benefits to arrive at

an action that maximizes personal payout. Game theory has
been used in logic, economics, psychology, political science,
biology etc. In the domain of computer networks, it offers
tools that can be used in modelling an interaction among
individual nodes in a wireless network. Game theory enables
us to determine the existence, uniqueness and convergence to
a steady state operating point.

Formally, a game is given by G = (N,A, ui), where N =
1, 2, ..., n is the set of players, Ai is the action set for player
i. ui is the set of utility functions that each player wishes to
maximize, where ui : Ai → <. For every player, i, the utility
function is a function of the action chosen, ai and the actions
chosen by all the players in the game other than player i,
denoted as a−i. Together ai and a−i make up the action tuple
a. An action tuple is a unique choice of actions by each player.

Steady-state conditions, the Nash equilibrium, can be identi-
fied using this model. The Nash equilibrium represents a state
where an individual node cannot increase the values of its
utility function by changing actions, assuming other players
remain constant in their strategies. Pareto efficiency, on the
other hand, describes how acceptable is the achieved steady
state from a global point of view. A Pareto optimal state is
the one where no player can benefit from any action without
making someone else worse off.

Problems such as node’s power consumption, contention for
a communication medium and routing in cognitive wireless
networks have already been presented in the form of a game
[7].

For our specific use case, described in Section II, the nego-
tiation process should include a process of defining pricing
policies and action sets, taking into account the wireless
technology each community is based on. The disseminated list
of enabled services defines the starting point in a game. Nodes
aim to increase their utility functions regarding each given
incentive and a properly designed pricing policy will lead
to an increase of the Pareto efficiency. By sending feedback
to the negotiation node, service policies can be updated to
trigger recalculation and renegotiation. Since every network
preference that needs to be optimized in the community
demands a distinctive game, it is likely that a number of
these different games will involve common parameters. Certain
trade-offs can be foreseen. For example: a packet sharing and
a power saving game can be played simultaneously. While the
first one demands a node to forward more packets thus spend
more energy, the second one will try to minimize the power
consumption as much as possible. There has to be a trade-off
between spending less energy per node and ensuring better
network coverage and shorter routing paths.

One difficulty of using the game theory in SymbioNets,
is how to correctly interpret low-level actions into high-level
goals. Additionally, the set of available actions to the players
needs to be carefully defined and verified as well as the states
the system can go through. Finally, computational complexity
will increase significantly as the number of nodes grows.



D. Machine learning

Machine learning is a form of artificial intelligence in which
devices learn using inductive inference (Fig.3) [8] [9]. One
specific field, Reinforcement learning, is particularly suitable
for usage in the context of cognitive networks [10]. It involves
the notion of learning through trial-and-error interaction with
a dynamic environment.

This concept can be described as follows: a decision making
node has a set of possible actions A = a1, a2, ..., aN at each
step. Based on observations of the environment, the next step
is chosen. It is desirable to have a process with a finite number
of states. When the action is taken, the environment makes a
transition to another state according to a certain probability
distribution P (s′|s, a) and so on. The main goal of a decision
maker is to maximize its action-value function (Bellman’s
equation) :

Q(s, a) = r(s, a) + γ
∑

s′ P (s
′|s, a)maxQ(s′, a′)

The Q function assigns a value to each state/action pair. This
value is increased every time a decision maker takes action a at
state s. It also takes into account the highest available Q value
at each connected state. The factor γ makes sure the reward
for making the same decision in the future decreases. r(s, a)
represents an immediate reward, the one that is awarded at the
initial transition from the state s.

Fig. 3. The standard model of a learning agent

In [11] a number of reinforcement learning (RL) technique
applications in wireless ad-hoc and wireless sensor networks
are presented. Reinforcement learning is described as very well
suited for distributed problems, like routing. It has ”medium”
requirements for memory and computation at the individual
nodes, is easy to implement, highly flexible to topology
changes, but it needs some time to converge.

Q-learning algorithm [12] is probably the most frequently
used technique of reinforcement learning in wireless ad-hoc
networks. It does not need any model of the environment and

can be used for on-line learning of the value function of some
RL task, referred to as the Q-function. It is relatively easy to
implement and has a good balance of optimality to memory
and energy requirements. In wireless sensor networks, it was
mostly used for optimizing the routing algorithms [13].

LSPI (Least Square Policy Iteration) is a model-free algo-
rithm, which calculates the Q value of every state as a linear
combination of so called ”weighted basis functions” [14].

Q(s, a, w) =
∑

k φi(s, a)wi

Each one of k basis functions φi(s, a) represents a certain
information about each state-action pair (e.g., residual energy
of s’, link quality between s and s’ etc.). Weights wi are
parameters of the linear equation that are learned by gathering
samples 〈s, a, r, s′〉. Every sample describes the reward r
received upon executing action a in state s, ending in state s′.
The main advantages of this algorithms are: it converges more
quickly than the Q-learning and it does not require carefully
tuning initial learning parameters [15].

Additionally, in [16] the Collaborative Reinforcement
Learning technique (CRL) is introduced as a model-based
technique with collaborating RL agents. This algorithm is
applicable in heterogeneous networks, where agents typically
poses different capabilities. CRL allows newly discovered
agents to negotiate the establishment of causally connected
states with their neighbours by exchanging device capability
information.

In the context of the SymbioNets use case, the negotia-
tion process, described in Section II, is used to check the
compatibility of neighbouring community’s communication
technologies. It aims at defining the initial values of all the
configuration parameters regarding each enabled service in
the community. These values are used as starting points in the
cognition process. A periodic feedback (values of a predefined
set of parameters) are sent to a negotiation entity. After
investigating the progress that has been made, the negotiation
node decides whether to renegotiate the service policy or not.

The process of learning should be applied to every estab-
lished network preference. Since the best possible action at
some state is never known a priori, the decision making node
needs to try different actions and sequences of actions so it
could learn from its experiences. The process of maximizing
action-value functions assigned to each preference enables the
node to discover an optimal action-policy. This policy maps
input values (gathered from the environment) into actions.
As mentioned in the previous section, multiple processes are
performed in parallel, including some common parameters
which might lead to conflicting situations. It is necessary to
determine correct trade-offs. This analysis can be done during
the negotiation phase.

One of the main issues with reinforcement learning is that
the number of possible environment states is large. To calculate
the reward of a certain action, a node has to, at least, take a
good guess what state the system is going to move into by
preforming an action. The other problem is how to gather all



the necessary observations for multi-objective learning. Should
there be a predefined set of data that is to be gathered at each
step or should it depend on objective? Another pitfall is that,
since the number of nodes will be fluctuating, it will be hard to
establish a solid and non-changing policy since the influence
of each action could change as the network topology changes.

IV. CHOOSING THE OPTIMAL REASONING ENGINE

This section compares the suitability of different reasoning
engines for the symbiotic networking paradigm that was
presented in Section II.

A. Supporting heterogeneity

Mathematical formulas typically assume that the network
is very homogeneous. Heterogeneous networks might have
diverging network requirements, different communication pro-
tocols and even use different communication technologies.
Since new formulas have to be created for each different
network situation, the use of mathematical formulas in not
feasible for heterogeneous networks.

Current network simulators already have support for het-
erogeneity. They typically include a wide set of standardized
network protocols and technologies, and as such can be used to
estimate how different network settings influence performance.
However, especially at the physical layer, a large number
of unexpected cross-layer and cross-network interactions are
typically simplified.

With regards to game theory, agents in heterogeneous net-
works can play a game, but with different perception of what
goes on in the network, because the utility functions differ
significantly - different power supply, radio transmission costs
etc. This leads to different cost/benefit reasoning among nodes
in different communities and has to be taken into account
while negotiating optimal service and pricing policies.

Reinforcement learning algorithms support heterogeneity
but every newly discovered agent has to negotiate the estab-
lishment of causally connected states with their neighbours by
exchanging device capability information.

B. Complexity

The complexity of mathematical formulas depends strongly
on the effect that is modelled (link local, end-to-end, ...) and
the number of parameters that are taken into account. However,
it is safe to say that highly complex networks can not fully
be modelled using only mathematical formulas. In addition,
solving complex mathematical formulas can be difficult on
resource-constrained devices such as sensor nodes or smart
phones.

The computational complexity of network simulators
strongly depends on the accuracy of the simulator. Simulators
that use approximations of communication effects can have
low computational complexity, whereas extremely accurate
simulators might require several days to calculate the be-
haviour of even small networks. However, even simplified
network simulators are too complex to be used in resource-
constrained networks: sensor networks or smart phones might

want to off-load the cognitive reasoning process to a remote
server that is less resource constrained.

In game theory approach, computation complexity increases
as the number of players grows. Every individual player has to
take into account actions of all other players. The existence of
a steady state point must be proven before utilizing any specific
algorithm. In the approach with the centralized authority (a
negotiation node), the rules of a game can be changed during
the play in respect of the feedback a negotiation entity is
given from the network. Coordinated games assume exchange
of information between nodes which can cost a lot in power
consumption and memory space that is being used.

For reinforcement learning, model free algorithms need
fresh data every once in a while, but the computational power
and memory utilization are much lower than in model based
algorithms. However, a model based algorithm can guarantee
good results in an environment where acquiring measurements
is highly expensive. With this approach, learning is faster, as
much more use can be made of each experience. It can be used
to solve multiple optimization problems. Many algorithms
have already been implemented in WSNs, which implies that
they can be adjusted to cope with severe power limitations.
Complexity, however, does differ from algorithm to algorithm.

C. Dealing with ”‘malicious”’ behaviour
In order to increase their own performance, devices can

report false values, or fail to activate the network configuration
settings they promised. A cognitive engine should be able
to detect this kind of behaviour, and optionally punish these
devices, or refuse to further cooperate with them.

When the predicted outcome of mathematical formulas dif-
fers from the measured performance, this can be an indication
of ‘cheating’ nodes. However, it is almost impossible to detect
the difference between incorrect predictions and malicious
behaviour.

When the observed performance differs from the expected
performance, network simulators can run through a large num-
ber of simulations to identify which settings produce similar
behaviour. However, this process is likely very expensive
computationally.

In game theory, a properly designed pricing policy aims to
increase the Pareto efficiency of a game by making sure that
every asocial behaviour is ’punished’. A node is considered to
be malicious (selfish) if it tries to increase its own benefit
without taking into account the social aspect of the game
(making Pareto efficiency worse off).

When using reinforcement learning, Higher learning rates
and not well defined rewarding policy will enforce particular
states very quickly. In a dynamic network this can lead
to suboptimal performance. One should trade-off between
converging faster, but to a possibly mediocre operating point
and converging at a slower rate while taking into account
network changes and possible erroneous behaviour.

D. Suitability for distributed implementation
Mathematical methods typically require complete knowl-

edge of the network configuration and as such can not be used



in a distributed way. The same is true for network simulators.
Game theory approach is naturally intended to operate in

a distributed manner. Every node plays a game with one
objective: to increase its payoff as much as possible. As
mentioned before, to avoid selfish behaviour, the pricing policy
must be properly defined. The existence of a supervising
node, which gathers feedback information of all the players
in a community and changes the rules and pricing policies
on the fly, can be helpful, but fully centralized approach is
inapplicable since it demands great computational power and
full knowledge of the network.

Centralized reinforcement learning algorithms are inappli-
cable in resource-constrained wireless sensor networks since
they assume a complete knowledge of the network’s topology.
If not impossible, in most cases this will be tremendously
expensive to obtain. On the other hand, there already exist
solutions for distributed reinforcement learning - Distributed
Q-learning is a good example. MDQL is the solution for
problems of multi-objective incentives in distributed manner
[17].

V. CONCLUSION

This paper surveys different reasoning approaches and
discusses how they can be applied to SymbioNets. Four
different decision approaches are discussed. (i) Mathematical
approaches require a low computational overhead, but are
not well-suited to model complex cross-network and cross-
layer influences. (ii) Network simulators can be used to
determine optimal network settings by simulating a large
number of network configurations. However, simulations have
a large computational overhead and require perfect network
knowledge at a central location. (iii) Game theory is well-
suited for distributed negotiation implementations. However,
each device needs an individual, custom designed cost and
utility function. Finally, (iv) machine learning approaches do
not require any knowledge about the innerworking of the
network protocols. However, they can take a long time to
reach a steady-state optimal network situation. As such, it
is clear that no ‘best’ cognitive decision approach exists.
Instead, the choice of approach depends on which SymbioNets
criteria is deemed most important: complexity, support for
heterogeneity, able to deal with ”‘malicious”’ behavior and/or
support for distributed solutions. Further work will focus on
how to combine these different approaches to overcome their
individual disadvantages.
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