

Secure Agent Data Integrity Shield

Sheng-Uei Guan
1
 and Yang Yang

Department of Electrical and Computer Engineering

National University of Singapore

10 Kent Ridge Crescent, Singapore 119260

Abstract

In the rapidly expanding field of E-Commerce, mobile agent is the emerging technology

that addresses the requirement of intelligent filtering/processing of information. This

paper will address the area of mobile agent data integrity protection. We propose the use

of Secure Agent Data Integrity Shield (SADIS) as a scheme that protects the integrity of

data collected during agent roaming. With the use of a key seed negotiation protocol and

integrity protection protocol, SADIS protects the secrecy as well as the integrity of agent

data. Any illegal data modification, deletion, or insertion can be detected either by the

subsequent host or the agent butler. Most important of all, the identity of each malicious

host can be established. To evaluate the feasibility of our design, a prototype has been

developed using Java. The result of benchmarking shows improvement both in terms of

data and time efficiency.

Keywords: mobile agent, agent security, agent integrity, data integrity, electronic

commerce

1. Introduction

With the extensive penetration of Internet technology in our everyday life, many new

opportunities arise, especially in the field of commerce. E-Commerce, or electronic

1
 Contact Author: sg_1_1@yahoo.com

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/333829?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

commerce, is born along with the Internet. The setting up of a virtual shop leads to an

immediate presence in the electronic world for a merchant. Billions around the world

will be able to view the products/services online, and purchase online. With this ‘click-

and-mortar’ concept, there is no need for the rental of expensive shops in a prime

location, nor the need for hiring sales promoters. All that is needed is a web presence on

the Internet.

As technology evolves, there is more to setting up a virtual shop in the Internet.

With millions of virtual shops springing up in various parts of the world, it is impossible

for a customer to manually browse through all the possible shops before making a

purchase decision. To address this concern, mobile agent technology is coming into the

limelight [14]. A mobile agent will be able to automate certain tasks that were processed

manually and make certain decisions intelligently with/without the interference of its

owner. With this approach, information gathering can be performed automatically within

the split of a second, and the decision making process can be more efficient and reliable.

One hindrance to the widespread adoption of mobile agent technology is the lack

of security. When a mobile agent carries sensitive information and private mission to

execute in a remote location, the agent owner must be assured of various issues so that

the agent will not be compromised, the information carried by the agent won’t be stolen,

the cash credit carried by the agent wont’ be misused, etc. Security will be the issue that

has to be addressed carefully if mobile agent is to be used in the field of electronic

commerce.

SAFER, or Secure Agent Fabrication, Evolution and Roaming, is a mobile agent

framework that is specially designed for the purpose of electronic commerce [1-4]. By

 3

building strong and efficient security mechanisms, SAFER aims to provide a trustworthy

framework for mobile agents, increasing trust factors to end users by providing the ability

to trust, predictable performance and communication channel [17]. In [2], a secure agent

transport protocol is proposed to ensure roaming security. While such an agent transport

protocol provides for the secure roaming of agents, there are other areas related to

security to be addressed.

Agent integrity is one such area crucial to the success of agent technology. Agent

integrity refers to both agent code integrity and agent data integrity. Given the static

nature of agent code, the integrity protection for agent code is relatively straightforward.

More complex code integrity scheme to handle code-on-demand is also proposed in [6].

Different from agent code, agent data is dynamic in nature and will change as the agent

roams from host to host. Despite the various attempts in the literature, there is no

satisfactory solution to the problem so far. Some of the common weaknesses of the

current schemes are vulnerabilities to revisit attack and illegal modification

(deletion/insertion) of agent data. In [5], AMP was proposed to address agent data

integrity, did address some of the weaknesses in the current literature. Unfortunately, the

extensive use of PKI technology introduces too much overhead to the protocol. Also,

AMP requires the agent to deposit its data collected to the butler before it roams to

another host. While this is a viable and secure approach, our approach will provide an

alternative by allowing the agent to carry the data by itself without depositing it (or the

data hash) onto the butler.

Besides addressing the common vulnerabilities of current literature (revisit attack

and data modification attack), SADIS also strives to achieve maximum efficiency without

 4

compromising security. It minimizes the use of PKI technology and relies on symmetric

key encryption as much as possible, thus reducing the overhead introduced by the

security mechanism to a minimum. In terms of data efficiency, it does not require the

agent to carry any encryption key or random (for encryption key derivation) with it -

some existing mechanism does require that. Instead, the data encryption key and the

communication session key are both derivable from a key seed that is unique to the

agent’s roaming session in the current host. As a result, the butler can derive the

communication session key and data encryption key directly.

Another feature in SADIS is strong security. The key seed negotiation itself is

based on a variation of DH key exchange. During the negotiation, it also achieves the

objective of implicit destination host authentication, and prevents the current host from

getting any insight into the next key seed. Furthermore, to protect the key seed, it is

never used directly as encryption key throughout the scheme. Instead, it is used to derive

each session key and one-time data encryption key. Effectively, each message exchange

between the agent butler and the agent is protected using a different session key. There is

no meaningful relationship between each session key, making it extremely difficult for

any attack on the keys.

Most of the existing researches focus on how to detect integrity compromise, but

neglected the need to identify the malicious host. With SADIS, the agent butler will not

only be able to detect any compromise to data integrity, but to identify the malicious host

effectively.

To further illustrate SADIS, we will first discuss the related work in the literature

on data integrity protection and their strengths and weaknesses. Subsequently, an

 5

overview of SADIS is described, followed by the details of the two main protocols under

SADIS (Key negotiation protocol and data integrity protection protocol). After that,

security analysis is performed on these two protocols. The result of implementation will

be presented after the security analysis.

2. Related Work

Agent data integrity has been a topic of active research in the literature for a while. There

are various techniques to protect agent integrities [16], some of them based on trusted

hardware, some of them based on trusted host, and some even based on conventional

contractual agreements. SADIS addresses the problem of data integrity protection via a

combination of techniques such as execution tracing, encrypted payload, environmental

key generation and undetachable signature.

Over the years, there have been quite a number of researches targeted for agent

integrity protection in one way or another. One of the newest active researches is the

security architecture by Borselius [18]. While many of the security services are still

under active research, the security mechanisms for protecting agents against malicious

host is describe in [19]. The paper proposes two mechanisms to protect mobile agents.

The first mechanism makes use of a threshold scheme to protect mobile agents. Under

the mechanism, a group of agents is dispatched to carry out the task, each agent carrying

a vote. The agent votes for the best bid (under a trading scenario) independently. If more

than n out of m (m > n) agents vote for the transaction, the agent owner will agree to the

transaction. The security of this threshold mechanism is based on the probability that no

more than n hosts out of m are malicious. In another word, the security is established

 6

based on probability. Different from this approach, the security of SADIS is completely

based on its own merits without making any assumption about the integrity of external

hosts.

While the research in [18-19] is actively underway, there are other more mature

researches in the area. One of such research work on agent protection is SOMA. SOMA

[11], or Secure and Open Mobile Agent, developed by University of Bologna, is a Java-

based mobile agent framework that provides for scalability, openness, security in the

Internet. One of the research focuses of SOMA is to protect mobile agent’s data

integrity. To achieve this, SOMA makes use of two mechanisms: Multi Hop (MH)

Protocol and Trusted Third Party (TTP) Protocol.

The advantage of MH protocol is that it does not require any trusted third party or

even the agent butler for its operation. This is a highly desirable feature for agent

integrity protection protocol. Unfortunately, MH protocol does not hold well against

revisit attack when the agent visits two or more collaborating malicious hosts during one

roaming session [5]. This limitation indicates that the security of MH protocol is based

on probability (that the agent does not visit two or more collaborating malicious hosts).

If the agent visits host n and host m (n < m) who happen to be both malicious and

collaborating, there are a number of attacks possible [5] [7].

Trusted Third Party protocol uses a different approach towards agent integrity

protection. Sensitive operations (e.g., data hash calculation) are performed within a

trusted environment so that the result can be certified and fully trusted. While this is

definitely a secure mechanism, it does introduce significant overhead and inconvenience

to the infrastructure.

 7

As a result, TTP and MH are used in combination to provide optimal security and

efficiency under SOMA. However, given the nature of MH and TTP protocols, the

security of its combined use is still subjected to the probability that the agent does not

visit two collaborating host between visit to TTPs. In this paper, we will propose a

solution that does not base its security on probability.

Another agent system that addresses data integrity is Ajanta [8]. Ajanta is a

platform for agent-based application on the Internet developed in the University of

Minnesota. It makes use of an append-only container for agent data integrity protection.

The main objective is to allow host to append new data to the container but prevents

anyone from modifying the previous data without being detected. To achieve the

objective, a checksum is calculated based on the previous checksum and the signed data

from a new host. All the checksums are kept in the container for verification purpose

later.

Similar to the MH protocol, such an append-only container suffers from revisit

attack. If an agent visits collaborating malicious host n and m (n < m), host m can

effectively remove the agent data from n to m without being detected. Another way to

attack is to place a false set of data between host n and host m such that the data favors

the malicious party. As long as the signatures for the fake data are valid, there is no way

the butler can find out if the agent really visited those hosts. From these attacks on

existing research, the importance of protecting agent itinerary is obvious. In SADIS,

agent’s itinerary is implicitly updated in the agent butler during key seed negotiation.

This prevents any party from modifying the itinerary recorded on the butler and guard

against all itinerary related attacks.

 8

There is one recent research on agent data integrity protection called One-Time

Key Generation System (OKGS) researched in Kwang-Ju Institute of Science and

Technology, South Korea [13]. OKGS proposed an innovative approach of using a one-

time data encryption key to encrypt the data provided by the host, and chain the

encryption key to the hash values carried by the agent. When agents roam from host to

host, each of them carry a hash value Ci-1. When the agent reaches host i, the host will

generate two random R1 and R2. It will perform an XOR operation on Ci-1 and R1, and

hash the output to product data encryption key Si. This data encryption key will be used

to encrypt the data provided by the current host i. Subsequently, it will perform another

XOR operation on the data encryption key Si and R2. The output of the XOR operation is

hashed to become the next hash value Ci. The two random R1 and R2 will be encrypted

together with the digital signature on the data using the agent butler’s public key. When

the agent returns to the butler, the butler can repeat the key derivation process to derive

the data encryption key.

OKGS does protect the agent data against a number of attack scenarios under

revisit attack, such as data insertion attack and data modification attack to certain extent.

However, it does not protect the agent against deletion attack as two collaborating

malicious hosts can easily remove roaming records in-between them.

Furthermore, the use of XOR operation and two different random values are

identified as a main weakness of the algorithm. Firstly, XOR operation is subjected to

easy manipulation if one party has control over one of the inputs and has knowledge

about the others. In this case, the host can adjust the random value in such a way that the

output of the XOR operation can be exactly what it wants. As a result, the host will be

 9

able to dictate the data encryption key to be used. Similarly, the host also has full control

over the next hash value. Secondly, the use of two different random values does not

introduce more randomness to the algorithm. On the contrary, given the vulnerability of

the XOR operation earlier, using two random values gives the host more room for

manipulation over the data encryption key and hash value. For example, a host can

change its encryption key after the agent has left (e.g., when the agent reaches one of

host’s collaborating partners). By producing a different R1, the host can change the

encryption key to a different value. And by producing a suitable R2, the hash value

chaining effect can be maintained. However, it should be pointed out that the signature

algorithm does prevent the host from manipulating the encrypted data even though it can

manipulate the encryption key. As a result, in case of this attack, the butler will probably

find that the data provided by the host is corrupted but all chained signatures are valid.

The data integrity is thus corrupted without being detected. Instead of using a random

number to generate data encryption key, SADIS makes use of a negotiated key seed to

generate data encryption key. The advantage of this approach is that no random value

needs to be encrypted and stored with the agent. This effectively reduces one PKI

operation (encrypt the random value with the butler’s public key) and optimizes the agent

data size (does not need to carry encrypted random value any more). In addition, with the

new design in SADIS, the weaknesses related to the XOR operation and two random

values are not inherited.

Inspired by OKGS’s innovative one-time encryption key concept, SADIS will

extend this property to the communication between agent and butler as well. Not only

the data encryption key is one-time, but the communication session key as well. Using

 10

efficient hash calculations, the dynamic communication session key can be derived

separately by the agent butler and the agent with minimum overhead. Despite the fact

that all keys are derived from the same session-based key seed, SADIS also ensures that

there is little correlation between these keys. As a result, even if some of the keys are

compromised, the key seed will still remain secret.

3. Overview of SADIS

SADIS has been designed based on a number of assumptions. Firstly, entities including

agents, agent butlers, and hosts, should have globally unique identification number (IDs).

This ID will be used to uniquely identify each entity. Secondly, each agent butler and

host should have a digital certificate that is issued by a trusted CA. These entities with

digital certificate will be able to use the private key of its certificate to perform digital

signatures and, if necessary, encryption. Thirdly, while the host may be malicious, the

execution environment of mobile agents should be secure and the execution integrity of

the agent can be maintained. The last assumption is that entities involved are respecting

and cooperating with the SADIS protocol. For example, where digital signature is

required, the signer should be willing to perform the signature under the protocol. Given

the fact that the agent may be executing in a malicious environment, and that even if the

execution integrity is maintained, the privacy of the execution may not be guaranteed,

SADIS does not require the agent to carry any private key with it. In addition, SADIS

does not require the agent to have a pre-determined itinerary. The agent is able to decide

which host is the next destination independently.

 11

Under SADIS, data integrity and agent-to-butler communication are protected by

a session-based key seed. This key seed will be negotiated between the agent and butler

every time the agent roams to a new host and will remain valid throughout the agent’s

visit to the host. A one-time data encryption key will be derived from the key seed to

encrypt data provided by the current host. The communication between the agent and the

butler will be protected by communication session key. Communication session key is

also derived from the key seed using a different formula.

The proposed key seed negotiation protocol lays the foundation for the data

integrity protection protocol. At the end of agent roaming, the host will provide a data set

to be carried by the agent. The host will also perform a digital signature on the current

data as well as the signature from the previous host using its private key. The signature

can be subsequently verified whenever the agent reaches a new destination or returns to

the agent butler. The details of the data signature generation and integrity verification

process will be discussed in details in data integrity protection protocol section.

4. Key Seed Negotiation Protocol

The proposed key seed negotiation protocol defines the process for key seed negotiation

as well as session key and data encryption key derivation.

When an agent first leaves the butler, the butler will generate a random initial key

seed, encrypt it with the destination host’s public key and deposit into the agent before

sending the agent to the destination host. It should be noted that agent transmission is

protected by the agent transport protocol [3]. Otherwise, a malicious host (man-in-the-

middle) can perform an attack by replacing the encrypted key seed with a new key seed

and encrypt it with the destination’s public key. In this case, the agent and the destination

 12

host will not know the key seed has been manipulated. When the agent starts to

communicate with the butler using the wrong key seed, the malicious host can intercept

all the messages and re-encrypt them with the correct key derived from the correct key

seed and forward them to the agent butler. In this way, a malicious host can compromise

the whole protocol.

The key seed carried by the agent is session-based, it is valid until the agent

leaves the current host. When the agent decides to leave the current host, it must

determine the destination host and start the key seed negotiation process with the agent

butler. The key seed negotiation process is based on the Diffie-Hellman (DH) key

exchange protocol [15] with a variation. The agent will first generate a private DH

parameter a and its corresponding public parameter x. The value x, together with the ID

of the destination host, will be encrypted using a communication session key and sent to

the agent butler.

The agent butler will decrypt the message using the same communication session

key (derivation of communication session key will be discussed later in the section). It

too, will generate its own DH private parameter b and its corresponding public parameter

y. With the private parameter b and the public parameter x from the agent, the butler can

derive the new key seed and use it for communications with the agent in the new host.

Instead of sending the public parameter y to the agent as in normal DH key exchange, the

agent butler will encrypt the value y, host ID, agent ID and current timestamp with the

destination host’s public key to get message M. Message M will be sent to the agent after

encrypting with the communication session key.

 M = E(y + host ID + agent ID + timestamp, HpubKey)

 13

At the same time, the agent butler updates the agent’s itinerary and stores the

information locally. Since the agent itinerary is stored locally in SADIS, it effectively

protects the agent’s actual itinerary against any hacking attempts related to itinerary. The

protection of agent itinerary in turn, protects the agent against certain data integrity

attack, namely, data deletion attack.

When the agent receives the double-encrypted DH public parameter y, it can

decrypt with the communication session key. Since the decrypted result M is parameter y

and some other information encrypted with the destination host's public key, the current

host will not be able to find out the value of y and thus find out the new key seed to be

used when the agent reaches the destination host. It should be noted that this does not

prevent the host from replacing M with its own version M’ with the same host ID, agent

ID, timestamp but different y. The inclusion of host ID, agent ID inside M can render

such attack useless against SADIS. A detailed discussion on this attack can be found in

the security analysis section.

Subsequently, the agent will store M into its data segment and requests the current

host to send itself to the destination host using the agent transport protocol [3].

On arriving at the destination host, the agent will be activated. Before it resumes

normal operation, the agent will request the new host to decrypt message M. If the host is

the right destination host, it will be able to use the private key to decrypt message M, and

thus obtain the DH public parameter y. As a result, the decryption of message M not only

completes the key seed negotiation process, but also serves as a means to authenticate the

destination host. Once the message M is decrypted, the host will verify that the agent ID

in the decrypted message matches the incoming agent, and the host ID in the decrypted

 14

message matches that of the current host. In this way, the host can ensure that it is

decrypting for a legitimate agent instead of some bogus agent (this is to prevent an attack

scenario depicted in the security analysis section). If the IDs in the decrypted messages

match, the decrypted value of y is returned to the agent.

With the plain value of y, the agent can derive the key seed by using its previously

generated private parameter a. With the new key seed derived, the key seed negotiation

process is completed. The agent can resume normal operation in the new host.

Whenever the agent or the butler needs to communicate with each other, the

sender will first derive a communication session key using the key seed and use this

communication session key to encrypt the message. The receiver can make use of the

same formula to derive the communication session key from the same key seed to decrypt

the message.

The communication session key KCSK is derived using the formula below:

 KCSK = Hash(key_seed + host ID + seqNo)

The sequence number is a running number that starts with 1 for each agent

roaming session. Whenever the agent reaches a new host, the sequence number will be

reset to 1. In this way, each message communicated will be encrypted using a different

key. Given the varying communication session key, if one of the messages is somehow

lost without being detected, the butler and agent will not be able to communicate

afterwards. As a result, SADIS makes use of TCP/IP as a communication mechanism so

that any loss of messages can be immediately detected by the sender. In the case of an

unsuccessful message, the sender will send ‘ping’ messages to the recipient in plain

format until the recipient or the communication channel recovers. Once the

 15

communication is re-established, the sender will resend the previous message (encrypted

using the same communication session key). In this way, the agent and the butler can

synchronize on communication session key calculations.

When the host provides information to the agent, the agent will encrypt the

information with a data encryption key KDEK. The data encryption key is derived as

follows:

 KDEK = Hash(key_seed + hostID)

The details on encryption will be discussed in the next section.

5. Data Integrity Protection Protocol

The key seed negotiation protocol lays the necessary foundation for integrity protection

by establishing a session-based key seed between the agent and its butler. Agent data

integrity is protected through the use of this key seed and the digital certificates of the

hosts. This section will illustrate the data integrity protection protocol in details.

Our data Integrity Protection protocol is comprised of two parts: chained

signature generation and data integrity verification. Chained signature generation is

performed before the agent leaves the current host. The agent gathers data provided by

the current host di and construct Di as follows:

 Di = E(di + IDhost + IDagent + timestamp, kDEK)

or,

 Di = di + IDhost + IDagent + timestamp

The inclusion of host ID, agent ID and timestamp is to protect the data from

possible replay attack, especially when the information is not encrypted with the data

 16

encryption key. For example, if the agent ID is not included in the message, a malicious

host can potentially replace the data provided for one agent with that provided for a

bogus agent. Similarly, if timestamp is not included into the message, earlier data

provided to the same agent can be used at a later time to replace current data provided to

the agent from the same host. The inclusion of the IDs of the parties involved and a

timestamp essentially creates an unambiguous memorandum between the agent and the

host.

Note that the construction of Di gives the flexibility to encrypt the data or keep it

in plain. As far as the agent integrity protection protocol is concerned, it does not matter

whether the data is encrypted (since the data integrity is protected using chained digital

signature). The individual agent butler or the agent itself can decide if the data should be

encrypted. As a general rule of thumb, it is recommended that the agent encrypt data that

is not required for the remaining of the roaming session for maximum security.

After constructing Di, the agent will request the host to perform a signature on the

following:

 ci = Sig(Di + ci-1 + IDhost + IDagent + timestamp, kpriv)

where c0 is the digital signature on the agent code by its butler.

There is some advantages with the use of chained digital signature compared to

the conventional signature approach. In the scenario when a malicious host attempts to

modify the data from an innocent host i and somehow manages to produce a valid digital

signature ci, the data integrity would have been broken if the digital signature is

independent and not chained to each other. The independent digital signature also opens

the window for host i modify data provided to the agent at a later time (one such scenario

 17

is the agent visits one of the host’s collaborating partners later). Regardless of the

message format used, so long as the messages are independent of each other, host i will

have no problem reproducing a valid signature to the modified message. In this way,

data integrity can be compromised. With chained digital signature, even if the malicious

host (or host i itself) produces a valid digital signature after modifying the data, the new

signature ci
’
 is unlikely to be the same as ci. If the new signature is different from the

original signature, as the previous signature is provided as input to the next signature, the

subsequent signature verification will fail, thus detecting compromise to data integrity.

The inclusion of host ID, agent ID, and timestamp prevents anyone from performing a

replay attack.

When the agent reaches a new destination, the host must perform an integrity

check on the incoming agent. In the design of SADIS, even if the new destination host

does not perform an immediate integrity check on the incoming agent, any compromise

to the data integrity can still be detected when the agent returns to the butler. The

drawback, however, is that the identity of the malicious host may not be established. One

design focus of SADIS is not only to detect data integrity compromise, but more

importantly, to identify malicious hosts. To achieve malicious host identification, it is an

obligation for all hosts to verify the incoming agent’s data integrity before activating the

agent for execution. In the event of data integrity verification failure, the previous host

will be identified as the malicious host.

Data integrity verification includes the verification of all the previous signatures.

The verification of signature c0 ensures agent code integrity, the verification of ci ensures

 18

data provided by host hi is intact. If any signature failed the verification, the agent is

considered compromised.

While the process to verify all data integrity may seem to incur too much

overhead and somewhat redundant (e.g., why need to verify the integrity of d1 in h3 while

host h2 already verifies that), it is necessary to ensure the robustness of the protocol and

to support the function of malicious host identification. For example, if only the

signatures of the n consecutive previous hosts are verified, in the scenario when the

previous n hosts happen to be all malicious and collaborating with one another, these

malicious hosts can somehow produce the illusion to the next innocent host that data

integrity has been maintained by creating seemingly correct signatures. As the next

innocent host only verifies the previous n signatures that happen to be the creation of

malicious hosts, it will get the impression that data integrity has not been compromised.

Although the agent butler can eventually detect such data integrity compromise (since

agent butler has to verify all signatures), but there is no way to establish the identity of

malicious host(s).

6. Security Analysis

To analyze the effectiveness and reliability of SADIS, a detailed security analysis is

performed subjecting SADIS to a variety of attacks. Based on the attack targets, the

various attacks to SADIS can be classified into data attack, key attack, signature attack,

itinerary attack, and composite attack. Composite attack refers to attacks that are

combinations of two or more of the above-mentioned attacks. The security analysis will

be organized according to the above classifications.

 19

- Data Attack

Data attack refers to any attempt that aims to compromise the data carried by an agent.

Compromise can be in the form of data modification, deletion, or insertion.

Let’s consider the scenario of data modification where a malicious host wants to

modify agent data or one of the hosts in the agent itinerary attempts to modify its own

data after the agent has left. Assume the data targeted is Di provided by host i, since the

agent itinerary is protected by the butler and cannot be changed, only host i can produce a

valid signature if the data were to be modified. However, even if the malicious party (or

even host i itself) can produce a valid signature ci
’
 corresponding to Di

’
, since ci is

chained to the signature of the next host ci+1, signature verification for host (i+1) will fail.

If the malicious host wants to ensure the signature verification for the next host is also

successful, it has to forge the signature of the next host as well. Following similar

argument, in order to perform a successful data modification attack, the malicious host

must be able to forge the signatures for all hosts in the itinerary since host i. As the only

way to achieve this is to obtain the private keys of all the following hosts, data

modification attack is extremely difficult under SADIS.

Another way to compromise the data integrity is by inserting additional data into

the agent. This includes inserting into data provided by hosts in the agent itinerary as

well as inserting new hosts into the existing itinerary and fabricating data from the new

host. The former scenario is the same as data modification attack. In the second

scenario, the malicious host essentially needs to modify the itinerary of the agent. This

will be covered in the discussion on itinerary attack later in the section.

 20

Other than data modification and data insertion, data deletion is another form of

data integrity attack. As illustrated in the discussion in related work, quite a number of

the existing data integrity protocols suffer from this attack. After analyzing the root

cause of the vulnerabilities, it is realized that it’s extremely important to protect the

agent’s itinerary. Otherwise, in the case of a revisit attack, the subsequent host can easily

‘restore’ the agent to the state of its previous visit to one of the host’s collaborator in the

agent’s itinerary. However, if the agent’s itinerary is closely guarded by the butler, any

data deletion will result in modification to the agent’s itinerary and thus be detected.

- Key Attack

Besides direct attack on data integrity, a malicious host may attempt to attack the various

keys in order to compromise data integrity. There are three different types of keys in

SADIS. They are session-based key seed, communication session key, and data

encryption key.

In SADIS, the key seed is negotiated between the agent and the butler during

agent roaming process. Once the key seed is negotiated, it will be kept by the agent and

the butler separately. It will not be used directly as encryption key at all. Attacks to the

key seed can only target at the key seed negotiation protocol. As all communication in

key seed negotiation is protected by the communication session key, we can safely rule

out the possibility of any third party malicious attempts to break the protocol. We can

focus on the scenario where the current host attempts to break the key exchange to obtain

the key seed to be used in the subsequent host. Given the simplicity of DH key

exchange, the parameters available for manipulation is the DH private parameter a in

 21

plain text and the encrypted DH public parameter from butler y encrypted using the

destination host’s public key.

Firstly, without any manipulation, the current host will not be able to complete

DH key exchange to find out the new key seed. This is because the DH public parameter

from butler y is encrypted using the destination host’s public key. Without the private

key from the destination host, no one can obtain y to complete the key exchange.

Furthermore, as the encrypted message contains the agent ID and destination host ID, the

current host won’t be able to send a bogus agent carrying this encrypted y to the

destination host for decryption.

If the current host attempts to manipulate any one or both of these parameters, it is

able to manipulate the key seed derived when the agent reaches the destination host (This

is because any change to a or y will change the result of key exchange, and anyone can

forge the encrypted y since the encryption key is a public key). However, the change in

key seed will be immediately detected when the agent communicates with the butler or

vice versa. This attack can only change the key seed in the agent but won’t be able to

compromise the key seed in the butler. In order to perform a successful attack, the

current host must also be able to obtain the key seed in the butler so that it can act as a

middle-man subsequently to intercept and replace message communicated between the

butler and the agent. Unfortunately, as illustrated earlier, there is no way the current host

can find out the value of DH public parameter from butler y. Thus, the key seed will not

be compromised.

Besides key seed, SADIS makes use of communication session key and data

encryption key in the protocol. These two keys are directly derived from the session-

 22

based key seed using a hash function. In the case of communication session key, a

sequence number is used in the key derivation to ensure each message communicated is

encrypted with a different and unrelated communication session key. As far as any third-

party host is concerned, attack to communication session key or data encryption key is

equivalent to attacking the encryption key given only the cipher text. Even in the

extreme case when such a key is compromised, the loss is limited to the message it

encrypts. The other keys will remain in secret due to the nature of one-way hash

functions.

- Signature Attack

Despite being categorized separately, signature attack is meaningless if carried out alone.

Usually a malicious host would need to forge digital signature when it attempts to

compromise data integrity. If data integrity is not compromised, there is no need to

attack the chained signature at all. Signature related attacks due to data integrity

compromise have been discussed earlier in the section.

- Itinerary Attack

At the first glance, agent itinerary may not seem highly sensitive. However, as

examination of related work shows, if agent itinerary is not carefully protected, it may

lead to compromise to data integrity, especially in the case of data deletion as illustrated

earlier in the section. Given the importance of agent itinerary protection, SADIS

employs a relatively conservative approach to protecting agent itinerary by storing the

itinerary information in the butler as the agent roams. As the agent updates the butler of

its next destination host as part of the key seed negotiation protocol, there is no additional

overhead related to the itinerary protection mechanism. With the agent itinerary updated

 23

and stored with the agent butler, there is no way a malicious host can perform any attack

on the itinerary (except, of course, if it breaks into the agent butler).

- Composite Attack

As the analysis above show, agent data integrity attack may not always target only in one

area. At times, in order to perform a successful attack, more than one area is targeted

simultaneously. These composite attacks have been discussed in the earlier section along

with analysis on different attack targets.

In addition to attacks with specific targets, there are certain general hacking

techniques such as man-in-the-middle attack, replay attack. The design of SADIS

employs a mechanism to protect the protocol against these hacking techniques. Through

the use of communication session key, man-in-the-middle attack can be avoided (This is

because man-in-the-middle attack will not be effective if the attacker can’t decrypt the

message at all). On the other hand, the use of sequence number in communication

session key generation effectively protects the protocol from replay attack by a third

party host. In addition, the inclusion of host ID, agent ID, and timestamp during the key

seed negotiation process prevents the current host from performing a replay attack with

the next destination host (attempting to obtain the next key seed).

Lastly, the design of SADIS does not have dependency on any specific

encryption/hashing algorithm. In an unlikely scenario when one algorithm is broken,

SADIS can always switch to a stronger algorithm.

 24

7. Implementation

In order to verify the design of SADIS and assess its applicability, a prototype of SADIS

is developed. The prototyping language is chosen to be Java. One of the main reasons

for choosing Java is its platform independent feature. Internet is a complex environment

that comprises of various platforms. With Java as the prototyping language, the effort

required to port the prototype from one platform to another can be avoided. Furthermore,

being one of the leading programming platforms in the marketplace, Java has a wide

range of libraries to choose from. Modules such as cryptographic library, messaging

utility, etc. are already available to be used as components in the prototype. The reuse of

existing modules significantly shortened the prototyping effort, allowing the team to put

its main focus on the research.

The prototype consists of four different entities: the agent butler m, agent bond,

and two hosts jinx and natalya. The agent butler m (as shown in Figure 1) coordinates

the agent’s roaming, participates in key seed negotiation, tracks the agent’s whereabouts

and receives the agent during its return. Host jinx (as shown in Figure 2) plays the role of

source host. It is the host where the agent is originally located. After agent bond (as

shown in Figure 4) completes its processing in jinx, it will get jinx to sign the data it

collected from it. Once the signature is obtained, it will trigger the key seed negotiation

process with butler m and roam to the destination host natalya. Upon arrival of agent

bond, host natalya (as shown in Figure 3) will perform data integrity verification on the

agent bond before assisting it to complete the key seed negotiation process. Once the key

seed negotiation is completed, agent bond can resume its operation. To further illustrate

the use of communication session key, the agent butler m and the agent bond can send

 25

messages to each other at any time. The communication session key will be

synchronized between the two, ensuring each message is encrypted using a different key.

At the end of the agent roaming, agent bond will return to butler m. In addition to

performing data integrity check on agent bond, m can also decrypt the data carried by

bond using the various key seeds.

Figure 1 Agent Butler Console

 26

Figure 2 Host Jinx Console

Figure 3 Host Natalya Console

 27

Figure 4 Agent Bond’s Console

Just like any other security mechanism, there is certain overhead associated with

SADIS. The overhead is incurred as additional time required for processing as well as

additional data carried by the agent.

To assess the efficiency of SADIS, a benchmarking is performed on the

prototype. The benchmarking environment is composed of three PCs connected with

each other via a 100MB intranet. One PC acts as the agent butler m, while the other two

act as host jinx and natalya respectively. Agent bond travels between these three entities

during the roaming and data collection simulation. Each PC is configured with a PIII 800

MHz processor with 512MB RAM each. The result of benchmarking SADIS is broken

down based on functionality and is shown in Table 1 and Table 2. From the tables, it can

be seen that the bulk of the overhead is incurred during key seed negotiation where the

key exchange protocol and the public key operation is performed. During key seed

negotiation, one PKI operation is incurred in the agent butler when it encrypts the public

 28

parameter of the key exchange with the destination host’s public key, and another PKI

operation when the destination host decrypts the incoming encrypted key exchange

parameter. Given the computation intensive nature of PKI operation, it is expected that

the overhead incurred during the key seed negotiation process will be relatively higher

than the rest. Despite the relatively high overhead, this will not impact the overall

performance of SADIS significantly because the frequency of agent roaming is low

compared to the frequency of some other agent operations (such as agent to butler

communication). As a result, the overhead incurred at this stage is ‘one-time’ in nature.

Comparing with the statistics from OKGS, OKGS general incurs additional processing

time of more than 500 milli-seconds. Coincidentally, this number is slightly more than

twice the overhead in SADIS. Assuming there is negligible overhead caused by non-PKI

operations, each PKI operation in OKGS incurs an overhead of 250 milli-seconds. In the

SADIS prototype, the overhead of one PKI operation is roughly 230 milli-seconds

(taking the average overhead of the key seed negotiation process). The two figures are

very close to each other, suggesting a similar prototyping configuration. Considering the

fact that OKGS requires one more PKI operation in the message exchange, the statistics

shows the efficiency improvement of SADIS where the use of PKI operations is

minimized. The time savings achieved is the time taking for one PKI operation. In the

SADIS prototype, this is about 230 to 250 milli-seconds.

Operation 1 (ms) 2 (ms) 3 (ms) 4 (ms) 5 (ms) Avg (ms)
Key Seed

Negotiation

(butler timing)

40 50 50 40 40 44.0

Key Seed

Negotiation

(destination

host)

41 41 40 40 40 40.4

 29

Agent Butler

Communication

(agent timing –

send)

40 40 50 40 40 42.0

Agent Butler

Communication

(butler timing –

send)

30 30 31 40 30 32.2

Agent Butler

Communication

(agent timing –

receive)

10 10 10 10 10 10.0

Agent Butler

Communication

(butler timing –

receive)

10 30 10 10 20 16.0

Table 1 SADIS Time Efficiency – Performance without SADIS

Operation 1 (ms) 2 (ms) 3 (ms) 4 (ms) 5 (ms) Avg

(ms)

Overhead

(ms)

Key Seed

Negotiation

(butler timing)

250 260 250 220 260 248.0 204.0

Key Seed

Negotiation

(destination

host)

290 281 260 280 290 280.2 239.8

Agent Butler

Communication

(agent timing –

send)

60 60 70 50 60 60.0 18.0

Agent Butler

Communication

(butler timing –

send)

41 50 40 40 40 42.2 10.0

Agent Butler

Communication

(agent timing –

receive)

10 20 10 10 10 12.0 2.0

Agent Butler

Communication

(butler timing –

receive)

30 30 30 20 20 26.0 10.0

 30

Table 2 SADIS Time Efficiency – Performance Comparison with SADIS

Other than in the key seed negotiation, the time overhead incurred elsewhere in

the protocol is negligible. As shown in the two tables, with the key seed negotiated, the

time overhead incurred during message exchange will not exceed 20 milli-seconds. This

is due to the use of Symmetric-Key Encryption during the more frequent message

exchanges. The efficiency of the evolving communication session key can also be shown

statistically as its contribution to the time overhead is negligible.

Other than overhead in terms of processing time, there is certain overhead to the

data size as well. Before the detailed analysis of data overhead, it is necessary to point

out that SADIS is designed to produce almost fixed data overhead regardless of the data

size. In another word, regardless of the size of actual data, the overhead associated with

SADIS is almost fixed, and can be limited to a fixed number of bytes. As a result,

SADIS tends to be more efficient when actual data size is higher. While some of the

existing literature also achieves higher efficiency when data size increase (e.g., OKGS),

the size of the overhead increases when the size of actual data as well. However, the data

overhead in SADIS has a maximum size regardless of the data size and does not increase

as the data size increases. This ability to limit the size of overhead data regardless of

actual data size is an improvement in efficiency over existing work.

The various overheads of SADIS can be best illustrated in Table 3. The first data

overhead is incurred during the padding for symmetric key encryption. As most popular

symmetric key encryption algorithm works on fixed length data blocks, it is necessary to

pad the plain data into multiples of the block size before performing the encryption. The

 31

symmetric algorithm used in the current prototype is triple-DES that operates on blocks

of 8 bytes. As a result, the padding will produce a maximum of 8 bytes data overhead.

Another data overhead is in the generation of data Di. For security purposes, the

IDs of the host and agent are added to the actual data together with the current timestamp.

The prototype makes use of Java type ‘Long’ to model the IDs. And the timestamp is

also a ‘Long’ in Java. Since each ‘Long’ occupies 8 bytes of storage space, the total

overhead will be 24 bytes.

The last and most significant overhead is the digital signature created by the host.

While the actual size of the digital signature depends on the signing algorithm used, the

size of the digital signature is always a fixed length. In our prototype, RSA is used as the

digital signature algorithm. Thus, the overhead of digital signature is a fixed length of 64

bytes.

Altogether, SADIS has a maximum data overhead of 96 bytes. Assuming the

actual data size is 1800 bytes (this is smallest actual data size used in the benchmarking

of OKGS), this yields a data overhead of 5.33%. This figure will improve linearly as the

size of the actual data increases. The data overhead of 5.33% is compared with the

benchmark of OKGS that averages to 36.2% (actual data size in OKGS is from 1836 to

2001).

 Original Data

Size

Maximum

Overhead

Overhead OKGS

Overhead
1 1800 96 5.33% 33.87%

2 2001 96 4.80% 37.73%

3 5000 96 1.92% N/A

4 10000 96 0.96% N/A

5 100000 96 0.10% N/A

Table 3 SADIS Data Overhead

 32

As the statistics shows, SADIS is optimized to improve both time efficiency and

data efficiency compared with related work in the literature. The feasibility and

practicality of SADIS is thus demonstrated through the prototype.

8. Conclusion

In this paper, a new data integrity protection protocol - SADIS, has been proposed.

Besides being secure against a variety of attacks and robust against vulnerabilities of

related work in the literature, the research of SADIS includes the objective of efficiency.

This is reflected in minimized use of PKI operations and reduced message exchanges

between the agent and the butler. The introduction of variation to DH key exchange and

evolving communication session key further strengthened the security of the design.

Unlike some existing literature, the data integrity protection protocol aims not only to

detect data integrity compromise, but more importantly, to identify the malicious host.

With security, efficiency, and effectiveness as its main design focuses, SADIS

works with other security mechanisms e.g. agent transport protocol to provide mobile

agents with a secure platform.

References

[1] Fangming Zhu, Sheng-Uei Guan, Yang Yang, C.C. Ko, “SAFER E-Commerce: Secure Agent

Fabrication, Evolution and Roaming for E-Commerce”. Electronic Commerce: Opportunities and

Challenges, IDEA Group Publishing, USA, 2000.

[2] Sheng-Uei Guan, Yang Yang, “SAFE: Secure-roaming Agent For E-commerce”, Computer &

Industrial Engineering Conference’99, Melbourne, Australia, pp33-37, 1999.

[3] Sheng-Uei Guan, Yang Yang, “SAFE: Secure Agent roaming for E-Commerce”, Computer &

Industrial Engineering Journal, 2002.

[4] Yang Yang, Sheng-Uei Guan, “Intelligent Mobile Agents for E-Commerce: Security Issues

and Agent Transport”, Electronic Commerce: Opportunities and Challenges, Idea Group

Publishing, USA, 2000.

 33

[5] Hock Boon Chionh, Sheng-Uei Guan and Yang Yang, “Ensuring the Protection of Mobile

Agent Integrity: The Design of an Agent Monitoring Protocol”, Proceedings, IASTED

International Conference on Advances in Communications (AIC 2001), Rhodes, Greece, pp96-

99, July 2001.

[6] Tianhan Wang, Sheng-Uei Guan and Tai Khoon Chan, “Integrity Protection for Code-on-

Demand Mobile Agents in E-Commerce”, Journal of Systems and Software, pp211-221, Vol. 60,

Iss. 3, 2002.

[7] Volker Roth, “On the robustness of some Cryptographic Protocols for Mobile Agent

Protection”, Mobile Agents 2001 (MA’01), pp1-14, 2001.

[8] Anand R. Tripathi and others, “Design of the Ajanta system for mobile agent programming”,

Journal of Systems and Software, Vol. 62, Iss. 2, pp123-140, 2002.

[9] G. Karjoth, N. Asokan and C. Gulcu, “Protecting the computation results of free-roaming

agents”, Mobile Agents, 1998.

[10] Walter Binder, Volker Roth, “Secure mobile agent systems using Java, where are we

heading”, ACM Symposium on Applied Computing (SAC), pp115-119, 2002.

 [11] A. Corradi, M. Cremonini, R. Montanari, and C. Stefanelli, “Mobile Agents and Security:

Protocols for Integrity”, Proceedings of the Second IFIP WG 6.1 International Working

Conference on Distributed Applications and Interoperable Systems (DAIS’99), 1999.

 [12] P. Bellavista, A.Corradi, and C. Stefanelli, “Protection and Interoperability for Mobile

Agents: a Secure and Open Programming Environment”, IEICE Transactions on

Communications, 2000.

[13] Jong-Youl Park, Dong-Ik Lee, and Hyung-Hyo Lee, “One-Time Key Generation System for

Agent Data Protection”, IEICE Transactions on Information and Systems, pp535-545, 2002.

[14] Johansen, D., Lauvset, K. J., Renesse. R, Schneider, F. B., Sudmann, N.P., and Jacobsen, K.,

“A Tacoma Retrospective”, Software – Practice and Experience, pp605-619, 2002.

[15] B. Schneier. “Applied Cryptography: Protocols, Algorithms, and Source Code in C”, 2
nd

 Ed.,

John Wiley & Sons, Inc, New York, 1996.

[16] N. Borselius, “Mobile Agent Security”, Electronics & Communication Engineering Journal,

Vol. 14, no 5, IEE, London, UK, pp211-218, 2002.

[17] Andrew S. Patrick, “Building Trusthworthy Software Agents”, IEEE Journal of Internet

Computing, pp46 – 53, 2002.

[18] Niklas Borselius, Namhyun Hur, Marek Kaprynski and Chris J. Mitchell. “A security

architecture for agent-based mobile systems”, In Proceedings of the Third International

 34

Conference on Mobile Communications Technologies – 3G2002, London, UK, IEE Conference

Publication 489, pp312–318, 2002.

[19] N. Borselius, C.J. Mitchell and A.T. Wilson. “On mobile agent based transactions in

moderately hostile environments”. In B. De Decker, F. Piessens, J. Smits and E. Van

Herreweghen, editors, Advances in Network and Distributed Systems Security - Proceedings of

the IFIP TC11 WG11.4 First Annual Working Conference on Network Security, pp173-186.

Kluwer Academic Publishers, Boston, 2001.

