786 research outputs found

    A Fast DOA Estimation Algorithm Based on Polarization MUSIC

    Get PDF
    A fast DOA estimation algorithm developed from MUSIC, which also benefits from the processing of the signals' polarization information, is presented. Besides performance enhancement in precision and resolution, the proposed algorithm can be exerted on various forms of polarization sensitive arrays, without specific requirement on the array's pattern. Depending on the continuity property of the space spectrum, a huge amount of computation incurred in the calculation of 4-D space spectrum is averted. Performance and computation complexity analysis of the proposed algorithm is discussed and the simulation results are presented. Compared with conventional MUSIC, it is indicated that the proposed algorithm has considerable advantage in aspects of precision and resolution, with a low computation complexity proportional to a conventional 2-D MUSIC

    Simultaneous Source Localization and Polarization Estimation via Non-Orthogonal Joint Diagonalization with Vector-Sensors

    Get PDF
    Joint estimation of direction-of-arrival (DOA) and polarization with electromagnetic vector-sensors (EMVS) is considered in the framework of complex-valued non-orthogonal joint diagonalization (CNJD). Two new CNJD algorithms are presented, which propose to tackle the high dimensional optimization problem in CNJD via a sequence of simple sub-optimization problems, by using LU or LQ decompositions of the target matrices as well as the Jacobi-type scheme. Furthermore, based on the above CNJD algorithms we present a novel strategy to exploit the multi-dimensional structure present in the second-order statistics of EMVS outputs for simultaneous DOA and polarization estimation. Simulations are provided to compare the proposed strategy with existing tensorial or joint diagonalization based methods

    Direction finding for a mixture of single-transmission and dual-transmission signals

    Get PDF
    Currently, most of existing research in direction of arrival (DOA) estimation is focused on single signal transmission (SST) based signal. However, to make full use of the degree of freedom provided by the system in the polarisation domain, the dual signal transmission (DST) model has been adopted more and more widely in wireless communications. In this work, a DOA estimation method for a mixture of SST and DST signals (referred to as the mixed signal transmission (MST) model) is proposed. To our best knowledge, this is the first time to study the DOA estimation problem for such an MST model. There are two steps in the proposed method, which deals with the two kinds of signals separately. The performance of the proposed method is compared with the CramΓ©r-Rao Bound (CRB) based on computer simulations

    Beamforming and Direction of Arrival Estimation Based on Vector Sensor Arrays

    Get PDF
    Array signal processing is a technique linked closely to radar and sonar systems. In communication, the antenna array in these systems is applied to cancel the interference, suppress the background noise and track the target sources based on signals'parameters. Most of existing work ignores the polarisation status of the impinging signals and is mainly focused on their direction parameters. To have a better performance in array processing, polarized signals can be considered in array signal processing and their property can be exploited by employing various electromagnetic vector sensor arrays. In this thesis, firstly, a full quaternion-valued model for polarized array processing is proposed based on the Capon beamformer. This new beamformer uses crossed-dipole array and considers the desired signal as quaternion-valued. Two scenarios are dealt with, where the beamformer works at a normal environment without data model errors or with model errors under the worst-case constraint. After that, an algorithm to solve the joint DOA and polarisation estimation problem is proposed. The algorithm applies the rank reduction method to use two 2-D searches instead of a 4-D search to estimate the joint parameters. Moreover, an analysis is given to introduce the difference using crossed-dipole sensor array and tripole sensor array, which indicates that linear crossed-dipole sensor array has an ambiguity problem in the estimation work and the linear tripole sensor array avoid this problem effectively. At last, we study the problem of DOA estimation for a mixture of single signal transmission (SST) signals and duel signal transmission (DST) signals. Two solutions are proposed: the first is a two-step method to estimate the parameters of SST and DST signals separately; the second one is a unified one-step method to estimate SST and DST signals together, without treating them separately in the estimation process

    Joint DOA, range, and polarization estimation for rectilinear sources with a COLD array

    Get PDF
    In this paper, a novel localization method for near-field (NF) rectilinear or strictly noncircular sources with a symmetric uniform linear array of rgb0,0,0cocentered orthogonal loop and dipole (COLD) antennas is proposed. Based on the rank reduction (RARE) principle, the multiple parameters including direction of arrival (DOA), range and polarization parameters are separated. Furthermore, a closed-form solution for polarization parameters and noncircular phases is also provided. The deterministic Cramer-Rao bound (CRB) of the estimation problem under consideration is also derived as a benchmark. Numerical simulations are provided to demonstrate the effectiveness of the proposed method
    • …
    corecore