1,645 research outputs found

    Space Station RT and E Utilization Study

    Get PDF
    Descriptive information on a set of 241 mission concepts was reviewed to establish preliminary Space Station outfitting needs for technology development missions. The missions studied covered the full range of in-space technology development activities envisioned for early Space Station operations and included both pressurized volume and attached payload requirements. Equipment needs were compared with outfitting plans for the life sciences and microgravity user communities, and a number of potential outfitting additions were identified. Outfitting implementation was addressed by selecting a strawman mission complement for each of seven technical themes, by organizing the missions into flight scenarios, and by assessing the associated outfitting buildup for planning impacts

    Modeling and exploration of a reconfigurable architecture for digital holographic imaging

    Get PDF
    The use of coarse-grain reconfigurable architectures (CGRA) is a suitable alternative for hardware acceleration in many application areas, including digital holographic imaging. In this paper, we propose a CGRA-based system with an array of processing and memory cells, which communicate using a local and a global communication network, and a stream memory controller to manage data transfers to external memory. We present our SystemC-based exploration environment (SCENIC) and methodology used to construct and evaluate systems containing reconfigurable architectures. A case study illustrates the advantages with rapid system level exploration to find and solve bottlenecks in complex designs prior to RTL description

    Graphics processing unit accelerated computation of digital holograms

    Get PDF
    Cataloged from PDF version of article.An approximation for fast digital hologram generation is implemented on a central processing unit (CPU), a graphics processing unit (GPU), and a multi-GPU computational platform. The computational performance of the method on each platform is measured and compared. The computational speed on the GPU platform is much faster than on a CPU, and the algorithm could be further accelerated on a multi-GPU platform. In addition, the accuracy of the algorithm for single-and double-precision arithmetic is evaluated. The quality of the reconstruction from the algorithm using single-precision arithmetic is comparable with the quality from the double-precision arithmetic, and thus the implementation using single-precision arithmetic on a multi-GPU platform can be used for holographic video displays. (C) 2009 Optical Society of America

    Optimization Algorithms for Integrating Advanced Facility-Level Healthcare Technologies into Personal Healthcare Devices

    Get PDF
    Healthcare is one of the most important services to preserve the quality of our daily lives, and it is capable of dealing with issues such as global aging, increase in the healthcare cost, and changes to the medical paradigm, i.e., from the in-facility cure to the prevention and cure outside the facility. Accordingly, there has been growing interest in the smart and personalized healthcare systems to diagnose and care themselves. Such systems are capable of providing facility-level diagnosis services by using smart devices (e.g., smartphones, smart watches, and smart glasses). However, in realizing the smart healthcare systems, it is very difficult, albeit impossible, to directly integrate high-precision healthcare technologies or scientific theories into the smart devices due to the stringent limitations in the computing power and battery lifetime, as well as environmental constraints. In this dissertation, we propose three optimization methods in the field of cell counting systems and gait-aid systems for Parkinson's disease patients that address the problems that arise when integrating a specialized healthcare system used in the facilities into mobile or wearable devices. First, we present an optimized cell counting algorithm based on heuristic optimization, which is a key building block for realizing the mobile point-of-care platforms. Second, we develop a learning-based cell counting algorithm that guarantees high performance and efficiency despite the existence of blurry cells due to out-focus and varying brightness of background caused by the limitation of lenses free in-line holographic apparatus. Finally, we propose smart gait-aid glasses for Parkinson’s disease patients based on mathematical optimization. ⓒ 2017 DGISTopenI. Introduction 1-- 1.1 Global Healthcare Trends 1-- 1.2 Smart Healthcare System 2-- 1.3 Benefits of Smart Healthcare System 3-- 1.4 Challenges of Smart Healthcare. 4-- 1.5 Optimization 6-- 1.6 Aims of the Dissertation 7-- 1.7 Dissertation Organization 8-- II.Optimization of a cell counting algorithm for mobile point-of-care testing platforms 9-- 2.1 Introduction 9-- 2.2 Materials and Methods. 13-- 2.2.1 Experimental Setup. 13-- 2.2.2 Overview of Cell Counting. 16-- 2.2.3 Cell Library Optimization. 18-- 2.2.4 NCC Approximation. 20-- 2.3 Results 21-- 2.3.1 Cell Library Optimization. 21-- 2.3.2 NCC Approximation. 23-- 2.3.3 Measurement Using an Android Device. 28-- 2.4 Summary 32-- III.Human-level Blood Cell Counting System using NCC-Deep learning algorithm on Lens-free Shadow Image. 33-- 3.1 Introduction 33-- 3.2 Cell Counting Architecture 36-- 3.3 Methods 37-- 3.3.1 Candidate Point Selection based on NCC. 37-- 3.3.2 Reliable Cell Counting using CNN. 40-- 3.4 Results 43-- 3.4.1 Subjects . 43-- 3.4.2 Evaluation for the cropped cell image 44-- 3.4.3 Evaluation on the blood sample image 46-- 3.4.4 Elapsed-time evaluation 50-- 3.5 Summary 50-- IV.Smart Gait-Aid Glasses for Parkinson’s Disease Patients 52-- 4.1 Introduction 52-- 4.2 Related Works 54-- 4.2.1 Existing FOG Detection Methods 54-- 4.2.2 Existing Gait-Aid Systems 56-- 4.3 Methods 57-- 4.3.1 Movement Recognition. 59-- 4.3.2 FOG Detection On Glasses. 62-- 4.3.3 Generation of Visual Patterns 66-- 4.4 Experiments . 67-- 4.5 Results 69-- 4.5.1 FOG Detection Performance. 69-- 4.5.2 Gait-Aid Performance. 71-- 4.6 Summary 73-- V. Conclusion 75-- Reference 77-- 요약문 89본 논문은 의료 관련 연구시설 및 병원 그리고 실험실 레벨에서 사용되는 전문적인 헬스케어 시스템을 개인의 일상생활 속에서 사용할 수 있는 스마트 헬스케어 시스템에 적용시키기 위한 최적화 문제에 대해 다룬다. 현대 사회에서 의료비용 증가 세계적인 고령화에 따라 의료 패러다임은 질병이 발생한 뒤 시설 내에서 치료 받는 방식에서 질병이나 건강관리에 관심있는 환자 혹은 일반인이 휴대할 수 있는 개인용 디바이스를 이용하여 의료 서비스에 접근하고, 이를 이용하여 질병을 미리 예방하는 방식으로 바뀌었다. 이에 따라 언제, 어디서나 스마트 디바이스(스마트폰, 스마트워치, 스마트안경 등)를 이용하여 병원 수준의 예방 및 진단을 실현하는 스마트 헬스케어가 주목 받고 있다. 하지만, 스마트 헬스케어 서비스 실현을 위하여 기존의 전문 헬스케어 장치 및 과학적 이론을 스마트 디바이스에 접목하는 데에는 스마트 디바이스의 제한적인 컴퓨팅 파워와 배터리, 그리고 연구소나 실험실에서 발생하지 않았던 환경적인 제약조건으로 인해 적용 할 수 없는 문제가 있다. 따라서 사용 환경에 맞춰 동작 가능하도록 최적화가 필요하다. 본 논문에서는 Cell counting 분야와 파킨슨 환자의 보행 보조 분야에서 전문 헬스케어 시스템을 스마트 헬스케어에 접목시키는데 발생하는 세 가지 문제를 제시하고 문제 해결을 위한 세 가지 최적화 알고리즘(Heuristic optimization, Learning-based optimization, Mathematical optimization) 및 이를 기반으로 하는 시스템을 제안한다.DoctordCollectio

    Nanoscale integration of single cell biologics discovery processes using optofluidic manipulation and monitoring.

    Get PDF
    The new and rapid advancement in the complexity of biologics drug discovery has been driven by a deeper understanding of biological systems combined with innovative new therapeutic modalities, paving the way to breakthrough therapies for previously intractable diseases. These exciting times in biomedical innovation require the development of novel technologies to facilitate the sophisticated, multifaceted, high-paced workflows necessary to support modern large molecule drug discovery. A high-level aspiration is a true integration of "lab-on-a-chip" methods that vastly miniaturize cellulmical experiments could transform the speed, cost, and success of multiple workstreams in biologics development. Several microscale bioprocess technologies have been established that incrementally address these needs, yet each is inflexibly designed for a very specific process thus limiting an integrated holistic application. A more fully integrated nanoscale approach that incorporates manipulation, culture, analytics, and traceable digital record keeping of thousands of single cells in a relevant nanoenvironment would be a transformative technology capable of keeping pace with today's rapid and complex drug discovery demands. The recent advent of optical manipulation of cells using light-induced electrokinetics with micro- and nanoscale cell culture is poised to revolutionize both fundamental and applied biological research. In this review, we summarize the current state of the art for optical manipulation techniques and discuss emerging biological applications of this technology. In particular, we focus on promising prospects for drug discovery workflows, including antibody discovery, bioassay development, antibody engineering, and cell line development, which are enabled by the automation and industrialization of an integrated optoelectronic single-cell manipulation and culture platform. Continued development of such platforms will be well positioned to overcome many of the challenges currently associated with fragmented, low-throughput bioprocess workflows in biopharma and life science research

    Holography: The Usefulness of Digital Holographic Microscopy for Clinical Diagnostics

    Get PDF
    Digital holographic (DH) microscopy is a digital high-resolution holographic imaging technique with the capacity of quantification of cellular conditions without any staining or labeling of cells. The unique measurable parameters are the cell number, cell area, thickness, and volume, which can be coupled to proliferation, migration, cell cycle analysis, viability, and cell death. The technique is cell friendly, fast and simple to use and has unique imaging capabilities for time-lapse investigations on both the single cell and the cell-population levels. The interest for analyzing specifically cell volume changes with DH microscopy, resulting from cytotoxic treatments, drug response, or apoptosis events has recently increased in popularity. We and others have used DH microscopy showing that the technique has the sensitivity to distinguish between different cells and treatments. Recently, DH microscopy has been used for cellular diagnosis in the clinic, providing support for using the concept of DH, e.g., screening of malaria infection of red blood cells (RBC), cervix cancer screening, and sperm quality. Because of its quick and label-free sample handling, DH microscopy will be an important tool in the future for personalized medicine investigations, determining the optimal therapeutic concentration for both different cancer types and individual treatments

    Enhanced robustness digital holographic microscopy for demanding environment of space biology

    Get PDF
    We describe an optimized digital holographic microscopy system (DHM) suitable for high-resolution visualization of living cells under conditions of altered macroscopic mechanical forces such as those that arise from changes in gravitational force. Experiments were performed on both a ground-based microgravity simulation platform known as the random positioning machine (RPM) as well as during a parabolic flight campaign (PFC). Under these conditions the DHM system proved to be robust and reliable. In addition, the stability of the system during disturbances in gravitational force was further enhanced by implementing post-processing algorithms that best exploit the intrinsic advantages of DHM for hologram autofocusing and subsequent image registration. Preliminary results obtained in the form of series of phase images point towards sensible changes of cytoarchitecture under states of altered gravity
    corecore