
Graphics processing unit accelerated
computation of digital holograms

Hoonjong Kang,* Fahri Yaraş, and Levent Onural
Department of Electrical and Electronics Engineering, Bilkent University,

TR -06800 Bilkent, Ankara, Turkey

*Corresponding author: hjkang@ee.bilkent.edu.tr

Received 6 July 2009; revised 26 September 2009; accepted 28 September 2009;
posted 29 September 2009 (Doc. ID 113855); published 12 October 2009

An approximation for fast digital hologram generation is implemented on a central processing unit
(CPU), a graphics processing unit (GPU), and a multi-GPU computational platform. The computational
performance of the method on each platform is measured and compared. The computational speed on the
GPU platform is much faster than on a CPU, and the algorithm could be further accelerated on a multi-
GPU platform. In addition, the accuracy of the algorithm for single- and double-precision arithmetic is
evaluated. The quality of the reconstruction from the algorithm using single-precision arithmetic is
comparable with the quality from the double-precision arithmetic, and thus the implementation using
single-precision arithmetic on a multi-GPU platform can be used for holographic video displays. © 2009
Optical Society of America

OCIS codes: 090.1760, 090.2870.

1. Introduction

Various fast digital hologram generation algorithms
have been reported in the literature [1–6]. One such
algorithm is the coherent holographic stereogram
(CHS) method, which is an approximation. This
method is based on partitioning the hologram plane.
Digital holograms can be generated by the CHS
method at a much faster speed than that of conven-
tional approaches [7]. However, the quality of the
phase-added stereogram [7], which is the original
version of the CHS, is not sufficient for many appli-
cations as a consequence of the approximations used.
To improve the quality, improved and modified ver-
sions have been reported [8–12]. The latest version
is the accurate compensated phase-added stereo-
gram (ACPAS) [12], and it has significant advan-
tages such as high quality reconstruction and fast
generation. Therefore, the ACPAS can be used for
real-time electroholographic displays.
Field-programmable gate arrays (FPGAs) or

graphics processing units (GPUs) are often used

for fast implementation of highly complex algorithms
[1,13,14]. FPGA based approaches have some draw-
backs such as the expense, long development time,
and the need for more specialized technical know
how. On the other hand, an accelerated computing
system based GPU could have many advantages
such as high computational power, low cost of the
GPU board, flexibility in algorithm modification,
flexibility in hardware extension, and a short devel-
opment time. Therefore, the approximated digital
hologram generation algorithm, ACPAS, is imple-
mented on a GPU platform.

Here we implement the ACPAS on a multi-GPU
platform with three GPUs. The performance of the
ACPAS on the GPU implementation is assessed
and compared with a typical CPU implementation
that is based on a source model that assumes that
each object point radiates as an optical point source.
We refer to such a source model based hologram com-
putation result as a reference hologram. In addition,
we evaluate the accuracy of the ACPAS computed by
a single precision floating point data format on
a GPU.0003-6935/09/34H137-07$15.00/0

© 2009 Optical Society of America

1 December 2009 / Vol. 48, No. 34 / APPLIED OPTICS H137

2. Fast Digital Hologram Generation

A. Coherent Stereogram Calculation

The CHS is a complex-reduction approximation used
for digital hologram generation, and the ACPAS
[12,15] is the latest improved version of the CHS. Re-
construction from the ACPAS is almost the same as
the reconstruction from the corresponding reference
hologram [15], and the computational speed of the
ACPAS is much faster because of the reduced compu-
tational complexity. The main reason for the faster
computation time is the initial partitioning of the
output holographic fringe pattern into segments.
In the case of reference hologram, each object point
contributes a zone-plate term, and the hologram is a
superposition of such terms. In the case of the CHS,
each segment has a single spatial frequency com-
ponent that corresponds to each object point as a con-
sequence of the adopted approximation. Therefore,
the generated fringe pattern over a segment becomes
a superposition of complex sinusoids. To achieve
more accurate beam steering, the ACPAS uses two
kinds of improvement: phase compensation [10]
and finer discretization at the spatial frequency do-
main [12].
The complex form of the ACPAS in hologram plane

ðξ; ηÞ, using a point cloud in the ðx; y; zÞ volume, is
computed as [10]

IACPASðξ; ηÞ ¼
XN
p¼1

ap

rp
expfj2π½ðξ� ξcÞf pξcint

þ ðη� ηcÞf pηcint� þ jkrp þ jϕp þ jCξηg;
ð1Þ

where N is the number of object points, and ap and
ϕp are the amplitude and the phase of an object
point, respectively. Wavenumber k is 2π=λ, where
λ is the free-space wavelength of the coherent
light. The distance rp between the p − th object
point and point ðξc; ηcÞ on the hologram is
½ðξc � xpÞ2 þ ðηc � ypÞ2 þ z2p�1=2. The discrete spatial
frequencies f pξcint and f pηcint, whose units are both cy-
cles per unit length, are determined as f pξcint ¼
ξintf FSF and f pηcint ¼ ηintf FSF, where the fundamental
spatial frequency (FSF) component f FSF is the reci-
procal of the segmentation size. The related spatial
frequency error compensations Cξη, in radians per
unit length, are determined as

Cξη ¼ 2π½ðf pξc � f pξcintÞðξc � xpÞ
þ ðf pηc � f pηcintÞðηc − ypÞ�; ð2Þ

where f pξc and f pηc are the continuous spatial fre-
quencies on the ξ and η axes, respectively. Spatial
frequencies f pξc and f pηc are determined as

f pξc ¼ ðsin θpξc � sin θξref Þ=λ; ð3Þ

f pηc ¼ ðsin θpηc � sin θηref Þ=λ; ð4Þ

where θpξc and θξref are the incident angles of the ob-
ject and reference beams on the ξ axis, and θpηc and
θηref are the incident angles on the η axis.

The computation of the ACPAS for each segment
using inverse fast Fourier transform (IFFT) com-
prises two steps: calculation of the contribution from
each object point and an IFFT. In the first step, the
output hologram plane is divided into suitable
square segments. The spatial frequency, phase, and
phase compensation that corresponds to each object
point are determined for each segment, and this
yields the coefficients that correspond to the 2D com-
plex sinusoids at the discrete Fourier domain. These
coefficients form the spectrum of the signal over one
segment. In the second step, each spectrum asso-
ciated with a segment is transformed by the IFFT.
The computation of the ACPAS is completed by re-
peating this procedure for each segment.

B. Computational Complexity

Since the contribution of each object point that cor-
responds to each pixel on the hologram plane is
calculated and recorded eventually as a digital holo-
gram, the worst-case performance of the direct refer-
ence hologram computation algorithm is OðnmÞ,
where n is the number of pixels of the digital holo-
gram and m is the number of object points. On the
other hand, in the case of the CHS, the contribution
of each object point is calculated only to the center
pixel on each segment, and thus the computational
complexity is significantly reduced. Therefore, the
complexity of the CHS algorithm is OðmsÞ, where s
represents the number of segments. Even though
there are additional IFFT operations, their contri-
bution to the total computation time is negligible.
Therefore, CHS computation is approximately N ×
N times faster than the direct reference computa-
tion, where N ×N is the segment size in pixels.

3. Acceleration of the ACPAS

A. Overview of the Graphics Processing Unit

The GPU technology allows us to use a set of highly
parallel processors. A GPU is implemented as a set of
multiprocessors. Each multiprocessor in the GPU
has a single instruction multiple data (SIMD) archi-
tecture. At any given clock cycle, each processor of
the multiprocessor executes the same instruction but
operates on different data. The merits of implemen-
tation over the GPU platform are the high computa-
tional power and the low cost of the GPU board.
NVIDIA (Santa Clara, California, USA) developed
Compute Unified Device Architecture (CUDA) [16]
so that their graphics products can be programmed
directly into a high-level language. The CUDA is a
new hardware and software architecture for issuing
and managing computations on the GPU as a data-
parallel computing device. In contrast with the mul-
ticore CPU architecture in which only a few threads

H138 APPLIED OPTICS / Vol. 48, No. 34 / 1 December 2009

are executed concurrently, the NVIDIA CUDA tech-
nology can process more than thousands of threads
simultaneously and then enables a higher capacity
of information flow and massively parallel execution
of instructions. For example, the GPU, NVIDIA Ge-
force GTX 285 graphic card used in this experiment
has 30 streamingmultiprocessors, and themaximum
number of active threads per streaming multiproces-
sor is 768 [16]. From the software implementation
point of view, the CUDA approach is similar to the
traditional SIMD architecture.
On the other hand, although the new generation

GPUs are flexible enough to be programmed for
general-purpose computations, they were originally
optimized for graphics applications. Therefore, to
achieve high performance for holographic algo-
rithms, thread level parallelism and memory access
methods onmultiprocessors in a GPU should be care-
fully considered. Another drawback of most GPUs is
their lack of double-precision arithmetic support for
floating point operations. Graphics processing does
not typically require the same level of accuracy
and precision as in holographic simulations. Hence,
the loss of accuracy could be a concern in an applica-
tion that runs on a GPU platform.

B. Computational Flow of the ACPAS on a Central
Processing Unit

As mentioned in Section 2, the computation of the
ACPAS is performed in two steps. In the first step,
the contributions of object points to each segment
are calculated. In more detail, spatial frequencies,
phases, and phase compensations are determined,
and the number of iterations during computation
depends on the number of points and number of seg-
ments. In a second step, each segment is transformed
by an IFFT. Therefore, the number of IFFT calcula-
tions depends on the number of segments. The pseu-
docode for the ACPAS algorithm, based on a CPU
platform, is shown in Algorithm 1. Since the CPU
is a serial processor, the total computational time
is directly related to the total number of iterations.

Algorithm 1 ACPAS on CPU

1: Input data (points cloud) load
2: Nop⇐ Number of the object points
3: Nseg⇐ Number of the segments
4: for each object point of the points cloud do
5: for each segment of the fringe pattern do
6: Compute spatial frequency, amplitude phase, and phase

compensation
7: end for
8: end for
9: for each segment of the fringe pattern do
10: Fringe ⇐ 2D IFFT (segment)
11: end for

C. Computational Flow of the ACPAS on a Graphics
Processing Unit

In the first step of the ACPAS computational proce-
dure, the contribution of each object point is limited
to each segment, and, therefore, each segment can

be processed independently. So the computation of
spatial frequencies, amplitudes, phases, and phase
compensations that correspond to each object point
over each segment could easily be parallelized. Thus,
computation of each task for the ACPAS on a GPU
using a point cloud is parallelized. The second step
is the IFFT for each segment. Since each segment
is transformed independently, this step is also paral-
lelizable. As described in Algorithm 2, the ACPAS
computation can significantly benefit from a GPU
based implementation.

Algorithm 2 ACPAS on GPU

1: Input data (points cloud) load
2: Nop⇐ Number of the object points
3: Nseg⇐ Number of the segments
4: for all i such that 0 ≤ i < Nop ×Nseg in parallel do
5: Compute spatial frequency, amplitude, phase, and phase

compensation
6: end for
7: for all i such that 0 ≤ i < Nseg in parallel do
8: Fringe ⇐ 2D IFFT (ith segment)
9: end for

4. Experiments and Results

A. Computational Speed

We have implemented the latest version ACPAS on a
multi-GPU platform using CUDA and the computing
environment and parameters are listed in Table 1.
Comparative results for a 3 Mpixels holographic
fringe pattern generation as a function of number
of processed object points are shown in Fig. 1. Here
the hologram size is 1K × 1K pixels with three color
channels for full color holography. The IFFT size is
64 × 64 pixels and the corresponding segment size
is 32 × 32 pixels. Each measured computation time
is the total for all computation steps including final
normalization needed for the display. The solid
curves show the computation time for the CPU
implementation; the dotted curve represents the
measured computation time for the GPU implemen-
tation. The computation time for the reference case is
measured for one thousand object points; we can ex-
pect the computation time of the reference method to
increase linearly with the number of object points
[17]. In Fig. 1, the ACPAS on the CPU is four times
slower than the CPAS on the CPU for one million ob-
ject points. In addition, the ACPAS on the GPU is up
to 300 times faster than the CPAS on the CPU and up
to 130 thousand times faster than the reference
hologram computation again for one million object
points. Although the ACPAS on the GPU is slower
than the CPAS on the GPU, the ACPAS on the GPU
gives a higher quality reconstruction, which is simi-
lar to that of a reference hologram [15].

The computation of the ACPAS can be further ac-
celerated by use of multiple GPUs. There are typi-
cally two methods as shown in Fig. 2. The first
method, in Fig. 2(a), is based on partitioning the ho-
logram plane according to the number of GPUs. Each
partition is computed on an associated GPU. To form

1 December 2009 / Vol. 48, No. 34 / APPLIED OPTICS H139

the final holographic fringe pattern, each generated
fringe pattern is merged. The second method, in
Fig. 2(b), is based on pipelining. Each frame of a
fringe pattern is computed on the assigned GPU,
and their computations are not synchronized with
each other; this method gave the best performance.
There are several reasons for this, with timing imbal-
ance and competing access to computer resources as
the main reasons. For the partitioning mode, the
multiple GPUs being processed simultaneously can
access the same resource at the same instant of time,
resulting in unpredictable behavior. In addition, dur-
ing merging of each generated fringe pattern, each
GPU can be in the rest mode until the
beginning point of the next task. Therefore, the pipe-
lining mode is more efficient.

B. Accuracy of the ACPAS on the Graphics
Processing Unit

All the CUDA based devices follow the IEEE-754
standard for binary floating-point arithmetic, includ-
ing the Geforce GTX 280 used in this experiment.
The single-precision and the double-precision repre-
sentations allow 23 and 52 bits for the significand of a
floating-point number, respectively. In many applica-
tions that use the GPU, a single-precision floating
point is widely used to accelerate the computational
performance, but this results in greater errors.

The image difference between the ACPAS with
double-precision floating-point arithmetic and the
ACPAS with single-precision floating-point arith-
metic for the impulse response is shown in Fig. 3.
The normalized image difference in Fig. 3 is the ab-
solute difference of the ACPAS using single precision
and double precision, and the gray level of the nor-
malized difference image indicates the phase differ-
ence between these two cases. Although these two
fringe patterns have different phases, the two fringe
patterns have quite similar local spatial frequency
distribution. The difference in phase is caused by
the limited number of bits allocated to the signifi-
cand in the single-precision floating-point represen-
tation. Note that the phase computation is sensitive
to errors. Therefore, the ACPAS on the GPUwith sin-
gle precision results in significant phase errors that
are due to the limited number of bits.

To understand the effect of the phase error on the
generated fringe pattern, the two kinds of ACPAS
hologram generated by the single-precision arith-
metic and double-precision arithmetic are compared
in terms of the peak signal-to-noise ratio (PSNR),
where the number of the points is the variable. In ad-
dition, the reconstruction from such holograms is
also compared. The mean-square error (MSE) for two
m × n holographic fringe patterns Hsp using single
precision and Hdp using double precision, respec-
tively, is determined as

Fig. 1. Computational performance of the algorithms for a differ-
ent number of object points.

Table 1. Computing the Environment and Parameters

Fringe pattern Hologram size 1024 × 1024 pixels
Segment size 32 × 32 pixels
IFFT size 64 × 64 pixels
Pixel interval 8 μm
Distance between object center and hologram plane 500 mm
Wavelength 633 nm

Computing system CPU Two Intel(R) Xeon(R) CPU 2GHz
Main memory 8 Gbytes
GPU Three NVIDIA Geforce GTX 280

Programming environment Operating system Linux 64bit (Ubuntu 8.10)
Programming language Standard C and CUDA
Libraries CUFFTW

Fig. 2. Parallel digital hologram computation methods on a mul-
ti-GPU platform. The gray levels indicate the associated GPU
number: (a) fringe pattern partitioned according to the available
number of GPUs with each partition computed on the assigned
GPU and (b) each fringe of a fringe sequence is computed on
the assigned GPU.

H140 APPLIED OPTICS / Vol. 48, No. 34 / 1 December 2009

MSE ¼ 1
mn

Xm�1

i¼0

Xn�1

j¼0

½Hdpði; jÞ �Hspði; jÞ�2; ð5Þ

and the PSNR is computed as

PSNR ¼ 10 log10

�
2552

MSE

�
: ð6Þ

Here Hdpði; jÞ and Hspði; jÞ are normalized images
whose pixel values are between ½0; 255�, since most
of the related display device operates at such quan-
tization levels. Normalized pixel values of 0 and 255
correspond to lowest and highest values, respec-
tively, among all the computed pixels of the low-

and high-precision fringe patterns. Equations (5)
and (6) are also used to measure the noise level of the
reconstructions from the ACPAS using single-
precision and double-precision arithmetic.

The experimental results are shown in Fig. 4. It
can be seen that the PSNR between the high- and
the low-precision fringe patterns is relatively con-
stant at a level of approximately 25dB. The PSNR
difference between the reconstruction from high-
and low-precision holograms decreases with the
number of points. Point clouds, whose points are ran-
domly distributed in three dimensions, are used as
the input data, and each object point has a complex
amplitude. The reconstruction from the two kinds of
fringe pattern, ACPAS using single-precision arith-
metic and ACPAS using double-precision arithmetic,
is compared with the reconstruction from the refer-
ence hologram, and these results are shown in Fig. 5.
As shown in Fig. 4, since the PSNR between the re-
construction from the ACPAS using single-precision
and double-precision arithmetic decreases, one arith-
metic may not be a suitable approach for hologram
computation. However, as seen in Fig. 5, comparison
with the reference case indicates almost the same re-
sult for both the single-precision and the double-
precision ACPAS cases. In other words, the degrada-
tion in comparison with the reference case is almost
the same for single- and double-precision ACPAS
computations.

To understand this phenomenon, the reconstruc-
tions from the ACPAS on the CPU and the reference
hologram are compared. The horizontal central pro-
files of the reconstructed images that correspond to a
single object point are shown in Fig. 6, where the re-
constructions from the ACPAS and the reference

Fig. 4. Measured PSNR results corresponding to fringe patterns
generated by using the ACPAS and the reconstruction from them.
The dotted curve indicates the PSNR between low- and high-pre-
cision fringe patterns; the solid curve indicates the PSNR between
the reconstructions from these low- and high-precision holograms.
These reconstructions are normalized to be ½0; 255� by using the
lowest and highest values among their fringe patterns. As the
number of points increase, other distortion and noise factors dom-
inate the computational noise that is due to lower precision.

Fig. 5. Measured PSNR corresponding to different floating-point
precision and the high-precision ACPAS hologram. The circles on
the solid curve indicate the PSNR between the reconstructions
from the reference hologram and the high-precision ACPAS holo-
gram. The X on the solid curve represents the PSNR between the
reconstructions from the reference hologram and the low-precision
ACPAS hologram. In both cases these reconstructions are normal-
ized by using the lowest and highest values among their fringe pat-
terns. The error that is due to the ACPAS approximation is
dominant; the additional error that is due to computational noise
as a consequence of lower precision is negligible.

Fig. 3. Image difference between the ACPAS computed using
double-precision and single-precision floating points.

1 December 2009 / Vol. 48, No. 34 / APPLIED OPTICS H141

hologram are shown at the left- and right-hand sides,
respectively. The highest peak in each measured in-
tensity distribution is the intensity of the recon-
structed object that corresponds to the input data
(a single object point), and the remainder of the
intensity around the peak is the distortion, which
is from the approximations used in the ACPAS algo-
rithm. Even if the phase compensation method and a
larger IFFT size reduces the inaccuracies, the distor-
tion is not removed completely. If the GPU processor
is used to compute the ACPAS, a computational noise
is caused by a low number of bits for the significand.
Moreover, as the number of points increase, this
noise increases in magnitude. Therefore, as shown
in Fig. 5, as the number of points increase, the PSNR
decreases.
Our experiments show that the algorithmic dis-

tortion as outlined in the above paragraph is domi-
nant; therefore, the additional distortion introduced
by single-precision arithmetic over double-precision
arithmetic is negligible. We also see that the recon-
struction from single-precision holograms has a sa-
tisfactory quality. Thus, the benefit that is due to
speed up on a GPU implementation (single precision)
can be enjoyed without a disturbing loss in quality.
The numerically reconstructed images from the re-

ference hologram, ACPAS on CPU and ACPAS on
GPU, are shown in Fig. 7. The generated fringe pat-
terns are amplitude-only holograms, and Fresnel dif-
fraction is used as the numerical reconstruction
algorithm. The point cloud, which consists of 1000
points uniformly distributed in a 10mm × 10mm ×
10mm cubic volume placed at a distance of 700mm

from the hologram, is used as the input data. By
using the random point cloud, we can understand
the reconstruction characteristics at any position
in the space. There are both in-focus and out-of-focus
object points in the reconstructions. As seen in Fig. 7,
reconstruction from the ACPAS on the GPU, which
performs single-precision arithmetic, is comparable
with the ACPAS on a CPU and the reference case.
Therefore, the ACPAS computation can significantly
benefit from the speed associated with the GPU
based implementations.

5. Conclusion

Computation of the ACPAS on a GPU platform is ap-
proximately 100 times faster than a CPU based im-
plementation. The computational accuracy on GPU
implementations could be a concern. Even though
the phase distribution on the fringe pattern using
a single-precision floating point is quite different
in comparison with the fringe pattern using a double-
precision floating point, the visual reconstruction
qualities are comparable. Therefore, single-precision
implementations are adequate, and further accelera-
tion can be achieved.

Moreover, a pipelined hologram computational
method on a multi-GPU platform is discussed for
further acceleration. With this method the computa-
tional speed of the ACPAS on the multi-GPU plat-
form is up to 2.5 times faster in comparison with the
single GPU platform, and a full color digital holo-
gram can be generated at a rate of 30 frames/s for
objects with more than 10,000 points. The ACPAS
implementation on a multi-GPU platform is much
faster without any significant degradation in recon-
struction quality in comparison with the ACPAS run-
ning on the CPU. This computational performance
might be adequate for real-time electroholographic
display systems. The additional distortion that is
due to computational noise associated with single-
precision arithmetic is negligible in comparison with
the algorithmic distortions inherent in the ACPAS
method.

This research is supported by the European Com-
mission within FP7 under grant 216105 with the ac-
ronym Real 3D.

References
1. Y. Ichihashi, H. Nakayama, T. Ito, N. Masuda, T. Shimobaba,

A. Shiraki, and T. Sugie, “Horn-6 special-purpose clustered
computing system for electroholography,” Opt. Express 17,
13895–13903 (2009).

2. J. A. Watlington, M. Lucente, C. J. Sparrell, V. M. Bove, and
I. Tamitani, “A hardware architecture for rapid generation
of electro-holographic fringe patterns,” Proc. SPIE 2406,
172–183 (1995).

3. T. Okada, S. Iwata, O. Nishikawa, K. Matsumoto, H. Yoshi-
kawa, K. Sato, and T. Honda, “The fast computation of holo-
grams for the interactive holographic 3d display system,”
Proc. SPIE 2577, 33–40 (1995).

4. M. Lucente, “Interactive computation of holograms using a
look-up table,” J. Electron. Imaging 2, 28–34 (1993).

Fig. 6. Horizontal central profiles of the reconstructed images
that correspond to a single object point.

Fig. 7. Reconstruction of a random point cloud from (a) the refer-
ence hologram, (b) the double-precision ACPAS, and (c) the single-
precision ACPAS.

H142 APPLIED OPTICS / Vol. 48, No. 34 / 1 December 2009

5. M. Lucente, “Diffraction-specific fringe computation for
electro-holography,” Ph.D. dissertation (Massachusetts Insti-
tute of Technology, 1994).

6. H. Yoshikawa, “Fast computation of Fresnel holograms em-
ploying difference,” Opt. Rev. 8, 331–335 (2001).

7. M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama,
“Phase-added stereogram: calculation of hologram using
computer graphic technique,” Proc. SPIE 1914, 25–33 (1993).

8. H. Yoshikawa and H. Kameyama, “Integral holography,” Proc.
SPIE 2406, 226–234 (1995).

9. J. Tamai and H. Yoshikawa, “Faster computation of sub-
sampled coherent stereogram,” J. ITEJ 50, 1612–1615
(1996). in Japanese, http://ci.nii.ac.jp/naid/110003336607.

10. H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “The com-
pensated phase-added stereogram for real-time holographic
display,” Opt. Eng. 46, 095802 (2007).

11. H. Kang, T. Yamaguchi, and H. Yoshikawa, “Accurate phase-
added stereogram to improve the coherent stereogram,” Appl.
Opt. 47, D44–D54 (2008).

12. H. Kang, F. Yaraş, L. Onural, and H. Yoshikawa, “Real-time
fringe pattern generation with high quality,” in Digital Holo-
graphy and Three-Dimensional Imaging (Optical Society of
America, 2009), paper DTuB7.

13. H. Kang, T. Yamaguchi, H. Yoshikawa, S. C. Kim, and
E. S. Kim, “Acceleration method of computing a compensated
phase-added stereogram on a graphic processing unit,” Appl.
Opt. 47, 5784–5789 (2008).

14. L. Ahrenberg, A. J. Page, B. M. Hennelly, J. B. McDonald, and
T. J. Naughton, “Using commodity graphics hardware for real-
time digital hologram view-reconstruction,” J. Disp. Technol.
5, 111–119 (2009).

15. H. Kang, F. Yaraş, and L. Onural, “Quality comparison and
acceleration for digital hologram generation method based
on segmentation,” in 3DTV CONFERENCE 2009 (IEEE,
2009).

16. “http://www.nvidia.com/,”.
17. M. Lucente, “Optimization of hologram computation for real-

time display,” Proc. SPIE 1667, 32–43 (1992).

1 December 2009 / Vol. 48, No. 34 / APPLIED OPTICS H143

http://ci.nii.ac.jp/naid/110003336607
http://ci.nii.ac.jp/naid/110003336607
http://ci.nii.ac.jp/naid/110003336607
http://ci.nii.ac.jp/naid/110003336607
http://www.nvidia.com/
http://www.nvidia.com/
http://www.nvidia.com/

