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ABSTRACT 

Healthcare is one of the most important services to preserve the quality of our daily 

lives, and it is capable of dealing with issues such as global aging, increase in the healthcare 

cost, and changes to the medical paradigm, i.e., from the in-facility cure to the prevention 

and cure outside the facility. Accordingly, there has been growing interest in the smart and 

personalized healthcare systems to diagnose and care themselves. Such systems are capable 

of providing facility-level diagnosis services by using smart devices (e.g., smartphones, 

smart watches, and smart glasses). However, in realizing the smart healthcare systems, it is 

very difficult, albeit impossible, to directly integrate high-precision healthcare technologies 

or scientific theories into the smart devices due to the stringent limitations in the computing 

power and battery lifetime, as well as environmental constraints. In this dissertation, we 

propose three optimization methods in the field of cell counting systems and gait-aid 

systems for Parkinson's disease patients that address the problems that arise when 

integrating a specialized healthcare system used in the facilities into mobile or wearable 

devices. First, we present an optimized cell counting algorithm based on heuristic 

optimization, which is a key building block for realizing the mobile point-of-care platforms. 

Second, we develop a learning-based cell counting algorithm that guarantees high 

performance and efficiency despite the existence of blurry cells due to out-focus and varying 

brightness of background caused by the limitation of lenses free in-line holographic 



apparatus. Finally, we propose smart gait-aid glasses for Parkinson’s disease patients based 

on mathematical optimization. 

Keywords: Optimization, Smart Healthcare, Cell Counting, Parkinson’s Disease, 

System Integration. 
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I. Introduction 

1.1 Global Healthcare Trends 

In recent years, there has been an increasing demand for global healthcare to address 

problems associated with increasing medical costs and aging of the global population, as 

well as meet the needs for improving the quality of life. In 2016, the United States spent 

more than 15% of its gross domestic product (GDP) on healthcare, amounting to more than 

$ 20,000 per family [1]. According to a report [2], the healthcare market will increase from 

$ 2 million in 2016 to $ 97 million by 2021. Globally, healthcare spends are projected to 

reach $ 8.7 trillion by 2020, and the percentage of GDP spent on healthcare is estimated to 

10.5% in 2020 [3]. In particular, smart healthcare that integrates internet of things (IoT) 

technology into healthcare gives a huge impact on the healthcare market. According to a 

report in [4], the smart healthcare market is expected to register a compound annual growth 

rate (CAGR) of 24.5% between 2016 and 2020 because, depending on the emergence of 

IoT device, the paradigm of healthcare will be changed from the way it is treated at the 

facility to the way it is treated and prevented at anytime and anywhere. Along with this 

trend, the healthcare industry is quickly shifting to the self-diagnosing age possibly by 

using wearable device as the next step in healthcare. For instance, there are an increasing 

number of wearable devices that can monitor heart rates, respiratory rates, oxygen levels 

and blood pressure, temperature, activities and sleep patterns. Such devices can, when 

needed, alert the wearer, predict the risks, and suggest interventions to avoid becoming the 

disease in the future. Moreover, they are able to record health information on a scale that 

was never before possible, and such data will give us right insight in improving the quality 

of life and advancing the technology in the next decade. 
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1.2 Smart Healthcare Systems 

Smart healthcare system can be realized by using different biometric sensors that 

capture the human’s bio-signals [5]. Such systems analyze these signals via algorithms to 

produce readings on an application to provide high-quality healthcare services. Typically, 

wearable devices such as smart watches and smart glasses are used for the smart healthcare. 

In the last decade, many manufacturers provided various products. SAMSUNG and 

APPLE released smart watches to measure and record blood pressure, health conditions [6] 

[7], and NIKE and ADIDAS released smart wristbands to record user’s exercises [8] [9]. 

In addition, there are smart shoes and rings [10] [11]. These devices are capable of playing 

important roles for the smart healthcare as they can read user’s bio-signals by using the 

embedded sensors and save them in the storage after data processing. 

The representative sensors for recording bio-signal are as follows. 

ᆞ Inertial Measurement Unit (IMU): it is typically used to analyze the body’s 

movement, and consists of accelerometer, gyroscope and magnetometer that 

measure a body’s acceleration, angular rate, and the magnetic field surrounding 

the body, respectively. 

ᆞ Heart Rate Sensor: it allows to measure a wearer’s heart rate in real-time and 

helps to diagnose the wearer’s serious condition such as heart attack. 

ᆞ Global Positioning System (GPS): it provides the wearer’s position in the world, 

and it used to provide the location and distance. 

In general, different sensors produce different types of measurements, but it is 

possible that the same sensor can be used in many different ways. For example, a 3-axis 

accelerometer of IMU measures movements in every direction. The data gathered by the 
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accelerometer can be converted into the number of steps, distance, the burned calories and 

other measurements about the activities. Thus, the way of the interpreting of the data is 

important. 

1.3 Benefits of Smart Healthcare System 

There is no doubt that smart healthcare systems are transforming how the existing 

healthcare systems deliver the healthcare solutions. That is, the IoT technology is 

constantly providing new apps and devices as well as integrated healthcare systems for 

smart healthcare. Thus, it gives multiple opportunities and benefits to physician, patient 

and public. 

For the physician [12]: 

ᆞ Financial benefits: smart healthcare service can improve more than 50% of 

healthcare costs by saving time and reducing efforts. 

ᆞ Lower cases of malpractice claims: it shares the experience about the 

inappropriate treatment between doctors, and give the doctor a full history of a 

disease. In reality, after starting the smart healthcare service, the number of 

malpractice claims dropped by 96%. 

ᆞ Faster lap results: most smart healthcare system shows the analyzed result in 

the real-time. Also, that connects to the server in a facility, and can use the 

high-quality service in the point-of-care. 

ᆞ Faster turnaround: facility using smart healthcare service reduce the auditing 

time from 3.9 to 1.4 hours 
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ᆞ Operational efficiency: physician can access to the right equipment and 

medication when they needed at the right time. 

ᆞ Time savings: over 80% of healthcare expert claimed that the smart healthcare 

service reduces time to diagnosis 

For the patient and public: 

ᆞ Ease of access: by using a mobile and wearable device that can be easily 

accessed and be used, one who want to be treated can access directly the experts 

anywhere and anytime. 

ᆞ Ease of use: most smart healthcare system provides the user interface through 

the application for user convenient. 

ᆞ improved care - smart healthcare connects between a facility and a patient or 

public. Thus, a patient and public can give and get the suitable information 

from the skilled workforce whenever they need it. 

ᆞ Reduced cost and time – smart healthcare system provides point-of-care 

testing in the real time. Thus, one using the system do not need to visit the 

hospital frequently. 

1.4 Challenges of Smart Healthcare 

In 2015, more than 165,000 applications related to smart healthcare were reported on 

the application market. That is more than doubling over the past years. Among the 

applications, while the application related to wellness management, such as fitness, stress 

and diet takes more than 80%, there are few services and application related to diagnosis 
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and prevention of diseases [13]. One of the critical reasons for that is the technology gap 

between the advanced technology and technical and environmental resource available in a 

user’s daily life. Therefore, there are some problems in applying the advanced technology 

to the daily life: 1) Most healthcare equipment used to demonstrate the advanced 

technology has a high-performance processor, expensive cost, heavy size that the user 

cannot carry. Also, most people do not want to pay for taking the equipment; 2) The mobile 

and wearable device available in the daily life does not guarantee the high performance as 

much as the equipment in the facility since the devices do not have the high resolution and 

sensitive sensors as well as the facility’s equipment; and 3) In some cases, real-time 

processing is difficult due to the limitation of the mobile and wearable device’s computing 

power. Because of these problems, many companies are investing a lot of development 

time to figure out how people can use even if they find the advance technology [14]. 

To tackle the above-mentioned barriers, the following challenges must be solved: 1) 

Using the smart device such as smartphone, wearable device since any user can easily 

access to smart device; 2) developing and improving sensor or processor that runs on the 

smart device while maintaining or improving the performance of the existing technologies, 

but it is impossible in the short term; and 3) improving the existing algorithm for use 

anywhere and anytime. When the algorithm capable of meeting the challenge, and 

replacing existing expensive equipment is developed, that can dramatically increase 

application range. 



6 

1.5 Optimization 

In our daily lives, we often deal with the optimization problems. For example, when 

we want to buy something, we consider financial condition, the reason for purchase, the 

quality of after service (AS) and etc., and decide to buy one after comparing between 

various products. The reason for the considerations is maximizing the effectiveness, 

minimizing the cost and selecting the optimized option to meet the needs. We call this 

solution the optimization. 

Optimization is to find the act or configuration of obtaining the best result or feasible 

solution under given constraints, circumstances or the needs of anyone who want to use 

[15]. Traditionally, optimization problem used the mathematical function by the convex, 

linear, non-linear and heuristic model. In details, it defines a mathematical function for a 

physical phenomenon or system operation under a given condition, and then the function 

adjusts the parameters in a direction close to the desire value, and finds the optimum value. 

To achieve that, various solutions have been proposed such as first/second order 

differential, line search, trust region. 

In the system engineering fields, the optimization can be defined as the design of the 

algorithm or system to achieve some goals based on the existing knowledge, system or 

algorithm [16]. There are various optimization methods. For example, system optimization 

enhances the system capabilities by improving and integrating subsystem elements. 

algorithmic optimization is finding the minimum values of the mathematical functions by 

evaluating the design tradeoffs depending on algorithmic options. To support the methods, 

various algorithms are proposed such as genetic algorithm, dynamic programming, 

simulated annealing. 



7 

As the result of that, The optimization has the benefits such as improving the 

performance, minimizing the errors, overcoming the environmental and hardware 

constraints. Thus, it plays the critical role to integrate the advanced technology into the 

smart systems or devices in our daily life. 

1.6 Aims of the Dissertation 

In this dissertation, we represent the optimization algorithms to transfer the advanced 

healthcare system of the facility level to the personal level healthcare system used in our 

daily life. Figure 1 shows the concept of the optimization algorithm to connect facility-

level healthcare and the personal healthcare system in our daily life. To achieve the goal, 

Figure 1 the concept of the optimization algorithm for integrating facility-

level healthcare into the personal healthcare system in our daily life. 
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we define the three optimization methods: 1) Heuristic optimization. This is the 

optimization method that improves a system by applying the experience and expertise of a 

physician, expert, patient, and normal people.; 2) Learning-based optimization. This is the 

way to maximize the performance and to reduce the complexity of the system based on a 

machine learning algorithm.; and 3) Mathematical optimization. This redefines or 

customizes the existing scientific knowledge or formulas for applying the specific 

environments. Through the dissertation, we present the two major concerns that is a cell 

counting system and gait-aid system for Parkinson’s disease, and three chapters that 

illustrate the optimized system using these optimization methods. In summary, first, cell 

counting system. In the past, the system was used in the facility level. But it is needed in 

the Point-Of-Care Testing (POCT) more than in the facility. To apply the system to POCT, 

it is needed a) how can the system in the facility apply to the mobile device for POCT. To 

solve that, we propose a heuristic optimization. b) how to maximize the performance. To 

achieve that, we designed a system using learning-based optimization. Seconds, we 

considered the gait-aid system of Parkinson’s disease, and found the more efficient method 

for the gait-aid system based on the mathematical optimization. 

1.7 Dissertation Organization 

The remainder of this dissertation is organized as follows. Chapter 2 discusses the 

optimization of cell counting algorithm for mobile point-of-care testing platform. Chapter 

3 discusses human-level blood cell counting system using learning-based optimization. 

Chapter 4 discusses mathematical optimization for application of people with Parkinson’s 

disease. Finally, the dissertation concludes chapter 6. 
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II. Optimization of a cell counting algorithm for mobile point-of-care

testing platforms 

2.1 Introduction 

Human immunodeficiency virus (HIV) remains one of the most fatal and infectious 

viruses. Due to inadequate accesses to HIV prevention and treatment methods, HIV 

infection has rapidly spread in developing countries. Consequently, an estimated 35.3 

million people worldwide were living with HIV in 2012 [17]. As one of diagnosis and care 

methods for such a disease, point-of-care (POC) testing can generate results quicker and, 

hence, can start the treatment much sooner than laboratory-based testing methods [18]. In 

particular, counting the number of specific cells in a blood sample is one of the most 

important tests in various biological and medical fields [19] [20] [21] [22]; e.g., HIV testing 

exploits the fact that HIV-infected individuals have CD4+ T lymphocyte counts below 350 

cells per microliter of blood [19]. 

There are manual and automatic methods for counting specific cells. The manual cell 

counting method is the most time-consuming and the most labor-intensive approach [23] 

[24] [25], which means it is not suitable for POC testing in a rapid, consistent and repeated 

manner [18]. Due to such limitations, many researchers have studied various automatic cell 

counting methods based on hardware approaches, such as electrical impedance 

measurement [26] [27], optical inspection [28] [29] or image processing [18] [30] [31]. 

The electrical impedance measurement method is a hardware-based technique that 

translates the change of impedance into a count of cells when particles pass through a small 

aperture. The optical inspection method is also a hardware-based technique that uses laser 
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Figure 2. Schematic figure of an affordable point-of-care (POC) testing platform 

based on a commercially available smart phone, which can be integrated with a 

microfluidic system and an automated cell counting program. (a) The POC 

testing platform is composed of a smart phone CMOS sensor, a microfluidic chip 

and a chip cover (not yet available) containing an active mirror; it can simply be 

assembled with a commercially available smart phone by using a chip cover 

assay. The microfluidic chip is inserted into the cover assay and the CMOS 

sensor can take images with no optical lens. Note that actual cell images were 

captured using the apparatus in Figure 2. (b) The lensless image generated by an 

in-line holographic technique can be processed based on an Android smart phone, 

i.e., a cell (shadow) image is counted by an automated cell counting program that

consists of four steps: (S1) preparing a blood sample image captured by the 

imaging apparatus, as well as a pre-configured cell image library; (S2) checking 

whether or not a new cell image library is required for the captured image; (S3) 

generating a new cell image library if required; (S4) computing normalized 

cross-correlation (NCC) values for the entire image followed by identifying, 

marking and counting cells. (c) The actual counting process in (S4) first 

computes NCC values for the entire blood sample image by applying each and 

every cell image in the library in a zig-zag manner; then marking and counting 

point (i, j) as a cell if the maximum of NCC values for (i, j) exceeds a threshold, 

e.g., 0.67; and finally, reporting the number of marked points as counted cells.
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light to identify and count cells. However, both methods, which similarly exploit the 

physical properties of cells, are expensive. Instead of relying on either manual inspection 

or costly hardware, software-based image processing approaches with inexpensive 

hardware, such as automated imaging cytometry and calculus-based cell counting [25] [26], 

can be adopted as a cost-effective POC testing method. This is because such a cell counting 

method can be far faster and more accurate than the manual approach, while it is much 

cheaper than the aforementioned hardware approaches. For instance, a recently proposed 

approach [18] can count cells 5760x faster than the manual method at practically no 

equipment cost; it achieves this high performance by computing normalized cross-

correlation (NCC) values between two images, i.e., a blood sample image and a cell image 

in the library, to quantify the similarity between the two images. Such an approach for 

counting cells gives a few advantages over other methods, such as automated imaging 

cytometry; NCC computation is much faster and more accurate than other approaches, 

because it effectively utilizes the shape of a certain cell to locate and count cells. 

The accessibility of POC tests has significantly expanded in both developed and 

developing countries [23] [32]. However, hardware-based cell counting approaches have 

not been widely accepted yet, due to the high cost of procuring the necessary equipment 

and training the technicians for such sophisticated equipment [33]. On the other hand, 

mobile POC testing [33] [34], which automates disease diagnosis using mobile devices 

such as smart phones and tablets, has emerged as an attractive alternative, as mobile 

devices become more affordable, portable and powerful. For example, Zhu et al. [34] 

presented a cost-effective imaging cytometry platform and custom-developed software for 

mobile POC testing. The schematic in Figure 2a shows how a commercially available smart 
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phone running an automated cell counting algorithm can be used as an affordable POC 

testing device if integrated with a microfluidic platform in the form of a cover assay. 

Despite such benefits, however, we note that mobile devices with a small form factor 

are still not suitable for the software-based methods. This is because such an algorithm 

often demands considerable computing capability to reliably deal with image anomalies, 

e.g., variations in background intensity, brightness and noise, while mobile devices with a

small form factor have limited computing capability and battery capacity. For example, it 

takes more than 10 minutes for the algorithm running on an Android smart phone to count 

cells in a blood sample image. Therefore, it is crucial to optimize such a software-based 

approach for mobile devices with a small form factor to provide quick and uninterrupted 

services for an extended period of time. 

In this chapter, we propose two synergistic optimization techniques for the software-

based algorithm based on NCC, such that it is suitable for Android smart phones after 

identifying the sources of its inefficiency. First, we observe that evaluating the NCC values 

for each point of a blood sample image with each and every cell image in the library is 

responsible for most of the runtime and energy consumption, both of which are 

proportional to the product of the number of cell images in the library and the number of 

points in the blood sample image. Second, we note that some cell images in the library are 

similar or duplicated because cell images are manually and randomly chosen. Meanwhile, 

these similar or duplicated cell images just increase the runtime and energy consumption 

without notably contributing to higher counting accuracy. Hereafter, we use runtime and 

energy consumption interchangeably, because they are proportional to each other. Third, a 

cell often spans across multiple points in a blood sample image, while evaluating NCC 
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values for all of the points in the vicinity of a cell leads to detection of only a single cell. 

Thus, we note that evaluating NCC values for all of the points is highly redundant. 

Motivated by these three observations, we propose the following two optimization 

techniques. First, we develop a technique to systematically remove duplicated or similar 

cell images from the library by evaluating the influence or loss of each cell image on the 

counting accuracy when removed. Second, we devise heuristic patterns that determine 

which points for which we skip NCC evaluations. Note that eliminating similar cell images 

in the library and/or skipping NCC evaluations for some points can decrease NCC values 

for points where cells are located. Meanwhile, these NCC values are compared against a 

threshold value to determine whether or not a cell exists in the point in a blood sample 

image. Consequently, the decreased NCC values for these points can incur some loss of 

counting accuracy. To compensate for the accuracy loss, we also propose to adjust the 

threshold value such that the degradation of counting accuracy is minimized. 

We implement the optimized cell counting algorithm in an Android smart phone and 

evaluate its runtime. The evaluation result demonstrates that the system adopting the 

proposed optimized algorithm outperforms the original algorithm, reducing the runtime by 

11.5×. Accordingly, our work enables scalable solutions for realizing disposable low-cost 

POC testing platforms based on inexpensive mobile devices, thus offering quick blood tests 

for the diagnoses of diseases plaguing many developing countries. 

2.2 Materials and Methods 

2.2.1 Experimental Setup 

An Android smart phone is connected to an imaging apparatus shown in Figure 3 to 
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capture 3334×445 blood sample images. The thus obtained images are used throughout the 

method development and validation. The specification of the smart phone is as follows: A 

1.6-GHz quad-core CPU, a 533-MHz GPU, and 2-GB RAM running Android 4.1.2. Note 

that its computing capability is comparable to that of an Intel Atom processor, which is far 

slower than typical processors used for the desktop platform. 

The imaging apparatus is designed for in-line holographic cell images on a 

microfluidic channel surface. The apparatus is designed with an automated microfluidic 

chip alignment system (cRIO, NI Korea, Korea), a syringe pump (Fusion 100 Touch, 

Revodix, Korea), a halogen lamp (FOK-100W, Micro-Lite, Korea) and a CCD imaging 

platform (Foveon F13 AVF-36A Development Kit, Alternative Vision Corporation, 

Tucson, AZ). Chip alignment with 10 _m resolution is achieved with a precise manual xy 

stage (TPS-1, NAMIL Optical Co., Korea). To magnify in-line holographic cell images of 

targeted cells by 1.5× magnification, the gap between the bottom of the microfluidic chip 

and the top surface of the CCD image sensor (Fx17-78-F13D-07v, Foveon Inc., USA) is 

determined as 1.1 mm. The halogen lamp, as a white light source, emits through a fifty-

micron pin hole (#56282, Edmund Optics, Korea). The in-line holographic cell patterns are 

directly imaged on the CCD image sensor without a lens, where the CCD sensor features 
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Figure 3. The cell imaging apparatus connected to an Android mobile 

device. The imaging apparatus is designed with an automated microfluidic 

chip alignment system, a syringe pump, a halogen lamp and a CCD imaging 

platform, while the Android device has a computing capability comparable 

to that of an Intel Atom processor, which is far slower than the typical 

processors for desktop platforms. 

more than 14 million square pixels (7.8 μm, pixel pitch) across the active sensor array 

area (24.9 mm, effective diagonal dimension) where the Foveon color CCD chip enables 

imaging with microscope cover slides (24 mm ×  32 mm ×  0.10 mm, Knittel Glaser, 

Germany). 

As detailed in [18], NIH3T3 cells (mouse fibroblast cell line, CRL-1658) are cultured 

in Dulbecco’s modified Eagle medium with high glucose (DMEM) containing 10% FBS, 

100 U/mL penicillin, 100 g/mL streptomycin, and 2 mM L-glutamine. The NIH3T3 cells 

are maintained in the complete cell medium and grown at 37𝑜C in a humidified 5% CO2

environment. 

After the cell culture process, a suspension of the NIH3T3 cells is injected 
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(approximately 200 μL total volume) into the microfluidic channel with a flow rate of 0.05 

μL/h. The controlled velocity of the cell containing fluid is generated by the automated 

syringe pump. The NIH3T3 cells refer to the targeted cells of the automatic cell counting 

sink and attach to the bottom of the microfluidic channel surface. 

To obtain blood and cultured cell smears for imaging experiments, blood is first 

collected by pricking the finger with a needle. A small drop of blood sample is then dropped 

on the top of a slide glass. Tilting the cover slip at a 30𝑜 angle allows blood to spread

across the edge. Thereafter, smoothly and quickly pulling the slide glass forward allows 

the drop of blood to spread even more thinly onto the slide. Next, the blood-stained slide 

glass is dried at room temperature for about 1 minute. Afterwards, the smeared blood film 

is dropped into 70% methanol and air-dried again before staining it by the Wright–Giemsa 

staining kit (Sigma-Aldrich Inc., St. Louis, MO, USA). The dried blood film is then placed 

into Coplin jars (5-PC glass staining jar, Citotest Labware Manufacturing Co., LTD., 

China), which contain approximately 50 mL Wright-Giemsa stain solution, for 30 seconds. 

Finally, the slide is removed from the stain and placed into de-ionized water or phosphate 

buffer solution (pH 7.2) for approximately 10 minutes and air-dried. This process allows 

the blood and cultured cell samples to be ready to be observed under the cell imaging 

apparatus. 

2.2.2 Overview of Cell Counting 

The cell counting algorithm based on NCC generally consists of four steps, as shown 

in Figure 2b: (S1) preparing a blood sample image captured by the imaging apparatus, as 

well as a pre-configured cell image library; (S2) checking whether or not a new cell image 

library is required for the captured image; (S3) generating a new cell image library if 
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required; (S4) computing NCC values for the entire image followed by identifying, 

marking and counting cells. According to [18], if a generated library already exists (S2), 

there is no need to create another library (S3); otherwise, the cell library images must be 

manually predefined by marking cells located in random sections of the blood sample 

image (S3). 

Computing NCC values allows us to identify cell locations in a blood sample image 

captured by any cell imaging apparatus [18] [35]. Counting cells is essentially a process of 

searching for the similarity between the blood sample image and cell images from the 

library; since both of the images are from the same apparatus, it is capable of accurately 

locating all cells of a similar shape, thus reliably counting the number of cells. R(i, j), which 

denotes the NCC value at point (i, j) in a blood sample image, ranges from -1.0 to +1.0 and 

is calculated by: 

R(i,j) =  
∑ ∑ (𝜔(𝑥,𝑦)−𝜔̅)(𝑓(𝑥+𝑖,𝑦+𝑗)−𝑓̅(𝑖,𝑗))𝐾−1

𝑥=0
𝐿−1
𝑦=0

√∑ ∑ (𝜔(𝑥,𝑦)−𝜔̅)2𝐾−1
𝑥=0

𝐿−1
𝑦=0 √∑ ∑ (𝑓(𝑥+𝑖,𝑦+𝑗)−𝑓̅(𝑖,𝑗))2𝐾−1

𝑥=0
𝐿−1
𝑦=0

  (1) 

where 0 ≤ i ≤ M − K and 0 ≤ j ≤ N − L, ω(x, y), 𝑓(x, y), 𝜔̅ and 𝑓 ̅denote a cell image of 

K × L pixel points from the library, a blood sample image of M × N pixel points (e.g., 

3,334 × 445 pixel points in our implementation), a mean of ω(x, y) and a mean of a K × L 

sub-image of f starting at (i, j), respectively. The closer R(i, j) is to -1.0 or +1.0, the stronger 

the two images are correlated. On the contrary, the two images are highly irrelevant when 

the value is close to 0. 

A threshold value is used to decide whether or not a cell exists at (i, j); if R(i, j) is 

higher than the threshold value, the cell counting algorithm marks point (i, j) as a cell. After 

computing the NCC values for the entire sample image with each and every cell image in 
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the library, the algorithm counts the number of marked points and reports the number of 

counted cells as illustrated in Figure 2c. As the threshold value gets lower, the algorithm 

becomes more sensitive and perceives more cells, thus resulting in an increased count of 

cells. This indicates that determining an appropriate threshold value directly affects the 

accuracy of the algorithm. In [18], the threshold value was experimentally determined so 

as to minimize the difference between automated and manual counting results. 

In the original NCC-based counting algorithm, however, we observe considerable 

inefficiency in Steps (S3) and (S4). First, a naive approach, which randomly chooses cell 

images to build the cell image library in (S3), often leads to more cell images than needed 

to achieve the desired accuracy, unnecessarily increasing the runtime proportional to the 

number of redundant cell images. Second, NCC values are evaluated for each and every 

point in (S4), while a cell in a blood sample image spans over multiple points. Thus, it is 

very likely to obtain high NCC values at multiple points in the vicinity of the cell. Since 

our objective is not to identify the exact center location of each cell, but to count the total 

number of cells, such multiple NCC evaluations for detecting a single cell are redundant. 

To avoid such inefficiency, we present two synergistic techniques optimizing the cell 

image library and approximating NCC evaluations. 

2.2.3 Cell Library Optimization 

Since the runtime is proportional to the number of cell images in the library, we 

propose a systematic method that can remove duplicated or similar images from the library 

without notably impacting the accuracy. This, in turn, reduces the number of cell images 

in the library and, thus, the runtime. In the original algorithm, 150 cell images were 

manually identified and randomly selected from various blood sample images to construct 
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Figure 4. Cell library optimization to avoid inefficiency caused by random 

construction of the library. (a) The influence (%) indicates the proportion of 

the cell count of each cell image to the total counting result, which varies 

significantly from one cell image to another; some cell images cannot find 

any cells, because all of the cells found by these cell images are already 

counted by other duplicated and/or similar cell images. (b) This loss can 

further be compensated for by reducing the threshold value, e.g., 24 cells 

are marked under a high threshold value of 0.67, while 42 cells are identified 

after decreasing the threshold to 0.60, where the latter is close to the result 

of manual counting. (c) A receiver operating characteristic (ROC) curve 

plots a true positive rate (i.e., the ratio of the count of correct cell detection 

to the total cell count) vs. a false positive rate (i.e., the ratio of the count of 

false cell detection to the total cell count) by varying the threshold value 

from 0.60 to 0.67. As shown in the ROC curve, the algorithm becomes less 

sensitive as the threshold value gets higher, thus resulting in the decreased 

count of cells. (d) The number of counted cells linearly depends on, or is 

inversely proportional to, the threshold value; decreasing the threshold 

value increases the number of counted cells. This relationship can be used 

to adjust the threshold value to counter the loss in counting accuracy after 

optimizing the library. 
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a cell image library. However, we observe that many similar cell images in the library 

do not significantly contribute to augmenting the counting accuracy, while increasing the 

runtime. In practice, it is inevitable to have multiple duplicated or similar images under 

such a random selection strategy. Therefore, we need a systematic method to eliminate 

those redundant cell images in the library. 

To further motivate our proposed approach, we evaluate the influence of each cell 

image regarding the accuracy by counting the number of cells discovered by a particular 

cell image in the library, as shown in Figure 4a, where the influence (%) indicates the 

proportion of the cell count of each cell image to the total counting result. In the library, 

some cell images cannot find any cells to be counted, because all of the cells, which are 

found by these cell images, are already counted by other duplicated and/or similar cell 

images. In the presence of similar cell images, the influence of some cell images in the 

library on counting accuracy is very small, because most of the cells identified by them are 

the same. Eliminating these duplicated or similar cell images incurs small loss in cell 

counting accuracy because cell images in the library can be slightly less similar to the 

removed cell images, leading to lower NCC values for some cells. However, we observe 

that such loss can be compensated for by reducing the threshold value. Based on these 

results, we present a joint optimization approach that: (i) removes images with the least 

losses from the library; and then (ii) adjusts the threshold to counter these losses. 

2.2.4 NCC Approximation 

The integral part of the cell counting algorithm consists of two steps, as illustrated in 

Figure 2c. First, it identifies the locations of cells by computing NCC values for each point 
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with each and every cell image in the library; the points with their NCC values higher than 

the threshold value are identified as cells and are stored in (M-K+1)×(N-L+1) matrices, 

where M and N are the number of rows and columns in a blood sample image, while K and 

L indicate the size of a cell library image, as defined in Section 2.2. Second, all of the 

values in the matrix are read back to mark and count identified cells. 

To reduce the runtime, we exploit the fact that a single cell usually appears as a cluster 

of points in the matrix, where a cluster has a maximum size of m × n, e.g., 3 × 3, as shown 

in Figure 4b. Since the cell counting algorithm may recognize a cell if the NCC value for 

at least one point of the cluster is higher than the threshold value, it is redundant to process 

each and every point on the blood sample image to evaluate NCC values. Hence, we may 

get an approximated counting result by skipping NCC evaluations for neighboring points 

as far as we can mark at least one point for a cell in the M × N matrix. 

2.3 Results 

In this section, we evaluate the accuracy and runtime of the cell counting algorithm, 

employing our proposed optimization techniques using an Android smart phone, and 

compare them against the original algorithm using the original library containing 150 

randomly-selected cell images. 

2.3.1 Cell Library Optimization 

To build an optimized cell image library, we first evaluate the influence of each of the 

150 cell images in the library used for our previous study for four different channels of the 

blood sample image. Figure 4a plots the influence of each cell image in the library on the 

counting result. We note that the influence of each cell image is almost the same for all 
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channels, implying that our optimization technique is applicable to the entire blood sample 

image. Using our proposed optimization technique, we identify 38 duplicate images (with 

zero loss if removed) and 92 similar images (with <8.5% loss if removed). 

We further evaluate the loss in cell counting accuracy by enlarging the blood sample 

image. As shown in Figure 4, optimizing the cell image library by eliminating duplicated 

or similar cell images only incurs a small loss in counting accuracy regardless of the size 

of the blood sample image or the average count of cells. That is, the difference of cell 

counting results between original and optimized algorithms is sufficiently small (e.g., less 

than 200) even when the blood sample image is large enough (e.g., with 8000 cells). 

The aggregated loss incurred by eliminating these images can be easily countered by 

reducing the threshold. Since the threshold value is closely coupled with the number of 

counted cells, it is important to reduce the threshold value, such that we can obtain the most 

compact library. We note that the threshold value of at least 0.6 indicates a strong 

correlation considering the correlation coefficient [36] [37]. Therefore, eliminating most 

redundant cell images from the library and adjusting the threshold value from 0.67 (current 

value) to 0.60 allow us to obtain the optimized library with cell images that are essential to 

achieve a desired accuracy. 

Figure 4b illustrates the sensitivity of cell counts to a threshold value; a cluster (of a 

size up to 3 × 3) indicates a cell. In Figure 4b, 24 cells are marked under a high threshold 

value, while 42 cells are identified after decreasing the threshold. Based on this result, we 

conduct an experiment with six blood sample images to develop a model to compensate 

for the change in cell counts. We vary the threshold value from 0.67 to 0.60, where the 

latter indicates the lowest value to indicate a strong relationship [37], and compute the 
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changes in the number of counted cells. As shown in Figures 4c and d, the number of 

counted cells linearly depends on, or is inversely proportional to, the threshold value; 

decreasing the threshold value increases the number of counted cells. Let C(T) denote the 

number of counted cells, a the gradient, β the initial value and T the threshold value. Then, 

the following relationship holds: 

𝐶(𝑇) ≈ 𝛼 ∙ 𝑇 + 𝛽       (2) 

Equation (2) can be used to adjust the threshold value to counter the loss in counting 

accuracy after optimizing the library. 

After the cell image library is optimized, the number of cell images in the original library 

is reduced from 150 to 20 with 8.5% accuracy loss on average. However, after we adjust 

the threshold value to 0.64 by using Equation (2) to compensate for the negative effect of 

fewer cell images in the library, we observe only negligible accuracy loss. Note that 

eliminating more cell images from the library yields noticeable accuracy loss that cannot 

be compensated for by simply adjusting the threshold value. With this optimized library 

containing only 13% (= 20/150) of cell images compared to the original library, we reduce 

the runtime by 87%. 

2.3.2 NCC Approximation 

The runtime reduction of NCC approximation can be computed as follows. If NCC 

values are evaluated for every other point both horizontally and vertically, the runtime will 

be reduced to 25% of the original runtime. However, this method may slightly decrease the 

counting accuracy, because it does not check all of the points, taking the risk of missing 

points associated with the center of cells that can give higher NCC values than other points. 

To minimize accuracy loss for such a case, we present four heuristic patterns with the 
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highest detection probability for a cell, as well as the shortest runtime, as shown in Table 

1. 

Table 1. Four heuristic patterns for NCC approximation, judiciously chosen 

to maximize the detection probability for a cell, as well as to reduce the 

runtime as much as possible. Employing Patterns 1, 2 and 3 reduces the 

runtime for evaluating NCC values by 50% ~ 75% at the expense of some 

accuracy loss (1.4% ~ 6.1%). Patterns 1 and 2 yield the highest detection 

probability (97.1% ~ 98.6%) and maintain the same amount of runtime 

reduction (50%). Pattern 3 achieves further reduction in runtime (75%) 

compared to Patterns 1 and 2, but its detection probability becomes lower 

(93.9%). Pattern 4 has the poorest detection probability (50.1%) and, hence, 

may not meet the accuracy requirement. 
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As a metric to quantify the accuracy loss, a cell detection probability is derived as follows. 

Let t (= m × n) denote the total number of points in the cluster, e.g., set to nine for the 

maximum cluster size of 3 × 3, and s the number of skipped points in the cluster. Then, 

the detection probability, 𝑃𝐾|𝑜𝑟𝑔, which is the probability that the algorithm with heuristic

pattern k detects a cell within the cluster when the original algorithm has detected the cell, 

can be calculated by: 

𝑃𝐾|𝑜𝑟𝑔 = 1 −
2𝑠

2𝑡       (3) 

Table 1 presents both 𝑃𝐾|𝑜𝑟𝑔  calculated using Equation 3 and the rate of runtime

reduction. The results show that employing Patterns 1, 2 and 3 reduces the runtime for 

Figure 5. The Bland-Altman plot, evaluating the accuracy of the optimized 

cell counting algorithm in comparison with an original algorithm. The x-

axis is the average of counting results of original and optimized algorithms, 

while the y-axis is the difference between them. It has a bias of 46.56 cells, 

and upper and lower limits of 201.72 and –108.60, respectively. 
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evaluating NCC values by 50% ~ 75% at the expense of some accuracy loss (1 - 𝑃𝐾|𝑜𝑟𝑔,

1.6% ~ 6.3%). Specifically, Patterns 1 and 2 yield the highest detection probability (96.8% 

~ 98.4%) and maintain the same amount of runtime reduction (50%), while Pattern 3 

achieves a further reduction in runtime (75%) compared to Patterns 1 and 2, but its 

detection probability becomes lower (93.7%). Pattern 4 has the poorest detection 

probability (50.0%) and, hence, may not meet the accuracy requirement. 

To compensate for the accuracy loss due to NCC approximation, we also adjust the 

threshold value using Equation (2), as we do for optimizing the cell image library. First, 

we compare the accuracy of the original algorithm with that of the algorithm with NCC 

approximation, both of which use the optimized cell library. Figure 5 plots the difference 

in counted cells between the two approaches; the closer the value is to zero, the more 

accurate the algorithm with NCC approximation gets. Since all four heuristic patterns for 

NCC approximation cross zero, it is possible to find the best threshold values that can 

practically eliminate the accuracy loss. 

Figure 6 also presents the threshold values using four heuristic patterns for the same 

counting accuracy as the original algorithm. Clearly, the more points the algorithm skips, 

the shorter the runtime it achieves, as illustrated in Table 1. However, we need to decrease 

the threshold value to compensate for the increased counting loss. Our analysis shows that 

the heuristic Patterns 1 and 2 satisfy the accuracy requirement for the range of threshold 

(>0.6). With these heuristic patterns, we reduce the runtime required for NCC by 50%. 
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Figure 6. The difference in counted cells between the original algorithm 

and the algorithm with NCC approximation (heuristic Patterns 1~4). The 

closer the difference is to zero, the more accurate the algorithm with NCC 

approximation gets. Since all four heuristic patterns for NCC approximation 

cross zero, it is possible to find the best threshold values that can practically 

eliminate the accuracy loss, which are 0.615, 0.617, 0.583 and 0.498 for 

heuristic Patterns 1, 2, 3 and 4, respectively. The heuristic patterns 1 and 2 

satisfy the accuracy requirement (i.e., zero loss) for the range of threshold 

(>0.6) and reduces the runtime required for NCC by 50%. 

𝐦𝐞𝐚𝐧 ± 𝟏. 𝟗𝟔𝐬𝐭𝐝 

𝒎𝒆𝒂𝒏 ± 𝟏. 𝟗𝟔𝒔𝒕𝒅 

𝒎𝒆𝒂𝒏 ± 𝟏. 𝟗𝟔𝒔𝒕𝒅 

𝒎𝒆𝒂𝒏 ± 𝟏. 𝟗𝟔𝒔𝒕𝒅 
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2.3.3 Measurement Using an Android Device 

We run both the original and optimized cell counting algorithms on an Android smart 

phone connected to the imaging apparatus shown in Figure 3 to evaluate the effectiveness 

of our proposed optimization techniques for 3334 × 445 blood sample images. 

To compare the accuracy and runtime of the original algorithm with those of the 

optimized algorithm, we run the two algorithms 10 times for six channels of the blood 

sample image. Figure 7 shows the counting accuracy or the number of counted cells of the 

original and optimized algorithms. In Figure 7a, for each of six channels, 10 count results 

of the original algorithm, each with its own randomly-selected cell image library, are 

plotted based on the distance (up to 30 mm) from the inlet port of each channel; the count 

result of the original algorithm that yields the best match with manual counting [18] is 

plotted, as well. Likewise, the counting results of the original algorithm (best configuration) 

and the optimized algorithm (via cross-validation) are compared in Figure 7b. In the 

original algorithm (using 150 random cell images), the number of counted cells varies a lot 

(up to 30%), due to the random generation of the cell image library for each execution. By 

contrast, the number of counted cells in the optimized algorithm is very close to that of 

manual counting. The optimized algorithm exhibits an average difference of 5.05%. This 

demonstrates the robustness and effectiveness of the proposed approach. 

Figure 8 compares NCC-based algorithms (both original and optimized) with manual 

counting and another cell counting algorithm [34] under two different scenarios. When 
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Figure 7. Evaluation of the counting accuracy of the original and optimized 

algorithms. (a) For each of six channels, 10 count results of the original 

algorithm, each with its own randomly-selected cell image library, are 

plotted based on the distance (up to 30 mm) from the inlet port of each 

channel; the count result of the original algorithm that yields the best match 

with manual counting is plotted, as well. In the original algorithm (using 

150 random cell images), the number of counted cells varies a lot (up to 

30%), due to the random generation of cell image library for each execution. 

(b) The counting results of the original algorithm (best configuration) and 

the optimized algorithm (via cross-validation) are compared. For each of 

the channels, a specific cell image library for the optimized algorithm is 

generated by using the rest of five channel images to conduct cross-

validation. The optimized algorithm exhibits an average difference of 

5.05%. This demonstrates the robustness and effectiveness of the proposed 

approach. 
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normal blood sample images are applied, all three methods have the same counting results. 

By contrast, when the blood sample image is noisy and has variations in background 

variations, NCC-based algorithms produce counting results that are close to those off 

manual counting, while [34] fails to reliably count cells. This clearly shows that the 

proposed algorithm reliably deals with image anomalies, e.g., variations in background 

intensity, brightness and noise. 

Figure 9 shows the runtime of the original algorithm and three optimized algorithms 

employing either or both optimized cell libraries to minimize the number of cell images 

and heuristic Pattern 1 to skip NCC evaluations for some points, where the latter includes: 

(i) the optimized algorithm using NCC approximation with heuristic Pattern 1 only; (ii) the 

Figure 8. Comparison with manual counting and another cell counting 

algorithm [34]. With normal blood sample images, all three methods 

have the same results. For noisy images with intensity variations, 

NCC-based algorithms (both original and optimized) produce counting 

results close to those of manual counting, while [34] fails to reliably 

count cells. 
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Figure 9. The runtime of the original algorithm and the optimized 

algorithms employing either or both of an optimized cell library to minimize 

the number of cell images and heuristic Pattern 1 to skip NCC computations 

for some points. The runtime of the original algorithm that evaluates NCC 

values for each and every point is, on average, 740.42 s, while that of the 

optimized algorithm is only 64.12 s, achieving almost a 11.5× runtime 

reduction with accuracy loss less than 1%. The result also demonstrates that 

the cell library optimization reduces the runtime by 86.6% (from 740.42 s 

to 99.52 s), while heuristic Pattern 1 contributes to a 50.1% runtime 

reduction (from 529.5 s to 264 s). 

optimized algorithm using cell library optimization only; and (iii) the optimized 

algorithm employing two synergistic techniques together. The runtime of the original 

algorithm that evaluates NCC values for each and every point is, on average, 740.42 s, 

while that of the optimized algorithm is only 64.12 s, achieving almost an 11.5× runtime 

reduction with accuracy loss less than 1%. The result also demonstrates that the cell library 

optimization reduces the runtime by 86.6% (from 740.42 s to 99.52 s), while heuristic 

Pattern 1 contributes to a 50.1% runtime reduction (from 529.5 s to 264 s). 
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2.4 Summary 

Motivated by the need for fast and energy-efficient cell counting for mobile POC 

testing platforms, we proposed two synergistic techniques that optimize the cell image 

library and approximate the NCC-based cell counting algorithm and demonstrated their 

efficacy using an Android smart phone. First, optimizing the cell image library 

systematically eliminated duplicate and similar cell images that were manually chosen 

during the library creation process, reducing the runtime by nearly 87%. Second, 

approximating NCC evaluations by systematically skipping some points in a blood sample 

image also decreased the runtime by 50%. Note that a naive application of these two 

optimization techniques incurred some loss of counting accuracy. Thus, we developed a 

model for quantifying the loss of accuracy associated with these optimization techniques, 

and we demonstrated that such accuracy loss could be compensated for by adjusting the 

threshold value within an acceptable range (i.e., >0.6). An Android smart phone running 

the original algorithm with the original cell image library containing 150 cells took 740.42 

s to count all of the cells in a 3334 × 445 blood sample images. In contrast, the same 

Android smart phone running the optimized algorithm took 64.12 s with accuracy loss less 

than 1%, reducing the runtime by 11.5×. 
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III. Human-level Blood Cell Counting System using NCC-DEEP

LENRNING ALGORITHM on Lens-free Shadow Image 

3.1 Introduction 

In biological analysis, identifying cells from a blood image is a very time-consuming 

task and may incur erroneous results if manually conducted [23]. Especially, in a diagnostic 

field based on the images and identification results, there are lots of requirements for 

decision making from the specialist. Until now, the wide-spread pattern recognition method 

is black and white classification approach such as image-J. [38]. That converts an image 

(i.e. 16-bit) to gray-scale, and adjusts threshold to highlight the cells as the black and white 

scale. Moreover, the other approaches or programs are hard to design or set parameters to 

properly identify cells. For a point of care testing, the platform should be integrated with 

functions for the help of decision making of an image specialist and doctors [23]. 

The in-line holographic imaging method is emerging imaging technology for a cell 

identification in the biological field [39] [40] [41]. That is a simplest holographic method 

working without any electric and magnetic lenses. The images can be generated from 

interference between reference light and shadow of the biological sample, i.e. cultured cell, 

white blood cell, red blood cell, or bacteria [39]. For a point of care testing without using 

a complex lens system, the in-line holographic apparatus for some low-cost diagnostics is 

a promising platform technology for a hand-held type microscope which is composed of a 

simple led light source and a single CMOS camera [42]. However, due to imperfectness of 

the optical setup, the images taken from the in-line holographic apparatus shows an 

irregular background intensity [43] [44] [45] and out-of-focus pattern of the targets such 
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as blurry cell that are hard to distinguish the cell from the background. To tackle that, the 

various approaches are developed to enhance the identification of the target cell from noisy 

images. Ra et al. [18] presented a cell counting approach by using normalized 2D cross-

correlation(NCC) approach that achieved a robustness for irregular background. However, 

the NCC approach does not guarantee the robustness to the blurry cell since the pattern of 

the cell closes the background noise. So that, the NCC shows low precision that measure 

true positive ratio in predicted condition positive while high recall that is true positive ratio 

of condition positive. Tikkanen et al. [46] presented a machine learning method that is 

Histogram of Oriented Gradients (HOG) features with Support Vector Machine (SMV) 

classifier. HOG extracts clearly the shape context from abrupt edges between objects but 

that shows a low accuracy for blurry cell because the blurry cell provides less information 

available to distinguish a cell from the background [47] [48]. Liimatainen et al. [49] 

designed another machine learning method (i.e., logistic regression). While these machine 

learning approaches verified their excellence for the bright background, they have some 

disadvantage for the blurred cell since logistic regression has difficulty to distinguish blurry 

cells when there is the correlation between blurry cell and background noise [50]. 

In this chapter, we present a novel method based on normalized cross-correlation and 

convolutional neural network (CNN) to maximize the cell identification performance and 

efficiency without consuming additional hardware resources. In particular, by analyzing 

the correlation between normal cell, blurry cell and background noise, we defined a 

threshold value cause NCC process able to detect almost all cell including the blurry cell 

and minimal background noise as the candidate points. So that, the NCC ensures high 

precision and allows post process to focus solely on analyzing the results without wasting 
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time to enhance the images or search all point in the given blood sample image. Also, we 

designed CNN model to distinguish between cell or not. The CNN model is applied as the 

post process of the NCC and eliminates cell matching error from the candidate points. 

Hence, the proposed system guarantees high recall. We evaluated the proposed method for 

the blood sample image and that shown 0.97, 0.96 and 0.97 for the precision, recall and F1 

score, respectively. That demonstrated the human-level performance (>0.95). Also, the 

method enhanced cell counting efficacy up to 97.4% comparing with the CNN only 

algorithm. 
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3.2 Cell Counting Architecture 

The proposed method is illustrated in Figure 10. That follows the five steps: 1) A 

blood sample image input to the system; 2) NCC model calculates the correlation 

coefficient between the sub-image on a point the blood sample and the pre-trained cell 

library while moving point by point. We set the size of the sub-image and the pre-trained 

image to 9×9 that is able to cover almost all cell. In this process, to boost the calculation 

efficiency, we applied the cost effective NCC algorithm of Ahn et al. [51]; 3) Then, the 

NCC model marks the cell-like points that called candidate point where the correlation 

result is higher than the threshold value for identifying the candidate point. The details are 

in the section 3.2; 4) all the candidate points are cropped by 9×9 sized image and that input 

Figure 10. Schematic of introduction for the NCC-CNN algorithm 
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to the CNN model; and 5) the CNN model trained to identity cell distinguishes between 

cell or not. The details are in section 3.3. After that, the system finally counts the cell. 

3.3 Methods 

3.3.1 Candidate Point Selection based on NCC 

NCC is widely used in the object recognition in given a scene (i.e. face tracking while 

driving and license plate recognition of building management system). In this chapter, we 

applied the NCC to detect cells. NCC calculates the correlation between blood sample 

image and cell images from the pre-configured cell image library, and returns a correlation 

coefficient. To identify a cell, it first loads the pre-configured cell images with 9×9 size, 

and calculate the correlation coefficient for the all point on the blood sample image by 

using Equation 4: 

R(i,j) =  
∑ ∑ (𝜔(𝑥,𝑦)−𝜔̅)(𝑓(𝑥+𝑖,𝑦+𝑗)−𝑓̅(𝑖,𝑗))𝐾−1

𝑥=0
𝐿−1
𝑦=0

√∑ ∑ (𝜔(𝑥,𝑦)−𝜔̅)2𝐾−1
𝑥=0

𝐿−1
𝑦=0 √∑ ∑ (𝑓(𝑥+𝑖,𝑦+𝑗)−𝑓̅(𝑖,𝑗))2𝐾−1

𝑥=0
𝐿−1
𝑦=0

               (4) 
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where 0 ≤ i ≤ (M − K) and 0 ≤ j ≤ (M − L). M and N is size of a blood sample 

image (M × N pixel), and K and L is size of a cell image (K × L pixel). w(x,y) and f(x,y) 

denote a pixel point value of a cell library and K × L sub-image on the blood sample image, 

respectively. and 𝑤̅ and 𝑓 ̅is a mean of each images. As a result of that, the NCC value 

P(i,j) has -1.0 or +1.0 when the two images have strong similarity. On the contrary, the 

value closes to 0 when they have highly irrelevant. 

After the NCC process, the correlation coefficient values are compared to the 

detection threshold to identify a cell, and marks the point as a detected cell when the value 

is larger than the threshold. However, NCC has limitations for the blurry cell unfocused by 

the interference of light source, as shown in Figure 11 since NCC is not able to detect the 

variant features with respect to scale, rotation, focus and perspective distortions [52]. The 

Figure 11. Schematic print of the in-line holographic apparatus and the 

cause of the blurry cell image 
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Figure 12 (a) shows the intensity of the normal, blurred cell and background noise. In the 

normal cell case (blue line), the intensity has 'w' shape, but the blurred cell (red line) has a 

slightly ‘w' shape but closes background noise (green line). Based on the fact, to quantify 

the similarity, we evaluated the correlation coefficient in normal cells versus normal cells, 

blurred cells and background, as shown in Figure 12 (b). The details of the box plot are 

that the blue box is interquartile range (IQR) which means the spread of the middle 50% 

(25~75 percentile) of data values, a red line in IQR is median, the upper and lower fence 

of IQR is the max and min value, and '+' is outlier which is larger or less value than the 

upper and lower fence. In the normal cell case, the correlation coefficient has 0.76 median 

and 0.72 to 0.83 range of IQR. That value represents a probabilistically strong correlation 

[53] [54]. Also, if the detection threshold sets over 0.6, the NCC shows low false alarm 

since there is slight overlap between normal cell and noise. On the other hand, to detect the 

blurred cells, NCC is necessary to lower the detection threshold value since the blurred cell 

has 0.58 median and 0.38 minimum range. However, the low threshold causes false alarm 

since there is strong overlap between blurred cell and noise. Nevertheless, we applied the 

low detection threshold to detect all cells including blurry cells. Also, we considered the 

appropriate threshold value because the very low threshold includes many noise as cells 

Figure 12. Intensity and correlation coefficient of normal, blurry cell and 

background noise 
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and that increases the computational cost for the post-processing to remove the noise. 

Therefore, to minimize blending of background noise while including all cells, we set the 

threshold to minimum value of the statistically normal distribution of the blurry cells by 

using the formula: 

    Threshold = Q1 − 1.5 × IQR  (5) 

where Q1 is first quartile (lower side of blue box). As a result of that, the threshold follows 

0.39. Based on the fact, we can see the NCC process with the threshold calculated by 

Equation 5 can detect the points of almost all normal, blurry cells and some noise as cells 

on the blood sample image. We define the points detected by NCC as the candidate points. 

 

3.3.2 Reliable Cell Counting using CNN 

There are two conditions in the candidate points marked by NCC process. One is true 

positive condition if the candidate point is a cell, another is false positive condition if the 

candidate point is background noise. It thus is required to the post-process to identify and 

remove the second condition for reliable system. To achieve that, we designed CNN which 

is a classification algorithm based on machine learning. There are already many CNN 

models such as AlexNet [55], VGGNet [56], ReNet [57], but they requires expensive 

computational cost since the models use large size input image and filters. So that, in this 

study, we considered a smaller network design motivated from AlexNet. 

The entire network architecture is shown in Figure 13. The network consists of three 

convolution layers followed by rectified liner units (ReLU) [58] and max-pooling, and a 

fully connected layer and a softmax logistic regression layer [59] in the last two layers. The 
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convolution layer accepts i × j × k image as input where i is height, j is width of cell image 

and k is channels, and the k is 1 in this chapter since the in-line holographic apparatus 

provides gray scale image. Then, the convolution layer with k filters of size n × n × m 

calculates the convolution [55] for all position on the input and produce k feature maps, 

where n is block size for convolution works and m equals k, and the values of a filter with 

n ×  n ×  m block are generated randomly. The ReLU is an activate function. for the 

convolution output on a point of input, that decides activation depending on f(x)=max(0,x) 

that activates the output when only x value is larger than 0, otherwise the output is 0. Max-

pooling layer performs a down-sampling operation given the output of the convolution. 

That has the w × h sized spatial block and moves along the stride, discarding all values 

except for the maximum value in the block. The fully connected layer connects every 

neuron in one layer with 1× (previous layer size) size array such as the traditional multi-

layer perceptron layer [55]. Finally, given the fully connected layer, the soft-max layer 

generates K-dimensional categorical distribution in range 0 to 1, where K is number of 

category. 

Figure 13. CNN architecture. That consists of three hidden layers with two 

ReLU function, a max pooling layer, fully connected layer and softmax 

logistic regression. 
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These subsequent hidden layers follow as shown in Figure 13: 1) The first hidden layer 

applies 32 filters of 3 × 3 size followed by ReLU, and 2 × 2 sized max pooling is 

implemented with 2 strides and outputs 5×5×32 size of data; 2) The second hidden layer 

uses 5×5×64 filters and follows ReLU again; 3) The 5×5×64 blob is applied by 5×5×128 

followed by ReLU, and the result is connected to the fully connected layer; 4)A fully 

connected layer contains 1024 neurons with a ReLU; and 5) The last layer maps to cell or 

background noise. 

Figure 14 shows a demonstration of the normalized cross correlation and 

convolutional neural network (NCC-CNN) process comparing with the original image 

including the blurry cells and manual cell counting result. Compared to the manual 

counting result that marked 16 cells for the test image, NCC process with the proposed 

threshold value selected the 31 candidate points including the all cell and 15 false positive 

Figure 14. Demonstration of NCC-CNN process 
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points. But, based on the candidate points, CNN process identifies accurately all the cells 

and that shows human level cell counting result. 

Through the overall system process, NCC and CNN process show the synergic 

operation. The proposed NCC process has the high false positive but has low false negative. 

That process reduces effectively the false negative rate of the CNN process. And, CNN 

process identifies accurately the cells among the candidate points. Also, the strategy of 

selecting the candidate points using the NCC process reduce drastically the cost of the CNN 

process because the NCC process is faster than the CNN process. 

 

3.4 Results 

3.4.1 Subjects 

For evaluating the proposed algorithm as well as comparing to other related algorithm, 

we build up some algorithms in Table 2. The algorithms consist of 9 algorithms based on  

Table 2. The list of subjects to compare with the proposed algorithm. That 

consists of 9 algorithms based the three base types 
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the types of algorithm are single, HOG base and NCC base. Some algorithms (i.e. hogSVM, 

LogR, NCC) are presented in [46] [49] [18]. Based on that, we added the CNN and mixed 

them to find the best algorithm compared with the proposed (NCC-CNN). In the evaluation 

environment, for the applying algorithm, we followed the preprocessing process of [46] 

[49] [18]. In addition, for the CNN, we have no preprocess without the cropping process 

as the input data. In HOG case, we had extracted the HOG features and used that for the 

training and validation. Finally, in the case of NCC base, we used a sufficiently low 

threshold (=0.39) to increase the cell detection probability. 

 

3.4.2 Evaluation for the cropped cell image 

we first evaluated the algorithms in Table 2 for the cropped cell image. The shape of 

the image is 9×9 size image. The cropped images have the three types of label. 1) Normal 

cell. We defined the normal cell as an image what people see certainly as a cell; 2) Blurry 

cell. This is an image that looks blurry but looks like a cell, and 3) Background. It is non-

cell image that seems like a noise. Figure 15 shows the sample image for each type. For 

Figure 15. The sample images of the normal cell, blurry cell and 

background 
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the evaluation, we collected a total of 3000 images (1000 images per each type) for the 

training phase, and we did the same for the validation dataset. 

Figure 16 shows the performance of each algorithm while increasing the number of 

training datasets from 100, 300, 500, 700, 1000, 1500 to 2000. Figure 16(a) shows the 

evaluation result between the normal cell and the background. In this case, while LogR, 

SVM and nccLogR had shown the low accuracy when the learning data is small (i.e., 

100~300), they have shown the increased accuracy with the increasing learning data. On 

the other hand, CNN and NCC show high accuracy from the initial stage. Overall, all 

algorithms were able to detect the normal cells with an accuracy of over 95%. Despite the 

noticeable performance, all algorithms without the CNN-based application drop under an 

accuracy of 90%. 

In particular, we can see that HOG-based algorithms have lower accuracy than the 

other basis. The reason for that is because blurry cells have a circular shape, but, some 

features lose, and some features cannot be extracted. Some filters extract images similar to 
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background images during application. Nonetheless, CNN still achieves over 95% 

performance by accurately learning the entire pattern of the HOG. The performance 

difference between the NCC and the basic algorithm is 0.86 to 3.66% of the performance 

drop due to the accumulation of miss errors as each algorithm checks again for images that 

are missed in NCC and correctly recognized as cells in NCC. 

 

3.4.3 Evaluation on the blood sample image 

We evaluated each algorithm for the 10 blood sample images. The test image used in 

the evaluation has 600×400 size, and some images have the specific points that we called 

'black line'. The blood sample image may or may have the black lines depending on the 

experimental environment. For the evaluation, we used algorithm trained with over 1500 

training images to get the best performance without any pre- and post-process such as the 

Figure 16. The performance of each algorithm while increasing the number 

of training dataset. a) is for normal cell image and b) is for blurry cell image 
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background subtraction [60] to remove the background noise since that could cause of loss 

of the cells. Thus, without any other preprocessing, all algorithms identify a cell from the 

cropped image while moving 9×9 block to the pixel by pixel, and mark a point when the 

point is predicted to a cell. After every search to identify the cells, we evaluated the system 

by comparing the result with the manual counting result. 

Figure 17. The original image, manual cell counting result and the 

demonstration of each algorithm 
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Figure 17 and Table 3 show a demonstration of each algorithm and the evaluation 

results, respectively. Figure 17a indicates baseline and the demonstration results of single 

algorithms. In this case, LogR, SVM and CNN shown ineffective for distinguishing 

between cell and background noise since they considered most all the convex region to cell. 

As a result, they had many false alarms with 0.44, 0.59 and 0.75 precision while they had 

high recall of 0.92, 0.96 and 0.97, respectively. Also, because of the low precision, they 

did not distinguish completely the black line as the background noise and marked a lot of 

point in that region. On the other hand, NCC had high precision (i.e. 0.98) but lower recall 

since that do not guarantee the robustness for specific cells (i.e. some normal cells and 

blurry cells). On the contrary, in hog-based case as shown in Figure 17b, hogLogR, 

hogSVM and hogCNN showed higher precision and lower recall comparing with the single 

algorithm. The reason for that is HOG extracts and provides exactly the shape features of 

normal cell with strong gradient in localized portion. So that, the false alarms are decreased, 

Table 3. The evaluation result of each algorithms on the blood 

sample image 
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and the algorithms provide high precision (i.e. 0.59, 0.83 and 0.78 for LogR, SVM and 

CNN, respectively). However, in the blurry cell case that has no clear edge context, HOG 

did not extract completely the feature. They thus make miss detections and have low recall 

(i.e. 0.76, 0.58 and 0.83 for LogR, SVM and CNN, respectively). Throughout the single 

and hog-based algorithm, as you can see in Table 3, despite of their high precision or recall, 

they provide low F1 score with 0.73 averagely. Figure 17c refers to the ncc-based 

algorithms. NCC with low threshold contain some background noise but guarantee high 

recall by elect almost all cells as the candidate points. As a result of that, all the algorithms 

shown 22~52% higher precision and 7~13% higher recall, and nccCNN achieved 97% of 

F1 score that is 6~36% higher than others. 

 

69.9 
60.6 

161.4 

1.8 

76.1 
67.8 

168.2 

1.9 2.8 4.1 

Figure 18. The elapsed-time of each algorithm 
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3.4.4 Elapsed-time evaluation 

We finally evaluated the elapsed-time. The evaluation environment is Apple Macbook 

(MJLT2KG/A model) [61] that has intel(R) core(TM) i7-4870HQ CPU @ 2.50GHz, 16GB 

RAM, Windowns 10 OS and no GPU acceleration. Figure 18 shows the average elapsed 

time of each algorithm when we ran out the algorithms on a blood sample images. Based 

on that, we can see the single algorithms without NCC spend time more than 60s to get the 

cell counting result, LogR, SVM and CNN show the elapsed time of 69.96, 60.69 and 

161.4s, respectively, and NCC spends 1.86s. Also, In the case of HOG base, they require 

more time than single base since the HOG process is added to a single algorithm's process. 

As the result of that, LogR, SVM and CNN show 76.1, 67.85 and 168.2s, respectively, 

which increased by 0.1 to 10.5% from the single base. On the other hand, NCC saves 

dramatically the elapsed-time. With NCC process, LogR, SVM and CNN have 1.95, 2.81, 

4.12s, respectively, which decreased by 96.7% on average. 

 

3.5 Summary 

Most previous methods to address the cell counting problem has focused on counting 

cell under a constraint which is the varying of the background images (i.e. bright field). 

However, the lens-free in-line holographic apparatus provides the problem as well as out-

focus problem which produces blurry cells. In this chapter, we designed NCC-CNN to 

achieve effectively the problems. The proposed algorithm searches and marks the 

candidate point on the cell-like point by using NCC set to a low-threshold, and CNN model 

trained by distinguishing between cell or not identifies and count cells from the candidate 

points. The proposed algorithm trained with more than 1,500 training data showed 96.6% 
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accuracy when evaluated in cropped images (i.e. normal cell, blurry cell and background 

image), and exposed the 12.1~36.6% improved performance from the NCC, LogR and 

SVM, and a difference of 1.3% from CNN alone. In the evaluation for the blood sample 

image, the NCC-CNN exhibited 97% performance, which was 6~37% improved 

performance compared with others. Finally, we evaluated the elapsed time, and the NCC-

CNN showed 4.12s which is 40 times faster than the CNN-only algorithm. 

The suggested cell identification method is using a machine learning approach to 

eliminate cell matching error and to provide cost-effective calculation of the biological 

images. This approach also does not require a complex and time-consuming parameter 

setting to recognize or identification of the biological target. This merit can serve that a 

biologist tries not to an enhancement of image or identification but to focus on analysis 

result with high accuracy. 
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IV. Smart Gait-Aid Glasses for Parkinson’s Disease Patients 

4.1 Introduction 

Parkinson's disease (PD) is a chronic progressive disease that degenerates the nervous 

system of a patient losing dopaminergic neurons in substantia nigra of the brain [62]. PD 

is most common for adults over 60 [63]. Approximately seven to ten million people 

worldwide suffer from PD [64], and the number of PD patients has been increasing with 

the aging population. While PD symptoms vary across patients, the primary symptoms are 

tremor, bradykinesia, rigidity, and postural instability, all of which can disturb the gait of 

patients [65] [66]. 

Freezing of gait (FOG), which is a form of akinesia [67], is defined as brief, episodic 

absence or marked reduction of forward progression of the feet despite the intention to 

walk [68]. PD patients are likely to suffer from FOG in various daily activities, e.g., when 

they initiate gait, turn corners, change gait directions and/or speeds, stand up from their 

seats, pass along different floor patterns, and are in narrow spaces [69] [70]. Upon 

occurrence of an FOG episode, most PD patients feel defenceless against sudden freezing 

[71], making the patients experience difficulty in walking with normal gait [72] and thus 

negatively affecting their daily activities. In particular, FOG is a huge risk factor for falls 

in PD patients who get seriously hurt in the worst case [73]. 

Previous studies have demonstrated that rhythmic auditory or visual cues can aid the 

PD patients' gait [74] [75] [76] [77] [78] by breaking the freezing [79] [80], thus improve 

the quality of patients' daily lives. While it is not evident whether or not the auditory cues 

are effective for PD patients experiencing FOG [81], it was demonstrated that visual cues 

such as stripe lines, checkered tiles, and footprints on the floor can improve gait 
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characteristics such as velocity, cadence and stride length upon occurrence of FOG 

episodes [82] [83]. Using visual cues, a risk of developing FOG within 2 years can be 

predicted as well [84]. 

In this research, taking sensor fusion and markerless augmented reality (AR) 

techniques, we develop a smart gait-aid system implemented in smart glasses. Our smart 

gait-aid system monitors a PD user using smart glasses' inertial sensors (i.e., 

accelerometers and gyroscopes) and processing capability to detect FOG episodes. Upon 

detection of FOG episodes, it automatically triggers a visual guidance function that projects 

user-specific stripe patterns [70] on the floor seen through the glasses. 

More specifically, we make the following key contributions. First, we develop a real-

time FOG episode detection system in smart glasses for the first time. Compared with 

existing detection systems where sensors are located at the lower body of users, our 

detection system uses sensors embedded in smart glasses (i.e., mounted on the head). This 

poses unique challenges for accurately detecting FOG episodes with limited processing 

capability of smart glasses. 

Second, exploiting the inertial sensors and processing capability of smart glasses, we 

develop a smart AR-based visual guidance system that can adaptively project visual cue 

patterns depending on how fast a user moves and where the user's head directs. Such 

adaptive projection of the patterns on the glasses is critical to maximize the effectiveness 

of the gait aid and minimize the interference of the user's sight with the patterns, but it also 

presents significant challenges because of the difficulty in precisely estimating the walking 

distance based solely on the head-mounted sensors as well as the limited processing 

capability of smart glasses. 
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Finally, we demonstrate the effectiveness of our system through experiments 

involving ten PD users to measure the accuracy of FOG detection. Our experiments show 

the FOG detection accuracy of as high as 92.86% and the gait speed and the stride length 

improvements of 15.3~37.2% and 18.7~31.7%, respectively. 

 

4.2 Related Works 

Although PD symptoms can be alleviated by medications like Levodopa (L-dopa), 

such medications may cause tolerance and side effects [85] [86] [87]. Another method of 

relieving the symptoms of PD is brain surgery such as deep brain stimulation (DBS), but 

the surgery accompanies high risks and cannot completely cure PD patients [88] [89]. 

Hence, various studies have been performed to improve the patients' daily lives without 

medications and surgery; an overview of clinical studies regarding the intervention of FOG 

rehabilitation and PD gait was presented in [78]. In this section, we discuss previous studies 

on detecting FOG episodes and developing gait-aid systems. 

 

4.2.1 Existing FOG Detection Methods 

 

Recently, a number of FOG monitoring systems based on inertial sensors have been 

developed [69] [79] [90] [91] [92] [93] [94] [95]. Moore et al. demonstrated that FOG 

episodes can be detected by analyzing the frequency spectra of readings from 

accelerometers attached to an ankle with a sampling rate of 100 Hz [69] [90]. In this method, 

a freeze index (FI) is calculated as a ratio of the power spectral density (PSD) in the freeze 

band (i.e., 3~8Hz) to the PSD in the locomotor (or normal movement) band (i.e., 0.5~3 Hz) 
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during a certain time window (e.g., 6s). Since the PSD in the freeze band increases during 

FOG episodes, it can determine that an FOG episode has occurred if consecutive FI values 

are above the freeze threshold. The accuracy of this method is around 78%. Based on 

Moore's method [69] [90], Jovanov et al. developed a real-time FOG detection system, in 

which an inertial sensor with a sampling rate of 200Hz is mounted on the right knee [79]. 

This system uses a time window of 320ms for real-time implementation and has the 

average and maximum detection latency values of 332ms and 580ms, respectively. 

Niazmand et al. demonstrated that FOG episodes can be detected by using five 

accelerometers embedded into pants (i.e., the right and left thigh, shanks, and bellybutton) 

with a minimum sampling rate of 20Hz [91]. If the highest frequency of the dominant 

power from PSD of the sensor data is over 3.5Hz, the state is defined as an FOG episode. 

Hence, an FOG episode is detected when the number of pulses and the duration of foot 

shaking extracted from the sensor data are larger than their respective threshold values. 

This method uses a window of 2s and has sensitivity and specificity values of 88% and 

85%, respectively. 

Coste et al. proposed another criterion, called FOG criterion (FOGC), for detecting 

an FOG episode based on cadence and stride length calculated from accelerometric and 

gyroscopic data [92] since an FOG episode may occur if the cadence increases and the 

stride length decreases. In their method, FOGC at time t is given by 𝐹𝑂𝐺𝐶𝑡 =
𝐶𝑡∙𝐿𝑚𝑖𝑛

𝐶𝑚𝑎𝑥∙[𝐿𝑡+𝐿𝑚𝑖𝑛]
 

where 𝐶𝑚𝑎𝑥 and 𝐿𝑚𝑖𝑛 are the maximal value of cadence and the minimal value of stride 

length while 𝐶𝑡   and 𝐿𝑡  are the measured values of cadence and stride length at time t, 

respectively. 
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4.2.2 Existing Gait-Aid Systems 

 

Nieuwboer et al. showed that cueing-based training has specific effects on gait, 

freezing, and balance [76]. Mazilu et al. reported that training with a cueing device upon 

occurrence of FOG decreases both FOG duration and frequency [95]. As such, several 

systems have been developed for PD patients and they provide auditory or visual cues for 

patients who experience FOG episodes [77] [78] [81] [96] [97] [98] [99]. 

Hausdorff et al. demonstrated that rhythmic auditory stimulation (RAS) reduces 

stride-to-stride variability as well as improves stride length [77]. WalkMate is an 

archetypal system that provides RAS based on the timing of footsteps for its user through 

headphones [96]. Hove et al. demonstrated that interactive RAS assisted by foot-mounted 

sensors offers more enhanced gait for patients than non-interactive RAS with a fixed tempo. 

Although Hove et al. showed that the gait of patients can be improved by auditory cues 

using WalkMate [99], it is not evident whether or not the auditory cues alone are effective 

[81]; it is speculated that effective auditory cues vary across patients. 

In contrast, it was demonstrated that patients improve their gait when they walk as 

though they climb along visual cues such as regular floor patterns [100]. Park et al. showed 

the effect of providing visual cues on the gait of patients [70]; when patients follow the 

steps over a line drawn on the ground, their gait characteristics such as velocity, cadence 

and stride length are improved compared with the baseline without using any visual cues. 

 

The same principle is applied to a visual laser beam stick such as Laser Cane [101]. 

Laser Cane projects a red line along a user's path when it touches the ground; it is 

lightweight and relatively energy-efficient. 
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There are some glasses-type devices such as optical stimulating glasses (OSGs), PD 

Glasses and GaitAid Virtual Walker. OSGs provide optical stimuli in the peripheral field 

of view [102], where the optical stimuli is produced by continuous optical flow generated 

by vertical lighting lines scrolling backward or forward, or lighting stimuli synchronized 

with footsteps through switches attached under the feet. PD Glasses generate visual cues 

running horizontal stripe patterns on a white background which have adjustable speed and 

stride by hand [103]. GaitAid Virtual Walker is a device providing both visual and auditory 

cues for patients [80] [83]; it produces sound in pace with patient's stride while displaying 

black and white checkered tiles on the glasses. 

However, all of existing devices cannot give perspectives to the projected patterns and 

PD Glasses and GaitAid Virtual Walker may significantly interfere the patient's sight with 

displayed patterns. Moreover, the gaze of the patient wearing glasses to provide visual 

patterns is stuck on the patterns themselves. This makes it very difficult for the patient to 

be aware of objects or obstacles which are hidden behind the visual patterns while walking, 

and thus increases the risk of injury inflicted by a collision between the patient and 

obstacles on the path. 

4.3 Methods 

The smart glasses device we use is Epson's Moverio BT-200, an Android platform. 

We choose BT-200 over popular Google glasses because BT-200 is more suitable for our 

purpose. That is, it is difficult for a wearer of Google glasses to look at the floor through 

the screen because its screen is positioned slightly above the sight and it has a monocular 

display. BT-200 consists of a headset, a control unit, and cables. The resolution and weight 

of its headset are 960×540 pixels and 88 grams, respectively. It has a built-in camera 
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providing 640×480 pixels/frame and 15 frames/second. It is also equipped with inertial 

sensors, an accelerometer and a gyroscope with a maximum sampling interval of 0.02 [sec]. 

The control unit runs Android 4.0 and has a 1.2GHz dual-core TI OMAP 4480 CPU, 1 GB 

RAM and 8 GB flash storage. 

Our smart gait-aid system based on BT-200 monitors the user's movement using the 

inertial sensors, and projects visual patterns as if the patterns were actually on the floor. 

Figure 19 gives an overview of the proposed system. The system responds to three types 

of activities and takes the following actions: (i) automatically project the visual cue on the 

screen when an FOG episode is detected; (ii) redraw the visual cue such that the visual cue 

looks closer to the user as the user walks; and (iii) adjust the interval of visual cues 

following movements of the user's head. The visual cue lasts until the wearer terminates 

the visual guidance. A wearer can turn on or off the visual guidance system by touching 

the controller pad of smart glasses. We detail each of the components in the following 

subsections. 

Figure 19. Smart gait-aid system consisting of freezing of gait (FOG) detection and 

movement recognition subsystems. 
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Figure 20. (a) Sensor coordinates (3D) where the z-axis is the wearer’s gaze 

direction; (b) sensor and global coordinates (2D) with respect to the gaze 

and walking direction, respectively; and (c) walking distance estimation that 

transforms sensor readings from into global coordinates. 

4.3.1 Movement Recognition 

The user with PD would respond more strongly to visual cues if a visual cue appears 

to move closer to the user as if the patterns were embedded on the floor [104]. But the 

visual cue used in the previous studies [103] [80] moves independently of or inconsistently 

with the user's head motion. This means the user cannot fully take advantage of the visual 

cue. Hence, the system needs to recognize the user's walking distance and the angle of head 

to realistically integrate the visual cue with the scene to maintain consistency between 

virtual and real spaces. One may consider various image processing algorithms to meet this 

requirement, but it is very difficult to realize real-time video processing in smart glasses 

because the existing algorithms require significant computing capability. For example, 
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when we implement a canny edge detection algorithm in a smart phone (Samsung Galaxy 

S5), which has more computing capability than smart glasses, we observe the frame rate 

drops from 15 to 4 frames/second and buffering frames takes place. 

Faced with such a challenge, we propose a lightweight system to refresh the visual 

patterns on the screen by estimating the user's walking distance based solely on inertial 

sensors of glasses. Specifically, we (i) integrate acceleration values from a built-in 

accelerometer of the user to precisely estimate the walking distance; (ii) compute the 

difference between two integrated gyroscope values in two consecutive (i.e., previous and 

present) frames; and (iii) use it to adjust the visual patterns on the screen. 

Figure 20a shows the sensor coordinates of smart glasses and the corresponding axis 

values for roll, pitch and yaw, where the z-axis value represents the roll angle and the 

wearer's gaze direction. Figure 20b depicts the relationship between sensor and global 

coordinates where the former is relative to the gaze direction while the latter the walking 

direction. We note that the acceleration value is affected by the pitch angle of the smart 

glasses because the accelerometer has gravitational acceleration. That is, when the wearer 

looks at the ground as in Figure 20b, the x-axis component of acceleration decreases 

compared to the wearer looks ahead. Hence, the calculated walking distance values differ 

from the actual walking distance although the wearer walks the same distance. To 

compensate this, we rotate the acceleration vectors with respect to the pitch angle of glasses 

derived from a gyroscope value; from Figure 20b, we know that the x- and z-axes have to 

be as rotated as the pitch angle, θ. 

If the sensor coordinates are rotated relative to the ground, an accurate walking 

distance value from the z-axis component can be computed. To do so, we develop a walking 
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distance estimation algorithm depicted in Figure 20c. The algorithm continuously reads the 

gyroscope and accelerometer values. We use the zero-velocity update algorithm [105] to 

overcome a drift problem that causes positioning errors in determining the current walking 

state as either stationary or non-stationary. We then recognize the stationary state between 

steps to segment the steps. Also, for a non-stationary state, the system uses Equation 6 to 

calculate the angular rotation where 𝜃𝑡 and 𝜃𝑡−1 are the current and previous angles and 

𝑔𝑦,𝑡 is the current angular velocity of y-axis of gyroscope at time t. 

𝜃𝑡 = 𝜃𝑡−1 + 𝑔𝑦,𝑡     (6) 

Given 𝜃𝑡, the x- and z-axes of sensor coordinates are rotated by Equation 7: 

[
𝑎′

𝑥,𝑡

𝑎′𝑧,𝑡
] = [

𝑐𝑜𝑠𝜃𝑡 ,
𝑠𝑖𝑛𝜃𝑡 ,

−𝑠𝑖𝑛𝜃𝑡

𝑐𝑜𝑠𝜃𝑡
] ∙ [

𝑎𝑥,𝑡

𝑎𝑧,𝑡
]        (7) 

where 𝑎𝑥,𝑡  and 𝑎𝑧,𝑡  represent the current x- and z-axis acceleration values of the 

accelerometer, and 𝑎′𝑥,𝑡 and 𝑎′𝑧,𝑡 denote the adjusted acceleration. Once the acceleration 

values are rotated, the z-axis component is in parallel with the walking direction. 

Figure 21. (a) Definition of step length; (b) step length vs. head moving 

distance (HMD) 



 

 62 

Subsequently the system can estimate the walking distance by integrating the acceleration 

values using Equation 8: 

𝐷𝑡 = ∬ 𝑎′
𝑧,𝑡 ∙ (

𝑚

𝑡2) 𝑑𝑡2      (8) 

By using this walking distance estimation algorithm, the system can response to the 

accurate walking distance regardless of the pitch angle of head. 

To validate the walking distance estimation algorithm on glasses, we conduct walking 

tests by changing the step length (defined in Figure 21a). The step length is set to 5, 10, 15, 

20, 25, and 30cm, respectively, in each test of walking 30 steps in even strides. In order to 

accurately impose the specified step length, the subject steps on actual lines which are 

placed along the walkway at intervals equivalent to the step length. We compare the actual 

moving distance with the measured head moving distance (HMD) where the latter refers 

to the walking distance estimated in smart glasses. Figure 21b shows that the walking 

distance estimation algorithm has an error of > 20% when the step length is shorter than or 

equals to 20cm, and an error of < 10% when the step length is 25cm or larger. We observe 

that HMD gets further attenuated in the range of 5~15cm, which mostly includes steps due 

to FOG, because the smart glasses are not accelerated enough to estimate the real distance. 

 

4.3.2 FOG Detection On Glasses 

Moore et al. define the freeze index (FI) to identify FOG episodes. The FI uses the 

ratio of the freeze band power to the locomotor band power in the frequency domain [69]. 

However, there are two reasons that such an approach cannot be applied directly to smart 

glasses. First, some PD patients have head tremor that has similar frequency (4~6Hz) to 
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the freeze band, causing false-positive detections. Consequently, this approach cannot be 

used for such patients. Second, even if this approach is applied to PD patients with no head 

tremor, it requires to choose a patient-specific FI threshold value. 

Coste et al. introduce an approach using FOGC, detecting FOG episodes based on 

stride length and cadence that are calculated with data acquired by foot-mounted sensors 

[92]. However, such an approach has limitations in dealing with unusual situations. For 

instance, the PD patient would have the intention to move forward when walking regardless 

of the occurrence of an FOG episode, which may cause a sudden long step (i.e., over 10cm). 

But, unfortunately, FOGC cannot detect this kind of FOG episodes. 

To remedy this deficiency, we present a lightweight FOG detection system, called 

FOG Detection On Glasses (FOGDOG), tailored for smart glasses. Like FOGC,  

FOGDOG is based on the hypothesis that the cadence increases while the HMD on 

smart glasses decreases during an FOG episode [106]. By contrast, FOGDOG introduces 

the maximum value of HMD, η𝑚𝑎𝑥 per step to minimize the degradation in FOG detection 

accuracy due to a sudden long step. 

Figure 22. Measured step length (obtained by using a system [48]) and 

HMD before FOG episodes 
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Figure 22 plots the statistics of measured step length and HMD during FOG episodes 

where the step length is obtained by using a gait tracking system of [107]. Note that the 

results are drawn from 30 trials. The figure shows that the mean and standard deviation 

values of HMD are 4.05 and 2.72cm, respectively. Based on these values, we set η𝑚𝑎𝑥 to 

10cm (≅4.05+1.96∙2.72), which corresponds to an agreed range limit [108]. FOGDOG 

calculates 𝐷𝑡 using Equation 8 and estimates HMD values, i.e., 𝐷𝑡,𝑖
𝑠𝑡𝑒𝑝

for the 𝑖𝑡ℎ step, in a 

sliding window of 1s at time t using consecutive peak values when the wearer places a foot 

on the ground. FOGDOG further adjusts HMD values due to long steps that exceed η𝑚𝑎𝑥 

using Equation 9: 

𝐷𝑡,𝑖
𝑠𝑡𝑒𝑝∗

= {
𝐷𝑡,𝑖

𝑠𝑡𝑒𝑝
,

𝜂𝑚𝑎𝑥,

𝐷𝑡,𝑖
𝑠𝑡𝑒𝑝

<  𝜂𝑚𝑎𝑥

𝐷𝑡,𝑖
𝑠𝑡𝑒𝑝

≥  𝜂𝑚𝑎𝑥
 (9) 

where η𝑚𝑎𝑥 also serves as a threshold value to distinguish between normal and abnormal 

walking since 𝐷𝑡,𝑖
𝑠𝑡𝑒𝑝∗

 is equal to η𝑚𝑎𝑥 when a PD user walks normally. Based on this fact, 

we set a reference distance, 𝐷𝑡
𝑟𝑒𝑓

 as follows: 

𝐷𝑡
𝑟𝑒𝑓

= 𝜂𝑚𝑎𝑥 ∙  𝑁𝑡
𝑠𝑡𝑒𝑝

 (10) 

where 𝑁𝑡
𝑠𝑡𝑒𝑝

 is the number of steps in the sliding window. This means 𝐷𝑡
𝑟𝑒𝑓

 is dynamically 

changed in proportion to the number of steps. In order to detect an FOG episode, FOGDOG 

compares 𝐷𝑡
𝑟𝑒𝑓

 with 𝐷𝑡
′, where 𝐷𝑡

′ = ∑ 𝐷𝑡,𝑖
𝑠𝑡𝑒𝑝∗

𝑖  during the interval of s. For instance, when 

a person walks 4 steps, 𝐷𝑡
𝑟𝑒𝑓

 becomes 40cm, Hence, if the person walks normally, 𝐷𝑡
′ 

approaches 𝐷𝑡
𝑟𝑒𝑓

, otherwise, 𝐷𝑡
′ has a smaller value than 𝐷𝑡

𝑟𝑒𝑓
. 

Next, we define a new FOG detection criterion, 𝐹𝑂𝐺𝐷𝑂𝐺𝑡at time t as follows: 

𝐹𝑂𝐺𝐷𝑂𝐺𝑡 =
𝑁𝑡

𝑠𝑡𝑒𝑝

𝑁𝑚𝑎𝑥 ∙  
(𝐷𝑡

𝑟𝑒𝑓
−𝐷𝑡

′)

𝐷𝑡
𝑟𝑒𝑓  (11) 
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where 𝑁𝑚𝑎𝑥 is the maximum value of the number of steps and is set to 5steps/sec. The first 

term, 𝑁𝑡
𝑠𝑡𝑒𝑝

/𝑁𝑚𝑎𝑥  detects abnormal cadence. While the normal cadence is 1~2step/sec 

during normal walking, the cadence of a user with FOG episodes is higher than the normal 

cadence. This causes 𝐹𝑂𝐺𝐷𝑂𝐺𝑡  to be amplified. The second term, (𝐷𝑡
𝑟𝑒𝑓

− 𝐷𝑡
′)/𝐷𝑡

𝑟𝑒𝑓
 

evaluates how close the estimated HMD is to the reference distance within the sliding time 

window. After calculating 𝐹𝑂𝐺𝐷𝑂𝐺𝑡, the system compares the 𝐹𝑂𝐺𝐷𝑂𝐺𝑡 value with the 

threshold to determine whether to activate the visual patterns. 

Figure 23 summarizes the process of calculating 𝐹𝑂𝐺𝐷𝑂𝐺𝑡  from sensor readings 

during the sliding time window t. 

 

Figure 23. FOG detection process of FOGDOG: it first computes the 

walking distance, 𝐷𝑡  from sensor reading in the sliding time window; 

estimates the two distance values, 𝐷𝑡
𝑟𝑒𝑓

 and 𝐷𝑡
′ , as well as the number of 

steps, 𝑁𝑡
𝑠𝑡𝑒𝑝

 by analyzing the partition of 𝐷𝑡 ; and finally computes 

𝐹𝑂𝐺𝐷𝑂𝐺𝑡 
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4.3.3 Generation of Visual Patterns 

The visual cue projected on the glasses consists of lines with the same color, e.g., blue 

lines. The interval between the lines is set to a half of the wearer's height times 0.855 in 

consideration of the glasses' vertical distance from the floor relative to the wearer's height. 

The width of the lines is 0.5×0.1 𝑚2 [70]. The maximum number of the lines is set to 5. 

Figure 24 shows screenshots of the smart gait-aid system projecting visual cues. The 

system is initialized to give an effect as if real lines were regularly placed on the floor, and 

keeps refreshing the positions of lines based on the downward gaze angle and walking 

distance values. That is, the lines approach the PD user while walking and the intervals 

between the lines are adjusted when the downward gaze angle changes. Also, the system 

performs image processing when the wearer steps over the closest line such that the line 

passes by a foot and a new line appears as the last (fifth) line. To provide a perspective, the 

length of projected lines on the screen is set inversely proportional to the distance between 

the device and each line. 

Figure 24. Visual cues when the downward gaze angle is equal to (a) 

𝟒𝟓𝝄 and (b) 𝟗𝟎𝝄. The proposed system projects virtual cues consistently 

with the physical cues in the real world 
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4.4 Experiments 

To evaluate our gait-aid system consisting of FOG detection and visual guidance 

functions, we obtained approval from an institutional review board (IRB) at Kyungpook 

National University Hospital, Daegu, Korea, and all patients signed their informed consent 

before the experiment. We recruited ten PD patients suffering from FOG, but are able to 

walk alone without any assistance, when they do not experience FOG. The details of the 

patients are tabulated in Table 4. They have, on average, a disease duration of 6.80 years, 

H-Y (Hoehn and Yahr) scale of 2.55, and UPDRS (Unified Parkinson's Disease Rating 

Scale scored by clinician) III score of 30.00.  The experiments were performed at the 

Cerebropathia Center of Kyungpook National University Hospital, in the afternoon when 

more than 12 hours have passed after the last PD medication. 

To evaluate the FOG detection capability via clinical trials with PD patients, we first 

collected data under the supervision of a clinician by conducting 5 Timed-Up-and-Go 

(TUG) tests [109] for each of 10 PD patients equipped with gait-aid glasses and ankle-

Table 4. PD patients for preliminary experiments having a disease duration 

of 6.80 years, H-Y (Hoehn and Yahr) scale of 2.55, and UPDRS (Unified 

Parkinson’s Disease Rating Scale scored by clinician) III score of 30.00 on 

average 
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worn sensors. The portions of collected data were then labeled as either FOG episodes or 

other activities (e.g., normal walking) after analyzing video recordings simultaneously 

captured during the experiments. As a result, the total amount of collected data corresponds 

to the duration of 1045s. The data contain 42 FOG episodes with total and average duration 

of 152 and 3.62±2.91s, respectively. The ratio of the total FOG duration to the length of 

collected data was found to be 14.55%, and 80% of the FOG episodes were less than 5s. 

In addition to the 42 data sets of FOG episodes, we divided the entire data into 42 non-

FOG data sets such that each data set has no more than 2 false positive cases. 

Using the data from both PD patients, we evaluated FOGDOG, FI, and FOGC off-

line. We set the thresholds for FOGDOG and FOGC to 0.61 and 0.44, respectively. Each 

of these threshold values corresponds to an average minus two times the standard deviation 

where both average and standard deviation values are obtained from 10 independent trials 

of FOG episodes. 

To evaluate the efficacy of our visual guidance system, the experiment first starts with 

a TUG test specified in a Parkinson's toolkit, where a patient (i) stands up from a chair 

when a clinical assistant says ``Go''; (ii) walks along a straight lane of 3 meters; (iii) turns 

around; and (iv) comes back to the chair. Subsequently, the patient takes a 10-meter-walk 

test, in which a patient walks along a straight lane of 10 meters. The tests are performed 

with and without smart glasses by each of three PD patients.  

When performing the TUG and 10-meter-walk tests with smart glasses, we provide 

each patient with two scenarios. The first one is based on a simplified scenario to provide 

visual cues moving horizontal stripe patterns at a steady speed, like PD Glasses. The visual 

cues are independent of wearer's movements and each stripe has regular intervals. The 
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second one employs our proposed method that displays a realistic visual cue. All tests were 

repeated twice. During the experiment, we record accelerometer data on a foot for precise 

measurements of the patient's gait speed and stride length. We then compute the elapsed 

time and the number of steps for each trial. 

4.5 Results 

4.5.1 FOG Detection Performance 

We first compared the performance of FOGDOG with FI and FOGC by utilizing the 

data sets from real PD patients. Figure 25 depicts the FOG detection results of three 

methods (FI, FOGC, and FOGDOG) over time, plotting detected values and false 

positive/negative points. The analysis of detected values reveals that FOGDOG has a 

Figure 25. FOG detection of three methods over time: FI, FOGC and 

FOGDOG achieve 78.57%, 84.52% and 91.67% accuracy, respectively 
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higher resolution than FI and FOGC in detecting FOG episodes, which in turn yields fewer 

false positive and false negative events. The quantitative analysis shows that the accuracy 

of FI, FOGC and FOGDOG are 78.57%, 84.52% and 91.67%, respectively, which 

demonstrates superior performance of FOGDOG. 

For in-depth comparison, we used three performance metrics: sensitivity, specificity 

and F1 scores. The sensitivity (specificity) quantifies the proportion of positives (negatives) 

that are correctly identified as such, and hence, is computed as the ratio of the number of 

FOG (non-FOG) episodes correctly detected to the total number of FOG (non-FOG) data 

sets. The F1 score is the harmonic mean of precision and sensitivity where the precision is 

the number of true positives divided by the number of all positive results. As shown in 

Figure 26, the evaluation results demonstrate that the sensitivity, specificity, and F1 score 

values of FOGDOG are 0.97, 0.88, and 0.93, respectively, which are 9~11%, 5~18%, and 

8~12% higher than others, respectively. This clearly indicates FOGDOG outperforms FI 

and FOGC. 

Figure 26. FOG detection of three methods using: (a) sensitivity, (b) 

specificity, and (c) F1 scores. FOGDOG outperforms FI and FOGC by 

9~18% and 5~11%, respectively 
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4.5.2 Gait-Aid Performance 

As shown in Table 5, the patient's mobility is improved in both scenarios. The number 

of steps in the simplified scenario, which is associated with FOG, is decreased to 10.8% 

and 9.5% on average in each of TUG and 10-meter-walk tests. In the proposed scenario, 

the number of steps is decreased to 24.4% and 20.8%, respectively. The decreased number 

of steps means fewer FOG episodes occur. The average velocity of patients is improved by 

15.3% and by 37.2% in the simplified and proposed scenarios, respectively. The average 

stride length is increased to 18.7% and 31.7% in the simplified and proposed scenarios, 

respectively. 

Compared with the simplified scenario, in which PD patients simply recognize the 

horizontal line and walk, the proposed scenario helps the patient's efforts to step over the 

horizontal line, significantly improving their mobility. That is, the visual pattern that 

provides a perspective effectively improves the gait of people with PD. However, to obtain 

an effective perspective, the patient wearing the smart glasses needs to look downwards at 

Table 5. The cueing effects of simplified and proposed scenarios on PD 

patients; compared with the baseline, the proposed scenario improves the 

average number of steps, velocity and stride length by 22.6%, 37.2% and 

31.7%, respectively 
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45 to 90 degrees. Since it may be difficult for a patient who is not familiar with the use of 

the proposed system, pre-training would be needed to properly use the system. 

The proposed gait-aid system displays the visual cue 1.1s after the occurrence of FOG 

since FOGDOG has to observe multiple steps to detect an FOG episode. However, this 

latency is acceptable because it is unnecessary (or undesirable) to detect and respond to a 

very short FOG event that lasts less than 1.1s. 

4.5.3 Discussion 

Although we can further improve this system in various aspects, e.g., real-time floor 

and obstacle detection, we observe that the computing capability of the smart glasses is not 

enough to implement such functions. Moreover, smart glasses are not enough to use the 

system all day long without recharging the battery. Thus, to minimize energy consumption, 

we design our visual guidance system such that it is automatically activated upon detection 

of FOG episodes or manually activated by the wearer depending on the need.  

One patient who participated in the preliminary experiments said that he would feel 

more comfortable if his legs and feet are placed on an on-screen line as if the line is 

embedded on the floor and both patients responded positively to our smart gait-aid system 

as an assistance tool for PD patients. By contrast, several PD patients who refused to take 

part in our experiments due in part to technophobia were doubtful about the effectiveness 

of visual guidance. Most patients were afraid of fleeting attention when they are wearing 

glasses as also mentioned in other studies [71] [110].  

It is important to get statistics for the types of the patient group such as gender, age, 

duration, H-Y scale and UPDRS III score since that gives physician (or other related people) 

the vital information for the prescription or in-depth research. In our evaluation, younger 
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woman (P4 in Table 4) exhibited better gait-performance than others, but that cannot prove 

the statistical meaning since there are not enough numbers of patients with PD to make 

statistics. So, we plan to recruit more patients with PD, and will validate our proposed 

system via comprehensive clinical trials and per-user analyses. 

4.6 Summary 

In this chapter, we develop a smart gait-aid system that can assist PD patients' gait 

when they experience FOG episodes. Our smart gait-aid system is comprised of an FOG 

episode detection system based on a sensor fusion technique and a visual guidance system 

based on markerless AR. The FOG episode detection system uses inertial sensors 

embedded in smart glasses and is optimized for limited processing capability of smart 

glasses. It achieves the accuracy of 83.7% in detecting FOG episodes according to our 

experiments. The visual guidance system also exploits the inertial sensors and processing 

capability of smart glasses to adaptively project visual cue patterns depending on the 

patient's gait speed and head direction. Since the visual guidance system is activated only 

when the patient experiences FOG episodes or needs a visual guidance, it is very energy-

efficient. Our results of preliminary experiments demonstrate that when a patient wears the 

smart glasses to conduct TUG trials the average velocity and stride length are increased by 

32.1% and 24.0%, respectively. In 10-meter-walk trials, the average velocity and stride 

length are increased by 24.1% and 45.3%, respectively. In the future, we will try to apply 

the machine-learning algorithm such as deep learning to detect and predict FOG episodes. 

Finally, we expect that our gait-aid system based on smart glasses can be adapted for and 

applied to the following diseases which accompany freezing: normal pressure 
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hydrocephalus (NPH), progressive supranuclear palsy (PSP), cortico basal degeneration 

(CBD), and strategic vascular lesion apart from PD [111]. 
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V. Conclusion 

 

Optimization is the redesign of the existing complex system or technology to address 

the problems or constraint while maintaining the performance of existing knowledge or 

systems. Through the dissertation, we presented the three optimization methods (heuristic, 

learning-based and mathematical optimization) to meet the needs that arise when 

integrating facility-level healthcare systems into personal-level smart healthcare device 

(i.e., mobile POCT cell counting device, smart glasses). In chapter 2, we presented heuristic 

optimization that solves the problem of applying bench-top cell counting device based on 

software to battery-powered mobile POCT testing platforms. We have realized that there 

are many correlated cell template images to detect cell on source blood image, and that 

cells are ineffective to count cells and increase computational complexity. Through the 

heuristic optimization, we removed the ineffective cells and applied approximation search 

method. As a result, the optimized cell counting algorithm shown a performance error of 

1% and a runtime of 11.5x faster. Based on that, we believe that the optimized cell counting 

algorithm will be available to diagnose some disease, such as HIV/AIDS, without 

restriction of time and place.  

In the next chapter, based on learning-based optimization, we proposed NCC-CNN 

algorithm that solves the cell counting problem that is varying background brightness and 

out-focusing of lenses free in-line holographic device. The proposed algorithm uses NCC 

process to mark the cell as a candidate point and apply the CNN model distinguish the cell 

only at the points. Through the demonstration, we verified the proposed algorithm is 

capable of human-level cell counting (>0.95). We hope that the proposed algorithm applies 

not only to cell counting, but also to the field of germ counting and further to the search 
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for the specific diseases (i.e. tumor cell, other moving cells). We plan to further extend this 

work to address another cell counting problem such as crowded cells in 3D dimension. 

Last chapter introduced Gait-aid glasses for Parkinson’s disease based on the 

mathematical optimization. In the details, we proposed a system integrated in two 

approaches which is FOGDOG and effective visual cue. For the FOGDOG to detect FOG. 

we optimized the existing mathematical model to achieve the constraint on the sudden long 

steps of wearer while FOG. And, we introduced the effective visual cueing pattern like 

actually on the floor. In the future, we will improve the system by combining learning-

based optimization using deep learning with the handcraft models. 

Through the whole chapters, we have shown that algorithm or system optimization is 

one of the key technologies for integrating the latest technologies into our lives for smart 

healthcare. However, these optimization is no limited to the healthcare field. For instance, 

many mid- and small-sized companies and even major companies are trying to solve the 

optimization problems to transform the advanced technologies to more practical things or 

products in our lives. In the future, we plan to work on the optimization not only in medical 

fields but also in various fields. 
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요 약 문 

Optimization Algorithms for Integrating Advanced Facility-Level 

Healthcare Technologies into Personal Healthcare Devices 

본 논문은 의료 관련 연구시설 및 병원 그리고 실험실 레벨에서 사용되는 

전문적인 헬스케어 시스템을 개인의 일상생활 속에서 사용할 수 있는 스

마트 헬스케어 시스템에 적용시키기 위한 최적화 문제에 대해 다룬다. 현

대 사회에서 의료비용 증가 세계적인 고령화에 따라 의료 패러다임은 질

병이 발생한 뒤 시설 내에서 치료 받는 방식에서 질병이나 건강관리에 관

심있는 환자 혹은 일반인이 휴대할 수 있는 개인용 디바이스를 이용하여 

의료 서비스에 접근하고, 이를 이용하여 질병을 미리 예방하는 방식으로 

바뀌었다. 이에 따라 언제, 어디서나 스마트 디바이스(스마트폰, 스마트워

치, 스마트안경 등)를 이용하여 병원 수준의 예방 및 진단을 실현하는 스

마트 헬스케어가 주목 받고 있다. 하지만, 스마트 헬스케어 서비스 실현을 

위하여 기존의 전문 헬스케어 장치 및 과학적 이론을 스마트 디바이스에 

접목하는 데에는 스마트 디바이스의 제한적인 컴퓨팅 파워와 배터리, 그

리고 연구소나 실험실에서 발생하지 않았던 환경적인 제약조건으로 인해 

적용 할 수 없는 문제가 있다. 따라서 사용 환경에 맞춰 동작 가능하도록 

최적화가 필요하다. 본 논문에서는 Cell counting 분야와 파킨슨 환자의 

보행 보조 분야에서 전문 헬스케어 시스템을 스마트 헬스케어에 접목시키

는데 발생하는 세 가지 문제를 제시하고 문제 해결을 위한 세 가지 최적화 

알고리즘(Heuristic optimization, Learning-based optimization, 

Mathematical optimization) 및 이를 기반으로 하는 시스템을 제안한다.  

핵심어: Optimization, Smart Healthcare, Cell Counting, Parkinson’s 

disease, System Integration. 
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