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comparisons between different architectures and do not provide enough information for the evaluation of the suitability11

of recent hardware platforms for CGH algorithms. We aim to address these limitations and present a comprehensive12

review of CGH-related hardware implementations.13
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1 Introduction18

Holography is a technique used to record and reconstruct the entirety of an optical field.1 This19

approach was pioneered by Dennis Gabor in 1948 as a two-step, lensless imaging process for20

improving the quality of electron microscopy.221

In the early days, holograms were primarily single-use as the only recording media available22

resembled photographic film. It was not until the mid-1960s when computer generated holography23

(CGH),3 together with the noticeable improvements in technology, revolutionized the field and24

drew a significant amount of interest.25

The late 1980s saw a further shift in holography from analogue to digital with the emergence26

of digital imaging sensors as well as increases in computational powers and electronic display27

devices such as digital micromirror devices (DMDs) and liquid crystal spatial light modulators28
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(LC SLMs). Holograms could, for the first time, be digitally captured, processed and displayed.29

Over time, holography has become regarded as a serious display technology for far-field and 3D30

applications.431

CGH is the field of algorithmically generating holographic interference patterns using digi-32

tal computers, with target applications including but not limited to display technologies5, wave-33

length selective switch (WSS)6, optical tweezers7 and telecommunications.8 Generating computer34

holograms in real-time is one of the key goals of research, with algorithms for CGH traditionally35

running on central processing units (CPUs). Despite recent increases in the processing power36

of CPUs, it remains insufficient for real-time photographic applications. Accelerated hardware37

platforms, including graphics processing units (GPUs), field programmable gate arrays (FPGAs),38

digital signal processors (DSPs), co-processors as well as application-specific integrated circuits39

(ASICs), are able to bring high fidelity holographic imagery to real-time applications.40

Figure 1 shows a typical system setup for a CGH. The creation of the computer holograms can41

be divided into three parts:1
42

1. Calculate: to allow the computer to digitally, instead of optically, calculate the interference43

fringes for a target object;44

2. Encode: to determine the method to represent or encode the computation results;45

3. Display: to display the encoded fringes on a suitable medium.46

CGH algorithms, regardless of them being point-source-based, polygon-based, layer-based,47

etc., would typically require a very high level of computational power. Hence, when designing any48

new holographic systems, the selection of a suitable hardware platform is the primary decision to49

be made.50
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Fig 1 A typical system for computer generated holography consisting of three main components: a light source, a
computer or hardware platform for interference pattern calculation and a device to display the hologram.4

To the best of our knowledge, there is no modern review paper that specifically targets the51

hardware used for the generation and processing of computer holography. Previously published52

survey papers9–14 provide analyses and conceptual reviews of fast hologram generation algorithms.53

Additionally, Shimobaba et al. in 201615 and 201916 provided overviews in terms of CGH-related54

hardware implementations. However, all of the above reviews suffer from a lack of the following:55

1. A comparison between different hardware platforms;56

2. A dedicated discussion with respect to hardware implementations;57

3. An assessment of the trade-offs between different development factors for a given hardware58

platform;59

4. An up-to-date review with respect to the most recent developments in modern hardware.60

We aim, therefore, to provide review by comparing different hardware platforms and discussing61

each platform’s advantages and disadvantages. This review paper considers CPUs, GPUs, FPGAs62

and other hardware accelerators in dedicated sections. For each platform, we provide a literature63
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survey on the applications utilizing these specific hardware platforms. This is followed by a dis-64

cussion of device properties, available development toolchains, the ease of development, and their65

advantages and disadvantages. We also present cross-platform comparisons to gain insights re-66

garding the use of different types of accelerators. Generally, we provide a thorough examination67

of the current state-of-the-art hardware implementations along with a review of their applications68

over the previous decade (2008-2020).69

This literature survey is outlined as follows. Section 1 first introduces the field holography70

alongside key concepts and a discussion of the CGH challenges. CPU, GPU, FPGA and other71

platform implementations are discussed in Sections 2, 3, 4 and 5, respectively. Section 6 reports72

the comparison between different hardware platforms and provides in-depth discussion to guide73

hardware selections. Finally, the paper is concluded after presenting future work directions in74

Section 7.75

1.1 The hologram and the replay field76

In a classical imaging system, Figure 2, focusing optics are used to focus light scattered from a77

point of an object onto a corresponding point on a sensor (the recording device). In such a system,78

any different origin point on the object leads to a corresponding change in the position on the79

recording plane of the sensor. The loss of a portion of the sensor data will result in a corresponding80

loss in the image.81

In a holographic imaging system, Figure 3, scattered light is collected without the use of a fo-82

cusing optics, instead interfering the scattered light with a reference beam. Replicating recording83

conditions allows for replication of the light field and the resulting image as depicted in Figure 4.84

The image is stored across all parts of the recording device leading and loss of a portion of the85
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Fig 2 A classical optical imaging system.

recording only causes a loss in the quality of the image. The entire image can still be reproduced.86

Reference Beam

Object BeamCoherent Light

Beamsplitter

Mirror

Object

Fig 3 A holographic imaging system for hologram recording.

Traditional analogue holography follows two steps known as recording and reconstruction:1, 2, 17
87

1. Recording - Figure 3 - A coherent, collimated light source is split into object and reference88

beams. The object beam is directed onto a physical object and the resulting scattered light89

interfered with the reference beam. The interference fringes are recorded on a photosensitive90

film to produce the hologram.91

2. Reconstruction - Figure 4 - A similar system is used to reproduce the hologram. An identi-92

cal light source is directed onto the film leading to a visible output equivalent to viewing the93
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Fig 4 A holographic projection system for hologram reconstruction.

object directly.94

Computer generated holography goes further than this by using a known target or scene to95

generate the reconstruction image, and thus eliminating the requirement of a recording step.96

1.2 Limitations of Computer Generated Holography (CGH)97

Computer generated holography promises a great deal; however, in practice there exist a number98

of key limitations:99

1. Hologram representation. Complex modulation schemes are achievable by several means100

and methods18, 19, despite the fact that display medium, such as SLMs, are still facing techno-101

logical limitations to perform true arbitrary complex modulations. However, these methods102

often require non-trivial modifications and device setups, consequently limiting the repre-103
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sentations of holograms. Moreover, the hardware manufacturing constraints limit the size104

and quality of the reconstructed holographic images as well as the viewing angle.16
105

2. High computational power demand. The hologram and object field is correlated by Fourier106

transforms for any given pixel display. For a single image frame with N ×N points or pix-107

els, the computation complexity can be as high as O(N4). By utilizing the power of fast108

Fourier transforms (FFTs), we are able to reduce this complexity to O(N2 log(N)). Un-109

fortunately, this is still computationally expensive, before even considering the inclusion of110

other operations for any given algorithms to produce high quality images and videos where111

the incorporation of visual effects such as shading20, occlusion effects21, 22, directional scat-112

tering23 are of great essence. Such high quality image demand is one of the key limitations.113

3. Downgrade of the replay field image quality. The quality of the holographic reconstructed114

image would be affected by factors such as speckle noise13, ringing artifacts24, the opto-me-115

chanical properties of SLMs25, etc. Moreover, in real-world display devices are incapable of116

modulating light continuously; being limited to a number of discrete levels results in quan-117

tization artifacts which have an adverse effect on image quality.26 During this process, the118

information stored in the interference pattern will be reduced, leading to a degradation in119

image quality.120

A suitable hardware platform for CGH algorithm implementations needs to be selected in order121

to speed up the generation of computationally heavy holograms while ideally also improve replay122

field quality. In this paper, we aim to address this problem by providing a selection guideline for123

researchers and developers to choose the most suitable hardware platforms for computer hologram124

applications. While we stay focused on the hardware choice, it should be pointed out that such125
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choices are also intimately related to the algorithm selected as some would require more dedicated126

and specialized hardware resources as compared to others. A further discussion of such is outlined127

in Section 6.128

We divide the current state-of-the-art hardware platforms into two categories: conventional129

processors where we refer to CPUs; and hardware accelerators such as GPUs, FPGAs, DSPs and130

co-processors. Traditionally, basic arithmetic calculations were done in CPUs. However, for cer-131

tain computationally expensive applications, there is a need for specialized architecture where the132

design is optimized for the application to accelerate performance.133

Hardware accelerators were designed to tackle this issue by exploiting properties such as paral-134

lelism and application-specific dedicated hardware accelerations. These devices are usually based135

on different architectures and inherently make use of different development tools and utilities. The136

code and algorithm migrations between these hardware platforms are not often straightforward.137

They require a good understanding of the specific hardware architectures as well as microarchitec-138

tures in order to carry out code implementations and optimizations properly.139

2 Central Processing Units (CPUs)140

Since its invention in the early 1970s, CPUs have become the core of this ever-developing dig-141

ital world. Von-Neumann, Harvard architectures and their architectural variants will continue to142

dominate the market in the foreseeable future. The fundamental operations and underlying the-143

ories remained largely unchanged throughout the years. These CPUs are designed to complete144

computational tasks that are as general as possible. Unfortunately, it is this very generality which145

prevents CPUs from executing high-performance computational operations since they lack suffi-146

cient amount of parallelism within their architectures.27
147
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It was not until 2005 when Intel introduced the Pentium D series—the first desktop-class148

dual-core processor—that exploited parallel processing for individual consumer computers run-149

ning multi-core processors. A typical contemporary computer with a multi-core processor can150

run tens and hundreds of tasks at any given time. Running multiple programmes simultaneously151

utilises concurrency by switching and jumping between different threads, or instruction streams,152

under real-time.28 The job-switching operations take up and waste CPU cycles and would hence153

prevent the platform to run at optimal efficiency when performing multi-tasking and exploiting154

parallel processing.155

For this paper, we will only evaluate Intel and AMD chip families as they are the two vendors156

to produce x86/64 architecture, the dominant high-performance CPU architecture at the time of157

writing, design.158

2.1 A platform for preliminary verification of algorithms159

Most hologram generation algorithms were developed on conventional computers, utilizing the160

power of the latest CPU chip families. Software-based algorithms run on CPUs to efficiently min-161

imize the development time and reduce the computational burden by exploiting advanced compu-162

tation libraries, software packages and other utilities.163

Reported work based purely on CPUs form the preliminary analysis of various proposed com-164

puter hologram generation algorithms. Researchers tend to focus more on theoretical development165

rather than code optimization since conventional CPUs are not used for acceleration purposes.166

Due to their commonality and the ease-of-use, the majority of work that incorporate CPUs often167

use them as the comparison baseline for algorithm implementations on other hardware platforms168

that utilize dedicated accelerators.169
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2.2 Available tools and utilities for CPUs170

Since CPUs are the core components within a modern personal computer (PC) and workstation,171

the vast majority of software packages and development suites are readily available. Code and172

programmes can be written in many high-level languages, while low-level application program-173

ming interfaces (APIs) and frameworks, such as OpenMP and OpenCV, are also widely available.174

As an API for shared memory multiprocessing, OpenMP is dedicated to high-level parallelism in175

Fortran and C/C++ programs.29 Compiler directives, library routines as well as environment vari-176

ables can be used to optimize for multiprocessing by, for example, distributing workloads among177

the available threads and physical-cores.178

We endeavour to conclude the tools and utilities that have been reported in previously published179

papers since 2008, as shown in Table 1. The most commonly used software application is Matlab,180

due to its simplicity and numerous package supports. No strict understandings in terms of hardware181

architectures and memory management are necessary when developing algorithms over Matlab, as182

compared to other realization methods. C/C++ tend to be the most popular programming language183

used for algorithm implementations. C/C++ programming libraries and functions, such as FFTW,184

cvDFT from OpenCV and custom library CWO++,30 offer strong support for improved hologram185

generation performances.186

2.3 The advantages and disadvantages of using CPUs187

The most significant advantage of using CPUs for algorithm implementation is the short devel-188

opment time and sophisticated software toolchain support. Nearly all the software packages that189

can be found on other hardware accelerator platforms have the same or equivalent toolkits which190

are available on CPU-based PCs. These ranges from programming languages, such as C/C++ and191
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Table 1 Tools and utilities employed for CPU implementations since 2008
Name Category Appearance Year
Matlab Software Novel LUT algorithm,31 Fast computa-

tion,32 Compressed LUT algorithm,33 Bi-
nary detour phase holograms,34 Specific
solutions for Gerchberg-Saxton (GS) al-
gorithm,35 Highly efficient calculation,36

Rotational transformation of wavefields37

2008, 2009,
2013, 2014, 2019

CWO++ library (CWO:
Computational Wave
Optics)

Customized C++ library CWO++ library (CWO for CPU),30

Wavelet ShrinkAge-Based superpositIon
(WASABI) using CWO++38–40

2012, 2017, 2018

FFTW library FFT library Wavefront recording plane (WRP) GPU
comparison,41 CWO++30

2009, 2012

Intel Math Kernel Li-
brary (MKL)

Math and FFT library Polygon-based extremely high-definition
projection42

2009

cvDFT (OpenCV) FFT function from OpenCV Wavefront recording plane43 2018
OpenMP Multi-processing API Baseline for multi-GPU cluster compari-

son44
2012

C Programming language Simulated annealing (SA) GPU compari-
son,45 Multi-GPU cluster comparison44

2010, 2012

C++ Programming language Polygon-based extremely high-definition
projection,42 WRP GPU comparison,41

SA GPU comparison,45 CWO++ and
WASABI,30, 38–40 Full colour and colour
space conversion using WASABI46

2010, 2012,
2017, 2018, 2019

Python Programming language Compressive-sensing GS47 2019

Python, compile-time and run-time libraries, to software packages.192

Other merits of using CPUs are as follows:193

1. Comparatively high clock frequency: Contemporary CPUs run in GHz domain as com-194

pared to the frequencies in other hardware that are usually between hundreds of MHz to195

above 1 GHz. Higher clock rates provide shorter clock cycles, consequently speeding up196

sequential processes.197

2. Floating point precision: CPUs tend to have better support for double-precision floating198

point arithmetic from the tools that are available, although the use of full-precision compo-199

nents can downgrade run-time execution speed.200

The disadvantages are also apparent. CPUs are optimized for sequential operations and conse-201

quently full parallelism cannot be achieved. Although state-of-the-art CPUs at the time of writing202
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feature a higher level of parallelism than older CPUs, with tens of cores being available in a sin-203

gle package, this pales in comparison to the massively parallel architectures of GPUs and FPGAs204

which feature thousands of parallel execution units. Moreover the software libraries and APIs to205

support parallelism, such as OpenMP which help shorten the developing time needed for multi-206

thread and multiprocessing applications, exist but require an advanced level of skills to utilize207

effectively.208

2.4 Reported work using CPUs209

Most of the reported work covering CPU-based applications are for either algorithm developments210

or, more commonly, for establishing baselines for cross-platform performance comparisons.211

The most common method to optimize the performance of hologram generation using a com-212

puter is to combine both CPUs and GPUs together.213

Shimobaba et al. reported on the development of a C++ library CWO++, which is used for214

diffraction calculations.30 This library has been developed to run on both CPU (CWO class) and215

GPU (GWO class, GPU-based wave optics), and has been used in various algorithm develop-216

ments.24, 38–40, 44, 48–50
217

We aim not to thoroughly review the work that reports on CPU-based platform performance,218

as in the majority of cases the CPU results are used to provide a baseline performance reference.219

However, the baselines are subsequently encountered in several throughout the survey.220

2.5 Summary of CPUs221

Contemporary CPUs offer insufficient performance for real-time CGH and hence it is not recom-222

mended to build a real-time holographic system based solely on them. Moreover,the readily avail-223
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ability of hardware accelerators, such as GPUs and FPGAs, provide further rationale for hologram224

generation algorithms to not be implemented purely on a CPU-only platform.225

Algorithm developments in the initial phase, however, are one exception for purely CPU simu-226

lations and implementations, e.g., with MATLAB and Simulink, in order to significantly cut down227

the development time and improve the efficiency of research outputs. Moreoever, this approach228

also encourages collaboration, lowering the skills and knowledge barriers for other research groups229

to replicate and improve the corresponding algorithms.230

3 Graphics Processing Units (GPUs)231

In both academia and industry, GPUs, being the dedicated graphics accelerators, have gained much232

attention since their introduction in the late 1990s.51 Through the use of parallel operations, these233

accelerators maximise the performance of image- and video-related applications.234

Benefiting from economics of scale, GPU products are cost-effective and readily available.235

High-end products with a large count of processing units that perform parallel half (16-bit), single236

(32-bit) and double (64-bit) precision floating point operations in parallel are eminently suitable237

for image and video processing applications. The introduction of compute unified device archi-238

tecture (CUDA)52 by NVIDIA in 2007 further extends the ease of development and shortens the239

implementation as well as transplantation time. Due to their strong parallel performance and well-240

supported development environment, GPUs are one of the most effective hardware accelerators241

available on the market.242

Traditionally, GPUs have been dedicated to graphics rendering. However, throughout years243

of development which have brought forth increases in computational power, contemporary GPUs244

are encroaching upon application domains that formerly belonged to high-end high-power CPUs.245
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These GPUs are regarded as general-purpose graphics processing units (GPGPUs). Non-specialized246

calculations, such as machine learning computations, scientific computations, heavy image/video247

editing, encryption/decryption, have been taken over by the use of GPGPUs based on their merits248

of having massive parallelism and large processing core counts as opposed to the traditional CPUs.249

Two vendors, NVIDIA and AMD are major players in the graphics processing industry. Intel,250

with the recent development of its own GPU hardware, makes it another major producer of GPUs.251

However, based on the past lines of work, we will mainly focus the NVIDIA GPU families, since252

they are the most popular hardware platform used in the CGH and image processing community.53
253

3.1 The parallelism in GPUs254

Architecturally, a GPU is significantly different from a CPU. The major difference being that255

GPUs exploit massive parallelism at the hardware level. A single mainstream contemporary GPU256

incorporates thousands of dedicated processor cores, whereas even the highest-end CPUs typi-257

cally contain less than 24 cores.54 It is this inherent parallelism that provides high-performance258

computation capability for highly parallel problem spaces.259

3.2 GPU performance trends260

Over the years, NVIDIA brought out a range of core microarchitectures in their GPU series, target-261

ing both the professional high-performance uses as well as individual consumer level applications.262

The last decade has seen a large increase in the performance capability of GPUs, as summarized263

in Table 255, 56. While the rated power consumption has remained relatively constant (at around264

200-300 Watts), we have seen a significant increase in processing power. Ever since Fermi be-265

ing regarded as ‘the first complete GPU computing architecture’57, ten years has seen NVIDIA266
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Fig 5 A typical parallel pipeline overview of an NVIDIA GPU consisting of streaming multiprocessors each containing
a number of cores and functional units.

working on incorporating advanced shaders, hardware ray tracing and many high performance267

functionalities, with larger and faster processing capability and speed for not only graphics render-268

ing but more general purpose usages58 Consider the floating point operations per second (FLOPS)269

performance of a top-end GPU. Between 2008 and 2018, the performance has increased from 432270

GFLOPS to 16312 GFLOPS, an improvement of more than 37×.271

GPU designs vary between different microarchitectures and production families. Figure 5272

shows a typical structural overview of an NVIDIA GPU with numerous streaming multiprocessors273

(SM) consisting of shared memories, L1/L2 caches, CUDA cores, arithmetic units (e.g. double274

precision unit), load/store (LD/ST) units, etc. This architectural setup reveals the high level of275

inherent hardware parallelism within modern GPU devices.276
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Table 2 Microarchitectures since 2008 and their representative flagship GPU products (SP: single precision floating
point)56

Model Year of launch Microarchitecture Transistors (million) Fab (nm) GFLOPS TDP (watt)
9800 GTX 2008 Tesla 754 65/55 432 140
GTX 295 2009 Tesla 2× 1400 55 1192.3 289
GTX 480 2010 Fermi 3000 40 1344.96 (SP) 250
GTX 590 2011 Fermi 2× 3000 40 2488.3 (SP) 365
GTX 690 2012 Kepler 2× 3540 28 2× 2810.88 (SP) 300

GTX TITAN 2013 Kepler 7080 28 4499.7 (SP) 230
GTX TITAN Z 2014 Kepler 2× 7080 28 8121.6 (SP) 375
GTX TITAN X 2015 Maxwell 8000 28 6604.8 (SP) 250

GTX TITAN X 2 2016 Pascal 12000 16 10974.2 (SP) 250
GTX TITAN V 2017 Volta 21100 12 14899.2 (SP) 250

GTX TITAN RTX 2018 Turing 18600 12 16312.32 (SP) 280

3.3 Available tools and utilities for GPUs277

Two utilities are widely used: Compute Unified Device Architecture (CUDA) platform and Open278

Computing Language (OpenCL) framework.279

In 2007, a parallel computing platform and application programming interface (API) model,280

CUDA was released by NVIDIA. Prior to the introduction of CUDA, graphics and GPU program-281

ming skills for use in tools such as Direct3D, DirectX and OpenGL, with a good understanding in282

High Level Shader Language (HLSL) were required in order to take advantage of the high com-283

putational performance of graphics cards.59 CUDA, however, only required standard C/C++ or284

Fortran programming language skills as the bare minimum.285

As of the writing of this review, CUDA has iterated to its tenth generation (10.1) and comes286

with both compile-time and run-time libraries.52 In particular, the CUDA fast Fourier transform287

(cuFFT) library enables high-performance FFT and IFFT computations similar to the FFTW li-288

brary.60 Other useful libraries provided includes but not limited to a basic linear algebra subrou-289

tine library, cuBLAS, useful for linear algebraic operations; a random number generation library,290

cuRAND, useful for random phase generations; and a parallel algorithms and data structures li-291

brary, Thrust, to accelerate operations such as sum and average as well as boundary (maximum292
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and minimum) search algorithms in parallel.293

Developing programmes over CUDA is straightforward with the support of a modified C pro-294

gramming language dedicated to the CUDA framework.295

Additionally, vendors such as NVIDIA and AMD have all provided full support and have296

released the implementations of OpenCL for their GPUs. OpenCL is a framework with low-level297

APIs for cross-platform computing. Developers can use the provided APIs from OpenCL to write298

programmes that run across CPUs, GPUs, etc., with C programming language. However, it is worth299

noting that a study (not related to holography) conducted by Memeti et al. in 2017 suggested that300

CUDA outperforms OpenCL in terms of productivity, requiring two times less programming effort301

for a specific benchmark suite.61
302

Matlab, in the meantime, provides a parallel computing toolbox for GPU computing. Despite303

some limitations, it is argued that combining both CUDA kernels and Matlab support (using the304

Parallel Computing Toolbox) can further improve and smooth the programming process.34, 62 No305

knowledge in CUDA is needed while exploiting the parallel computing capabilities for CGH-306

related computation speed-ups.307

3.4 The advantages and disadvantages of using GPUs308

GPUs are used for accelerating the processing of images and videos at birth. The hardware archi-309

tectures are specially designed for this purpose by highly optimizing the parallel characteristics in310

both hardware and software.311

The key advantage of GPGPUs is that they can be programmed using high-level programming312

languages such as C/C++, making code development and corresponding debug processes faster313

and easier than in other platforms such as FPGAs.314
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As shown in Table 2, one of the major disadvantages of using GPUs for algorithm implemen-315

tation is their high power consumption. The thermal design power (TDP), which is the maximum316

amount of heat generated by the chip during operation and which serves as a basic indicator of317

power consumption, is typically around 200-300 watts.318

A good understanding of GPU microarchitectures and, in particular, memory management is319

required for speed optimization, although dedicated utilities tend to offer modest support for the320

managing of the memory.321

More importantly, most of the GPUs cannot work as a standalone platform. A system incorpo-322

rating CPUs and other essential hardware devices tend to create limits on data throughput during323

read, fetch and write operations and would increase the overall power consumption. Additionally,324

this level of integration introduces a data transfer bottleneck, which downgrades the overall per-325

formance of the platform. The speed for data transfers between the host PC and the GPU or GPU326

cluster would even slow down when the implementation has not been properly optimized.327

3.5 The development time using GPUs328

The use of CUDA makes GPU implementations simpler. The majority of the development time329

will be spent on software coding using C/C++ programming language.330

The major difficulty in the development of GPU hologram generation application is to optimize331

the codes for the potentially high-throughput and heavy computational requirements. This requires332

a good understanding of the GPU architectures, as well as hardware and software optimization333

techniques. However, since most of the fast algorithms implemented, such as in work,45, 66, 73, 74
334

require less sophisticated operations, the optimization can be based purely on increasing the data335

throughput and improving the computational power with parallel processing.336
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Table 3 A summary of CGH implemented on GPUs since 2008
Project and application (year) Implemented algorithm Hardware model (GFLOPS SP based

on56)
Performance

Holographic optical tweezers and
4π-microscopy (2008)63

Gerchberg-Saxton algorithm Geforce 8800 GTX (345.6) and 8800
GTS (416)

One GS loop at 512×512 in 16.5 msec

Data-parallel computing for point
cloud (2009)64

Nonuniform sampling, Common visibil-
ity group (CVG) approximation

Geforce 9800 GX2 (2×384) Non-uniform 7592 points in 10.3 sec, CVG in
5.07 sec

Depth buffer rasterization for 3D
display (2009)21

Ray tracing algorithm with precomputed
look-up tables

Geforce 8800 GT (336) 266 sampling rays with 12 quads in 1.37 sec

Colour reconstruction system with
GPU (2009)65

1000-point based Geforce GTX280 (622) 1400×1050 in 31 msec

Fast CGH using S-LUT (2009)66 Split look-up tables GTX 285 (708.48) 700× faster than LUT on Intel Core i7 965 for
object point larger than 40k

Ray-tracing (as the baseline refer-
ence) using GWO library41

Ray-tracing algorithm GTX 260 (approx. 550) 48277 points 3D object in 1380 msec

Real-time CGH using multiple
GPUs (2010)67

1000-point based 3×GTX 285 (708.48 per GPU) 1000 points per colour at 22 FPS

CGH with AMD (2010)68 1024-point based AMD RV870 (unknown) comparing
NVIDIA GTX 260 (approx. 550)

1920×1024 in 31 msec

GPU acceleration using SA
(2010)45

Simulated annealing NVIDIA GTX 260 (approx. 550) Performance improvement of more an order of
magnitude compared to using CPU only

Holographic optical tweezers algo-
rithm implementation (2010)69

Superposition algorithm, weighted
Gerchberg-Saxon algorithm

GTX 260 (approx. 550) 350× (SR) and 45× (GSW) faster than Intel
Pentium D

Interpolated wavefront-recording
plane (2011)70

Interpolated wavefront-recording plane
(IWRP) approach

GTX 580 (1581.1) 2048×2048 in 25 msec

CWO++ library performance
benchmark (2012)30

Gerchberg-Saxton algorithm GTX 460M (518.4), GTX 295 (1 chip,
approx 600), GTX 580 (1581.1)

2048×2048 Two magnitudes faster than an In-
tel Core i7 740QM

GPU cluster for divided CGH
(2012)44

Optimized 2048-point based 12×GTX 480 (1344.96 per GPU) 6400×3072 in 55 msec

GPU cluster for distributed holo-
gram computation (2013)71

Split look-up table 9×GTX 590 (2488.3 per GPU) and
14×Quadro 5000 (722.3 per GPU)

A computation cluster with 32.5 TFLOPS com-
puting power

Binary detour-phase holograms
(2013)34

Binary detour-phase method NVIDIA TESLA C2050 (1030.4) 35×-53× speedup compated to AMD Phenom
9850 CPU

Localized error diffusion and redis-
tribution (2014)72

Localized error diffusion and redistribu-
tion (LERDR) algorithm

GTX 590 (2488.3) 2048×2048 in 6 msec

3D binary CGH (2014, 2015)73, 74 Precalculated triangular mesh GTX 770 (3213.3) Performance is better than point-based methods
but slower than triangle-based algorithm

3D object tracking mask-based
novel-look-up-table (2015)75

OTM-NLUT 3× GTX TITAN (4499.7) 31.1 FPS of Fresnel CGH patterns

Fourier hologram benchmarking
(2015)62

Kinoform, Detour Phase, Lee and Burck-
hardt methods

NVIDIA TESLA C2050 (1030.4) Speed-up of up to 68× compared to AMD Phe-
nom 9850 CPU

Fast occlusion processing (2016)76 Point-source and wave-field hybrid GTX 780Ti (5045.7) 1024 layers with 6.7 million points 21.28 msec
GPU for block-based parallel pro-
cessing (2018)77

10K-point based GTX 1080Ti (11339.7) 1024×1024 in 18.7 msec

Photorealistic CGH benchmark
(2018)43

Backward ray-tracing and wavefront-
recording planes (WRPs)

Quadro M5000 (4300.8) 1920×1080 in 20 msec

Real-time colour holographic re-
construction (2020)78

Point cloud based 13×GTX TITAN X (8000) 1920×1080 RGB + alpha coloured at
38.31 FPS

3.6 Reported work using GPUs337

In 1995, Lucente and Galyean demonstrated the first published result of CGH generation using a338

computer graphics workstation.79 The achieved performance was calculated using eight 128×60339

pixels full-colour images, which lead to a replay field of a 3D object with different viewing angles.340

At that time, the calculation time of 2 seconds over the graphics workstation was 100 times faster341

than a conventional computer.342

Later in 2003, Petz and Magnor used an NVIDIA Geforce 4600Ti to generate the interference343

fringes for holograms.80 In their work, the authors assessed both the GPU performance and the344
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computational time dependency based on the resolution of holograms. For an object that contains345

1024 light source points, it takes 0.96s and 3.86s to calculate the corresponding holograms of the346

resolutions of 512×512 and 1024×1024, respectively.80
347

Before the introduction of CUDA, the graphical API OpenGL was used to compute holograms,348

as was reported in 200681 and 200921, however, the performance was not promising. Additionally,349

a real-time reconstruction system for an 800×600 64-point based 3D object CGH was reported in350

2006 using HLSL and DirectX API, achieving a calculation speed 47× faster than a Pentium 4351

CPU.59
352

The use of OpenCL for parallel computing to generate holograms with an AMD HD5000 was353

reported by Shimobaba et al. in 2010.68
354

Since the release of CUDA, there has been a surging interest in the generation of computer355

holograms utilizing the full credibility and computational power of GPUs.356

The GPU microarchitectures have changed remarkably throughout the past decade, and the357

increased computational power produced an improvement of at least ten times. This performance358

improvement can also be seen in the reported literature.359

Shiraki et al.65 in 2009 reported a 1000 point light source (3D object) real-time holographic360

video generation system using an NVIDIA GTX 280 utilizing Tesla microarchitecture. The gen-361

erated hologram resolution was 1400×1050 pixels. The performance was later surpassed by the362

introduction of GTX 1080Ti with Pascal microarchitecture in 2018.77 The system reported by363

Kim et al. can produce real-time high definition (HD) holographic generation and projection using364

10,000 points of light, a ten-times increment in terms of object-point counts than that of the system365

reported in.65
366
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Table 3 provides a summary of some of the hardware implementations using different hologram367

generation algorithms in recent literature.368

3.7 Summary of GPUs369

Traditionally, GPU vendors design their line of products in order to carry out single precision float-370

ing point operations effectively.82 Throughout the years, these vendors have worked to redesign371

their products to allow for the use of half-precision numbers and fixed points.372

GPUs are by design powerful single and double precision floating point hardware accelera-373

tors, recent trends have led to the use of half-precision and fixed-point arithmetic, which further374

enhanced the computational speed while making a trade-off in terms of precision.375

Due to the hardware and manufacturing constraints, the number of streaming (CUDA) cores376

that can be embedded within a single GPU is limited. Therefore, in order to speed up the hologram377

generation process, one practical solution is to form a GPU cluster using multiple GPUs. This can378

be done either in a single stand-alone system67 or over a dedicated network.44
379

In general, GPU offers a strong candidate for CGH systems.380

4 Field Programmable Gate Arrays (FPGAs)381

Field programmable gate arrays (FPGAs) are highly-configurable integrated circuits capable of382

being reprogrammed by designers after manufacture. This degree of flexibility enables designers383

users to implement logical hardware designs during their product’s development stage and to assess384

performance before the fabrication of expensive application specific integrated circuits (ASICs).385

The three traditional vendors in this field have been Intel, Xilinx and Lattice. However, the386

growth of the market has seen additional vendors arise such as GOWIN Semiconductors. The cost387
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for a single FPGA chip ranges from several dollars at the low-end to tens of thousands of dollars388

depending on the performance and hardware requirements as well as the market capability.389

As shown in Figure 6, a typical FPGA architecture consists of the following five fundamental390

elements:82, 83
391

1. Functional unit: A fundamental programmable cell that implements both combinational392

and sequential circuits. Depending on the vendors, these logic cells have been given different393

names, e.g., Intel names these cells as logic array blocks (LABs), whereas Xilinx calls them394

configuration logic blocks (CLBs).395

2. Interconnect fabric: A mesh of programmable wires to establish the signal connections396

between functional units and inputs/outputs (I/Os).397

3. Configuration memory blocks: A portion of on-board memory which stores the synthe-398

sized bitstream contents for the use of programming the functional units and fabrics.399

4. I/O interfaces: General purpose inputs and outputs connect the signal from the integrated400

circuit to physical peripherals and I/O pins.401

5. Digital signal processing blocks: Recent FPGAs incorporate dedicated ‘hard’ digital sig-402

nal processing blocks that support various precisions, either fixed-point or floating-point,403

accumulations and multiplications to further boost the performance of FPGA-based imple-404

mentations.405

The implementation of a functional unit is vendor specific. The units in Xilinx and Intel FPGA406

products are SRAM-based, whereas those from the Lattice Semiconductors are based on EEP-407
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Fig 6 A typical architecture of FPGA, which consists of logic cells, I/O ports, DSP blocks, block memory, etc.
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ROMs. Note that this can make it challenging to compare two FPGAs from different vendors; a408

fact that should be kept in mind when assessing FPGA performance.409

Given their dominance of high-performance FPGA product families, we will mainly focus on410

FPGA products from Intel and Xilinx, and provide a comprehensive review based on their product411

families.412

Both Intel and Xilinx provide intellectual property cores (IP-cores) that are programmable-413

hardware implementations of application specific peripherals and algorithms. These are optimized414

for a given product line and should be used where possible to expedite development time and boost415

performance.416

4.1 The highly configurable hardware platform417

The key strength of FPGAs is their highly configurable and hardware-programmable nature. The418

applications can be developed using computer-based hardware description languages (HDLs) such419

as Verilog/SystemVerilog, VHDL, etc.83 These language-based designs are portable and usually420

independent of technology, with the exception of applying intellectual property (IP) cores and other421

chip-specific configurations. The designers are able to repeatedly programme and reconfigure a422

given chip to affect changes at the hardware level and reuse designs across different FPGA chips423

that are normally from the same vendor.424

The ability for FPGAs to support HDLs provides a significant benefit in that almost all on-chip425

cells are highly configurable and can be used to synthesize any possible hardware implementations426

as long as the designs can potentially be fitted into the available logic cells and hardware units.427

24



4.2 Implementations based on fixed and floating point428

Since FPGA platforms are highly reconfigurable, the use of either fixed point or floating point429

arithmetic becomes one of the most important design considerations. According to a report pro-430

duced by Xilinx,82 FPGA applications will benefit from the conversion from floating point to fixed431

point arithmetic for certain applications requiring less power but higher speed.432

Floating point precision, typically includes IEEE 754 half-precision (16-bit), single-precision433

(32-bit) and double-precision (64-bit) configurations, whereas fixed points are more flexible and434

usually range from several bits to 32-bit in width.435

Devices such as GPUs, which are used in computationally heavy applications, have tradition-436

ally been designed architecturally so that they are more efficient when supporting floating point437

operations. When implemented on FPGAs at the hardware level, however, conventional floating438

point operations, e.g. based on GPUs or CPUs, are slower than fixed point alternatives. This is due439

to the need and difficulty which arises when controlling the mantissa and exponents of IEEE 754440

floating points during the calculations.84
441

4.3 Available tools and utilities for FPGAs442

FPGA vendors typically provide their own proprietary tools. Intel’s Quartus Prime is widely used443

among the community to facilitate development for Intel-based FPGAs. As for those devices444

offered by Xilinx, there are development tools such as the Vivado design suite, which has replaced445

the Xilinx integrated synthesis environment (ISE).446

ModelSim is a functional simulation software package from Mentor Graphics. It can be used447

independently to simulate hardware based on HDL descriptions, as well as being compatible with448

Intel Quartus Prime, Xilinx ISE and Vivado.449
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Table 4 Tools and utilities reported for FPGA implementations in recent years

Name Category Appearance Year
Intel

Quartus Design tools

85

86

87

88

89

2001
2002
2011
2012
2015

Max+Plus II Legacy design tool 86 2002
Xilinx

Vivado design suite Design tool 90 2019
ISE Design tool 91 2011

DisplayPort IP IP-core for DisplayPort 90 2019
MIG IP IP-core for memory interface 90 2019

AXI interconnect IP IP-core for AXI4 90 2019
Others

ModelSim Simulation tool

87

88

89

2011
2012
2015

Verilog HDL language

91

88

89

2011
2012
2015

VHDL HDL language
92

87
2010
2011

In addition, many hardware implementations use intellectual-property (IP) cores provided by450

the vendors to perform certain operations on FPGAs.451

Due to their unique nature, the FPGA development process is very distinct from traditional452

CPUs and GPUs. A simplified overview is summarized as follows:83
453

1. Design specification and partition: These two initial steps set up the entry point for the454

design.455

2. Simulation and functional verification: This verification step tests the functionality of a456

compiled design using a user-specified testbench file.457
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3. Design integration and verification: This step integrates all partitioned modules into one458

large system.459

4. Pre-synthesis sign-off: At this stage, all the known functional errors should have been elim-460

inated.461

5. Synthesis and implementation: Translates the hardware description language syntax and462

contents to an optimal Boolean description that maps the selected FPGA chip. The language463

synthesis tool will also remove redundant logic from the design if optimization is selected.464

6. Configuration bitstream download: The development tool will map the synthesized HDL465

to the selected chip and configure the logic unit blocks.466

7. Prototype functional testing and verification: At this stage, the design is tested on hard-467

ware to prove its functionality.468

8. Final sign-off: All constraints should at this stage be satisfied and errors eliminated via469

hardware and simulation debugging before the final chip production.470

4.4 The development time using FPGAs471

Generally, depending on the level of hardware complexity and the use of IP-cores, the development472

time might vary. For example, reported by Takada et al.,93 the group took over 3 years to develop473

and implement their algorithms into a custom-made bespoke FPGA platform consisting of 8 high-474

end FPGA chips.475

The average development time for a project based on FPGA hardware implementations will476

typically be significantly longer than an equivalent CPU or GPU project. Although not being re-477

ported for CGH applications, a study conducted in 2012 estimated that developing algorithms on478
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a GPU-based hardware platform for dense optical flow, stereo and local image extraction features479

takes approximately 2 months for one full-time post-doctoral employee whereas developing the480

same algorithms and functionalities over an FPGA platform will likely take 12 months for two481

post-doctoral employees94. Overall, the development time for FPGA-based applications are likely482

to take longer than the equivalent for an algorithm to be implemented on a GPU platform.483

4.5 The advantages and disadvantages of using FPGAs484

One of the merits of FPGA implementation is the potential to migrate a given FPGA register-485

transfer level (RTL) design into ASICs. ASICs are dedicated chipsets specifically designed for486

a certain application. They are inflexible and require significant one-off tooling costs, but once487

designed represent an optimal combination of performance, power and cost for a given hardware488

accelerator. The performance can be optimized for the generation of computer holograms with the489

use of ASIC technology. A recent work in 201795 demonstrated that an FPGA-based implementa-490

tion can be migrated into a very-large-scale integration without the need for vast modifications.491

The potential for high performance at moderate power consumption along with the ability to492

migrate a given design to an ASIC provides a strong argument for the use of FPGAs in CGH493

applications.494

As pointed out in Section 4.4, the most significant drawback for FPGA implementation is the495

relatively long development time. FPGA-based hologram generation projects often require years496

of work by a group of researchers. Moreover, the required knowledge in terms of understanding of497

hardware architecture and FPGA technology for the developers sets up a high entry barrier.498
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Table 5 A summary of CGH implemented on FPGAs since 2008
Project and application (year) Implemented algorithm Hardware model Pixel size and performance
HORN 5 2-dimensional FFT
(2008)96–99

Phase computation by addi-
tion, point-cloud

4×Xilinx XC2VP70 and
1×XC2V1000

3D image with 10,000 points
at 30 FPS

HORN 6 (2009)100 Phase computation by addi-
tion, point-cloud

A 16-board cluster each contain-
ing 4×Xilinx XC2VP70 and 1×
XC2V1000

67.9 msec per hologram

Realtime hologram genera-
tion (2010)92

40,000 point light sources Xilinx XC2VP70 1408×1050 in 9.3 msec

Cell-based hardware archi-
tecture (2011)87

Point light source Altera (no specific model no.) 1408×1050 in 15.8 msec

One-step phase-retrieval
(2011)91

OSPR Xilinx Virtex-4 SX35 512×512 in 0.9 msec

Pixel-by-pixel hardware sim-
ulation(2012)88

Pixel by pixel and parallel
schemes

Altera simulation Performance not measured in
physical hardware implemen-
tation

HORN 7 (2012, 2013)101, 102 Phase computation by addi-
tion, point-cloud

Xilinx Virtex-6 ML605 2 million pixels of 16,000
points in 0.4 sec

Full analytical Fraunhofer
CGH (2015)89

Polygon based Altera Cyclone IV EP4CE115 800×600 in 9.6 msec

HORN 8 (2018)50, 93 Amplitude modulation,93

Phase modulation50 point-
cloud

7×Xilinx Virtex5 XC5VLX110
and 1×XC5VLX30T

An effective speed equivalent
to 0.5 PFLOPS, 1920×1080
65000 points at 8.3 FPS

Clustered HORN 8 (2018)103 Spatiotemporal division
point-cloud

8×HORN 8 boards 1920×1080 65000 points at
63 FPS

Single-chip video processor
(2019)90

Layer based Xilinx XCKU115 1920×1080 RGB at 16 FPS

4.6 Reported work using FPGAs499

Table 5 summarizes recent implementations on FPGA platforms. Most of the hardware models500

used in the lines of work are high-end FPGAs from Xilinx.501

HORN (HOlographic ReconstructioN) computers, which have been in active development by502

Ito et al. since 1992,104 have provided the research community with many insights into the field of503

CGH hardware implementation, notably the use of FPGAs for real-time hologram generation. So504

far there are, in total, eight generations of devices being produced by this group, ranging from low-505

speed devices to high-speed special purpose computers. The first four generations of HORN use506

DSP or small-scale FPGA chips for real-time computation tasks.86, 104–106 The later four generations507

of devices consist of large-scale FPGA chips embedded on delicate custom printed circuit boards508

(PCBs).46, 50, 93, 96, 100 The latest product within this line of work is HORN-8, which comprises of509

seven powerful FPGA chips for calculation and one FPGA chip for communication. As reported510
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in93 and,50 the HORN-8 special computer can generate a hologram for a 3D object of 10,000 points511

within 0.019 seconds with a peak performance of 0.5 tera floating point operations per second512

(TFLOPS) running at a 0.25 GHz clock cycle. At the time of writing, the team’s outlook is to513

further develop an ASIC design based on the HORN-8 structure107 .514

Seo et al. proposed a hardware architecture based on pixel-by-pixel calculation scheme.87, 88, 92, 95
515

In this line of work, the authors efficiently reduced the number of memory accesses by utilizing the516

pixel-by-pixel method, which is different from the conventional light source-by-source calculation517

method. The authors also demonstrated a very-large-scale integration (VLSI) chip, based on the518

proposed FPGA architecture.95 The work reported by Seo et al.95 demonstrated that it is relatively519

simple to migrate an FPGA system into an ASIC design.520

4.7 Summary of FPGAs521

Benefiting from its highly configurable architecture, FPGAs are to date the most flexible hardware522

accelerators for use in hologram generation applications. The required calculations in hologram523

generation algorithms can take advantage of the high degree of parallelism within a FPGA chip.524

However, the development time to implement optimized algorithms on FPGAs are typically sig-525

nificant and require an advanced skillset of HDLs, digital logic design and hardware architecture;526

skills not typically present in traditional optics groups researching holography.527

5 Review of other available hardware platforms528

In parallel to researches on hardware implementations using hardware accelerators such as GPUs529

and FPGAs, there have been several attempts to implement holographic generation algorithms530

within other existing platforms. This section aims to review some of the candidates.531
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5.1 Digital Signal Processors (DSPs)532

Digital signal processors (DSPs) are dedicated hardware platforms for signal processing appli-533

cations. The microprocessors have architectures that are tuned for analogue and digital signal534

processing tasks with the ability to support single instruction multiple data (SIMD).535

Nishikawa et al. reported the use of a DSP to generate holographic images in the late 1990s.108
536

A multi-DSP system consisting of 3× 4 i860 DSPs was proposed to generate 3D objects for the537

application. The 3D object consists of 200 points and is 640 × 480 pixels in size. The multi-DSP538

system takes 68 seconds to generate the object as opposed to a reference workstation (SPARCsta-539

tion 10) which generates the object in 291 seconds.540

The most recent work was reported by Oi et al.109 Twenty TMS320C6727 DSPs running541

floating point arithmetic was used to form the DSP block in the proposed system. These DSPs542

were dedicated to the conversion of integral photography (IP) images to holograms in the Fresnel543

diffraction domain. With a 1.5× redundancy design, an real-time performance of 50 FPS was544

achieved.545

The current highest-end DSP products are those from Analog Devices and Texas Instruments.546

A TI TMS320C6678 eight-core floating-point DSP runs at a clock rate of 1 GHz to 1.4 GHz, with547

a maximum computational performance of 20 GFLOPS per core for single precision floating point548

operations.110
549

It is unlikely that these DSPs will be capable of performing complicated hologram generation550

algorithms due to the hardware specifications and limited computational power. However, it is551

still worthwhile to regard DSP as a valuable candidate to implement less complicated algorithms552

due to their low power profile and ease of programming. DSPs are typically programmed using553
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C language and assemblies. The toolchain support is considered mature and time-proven, further554

minimizing the development time and difficulty.53
555

5.2 Xeon Phi coprocessor and ClearSpeed accelerator board556

Xeon Phi is a family of co-processors with x86 manycore architecture designed and produced by557

Intel.111 It is to-date one of the few fairly powerful manycore co-processors that are intended for558

use in hardware acceleration applications.112 This line of products supports the use of OpenMP.113
559

As was introduced in Section 2.2, OpenMP is an API that is optimized for shared memory multi-560

processing programming and exploits multi-thread parallelism.561

Murano et al. in 2014 reported on the use of a Xeon Phi coprocessor unit (Xeon Phi 5110P)562

for computer hologram generation.114 The authors used the Intel MKL for the calculation of FFTs563

along with the OpenMP functionalities to make use of the available cores present in the coproces-564

sor. Their results show that in all their test cases, GPU outperforms the Xeon Phi accelerator by a565

significant margin. However, when using Xeon Phi coprocessor, the amount of existing code that566

needs to be rewritten in order to port software-based algorithms into the hardware accelerator, as567

compared to that in the GPU case, can be minimized.568

Another hardware acceleration board, ClearSpeed Advance Dual CSX600, was demonstrated569

in 2009.115 The authors were able to speed up the point cloud hologram calculation 56× faster570

than an Intel Xeon CPU performing calculation in single core. Unfortunately, as of the writing of571

this survey, the production of ClearSpeed accelerator boards is no longer active.572
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5.3 System-on-Chip (SoC) hybrid CPU and FPGA573

There is a growing need for hologram generation systems to become compact and low in power574

consumption. A trend towards System-on-Chip (SoC) utilizing the heterogeneous system architec-575

ture (HSA) has been rapidly growing over the years. The general idea behind SoC is to incorporate576

different devices and peripherals on a single chip to reduce the overall die area and to minimize the577

power consumption.116 One hybrid product is to have both FPGA and microprocessors or CPUs578

on board one chip. A further discussion is present in Section 6.5.579

In one of the most recent studies conducted by Yamamoto et al., the authors developed a com-580

pact holographic computer using a Xilinx Zynq UltraScale+ MPSoC consisting of an ARM CPU581

and an FPGA on one single chip.117 The reported system was able to reproduce 1920×1080 pixels582

3D video at a rate of 15 frames per second.117 They also compared the result to the performance of583

a Jetson TX1 platform,118 the calculation time of 1920×1080 pixels with 6500 points on the SoC584

platform took 0.066s, whereas the Jetson TX1 took 1.294s.585

The development time for these SoC hardware implementations would be even longer than586

that of pure FPGA developments since the incorporation of both CPU, which requires multi-thread587

programming, and FPGA, which uses hardware description languages, adds another level of com-588

plexity when highly optimized codes and algorithms are needed. However, the power efficiency,589

die area and package size scale-down can bring about other benefits that mitigate for the increased590

programming workload.591

6 Discussion592

As shown in Fig 7, most of the reported work included in this survey implemented algorithms using593

GPU platforms, totaling 24 papers, as compared to other accelerator platforms between 2008 and594
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Table 6 General comparison between CPU, GPU, FPGA, DSP and other platforms
Platform Number of

cores
Serial or parallel Clock frequency Development

time
Power efficiency Portability

CPU Low Mainly serial High Short Average Straightforward
GPU High Parallel High Average Low Less challenging
FPGA High Parallel Low Long High (less power con-

sumption, depending
on implementation)

Difficult when vendor-
specific IP-cores are
used

DSP Low Mainly serial Average to High Average Average Simple (from low- to
higher-performance)

Xeon Phi / ClearSpeed Average Serial with many-
core parallel

Average Short Average Average

Heterogeneous SoC
e.g. FPGA + CPU

High Serial and paral-
lel

Low Long High Platform dependent

2020. FPGA-based systems are popular as well, reaching up to 16 published papers. In particular595

the line of work exemplified by the HORN group exploits the potential of FPGA parallelism for596

fast hologram generation.597

There are also a number of research papers implementing algorithms with CPUs only, however,598

as discussed in Section 2.1, most of them tend to focus on the development of novel algorithms599

and choose a PC platform without hardware accelerators as a means of algorithm evaluation and600

verification.601

It is worth noting that cross-platform comparisons based solely on the calculation speed are602

not strictly reasonable. This is because different platforms incorporate different architectures and603

have different toolchain supports. Essentially, the algorithms implemented despite best efforts604

can still be fundamentally different across multiple platforms. Therefore, it is of great essence605

that analytical models with key performance metrics, which consider not only FPS and power606

efficiency but also other factors, be proposed to assess performances over different hardware.607

We summarize the hardware specifications for the reviewed hardware and provide a general608

comparison between these platforms in Table 6. The table shows the difference in terms of the609

number of cores, serial or parallel architectures, clock frequencies, the estimated development610

times, power efficiencies and the software portability.611
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Fig 7 A comparison of CPU, GPU, FPGA and other hardware implementations in recent existing literature (2008-
2020).
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We conclude the six key considerations when selecting a suitable hardware platform for CGH612

related implementations:613

1. Hardware manufacturing constraints.614

2. Toolchain support.615

3. Fixed point or floating point arithmetic.616

4. Parallel and sequential processing – shown in Figure 8.617

5. Development time.618

6. Portability of software.619

6.1 Toolchain support620

One of the most important aspects to consider is the full-cycle development toolchain support.621

CPUs and GPUs platforms are likely to be less affected by the lack of available software package622

and library supports, as discussed in the previous sections. However, FPGAs and other accelerators623

such as DSPs and co-processors might suffer from the lack of active development support and will,624

in turn, affect the overall development process. In general, the availability of tools and utilities to625

support the dedicated hardware creates a resource barrier towards the successful implementation.626

6.2 Choice of algorithms and parallel/sequential processing627

Many algorithms exist for 2D/3D hologram generation. Different algorithms would require differ-628

ent hardware resources in practice, e.g. triangular-mesh based algorithms can take the advantage of629

being compatible with modern computer graphics technologies utilizing polygon meshes for object630
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computations13. Regardless of the algorithm used the size, e.g. hologram resolution size, number631

of points/polygons, is an important consideration in all cases, and more importantly, increasingly632

complex holograms demand larger and better hardware.633

GPUs and other specialized hardware accelerators are useful to the speed enhancement of holo-634

gram calculation by utilizing parallelism and optimizing for sequential processing. For example,635

in the point-cloud-based calculation, the hologram patterns are calculated using the same mathe-636

matical formula, and more importantly, the calculation of these patterns for each object point is637

independent of other object points.13 The independent calculation of object points can potentially638

make use of the parallel processing for hardware platforms.639

Moreover, for CGH algorithms involving FFT operations and depending on the hardware uti-640

lized, the FFT operations can be parallelized through different cores or pipelines at the processor641

level, as shown in Figure 8.642

It is also of great importance, though being algorithm-dependent, to be aware of the number643

of sequential processes required and optimize for performance while exploiting concurrency and644

parallelism within the specified hardware. For example, iterative algorithms such as the Gerchberg-645

Saxton (GS) algorithm119 requires sequential processing that cannot or tend to be difficult to par-646

allelize and multi-task. It is then of the developer’s responsibility to select a platform that does647

not only fulfill the need for parallelism but also have the options to optimize for the sequential648

operations when implementing the desired algorithm.649

6.3 Portability of software650

It is essential to consider the possibility of transferring the developed software and firmware from651

one system to another while keeping in mind the trade-offs between portability and performance.652
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This transfer would likely be required when upgrades toward newer generations of hardware are653

expected, or performance comparisons between different devices are needed.654

The most straightforward transfer comes when the CPU platform, which is usually based on a655

PC, is used. Upgrading between different operating systems and software platforms are compara-656

tively simple thanks to the abundant software support. In comparison, porting from one NVIDIA657

GPU to another would sometimes require more work, although CUDA provides a unified develop-658

ment environment. This is mainly due to the upgrades in hardware between different generations659

of GPU products. As for intra-generation code transplant, it is usually not challenging, as long as660

the memory and computational power limitations have been taken into account by the developer.661

Code transfer among different FPGA platforms, on the contrary, would be slightly difficult,662

especially when target chip IP-cores are used for the application. With the above noted, transferring663

from a lower performance FPGA to an FPGA with higher performance can be relatively simple,664

this will likely be the case when HDL descriptions are used.665

6.4 Hologram generation quality assessment666

An end-to-end CGH hardware implementation assessment should include fast generation, hard-667

ware performance and generated quality assessment of the holograms.668

There currently is a lack of available unified criterion to assess the quality of computer holo-669

grams generated from different platforms. Kim et al.90 uses a modulation transfer function (MTF)670

to compare the image quality of different holograms. Structural similarities (SSIM) has also been671

used in work49 to evaluate the quality of the generated images. Another widely used metrics are to672

measure the mean square error (MSE) and peak signal-to-noise ratio (PSNR).120 Blinder et al.121
673

provided a more detailed review of the quality assessment for computer generated holograms.674
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6.5 Heterogeneous computing and its related hardware675

There is a growing trend in the embedded systems, image and video processing communities to676

incorporate the state-of-the-art heterogeneous computing systems into their applications.677

Heterogeneous computing systems typically refer to systems that fuse more than one type of678

processors or cores together,122 it could also refer to systems that combine a large number of679

processor cores with the same ISA,53 e.g. Intel Xeon Phi, or a small number of cores with different680

execution performances, e.g. ARM big.Little platform.123 In this section, we focus mainly on the681

development and trend in heterogeneous hardware accelerators that incorporate different types of682

instruction set architecture (ISA) devices.683

These hardware systems take advantage of conventional multi-core hardware accelerators while684

in the meantime bypass some of the limitations and disadvantages of using a single hardware685

accelerator architecture.116 The aims of having the heterogeneous system architecture (HSA) are686

to reduce the communication latency between different computing devices and to improve the687

parallel execution performance.116
688

The level of heterogeneity in a computing system gradually increases, with more and more SoC689

platforms being produced. Among various of heterogeneous hardware platforms, the combination690

of CPUs and FPGAs, usually in the form of hard ARM processors embedded in an FPGA, as well691

as CPUs with DSPs, are potentially good candidates for low-cost low-power hologram genera-692

tion platforms due to their inherent merits that balance the pros and cons of conventional system693

architectures.694

Another worth mentioning heterogeneous computing platform is the Jetson module. Only the695

Jetson TX1118 was evaluated in work.117 Its upgraded version TX2124 and the most recent AGX696
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Table 7 NVIDIA Jetson module products family

Model (year of launch) GPU Computational power Power (watt)
TX1 (2015)118 Maxwell Over 1 Tera-FLOPS Under 10
TX2 series (2017)124 Pascal 1.3 TFLOPS 7.5-20
AGX XAVIER series
(2018)125

Volta with Tensor Cores 20-32 Tera-operations per second
(TOPS)

10-30

Nano (2019)126 Maxwell 472 GFLOPS 5-10
Xavier NX (2019/2020)127 Volta with Tensor Cores 21 TOPS 10-15

Xavier,125 both with boosted performance and power efficiency, are also of implementation inter-697

est. A low-cost variant of the Jetson family, Jetson NANO, has also become available in the market698

recently.126 A list of the Jetson family is shown in Table 7.699

6.6 Future trend in embedded systems and high performance hardware platforms700

ARM developed the Neon technology for their Cortex-A series and R52 processors as an advanced701

SIMD architecture extension for image and video as well as general signal processing purposes.128
702

No reported work to-date has exploited the possibility of integrating an ARM-based SoC embedded703

platform for the generation of computer holograms while utilizing technologies such as Neon.704

NVIDIA recently announced their plan to bring CUDA acceleration to the ARM ecosystem.129
705

This will potentially bring the power and accessibility of CUDA to platforms such as ARM-based706

SoCs. This is also accompanied by the introduction of CUDA-X high performance computing707

(HPC) libraries which can potentially further exploit parallelism and provide improved processing708

performance.130
709

From another perspective, the recently announced Vitis Unified Software Platform from Xil-710

inx provides another degree of flexibility to use high-level synthesis (HLS) FPGA languages in711

order to help reduce the development overhead of FPGA applications131. This unified platform is712

envisioned to shorten the overall development time with higher level implementations without the713

need of incorporating fully RTL-level development and to provide a better programmability for the714
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FPGA hardware.715

7 Future work and conclusions716

CGH calculations primarily require a high degree of computation parallelism, thus embracing the717

use of hardware accelerators such as GPUs, FPGAs, etc., for the realization of real-time computer718

generated holograms.719

It is anticipated that there will be two separate research paths that lead towards the future of720

CGH hardware implementations, including:721

1. High performance hardware platforms for real-time CGH generations and displays.722

These systems will usually be of high costs and require a long development cycle. Algo-723

rithms for future fast computer hologram generations will likely be developed using these724

hardware platforms for first-phase verifications and optimizations. A good example is the725

HORN-8 special purpose computer.50, 93, 103 The team has recently announced their future726

outlook to build ASIC devices to further boost the performance.107
727

2. Embedded computers and systems for low-power and low-cost applications. In order for728

this ultimate display technology to become reachable to ordinary households and individual729

consumers, a reduction in cost and a significant reduction in volumes and sizes are essential.730

A large amount of work can potentially be done on SoC platforms, e.g. CPU-FPGA, CPU-731

DSP devices, as well as on supercomputer-on-a-module embedded computing devices.132
732

Examples that demonstrate the implementations for embedded systems are those from Kim733

et al.90 and Yamamoto et al.117
734
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In this review paper, we have attempted to provide a useful review on the hardware imple-735

mentations on CGH, as well as to provide practical information about the current state-of-the-art736

hardware platforms that can be selected by researchers and developers to implement computer737

hologram generation algorithms for their specific applications.738

A key insight from this review is that the potential for real-time holography exists today without739

the need for bespoke hardware. A flagship GPU can process an entire holographic frame in 20ms,740

providing high-quality CGH in real-time. We predict holography transitioning towards mobile and741

embedded platforms, a trend evidenced by extrapolating from the growth of GPU computational742

power in Table 7. Bespoke hardware accelerators, such as FPGAs and ASICs, shall continue to743

advance the field of CGH hardware in this period, pushing the boundaries on what is achievable in744

terms of computation power, energy consumption and overall system cost.745
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