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Abstract

Digital holographic (DH) microscopy is a digital high-resolution holographic imaging
technique with the capacity of quantification of cellular conditions without any staining
or labeling of cells. The unique measurable parameters are the cell number, cell area,
thickness, and volume, which can be coupled to proliferation, migration, cell cycle
analysis, viability, and cell death. The technique is cell friendly, fast and simple to use
and has unique imaging capabilities for time-lapse investigations on both the single cell
and  the  cell-population  levels.  The  interest  for  analyzing  specifically  cell  volume
changes with DH microscopy, resulting from cytotoxic treatments, drug response, or
apoptosis events has recently increased in popularity. We and others have used DH
microscopy showing that  the  technique has  the  sensitivity  to  distinguish between
different cells and treatments.  Recently,  DH microscopy has been used for cellular
diagnosis in the clinic, providing support for using the concept of DH, e.g., screening
of malaria infection of red blood cells (RBC), cervix cancer screening, and sperm quality.
Because  of  its  quick  and  label-free  sample  handling,  DH  microscopy  will  be  an
important tool in the future for personalized medicine investigations, determining the
optimal  therapeutic  concentration  for  both  different  cancer  types  and  individual
treatments.

Keywords: cell death, cell volume, digital holographic microscopy, individual treat-
ment
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1. Introduction

Digital  holographic  (DH)  microscopy  is  a  digital  high-resolution  holographic  imaging
technique with the capacity of quantification of cellular status without any staining or labeling
of cells [1–3]. Various cellular parameters can be visualized and calculated from the particular
hologram, including individual cell area, thickness, volume, and population confluence and
cell counts [4–10]. One of the advantages of studying cells with DH microscopy is that they
can be grown and analyzed in their normal growth medium during the entire study. The
culture vessel will be placed on the microscope for imaging and then replaced in the 37°C
incubator, or placed on a heating plate to retain 37°C, during the analysis. Since the first studies
on living cells, DH microscopy has been used to study a wide range of different cell types,
e.g., protozoa, bacteria, and plant cells, mammalian cells such as nerve cells, stem cells, various
tumor cells, bacterial-cell interactions, red blood cells (RBC), and sperm cells [11–15].

2. Technique

DH microscopy is based on the interference between two, preferably coherent, beams that
differ in phase (Figure 1). The beams usually originate from the same source, which are split
before the sample. One of the beams, the reference beam, will remain undisturbed, while the
other, the object beam, will be shifted in phase by the sample. The optical set-up can be either
transmissive or reflective, providing no difference in the principle only in the configuration of
the optical elements [16]. When the object beam has traveled through or been reflected by the
object, the two beams merge. A light detector (e.g., a CCD-sensor) will capture the interference
pattern and computer algorithms will convert the signal into a holographic image based on
the light phase shifting properties of the cells, the refractive index [17]. The three-dimensional
holographic image is then a representation of the real objects [18]. The technique is cell friendly,
fast, and simple to use and has unique imaging capabilities for time-lapse investigations on

Figure 1. Schematic view of the DH microscopy technique. A digital holographic setup with a laser beam is split into
two identical beams. The sample beam passes through the cells, while the reference beam travels undisturbed. The two
beams merge and the image sensor will capture an interference image, which display a 3D-image after reconstruction
(www.phiab.se).
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both the single cell and the cell-population levels. The reconstructed image contains informa-
tion about the entire depth of the field of view. For reconstruction to be accurate, the sample
has to be transparent and homogenous, where the differences in refractive index between the
background and the cells create the tomography of the image [19].

After recording, the hologram consists of the phase and the amplitude of the entire image field.
Reconstruction of the image is dependent on the optical configuration, possibly to get rid of
optical elements as zero order image and images of other diffraction order. Mathematical
algorithms as Fourier transforms or Fresnel transform are usually performed on the wave
front [20] .

3. Morphological changes connected to cellular events

3.1. Cell death of adherent cells

Cell volume changes, resulting from cytotoxic treatments or apoptosis events, have recently
been investigated with DH microscopy [11, 21–25]. When cells go in to early apoptosis, the
first discernible indication is an increase in the cell phase shift followed by a decrease as the
cell eventually dies [21]. Pavillon et al. recognized early apoptotic cells within minutes by
their DH phase signal, while it took several hours to identify dead cells using trypan blue
staining [21].

We have previously demonstrated that death-induced cells can be distinguished from
untreated cells by the use of DH microscopy [25]. Morphological analyses of the two adherent
cell lines L929 and DU145, treated with the anti-tumor agent etoposide for 1–3 days, were
performed in cell culture flasks. Etoposide causes errors in the DNA synthesis and promotes
apoptosis of the cancer cell by forming a ternary complex with DNA and the enzyme topoi-
somerase II [26]. Measurements revealed significant differences in the average cell number,
the confluence, cell volume, and cell area when comparing etoposide-treated cells with
untreated cells. The cell volume of the treated cell lines was initially increased at early time
points. By time, cells decreased in volume, especially when treated with high doses of
etoposide [25]. Moreover, this analysis was confirmed by a MTS assay. With DH microscopy,
small differences between the two cell lines were clarified. Mouse fibroblast L929 cells showed
a lower sensitivity for etoposide at the lowest concentrations, while for the human prostate
cancer cell line DU145, the confluence, cell area, and volume increased at first, and then
decreased over time.

In another study, we selected two suspension cell lines, a diffuse large B-cell lymphoma
(DLBCL) cell line, U2932 and the T-cell acute lymphoblastic leukemia cell line Jurkat. The cell
lines were treated with dimethyl sulfoxide (DMSO), 100 μM etoposide or left untreated as a
control, and were incubated for 24 h. Unpublished work by us shows that the average cell area
and cell volume decreased significantly for the Jurkat cell line compared with control. For the
U2932 cell line, the average cell area did not change, whereas the average cell volume
significantly decreased after etoposide treatment (Figure 2). Interestingly, the results may
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indicate cell line sensitivity, which also has been shown in the earlier studies [25, 27]. In
conclusion, cell death experiments performed with DH microscopy reveal that small differ-
ences between two cell lines can be clarified.

Figure 2. Etoposide induces a loss of cell area and volume in the cell lines Jurkat and U2932. Jurkat and U2932 cells
were treated with etoposide (100 μM), or left untreated, for 24 h, and holograms were captured by the Holomonitor™
M4. The mean cell area (A) and the mean cell volume (B) were calculated using holographic microscopy images. Error
bars are based on the total number of images.

Human α-lactalbumin made lethal to tumor cells (HAMLET) is based on a natural protein
present in human breast milk [28]. HAMLET induces cell death in tumor cells and immature
cells, but not in normal differentiated cells [29]. As monitored by DH, 15 min of incubation,
with 35 μM of HAMLET, was enough for a reduction in cell area and increase in thickness,
with evidence of membrane blebbing in human lung carcinoma A549 cells [26]. After 60 min,
the cells became even smaller in area and thicker [30]. Puthia et al. examined how HAMLET
affects β-catenin and Wnt-signaling in the treated human colon cancer cell line DLD1. Already
after 30 min, the cell morphology changed with HAMLET treatment. A time-dependent
decrease in cell area and an increase in maximum thickness was seen [31]. DH microscopy was
also used to analyze the effect of the cell death-inducing curcumin analog C-150 [32]. Four
different glioblastoma cell lines were treated with 1 μM of the analog for 24 h. The results
showed significantly increased cell volume and average thickness and decreased cell area for
the cell lines investigated.

DH microscopy has been applied for the analysis of chemokinetic responses, selective
cytotoxic, adhesion, and migration modulator effects on two different melanoma cell lines,
HT168-M1 and A2058, after treatment with di- and trihydroxyanthraquinones [33]. Alizarin
and purpurin have been reported to have activity against cancer cells. Their results showed
that no basic parameter was influenced by alizarin or purpurin as a cytotoxic or apoptotic
substance in HT168-M1 cells. In the case of A2058 cells, alizarin could induce positive effects
in the average cell area and volume as measured by DH.

3.2. Cell cycle of adherent cells

Our earlier results on etoposide, colcemid, or staurosporine treated cells showed changes
in average cell volume [34]. Mouse fibroblasts were treated and analyzed with DH micro-
scopy after 24 h of incubation. The results showed comparable accuracy to flow cytometry
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measurement of cell cycle distribution, where staurosporine induced G1 arrest and colce-
mid or etoposide induced G2/M arrest. The results with DH microscopy showed that the
cells decreased in cell size in response to staurosporine treatment, while the cell size in-
creased in response to colcemid or etoposide treatment. Etoposide was further used in a
dose-dependent manner in order to investigate how well DH microscopy was able to re-
cord a change in the cell cycle profile, as compared to flow cytometry. Etoposide reduced
average cell number, decreased average cell confluence, and increased average cell volume.
Indeed, using immortalized murine fibroblast cells, this first proof-of-concept study sug-
gests that DH microscopy is a possible alternative tool for analysis of cell cycle alterations
[34]. In another study, treated SKOV3-TR cells were visualized for 24 h until cell cycle ar-
rest and characterized by the presence of rounded cells that were unable to complete mito-
sis [35]. After 44 h, the cells had undergone apoptosis. Higher concentrations of treatment

Figure 3. The drug PLX4032 influences cell area and volume differently in the human melanoma cell lines WM-266-4
and CHL-1. WM-266-4 and CHL-1 cells were treated with PLX4032 (100 nM and 1 μM), or left untreated, and holo-
grams were captured by Holomonitor™ M4 after 24 and 48 h, respectively. The mean cell area (A) and the mean cell
volume (B) were calculated using holographic microscopy images. Error bars are based on the total number of images.
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showed early cell cycle arrest, and the cell population started to undergo apoptosis after
14 h. Indeed, by using time-lapse DH imaging, cell cycle arrest followed by progression to
apoptosis was clearly visualized.

Figure 4. 3D-images of WM-266-4 cells. The human skin melanoma cell line WM-266-4 treated with PLX4032 (100 nM
and 1 μM), or left untreated. Holograms of the cells were captured using holographic microscopy after 24 and 48 h,
respectively. Hologram pictures show the morphology changes over time with the different concentrations of PLX4032.

Figure 5. 3D-images of CHL-1 cells. 3D holograms showing the human skin melanoma cell line CHL-1 treated with
PLX4032 (100 nM and 1 μM), or left untreated. Holograms of the cells were captured using holographic microscopy
after 24 and 48 h, respectively. Hologram pictures show the morphology changes over time with the different concen-
trations of PLX4032.

We have treated two human melanoma cell lines, WM-266-4 and CHL-1, with different
sensitivity for the drug PLX4032, also called vemurafenib [36]. PLX4032 induces cell cycle
arrest in lower doses and apoptosis in higher doses in melanoma cells with a certain BRAF
gene mutation. It has previously been shown that CHL-1 cells are not inhibited by the drug
due to lack of this mutation. In our study, PLX4032 treatment increased the average cell area
and cell volume for the WM-266-4 cell line compared with untreated control cells, while the
CHL-1 cell line was less affected (Figure 3). Morphological cell changes are presented in 3D
holograms for WM-266-4 cells (Figure 4) and CHL-1 cells (Figure 5). The cells become more
flat, with increased area, after PLX4032 treatment. Indeed, with DH microscopy, even small
differences between treated cells were clarified.
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The effect of the novel anti-cancer drug ISA-2011B, etoposide, and docetaxel was monitored
with DH microscopy in real-time for up to 48 h by Semenas et al. ISA-2011B treatment led to
a reduction in cell size and changes in morphology, which was also achieved by docetaxel
treatment [37].

3.3. Cell death of suspension cells on antibody-based microarray

We have introduced antibody-based microarrays [38] to the experimental DH microscopy set-
up. By using single-chain variable antibody fragments (scFv) [39], directed against some of the
most common cell membrane proteins on T- and B-lymphocytes, suspension cells can be
analyzed with DH. Antibody-based microarray techniques have been used to determine
phenotypic protein expression profiles for human B cell sub-populations [39] and to detect
soluble antigens [40]. In our study [27], we combined DH microscopy and antibody-based
microarray to introduce a powerful tool to measure morphological changes in specifically
etoposide-treated antibody-captured cells, U2932, and Jurkat (Figure 6). We demonstrated that
the cell number, mean area, thickness, and volume could be noninvasively measured by using
DH microscopy. The cell number was stable over time, but the two cell lines used showed
changes of cell area and cell irregularity after treatment. The cell volume in etoposide-treated
cells was decreased, whereas untreated cells showed stable volume [27]. In conclusion, cell
death of suspension cells investigated with the help of antibody-based microarrays and DH
demonstrated that morphological parameters can be investigated of different cell lines and
treatments.

Figure 6. Jurkat cells on an antibody-based microarray captured with DH microscopy. A 200,000 Jurkat cells in 100 μl
of phosphate-buffered saline (PBS)-0.5% bovine serum albumin were applied to an antibody array and incubated at
room temperature for 30 min. The array was thereafter washed manually, until the cell binding areas were clearly visi-
ble. A 3D-image was thereafter captured with DH microscopy.

In conclusion, several independent studies now show the feasibility of DH microscopy to
demonstrate cell-death induced morphological changes after compound addition.
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4. Clinical applications

Lately, DH microscopy is being developed for clinical applications in widely different areas of
medicine such as transmembrane water flux, cancer screening, sperm motility, blood cell
analysis, and inflammation.

4.1. Transmembrane water flux

In some cases, current imaging techniques are not very well developed. One such example is
the measurement of transmembrane water fluxes in epithelial cells directly linked to the
activity of a protein involved in cystic fibrosis [41]. DH microscopy was used to quantify the
transmembrane water fluxes in situ by determining the phase shift associated with activation
of chloride channels. This opens up for the usage of DH microscopy to screen drugs acting on
water transporter molecules.

4.2. Cancer screening

Recently, Benzerdjeb et al. reported a preliminary study with DH microscopy as a screening
tool for cervical cancer. The study is based on materials from three randomly chosen labora-
tories, which was analyzed and subjected to DH microscopy. The sensitivity and specificity of
DH microscopy was calculated for the detection of neoplasia. The results demonstrated for the
first time that the DH microscopy technique is suitable for the processing of gynecologic
cervical samples [42].

4.3. Sperm analysis

DH has been used to characterize sperm cells, supplying data for both morphology, motility,
and the concentration of the sperm cells, without affecting the sperm reviewed in Ref. [43].
The morphology of the sperm head has often been correlated with the outcome of in vitro
fertilization and has been shown to be the sole parameter in semen of value in predicting the
success of intracytoplasmic sperm injection and intracytoplasmic morphologically selected
sperm injection [44, 45]. Indeed, DH microscopy generates useful information on the dimen-
sions and structure of human sperm, not revealed by conventional phase-contrast microscopy,
in particular the volume of vacuoles. This suggests its use as an additional prognostic tool in
assisted reproduction technology to better underline the differences between normal and
abnormal sperm morphology.

4.4. Blood cell screening

The function of RBCs is strongly connected to their shape, related to different diseases [46].
Therefore, a robust classification method would be of great advantage when analyzing RBC
for medical diagnosis and therapeutics. DH microscopy has allowed several investigators to
determine vital erythrocyte parameters including morphology and cell counting [15, 47, 48].
Indeed, a DH microscopy-based automated RBC classification method could have the potential
for use in drug testing and the diagnosis of RBC-related diseases. Malaria parasites induce
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morphological, biochemical, and mechanical changes in RBC. Main clinical diagnostics of
malaria is based on microscopic inspection of blood smears, treated with reagents, which stains
the malarial parasites. In developing countries, visual identification of malarial RBCs may
become unreliable due to lack of sufficiently trained technicians and poor-quality microscopes
and reagents. Anand et al. describe the use of quantitative DH microscopy for automatic
identification of malaria-infected RBCs by comparing their shape profiles at different axial
planes [49]. A correlation algorithm discriminates between the shapes of the cells and deter-
mines whether the cell is infected by malaria parasite. Shape comparison is fast and was found
to yield fairly accurate discrimination. This technique is mostly advantageous for healthcare
personnel working in developing countries. Similarly, other RBC infecting microbes can be
investigated, such as Babesia microti, which is an obligate parasite in humans, hamster, and
mouse. To find alternatives to methods requiring experience of professional technicians,
usually based on optical microscope with Giemsa-stained blood smears, DH methodology was
exploited [50]. The authors found the technique to be useful for determining morphological
modifications in host RBCs, quantifying contents, and concentration of the cellular dry mass,
as well as dynamic membrane fluctuations measured at the individual cell level, which are in
turn strongly correlated with the mechanical deformability of cell membrane. An automatic
compact diagnostic tool will be advantageous especially for healthcare personnel working in
developing countries, which lack trained professionals and high-quality equipments.

Platelet spreading and retraction play a pivotal role in the platelet plugging and the thrombus
formation. In routine laboratory, platelet function tests include exhaustive information about
the role of the different receptors present at the platelet surface without information on the
3D-structure of platelet aggregates. Boudejltia et al. used DH microscopy to develop a
convenient method to characterize the platelet and aggregate 3D shapes [51]. This is the first
report on analysis of platelets aggregates by DH microscopy. According to the authors, the
method is particularly well suited for the study of the platelet physiology, the physiopathology
in clinical practice, and the development of new drugs.

4.5. Quantification of inflammation

Lenz et al. have utilized DH microscopy for investigation of inflammatory bowel diseases
including Crohn’s disease and ulcerative colitis [52]. Dextran sodium sulfate-induced colitis
was performed and colonic sections were subsequently examined by histological analyses and
by DH microscopy. With DH microscopy, optical path length delay including refractive index
was monitored, and thereby tissue density assessment could be performed. Indeed, the
average refractive index was an accurate marker to distinguish between different layers of the
intestinal wall of the colitis induced murine model.

Furthermore, DH microscopy reliably detects inflamed colonic segments with a strong
correlation between the severity of inflammation and the refractive index. In conclusion, DH
microscopy analysis opens a novel diagnostic option for optical quantification of inflammation
in murine models of colitis. Moreover, the same research group assessed cellular growth and
motility in epithelial wound healing in vitro using DH microscopy [53]. Interestingly, phase
images quantifying cell thickness, dry mass, and tissue density were demonstrated. The study
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concluded that the technique can assist in the evaluation of potential therapeutics in, for
example, helping to elucidate the specific role of certain cytokines for wound healing.

5. Conclusion

The correlation between cellular morphological changes and cellular events is rather well
documented. In several studies, researchers have shown how holographic cell morphology
analysis can be connected to pathological diagnostics. Although the experiments in some cases
have been performed ex vivo or in animal models, the analysis of humans is just one small
step ahead. For other of the abovementioned applications, experiments are performed with
human tissues, and the methods are already beginning to be developed for clinical use. As DH
microscopy is noninvasive, the same patient sample can often be used for other analyses, thus
adding further benefit to the method.

6. Further research

Future applications could include real‐time monitoring of holographic microscopy parame‐
ters in human clinical cell samples in response to a broad range of clinically relevant com‐
pounds.
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